
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

School of Engineering and Advanced

Technology

Adding Traceability to an
Educational IDE

A thesis presented in partial fulfilment of the requirements for the Master degree

in Computer Science at Massey University, Manawatu,

New Zealand

Author:

Li Sui

Supervisor:

A/Pro Jens Dietrich

A/Pro Eva Heinrich

August 12, 2016

Contents

1 Introduction 9

2 Background 14

2.1 Challenges in teaching/learning programming and existing approaches 14

2.1.1 Gamification . 14

2.1.2 Game classification . 16

2.1.3 Existing educational platforms 17

2.2 Related work . 21

2.2.1 SoGaCo . 22

2.2.2 PrimeGame . 23

2.2.3 PrimeGame strategy classification 25

2.3 Conceptual foundations . 30

2.3.1 Notional machines . 30

2.3.2 Conceptual model . 32

2.4 Technical foundations . 34

2.4.1 Continuations . 34

2.4.2 The Java debug interface . 35

2.4.3 Instrumentation libraries . 36

2.4.4 Instrumentation . 38

3 A Layered and Reversible Notional Machine 44

3.1 Bi-directionality . 44

3.2 Two level hierarchy . 45

4 Design and Implementation 48

4.1 Client . 48

1

4.2 Server . 51

4.2.1 Snapshots . 51

4.2.2 Implementing tracing using source code instrumentation . . 53

4.2.3 Implementing tracing using byte code instrumentation . . . 54

4.2.4 Discussion . 57

4.2.5 Compression methods and encoding schemes 58

5 Experiment Analysis 65

5.1 Methodology . 65

5.1.1 Build performance measurements 65

5.1.2 Runtime performance measurements 66

5.2 Build performance (source code instrumentation) 67

5.3 Build performance (byte code instrumentation) 69

5.4 Runtime performance . 71

6 Conclusion and Future work 78

6.1 Conclusion . 78

6.2 Future work . 79

6.2.1 End user validation . 79

6.2.2 Compression improvement vs Game play strategy 80

6.2.3 Other games . 80

7 Appendix 82

7.1 Java Debug Interface Code Example 82

7.2 JavaFlow Code Example . 87

7.3 ASM byte code . 88

7.4 BlackMamba . 103

7.5 Java Parser . 108

2

List of Figures

1 Thesis Structure . 12

2 Greenfoot Interface . 19

3 If condition in Blockly . 20

4 PrimeGame Board . 24

5 Cautious VS Greedy . 33

6 Prime number VS Cautious . 33

7 Java Platform Debugger Architecture [29] 35

8 Example Code before Instrumentation 39

9 Abstract Syntax Tree . 40

10 Example Code after Instrumentation 41

11 Eclipse Debugger . 44

12 Program code Comprehension: Assignment 45

13 Program code Comprehension: Method Call 46

14 Game strategy comprehension: State Changing 46

15 Visual plus texture view . 47

16 Editor page . 49

17 Testing page . 49

18 Bot Selection . 50

19 Choose Who Plays First . 51

20 Snapshot . 52

21 Method Flow of Source Code Instrumentation 53

22 Nested Map data structure for Source Code Instrumentation 54

23 Byte code Instrumentation . 55

24 Example code: Miss capture on different JDK version 57

25 Level of Access: depth 2 . 59

3

26 LinkedList structure . 60

27 Baseline Encoder Structure . 61

28 Memory usage: Build Bots with source code instrumentation(MB) . 68

29 Memory usage: Build Bots without instrumentation(MB) 69

30 Memory usage: Build Bots Byte code instrumentation(MB) 70

31 Producing extra contents . 76

4

Listings

1 Randomly strategy . 26

2 Cautious strategy . 26

3 Greedy strategy . 27

4 Largest prime number strategy . 27

5 Max-gain strategy . 28

6 For loop . 30

7 Debug For loop . 31

8 Bad Writing Habit . 43

9 A variable that stays the same across all the moves 62

10 A variable that stays the same in a single move 62

11 Changing variable . 62

12 Adding a variable using edit distance 63

13 Remove a number in an array using the edit distance 64

14 Remove a number in an array using the tree edit distance 64

15 Monitor field . 82

16 Connect to VM . 84

17 Monitored Code . 86

18 JavaFlow Code Example . 87

19 (JDK version: 1.8.0 60)Bytecode Demonstration 88

20 BlackMamba Source Code . 103

21 JavaParser Code Example . 108

5

List of Tables

1 List of educational platforms . 17

2 Local Variable Table . 55

3 Time for Building bots using source code instrumentation (millisec-

onds) . 67

4 Time for Building bots using byte code instrumentation(milliseconds) 70

5 Different Encoding and Compression Result in Time(milliseconds) . 71

6 Different Encoding and Compression Result in Memory(KB). (blue:depth

2, red:depth 3) . 72

6

Abstract

High dropout and failure rate in introductory programming courses in-

dicate the need to improve programming comprehension of novice learn-

ers. Some of educational tools have successfully used game environments

to motivate students. Our approach is based on a novel type of notional

machine which can facilitate programming comprehension in the context of

turn-based games. The first aim of this project is to design a layered no-

tional machine that is reversible. This type of notional machine provides

bi-directional traceability and supports multiple layers of abstraction. The

second aim of this project is to explore the feasibility and in particular to

evaluate the performance of using the traceability in a web-based environ-

ment. To achieve these aims, we implement this type of notional machine

through instrumentation and investigate the capture of the entire execution

state of a program. However, capturing the entire execution state produces

a large amount of tracing data that raises scalability issues. Therefore, sev-

eral encoding and compression methods are proposed to minimise the server

work-load. A proof-of-concept implementation which based on the SoGaCo

educational web IDE is presented. The evaluation of the educational bene-

fits and end user studies are outside the scope of this thesis.

7

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor A/Prof. Jens

Dietrich for the continuous support of my study and related research, for his pa-

tience, motivation, and immense knowledge. His guidance has pointed me in the

right direction throughout the work.

I also would like to express my appreciation to my co-supervisor A/Prof Eva

Heinrich for her patient guidance and advice on computer science education. My

sincere thanks also goes to Prof. Manfred Meyer and Mr. Johannes Tandler for

their active collaborations on writing related papers.

Finally, I must express my very profound gratitude to my parents with unfail-

ing support and continuous encouragement.

8

Introduction

This study is based on a number of research problems in the area of computer

programming education. First of all, the motivation in learning programming lan-

guage. Programming courses have a high dropout and failure rate [51] [9] [22].

One possible approach to improve the output of programming and introductory

computer science courses is the provision of dedicated educational programming

environments. These environments aim at lowering the threshold for entry for stu-

dents by using only a reduced feature set compared to industry strengths integrated

environments (IDEs). Secondly, the use of the visualisation addresses the fact that

“novice learners can become quickly overwhelmed by too many details, and they

usually prefer to test an animation with predefined input data” [41, p. 132]. These

environments often use some level of gamifications to motivate and engage stu-

dents. Several such environments have been designed and used in recent years,

including Greenfoot [31], Blockly [23]. and Robocode [27], and there are some evi-

dences that the use of such tools can indeed improve educational outcomes [5] [43].

These environments promote programming and program comprehension in a way

of gaming, visualising and traceability. Thirdly, despite the benefit that are using

above techniques to improve programming comprehension, some of client-based

environments like Greenfoot and Robocode have high total cost of ownership as

they incur per client maintenance costs. On the other hand, Blockly is web-based

visual programming editor but does not support traceability.

Our work is based on a platform called Social Gaming Coding (SoGaCo) [18].

A unique feature of SoGaCo is that it is a web-based platform and also provides

a Software as a Service (SAAS) [28] like deployment model with a HTTP-based

API [21]. This architecture addresses several requirements: (1)It is a cloud-based

9

platform and can be deployed as a service to ensure low total cost of ownership

for organisations (such as high schools); (2) It facilitates the integration of services

such as identity management (through providers like Google, Facebook or in-house

providers via standards such as LDAP1); (3) It facilitates social networking fea-

tures for users to interact, in particular in order to develop programs of “bots”

that compete in tournament-like settings. SoGaCo as a framework supports mul-

tiple programming languages and different games. We are mainly using Java as

programming language, and the PrimeGame [39] as a game. The PrimeGame is

a simple mathematical board game that has been successfully used in computer

science education for many years.

This study aims to improve program comprehension by introducing notional

machine [13]. The idea of notional machine is to expose students to models showing

the program execution. A notional machine is an idealized, conceptual computer

whose properties are implied by the constructs in the programming language em-

ployed [13]. The purpose of a notional machine is to offer support for interpreting

the behaviour of running programs. The novel contributions of this study are de-

scribed in the following paragraphs.

Traditional techniques to provide notional machines are debugger-like tracing

features, either backed by an actual debugger API of the platform like JDI [29] or

by a continuation language feature such as JavaFlow [17].

Because the cost of maintaining active sessions between the client and server is

very high in term of memory, traditional debuggers do not work well in a web-based

environment where code is executed on the server. We have therefore designed a

1The Lightweight Directory Access Protocol

10

new type of notional machine that:

• Can be embedded seamlessly into the web-based environment;

• Supports bi-directionality by facilitating “reverse debugging”;

• Uses a two-layer approach that uses a domain-specific visualisation using a

game board combined with a code view to facilitating program comprehen-

sion.

This design is not straightforward as it requires us to capture the entire state

of program executions on the server, marshal it and transfer it to the client for

visualisation. In particular, it is not apparent that this design scales as it consumes

significant resources in terms of time, memory and network bandwidth. In this

thesis, we try to quantify these aspects in order to evaluate the feasibility of such

a design. We investigate the following variation points of this design:

• We monitor the time and memory usage to gather the state of an executing

program through Java bytecode instrumentation.

• Different methods to encode and compress the results of collected data.

These methods are baseline encoder, custom encoder, dictionary index method,

edit distance method and tree edit distance.

We choose to use JMH2, a micro-benchmarking tool that written in Java. It is

targeting JVM for building, running and analysing benchmarks. We are using this

tool for detailed analysis such as average, variance, standard deviation confidence

intervals.

2http://openjdk.java.net/projects/code-tools/jmh/

11

Figure 1: Thesis Structure

In summary,Figure 1 demonstrates the overview structure of this thesis. The

thesis contains 3 parts. The first part covers the educational aspects. The gam-

ification and educational IDEs are the two possible solutions for addressing the

difficulties in learning program and the related high dropout rates. Traditional

IDEs have a high total cost of ownership because it requires an independent client

to be installed and maintained. The second part addresses that issue by presenting

the SoGaCo, which is a low total cost of ownership in a web-based environment.

SoGaCo also integrates games and social networking to improve the motivation

for students. In the third part, we implement the traceability to facilitate program

comprehension which inspired by a concept of the notional machine.In particular,

we evaluate the use of different instrumentations to capture and gather states dur-

ing program execution, and compression methods to minimise the server work-load

12

from collected data. Scalability is a critical aspect here due to the amount of data

producing by the different PrimeGame playing strategies. The evaluation of the

educational benefits and end user study are outside the scope of this thesis.

13

Background

Challenges in teaching/learning programming and existing

approaches

In this section, we discuss the use of gamification, which has great influences on

motivation. There are two types of game: video game and serious game. They

are also discussed in this section based on their educational benefits. Particularly,

we introduce the broad game as it can be described in states and recorded in an

orderly fashion. That is the reason we choose to implement traceability in an

IDE that consist multiple games. There are a number of educational platforms

available in the market. They are all using games as a learning media. We analysis

pros and cons of each one of them.

Gamification

There is a problem that “students nowadays will easily lose enthusiasm and interest

in learning computer programming, especially when they experience repetitive fail-

ure in practising on their own” [33, p. 218]. To address this problem, our approach

is based on the assumption that the use of games to teach programming motivates

the novice learner and therefore improves educational outcomes. Analysing moti-

vation can help us to explore the educational potential of using games. In general,

there are two types of motivation [34].

• Extrinsic. This can be described as the external aspect of motivation. For

example, rewards related to career opportunities is an extrinsic motivation

for programmers entering the industry.

• Intrinsic. This can be described as the internal aspect of motivation. The

14

primary motivator is spontaneous interests in learning how to program.

The demand for programming skills has grown almost 50% since April 2002 [45].

