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ABSTRACT 

The first experiment (Chapter 3) determined the metabolisable energy and standardised 

ileal digestible amino acids of two barley cultivars (NSH [normal starch hulled barley] 

and WSHL [waxy starch hull-less barley]) and wheat for broilers. These values were used 

to formulate the experimental diets in subsequent experiments that evaluated the optimum 

barley inclusion rate in wheat-based diets (Chapters 4 and 5), optimum barley particle 

size (Chapter 6) and conditioning temperature (CT; Chapter 7), and potential interaction 

of carbohydrases with each processing parameter.  

In Chapter 3, wheat and WSHL had the highest and lowest metabolisable energy 

and digestible amino acid contents, respectively, with NSH being intermediate. 

Supplemental carbohydrases increased the energy utilisation with a pronounced effect in 

WSHL.  

Data reported in Chapter 4 showed that optimum inclusion level of NSH was 283 

g/kg of diet. Nutrient utilisation linearly improved with increasing inclusions of NSH. 

Carbohydrases improved feed per gain (F/G) and nutrient utilisation. 

Chapter 5 suggested that WSHL could be safely included up to 260 g/kg in a 

wheat-based diet with no adverse effect on growth performance. Carbohydrases improved 

the F/G and, starch and energy utilisation.  

In Chapter 6, particle size effect was preserved after pelleting and, coarse barley 

and carbohydrases improved the F/G and nutrient utilisation. The combination of 

carbohydrase and phytase produced no further improvements in nutrient utilisation.  

The final experiment (Chapter 7) demonstrated that better pellet quality achieved 

by increasing CT to 88 °C failed to ameliorate the negative impacts of high CT on nutrient 

utilisation and broiler performance. Carbohydrases improved weight gain, F/G and, starch 

and energy utilisation. The lack of interaction between the carbohydrases and CT 

indicated that carbohydrase had similar efficacy at each CT.  

The primary finding of this thesis research was that if cultivar-specific values for 

metabolisable energy and digestible amino acids are used in feed formulations, barley has 

the potential to substitute up to 50% of wheat in broiler diets. Coarse particle size (8.0 
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mm) and conditioning the diets up to 74 °C is recommended for the tested barley type. 

Supplemental carbohydrases improved the feeding value of barley for broilers.   
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CHAPTER ONE 

GENERAL INTRODUCTION 

The supply of conventional cereal grains, such as maize and wheat, will be a major 

constraint to the future growth of the poultry industry and will be further exacerbated by 

increased competition with human food. Different alternative feed ingredients are being 

continuously tested to replace conventional cereal grains in poultry diets. Barley 

(Hordeum vulgare L.) is one such feed ingredient, the use of which remains low in poultry 

diets due to the presence of anti-nutritive, soluble non-starch polysaccharides (Jacob and 

Pescatore, 2012). Moreover, the wide range of physical and chemical characteristics of 

barley cultivars make it one of the most variable cereal grains (Villamide et al., 1997; 

Choct et al., 2001). The different research methodologies used in published studies have 

also contributed to the inconsistent findings and prevented a clear understanding of the 

nutritional value of barley for poultry. 

In studies evaluating barley in broiler diets, most studies have replaced other 

cereals with barley either on a weight to weight basis (Arscott et al., 1955; Petersen, 1969; 

Moss et al., 1983; Yu et al., 1998) or by using nutrient composition data for barley and 

the substituted grain from established data sources such as National Research Council 

(NRC; Moharrery, 2006) and tables published by Spanish Foundation for the 

Development of Animal Nutrition (FEDNA; de Blas et al., 2010; Lázaro et al., 2003), or 

chemical analysis (Brake at al., 1997). Limitations associated with these research 

methodologies have resulted in a wide range of barley inclusion levels being 

recommended for broiler diets. The fact that anti-nutritive components in barley play a 

key role in determining the availability of dietary components to poultry emphasises the 

importance of using cultivar-specific nutrient profiles to formulate barley-based diets, 

ensuring that birds’ nutrient requirements are met. However, there are no published 

studies where barley-based diets were formulated using accurate nutrient profiles based 

on measured contents of metabolisable energy and digestible amino acids specific to 

barley cultivars. 
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The use of non-starch polysaccharides-degrading enzymes in diets based on 

viscous grains, such as barley, has become a norm to overcome the adverse effects of 

antinutritional factors on nutrient utilisation and bird performance. Responses to 

supplemental enzymes in terms of nutrient utilisation and bird performance are variable 

(Chesson, 1993; Bao et al., 2013). The factors contributing to these inconsistencies are 

complex, involving enzyme, diet and bird factors and their interactions. The potential for 

improving the efficacy of supplemental enzymes by optimising the physical 

characteristics of diets has been recognised (Amerah et al., 2011; Amerah, 2015). 

The influence of feed processing on growth performance and nutrient utilisation 

of poultry fed maize- (Naderinejad et al., 2016; Abdollahi et al., 2010a,b) and wheat- 

(Lentle et al., 2006; Amerah et al., 2007b) based diets have been understood to a greater 

extent, but corresponding studies with barley are limited and contradictory due possibly 

to cultivar differences (Ankrah et al., 1999). Most previous studies have overlooked the 

cultivar differences, in terms of factors such as starch type and presence of hulls, when 

evaluating barley in poultry diets. Moreover, most of the research has not used barley as 

the sole cereal in the diet, which makes it difficult to reach definite conclusions. 

Consequently, more research is warranted to establish a scientific approach for the 

evaluation and application of barley in poultry diets by addressing the limitations in 

previous publications. Moreover, investigations on the potential interactive influence of 

feed processing and supplemental enzymes on nutrient utilisation and bird performance 

of broilers fed barley-based diets are also warranted to determine the optimum dietary 

conditions for a better enzyme efficacy. 

This thesis consists of eight chapters. The first two chapters present the framework 

of the experimental research with Chapter 1 giving a general introduction to the thesis. 

Chapter 2 reviews the published literature on the chemical and physical characteristics of 

barley with special focus to the factors contributing to the variability of the nutritional 

composition. Moreover, the growth performance and nutrient utilisation responses in 

broilers fed barley-based diets are discussed in Chapter 2. In addition, Chapter 2 provides 

a discussion on some measures to minimise or eliminate the negative impact of barley 

antinutritional factors in poultry diets. Chapters 3 through 7 present the experimental 

work of this thesis. Each chapter includes an abstract, introduction, materials and 

methods, results, discussion and conclusions. 
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The specific objectives of the experiments conducted in this thesis research are, 

1. To characterise the nutrient composition of two barley cultivars in comparison 

with wheat (control) and determine the content of nitrogen-corrected apparent 

metabolisable energy and standardised ileal digestible amino acids in the three grain 

types, without or with carbohydrase enzyme addition (Chapter 3). 

2. To determine the optimum inclusion level of a normal-starch hulled barley in 

diets for broiler starters and to investigate the possible interaction between barley 

inclusion level and supplementation of a carbohydrase on the performance, nutrient 

utilisation and gut morphometry in broiler starters (Chapter 4). 

3. To evaluate the influence of graded inclusions of a waxy starch hull-less barley 

cultivar and supplementation of carbohydrase on the performance, nutrient utilisation and 

intestinal morphometry in broiler starters (Chapter 5). 

4. To evaluate potential interactive influences of barley particle size and 

carbohydrase and phytase addition, individually or in combination, on growth 

performance, nutrient utilisation and intestinal morphometry of broiler starters fed 

pelleted diets (Chapter 6). 

5. To evaluate whether interactive effects between supplemental carbohydrases 

and conditioning temperature exist on the performance, nutrient utilisation, and gut 

morphometry in broiler starters fed barley-based diets (Chapter 7). 

Chapter 8 is a general discussion of the experimental results, which addresses the 

major findings of this thesis research and draws some conclusions from the results. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Background and classification of barley 

Barley (Hordeum vulgare L.), one of the first domesticated crop has played a role of 

multipurpose grain as both food and feed throughout the history. It is extensively 

cultivated, ranking fourth in world cereal production with an annual production of 128 

million metric tonnes (Figure 2.1; FAO STAT, 2018). Characteristics such as resistance 

to drought and saline soils (Fayez and Bazaid, 2014) and ability to mature in climates 

with a short growing season (Svihus and Gullord, 2002) have encouraged the cultivation 

of barley over maize and wheat. In addition to the common usage of barley for malting 

and brewing (90% of total barley production; Li et al., 2001), it is also used as a feed 

ingredient in animal diets, especially in Europe where there is the highest concentration 

of cultivation in the world (McNab and Smithard, 1992; Jacob and Pescatore, 2014). 

According to latest available records on barley use in animal feeds, 40% of the barley was 

fed to feedlot cattle, 34% to dairy cows, 20% to pigs and 5% to grazing ruminants, and 

only less than 1% used for poultry (Black et al., 2005; Nikkhah, 2012). 

 

Figure 2.1. Worldwide production of cereal grains, by type. Source: Food and 

Agriculture Organisation (2018). 
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Morphological and physico-chemical characteristics have laid the foundation for 

classification of barley. As shown in Figure 2.2., barley cultivars are classified based on 

factors such as growing season, presence or absence of an awn (a bristle-like appendage), 

number of the seeds on the stalk, presence or absence of the hull, composition of the 

starch, aleurone colour and growth height. 

 

Figure 2.2. Classification of barley based on morphological and physio-chemical 

characteristics. Source: Jacob and Pescatore (2012). 

Barley is classified according to the growing season as spring or winter cultivars. 

More genetic selection has been performed on spring barley cultivars, which contain 

greater energy value (Villamide et al., 1997) and higher resistance to extreme 

environmental conditions compared to the winter cultivars (Jeroch and Dänicke, 1995). 

