Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

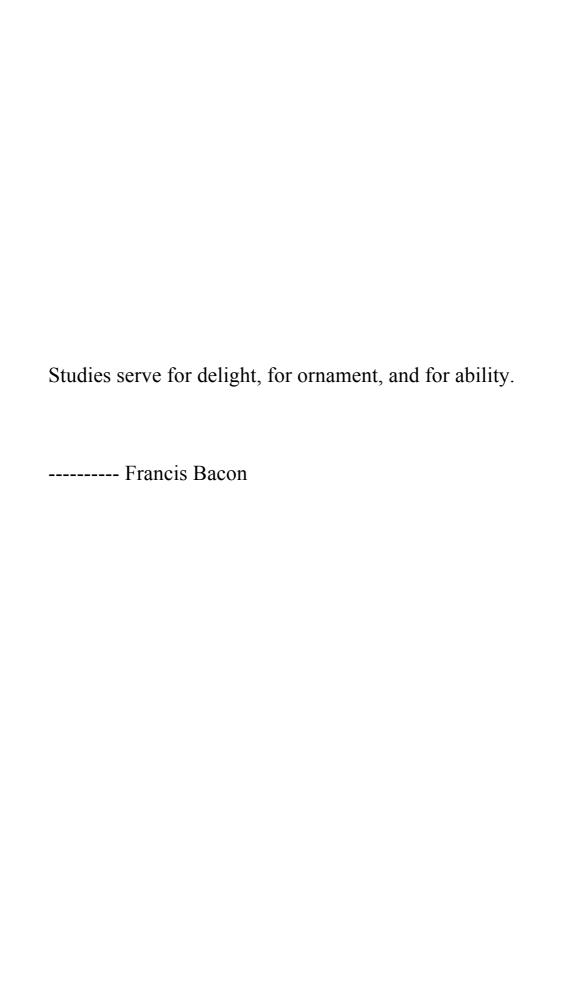
Actinidin- the predominant protease in kiwifruit

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Philosophy

in

Food Technology


at Massey University, Manawatū,

New Zealand

Dongfang Chao

2016

ABSTRACT

Kiwifruit protein (actinidin) has been widely known as a protease. Kiwifruit protein has the potential of utilization in food industry as an enzyme that aids food digestion.

In this project, the soluble kiwifruit proteins were extracted from fresh Hayward and SunGold kiwifruit. Soluble kiwifruit proteins were analysed by the Hartree-Lowry method, SDS-PAGE, enzyme activity determination, ion-exchange chromatography and mass spectrometry. Anti-actinidin antibodies were raised by the injection of purified actinidin into rabbits. The main soluble kiwifruit protein was recognized by anti-actinidin antibodies using Western blot. Moreover, the effects of post-harvest storage on protein content, total enzyme activity and specific enzyme activity were investigated. Comparable studies on both Hayward and SunGold kiwifruit were also carried out in this project.

The results showed that Hayward and SunGold kiwifruit had a similar protein content. However, the total enzyme activity of Hayward kiwifruit was about 8 times higher than that of SunGold kiwifruit. The protein with enzyme activity (active actinidin) had a molecular weight of about 27 kDa according to SDS-PAGE and was one of main soluble proteins in Hayward and SunGold kiwifruit. This protease was purified from fresh kiwifruit by anion-exchange chromatography. A polyclonal antibody against actinidin was successfully generated in a rabbit using purified actinidin. Protein with a molecular weight of 27 kDa was recognized by the anti-actinidin antibodies. Post-harvest storage at 1 °C for up to 12 weeks significantly increased the total and specific enzyme activities of SunGold kiwifruit (P<0.05). By contrast, the total and specific enzyme activities of Hayward kiwifruit had a significant decrease after 16 weeks'

storage (P<0.05). Hayward kiwifruit had no significant changes in protein content after storage (P<0.05) while the protein content of SunGold kiwifruit fluctuated in a range from 5.04 to 5.84 mg/mL during post-harvest storage.

This study may help to understand the nature of kiwifruit proteins with enzyme activity, which contributes to a full understanding of the health benefits of kiwifruit.

ACKNOWLEDGEMENTS

I would like to express my special gratitude to my chief supervisor Dr. Mike Boland for his teaching, guidance, support, and patience. It is impossible for me to learn so much without Dr. Boland's kindness and encouragement. I also appreciate Dr. Juliet Ansell from Zespri Group Limited, Dr. Simon Loveday from Riddet Institute and Dr. Gill Norris from Institute of Fundamental Sciences, who have also provided many valuable suggestions along the way.