More and more educational institutions are well aware of the importance of teach-

ing programming skills and the strong job market. However, this demand does not

necessarily help to improve students intrinsic motivation for learning programming

especially when it comes to very technical aspects. Games may provide a suitable

platform using game-based learning theory [46] [60] to improve motivation. In fact,

games can motivate students to learn, improve their self-esteem, minimise the time

needed for knowledge acquisition and also reduce instructor’s load [50] [30]. Ex-

amples of the use of gamification in programing education include Greenfoot [31],

Blockly [23] and Robocode [27]. The work by Rajaravivarma and Rathika suggests

that the use of game could potentially benefit computer education in areas like

problem solving and logical thinking [47].

A number of empirical studies [44] [58] [11] show the effectiveness of game-

based learning. For example, one study [58] compares game-based applications

with non-game-based applications with respect to the learning effectiveness and

the motivational appeal. In this study, two groups of high school students were

invited to learn computer memory concepts. One group used a game-based ap-

plication (Group A) and the other group used a non-gaming application (Group

B). A computer memory knowledge test was taken by the students afterwards.

The results show a statistically significant effect on scores in favour of Group A,

which indicates that students that had used the gaming application (Group A) per-

formed significantly better in the test than those that had used the non-gaming

one (Group B).

15

Game classification

Beregeron distinguished between video games and serious games for program-

ming education [10]. Video games provide more visual aids and effects. On the

other hand, serious games, can enhance the acquisition of knowledge and cognitive

skills [62] [8].

Board games are one of the sub-category of serious games. The SoGaCo plat-

form we use and discussed in more detail below (Section 2.2.1), contains several

board games, such as PrimeGame, Mancala and Othello. One of the characteris-

tics of board games is that they are turn-based. More details will be explained in

Section 2.2.1

State is an important concept to understand computation. A program consists

of multiple states and a turn-based game consists of multiple turns. A turn-based

game describes not only the state of game but also the state of program execution.

On the other hand, video games use complex user interfaces that often obfuscate

state. Compared to turn-based games, programming real-time video games can

be considerably more complex than programming board games due to the un-

predictable game play condition [19]. To work with video games, students need

knowledge and skill of sound effects, networking and animation, and this is chal-

lenging [35]. Distraction is another reason to chose turn-based (serious) games

over video games. Too much visualization could cause massive distraction which

could lose education benefits [41]. Our aim is to create an environment where stu-

dents focus on solving programming problems like algorithm design rather than

the game itself. In this case, the game acts like an agent to assist students to

achieve this goal.

16

In general, we believe that the serious game’s inherent properties promote

strategic thinking and their inherent simplicity are more important than the video

game’s exciting fast-paced interaction and sophisticated immersive multimedia in

programming education [19].

Existing educational platforms

In this section, we analyse a number of platforms available. We focus on some

unique features which have inspired our own design.

Table 1 shows a number of educational platforms. Program visualization is a

common feature for all these platforms. However, the language they support and

the platform they are running are different, and choices take targeted audiences

into account. Platforms like Scratch3, Blockly [23] and Codecombat4 support a

graphical programming language which put emphases on teaching concept of pro-

gram. Greenfoot, Robocode and BlueJ5 have clear targeted teaching language but

the rest of platforms shown in the Table 1 only support a graphical programming

language. Traceability is only supported by standalone platforms, as shown in the

Table 1. Web-based systems usually does not include a debug features. This is

because a traditional debugging mechanism is not easy to support in a web-based

environment. This issue leads us to design debugging mechanism in a web-based

environment.

Table 1: List of educational platforms

Platform Suitable for Teaching lan-

guage

IDEs Debugging

3https://scratch.mit.edu/
4https://codecombat.com/
5http://www.bluej.org/

17

Greenfoot high school and early

university level

Java standalone Yes

Alice children graphical

programming

language

standalone Yes

Robocode university level Java/C# standalone Yes

Codecombat beginner and gamer graphical

programming

language

web-based No

Scratch children graphical

programming

language

web-based No

Blockly beginner graphical

programming

language

web-based No

CodeMonkey all age Coffeescript web-based No

BlueJ introductory univer-

sity course

Java standalone Yes

In the following paragraphs we describe 3 platforms that inspire us designing

our platform in more details.

Greenfoot

Greenfoot’s target user group is around 14 years of age, but it can also be used

for introductory programming courses at university level [31]. Greenfoot does not

use a static main method as a program entry point. It consists of three elements

18

of state which are represented visually: a rotation, a position, and an image [31].

An animation effect is generated by the corresponding methods. For example, the

method setRotation(60) can rotate an object to 60 degrees and setLocation(5,

3) can set an object at a specific location. Synchronicity is another unique feature

of Greenfoot. Once some classes have been compiled, the context menu can display

the corresponding classes as Figure 2 shows.

Figure 2: Greenfoot Interface

The limitations of Greenfoot include error handling and reporting. The mes-

sages used to report errors are often not especially helpful and learners could be

frustrated by the high learning curve for interpreting error messages [31].

Blockly

19

Figure 3: If condition in Blockly

s

Blockly is a web-based educational platform for teaching introductory pro-

gramming [23]. It is suitable for beginners at all levels, including children. Blockly

adapted the concept “fun to use” instead of “learn to use”, and this makes it

becomes a very user-friendly learning platform [38]. Unlike Greenfoot, Blockly

game design uses certain tasks for certain games. For example, solving a maze

problem requires students to understand conditional and loops. Blockly also helps

the users to simplify program models in order to make it comprehensible. For

example, the Figure 3 shows how visual codes is associated with traditional code.

Blockly focuses on intrinsic motivation for novice learners by providing friendly

user interface and comprehensible model design. Blockly also provides mapping

functions to convert a graphical programming language to an actual programming

language like Javascript. However, the Blockly’s simplicity is also its limitation as

it makes it difficult to use for more complex problems.

One of the uses of Blockly is MIT App Inventor 26. It has been developed by

Google and maintained by the Massachusetts Institute of Technology (MIT). MIT

Inventor 2 is used for developing android applications. The ready made component

and event handlers in MIT Inventor provide a drag and drop function to facilitate

6http://ai2.appinventor.mit.edu/

20

the development. For example, users can put a ball or image-based object on a

canvas.

Robocode

Robocode is designed for learning programming by developing a robot battle tank

to against other battle tanks. It supports not only Java but also .NET. The in-

teroperability of Robocode provides a possibility for learning programming on the

same platform despite what programming languages they are familiar with. The

robot battles are running in real-time. Robocode has a standalone development

environment. It has its own installer, editor and Java compiler. Robocode also can

be supported by external IDEs such as Eclipse. Robot API provides several func-

tions to control bots such as movements and events. As a teaching tool, Robocode

is currently used in some introductory courses [26]. It also facilitates some standard

pedagogical methods, particularly for modeling objects in game environments and

problem based learning (PBL) [61] in a context of competition. [43]. One impor-

tant feature of Robocode is that it provides a multi-user environment to support

competition. Users can upload their bot to a server and run it against other bots.

The idea of competition is to motivate students to engage in a social/interactive

environment [27]. The Robocode national competition offers open-ended prob-

lems. It requires participants designing the strategy differently on the different

stage of competitions or facing different opponents. They collaborate with each

other in a small group to discuss the strategy, and then try to solve the problems

together.

Related work

In this section, we describe the previous works that our project is based on.

21

SoGaCo

SoGaCo7 platform is a start point for our work to build on. SoGaCo is a scalable

web environment that supports multiple programming languages to build compet-

itive bots, which play simple mathematical board games [18].

SoGaCo facilitates the idea of the problem-based learning (PBL). In fact, game

is a perfect platform for PBL [42] [52]. In this method, SoGaCo provides a teach-

ing platform for students to explore programming languages and different game

strategies. When students are playing board games, each player takes a turn to

continue the game according to a set of rules. This property of board games can

break down the algorithmic complexity of the game into multiple stages. This

the advantage of understanding how the program that plays the game runs by

computing each turn in separation.

One of the unique features of SoGaCo is social networking. Social networking

features are believed to be very popular with students. It facilitate the delivery of

new knowledge by sharing information. Social networking is also an efficient way to

intrinsically motivate students to learn [48], [12]. SoGaCo takes advantage of this

by including competition and collaboration in order to achieve better educational

outcomes. The sense of participation in a competitive environment can improve

students’ interests [15]. Students can program their own programs (“bots”) and

share them by sharing the unique bot address (URL) through emails or other social

networking media, inviting others to compete with this bot by loading (clicking)

this URL. This could be taken further by organising on-line tournaments. This

has not yet been implemented in SoGaCo, but it is a feature that is planned.

7http://sogaco.massey.ac.nz/

22

In the SoGaCo platform, bot building is the process that turns source code

into bot objects [18]. For the Java language, this includes 6 parts: compilation,

security check, instrumentation, loading, instantiation and testing.

• Compilation: Compile source code into byte code using a corresponding

compiler.

• Security check: To prevent injection attacks, a byte code check against an

API white-list of permitted classes is required.

• Instrumentation: The code is instrumented for monitoring the timeout and

resource usage. This is to enforce the security by preventing denial of service

attacks using resource (memory and CPU) quota.

• Loading: Load the Java class that is generated by the compiler.

• Instantiation: The class is instantiated.

• Test: JUnit acceptance test is to detect subtle problems like illegal moves

(postcondition violations), slow computations (via timeouts) and runtime

problems such as stack overflow errors.

PrimeGame

SoGaCo has a modular architecture that supports different games to be “plugged-

in”. One such game currently supported is the PrimeGame. The PrimeGame is a

simple mathematical board game developed by Meyer et al [39]. Its rules are very

simple: the board initially consists of numbers from 1 to 100, and in each turn,

the player selects a number from the board that has not yet been played. This

player then gets this number added to his or her scores. However, the opponent

gains all factors of this number that are still on the board.

23

The structure of PrimeGame can be easily represented visually. An array of

100 numbers from a 10*10 game board as shown in Figure 4. Different colors

demonstrate the status of PrimeGame. For example, the dark red is the numbers

that player 1 played and the dark blue represent player 2. The light colors are the

number scored through a move made by the opponent.

Figure 4: PrimeGame Board

This representation provides an intuitive visualization of the internal states

within a running program and facilitates step by step comprehension.

The aim of using the PrimeGame is to train students to devise more and more

sophisticated strategies. For instance, assume player 1 starts the game and plays

the largest number available, 100. Therefore, player 1 will gain 100 points. How-

ever, according to the rules, player 2 will get all the factors of 100: 1,2,4,5,10,20,25

and 50, this is 117 points! A better strategy would be to play 97. Then player 2

24

would only get 1 point as this is the only factor of 97. However, implementing this

strategy requires the understanding of more programming concepts such as loops,

conditions and inter-procedural calls.

PrimeGame strategy classification

In order to increase the novices programmer/students’ competence, it is required

to not only become proficient in a certain programming language but also to have

a good understanding of algorithms and problem solving. Von Mayrhauser and

Vans [57] described an important characteristic of being an expert programmer:

the ability to apply both general problem solving strategies and specialised strate-

gies. In SoGaCo, designing programmable and competitive bots require students

to employ different algorithms and data structures corresponding to different play-

ing strategies. In this section, we present a number of game playing strategies for

the PrimeGame. We rank them from low level to high level based on its complexity.

Because students have different levels of understanding and different back-

ground knowledge, educators must be cautious to choose the appropriate level of

difficulty for teaching. We have already discussed the differences between video

games and serious games (Section 2.1.2), but we have not classified anything in

more detail. Now we propose a classification based on the PrimeGame playing

strategies, associated computational costs, programming efforts and level of profi-

ciency needed to implement those strategies.

1. low level/simple: A simple strategy is driven by the low complexity of the

implementation. The objective is for bots to work correctly regardless of

their strength. Here are three examples of low/simple strategies.

25

(a) Random strategy

Randomly select a position to move as long as the move satisfies the

game rule. The choice taken is strongly influenced by the simplicity of

the code required to make this choice. For example, in the PrimeGame,

pick a random valid number at each turn (Listing 1).

Listing 1: Randomly strategy

@Override

public Integer nextMove(List<Integer> game){

Random r = new Random();

int pick = r.nextInt(100);

return game.get(pick);

}

(b) Cautious strategy

The cautious strategy always pick up the first number until the numbers

run out (Listing 2).

Listing 2: Cautious strategy

@Override

public Integer nextMove(List<Integer game>){

return game.get(0);

}

2. medium level: Medium level is a locally optimised strategy.