Barley cultivars can also be classified based on the presence or absence of a bristle-like 

appendage which is called an awn or beard (Figures 2.2 and 2.3). Barley without awns 

(awn-less) or with short awns (hooded) have also been developed. Two-row and six-row 

barley cultivars differ in the number of seeds on the stalk of the plant (Figures 2.2 and 

2.3). With the higher adaptation to drier climates, two-row cultivars are concentrated in 

Europe, while most of the six-row barley cultivars are grown in North America (Jacob 

and Pescatore, 2012). Classification of barley based on the presence or absence of a hull 

that contributes to the insoluble fibre fraction (Svihus and Gullord, 2002), is of particular 

interest to poultry nutritionists. Hull-less or naked barley appears similar to hulled barley 

until maturity and, then the hulls are loosened and detached during harvesting (Bhatty, 
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1999). In addition to hulled and hull-less barley cultivars, dehulled and pearl barley are 

produced by the processing of barley grain. Dehulled barley, which is often confused with 

hull-less barley, is formed by removing the hull from hulled barley. Pearl barley is 

developed from steam processed and polished (also known as abrading or pearling; Liu, 

2011) dehulled barley. The major difference between dehulled and pearl barley is the 

presence of both bran and germ in dehulled barley, and absence of bran in pearl barley. 

 

Figure 2.3. Classification of barley based on awn (left) and number of seeds on the stalk 

(right). Source: Terzi et al. (2017). 

2.2. Composition 

The composition and properties of barley grain are of interest in nutritional studies for 

their role in determining the availability of nutrients to humans or animals. The large 

variations in composition, structure and physico-chemical properties in different barley 

types can provide the basis for the differing responses observed among experiments. 

Extensive research on the composition of barley has recognised that the wide diversity is 

mainly associated with the differences in hull and starch type, which will be considered 

as the basis of comparison in this review. 

2.2.1. Structural composition 

As shown in Figure 2.4, barley grain is composed of a large endosperm (80% of the cereal 

grain), an embryo and a mass of maternal tissues. Mature endosperm consists of five types 

of cells, as aleurone, sub-aleurone, starchy endosperm, embryo-surrounding region and 

endosperm transfer cells. Endosperm cells are filled with starch granules embedded in a 
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protein matrix (Figures 2.4 and 2.5) and, therefore, possess a greater nutritional value 

compared to other parts of barley grain. The embryo is rich in lipids and enzymes while 

the aleurone layer is rich in soluble protein (about 50%) and is a source of enzymes, lipids 

and vitamins (Li et al., 2013). Endosperm cell walls are thinner than cell walls of other 

regions from barley grain and are mainly composed of β-glucans (70%) and smaller 

amount of arabinoxylans (20%; Andriotis et al., 2016). While aleurone cell walls are 

mainly composed of arabinoxylans (67-71%) and smaller amounts of β-glucans (26%; 

Izydorczyk and Dexter, 2008), maternal tissues such as testa (fruit and seed coat) surround 

the embryo and endosperm. 

 

Figure 2. 4. Transverse (above) and longitudinal (below) sections of barley grain. 

Source: Li et al. (2013). 

Oscarsson et al. (1997), Izydorczyk and Dexter (2008) and Shaik et al. (2014) 

compared cross-sections of different barley types with different levels of β-glucan and, 

reported thicker endosperm cell walls in barley genotypes with high content of β-glucan. 

Histochemical images of three barley types (wild, hyperphosphorylated and amylose 

only) with three different levels of β-glucan (59.1, 54.1 and 66.4 g/kg DM, respectively) 

are shown in Figure 2.5 (Shaik et al., 2014). A thicker endosperm cell wall was observed 

for amylose only type with high occurrence of β-glucan.   
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As shown in Figure 2.5., starch granules (pink-purple) are embedded in the protein 

matrix (blue) inside endosperm cells and have a bimodal size distribution with large disc-

shaped A-granules and small spherical B-granules (Song and Jane, 2000; Li et al., 2001; 

Ao and Jane, 2007).   

 

 

Figure 2. 5. Histochemical analysis of starch granules by periodic acid-Schiff’s on 

sectioned endosperm tissue; localisation of starch (pink-purple) and protein (blue) near 

the embryo-endosperm junction of pre-germinated dry grain at ×4000 magnification. A, 

Wild-type; B, Hyperphosphorylated line; C, Amylose-only. Source: Shaik et al. (2014). 

2.2.2. Chemical composition 

Wide range of chemical composition of different barley cultivars has been reported in the 

literature (Bhatty et al., 1975; Villamide et al., 1997; Helm and Francisco, 2004), while 

considerable variation was observed even among similar cultivars (Oscarsson et al., 1996; 

Izydorczyk et al., 2000). Minor changes in chemical composition may result in significant 

changes in nutrient availability, creating remarkable effects on the nutritional quality of 

barley for poultry (Almirall et al., 1995; Hughes and Choct, 1999).  

Environmental factors such as year of harvest, rainfall, soil conditions, 

fertilisation and other agronomic conditions can affect the chemical characteristics of 

cereal grains. A wide range of variability that exists between barley types grown in 

different geographical locations has been reported (Jeroch and Dänicke, 1995; Hughes 

and Choct, 1999; Helm and Francisco, 2004). Svihus and Gullord (2002) compared five 

varieties of barley grown in two different locations during two growing years in terms of 

chemical composition and, reported that starch and fat contents were affected by barley 

variety and year, respectively. The protein content was affected by both the year and 
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location. Varying effects caused by environmental factors on chemical composition of 

barley, highlight the need for standardising the environmental conditions, when 

comparing the chemical composition of different barley types. 

2.2.2.1. Starch 

As the main component in cereals, starch is present in barley as well (513 to 642 g/kg 

DM; Holtekjølen et al., 2006) and serves as the primary source of energy for poultry fed 

barley diets. Starch accumulates in granules in the endosperm and consists of two glucose 

polymers, amylose and amylopectin (Bewley and Black, 1978), which differ in terms of 

degree of branching, where amylose is more linear compared to the branched amylopectin 

(Aberle et al., 1994). Barley starches differ widely in amylose to amylopectin ratios 

resulting four different barley types as normal, high amylose, waxy and zero amylose 

waxy barley types (Table 2.1). The starch in normal barley genotypes consists of 650-840 

g/kg amylopectin, and waxy starch consists of 850-1000 g/kg amylopectin (Ullrich et al., 

1986; Tester et al., 2004). Barley types with 1000 g/kg of amylopectin are termed as zero 

amylose waxy and, high amylose barley cultivars contain around 550 g/kg amylopectin 

(Li et al., 2001; Table 2.1). Waxy gene originated from natural mutations affecting the 

synthesis of amylose (Svihus et al., 2005), was originally found in maize and later 

incorporated into barley (Jacob and Pescatore, 2012). In addition to waxy maize and 

barley types, waxy wheat types are also available (Table 2.1; Abdel-Aal et al., 2002); 

however, studies evaluating waxy wheat for poultry are limited (Pirgozliev et al., 2002). 

Even within the same starch type, amylose to amylopectin ratio can vary widely 

(Table 2.1). Nevertheless, some studies evaluating the feeding value of different barley 

types for poultry have only reported the starch type with no information on the amylose 

to amylopectin ratio (Bergh et al., 1999). As even a minor change in amylose to 

amylopectin ratio can affect the utilisation of starch by birds (Pirgozliev et al., 2010), it 

is recommended to consider the starch characteristics beyond already established 

classifications on starch types. Moreover, in most studies with barley, despite of being 

the major energy source, no attempt was made to identify starch type and to quantify the 

starch contents, highlighting a major limitation in barley-related nutritional studies. 
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In addition to the key role of chemical characteristics in determining the 

contribution of barley starch to feeding value, functional properties of starch such as 

granule structure, size, shape, surface area and interactions with other nutrients (proteins 

and lipids) can affect the accessibility of starch granules by digestive enzymes and thus 

the rate and extent of starch digestion. Starch granules in both wheat and barley are known 

to have a bimodal size distribution with small (≤ 10 µm of diameter) spherical B-granules 

and large (> 10 µm of diameter) disc-shaped A-granules (Song and Jane, 2000; Li et al., 

2001; Ao and Jane, 2007). Li et al. (2001) reported a wide range of starch granule sizes 

Table 2. 1. Comparison of starch in maize, wheat, hulled barley and hull-less barley types (g/kg, 

DM basis). 

 

Reference 
Grain 

type 

Hull/ 

Hull-less 
Starch type n1 Starch Amylose2 Amylopectin2 

Li et al. 

(2001) 

Barley Hull-less Normal 2 642 158 (25) 483 (75) 

Normal (CG3)  2 605 171 (28) 433 (72) 

High amylose  2 563 243 (43) 320 (57) 

Waxy  2 622 33 (5.0) 589 (95) 

Waxy (CG) 1 582 27 (5.0) 555 (95) 

Zero amylose 

waxy 
1 585 0 (0) 585 (100) 

Maize4   Normal 1 - - (25) - (75) 

Waxy 1 - - (1.0) - (99) 

  
  

     
Abdel-Aal et 

al. (2002) 

Wheat   Normal 1 605 163 (27) 442 (73) 

Waxy  1 563 18 (3.0) 545 (97) 

Maize4   Normal 1 - - (21) - (79) 

Waxy  1 - - (3.0) - (97) 

  
  

     
Storsley et al. 

