Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Mathematical Modelling of Induced Resistance to Plant Disease

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

at Massey University, Albany Campus,

New Zealand.

Nurul Syaza Abdul Latif

May 2014

Abstract

The underlying theory of induced resistance (IR) is concerned with the situation when there is an increase in plant resistance to herbivore or pathogen attack that results from a plant's response triggered by an agent such as elicitors (also known as "plant activators"). This mechanism has been well studied in plant pathology literature. In this thesis, a mathematical model of induced resistance mechanism using elicitors is proposed and analysed. An adaptation of traditional Susceptible-Infected-Removed (SIR) model, this proposed model is characterised by three main compartments, namely: susceptible, resistant and diseased. Under appropriate environmental conditions, susceptible plants (S) may become diseased (D) when it is exposed to a compatible pathogen or able to resist the infection (R) via basal host defence mechanisms. The application of an elicitor enables the signal activation of plant defence genes to enhance the basal defence responses and thereby affecting the relative proportion of plants in each of the S, R and D compartments. In literature, induced resistance is described as a transient response and this scenario is modelled using reversible processes to describe the temporal evolution of the compartments. The terms in the equations introduce parameters which are determined by fitting the model to matching experimental data sets using MATLAB "fminsearch". This then gives the model's outcome to predict the relative proportion of plants in each compartment and quantitatively estimates the elicitor effectiveness. Extensions of the model are developed, which includes some factors that affect the performance of IR such as elicitor concentration and multiple elicitor applications. This IR model is also extended to include a scenario of post-pathogen inoculation for elicitor treatment. Finally, an application of optimal control theory is derived to determine the best strategy for a continuous elicitor application. Numerical evaluations of this IR model provide a potential support tool for the development of more potent elicitors and its application strategies. The model is generic and will be applicable to a range of plant-pathogen-elicitor scenarios.

Acknowledgements

Praise be to the Almighty the most Gracious most Merciful.

It would not have been possible to write this thesis without the help and support of the people around me; to some of whom only it is possible to give particular mention here.

My sincere thanks go to my mother Kamariah Abu Bakar, for her patience and continuous support throughout my studies. Her love and encouragement kept me going amidst the challenges. My thanks go also to my brothers Naufal Syafiq, Naufal Syahir, and Nabil Syahmi and also to my fiancé Raja Farid Raja Aziz, all of whom have given me their support, as always.

This thesis would not have been possible without the help, support and patience of my supervisor, Professor Graeme Wake, not to mention his advice and especially his unsurpassed knowledge of mathematical modelling. I would like to express my gratitude to the people who have contributed their time and knowledge: Dr. Phillip Elmer and Dr. Tony Reglinski of Plant & Food Research Limited (Hamilton). Their good advice and critical comments have helped me a lot in understanding the biological background of this research.

I would like to acknowledge the sponsorship from Universiti Malaysia Kelantan (UMK) and the Ministry of Education (MoE) Malaysia. Thanks are also due to the staff at the Institute of Natural and Mathematical Sciences (INMS) for their support and assistance. Appreciation is also expressed to Plant & Food Research Limited (Hamilton) for providing the experimental data used in this research.

I offer my regards and appreciation to all of those who have supported me in any respect during the course of the research, and especially to Manara, Antesar, Eman, Maryan, Kataraina, Valerie, Kerri, Sumaira, Faith and other INMS mathematics students.

Contents

Al	bstra	let	i
A	cknov	wledgements	ii
Co	onter	nts	iii
Li	st of	Figures	vi
Li	st of	Tables	ix
Al	bbrev	viations	x
No	otati	ons	xi
1	Intr 1.1 1.2 Plan 2.1 2.2 2.3 2.4	boduction Background and Research Motivation Outline of the Thesis Outline of the Thesis nt Disease Management Plant Defence Mechanism Plant Disease Development in Agricultural Systems Induced Resistance: A General Concept 2.3.1 Induced Resistance for Pathogen Control using Elicitors Pine Trees: A Case Study for IR Model 2.4.1 Pine Disease and Disease Control Practice	1 3 5 6 9 13 17 17
	2.5	2.4.2 The Potential of IR in Controlling Pine Disease	18 19
3	Mat 3.1 3.2	thematical BackgroundPrevious Mathematical Models3.1.1Modelling Biological Control System3.1.2Application of Pontryagin's Maximum PrincipleParameter Estimation: Least-squares Method	 21 21 21 23 27