All the staff and students at Riddet Institute are very much appreciated. The inspirations from the nice and diversity environment are very important to my journey of study. I also thank all professors, staff and students at Massey University who have helped me during my study.

Special thanks go to my family.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
ABBREVIATIONS	xiii
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	3
2.1 Kiwifruit	3
2.2 Major soluble proteins in kiwifruit	3
2.2.1 Purification of Actinidin from Kiwifruit	4
2.3 The Biochemical Analysis of Actinidin	5
2.3.1 Molecular Analysis of Actinidin	5
2.3.2 Actinidin amino acid sequences and molecular structures	9
2.3.3 Actinidin Identification in Kiwifruit	10
2.3.4 Actinidin Characterizations by Mass Spectrometry	13
2.3.5 Actinidin activity	15
2.4 Actinidin and kiwifruit post-harvest storage condition	16
2.5 Application of Actinidin in Food Industry	17
2.6 Actinidin and Health Benefits	17
CHAPTER 3 MATERIALS AND METHODS	19
3.1 Materials	19

	3.2 Chemicals	19
	3.3 Kiwifruit	19
	3.4 Methods	19
	3.5 Actinidin Extraction Methods	19
	3.6 Protein Concentration Determination	20
	3.7 Enzyme activity determination	26
	3.8 Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis	
	(SDS-PAGE)	27
	3.9 Stability of Actinidin in Kiwifruit Extracts at different pHs	27
	3.10 Actinidin Purification by Ion-exchange Chromatography	27
	3.11 Mass Spectrometry Analysis	28
	3.12 Raising Polyclonal Antibody against Actinidin	29
	3.12.1 Immunization	29
	3.12.2 Serum Preparation	29
	3.12.3 Immunoblotting	29
	3.13 Actinidin and Kiwifruit Post-Harvest Storage Conditions	30
	3.13.1 SunGold Kiwifruit	30
	3.13.2 Green Kiwifruit	30
	3.14 Statistical analysis	31
C	HAPTER 4 ACTINIDIN EXTRACTION AND ENZYME ACTIVITY O)F
K	TWIFRUIT	33
	4.1 Introduction	34
	4.2 Results and discussion	35
	4.2.1 Protein content of kiwifruit extract	35
	4.2.2 SDS-PAGE protein patterns of kiwifruit extract	37

4.2.3 Enzyme activity of different cultivars of kiwifruit	39
4.2.4 Effect of pH and incubation on enzyme activity	40
4.3 Conclusions	41
CHAPTER 5 ACTINIDIN PURIFICATION AND IDENTIFICATION	43
5.1 Introduction	44
5.2 Results and discussion	46
5.2.1 Ion-exchange chromatography of kiwifruit proteins	46
5.2.2 SDS-PAGE of Hayward kiwifruit soluble proteins	48
5.2.3 Actinidin Analysis by Mass Spectrometry (Hayward kiwifruit)	49
5.2.4 Anti-rabbit actinidin antibody generation	53
5.3 Conclusions	55
CHAPTER 6 EFFECT OF POST-HARVEST STORAGE ON THE	
ACTINIDIN ACTIVITY AND PROTEIN CONTENT	57
6.1 Introduction	58
6.2 Results and discussion	59
6.2.1 Variability of enzyme activity among fruits	59
6.2.2 Effect of post-harvest storage on actinidin enzyme activity of Sun	ıGold
kiwifruit from different growers	59
6.2.3 Effect of post-harvest storage on actinidin enzyme activity of Hay	yward
kiwifruit	62
6.2.4 Changes of Soluble Protein Content with Storage Time	64
6.3 Conclusions	66
CHAPTER 7 OVERALL CONCLUSION AND DISCUSSION	67
7.1 Overall Conclusions and Discussion	
7.1.1 Protein Determination of Kiwifruit Extract	67

Table of Contents

7.1.2 Enzyme Activity	68
7.1.3 Kiwifruit Soluble Protein Composition and Actinidin Purification	68
7.1.4 Effect of Post-harvest Storage on Enzyme Activity and Protein Conte	nt
	69
7.2 Recommendation for future work	70
7.2.1 Separation and identification of actinidin isoforms	70
7.2.2 Effect of ripening and postharvest on enzyme activity of actinidin	71
7.3 Implications of the research	71
CHAPTER 8 REFERENCES	73