(2003) 

Barley Hull-less  Normal 2 616 248 (40) 368 (60) 

High amylose 2 537 416 (77) 121 (23) 

Waxy 2 561 51 (9.0) 510 (91) 

Zero amylose 

waxy 
2 533 0 (0.0) 533 (100) 

        
Holtekjølen et 

al. (2006) 

Barley Hulled Normal  2

8 
588 147 (25) 441 (75) 

Hull-less Normal  6 609 152 (25) 457 (75) 

Hulled Waxy  1 552 44 (8.0) 508 (92) 

Hull-less Waxy  3 582 29 (5.0) 553 (95) 

Hull-less High amylose 1 535 193 (36) 342 (64) 

        
Ravindran et 

al. (2007) 

Barley Hulled Normal 1 598 168 (28) 430 (72) 

Hull-less Normal 1 655 164 (25) 491 (75) 

Hull-less Waxy 2 614 37 (6.0) 577 (94) 
1Number of analysed grain types. 
2Values in the parenthesis are amylose or amylopectin as a percentage of starch content. 
3CG, compound starch granules that exist in clusters of individual granules. 
4Total starch content was not reported. 
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(4.0 to 18.8 µm) in barley compared to maize (6.3 to 13.2 µm), and a negative correlation 

between starch granule diameter and total amylose content. Moreover, the ratio of number 

of small granules to large granules in barley starches vary widely compared to maize 

starch and, the proportion of small granules was correlated with total amylose content (Li 

et al., 2001). 

Jane (2006) described that disc-shaped starch granules in wheat and barley contain 

starch granules perpendicular to the flat surface of starch granules, allowing more contact 

with digestive enzymes. The size and shape of starch granules have been recognised as 

important functional properties that can control the accessibility of the enzyme to the 

interior of the granule and regulate enzymatic hydrolysis (Svihus et al., 2005; Tester et 

al., 2006). Different shapes of starch granules can affect the surface area to volume ratio 

and, hence, the potential for enzymatic digestion. The larger the granules, the smaller the 

surface area to volume ratio and the lower potential surface to be attacked and hydrolysed 

by digestive enzymes. Moreover, some starch granules were clustered and present as 

compound granules reducing the capacity of enzymes to attach to starch granule surfaces 

(Li et al., 2001; Tester et al., 2006). 

Non-starch components associated with starch granules such as fat and protein 

were found on the surface of isolated starch granules from barley and maize (Li et al., 

2001), and wheat (Abdel‐Aal et al., 2002). Fats and proteins can impair starch digestion 

both directly by reducing the contact between digestive enzymes and starch granules, and 

indirectly by reduced swelling of the starch granules and interactions with milling and 

gelatinisation properties during feed processing (Svihus et al., 2005). 

Whilst starch granule properties vary between different barley types, 

environmental factors such as temperature during grain filling can also have a huge 

impact. High temperature (> 35 °C) during grain filling is not favorable as it impairs 

starch synthesis and results in less starch per endosperm and smaller starch granules (Fox 

et al., 2003). Tester et al. (1991) tested the response of starch isolated from four genotypes 

of barley (one waxy, two normal and one high-amylose) grown at constant ambient 

temperatures of 10, 15, and 20 °C and, reported that higher temperatures above the 

optimum temperature for a particular barley type can result in reduced starch 

accumulation, smaller A- and B-starch granules and fewer B-granules. However, the 
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reduced starch granule dimensions resulted in increased surface area per granule. 

Increasing N fertilisation from 45 to 135 N/ha reduced starch contents in hulled normal, 

hull-less high amylose, hulled high amylose and hulled waxy barley types by 12.5, 11.8, 

6.8 and 5.7%, respectively (Oscarsson et al., 1997), highlighting the variation in response 

of starch from different barley types to management practices.   

The ratio between amylose and amylopectin has been given special attention as 

an important factor determining the nutritive value of barley for monogastric animals. 

Even relatively small variations in total dietary starch supply and changes in starch 

amylose: amylopectin ratio can affect the growth performance of poultry (Pirgozliev et 

al., 2010). In comparison to amylopectin rich starch, high amylose starch is less 

susceptible to enzymatic degradation by α-amylase in small intestine, highlighting that 

waxy starch may be more digestible than the normal starch type (Björck et al., 1990). 

However, most of the information on effect of structure and integrity of dietary starch 

granule and changes of amylose: amylopectin ratio on starch digestion is based on starch 

from wheat and maize (Svihus et al., 2005; Pirgozliev et al., 2010) and conducted in vitro 

(Li et al., 2004a; Al-Rabadi, 2014; Bdour et al., 2014). Therefore, careful attention should 

be given when drawing conclusions from those studies for the barley diets especially due 

to the interference of non-starch polysaccharides (NSP) in barley. 

2.2.2.2. Protein and amino acids 

In contrast to plant-based protein sources commonly used in poultry diets, cereals contain 

lower amounts of crude protein (CP) and amino acids (AA). Nevertheless, owing to the 

high inclusion of cereal grains in poultry diets, cereal proteins make a substantial 

contribution to the supply of dietary AA. The CP content of barley can vary between 

cultivars and cultivation practices, while nitrogen (N) fertilisation can have a huge impact. 

Nitrogen fertilisation was shown to increase the CP content in different barley types 

irrespective of hull and starch type (Oscarsson et al., 1997, 1998). Increasing N 

fertilisation from 45 to 135 N/ha increased CP in hulled normal, hull-less high amylose, 

hulled high amylose and hulled waxy barley types at 39, 29, 21 and 20%, respectively 

(Oscarsson et al., 1997). The relative levels of essential AA to CP in barley were 

decreased with the increased level of CP content due to N fertilisation (Jeroch and 

Dänicke, 1995; Jacob and Pescatore, 2012). Rodehutscord et al. (2016) analysed the 
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composition of different cereal grain genotypes grown in the same site, thereby excluding 

the influence of location, management and fertilisation on nutrient composition. 

However, despite of standardised growing conditions, wide range of CP (from 108 to 136 

g/kg DM; 6.0% coefficient of variation) was reported for eight winter barley types. 

Similar to other grains, barley protein is low in lysine, threonine, methionine and 

histidine. However, compared with maize and wheat proteins, barley protein has more 

favourable AA composition (Table 2.2). According to Bryden et al. (2009) and 

Rodehutscord et al. (2016), barley has more protein compared to maize, indicating the 

nutritional potential of barley in poultry diets. In barley, maize and wheat, methionine 

concentration was the lowest followed by histidine and cysteine, while glutamic acid was 

the highest (Rodehutscord et al., 2016). Maize protein is higher in leucine and lower in 

lysine concentrations, compared to wheat and barley proteins (Bryden et al., 2009; 

Rodehutscord et al., 2016). A negative correlation between starch and protein contents 

has been observed in studies on chemical composition of different barley types (Li et al., 

2001; Holtekjølen et al., 2006). It has been commonly observed that when the content of 

starch increases, all other main constituents decrease. 

The absence of hull was known to influence the protein content (Andersson et al., 

1999; Bhatty, 1999). However, CP seems to be independent of hull, due to both lower 

(Ravindran et al., 2007) and higher (Holtekjølen et al., 2006) CP contents reported for 

hull-less barley compared to hulled barley (Table 2.2). The lack of attempts to distinguish 

between different barley types evaluated in some extensive studies (Bandegan et al., 

2011; Rodehutscord et al., 2016) has narrowed the opportunity to interpret the influence 

of starch type and hull on CP and AA concentration. However, according to limited 

literature on AA comparison in different barley types (Ravindran et al., 2007), the 

differences in AA composition seems to be influenced by the CP content, rather than the 

starch type or hull.  
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Table 2. 2. Crude protein and amino acid (AA) composition of barley, maize and wheat (g/kg, DM).  

Reference 
Steenfeldt 

(2001) 

 
Ravindran et al. (2007) 

 
Bryden et al. (2009) 

 
Bandegan et al. 

(2011) 

 
Rodehutscord et al. (2016) 

Grain type  

Wheat 

  

 
Barley 

 
Barley Maize Wheat 

 
Wheat Barley 

 
Barley Maize Wheat 

Starch type 
 

Normal Waxy 
   

Hulled (H)/Hull-less (HL) 
 