(a) Greedy strategy

For the game where the player gains points counting toward an overall

win by points during each move, a greedy strategy tries to capture as

26

many points as possible during each turn. In general, a greedy strategy

can be described as optimised for the current game state. For example,

one of the PrimeGame strategies is to gain maximum points at each

stage. As consequences, picking the largest number from the list of

possible numbers is a best solution for the greedy strategy (Listing 3).

Listing 3: Greedy strategy

@Override

public Integer nextMove(List<Integer game>){

int index = game.size()-1;

return game.get(index);

}

(b) Prime number

This strategy requires to find the largest prime number in the list.

Listing 4: Largest prime number strategy

@Override

public Integer nextMove(List<Integer> game) {

int largest = 0;

for(int i=0;i<game.size();i++){

if(isPrime(game.get(i)) && game.get(i)>largest){

largest = game.get(i);

}

}

return largest;

}

private boolean isPrime(int n){

for(int i=2;2*i<n;i++) {

27

if(n%i==0)

return false;

}

return true;

}

(c) Max-gain

Max-gain strategy (Listing 5)secures maximum scores in one round rel-

ative to the score gained by the opponent. So this is the “net gain”.

We refer to this as SmartBot later on.

Listing 5: Max-gain strategy

@Override

public Integer nextMove(List<Integer> game) {

Set<Integer> numbers = new HashSet<Integer>();

numbers.addAll(game);

int selection = -1;

int maxGain = Integer.MIN_VALUE;

for (int n:game) {

int gain = n;

for (int i=1;2*i<n;i++) {

if(n%i==0 && numbers.contains(i)) {

gain = gain - i;

}

}

if (gain>maxGain) {

selection = n;

maxGain = gain;

}

28

}

return selection;

}

3. High level: High level strategies are exhaustive uses heuristics. This implies

a high complexity. Some of the strategies are not suitable for PrimeGame

since it is a simple mathematical game.

(a) Look-ahead strategy

Look-ahead strategy. The next move is chosen not only based on the

current state, but also on a prediction of the next moves. An example

called BlackMamba is provided in Appendix 7.4

(b) More advanced strategy

This allows inspecting the whole decision tree to determine a move. The

associated computation cost is high to very high. Possible tactics tricks

could be applied. For example: set up a luring move to let opponent step

into traps. Opponent modeling can be seen as a classification problem,

where an opponent is classified as one of a number of available models

based on data that is collected during the game.

This classification provides educators wide range of choices for different stu-

dents. Moreover, educators could use this feature for assessment. Competing

against built-in programs based on different levels can generate 3 results: win, lose

or draw. These results give educators a standard for marking students’ assign-

ments.

29

Conceptual foundations

In this section, we briefly introduce the concept of notional machine.

There is a number of studies [32] [54] that have revealed a major issue with the

way programming is taught. For instance, a survey was conducted for 2nd year

programming students, and lecturers and teachers of programming from around

the UK [40]. Researchers found out that a major problem was that students

did not understand what happened when the program is executing. For example,

beginner students are confused about the following questions: how did the variables

change at a certain stage and what does an algorithm do in general? A possible

solution is using a debugger to retrieve program states which demonstrate how it

runs. Moreover, we expect the visualisation for program models to promote the

semantic interpretation that a debugger can provide. In the following sections, we

introduce two ways to assist program comprehensions.

Notional machines

The following Listing 6 is written in Java demonstrating a for loop that check if

it is a prime number.

Listing 6: For loop

for (int i=0;i<5;i++) {

isPrime(i);

}

Novice learners prefer to interpret a program line by line rather than using

meaningful program chunks on structure [51]. A reasonable description of that

30

for loop is: “declare an integer i, assign it with 0, and it will iterate over all the

values from 0 to 4 and check if it is a prime number”. However, the semantics

of a for statement is mixed up with what the for statement is used for in the

particular context [53]. For example, Vainio’s study [55] shows some students

think the variable within a for loop is always set to zero at the start of the loop.

Thus, it is important to demonstrate the actual program execution step by step

(Listing 7). Du Boulay introduced the idea of the notional machine and referred to

it as ”the general properties of the machine that one is learning to control as one

learns programming” [13]. It is an abstract computer machine whose properties are

implied by the constructs in the programming language employed [13]. He argues

that a notional machine should be simple, useful and can be used to observe the

inside of a program model. To use a metaphor: a glass box should do better work

than a black box in terms of explaining program execution. According to these

issues addressed above in teaching programming, the notional machine is a suitable

theoretical framework for us. We apply traceability to establish observation on how

program runs internally.

Listing 7: Debug For loop

stage1: isPrime(0);

stage2: isPrime(1);

stage3: isPrime(2);

stage4: isPrime(3);

stage5: isPrime(4);

To summarize the characteristics of notional machine [53]:

• It is a representation of a program at runtime;

• It serves the purpose of demonstrating what is going on program execution;

31

• It describes the semantics of program code which is written in those paradigms

or languages (or subsets thereof)

Conceptual model

The conceptual model crafts the system structure and presents it in a high level

of abstraction [59]. The ideas of the conceptual model is to improve the pro-

gram comprehension by visualising the program state. For example, the board of

PrimeGame in the SoGaCo (Figure 4) is a representation of the PrimeGame’state.

People can tell what number been taken from the game board corresponding to

what number been taken from a list. If the number which display in a game board

is not what people want , then there must be something wrong with manipulation

of the list in the source code. Another example of using conceptual model is to

demonstrate the strategic awareness though game broad. Figure 5 shows that the

red bot is using the cautious strategy (Listing 2) which only chooses the smallest

number on the board and the blue bot is using the greedy strategy (Listing 3)

which picks the largest number on the board. The respective student can clearly

see that the red bot has an overwhelming advantage because the blue bot chooses

a larger even number which gives the red bot more points due to the prime factor

rule.

32

Figure 5: Cautious VS Greedy

On the other hand, the red bot could adapt a better strategy (Figure 6),

for example picking up the largest prime number. Then, the blue bot(cautious

strategy) would not gain extra points.

Figure 6: Prime number VS Cautious

The difference between two game play strategies can be clearly seen in Figure

33

5 and Figure 6. This gives students an overall situational awareness. The con-

ceptual model can enable students to quickly comprehend the shortcomings and

advantages of certain strategies.

Technical foundations

In this section we discuss several possible technologies that could be used to im-

plement a notional machine which can describe the state of an executing program.

Continuations

Continuation was first discussed by Adriaan van Wijngaarden in 1964 [56] in a

context of program’s transformation into continuation-passing style [49]. With the

continuation, an application program can capture the execution state of a program

at a certain point. It usually involves the call stack which stores the information

about a program’s subroutines. A successful example of how continuation can

be used in object-oriented programs is Seaside [20], a server-side web application

framework written in Smalltalk. Continuation is used to model complex sessions,

where the execution of a method implementing the session is interrupted in order

to interact with the web client. This facilitates the use of the procedural logic of

the programming languages to model the logic flow within web application sessions.

Unfortunately, continuation is not directly supported by Java. However there

is some support through libraries such as JavaFlow [17]. JavaFlow implements

continuation via byte code instrumentation. There are two ways to instrument

byte code. One way is to use the JavaFlow Ant Task to build and enhance classes

with continuation support at build time [17]. Alternatively, a special class loader

called ContinuationClassLoader can transform a class at runtime. A simple code

34

example is provided in Appendix 7.2.

One of the disadvantages of using continuation is its lack of scalability. Since

our project is running in a web-based environment for multiple users with poten-

tially many concurrent sessions, the use of continuation could lead to a significant

amount of memory been used by server to maintain active sessions.

The Java debug interface

The Java Debug Interface (JDI) is a high level Java API providing information

useful for debuggers and similar systems needing access to the running state of

a virtual machine. JDI is one layer of the Java Platform Debugger Architecture

(JPDA) [29].

Figure 7: Java Platform Debugger Architecture [29]

As the Figure 7 shows JPDA consists a front end JDI, a communication channel

called Java Debug Wire Protocol, and the back-end JVM that actually suspends

a thread’s state and allows access to local variables. Similar to JavaFlow, they

are all able to pause at a certain state of a program, but JDI is embedded deeply

into JVM. The application pauses as the JVM suspends on the stack. This can

35

cause a significant performance overhead when this technique is implemented on

the server. A simple code example is provided in Appendix 7.1.

In summary, we found traditional debugging technique is not suitable for our

approach for several reasons:

• In a web-based setting with server-based execution, this approach leads to

open sessions that can consume significant amounts of memory, and therefore

compromise the scalability of the platform;

• Debugger-like tracing is inherently directional, and in order to go back in

history, the user has to restart execution. This is cumbersome and not

intuitive;

• Debugger-like tracing is not only code-centric, but also a more intuitive no-

tional machine that takes advantage of the domain-specific visualisation of

games;

Instrumentation libraries

SUN compiler API

The SUN compiler library8 is developed by the Oracle. The SUN Compiler API

uses the visitor pattern [24] to visit through all different types of statements and

expressions. But this library is not designed to rebuild or modify the AST. By

using StringBuilder, we parse out source code and insert statements based on line

number which retrieved from AST visitor. More details will explained later in

Section 4.2.2.

8http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/util/package-

summary.html

36

Oracle is working on Project Jigsaw9. It is designed to a standard module system

for the Java SE Platform. Since Project Jigsaw will modularize the Java runtime,

internal APIs (eg: packages com.sun *) will be made unavailable and the internal

structure of the JRE/JDK will change, which includes folders and JARs. Following

their deprecation in the Java 8, the endorsed standards override mechanism and

the extension mechanism will be removed in Java 9. The class and resource files

previously stored in lib/rt.jar, lib/tools.jar,lib/dt.jar [3], and various other internal

jar files will now be stored in a more efficient format in implementation-specific

files in the lib directory. Thus, maintainability of our project will be affected by

this change.

JavaParser

JavaParser10 is lightweight source code instrumentation library. It not only pro-

vides a AST parser but also allows to modify or create an AST from scratch.

The current version is 2.3.0. However, JavaParser is protected under GNU Lesser

General Public License. This would put some constraints on licensing our project.

Another reason we did not choose this library is it is not constantly maintained.

So, we are worry about the maintainability of it. A code demo is provided in

Appendix 7.5 shows how to create compilation unit by using the JavaParser

ASM

ASM11 is byte code manipulation framework that written in Java. It is also

a visitor-based. Compared to above tools/libraries, ASM has following advan-

tages [14]: Developers do not need to deal directly with a class constant pool and

offsets within method byte code. It is focused on simplicity of use and perfor-

9http://openjdk.java.net/projects/jigsaw/
10https://github.com/javaparser/javaparser
11http://asm.ow2.org/

37

mance. ASM is well maintained and supported by a large user community.

BCEL

The Byte Code Engineering Library (BCEL) [7] is another tool to manipulate byte

code. It is developed by Apache Foundation. Both ASM and BCEL are a low level

access tool. They provide direct control of the byte code instructions. However,

BCEL hasn’t been updated for few years [1].

Javassist

Javassist (Java Programming Assistant) [16] is another byte code manipulation

tool. Unlike ASM, Javassist does not require to work at byte code level. One

way to profiling code is using the annotation to log a method which helps keep

the code clean and simple. Beside, the audit logging can be removed without

modifying the source code. Another way is using Java agent [2] which is a core

Java feature introduced since Java 1.5 to manipulate the byte code. It hooks a pre-

main method to register a class transformer before the JVM loads the actual class.

In summary, we choose the SUN Compiler API as the library for the source

code instrumentation and ASM for the byte code instrumentation. Both of two

libraries provide a handy AST like visitor which helps to extract the states of a

program.

Instrumentation

This section presents two instrumentation methods. They are source code instru-

mentation and byte code instrumentation. We will later use instrumentation in

order to capture the application state in order to implement a debugger-like func-

tion.

38

Code instrumentation is a mechanism which can modify original code for ob-

serving a running software’s internal status [6]. Particular use cases of code in-

strumentation are measuring the program’s performances and operation analyses.

Instrumentation is also used to implement test coverage tools and aspect-oriented

programming (AOP)

The Java compiler compiles source code into a Java class file which contains

byte code. The concept of instrumentation is based on the abstract syntax tree

(AST). It is a syntactic structure representation of a program. It is used to repre-

sent source code structure in an abstract level to facilitate analyses and processing.