LIST OF FIGURES

FIGURE 2-1 COMPARISON OF AMINO ACID SEQUENCES OF ACTINIDIN ISOFORMS
FROM KIWIFRUIT
FIGURE 2-2 AMINO ACID SEQUENCE OF ACTINIDIN FROM KIWIFRUIT
FIGURE 3-1 STANDARD CURVE FOR HARTREE-LOWRY METHOD
FIGURE 3-2 STANDARD CURVES FOR BRADFORD METHOD. 23
FIGURE 3-3 STANDARD CURVES FOR BCA METHOD. 25
FIGURE 4-1 ANALYSIS OF SOLUBLE PROTEIN CONTENT IN FRESH KIWIFRUIT BY
SDS-PAGE under reducing conditions 38
FIGURE 4-2 ENZYME ACTIVITY OF EXTRACTS OF GREEN AND GOLD KIWIFRUIT 39
FIGURE 4-3 ANALYSIS OF ACTINIDIN ACTIVITY OVER TIME IN DIFFERENT PH
ENVIRONMENTS. 41
FIGURE 5-1 ION-EXCHANGE CHROMATOGRAPHY OF HAYWARD KIWIFRUIT SOLUBLE
PROTEINS ON DEAE-SEPHADEX A-25
FIGURE 5-2 SDS-PAGE ANALYSIS OF ACTINIDIN FRACTIONS PURIFIED BY
ION-EXCHANGE CHROMATOGRAPHY
FIGURE 5-3 MASS SPECTRUM OF FRACTION (#46) WITH SPECIFIC ENZYME ACTIVITY
OF 9.6
FIGURE 5-4 MASS SPECTRUM OF FRACTION (#41) WITH SPECIFIC ENZYME ACTIVITY
OF 8.1
FIGURE 5-5 MASS SPECTRUM OF FRACTION (#37) WITH SPECIFIC ENZYME ACTIVITY
OF 6.6
FIGURE 5-6 WESTERN BLOT ANALYSIS OF PROTEIN EXTRACTED FROM HAYWARD
KIWIFRUIT AND SUNGOLD KIWIFRUIT54

FIGURE 6-1 SPECIFIC ENZYME ACTIVITY OF VARIABILITY OF DIFFERENT INDIVIDUAL
KIWIFRUIT
FIGURE 6-2 SPECIFIC ENZYME ACTIVITY OF SOLUBLE PROTEIN FROM HAYWARD
KIWIFRUIT (A) AND ENZYME ACTIVITY OF HAYWARD KIWIFRUIT (B) AT
Commercial Harvest time (Day 0) and after $1, 2, 4, 8, 12$ and 16 weeks'
STORAGE. 63
FIGURE 6-3 PROTEIN CHANGES IN HAYWARD KIWIFRUIT EXTRACTION DURING
POST-HARVEST STORAGE AT 1°C65

LIST OF TABLES

TABLE 4-1 PROTEIN CONTENT MEASURED BY DIFFERENT METHODS	36
Table 6-1 Specific enzyme activity of SunGold kiwifruit	60
TABLE 6-2 ENZYME ACTIVITY OF SUNGOLD KIWIFRUIT	61
TABLE 6-3 PROTEIN CHANGES IN SUNGOLD KIWIFRUIT EXTRACTION DURING	
POST-HARVEST STORAGE	65

ABBREVIATIONS

N-α-CBZ-lysine- pNP N-α-carbobenzoxy-L-lysine-p-nitrophenyl

ester

DEAE Diethylaminoethyl

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

cDNA Complementary DNA

mRNA Messenger RNA

BSA Bovine serum albumin

% All percentages are weight/volume (w/v)

unless otherwise stated

Tris (hydroxymethyl) amino methane

Amino acid abbreviations:

Ala Alanine

Arg Arginine

Asn Asparagine

Asp Aspartic Acid

Cys Cysteine

Gln Glutamine

Glu Glutamic Acid

Glycine

His Histidine

Ile Isoleucine

Leu Leucine

Lys Lysine

xiii

Abbreviations

Met Methionine Phe Phenylalanine Proline Pro Ser Serine Thr Threonine Tryptophan Trp Tyrosine Tyr Val Valine