H HL HL 
   

n1 16 
 

1 1 1 1 
 

1 7 7 
 

6 7 
 

21 27 29 

DM 879-889 
 

890 899 894 903 
 

896 895 898 
 

940 921 
 

882 903 877 

CP 120 
 

116 104 105 137 
 

94.9 89.4 103 
 

162 143 
 

123 93.5 137 

                  
Indispensable AA                  

Arginine 5.8 
 

5.55 4.91 4.08 6.39 
 

5.47 4.44 5.19 
 

7.6 6.8 
 

5.99 4.33 6.56 

Histidine 2.9 
 

3.11 2.58 2.3 3.45 
 

2.57 2.71 2.85 
 

3.8 3.0 
 

2.9 2.87 3.47 

Isoleucine 4.2 
 

4.18 3.89 3.54 5.24 
 

3.79 3.59 4.15 
 

5.3 4.8 
 

3.85 3.07 4.25 

Leucine 7.6 
 

8.15 7.24 6.47 10.1 
 

7.7 12.1 7.77 
 

10.5 9.9 
 

8.3 11.78 9.14 

Lysine 3.4 
 

4.06 3.43 3.07 5.23 
 

4.02 2.83 3.44 
 

4.4 4.9 
 

4.29 2.79 3.73 

Methionine 1.8 
 

1.85 1.69 1.66 1.89 
 

1.45 1.63 1.45 
 

2.5 2.4 
 

1.93 1.93 2.01 

Phenylalanine 5.1 
 

6.56 5.13 4.51 8.16 
 

5.36 4.77 5.08 
 

7.4 7.6 
 

6.3 4.63 6.37 

Threonine 3.3 
 

3.77 3.55 3.1 4.68 
 

3.46 3.83 3.47 
 

4.5 4.7 
 

4.17 3.41 3.92 

Valine 5.2 
 

5.95 5.46 4.88 7.08 
 

5.36 4.83 5.02 
 

6.6 7.0 
 

5.44 4.2 5.26 

Tryptophan -  - - - -  1.23 0.46 0.54  - -  1.51 0.7 1.58 

                  
Dispensable AA                  

Alanine 4.2 
 

4.54 4.12 3.69 5.79 
 

4.58 7.39 4.23 
 

5.5 5.5 
 

4.82 7.38 4.71 

Aspartic acid 6 
 

7.73 6.72 6.37 10.9 
 

6.36 6.37 5.93 
 

8.0 8.1 
 

7.11 6.26 6.84 

Cysteine2 2.6 
 

2.33 2.26 2.21 2.41 
 

- - - 
 

3.5 2.8 
 

2.57 2.09 3.03 

Glutamic acid 31.4 
 

31.8 27.5 24.2 37.9 
 

25.2 18.2 31 
 

46.5 35.8 
 

29.9 17.4 40.4 

Glycine2 4.8 
 

4.62 4.02 3.56 5.54 
 

4.35 3.83 4.8 
 

6.5 5.4 
 

4.74 3.47 5.53 

Proline 11 
 

14.2 11.4 10.37 18.3 
 

- - - 
 

16.4 15.9 
 

15.62 9.82 15.76 

Serine 5.5 
 

4.53 4.26 3.63 5.25 
 

4.91 4.64 5.86 
 

7.2 6.1 
 

5.4 4.74 6.67 

Tyrosine - 
 

- - - - 
 

3.01 3.00 2.54 
 

- - 
 

3.47 3.46 3.66 
1Number of analysed grain types. 
2Semi-indispensable AA for poultry. 
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2.2.2.3. Non-starch polysaccharides  

Non-starch polysaccharides belong to the fibre component in cereal grains, which is 

mainly from the cell wall structure (Choct, 1997). Encapsulation of nutrients within 

endosperm cells and increased intestinal digesta viscosity are two major mechanisms 

whereby NSP impair digestion and absorption of nutrients in birds fed diets based on 

viscous grains. Water solubility of NSP is an important measure of the physiological 

characteristics and properties of NSP for monogastric animals and, based on the solubility 

in water, NSP are categorised into two main fractions namely insoluble (I.NSP) and 

soluble NSP (S.NSP; Choct, 2015). Compared to barley and wheat, maize contains only 

negligible amounts of S.NSP (Table 2.3; Choct, 2015). In contrast to the relatively 

constant S.NSP proportion in wheat (Zijlstra et al., 1999; Choct, 2015), a wide range of 

barley NSP solubility has been reported (Table 2.3; Andersson et al., 1999). The 

proportions of I.NSP and S.NSP can be greatly dependent on morphological and physio-

chemical characteristics of different barley types.  

2.2.2.3.1. Insoluble non-starch polysaccharides 

Insoluble fibre creates a cage effect by encapsulating nutrients (starch and protein) in 

barley endosperm cells. Intact cell wall structures enclose the nutrients in the endosperm 

cells, and act as a physical barrier interfering the contact with digestive enzymes, and 

consequently limit the feeding value of barley in poultry diets. It has been demonstrated 

that the cell walls in the endosperm of barleys with high levels of β-glucans were thicker 

than in barleys with low levels of β-glucans (Oscarsson et al., 1997; Izydorczyk and 

Dexter, 2008). It can be therefore speculated that waxy and high amylose barley types 

with a higher content of β-glucan may more affected by the cage effect due probably to 

the thicker endosperm cell walls than other barley types.  

Insoluble NSP was historically known as a nutrient diluent with little or no effect 

on nutrient utilisation (Carré et al., 1990). It was observed later that I.NSP can assist gut 

motility by absorbing large amounts of water (Smits and Annison, 1996) and, thus 

controlling excessive NSP solubilisation. Moreover, I.NSP can influence the gut 

development and health, digesta transit time (Choct, 1997), nutrient digestion (Svihus and 

Hetland, 2001) and birds’ behaviour (Hetland et al., 2004). Consequently, it is now 

recommended to include moderate amounts of coarse I.NSP, such as wood shavings 
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(Hetland et al., 2003; Amerah et al., 2009) and oat hulls (Rogel 1987a, b; Sacranie et al., 

2012), at levels between 2 and 3% to modern low fibre broiler diets (Mateos et al., 2012).  

Majority of the benefits of I.NSP on enhanced nutrient utilisation and growth 

performance is a consequence of improved gizzard functionality. The effect of I.NSP on 

gizzard development and consequently on nutrient digestibility is more pronounced for 

starch. Svihus (2001) observed greater starch digestibility for a barley-based diet (0.96), 

compared to four wheat types (0.80, 0.76, 0.83 and 0.73), a finding that was attributed to 

gizzard development influenced by I.NSP available in barley (Svihus and Hetland, 2001). 

A surplus of starch in the digestive tract can result in low starch digestibility in broiler 

chickens and, Svihus and Hetland (2001) identified gizzard as the key site for preventing 

starch overload in the digestive tract by regulating the digesta passage rate (Hetland et 

al., 2004).  

Literature on the relationship between cellulose content and hull type offers 

contradictory findings as Oscarsson et al. (1996) and Andersson et al. (1999) observed 

higher contents of cellulose in hulled barley types wherein Holtekjølen et al. (2006) 

suggested that cellulose content is not affected by the hull. Moreover, Holtekjølen et al. 

(2006) suggested that cellulose content seemed to be influenced by the starch type, as 

normal starch barley contained less cellulose (91.8 g/kg DM) than waxy (127 g/kg DM) 

and high amylose (140 g/kg DM) hull-less barley types. However, a higher level of I.NSP 

has been reported in hulled barley types compared to hull-less barley types, due to the 

presence of hulls (Table 2.3; Beames et al., 1996; Holtekjølen et al., 2006), suggesting 

the more occurrence of I.NSP in the hull compared to the barley kernel. Comparing 18 

barley types (12 and six hulled and hull-less barley types, respectively), Beames et al. 

(1996) reported that hulled and hull-less barley types differed mainly in the I.NSP (11.5-

17.3 vs. 6.6-8.7% DM, respectively) and lignin (1.7-4.5 vs. 0.7-l.3% DM, respectively) 

contents.  

The stimulatory effect of hulled barley with a higher proportion of I.NSP on starch 

digestibility and thereby on energy utilisation can eventually result in improved growth 

performance compared with hull-less barley types. However, these positive effects of 

I.NSP are dependent on grain physical characteristics such as particle size, as fine 

grinding of barley can diminish its stimulatory effect on gizzard musculature 

development (Hetland et al., 2004). 
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2.2.2.3.2. Soluble non-starch polysaccharides 

Eliciting anti-nutritive properties, S.NSP causes a distinct negative effect on the 

nutritive value of cereal grains used in poultry diets (Hughes and Choct, 1999). Due to its 

chemical composition highlighted with a higher level of S.NSP, barley is categorised as 

a viscous cereal together with rye, wheat, triticale, and oats. Partially soluble mixed 

linkage (1→3), (1→4)-β-D-glucan and arabinoxylans have been identified as main NSP 

present in both wheat and barley compared to maize. While β-glucan is prominent in 

barley, arabinoxylans are the predominant NSP in wheat. Though both wheat and barley 

have higher levels of NSP compared to maize, barley NSP mainly consists of the soluble 

fraction compared to wheat (Messia et al., 2017; Table 2.3).  

Soluble NSP form a gel that interferes in the interaction of nutrient substrates with 

endogenous enzymes (Svihus et al., 2000). Greater intestinal viscosity in chickens fed 

barley diets was reported as the major anti-nutritive mechanism by S.NSP, resulting in 

reduced accessibility of digestive enzymes to nutrients (Choct et al., 1996; Classen, 1996; 

Svihus and Gullord, 2002). Moreover, increased digesta viscosity can modify gut 

physiology (Viveros et al., 1994; Iji, 1999) and interaction with gut microflora (Józefiak 

et al., 2006, 2010), consequently lowering the feeding value of barley for poultry. 

2.2.2.3.2.1. β-glucans 

Barley β-glucan consists of D-glucose molecules joined by (1→3) and (1→4) glycosidic 

bonds and the structure of the glucose chain depends on the relative number of (1→3) 

and (1→4) β-glycosidic bonds between the repeating glucose units (Jacob and Pescatore, 

2014). β-glucan makes up 70% of the endosperm cell wall that surrounds starch granules 

and about 25% of the aleurone cell walls (Åman and Graham, 1987; Choct, 2015).  
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Table 2. 3. The type and content of non-starch polysaccharides in barley, maize and wheat (g/kg, DM basis). 