For example, an abstract syntax tree (Figure 9) demonstrates the following code

(Figure 8).

Figure 8: Example Code before Instrumentation

39

Figure 9: Abstract Syntax Tree

As we can see from above diagram (Figure 9), the AST provides direct access to

each operation (node) and its operand (leaf). For retrieving proper tracing infor-

mation, we only need to investigate the following operands and operations: classes,

method invocations, fields and assignments. In this case, “a=1” and “b=b+1”

need to be captured. Then, after instrumentation, the original code is modified

and turned into following source code (Figure 10):

40

Figure 10: Example Code after Instrumentation

To note that the “return” statement does have to be captured. In a circum-

stance that return a function like “return a+1;” does change the value of a, however

it is not possible to capture this change after “return” in source code. To deal with

the method invocations, we inject tracing event handler after every method invo-

cation.

In this project, we apply source code and byte code instrumentation to capture

the states of program.

Source code instrumentation

Source code instrumentation is an easy and intuitive way to instrumentate the

program. It allows to inject extra code to source code. Compared to byte code

instrumentation, source code instrumentation has following advantages [4].

• Flexible: Source code instrumentation allows to modify source code directly

and insert code where appropriate. Usually this technique can be turn off/on

since this takes place before compilation.

• Ease of use: Byte code is a condensed and optimized form of the original

41

source code. This could potentially cause trouble if developers are not famil-

iar with the byte code. On the other hand, developers can easily understand

what has been modified since it works on source code level.

• Source code can provide more information about the program. For instance,

Java code: public static final int A = 1, is an example of constant

inlining [25]. It sets the value of A is 1. However in byte code, iconst 1

indicates integer value 1 been pushed to the JVM operand stack. It does

not show the value 1 is obtained from A. Another example is using type

erasure [25] to enforce the type safety in the Java run-time environment. So,

in byte code, some generic types information has been removed.

Byte code instrumentation

Byte code instrumentation is based on the Java byte code. Byte code is set of

instructions that exists in the Java virtual machine [36]. The Java source code

is compiled into byte code and then the Java virtual machine loads and executes

this byte code. When working with byte code, the Java source code is no longer

required.

Unlike AST in source code instrumentation, byte code instrumentation deals

with instruction sets. Java byte code instruction set can be grouped into following

categories [36].

• Object control and initialization

• Operand stack control

• Arithmetic and logic

• Type conversion

42

• Logic control transfer

• Load and store

• Method invocation

The reasons we choose byte code instrumentation over source code instrumentation

are listed below.

• Line matching. There is no line indication for the end of a condition. Poor

code writing habits potentially cause line number mismatching. An example

(Listing 8) shows that source code instrumentation picks up an assignment

within a loop and register trace events right after it despite the fact that the

loop condition is not well formatted.

Listing 8: Bad Writing Habit

for(int i =0;i<11

addTrace();

;i++){

}

• Byte code instrumentation is already used in the SoGaCo. An instrumented

bot is used to detect the resource (memory and CPU) quota. To ensure the

free memory is below configured percentage value or maximum memory, we

measure the current memory use of all available objects. If memory usage

exceeds, an exception will be thrown. So, we integrate the traceability with

existing instrumentation to maintain consistency in our platform.

• Byte code is simpler to process as class names are resolved. In the Java

source code, the package information is separated from where it is applied.

But the byte code instruction includes the package information.

43

A Layered and Reversible Notional Machine

We already discussed the concept of notional machine (Section 2.3.1). For the

purpose of revealing the program execution, we apply traceability to construct a

debugger for the web-based environment which could help students to understand

how program runs. In this section, we describe the unique features of the notional

machine we have developed: bi-directionality and a two level hierarchy

Bi-directionality

A traditional IDE debugger requires users to set up breaking points. The system

will encounter a break point and suspend the execution where the break point is.

The user then can step forward to reveal debug information. However, if users are

step over the break point, they must excute the steps again until they reach the

break point.

Figure 11: Eclipse Debugger

Figure 11 shows how Eclipse presents a directional debugger.

A bi-directionality provides an ability to reverse stepping . This can potentially

save a lot of time and effort, especially when there are deep and nest program

44

structures. In our notional machine, we support reverse stepping through the

program code but also provide a function to stepping through game states. We

believe this feature is intuitive for new students as they are used to the reverse

function of media players.

Two level hierarchy

The game board shows the high-level state of the program, while the code view

can provide in-sights how this state is computed. This type of notional machine

can help to find out what the behaviour of the program is. Figure 12 shows an

example. It demonstrates the algorithm for picking the largest prime number. The

assignment indicates that the value 17 is assigned to the variable largest at this

state.

Figure 12: Program code Comprehension: Assignment

The Figure 13 shows another example. The next execution is a method invo-

cation which is isPrime() method.

45

Figure 13: Program code Comprehension: Method Call

The board game’s state is changing throughout the game play. To enhance the

semantic interpretation, we apply the conceptual model theory (Section 2.3.2). As

Figure 14 demonstrates, the game state changes from the player red’s turn to the

player blue’s turn. It tells us the player blue picks the number 3 at this state.

We represent this transition in the form of 10*10 game board which consists 100

numbers.

Figure 14: Game strategy comprehension: State Changing

One disadvantage of using only the visual representation is that it only demon-

46

strates the state changes on the game board. It does not reveal how the next game

state is computed (eg: how the variables change). The Figure 15 shows the textual

view which can be used to explain what the largest prime number is. At this state,

we are investigating the blue bot’s third move and the program state at line 25.

Four variables are displayed with its value. With the textual representation, the

layered notional machine not only reveals the semantics of program code in a form

of text representation, but also can represent the current game state visually.

Figure 15: Visual plus texture view

47

Design and Implementation

This section describes the design and implementation of traceability on both client

and server side.

Client

In this section, we present the design of a new user interface for traceability to

facilitate the reverse stepping and two layers notional machine. The new user

interface is based on the SoGaCo platform [18]. The following list is a summary

of the various parts of the user interfaces.

1. Figure 16 shows the test page in the existing SoGaCo user interface. For

the purpose of usability, we decided to redesign the user interface. The

game board and editor are displayed within the same page (Figure 17). This

facilitates the presentation of the notional machine, where both views are

necessary in order to display programming states.

48

Figure 16: Editor page

Figure 17: Testing page

2. Users can toggle the debug view. The debug view, the game board and

the editor are positioned within the same page so that users can follow the

49

changing states on the game board and the debug pane simultaneously. It is

also designed as a collapsible block along with other blocks. The debugging

pane in debug view are also collapsible. When there is more demand for

space, users can close it.

3. Bot selection. There is a new way to select the bots to play with. A togglable

sidebar contains user’s bot and a drop-down list includes other bots to play

with. The source code of user’s bot is displayed in a editor (Figure 18).

Figure 18: Bot Selection

After both bots have been selected, users can click the play button to bring

up the dialog shown in Figure 19. Users must choose which bot plays the

first move. This is very important in the turn-based game because the order

can affect the game outcome. Users are also able to choose whether to run

the game in debug mode.

50

Figure 19: Choose Who Plays First

4. Bi-directional debug control. A debugging control button allows to jump to

the next or previous line and display the corresponding tracing information.

It is very convenient to control because it is floating above the editor. If the

contents in the editor overflows, the control still sticks to the right bottom

corner (Figure 17).

Server

In this section, we present the implementation of traceability on the server side. It

includes two instrumentation methods: source code instrumentation and byte code

instrumentation. We also discuss five different methods to encode and compress

the results from tracing in order to minimise the server work-load.

Snapshots

The tracing mechanism is based on the notion of snapshots. A snapshot represents

the current state of variables in a running program. Both source code instrumen-

tation and byte code instrumentation can be used to extract snapshots with a

51

structure as shown in Figure 20.

Figure 20: Snapshot

The snapshots use the key-value set to map variables on the stack to values.

We create a snapshot whenever we encounter that (1) variables are added to or

removed from the current scope (2) variable values have changed. For example,

Figure 20 shows a code snippet within a move. After b=1 has been executed, we

take a snapshot of integer b and the current object identified by the this reference.

Then a condition expression is encountered and new snapshot is taken that includes

c and b. After the condition expression, the value of variable b changes and the

new value is captured. But the variable c needs to be dropped. This is because

the variable c is no longer exists within the scope as the frame drops when the

execution exits the block.

52

Implementing tracing using source code instrumentation

The library we choose is SUN Compiler API as the library has a AST like visitor.

The process of source code instrumentation is straightforward as the Figure 21

shows below. There are two main actions: AST analysis and string manipulation.

Figure 21: Method Flow of Source Code Instrumentation

• AST analysis: We use the visitor pattern [24] to travel through code. Next,

we retrieve useful information like line numbers, variables, methods and class

names. They are stored as key-value set. Figure 22) shows the simplified AST

structure of the prime number strategy (Listing 4). The MyBot class has two

methods: nextMove() and isPrime(). In the nextMove() method, there

are two variables that align with the corresponding lines. The isPrime()

method only has one variable which is located at line 3.

53

Figure 22: Nested Map data structure for Source Code Instrumentation

• String manipulation. The AST analysis phase results in a nested map (Fig-

ure 22). In this phase, we take source code as inputstream and read it

line by line. Whenever the line number is matching, we register a tracing

event by putting a callback statement after that line. For example, when we

parse line 3 which has variable n as a key, we inject the callback statement

”tracing(n,3)” to enable the tracing event. To prevent new registration

statements change the original source code lines, we use a temporary buffer

to rewrite the whole source code. At the end, instrumented code is generated

and ready for compilation.

Implementing tracing using byte code instrumentation

The byte code instrumentation library we choose is ASM 5.0. It provides an

AST-like structure to manipulate the byte code. The byte code instrumentation

consists of two parts (Figure 23): a class visitor and a register. The class visitor

is responsible for retrieving variable table and finding out what variable scope

is before register tracing events. The register is responsible for injecting tracing

events based on the results from the class visitor. Both the class visitor and register

54

are using the same ASM MethodVisitor to extract the information from the byte

code. The reason that we use a two pass strategy is because the variable table is

visited after visiting set of instructions in every MethodVisitor.

Figure 23: Byte code Instrumentation

An example of local variable table is shown in following Table 2:

Table 2: Local Variable Table

Name Signature Start End Index

number I 0 2 1

string Ljava/lang/String; 0 1 2

this LmyBot/bot; 0 2 0

The signature indicates the type of a local variable. It could be either a prim-

itive type or an object. For example, I indicates the values are 32-bit signed

two’s-complement integers and LClassName is an instance of class [36]. The Start

is the first instruction corresponding to the scope of a local variable (inclusive)

and the End is the last instruction corresponding to the scope of a local variable

55

(exclusive). The Start and End indicate where to add and drop variables as the

frame changes. The index shows the index of local variable on the stack.

Each of snapshot is taken at where the store and invoke instructions are. There

is no need to capture load instruction because we only track the final state of

variables. There are various store instructions.

• ASTORE: store a reference into a local variable

• ISTORE/DSTORE/FSTORE/LSTORE: store a integer/double/float/long

value into a local variable.

• AASTORE: store a reference in a array.

• IASTORE/DASTORE/FASTORE/LASTORE: store a integer/double/float/

long value in a array.

Besides the store instructions, we also trace method invocations.

• INVOKEINTERFACE:invokes an interface method on object and puts the

result on the stack

• INVOKEVIRTUAL:invoke virtual method on object and puts the result on

the stack

• INVOKESPECIAL:invoke instance, private method, and instance initializa-

tion method invocations

INVOKESTATIC and INVOKEDYNAMIC are other two invokes in Java byte code. The

SoGaCo verifier rejects bots with static fields and methods due to static mem-

bers keep the state of multiple instances of the same bot. We do not encounter

static methods at this stage. Furthermore, we do not support INVOKEDYNAMIC, and

56

therefore tracing might miss some states generated by dynamic invocation. This

will only have an impact on the precision of instrumentation if the supported lan-

guage level is Java 1.8, and lambda expressions are used in the source code of bots.

To visit a zero operand instruction, we need to trace RETURN, ARETRUN, IRE-

TURN, FRETURN, DRETURN and LRETURN instructions which return a void,

a reference or a primitive type.

For field access, we trace GETFIELD and PUTFIELD which get/set field to a value

in an object, where the field is identified by a field reference index in the constant

pool. Static field access (GETSTATIC,PUTSTATIC) can be ignored as the SoGaCo

verifier will reject bots using such instructions.