	3.3	Maximum Principle of Pontryagin: An Introduction	. 31
		3.3.1 The Optimal Control Problem	. 32
		3.3.2 Pontraygin's Maximum Principle	. 38
	3.4	Summary	. 41
1	Ма	thematical Modelling of Induced Registance	12
4	1 via	Introduction	40
	4.1	Descriptions of the Ferraria sector Determined	. 40
	4.2	Me lel De elemental Datasets	. 44
	4.3	Model Developments	. 41
		4.3.1 IR Model: Assumptions and Definitions	. 48
		4.3.1.1 The Treated Model	. 50
		4.3.1.2 The Untreated Model	. 55
	4.4	Summary	. 50
5	Mo	del Fitting and Discussions	58
	5.1	Parameter Estimation Using Datasets Table 4.1	. 58
		5.1.1 Results	. 62
		5.1.1.1 Optimal Parameter Values	. 62
		5.1.1.2 Solution Graphs	. 64
	5.2	New Parameterisation	. 70
	0	5.2.1 New Results	. 74
		5.2.1.1 New Optimal Parameter Values	74
		5.2.1.2 New Solution Graphs	76
		5.2.2. Model's Validation	. 10 86
	5.3	Summary	. 87
6	IR	Model Extensions	90
	6.1	Varying the Elicitor Concentration	. 90
	6.2	Multiple Elicitor Applications	. 102
	6.3	Post-Inoculation Elicitor Treatment	. 107
	6.4	Summary	. 110
7	Opt	timal Strategies and Control	113
•	7 1	Continuous Elicitor Application: A Case Study	113
		7.1.1 The Description	113
		7.1.2 The Derivation of the Optimal Control System	116
		7.1.2.1 Two-Stage Optimal Control Model	· 110
		7.1.2.2 One Stage Optimal Control Model	. 110
	7 9	Frample: Control $a(t)$ with Quadratic Term	. 119 199
	1.4 7.9	Summery	. 144 191
	1.5	Summary	. 151
8	Cor	nclusion	133
	8.1	Thesis Summary	. 133
	8.2	Further Research	. 134

Bibliography

136

List of Figures

2.1	A Path Leaf	7
2.2	$HR \dots \dots$	7
2.3	Illustrative diagram of systemic acquired resistance (SAR) and in-	11
9.4	duced systemic resistance (ISR)	11 19
2.4	Phonylelening ammonia lyage (PAI) activity in a gligiter treated plant	14
$\frac{2.5}{2.6}$	Phytotoxicity in plants	14
$\frac{2.0}{2.7}$	The sign of infected pine	18
2.1		10
3.1	A mathematical model from Jeger et al. (2009)	23
3.2	A mathematical model from Liu et al. (2009)	24
3.3	Conceptual model of the time course of induced resistance	24
3.4	Hypothesis of induced resistance	25
3.5	Schaffer's model	26
3.6	The inverse modelling	28
3.7	Graphical representation of ordinary least-squares and total least-	20
28	Squares	3U 21
0.0	Multi inimina for non-inical parameter estimation	91
4.1	IR experiments	45
4.2	A greenhouse experiment of IR	46
4.3	A diseased and a healthy seedling	46
4.4	Construction of IR model	49
4.5		10
т.0	Time series for IR model	50
4.6	Time series for IR model	50 52
4.6 4.7	Time series for IR model	50 52 52 52
4.6 4.7 4.8	Time series for IR model	50 52 52 54
4.6 4.7 4.8 4.9	Time series for IR model	50 52 52 54 55 55
4.6 4.7 4.8 4.9 4.10	Time series for IR model	50 52 52 54 55 56
4.6 4.7 4.8 4.9 4.10 5.1	Time series for IR model \dots The diagram for $e(t)$ The diagram for $e(t)$ The diagram for $e(t)$ The schematic diagram for the treated model \dots The schematic diagram for the treated model \dots Phase plane for Equations (4.5) and (4.6) \dots Phase plane for Equations (4.7) and (4.8) \dots The schematic diagram for the untreated model \dots Phase plane for Equation using the untreated seedlings data in Table 4.1	50 52 52 54 55 56 59
4.6 4.7 4.8 4.9 4.10 5.1 5.2	Time series for IR model \dots The diagram for $e(t)$ The diagram for $e(t)$ The diagram for $e(t)$ The schematic diagram for the treated model \dots The schematic diagram for the treated model \dots Phase plane for Equations (4.5) and (4.6) \dots Phase plane for Equations (4.7) and (4.8) \dots The schematic diagram for the untreated model \dots Phase plane for Equation using the untreated seedlings data in Table 4.1 Parameter estimation using the treated seedlings data in Table 4.1.	50 52 52 54 55 56 59 59
$\begin{array}{c} 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 5.1 \\ 5.2 \\ 5.3 \end{array}$	Time series for IR model	50 52 52 54 55 56 59 64
$\begin{array}{c} 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \end{array}$	Time series for IR model	50 52 52 54 55 56 59 64 66
$\begin{array}{c} 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \end{array}$	Time series for IR model	50 52 52 54 55 56 59 64 66 67
$\begin{array}{c} 4.6\\ 4.7\\ 4.8\\ 4.9\\ 4.10\\ 5.1\\ 5.2\\ 5.3\\ 5.4\\ 5.5\\ 5.6\\ \end{array}$	Time series for IR model	50 52 52 54 55 56 59 64 66 67 68