Reference 
Grain 

type n1 Starch type 
Hulled/ 

Hull-less 
 

NSP2 Klason 

lignin 

Proportion 

of 

total NSP 

(%) 

AX A X BG CEL MA GAL UA GLU Total 

Choct (2015) Wheat -  

- 

 

- 

 

- 

 

- 

 

- 

 

- 

Soluble 18 - - 4.0 - t5 2.0 t - 24 - 21 

Insoluble 63 - - 4.0 20 t 1.0 2.0 - 90 - 79 

Barley3 - Soluble 8.0 - - 36 - t 1.0 t - 45 - 27 

Insoluble 71 - - 7.0 39 2.0 1.0 2.0 - 122 - 73 

Maize - Soluble 1.0 - - t - t t t - 1.0 - 1.0 

Insoluble 51 - - - 20 2.0 6.0 t - 80 - 99 

Zijlstra et al. (1999) Wheat 16  

- 

 

- 
Soluble - 10 7.0 - - 0.4 1.8 - 3.0 23 - 18 

Insoluble - 41 25 - - 1.3 1.4 - 34 103 - 82 

Andersson et al. (1999)4 Barley 1 Normal Hulled Soluble 
77 

2.4 3.2 22 
40 

0.7 0.7 1.5 32 40 - 17 

Insoluble 21 50 25 3.6 2.0 2.9 55 200 15 83 

1 High Amylose Hulled Soluble 
90 

4 5.6 26 
47 

1.4 0.8 1.7 49 63 - 20 

Insoluble 23 57 43 6.7 2.3 3.4 67 249 15 80 

1 Waxy Hulled Soluble 
75 

3.3 4.6 31 
35 

0.9 0.8 2.1 46 58 - 23 

Insoluble 22 45 30 3.7 2.0 3.1 50 191 14 77 

1 Normal Hulled Soluble 
83 

2.6 3.2 15 
42 

0.8 0.7 1.1 21 29 - 13 

Insoluble 23 55 13 6.7 2.1 3.5 49 194 17 87 

1 Normal Hull-less Soluble 
52 

3.5 4.9 24 
19 

1.0 1.1 1.5 32 44 - 26 

Insoluble 17 27 22 3.9 1.6 1.9 33 125 7.4 74 

1 High amylose Hull-less Soluble 
57 

4.5 6.6 26 
16 

1.4 0.8 1.7 48 63 - 28 

Insoluble 18 28 48 4.7 1.5 1.9 42 160 11 72 

1 Waxy Hull-less Soluble 
48 

2.8 3.6 30 
14 

0.9 0.7 1.9 37 46 - 27 

Insoluble 18 24 26 4.2 1.8 1.7 33 123 6.9 73 

1 Waxy Hull-less Soluble 
120 

7.8 13 12 
41 

3.7 1.8 2.4 123 152 - 30 

Insoluble 38 61 137 10 2.9 3.3 67 360 10 70 

Holtekjølen et al. 

(2006) 

Barley 28 Normal Hulled Soluble 13.7 - - - 
127 

- - - - 106 - 31 

Insoluble 116 - - - - - - - 232 - 69 

1 Waxy Hulled Soluble 15.5 - - - 
177 

- - - - 184 - 45 

Insoluble 109 - - - - - - - 223 - 55 

6 Normal Hull-less Soluble 22.6 - - - 
91.8 

- - - - 125 - 49 

Insoluble 66.1 - - - - - - - 128 - 51 

3 Waxy Hull-less Soluble 24.1 - - - 
127 

- - - - 200 - 64 

Insoluble 62.9 - - - - - - - 114 - 36 

1 High amylose Hull-less Soluble 20.5 - - - 
140 

- - - - 222 - 64 

Insoluble 60.8 - - - - - - - 125 - 36 
1n, number of analysed samples. 
2AX, arabinoxylan; A, arabinose; X, xylose; BG, β-glucan; CEL, cellulose; MA, mannose; GAL, galactose; UA, uronic acid; GLU, glucose.          
3Englyst (1989). 
4Total insoluble NSP = The sum of insoluble A, X, BG, MA, GAL, UA, GLU and total CEL.    

t, Trace amounts. 
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High β-glucan content is probably the most detrimental anti-nutritional factor in 

barley, which causes the unpopularity of barley as a constituent of poultry diets. The 

content and properties of β-glucan play a key role in determining the potential of barley 

utilisation in poultry diets (Burnett, 1966). Conversely, the presence of β-glucan has 

become the primary factor for a growing interest in barley for human consumption. While 

high molecular weight, extractable β-glucan negatively affects nutrient digestion and 

absorption in monogastric animals, and interferes with filtration in the brewing industry 

which results in reduced clarity in beer (Andersson et al., 1999), it enhances human health 

by lowering cardiovascular risk through decreasing plasma cholesterol and improving 

lipid metabolism (Behall et al., 2004; Izydorczyk and Dexter, 2008; Talati et al., 2009).  

High occurrence of β-glucan in waxy and high amylose types compared to normal 

starch, irrespective of the absence or presence of hull, was reported (Oscarsson et al., 

1996; Andersson et al., 1999; Izydorczyk et al., 2000; Holtekjølen et al., 2006). 

Izydorczyk et al. (2000) compared the total and soluble β-glucan contents in different 

hull-less barley types and, reported significant differences in total β-glucan, with average 

values of 74.9, 68.6, 63.0, and 43.8 g/kg DM for high amylose, waxy, zero amylose waxy, 

and normal starch barley, respectively. The solubility of β-glucan in high amylose barley 

was relatively low (20.6-29.7%) compared to that in normal (29.8-44.3%), zero amylose 

waxy (34.0-52.5%), and waxy (36.7-52.7%) barley types. On the other hand, Beames et 

al. (1996) demonstrated that neither S.NSP nor β-glucan contents differed in hulled and 

hull-less barley types. The wide range of solubility of β-glucan in different barley types 

(Andersson et al., 1999, Table 2.3) suggest that anti-nutritive properties generated by β-

glucan cannot be predicted if only the total content is analysed. 

Though the influence of genetic (Lee et al., 1997) and environmental (Güler, 

2003) factors on levels of β-glucan have been established to a great extent, the relationship 

between the β-glucan and other constituents of barley grain is yet to be understood. 

Literature on the relationship between β-glucan and other components has been 

inconsistent. Holtekjølen et al. (2006) reported a negative correlation of β-glucan with 

starch, cellulose, arabinoxylans and amylose contents and, a strong positive correlation 

with protein and soluble NSP. Izydorczyk et al. (2000) also observed an inverse 

relationship between total β-glucan and starch contents. Bhatty (1999) observed that β-
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glucan content is positively correlated with total NSP content in the barley. Li et al. (2001) 

reported no correlation between β-glucan and amylose contents.  

The wide variability of β-glucan content and solubility, and inconsistent and 

unpredictable relationship with other components of barley, suggest the importance of 

assessing the anti-nutritive components of barley prior to feed formulation. The 

established crucial role of β-glucan in determining the feeding value of barley for broilers 

(Bergh et al., 1999; Ravindran et al., 2007) emphasises the need of considering β-glucan 

content in selecting barley cultivars for use in poultry diets. 

2.2.2.3.2.2. Arabinoxylans 

In contrast to β-glucan, arabinoxylans are mainly located in aleurone cell walls, outer 

layers of barley kernel and husk, and only a small amount is present in endosperm cell 

walls. The structure of arabinoxylan is composed of two pentosans, arabinose and xylan 

(Choct, 1997). Holtekjølen et al. (2006) observed high occurrence of arabinoxylan in 

hulled barley types with a greater insoluble portion (89% of total arabinoxylan), compared 

to hull-less barley types, and confirmed the presence of arabinoxylans mainly in the hull. 

Generally, arabinoxylans constitute only a minor portion of water-extractable 

polysaccharides in barley (Izydorczyk et al., 1998; Choct, 2015; Table 2.3) and 

consequently have received less attention from poultry nutritionists compared to β-

glucan. Choct (1997) illustrated that most of the arabinoxylans in cereal grains are 

insoluble in water because they are anchored in cell walls by strong cross-links and, 

arabinoxylans not bound to the cell walls can form highly viscous solutions. Therefore, 

the influence from arabinoxylans cannot be totally disregarded in case of barley and 

measures should be taken to minimise the anti-nutritive effects generated by 

arabinoxylans as well.  

The molecular characteristics of β-glucan and arabinoxylans play a critical role in 

determining their physical properties (extractability, viscosity and gelation) and their 

behaviour in the gastrointestinal tract (Izydorczyk and Dexter, 2008). After studying the 

structure and physicochemical properties of β-glucans and arabinoxylans isolated from 

hull-less barley, Storsley et al. (2003) highlighted that molecular differences of NSP 

affect their physiological properties and result in different nutritional characteristics, even 

when overall amounts of S.NSP were equal. Digesta viscosity is dependent not only on 
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the concentration of NSP, but also on molecular weight (Saulnier et al., 1995; Dusel et 

al., 1997), therefore, a grain with a low content of S.NSP might result in high viscosity if 

the NSP is of a higher molecular weight (Bedford, 1995; Cowieson et al., 2005). 

2.2.2.4. Other components (fat and minerals) 

Fats or lipids can be considered as the third storage materials in barley grain after starch 

(513 to 642 g/kg DM; Holtekjølen et al., 2006) and proteins (108 to 136 g/kg DM; 

Rodehutscord et al., 2016) with an average lower content of 32.6 g/kg DM (Liu, 2011). 

Moreover, barley fats show a little variability according to Svihus and Gullord (2002), 

who reported a narrow range (26-32 g/kg DM) of crude fat for five barley types. Earlier 

studies on improving the feeding value of barley for poultry birds have emphasised the 

potential of increasing the intrinsic energy content by increasing storage fat content of the 

barley grains (Bhatty et al., 1974; Fedak and Roche, 1977). However, no significant 

improvement of fat content was observed over the years according to Fedak and Roche 

(1977) and Liu (2011), who reported fat contents of 30.8 and 32.6 g/kg DM, respectively. 

Higher content of fat in hull-less barley types compared to hulled types attributed 

to the concentration effect caused by the absence of hull was reported (Pettersson and 

Lindberg, 1997; Andersson et al., 1999; Ravindran et al., 2007; Liu, 2011). Regardless 

of hull type, a higher fat content in high amylose barley followed by waxy and normal 

starch types has been reported (Oscarsson et al., 1996; Pettersson and Lindberg, 1997). 

Pettersson and Lindberg (1997) reported 38, 34 and 29 g/kg DM of crude fat for high 

amylose, waxy and normal starch hulled barley types, respectively. Compared to other 

nutrients, the relationship between fat and other compositional constituents in barley grain 

is relatively unexplored, which might be due to the narrow range of fat content resulting 

in poor chance of significant differences in comparisons.  