Discussion

We also spot an unexpected interesting behavior in the byte code instrumentation

by using ASM 5.0. One of our JUnit tests is to find out how many trace events

being registered. There should be 27 trace events but it is less than 27 trace events

on a different computer. We investigate it and found out the reason behind it is

the JDK version.

Figure 24: Example code: Miss capture on different JDK version

The JDK running on one PC is 1.8.0 31. The instrumentation picks up the

57

statement boolean b=true and registers a trace event (Figure 24). However, the

JDK with version 1.8.0 60 does not capture the boolean variable. The structure

of the byte code depends on the version of compiler being used. It makes sense

that the boolean variable is never used and the compiler may ignore it in order to

optimise byte code. But according to ASM specification, there is no information

related to this update about that optimization which causes a neglect of unused

variables. More details are provided in Appendix 7.3.

Compression methods and encoding schemes

In this section, we investigate how the state is represented by the snapshots which

is extracted though instrumentation. We propose five ways to encode and com-

press the snapshots.

The traced data is encoded in the JSON format. During the encoding process,

we find that the size of data increases substantially with the complexity of the bot.

To deal with such a large amount of data and prevent out of memory errors, we

propose five methods to encode traced data. They are: baseline encoder, custom

encoder, dictionary index method, edit distance method and tree edit distance.

Each method has its own advantages, but reducing the total amount of processing

time and memory usage are our primary concerns.

58

Figure 25: Level of Access: depth 2

Each memory snapshot is created via instrumentation. When a reference vari-

able is encountered, a depth detection is applied (Figure 25). Setting a maximum

depth also deals with circular references in the object graph. If the maximum depth

reached, then there will be no further encoding process. Take the LinkedList for

instance, the structure of it is shown as follow (Figure 26). To flatten this struc-

ture, we iterate through it and extract the value of each entry. No previous and

next entry are captured at this stage.

59

Figure 26: LinkedList structure

The baseLine encoder

The execution process decides how data is encoded. For example, a list of integers

from 0 to 10 is encoded as [0,1,2,3,4,5,6,7,8,9]. The baseline encoder basically

encodes everything and represents it in the JSON format. The structure is shown

in Figure 27.

60

Figure 27: Baseline Encoder Structure

However, a large amount data could be generated due to numbers of states or

turns particularly in the board game. For example, The BlackMamba has 217 lines

of code and needs 49 moves to complete the game against itself. As a consequence,

encoding takes 6,361 million seconds and produces 145 MB of data. This is a heavy

burden for the server. On the other hand, baseline encoder does a good job on

providing a clear and logic structure for interpreting running program. It also can

be easily decoded on the client side without any further computations. But it is

an expensive operation in term of memory usage and time consumption.

The custom encoder

The custom encoder encodes everything and shares the same structure with the

baseline encoder. However, the custom encoder compresses number arrays. It

reduces the number of elements being encoded. Therefore, the total size of data

is reduced.

61

For example, a consecutive number array [0,1,2,3,4,5,6,7,8,9] now becomes a string

[“0-10”]. For the non consecutive number array, we decide to find its consecutive

parts and keep the non consecutive parts. (e.g.:[0,1,2,3,6,7,8,9] = [“0”, “1-3”,

“6-8”, “9”]).

The dictionary index method

The dictionary index method method focuses on the structure of tracing results.

Since the baseline and the custom encoder potentially have a large amount of

duplications, the dictionary index method alters the structure of tracing results.

It stores the state of variable as a key, the value are the position that indicates

where the corresponding variable is and its execution order. As a result, a large

amount of space can be saved. For instance, a variable (e.g.: a=1) remains the

same across all the moves in the PrimeGame, the encoded result in JSON would

be shown as follows (Listing 9):

Listing 9: A variable that stays the same across all the moves

{"value":"a=1","move":[1,2,3,4,5,6,7,8,9,10],"executionID":[1],"line":[22]}

If there is a variable that remains the same in a single move, the encoded result

in JSON would be shown as follows (Listing 10):

Listing 10: A variable that stays the same in a single move

{"value":"a=1","move":[1],"executionID":[1,2,3,4],"line":[22,23,24,25]}

If that variable changes, we record it as follows (Listing 11):

Listing 11: Changing variable

{{"value":"a=1","move":[1],"executionID":[1],"line":[22]},

{"value":"a=2","move":[2],"executionID":[1],"line":[22]}}

62

The edit distance method

The edit distance provides a function to investigate the differences between each

execution state. We use a series of snapshots to indicate the execution states. Each

snapshot contains a number of variables. The idea is to stringify each variable in a

snapshot and compare them with the one in previous snapshot. The first snapshot

is always the base. An example shown as follows (Listing 12):

Listing 12: Adding a variable using edit distance

{{"base":true,"snapshot":{"a":"1"},"move":[1],"line":[22],"action":null},

{"base":false,"snapshot":{"b":"2"},"move":[1],"line":[23],"action":"add"}}

We only record the remove and the add actions. The add action indicates a variable

in the current snapshot does not exist in the previous one. On the other hand,

the remove action shows a variable in the previous snapshot does not exist in the

current one.

The tree edit distance method

Similar to the edit distance method, the tree edit distance also provides a func-

tion to investigate the differences between execution states. However, the tree edit

distance takes this step further and focuses on the branch of the tree. Instead of

using the string representation of each variable in a snapshot, the tree distance

method applies an abstract tree to represent the structure of variables. By compar-

ing each node of variable with the one in the previous snapshot, we can compute

the differences by applying following actions: the add, remove and update. At the

client side, we can re-compute whole executions by simulating modification actions

starting from a base.

63

Compared to the edit distance method, the tree edit distance method has an

advantage. For example, an array of numbers changes from [1,2,3,4] to [1,2,3], this

can be represented through the edit distance method as follows (Listing 13)

Listing 13: Remove a number in an array using the edit distance

{{"base":true,"snapshot":{"a":"[1,2,3,4]"},"move":[1],"line":[22],"action":null},

{"base":false,"snapshot":{"a":"[1,2,3,4]"},"move":[1],"line":[22],"action":"remove"},

{"base":false,"snapshot":{"a":"[1,2,3]"},"move":[1],"line":[22],"action":"add"}}

The first entry is the base. The second entry indicates ”remove” action which

deletes the variable a. The third entry shows variable a with new value being

added. On the other hand, the tree edit distance method iterates through the

array and find the difference (Listing 14).

Listing 14: Remove a number in an array using the tree edit distance

{{"base":true,"snapshot":{"a":[1,2,3,4]},"move":[1],"line":[22],"action":null},

{"base":false,"snapshot":{"a":4},"move":[1],"line":[22],"action":"remove"}}

However, there is a potential drawback using the tree edit distance method. It

produces extra contents in some particular cases. More details will be discussed

later (Figure 31)

64

Experiment Analysis

In this section, we assess the various encoding and instrumentation methods pro-

posed. The validation does not include end user experiments.

Methodology

These experiments were executed on a MacBook Air with a 1.3 GHz Intel Core i5

CPU, 4 GB RAM, OS X version 10.11.2, using a Java HotSpot 64-Bit Server VM

(build 25.65-b01, mixed mode). We set the start-up flag to be -Xmx 3g for the

maximum memory allocation pool for JVM. We use JMH12, a micro-benchmarking

tool that written in Java. It is targeting JVM for building, running and analysing

benchmarks. We are using this tool for detailed analysis such as average, variance,

standard deviation confidence intervals.

Build performance measurements

The aim of the build performance tests is to find out the effectiveness of two

instrumentation methods and to observe the impact on system comparing with

the normal build process. The test consists 100 iterations and each iteration

has 10 repeated executions. There are several measurement criteria need to be

considered:

1. The amount of time to build a bot from compilation to test. We also take

measurement of the min/max with standard deviation and confidence inter-

val. Each test contain a warm up stage which has 20 iterations, and each

iteration runs 10 times. After warming up, the test consists 100 iterations,

and each iteration runs 10 times.

12http://openjdk.java.net/projects/code-tools/jmh/

65

2. The memory usage to complete the build process. We use the java.lang.Runtime

class to get the free memory and the total memory used by the JVM. Then

the used memory is defined as ”total memory-free memory” which indi-

cates how much of the current heap the JVM is using.

3. As mentioned above in Section 2.2.3, the complexity of the strategy has a

strong impact on the actual workload for the instrumentation. We select

three different strategies to assess the impact this has. They are GreedyBot

(Listing 3), SmartBot (Listing 5) and BlackMamba (Listing 7.4).

The Java profiling is not alway accurate since the performance of the JVM is

not completely deterministic [37]. In particular, the JVM needs warm up time to

reach optimal performance. It complies methods that executed over a specified

number of times to machine code [37]. It is known as compilation threshold.

Runtime performance measurements

After the build process, the bot is ready to be loaded, instantiated and executed.

Then we take a measurement to monitor runtime performance where the bots are

playing against themselves. Note that only one bot is instrumented during the

build and the game play.

We do not include source code instrumentation as this part of runtime test

because the results it produces are similar to the results obtained using byte code

instrumentation. We have the following factors to consider during the game play

tests.

• The amount of time running a game from the beginning until the win con-

dition achieves. The time unit is millisecond.

66

• The memory required to compose the encoding results. There are five dif-

ferent encoding methods for us to evaluate. For that purpose, we use the

SizeOf object size estimation library13

• The size of file that must be transmitted to the client. It is measured when

encoding process end and all results are stored in a txt file.

• The compressed size of the file that must be transmitted to the client. Most

clients (including all major web browsers) accept compressions14. It is mea-

sured after stored txt file been compressed into the ZIP file.

• In order to see whether the recording depth affects the file size or not, we

measure sizes with an encoding depths of two and three. The captured results

in depth 3 are highlighted in red and depth 2 is highlighted in blue. The

Figure 25 shows the layer of snapshots.

Build performance (source code instrumentation)

Table 3 shows the results in time for building the bots using source code instru-

mentation.

Table 3: Time for Building bots using source code instrumentation (milliseconds)

with instrumentation no instrumentation

average min/max stdev CI(99.9%) average min/max stdev CI(99.9%)

GreedyBot 40.26 17.83/214.96 19.42 [30.23-42.28] 40.47 21.27/237.24 16.66 [38-42.94]

SmartBot 42.71 21.63/233.31 20.8 [40.54-44.88] 39.59 24.38/214.6 14.35 [39.47-41.72]

BlackMamba 58.76 26.77/260.57 22.34 [51.0-64.92] 56.54 31.75/206.31 11.36 [54.32-58.76]

There is only a slightly difference in time. The GreedyBot and SmartBot re-

quire less time to build than the BlackMamba. Note that the unit is milliseconds,

13http://mvnrepository.com/artifact/com.carrotsearch/java-sizeof)
14The HTTP protocol supports transparent compression of traffic

67

In fact, the source code instrumentation highly relies on the number of nodes in

the AST which need to be instrumented. In this case, The BlackMamba has 227

lines of code need to be instrumented, the SmartBot has 41 lines of code and the

GreedyBot has 21 lines of code. Respectively, the BlackMamba requires 58.76 mil-

lisecond in average, the SmartBot requires 42.71 milliseconds and the GreedyBot

requires 40.26 milliseconds to build. Nonetheless, the impact on build process still

remain at minimum.

The Figure 28 using box-plots shows the memory usage for instrumenting bots

during the build.

Figure 28: Memory usage: Build Bots with source code instrumentation(MB)

The Figure 29 shows memory usage for building the bots without instrumen-

tation.

68

Figure 29: Memory usage: Build Bots without instrumentation(MB)

For the memory usage benchmark, there is no significant difference between

building the bot with instrumentation and building the bot without instrumenta-

tion. The total memory usage during build process is 400MB approximately. For

three different game play strategies, there is no significant differences among them

either. Therefore, the source code instrumentation does not have any significant

impacts on build process in term of memory consumption.

To summarise, the source code instrumentation does not have a significant

impact on the bot build process.

Build performance (byte code instrumentation)

In this section, we conduct a benchmarking on the bot build process using the

byte code instrumentation. Table 4 shows the time needed for building the bots

using the byte code instrumentation.