5.7	Phase plane for IR model	69
5.8	Parameter estimation using the experimental data in Table 5.4	73
5.9	New solution graphs for each compartment with induction time $t_p = 3$	-
F 10	days	76
5.10	New solution graphs for each compartment with induction time $t_p = 6$	
F 11	days	((
5.11	New solution graphs for each compartment with induction time $t_p = t$	70
5 19	Now colution graphs for each compartment with induction time t –	10
0.12	New solution graphs for each compartment with induction time $i_p = 13$ days	70
5 13	New solution graphs for each compartment with induction time $t =$	13
0.10	14 days	80
5.14	New solution graphs for each compartment with induction time $t_{r} =$	00
	$21 \text{ days} \dots \dots$	81
5.15	New solution graphs for each compartment with induction time $t_n =$	-
	27 days	82
5.16	New solution graphs for each compartment with induction time $t_p =$	
	35 days	83
5.17	New phase plane for IR model	84
5.18	The proportion of the diseased seedlings treated at the fixed final time	
	against the inoculation time t_p	85
5.19	The treated model with the inoculation time $t_p = 21$ days	87
61	Figure for Equation (6.1)	02
6.2	Solution graphs for each compartment with its eligitor $0.\%$ concentration	90
0.2 6.3	Solution graphs for each compartment with its elicitor 0.023% con-	90
0.0	Solution graphs for each compartment with its chertor 0.02570 com-	
	centration	97
64	centration	97
6.4	centration	97 98
6.4 6.5	centration	97 98
6.4 6.5	centration	97 98 99
6.46.56.6	centration	97 98 99
6.46.56.6	centration	97 98 99 100
6.46.56.66.7	centration	97 98 99 100 101
 6.4 6.5 6.6 6.7 6.8 	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applications	 97 98 99 100 101 102
 6.4 6.5 6.6 6.7 6.8 6.9 	centration	97 98 99 100 101 102
 6.4 6.5 6.6 6.7 6.8 6.9 	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concentration	 97 98 99 100 101 102 105
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	centration.Solution graphs for each compartment with its elicitor 0.025% con- centrationSolution graphs for each compartment with its elicitor 0.1% concen- trationSolution graphs for each compartment with its elicitor 0.4% concen- trationSolution graphs for each compartment with its elicitor 0.4% concen- trationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concen- tration 0.025%Solution graphs for multiple elicitor application with elicitor concen- tration with elicitor concen- tration 0.025%	 97 98 99 100 101 102 105
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concentrationSolution graphs for multiple elicitor application with elicitor concentration	 97 98 99 100 101 102 105 106
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 	centration.Solution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationTrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor concentrationSolution graphs for each compartment with its elicitor concentrationSolution graphs for multiple elicitor concentrationSolution graphs for multiple elicitor application with elicitor concentration 0.025%Solution graphs for multiple elicitor application with elicitor concentration 0.1%Solution graphs for multiple elicitor application with elicitor concentration	 97 98 99 100 101 102 105 106
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concentration 0.025%Solution graphs for multiple elicitor application with elicitor concentration 0.1%Solution graphs for multiple elicitor application with elicitor concentration 0.4%	 97 98 99 100 101 102 105 106 107
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concentration 0.025%Solution graphs for multiple elicitor application with elicitor concentration 0.1%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%	 97 98 99 100 101 102 105 106 107 109
$\begin{array}{c} 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \end{array}$	centrationSolution graphs for each compartment with its elicitor 0.025% concentrationSolution graphs for each compartment with its elicitor 0.1% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationSolution graphs for each compartment with its elicitor 0.4% concentrationFinal diseased as a function of elicitor concentrationTimeline for the multiple elicitor applicationsSolution graphs for multiple elicitor application with elicitor concentration 0.025%Solution graphs for multiple elicitor application with elicitor concentration 0.1%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%Solution graphs for multiple elicitor application with elicitor concentration 0.4%	 97 98 99 100 101 102 105 106 107 109 110
 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 7.1 	centration Solution graphs for each compartment with its elicitor 0.025% con- centration Solution graphs for each compartment with its elicitor 0.1% concen- tration Solution graphs for each compartment with its elicitor 0.4% concen- tration Solution graphs for each compartment with its elicitor 0.4% concen- tration Solution graphs for each compartment with its elicitor 0.4% concen- tration Final diseased as a function of elicitor concentration Solution graphs for multiple elicitor applications Solution graphs for multiple elicitor application with elicitor concen- tration 0.025% Solution graphs for multiple elicitor application with elicitor concen- tration 0.1% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Solution graphs for multiple elicitor application with elicitor concen- tration 0.4% Schematic diagram for the control of the continuous elicitor application Solution elicitor treatment	97 98 99 100 101 102 105 106 107 109 110