The major fatty acids (FA) in barley grain is linoleic (518 g/kg of total FA), 

followed by palmitic (248 g/kg of total FA) and oleic acid (142 g/kg of total FA). The 

corresponding values in a wheat sample with 22.2 g/kg DM fat and 597, 203 and 123 g/kg 

of total FA of linoleic, palmitic and oleic acids, respectively (Liu, 2011). The high 

concentration of linoleic acid as an essential FA can be considered as one of nutritional 

importance in barley grain. In contrast to the relatively constant fat content in different 

barley types, a wide range of barley FA composition has been reported. Fedak and Roche 
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(1977) reported that linoleic (507-579 g/kg of total FA), palmitic (183-270 g/kg of total 

FA), oleic (122-212 g/kg of total FA) and linolenic acids (43-71 g/kg of total FA) of 21 

barley types ranged widely. Welch (1978) analysed 27 barley types for FA composition 

and reported widely ranging palmitic (214-287 g/kg of total FA), stearic (6.0-18 g/kg of 

total FA), oleic (104-169 g/kg of total FA), linoleic (524-583 g/kg of total FA) and 

linolenic acids (45-73 g/kg of total FA). The variability of FA concentration in different 

studies can be mainly attributed to oxidation and thus, differences in the sample storage 

periods and analytical methodologies. The varietal differences also can play a significant 

role in observed variability. Reports on the effect of environmental factors on FA 

composition, however, have been inconsistent, which may be related inter alia to cultivar 

differences (Fedak and Roche, 1977; Welch, 1978).  

Liu (2011) studied the distribution of fat within the barley grain and, reported that 

fat is largely concentrated in germ and bran region, while inner endosperm has much less 

fat. This observation provides scientific basis for the pearling of barley as the removal of 

surface layers (bran) of grains, thus reducing the lipid contents can improve storage 

stability of pearl barley. In addition, Liu (2011) proved that removing surface layers 

improve the stability of FA composition of the remaining kernels by increasing saturated 

FA while decreasing unsaturated FA. 

Most of the studies providing the mineral composition of different barley types 

lack information on hull and starch type. Rodehutscord et al. (2016) reported potassium 

as the major mineral followed by phosphorus. Rodehutscord et al. (2016), reported a 

higher content of calcium in barley (ranged from 0.35 to 0.6 g/kg DM) compared to maize 

(0.04 g/kg DM) and wheat (0.4 g/kg DM). Moreover, barley has a higher sodium content 

compared to wheat and maize (Table 2.4; Rodehutscord et al., 2016). Except for calcium 

and sodium, the patterns of differences in other minerals in barley, maize and wheat 

seemed to be inconsistent. Both low-phytate barley and maize types contained less 

amount of phytate-phosphorus compared to wild type (Jang et al., 2003). 
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The huge variation in chemical composition in cereals are attributed to the 

differences in grain types, variety, growing locations, seasonal effects, crop treatments 

and grain fumigants, conditions and duration of storage. Numerous attempts have been 

made to predict the nutritive value in grains for poultry from the chemical and physical 

composition values individually or in combination. Villamide et al. (1997) developed an 

equation to determine the N-corrected apparent metabolisable energy (AMEn) of enzyme 

supplemented barley from chemical parameters, mainly crude fibre and NSP. The 

practicality of this prediction equation can be questioned due to the variability of response 

observed in enzyme supplemented barley-based diets. Besides, nutritive value of grains 

for poultry is usually determined not only by the chemical and physical properties of the 

grains but also by interactions of nutritive components during the process of ingestion, 

digestion and metabolism in birds (Hughes and Choct, 1999). The concentration and the 

extent of solubility of NSP also play a significant role in determining how efficient dietary 

components are utilised by animals. Therefore, the reliability of using the chemical 

composition data in poultry diet formulation should be a matter of concern, at least for 

NSP rich grains. 

2.3. Barley in poultry nutrition  

Research into barley use in poultry diets has a long history. According to available 

literature, around 1930s, studies began to emerge comparing barley with other cereal 

Table 2. 4. Mineral composition of maize, barley and wheat grains (g/kg, DM basis). 

   Jang et al. (2003)  Linares et al. (2007)  Rodehutscord et al. (2016) 

  Barley Maize  Barley  Barley Maize Wheat 

  Wild1 LP2 Wild LP  Wild LP  

n3 1 1 1 1  1 1  21 27 29 

Calcium 0.6 0.6 0.02 0.03  0.47 0.49  0.59 0.04 0.4 

Phosphorus (P) 4.1 3.3 3.2 3.2  3.63 3.52  4.3 3.17 3.67 

Phytate P 2.3 1.1 2.2 0.9  2.38 0.05  2.81 2.26 1.92 

Non-phytate P 1.8 2.2 1 2.3  1.25 3.47  1.49 0.91 1.75 

Magnesium 1.3 1.3 1.3 1.2  1.2 1.2  1.63 1.45 1.56 

Potassium - - - -  - -  5.53 3.96 4.33 

Sodium - - - -  - -  0.05 0.003 0.005 

Iron - - - -  0.062 0.071  0.04 0.02 0.04 

Chloride - - - -  - -  - - - 

Manganese 0.017 0.02 0.007 0.007  0.016 0.015  0.015 0.005 0.032 

Zinc 0.030 0.04 0.010 0.010  0.023 0.024  0.024 0.021 0.022 

Copper 0.009 0.01 0.006 0.006  0.003 0.004  0.005 0.002 0.004 
1Wild-type barley with normal phytate P contents. 
2Low-phytate.  
3Number of analysed samples. 
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grains for poultry nutrition (Crampton, 1936). The occurrence of wet litter and sticky 

droppings was first to be noticed as problems associated with feeding barley-based diets, 

leading to poor quality in meat and eggs. In addition, depressed growth performance and 

nutrient utilisation of birds fed barley-based diets were observed (Jeroch and Dänicke, 

1995). Earlier research acknowledged a close relationship between extract viscosity of 

barley and growth impairment of birds fed barley-based diets and, the greater digesta 

viscosity in birds fed barley-based diets was attributed to the NSP present in barley grain 

(Burnett, 1966; White et al., 1981). Feed enzyme preparations were proven to be effective 

in ameliorating the depressions in growth and nutrient utilisation in birds fed barley-based 

diets (Hesselman and Aman, 1986; Rotter et al., 1990). However, the increased interest 

of the barley usage in poultry feed due to the development of feed enzymes was 

challenged by the variable responses of birds fed enzyme supplemented barley-based 

diets (Chesson, 1993). Moreover, the demand for barley for poultry feed has been 

inconsistent throughout the history, presumably be driven by changes in economic 

circumstances (Jeroch and Dänicke, 1995; Tricase et al., 2018). In consequence, the 

choice of other cereals that are less problematic and more economical, has restricted the 

proportion of barley used in poultry diets to less than 1.0% of total barley utilised as 

animal feed (Black et al., 2005). In this section of the review, the aim is to understand the 

impact of barley in broiler diets on growth performance, nutrient utilisation and gut 

morphometric parameters, and contribution of each parameter to the feeding value of 

barley in broiler diets, with emphasis on strengths and weaknesses of previous studies. 

2.3.1. Intestinal digesta viscosity  

It is well recognised today that inclusion of barley in poultry diets impedes the nutrient 

digestion through increasing intestinal viscosity. Elevated viscosity of the intestinal 

contents can cause inefficient mixing of digesta and enzymes, limiting the room for an 

efficient nutrient digestion. Transport properties of nutrients at mucosal surface can also 

be adversely affected, lowering the efficiency of the nutrient absorption (Jacob and 

Pescatore, 2012). 

White et al. (1981) isolated β-glucan from barley and added it to a maize-based 

diet and the resultant increase in the intestinal digesta viscosity supported the fact that the 

β-glucans of barley are the primary cause of poor growth performance. Moreover, it was 



 

*Viscosity is the internal friction in fluids that results in resistance to flow. It is measured 

in poise (P), 0.100 kg m-1 s-1, but usually expressed as centipoise (cP), 0.001 kg m-1 s-1 

(Dembicki, 2017).   
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recognised that not only the concentration but also the structure and molecular weight of 

NSP is responsible for increased viscosity of the intestinal contents of birds fed barley-

based diets (Bengtsson et al., 1990). 

Carré et al. (1994, cited in Carré, 2004) reported that rye resulted in the highest 

viscosity of gut contents, followed by barley, triticale, wheat, maize, and sorghum. In 

agreement, majority of the studies has reported more viscous intestinal contents in birds 

fed barley-based diets compared to birds fed maize-, wheat- and sorghum-based diets 

(Table 2.5). In contrast, Shakouri et al. (2009) reported higher digesta viscosity in the 

broilers fed wheat-based diets (5.74 cP) compared to barley-based diets (2.92 cP) 

speculating that the used wheat to be a viscous cultivar*. 

In addition to the proven influence of barley S.NSP, it has been shown that a 

variety of factors can influence barley viscosity: a) grain-related factors such as growing 

location (Campbell et al., 1989), storage time (Fuente et al., 1998), b) dietary factors such 

as barley inclusion level (Fuente et al., 1995; Yu et al., 1998), heat processing of grain 

(Gracia et al., 2003), conditioning temperature of the diet (Samarasinghe et al., 2000), 

and c) bird-related factors such as the age of the bird (Petersen et al., 1999) and sampling 

point in gastrointestinal tract (GIT; Table 2.5; Ankrah et al., 1999; Petersen et al., 1999). 

Campbell et al. (1989) compared 16 barley cultivars selected for variation in 

extract viscosity and grown at five different locations and reported that differences in 

extract viscosity among locations were most apparent for high viscosity genotypes while 

low viscosity genotypes were more uniform across locations. Fuente et al. (1998) stored 

a two-rowed winter barley (Beka cultivar) at room temperature for 0, 3, 6, 16, and 32 

weeks after harvesting and, reported that viscosity of the intestinal contents of broilers 

decreased with the barley storage time. Moreover, a storage time × enzyme interaction 

was reported with a greater decrease in digesta viscosity in birds fed non-supplemented 

barley diets than in enzyme supplemented diets. 
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Table 2. 5. Comparison of different cereal types for intestinal digesta viscosity of broilers. 