69

Table 4: Time for Building bots using byte code instrumentation(milliseconds)

with instrumentation no instrumentation

average min/max stdev CI(99.9%) average min/max stdev CI(99.9%)

GreedyBot 43.67 25.07/240.12 15.56 [41.37-45.98] 40.47 21.27/237.24 16.66 [38-42.94]

SmartBot 49.64 23.86/255.44 21.93 [46.39-52.87] 39.59 24.38/214.6 14.35 [39.47-41.72]

BlackMamba 62.5 35.91/176.16 16.7 [60.03-64.98] 56.54 31.75/206.31 11.36 [54.32-58.76]

The Table 4 shows there is no significant difference in time demanding for

building three different bots. The BlackMamba takes slightly longer to build than

other bots, and the GreedyBot is the fastest bot to build.

The Figure 30 below shows the memory usage using the byte code instrumen-

tation for building the bots.

Figure 30: Memory usage: Build Bots Byte code instrumentation(MB)

A complex bot like the BlackMamba takes longer and consumes more memory

to build than the other two bots. Comparing building the bot with instrumenta-

tion and building the bot without instrumentation (Figure 29) shows no significant

70

differences.

Runtime performance

In this section, we run performance tests against 5 different encoding schemes

discussed in Section 4.2.5. We instantiate the bot class twice and let the two

instances play against itself. But only one bot is instrumented.

Table 5: Different Encoding and Compression Result in Time(milliseconds)

average time min/max time stdev CI(99.9%)

BE15

GreedyBot 2.27 1.40/24.14 2.241 [1.51-3.03]

SmartBot 237 202.85/346.98 27.914 [227.91-246.85]

BlackMamba 4,521.36 4,266.1/4,950.9 123.58 [4,479.45-4,563.27]

CE16

GreedyBot 2 1.06/4.03 0.55 [1.82-2.2]

SmartBot 185.75 165.19/265.86 15.784 [180.4, 191.1]

BlackMamba 4,420.62 4,141.79/4,921.09 124.36 [4,378.43-4,462.8]

DI

with

CE

17

GreedyBot 2.91 1.36/19.68 1.936 [2.26-3.57]

SmartBot 274.21 247.61/600.24 39.95 [260.67, 287.76]

BlackMamba 5,285.56 5,039.92/5,690.12 116.1 [5,246.19-5,324.94]

ED

with

CE

18

GreedyBot 2.79 1.24/20.88 2.23 [2.03-3.54]

SmartBot 238.29 213.51/347.34 24.39 [230.03-246.57]

BlackMamba 5,226.1 4,937.59/5,720.63 185.4 [5,163-5,288.96]

TED19

GreedyBot 3.15 1.13/35.28 3.8 [1.86-4.44]

SmartBot 610.99 539.31/930.90 76.03 [585.2, 636.77]

BlackMamba 35,700.11 33,088.76/39,550.22 1,318.25 [35,267.77-39,550.21]

15Baseline Encoder
16Custom Encoder
17Dictionary Index with Custom Encoder
18Edit Distance with Custom Encoder
19Tree Edit Distance

71

With the baseline encoder, the GreedyBot requires 2.27 millisecond to complete

the game in average. The time consumption of the SmartBot is approximately 104

times more than the GreedyBot requires. We have 99.9% confidence that the av-

erage time used by the BlackMamba is between 4479.45 and 4563.27 milliseconds.

There is no significant difference between the custom encoder and the baseline

encoder for the GreedyBot and the SmartBot time wise. The time benchmark

shows the custom encoder and the dictionary index method have similar time con-

sumption except for the BlackMamba. The time consumed by the BlackMamba

increases 19.6% from the custom encoder to the dictionary index method.

The time consumption for the tree edit distance is higher than for the other 4

methods. It also has the largest standard deviation. The BlackMamba consumes

the most time compared to other methods. It approximately increases 7.07 times.

Table 6 below shows the memory, file size and zip size of tracing results.

Table 6: Different Encoding and Compression Result in

Memory(KB). (blue:depth 2, red:depth 3)

memory

(sizeOf)
file size ZIP size

13 16 4
GreedyBot

13 16 4

11,264 11.980.8 119
SmartBot

11,264 11,980.8 119

148,480 155,852.8 1,945.6

BE20

BlackMamba
163,840 166,912 2,560

5 8 4

72

GreedyBot
5 8 4

5,120 6,963.2 82
SmartBot

5,120 6,963.2 82

113,664 120,115.2 1,740.8

CE21

BlackMamba
129,024 136,192 2,355.2

3 4 4
GreedyBot

3 4 4

63 66 4
SmartBot

63 66 4

1,024 2,048 172

DI

with

CE

22

BlackMamba
2,048 2,457.6 389

5 8 4
GreedyBot

5 8 4

1,024 1,536 82
SmartBot

1,024 1,536 82

70,656 74,649.6 2,251.8

ED

with

CE

23

BlackMamba
76,800 81,920 3,072

11 12 4
GreedyBot

11 12 4

1,024 1,228.8 86
SmartBot

1,024 1,228.8 86

30,720 32,768 2,150.4

TED24

BlackMamba
40,960 45,056 4,096

20Baseline Encoder
21Custom Encoder
22Dictionary Index with Custom Encoder
23Edit Distance with Custom Encoder
24Tree Edit Distance

73

In the baseline encoder, the reason that it takes longer is because it captures all

tracing information. As a result, the memory usage remains at a very high level.

The GreedyBot generates the smallest results with 16 KB and the BlackMamba

gives the largest file with 2,560KB (at depth 3). Compared to capturing traces at

depth 2 for the BlackMamba, the file size increases 10%. For the GreedyBot and

the SmartBot, the file size remains the same due to its plain structure. After the

compression, the GreedyBot, SmarBot and BlackMamba produce 4KB, 119KB

and 1,945.6KB (at depth 2) compressed files respectively.

The custom encoder uses a pattern to represent consecutive numbers in an

array. It shares the same structure as the baseline encoder (Figure 27). For the

memory usage, the GreedyBot and SmartBot consume 50% less memory than us-

ing the baseline encoder. The BlackMamba consumes 30% less memory than using

the baseline encoder. When comparing depth 2 with depth 3 in the BlackMamba

using the custom encoder, the file size increases 13% from 1,740.8KB to 2,355.2KB.

It has similar growth rate as that of the baseline encoder.

The dictionary index method uses the custom encoder. It does not implement

the same snapshots structure as the baseline encoder. In order to reduce the size

of the result, a dictionary based structure is proposed. The key is the state of

the variable, and the value indicates the lines, moves and execution orders. There

is a vast difference between the dictionary index method and the others in term

of memory usage and file size. Compared to the custom encoder, the dictionary

index method shrinks the size of file from 6,963.2KB to 4KB for the SmartBot

and 1,740.8KB to 1,024KB for the BlackMamba. After the compression, the size

of file can be reduced to 4KB, 4KB and 172KB for these three bots respectively.

Throughout all other four methods, the dictionary index method produces the

74

minimum file size.

The custom encoder is also applied to the edit distance method. It produces a

fairly small file size compared to the baseline encoder. The edit distance method

records the number of operations that indicates the transitions between snapshots.

The memory usage of the BlackMamba reduces from 148,480KB to 70,656KB com-

pared to the baseline encoder. However, it increases by 69,632KB compared to

the dictionary index method. Both of them are using the custom encoder. Both

the baseline encoder and the edit distance method use nearly the same amount of

time to complete a game.

The tree edit distance employs neither the custom encoder nor the baseline

encoder. Its unique structure (Listing 14) determines how variable states are

encoded. Unlike the edit distance method, the tree edit distance focuses on the

elements that variables consist of, and forms sequence of tree structure which can

be explained by a number of operations. As the result, the BlackMamba produces

a 32,768KB file and that is nearly half compared to the file produced by the edit

distance method. It means there is some redundancy recorded by the edit distance

method due to the level of access to a particular variable. The Table 6 shows the

file size increases 33% from depth 2 to depth 3.

75

Figure 31: Producing extra contents

Figure 31 shows two cases that could produce extra contents. The first one is

the removal of a variable in the middle (assume that the variables have already

been ordered). Then the operation can be addressed as “update 2 to 3, update 3

to 4 and remove 4” instead “remove 2” directly. In the seconds case, the order of

variables is completely random. A full update operation is performed. In conclu-

sion, a further redundancy check must be applied to prevent the above cases. As

a consequence, performance issues arise.

In summary, the edit distance method focuses on a two-level structure: snap-

shot and variable value. It produces a fairly small amount of data comparing with

the custom encoder and baseline encoder. The tree edit distance method focuses

on three-level structure: snapshots, variables and their elements. It has an advan-

tage dealing with a complex algorithm like BlackManba. But it takes longer to

compute than other four methods. The dictionary index method with a custom

encoder has reasonable time consumption and file size. The baseline encoder pro-

vides an easy and intuitive way to represent snapshot and its states. However, it

produces a huge amount data to be delivered to the client side. In contrast, the

76

other four methods need more work to decode on the client side.

77

Conclusion and Future work

Conclusion

In the previous section we have focus on performance evaluation. A number of

encoding methods were tested. At the end, we choose the dictionary index method

over others because the amount of data reduced. There is no significant difference

between each encoding method in time-wise except the tree edit distance method.

The three-level structure of the tree edit distance method determine it takes longer

to compute than other methods.

The level of game play strategy discussed in section 2.2.3 reveals the fact that

the level of difficulty can not only provide more options for students but also can

be used as assignments for instructors for assessment. We also find a positive rela-

tionship between the level of gaming play strategy and the workload for encoding

tracing results. The level of gaming play strategy increases, so dose the demand for

memory and time. It does not matter what encoding or comparison methods are

applied, the BlackMamba bot always consumes most resources. We also explore

the depths that been captured in three bots. The size of encoded file only increases

in the BlackMamba because it has an inner class Move to represent the game broad.

During bot building, there is no significant difference between the source code

and the byte code instrumentation in term of time and memory consumption.

Furthermore, the results from Section 5.2 and Section 5.3 indicate the impact that

applying instrumentations on the bot build process remain at minimum

Through the instrumentation techniques, we are able to capture the program

78

states and represent them in a layered notional machine discussed in Section 4.1

and Section 3. The layered notional machine contains a game broad which demon-

strate the game strategy in a conceptual level, and the code editor with tracing

information provides a comprehension on the semantics of program code for novice

learners. We capture the entire executions to facilitate bi-directionality which

makes reverse stepping possible.

In conclusion, we have implemented a proof-of-concept notional machine based

on a highly scalable web-based platform. We also perform a number of test to

verify its feasibility.

Future work

This section describes possible works that may carried by other.

End user validation

This thesis is focused on the proof-of-concept implementation of a layered no-

tional machine. On the conceptual level, we already discuss the potential benefits

in gaming which is linked to intrinsic motivation analyses. The transformation

from extrinsic to intrinsic motivation involves certain level of satisfaction using

our software. The purpose of implementing traceability is to improve program-

ming comprehension for students. Due to the time constraint, this thesis does

not include validation for end users. In the future, an end user validation can be

conduct to find out if our work translates into better educational outcomes.

This end user study can be conducted through qualitative study and quantita-

tive study. In quantitative study, a question in survey like ”how strongly do you

agree that the debugger can help me to understand the program?” may provide a

79

numerical data for satisfaction levels. Also, design some small tasks for users to

complete. For example, we could ask users to find a particular variable’s value in

certain move and measure how long they take to finish it. On the other hand, a

qualitative investigation would helps as well (e.g. talking and observing students).

Compression improvement vs Game play strategy

We present 5 compression and encoding method for tracing results. Their per-

formance are all limited to game play strategy. From results discussed in the

experiment section, it is clear to see that these 5 compression methods reduce the

file size and some of methods do have significant impact on time consumption. For

example, the BlackMamba still needs longer to compute than other two bots. We

need to find a more efficient method that not only reduce the amount data and time

but also balance it with the game play strategy. For example, the custom encoder

needs to handle complex data structure. The position data can be represented as

Position(x,y). A particular use case is the Tic Tac Toe game. Using a prede-

fined number 1 to represent top center position on game board (Position(0,1)).

Then, the list of move for a player now become list of numbers, and the custom

encoder can easy compress this number array. The tree edit distance method needs

an improvement on producing the extra contents (Figure 31) in the future.