7.2	Illustration of the bang-bang control problem
7.3	Dynamical solution for $R(t)$ in Equation (7.28)
7.4	Dynamical solution for $D(t)$ in Equation (7.29) $\dots \dots \dots$
7.5	Dynamical solution for $c(t)$ in Equation (7.35)
7.6	Dynamical solution for $E(t)$ in Equation (7.30)
7.7	Dynamical solution for $\lambda_R(t)$ in Equation (7.32)
7.8	Dynamical solution for $\lambda_D(t)$ in Equation (7.33)
7.9	Dynamical solution for $\lambda_E(t)$ in Equation (7.34)

List of Tables

2.1	Crop losses due to plant disease
2.2	Commercial elicitors
4.1	First dataset
4.2	Second dataset
4.3	Description of variables and parameters
5.1	Data set used for parameter estimation in Section 5.1 61
5.2	Parameter estimation for the untreated model
5.3	Parameter estimation for the treated model
5.4	Experimental data used in the new parameterisation
5.5	New parameter estimation
5.6	Parameter values for IR model
6.1	Unpublished data on varying elicitor concentrations 91
6.2	Published data on varying elicitor concentrations
6.3	Parameter estimation for r
6.4	Unpublished data on multiple elicitor applications

Abbreviations

IR	Induced Resistance
\mathbf{SIR}	${\bf S} usceptible \textbf{-} Infected \textbf{-} Removed$
HR	${\bf H} {\rm ypersensitive} \ {\bf R} {\rm esponse}$
BCA	${\bf B} {\rm iological} \ {\bf C} {\rm ontrol} \ {\bf A} {\rm gent}$
SAR	\mathbf{S} ystemic \mathbf{A} cquired \mathbf{R} esistance
ISR	Induced Systemic Resistance
PAL	${f P}$ henylalanine ${f A}$ mmonia ${f L}$ yase
MeJA	$\mathbf{M} ethyl \; \mathbf{J} asmonate$
SSE	${\bf S} {\bf um}$ of ${\bf S} {\bf q} {\bf uares}$ of ${\bf E} {\bf rror}$

Notations

R	Proportion of plant population able to express	
	resistance to infection.	dimensionless
D	Proportion of plant population being infected	
	and becoming diseased.	dimensionless
S	Proportion of plant population which is susceptible.	dimensionless
t	Time	[days]
α	The specific rate at which untreated plants	
	lose their resistance due to the pathogen attack.	$[\mathrm{days}^{-1}]$
β	The specific rate at which the disease spreads.	$[\mathrm{days}^{-1}]$
γ	The specific rate the resistant plant becomes susceptible.	$[\mathrm{days}^{-1}]$
e(t)	The effectiveness of the elicitor at a single application.	$[days^{-1}]$
k	Determines the effectiveness of the elicitor.	dimensionless
L	The time where the elicitor effectiveness is at the peak.	[days]
t_p	The induction time of the pathogen i.e. the time interval	
	between the elicitor application and the pathogen challenge.	[days]
R_i	The proportion of the plant population that exhibits	
	natural resistance at the initial time $t = 0$.	dimensionless
D_i	The proportion of the plant population which becomes	
	infected immediately after the pathogen challenge.	dimensionless
a	The scaled dimensionless elicitor concentration.	dimensionless
r	The parameter determines the sub-linear	
	effect of elicitor concentration.	dimensionless

E(t)	The cumulative effectiveness of the elicitor at daily application.	[days]
c(t)	The continuous elicitor application.	$[{\rm mass~days^{-1}}]$