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Abstract

The underlying theory of induced resistance (IR) is concerned with the situation
when there is an increase in plant resistance to herbivore or pathogen attack that
results from a plant’s response triggered by an agent such as elicitors (also known
as “plant activators”). This mechanism has been well studied in plant pathology
literature. In this thesis, a mathematical model of induced resistance mechanism
using elicitors is proposed and analysed. An adaptation of traditional Susceptible-
Infected-Removed (SIR) model, this proposed model is characterised by three main
compartments, namely: susceptible, resistant and diseased. Under appropriate en-
vironmental conditions, susceptible plants (S) may become diseased (D) when it is
exposed to a compatible pathogen or able to resist the infection (R) via basal host
defence mechanisms. The application of an elicitor enables the signal activation of
plant defence genes to enhance the basal defence responses and thereby affecting the
relative proportion of plants in each of the S, R and D compartments. In literature,
induced resistance is described as a transient response and this scenario is modelled
using reversible processes to describe the temporal evolution of the compartments.
The terms in the equations introduce parameters which are determined by fitting
the model to matching experimental data sets using MATLAB “fminsearch”. This
then gives the model’s outcome to predict the relative proportion of plants in each
compartment and quantitatively estimates the elicitor effectiveness. Extensions of
the model are developed, which includes some factors that affect the performance of
IR such as elicitor concentration and multiple elicitor applications. This IR model
is also extended to include a scenario of post-pathogen inoculation for elicitor treat-
ment. Finally, an application of optimal control theory is derived to determine the
best strategy for a continuous elicitor application. Numerical evaluations of this IR
model provide a potential support tool for the development of more potent elicitors
and its application strategies. The model is generic and will be applicable to a range

of plant-pathogen-elicitor scenarios.
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Notations

Proportion of plant population able to express
resistance to infection.

Proportion of plant population being infected

and becoming diseased.

Proportion of plant population which is susceptible.
Time

The specific rate at which untreated plants

lose their resistance due to the pathogen attack.

The specific rate at which the disease spreads.

The specific rate the resistant plant becomes susceptible.
The effectiveness of the elicitor at a single application.
Determines the effectiveness of the elicitor.

The time where the elicitor effectiveness is at the peak.

The induction time of the pathogen i.e. the time interval

between the elicitor application and the pathogen challenge.

The proportion of the plant population that exhibits
natural resistance at the initial time ¢ = 0.

The proportion of the plant population which becomes
infected immediately after the pathogen challenge.
The scaled dimensionless elicitor concentration.

The parameter determines the sub-linear

effect of elicitor concentration.

X1

dimensionless
dimensionless

dimensionless

[days]

dimensionless

[days]

[days]

dimensionless

dimensionless

dimensionless

dimensionless



Notation xii

E(t) The cumulative effectiveness of the elicitor at daily application. [days]

c(t)  The continuous elicitor application. [mass days™!]