Other games

This thesis focused on PrimeGame which is a pure mathematical board game. We

would like to see more games to be added to the SoGaCo platform. For instance,

The five in row (Gomoku) is a traditional Chinese broad game. It is played on a Go

game broad. We would like to see the analysis of the play strategies of Five in row

and the traceability of it. Furthermore, we would to know the educational benefits

among the different broad games in the context of culture, game complexity and

80

API complexity.

81

Appendix

Java Debug Interface Code Example

Listing 15: Monitor field

public class FieldMonitor {

public static final String CLASS_NAME = "Test";

public static final String FIELD_NAME = "foo";

public static void main(String[] args)

throws IOException, InterruptedException {

// connect

VirtualMachine vm = new VMAcquirer().connect(8000);

// set watch field on already loaded classes

List<ReferenceType> referenceTypes = vm

.classesByName(CLASS_NAME);

for (ReferenceType refType : referenceTypes) {

addFieldWatch(vm, refType);

}

// watch for loaded classes

addClassWatch(vm);

// resume the vm

vm.resume();

// process events

82

EventQueue eventQueue = vm.eventQueue();

while (true) {

EventSet eventSet = eventQueue.remove();

for (Event event : eventSet) {

if (event instanceof VMDeathEvent

|| event instanceof VMDisconnectEvent) {

// exit

return;

} else if (event instanceof ClassPrepareEvent) {

// watch field on loaded class

ClassPrepareEvent classPrepEvent = (ClassPrepareEvent) event;

ReferenceType refType = classPrepEvent

.referenceType();

addFieldWatch(vm, refType);

} else if (event instanceof ModificationWatchpointEvent) {

// a Test.foo has changed

ModificationWatchpointEvent modEvent =

(ModificationWatchpointEvent) event;

System.out.println("old="

+ modEvent.valueCurrent());

System.out.println("new=" + modEvent.valueToBe());

System.out.println();

}

}

eventSet.resume();

}

}

/** Watch all classes of name "Test" */

83

private static void addClassWatch(VirtualMachine vm) {

EventRequestManager erm = vm.eventRequestManager();

ClassPrepareRequest classPrepareRequest = erm

.createClassPrepareRequest();

classPrepareRequest.addClassFilter(CLASS_NAME);

classPrepareRequest.setEnabled(true);

}

/** Watch field of name "foo" */

private static void addFieldWatch(VirtualMachine vm,

ReferenceType refType) {

EventRequestManager erm = vm.eventRequestManager();

Field field = refType.fieldByName(FIELD_NAME);

ModificationWatchpointRequest modificationWatchpointRequest = erm

.createModificationWatchpointRequest(field);

modificationWatchpointRequest.setEnabled(true);

}

}

Listing 16: Connect to VM

public class VMAcquirer {

/**

* Call this with the localhost port to connect to.

*/

public VirtualMachine connect(int port)

84

throws IOException {

String strPort = Integer.toString(port);

AttachingConnector connector = getConnector();

try {

VirtualMachine vm = connect(connector, strPort);

return vm;

} catch (IllegalConnectorArgumentsException e) {

throw new IllegalStateException(e);

}

}

private AttachingConnector getConnector() {

VirtualMachineManager vmManager = Bootstrap

.virtualMachineManager();

for (Connector connector : vmManager

.attachingConnectors()) {

System.out.println(connector.name());

if ("com.sun.jdi.SocketAttach".equals(connector

.name())) {

return (AttachingConnector) connector;

}

}

throw new IllegalStateException();

}

private VirtualMachine connect(

AttachingConnector connector, String port)

throws IllegalConnectorArgumentsException,

IOException {

85

Map<String, Connector.Argument> args = connector

.defaultArguments();

Connector.Argument pidArgument = args.get("port");

if (pidArgument == null) {

throw new IllegalStateException();

}

pidArgument.setValue(port);

return connector.attach(args);

}

}

Listing 17: Monitored Code

public class Test {

int foo;

public static void main(String[] args) {

Random random = new Random();

Test test = new Test();

for (int i = 0; i < 10; i++) {

test.foo = random.nextInt();

System.out.println(test.foo);

}

}

}

86

JavaFlow Code Example

Listing 18: JavaFlow Code Example

public class JavaFlowExample {

public static class MyRunnable implements Runnable {

public void run() {

System.out.println("run started!");

for(int i=0; i < 100; i++) {

echo(i);

}

}

private void echo(int x) {

System.out.println("echo " + x);

Continuation.suspend();

}

}

public static void main(String[] args) {

System.out.println("main started");

Continuation c = Continuation.startWith(new MyRunnable());

System.out.println("in main after continuation return");

while (c != null) {

c = Continuation.continueWith(c);

System.out.println("in main");

}

}

}

87

ASM byte code

Listing 19: (JDK version: 1.8.0 60)Bytecode Demonstration

// class version 52.0 (52)

// access flags 0x21

public class test/ExampleComplexBot extends

nz/ac/massey/cs/ig/games/primegame/PGBot implements

nz/ac/massey/cs/ig/core/game/model/instrumentation/InstrumentedBot {

// compiled from: ExampleComplexBot.java

// access flags 0x1001

public synthetic

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

__observer

// access flags 0x1

public <init>(Ljava/lang/String;)V

L0

LINENUMBER 12 L0

ALOAD 0

ALOAD 1

INVOKESPECIAL nz/ac/massey/cs/ig/games/primegame/PGBot.<init>

(Ljava/lang/String;)V

L1

LINENUMBER 13 L1

RETURN

L2

LOCALVARIABLE this Ltest/ExampleComplexBot; L0 L2 0

88

LOCALVARIABLE botId Ljava/lang/String; L0 L2 1

MAXSTACK = 2

MAXLOCALS = 2

// access flags 0x1

// signature

(Ljava/util/List<Ljava/lang/Integer;>;)Ljava/lang/Integer;

// declaration: java.lang.Integer

nextMove(java.util.List<java.lang.Integer>)

public nextMove(Ljava/util/List;)Ljava/lang/Integer;

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.beginMove

()V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

89

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

L0

LINENUMBER 17 L0

ALOAD 1

ALOAD 1

INVOKEINTERFACE java/util/List.size ()I

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 17

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

90

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ICONST_1

ISUB

INVOKEINTERFACE java/util/List.get (I)Ljava/lang/Object;

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 17

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

91

CHECKCAST java/lang/Integer

INVOKEVIRTUAL java/lang/Integer.intValue ()I

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 17

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ICONST_1

ISUB

ISTORE 2

ALOAD 0

92

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 17

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "last"

ILOAD 2

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

93

(Ljava/lang/String;Ljava/lang/Object;)V

L1

LINENUMBER 18 L1

ILOAD 2

ICONST_4

IF_ICMPLE L2

LDC 1.1

DSTORE 3

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 18

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "last"

ILOAD 2

94

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "d"

DLOAD 3

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;D)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

L3

ICONST_1

ISTORE 5

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 18

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

95

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "b"

ILOAD 5

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Z)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "last"

ILOAD 2

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "d"

DLOAD 3

96

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;D)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

L2

LINENUMBER 19 L2

FRAME APPEND [I]

FCONST_1

FSTORE 3

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 19

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

97

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "last"

ILOAD 2

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "f"

FLOAD 3

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;F)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

L4

LINENUMBER 20 L4

98

ALOAD 1

ILOAD 2

INVOKEINTERFACE java/util/List.get (I)Ljava/lang/Object;

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC 20

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.createSnapshot

(I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "game"

ALOAD 1

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "last"

ILOAD 2

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;I)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

99

LDC "f"

FLOAD 3

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;F)V

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

LDC "test/ExampleComplexBot"

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.addTrace

(Ljava/lang/String;Ljava/lang/Object;)V

CHECKCAST java/lang/Integer

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.endMove

()V

ARETURN

L5

LOCALVARIABLE d D L3 L2 3

LOCALVARIABLE b Z L2 L2 5

LOCALVARIABLE this Ltest/ExampleComplexBot; L0 L5 0

LOCALVARIABLE game Ljava/util/List; L0 L5 1

// signature Ljava/util/List<Ljava/lang/Integer;>;

// declaration: java.util.List<java.lang.Integer>

LOCALVARIABLE last I L1 L5 2

100

LOCALVARIABLE f F L4 L5 3

MAXSTACK = 3

MAXLOCALS = 6

// access flags 0x1041

public synthetic bridge nextMove(Ljava/lang/Object;)Ljava/lang/Object;

L0

LINENUMBER 9 L0

ALOAD 0

ALOAD 1

CHECKCAST java/util/List

INVOKEVIRTUAL test/ExampleComplexBot.nextMove

(Ljava/util/List;)Ljava/lang/Integer;

ARETURN

L1

LOCALVARIABLE this Ltest/ExampleComplexBot; L0 L1 0

MAXSTACK = 2

MAXLOCALS = 2

// access flags 0x1001

public synthetic __initialize(Ljava/lang/Object;)V

L0

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

IFNONNULL L1

ALOAD 0

ALOAD 1

101

PUTFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

ALOAD 0

INVOKEINTERFACE

nz/ac/massey/cs/ig/languages/java/instrumentation/Observer.setObservable

(Ljava/lang/Object;)V

GOTO L2

L1

FRAME SAME

NEW java/lang/UnsupportedOperationException

DUP

INVOKESPECIAL java/lang/UnsupportedOperationException.<init> ()V

ATHROW

L2

FRAME SAME

RETURN

L3

LOCALVARIABLE this Ltest/ExampleComplexBot; L0 L3 0

LOCALVARIABLE observer

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer; L0

L3 1

MAXSTACK = 2

MAXLOCALS = 2

// access flags 0x1

public __getObserver()Ljava/lang/Object;

102

L0

ALOAD 0

GETFIELD test/ExampleComplexBot.__observer :

Lnz/ac/massey/cs/ig/languages/java/instrumentation/Observer;

ARETURN

L1

LOCALVARIABLE this Ltest/ExampleComplexBot; L0 L1 0

MAXSTACK = 1

MAXLOCALS = 1

}

BlackMamba

Listing 20: BlackMamba Source Code

public class BlackMamba extends PGBot {

public BlackMamba (String botId) {

super(botId);

}

private static final int MIN_NR_OF_MOVES_TO_CONSIDER = 10;

private int[] convertIntegerSetToArray(Set<Integer> set) {

int[] array = new int[set.size()];

int i = 0;

for (int number : set)

array[i++] = number;

return array;

103

}

private int sumFactors(int n, int[] numbers) {

int sum = 0;

for (int i = 0; i < n; i++) {

if (numbers[n] % numbers[i] == 0) {

sum += numbers[i];

}

}

return sum;

}

public class Move implements Comparable<Move> {

private int move;

private int gain;

private Move(int move, int gain) {

this.move = move;

this.gain = gain;

}

public int compareTo(Move o) {

return o.gain - this.gain;

}

104

public String toString() {

return move + " (" + gain + ")";

}

}

@Override

public Integer nextMove(List<Integer> game) {

Set<Integer> availableNumbers = new TreeSet<Integer>();

availableNumbers.addAll(game);

// determine the size for the set of best moves to look into..