Reference Grain Inclusion level 

(g/kg of diet) 

(g/kg diet) 

Sampling point Major NSPa 

(g/kg) 

Bird age (d) Viscosity (cP) 

Wang et al. (1992) Maize 452 Small intestine Soluble BG: 0.2 14 1.7 

Barley 698 Soluble BG: 17.2 2.4 

       

Almirall et al. (1995) 
Maize 

600 PSIb 
- 

22 
1.0 

Low viscosity barley Total BG: 32.3 13 

High viscosity barley Total BG: 38.7 29 

       

Ankrah et al. (1999) 

Hull-less normal starch barley 

610 

PSIb Total BG: 60 

21 

178 

DSIb 353 

Hull-less waxy starch barley PSI Total BG: 73 376 

DSI 440 

       

Józefiak et al. (2007) 
Triticale 686/719c 

Ileum 
Soluble AX:12.3 

35 
6.0 

Rye 621/652c Soluble AX: 27.3 140 

Wheat 745/740c Soluble AX:10.6 3.0 

       

Shakouri et al. (2009) 

Barley 600 

Ileum 

- 

28 

3.2 

Sorghum 
623 

- 2.2 

Wheat - 7.3 

Maize - 2.4 

       

Petersen et al. (1999) 

Wheat 657 Foregutd - Average 

value of 20, 

25, 30, 35  

2.7 

Hindgutd - 8.0 

Barley 660 Foregut - 21 

Hindgut - 28 
aNSP, non-starch polysaccharides; BG, β-glucan; AX, Arabinoxylan. 
bPSI, proximal small intestine (from gizzard to Meckel's diverticulum); DSI, distal small intestine (from Meckel's diverticulum to the ileo-caecal 

junction). 
cStarter (1-14 d)/finisher (15-35 d) diet composition. 
dForegut, duodenum to Meckel’s diverticulum; Hindgut, from Meckel's diverticulum to the ileo-caecal junction. 
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Increasing intestinal digesta viscosity of broilers in response to increasing 

inclusion of barley in maize-based diets has been reported in the literature. Increasing 

barley inclusion by 300 g/kg (from 300 to 600 g/kg) in diets with no enzyme 

supplementation has been shown to increase the digesta viscosity by 222% (from 4.68 to 

15.08 cP; Fuente et al., 1995). However, when a combination of β-glucanase and xylanase 

was added to the diets, the viscosity increased only by 62% (2.44 to 3.95 cP) over a similar 

increment of barley in the diet. Yu et al. (1998, 2002) reported increases in duodenal 

digesta viscosity in response to complete replacement of maize with barley, with greater 

magnitude of response to complete replacement of maize in younger broilers (d 21) than 

broilers aged 42 d.  

Ankrah et al. (1999) reported that intestinal digesta viscosity increased from the 

proximal to the distal small intestine in broilers fed non-supplemented barley diets and 

mainly attributed to the increased β-glucan solubilisation along the GIT. Supplemental 

enzyme lowered the digesta viscosity in both proximal and distal small intestine. 

Moreover, comparing mash and reground pellets of both waxy and normal starch hull-

less barley types, a pelleting-induced 45% reduction in digesta viscosity was also 

observed in both barley types, due likely to the shearing effect on β-glucan during 

pelleting (Ankrah et al., 1999). In contrast, an increase of intestinal digesta viscosity in 

response to heat processing of barley grain was reported by Gracia et al. (2003), and the 

reduction of digesta viscosity in response to the added enzyme was greater in heat-

processed barley diets. Samarasinghe et al. (2000) reported greater dietary viscosity due 

to high conditioning temperatures (75 and 90 °C) during pelleting a barley-maize-soybean 

meal diet compared to 60 °C. Supplemental enzyme reduced the dietary viscosity by 11, 

14 and 17% in diets conditioned at 60, 75 and 90 °C, respectively, showing greater 

magnitudes of response at higher temperatures.  

Decreasing intestinal viscosity with increasing age of the broilers fed barley-based 

diets has been reported in some studies (Salih et al., 1991; Petersen et al., 1999; Gracia 

et al., 2003). Rotter et al. (1990) showed that adult cockerels fed barley diets had 

sufficiently developed GIT to avoid the negative effects of high β-glucan-induced digesta 

viscosity. Therefore, intestinal viscosity is not as great limiting factor in adult birds as it 

is in young birds (Almirall et al., 1995). According to Salih et al. (1991), who evaluated 

a high viscosity hull-less barley, the relative intestinal digesta viscosity dropped from 
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2.59 at two-weeks to 1.74 at eight-weeks in broilers. The non-supplemented high 

viscosity barley type used by Almirall et al. (1995) resulted in 29 and 19 cP digesta 

viscosity when fed to three-week old broilers and one-year old cockerels, respectively. In 

non-supplemented low viscosity barley, the values were 13 and 7 cP for three-week old 

chicks and one-year old cocks, respectively. Petersen et al. (1999) reported that foregut 

digesta viscosity of broilers fed barley-based diets reduced with age by 51%, from 16.7 

cP at 25 d to 8.2 cP at 45 d. These observations support the suggestion by Bedford (2018) 

that the mechanisms of viscosity needed to be re-evaluated as being a function not only 

of the cereal being fed, but also of the age of the bird. 

A better understanding of the influence of chemical and physical characteristics 

of barley grain, different feed processing factors and enzyme supplementation on the 

response of intestinal digesta viscosity would allow poultry nutritionists to increase the 

barley inclusion in poultry diets by strategically minimising the viscosity related negative 

consequences.  

2.3.2. Growth performance 

Poor growth performance in broilers fed barley-based diets has been reported compared 

to maize (Moharrery, 2006; Onderci et al., 2008), wheat (Salih et al., 1991; Friesen et al., 

1992) and sorghum (Tang et al., 2017), and commonly attributed to the increased digesta 

viscosity in barley-fed birds.  

The effect of barley inclusion in poultry diets on feed efficiency has been 

inconsistent, as both improvements (Friesen et al., 1992) and declines (Moss et al., 1983) 

were reported in the literature. Shakouri et al. (2009) and Tang et al. (2017) evaluated 

barley as the sole cereal in the broiler diets in comparison to maize, sorghum and wheat 

and reported that birds fed barley-based diets had the poorest weight gain (WG), feed 

intake (FI) and feed to gain ratio (F/G). In contrast, Brenes et al. (1993), who compared 

barley (cultivar, Scout) with wheat in broilers, reported 58 g superior WG for barley-fed 

birds, however, F/G was not differed between grain types. The WG differences caused 

by the grain type were minimised by the supplemental carbohydrases. 

Bergh et al. (1999) evaluated mash diets based on hulled barley cultivars (696 

g/kg) with normal, high amylose and waxy starch types, without or with supplementation 
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of a β-glucanase enzyme for broiler starters (1-18 d). Growth performance was 

determined at d 13 and birds offered normal starch barley had a better BW, FI and F/G. 

The magnitude of improvement in growth performance due to supplemental enzyme was 

greater in birds fed high amylose and waxy barley types. The increases of WG in response 

to supplemental enzyme were 22, 44, and 38 g/bird for normal, high amylose and waxy 

barley types, respectively, and the corresponding improvements in F/G were 7, 24 and 21 

points, respectively. In contrast, Ankrah et al. (1999) who compared two hull-less barley 

types with normal or waxy starch, without and with β-glucanase, in two feed forms (mash 

and reground pellets), reported no differences in growth performance parameters due to 

barley type, and no interactions of barley type with supplemental enzymes or feed form. 

Supplemental enzymes enhanced WG and F/G in both barley types and the feed form had 

no effect.  

Due to the low metabolisable energy content of barley (Black et al., 2005; Table 

2.6), birds need to consume more feed to maintain a constant energy intake (Classen, 

2017). However, reduced feed passage associated with higher digesta viscosity caused by 

NSP (Salih et al., 1991) can depress the FI, especially in younger birds (Almirall and 

Esteve-Garcia, 1994), resulting in birds not being able to meet their nutritional 

requirements (McNab and Smithard, 1992). Moreover, barley is less palatable to poultry 

compared to maize (Ravindran and Blair, 1991) and wheat (Hughes, 1984). The removal 

of the hull is believed to increase the palatability of barley (Yu et al., 2002) and this 

perception was one of incentives for the development of hull-less barley types. 

Moss et al. (1983), replaced wheat (w/w basis) with 0, 272, 408 and 544 g/kg of 

waxy starch hulled barley (cultivar, Wapana) in a broiler diet with no enzyme addition 

and reported that increasing levels of barley consistently decreased WG, but had no effect 

on F/G. Classen et al. (1988) substituted hull-less barley (cultivar, Scout; starch type, 

unidentified) on weight basis (0, 200, 400 and 600 g/kg) for wheat in a broiler starter diet 

and reported a linear decrease in BW with increasing levels of barley, while no depression 

was reported for F/G. Friesen et al. (1992) evaluated the influence of different inclusion 

levels of hull-less barley (0, 350 and 700 g/kg) in a wheat diet and supplementation of a 

cellulase enzyme on growth performance, energy and nutrient utilisation in 14-d old 

broilers. Weight gain and F/G of birds fed the non-supplemented hull-less barley at 350 

g/kg was similar to those fed the control wheat diet, wherein barley inclusion at 700 g/kg 
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resulted in the lowest WG and highest F/G. The deterioration of growth performance 

associated with barley inclusion reported in previous studies may partly be explained by 

weight-to-weight substitution of barley for the major cereal in the diets (Moss et al., 1983; 

Friesen et al.,1992), resulting in lower metabolisable energy and digestible AA content 

than the corresponding cereal-based diets.  