// here we take MIN_NR_OF_MOVES_TO_CONSIDER, or 10% of the board

size,

// whichever is more

int maxNrOfMoves = Math.max(MIN_NR_OF_MOVES_TO_CONSIDER, (int)

(availableNumbers.size() * 0.1));

// get set of best (locally optimised) moves

TreeSet<Move> topMoves = getTopMoves(availableNumbers,

maxNrOfMoves);

// select the best overall move

Integer move = selectMove(topMoves, availableNumbers,

maxNrOfMoves);

// return the move

return move;

105

}

private Integer selectMove(TreeSet<Move> moves, Set<Integer>

availableNumbers, int maxNrOfLevel2Moves) {

Iterator<Move> it = moves.iterator();

int level1MovesToEvaluate = 10;

int bestScore = Integer.MIN_VALUE;

Move bestMove = moves.iterator().next();

for (int i = 0; it.hasNext() && i < level1MovesToEvaluate; i++) {

Move m = it.next();

Set<Integer> numbersLeft =

computeFollowingBoard(availableNumbers, m.move);

TreeSet<Move> counterMoves = getTopMoves(numbersLeft,

maxNrOfLevel2Moves);

// calculate the score over both levels (move and possible

counter

// move)

if (counterMoves.size() > 0) {

int level2Score = m.gain -

counterMoves.iterator().next().gain;

if (level2Score > bestScore) {

bestMove = m;

bestScore = level2Score;

}

}

}

return bestMove.move;

}

106

private Set<Integer> computeFollowingBoard(Set<Integer> currentBoard,

int move) {

Set<Integer> newNumbers = new TreeSet<Integer>(currentBoard);

newNumbers.remove(move);

for (Iterator<Integer> it = newNumbers.iterator(); it.hasNext();) {

int n = it.next();

if (n > Math.ceil(move / 2)) {

break;

}

if (move % n == 0) {

it.remove();

}

}

return newNumbers;

}

private TreeSet<Move> getTopMoves(Set<Integer> availableNumbers, int

maxNrOfMoves) {

TreeSet<Move> topMoves = new TreeSet<Move>();

int[] numbers = convertIntegerSetToArray(availableNumbers);

for (int i = numbers.length - 1; i >= 0; i--) {

int localScore = numbers[i] - sumFactors(i, numbers);

Move move = new Move(numbers[i], localScore);

// add the move to the queue (which remains sorted)

topMoves.add(move);

// only keep maxNrOfMoves in queue

if (topMoves.size() > maxNrOfMoves) {

topMoves.remove(topMoves.last());

107

}

if (numbers[i] <= topMoves.last().gain) {

break;

}

}

return topMoves;

}

}

Java Parser

Listing 21: JavaParser Code Example

private static CompilationUnit createCU() {

CompilationUnit cu = new CompilationUnit();

// set the package

cu.setPackage(new

PackageDeclaration(ASTHelper.createNameExpr("java.parser.test")));

// create the type declaration

ClassOrInterfaceDeclaration type = new

ClassOrInterfaceDeclaration(ModifierSet.PUBLIC, false,

"GeneratedClass");

ASTHelper.addTypeDeclaration(cu, type);

// create a method

108

MethodDeclaration method = new

MethodDeclaration(ModifierSet.PUBLIC, ASTHelper.VOID_TYPE,

"main");

method.setModifiers(ModifierSet.addModifier(method.getModifiers(),

ModifierSet.STATIC));

ASTHelper.addMember(type, method);

// add a parameter to the method

Parameter param =

ASTHelper.createParameter(ASTHelper.createReferenceType("String",

0), "args");

param.setVarArgs(true);

ASTHelper.addParameter(method, param);

// add a body to the method

BlockStmt block = new BlockStmt();

method.setBody(block);

// add a statement do the method body

NameExpr clazz = new NameExpr("System");

FieldAccessExpr field = new FieldAccessExpr(clazz, "out");

MethodCallExpr call = new MethodCallExpr(field, "println");

ASTHelper.addArgument(call, new StringLiteralExpr("Hello

World!"));

ASTHelper.addStmt(block, call);

return cu;

}

109

References

[1] The byte code engineering library website. https://commons.apache.org/

proper/commons-bcel/index.html. Accessed: 2016-02-28.

[2] Java programming language agents api. https://docs.oracle.com/javase/

6/docs/api/java/lang/instrument/package-summary.html. Accessed:

2016-02-29.

[3] Jep 220: Modular run-time images. http://openjdk.java.net/jeps/220.

Accessed: 2016-02-16.

[4] Why does clover use source code instrumentation. https://confluence.

atlassian.com/pages/viewpage.action?pageId=79986998. Accessed:

2016-02-15.

[5] M. Al-Bow, D. Austin, J. Edgington, R. Fajardo, J. Fishburn, C. Lara,

S. Leutenegger, and S. Meyer. Using greenfoot and games to teach rising

9th and 10th grade novice programmers. In Proceedings of the 2008 ACM

SIGGRAPH symposium on Video games, pages 55–59. ACM, 2008.

[6] D. J. Angel, J. R. Kumorek, F. Morshed, and D. A. Seidel. Byte code instru-

mentation, Nov. 6 2001. US Patent 6,314,558.

[7] B. Apache. Byte code engineering library, november 2009, 2009.

[8] N. A. Bartolome, A. M. Zorrilla, and B. G. Zapirain. Can game-based ther-

apies be trusted? is game-based education effective? a systematic review of

the serious games for health and education. In Computer Games (CGAMES),

2011 16th International Conference on, pages 275–282. IEEE, 2011.

110

[9] J. Bennedsen and M. E. Caspersen. Failure rates in introductory program-

ming. ACM SIGCSE Bulletin, 39(2):32–36, 2007.

[10] B. Bergeron. Developing serious games (game development series). 2006.

[11] R. Blunt. Does game-based learning work? results from three recent studies.

In Proceedings of the Interservice/Industry Training, Simulation, & Education

Conference, pages 945–955, 2007.

[12] T. E. Bosch. Using online social networking for teaching and learning: Face-

book use at the university of cape town. Communicatio: South African Jour-

nal for Communication Theory and Research, 35(2):185–200, 2009.

[13] B. D. Boulay. Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1):57–73, 1986.

[14] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a code manipulation tool to

implement adaptable systems. Adaptable and extensible component systems,

30:19, 2002.

[15] J. C. Burguillo. Using game theory and competition-based learning to stimu-

late student motivation and performance. Computers & Education, 55(2):566–

575, 2010.

[16] S. Chiba. Load-time structural reflection in java. In ECOOP 2000—Object-

Oriented Programming, pages 313–336. Springer, 2000.

[17] A. Commons. Javaflow, 2009. URL http://commons. apache. org/sandbox/-

javaflow.

[18] J. Dietrich, J. Tandler, L. Sui, and M. Meyer. The primegame revolutions:

A cloud-based collaborative environment for teaching introductory program-

111

ming. In Proceedings of the ASWEC 2015 24th Australasian Software Engi-

neering Conference, pages 8–12. ACM, 2015.

[19] P. Drake and K. Sung. Teaching introductory programming with popular

board games. In Proceedings of the 42nd ACM technical symposium on Com-

puter science education, pages 619–624. ACM, 2011.

[20] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible environment for

building dynamic web applications. Software, IEEE, 24(5):56–63, 2007.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol–http/1.1, 1999.

[22] M. Ford and S. Venema. Assessing the success of an introductory pro-

gramming course. Journal of Information Technology Education: Research,

9(1):133–145, 2010.

[23] N. Fraser. Blockly website, 2014.

[24] E. Gamma. Design patterns: elements of reusable object-oriented software.

Pearson Education India, 1995.

[25] J. Gosling. The Java language specification. Addison-Wesley Professional,

2000.

[26] K. Hartness. Robocode: using games to teach artificial intelligence. Journal

of Computing Sciences in Colleges, 19(4):287–291, 2004.

[27] A. Hensman. Evaluation of robocode as a teaching tool for computer pro-

gramming. 2007.

[28] J. Howells. Software as a service (saas). Wiley Encyclopedia of Management,

2014.

112

[29] T. Java. Platform debugger architecture, 1999.

[30] M. Klawe. The educational potential of electronic games and the e-gems

project. In Proceedings of the ED-MEDIA 94 World Conference on Educa-

tional Multimedia and Hypermedia. Panel discussion ‘Can electronic games

make a positive contribution to the learning of mathematics and science in

the intermediate classroom, 1994.

[31] M. Kölling. The greenfoot programming environment. ACM Transactions on

Computing Education (TOCE), 10(4):14, 2010.

[32] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A study of the difficulties

of novice programmers. In ACM SIGCSE Bulletin, volume 37, pages 14–18.

ACM, 2005.

[33] K. M. Law, V. C. Lee, and Y.-T. Yu. Learning motivation in e-learning facil-

itated computer programming courses. Computers & Education, 55(1):218–

228, 2010.

[34] M. K. Lee, C. M. Cheung, and Z. Chen. Acceptance of internet-based learn-

ing medium: the role of extrinsic and intrinsic motivation. Information &

management, 42(8):1095–1104, 2005.

[35] R. B.-B. Levy and M. Ben-Ari. We work so hard and they don’t use it:

acceptance of software tools by teachers. ACM SIGCSE Bulletin, 39(3):246–

250, 2007.

[36] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual machine

specification. Pearson Education, 2014.

[37] E. Machkasova, K. Arhelger, and F. Trinciante. The observer effect of profiling

on dynamic java optimizations. In Proceedings of the 24th ACM SIGPLAN

113

conference companion on Object oriented programming systems languages and

applications, pages 757–758. ACM, 2009.

[38] A. McGettrick and Y. Timanovsky. Digest of acm educational activities. ACM

Inroads, 5(1):6–10, 2014.

[39] M. Meyer and J. Fendler. The primegame: Combining skills in undergraduate

computer science programmes. INTED2010 Proceedings, pages 5454–5465,

2010.

[40] I. Milne and G. Rowe. Difficulties in learning and teaching program-

ming—views of students and tutors. Education and Information technologies,

7(1):55–66, 2002.

[41] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen,

A. Korhonen, L. Malmi, M. McNally, S. Rodger, et al. Exploring the role

of visualization and engagement in computer science education. In ACM

SIGCSE Bulletin, volume 35, pages 131–152. ACM, 2002.

[42] E. Nuutila, S. Törmä, and L. Malmi. Pbl and computer program-

ming—the seven steps method with adaptations. Computer Science Edu-

cation, 15(2):123–142, 2005.

[43] J. O’Kelly and J. P. Gibson. Robocode & problem-based learning: a non-

prescriptive approach to teaching programming. ACM SIGCSE Bulletin,

38(3):217–221, 2006.

[44] M. Papastergiou. Digital game-based learning in high school computer sci-

ence education: Impact on educational effectiveness and student motivation.

Computers & Education, 52(1):1–12, 2009.

114

[45] B. Prabhakar, C. R. Litecky, and K. Arnett. It skills in a tough job market.

Communications of the ACM, 48(10):91–94, 2005.

[46] M. Prensky and M. Prensky. Digital game-based learning, volume 1. Paragon

house St. Paul, MN, 2007.

[47] R. Rajaravivarma. A games-based approach for teaching the introductory

programming course. ACM SIGCSE Bulletin, 37(4):98–102, 2005.

[48] F. Rennie and T. M. Morrison. E-learning and social networking handbook:

Resources for higher education. Routledge, 2013.

[49] J. C. Reynolds. The discoveries of continuations. Lisp and symbolic compu-

tation, 6(3-4):233–247, 1993.

[50] K. E. Ricci. The use of computer-based videogames in knowledge acquisition

and retention. Journal of Interactive Instruction Development, 7(1):17–22,

1994.

[51] A. Robins, J. Rountree, and N. Rountree. Learning and teaching program-

ming: A review and discussion. Computer Science Education, 13(2):137–172,

2003.

[52] J. Ryoo, F. Fonseca, and D. S. Janzen. Teaching object-oriented software

engineering through problem-based learning in the context of game design. In

Software Engineering Education and Training, 2008. CSEET’08. IEEE 21st

Conference on, pages 137–144. IEEE, 2008.

[53] J. Sorva. Notional machines and introductory programming education. ACM

Transactions on Computing Education (TOCE), 13(2):8, 2013.

[54] P.-H. Tan, C.-Y. Ting, and S.-W. Ling. Learning difficulties in programming

courses: undergraduates’ perspective and perception. In Computer Technology

115

and Development, 2009. ICCTD’09. International Conference on, volume 1,

pages 42–46. IEEE, 2009.

[55] V. Vainio and J. Sajaniemi. Factors in novice programmers’ poor tracing

skills. In ACM SIGCSE Bulletin, volume 39, pages 236–240. ACM, 2007.

[56] A. van Wijngaarden. Recursive definition of syntax and semantics. North

Holland Publishing Company, 1966.

[57] A. von Mayrhauser and A. M. Vans. Program Understanding: A Survey.

Colorado State Univ., 1994.

[58] L.-C. Wang and M.-P. Chen. The effects of game strategy and preference-

matching on flow experience and programming performance in game-based

learning. Innovations in Education and Teaching International, 47(1):39–52,

2010.

[59] S. Weinschenk. 100 things every designer needs to know about people. Pearson

Education, 2011.

[60] N. Whitton. Motivation and computer game based learning. Proceedings

of the Australian Society for Computers in Learning in Tertiary Education,

Singapore, 2007.

[61] D. F. Wood. Problem based learning. Bmj, 326(7384):328–330, 2003.

[62] P. Wouters, E. D. Van der Spek, and H. Van Oostendorp. Current practices

in serious game research: A review from a learning outcomes perspective.

Games-based learning advancements for multi-sensory human computer in-

terfaces: techniques and effective practices, pages 232–250, 2009.

116