Yu et al. (2002) evaluated the inclusion of de-hulled barley at inclusion levels of 

0, 400 and 800 g/kg, and supplementation of β-glucanase in iso-nitrogenous and iso-

caloric maize-based diets and reported improved FI and WG with no effect on feed 

efficiency in response to the increasing inclusion of barley. The improvement in WG and 

FI was mainly attributed to the greater amount of fat added to the diets with higher 

inclusion of dehulled barley with a low energy value. Both greater amount of fat and the 

removal of fibrous hull of barley were believed to increase the palatability of the diets, 

improving the FI and WG. 

2.3.3. Energy utilisation  

The nutritive value of a particular grain for poultry can be best interpreted by the 

availability of energy and protein to the bird. Metabolisable energy of a cereal grain is 

dependent on the energy contained, the availability of the energy to the bird, and the 

presence or absence of anti-nutritive factors such as S.NSP (Scott et al., 1998). Wide 

variation in the apparent metabolisable energy (AME) within and between grain types is 

primarily attributed to a variable chemical and physical characteristics (Villamide et al., 

1997) and grain specific anti-nutritive factors (Hughes and Choct, 1999). Kocher et al. 

(1997) reported the AME of Australian barley types to range from 10.4 to 12.2 MJ/kg 

DM. In addition, Choct et al. (2001), who analysed 11 barley cultivars, reported ranges 

of 11.6 to 13.8 and 12.5 to 13.58 MJ/kg DM for AME of barley in broilers and layers, 

respectively. Among all cereal grains used in poultry feed, barley has been identified as 

one of the most variable cereal grains in terms of its energy value (Choct et al., 2001) and 

this variability is not reflected in table values (Scott et al., 1998; Jacob and Pescatore, 

2012). 
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The early studies to evaluate the feeding value of barley for poultry attributed its 

lower energy content to the presence of fibrous hull (Jeroch and Danicke, 1995). 

However, Scott et al. (1998) analysed 14 barley types characterised for hull type, starch 

type, malting and row (two- or six-row) and reported the lack of effect from hull type on 

AME in non-supplemented barley diets. It was speculated that the adverse effects of the 

higher fibre content of hulled cultivars on AME were confounded by the higher β-glucan 

levels of the hull-less cultivars. In carbohydrase supplemented diets, however, hull-less 

barley cultivars showed greater AME content due to the carbohydrase enzyme action on 

minimising NSP-induced anti-nutritive effects. 

As shown in Table 2.6, comparing two hull-less barley types that differed in starch 

type, Ravindran et al. (2007) reported 1.74 MJ/kg higher AMEn content for the normal 

starch barley than waxy starch barley. On the other hand, comparing two normal starch 

barley types differing in the presence of hull, only 0.25 MJ/kg difference in AMEn was 

reported. This finding suggests that starch characteristics of barley cultivars are probably 

Table 2. 6. Comparison of apparent metabolisable energy (AME; MJ/kg DM) and 

nitrogen-corrected AME (AMEn; MJ/kg DM) of different cereal grains for broilers. 

Reference Grain type AME AMEn 

Choct and Annison (1990) Pearled rice 17.36  

 Maize 15.83  

 Sorghum 15.77  

 Wheat 14.32  

 Triticale 13.83  

 Barley 11.92  

 Rye 11.34  

    
Moharrery (2006) Maize 14.01  

Hull-less barley 11.12  

 Hulled barley 10.05  

    
Ravindran et al. (2007) Hull-less normal starch barley  12.97 

Hulled normal starch barley  12.72 

Hull-less waxy starch barley  11.23 

    
Choct et al. (2001) Sorghum 15.0 

 

 

Barley 12.5  

    
Tang et al. (2017) Maize 

Barley 

 

10.75  

Wheat 10.74  

Sorghum 10.64  

Barley 9.91  
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more important than fibre contents in determining the available energy content of barley 

for broilers. In contrast, Villamide et al. (1997) compared the energy content of eight 

barley cultivars, without and with a multi-component enzyme complex, and reported no 

relationship between AMEn of non-supplemented barley cultivars and chemical 

composition. 

As shown in Figure 2.6, the available energy of cereal grains has a strong negative 

correlation with NSP concentrations in each grain type. In the case of barley, especially 

in non-supplemented diets, the bioavailable energy depends on its content of soluble β-

glucan and consequent higher digesta viscosity (Rotter et al., 1990). A linear reduction 

of AMEn with the increasing inclusion of barley in wheat- (Friesen et al., 1992) and 

maize- (Fuente et al., 1995) based diets was reported and attributed to the increasing 

digesta viscosity. Villamide et al. (1997) demonstrated about 0.14 MJ decline in dietary 

AMEn for each 10% units increase in barley inclusion. Fuente et al. (1995) reported 0.06 

MJ decline in AMEn per unit (cP) increase in digesta viscosity, suggesting that digesta 

viscosity accounts for 97% of the variation in AMEn among barley-based diets.  

 

Figure 2. 6. The relationship between energy metabolisability (apparent metabolisable 

energy/gross energy) of cereals and their non-starch polysaccharide composition 

(pentosans+β-glucans; % dry weight), (r = -0.97). Source: Choct and Annison (1990). 
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2.3.4. Nutrient digestibility 

In viscous grains such as barley, a small change in S.NSP can have a significant impact 

on nutrient utilisation. The prediction of resultant digestibility from the bird’s capacity to 

utilise the nutrients solely from the nutrient composition data is challenging, justifying 

the need for using digestible nutrient values in barley-based diet formulation. 

2.3.4.1. Amino acids 

Owing to the high inclusion of cereal grains in poultry diets, the proportion of cereal 

protein represent above 30% of the total dietary CP and have a substantial contribution to 

the supply of dietary AA. In order to increase the dietary inclusion of barley without any 

adverse effect on AA utilisation, the factors affecting AA digestibility of birds fed barley-

based diets should be well-understood. 

The digestibility of barley AA has been determined either as apparent or 

standardised. The apparent ileal digestibility (AID) does not consider the endogenous AA 

losses, and the correction of AID values for diet-independent and inevitable endogenous 

AA flow (Lemme et al., 2004), yields more precise values as standardised ileal 

digestibility (SID). Several studies have evaluated the AID of AA in different barley types 

(Perttilä et al., 2005; Ravindran et al., 2005, 2007; Al-Marzooqi et al., 2010). However, 

studies evaluating the SID of barley types are limited (Szczurek, 2009; Bandegan et al., 

2011; Barua et al., 2019; Szczurek et al., 2020).  

As shown in Table 2.7, the SID of AA of maize, triticale, sorghum and wheat are 

higher than that of barley. Barua et al. (2019) reported average SID of AA for maize, 

sorghum, wheat and barley as 0.838, 0.804, 0.778 and 0.723, respectively. The AA 

digestibility of barley ranged from 0.639 for lysine to 0.815 for cysteine (Barua et al., 

2019). The incomplete digestion of the AA justifies the use of digestible AA values, 

instead of total AA values, for broiler feed formulations. The AID of AA, however, is not 

recommended to be used in diet formulations due mainly to the underestimation of AA 

digestibility caused by endogenous AA flow and lack of additivity in complete diets. 

These concerns are critical in particular for low-protein feed ingredients (Stein et al., 

2005; Xue et al., 2014) such as barley and, use of SID values with higher precision and 

additivity is, therefore, recommended for barley-based diet formulation.  
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In addition to the differences of AA content and digestibility between different 

grain types, inconsistent AA digestibility in different barley cultivars has been observed 

(Ravindran et al., 2007), and partly attributed to the different concentration of NSP. The 

average AID values reported by Ravindran et al. (2007) for non-supplemented hulled 

normal starch, hull-less normal starch, and hull-less waxy barley-1 and hull-less waxy 

barley-2 were 0.67, 0.66, 0.63 and 0.71, respectively, with corresponding CP contents of 

116, 104, 105 and 137 g/kg DM, respectively. The inter-cultivar variability of AA 

digestibility justifies the use of individual SID values for each AA, specific for barley 

types, for formulating balanced barley-based diets, ensuring an adequate supply of AA 

for maintenance and growth functions. 

Significant improvements in AA digestibility of barley due to exogenous 

carbohydrases have been reported (Bedford, 1995; Perttilä et al., 2001; Ravindran et al., 

2007). However, the effect of enzyme supplementation on individual AA has also been 

inconsistent, which may be related to variations in chemical and physical characteristics 

of grains and different efficacies of supplemented enzymes. Other factors that contribute 

to the variation of AA digestibility in barley-based diets include; bird type (Al-Marzooqi 

et al., 2010), age of birds (Szczurek et al., 2020), barely particle size and feed form (Barua 

et al., 2019) and thus warrants consideration of these factors when determining AA 

digestibility in barley grain. 
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Table 2. 7. Comparison of standardised ileal digestibility of amino acids (AA) in different cereal grains. 

Reference Bandegan et al. 

(2011) 
 Barua et al. (2019)  Szczurek et al. (2020) 

Age of the birds (d) 21  24  14  28 

Grain type Wheat Barley  Maize Sorghum Wheat Barley  Wheat Triticale Barley  Wheat Triticale Barley 

Crude protein 0.872 0.797  0.829 0.808 0.797 0.711  - - -  - - - 

Indispensable AA                

Arginine 0.852 0.804  0.873 0.841 0.746 0.715  0.89 0.79 0.77  0.87 0.88 0.82 

Histidine 0.870 0.807  0.841 0.737 0.775 0.714  0.90 0.86 0.76  0.89 0.93 0.91 

Isoleucine 0.904 0.839  0.825 0.809 0.769 0.684  0.91 0.85 0.81  0.89 0.93 0.92 

Leucine 0.905 0.848  0.898 0.843 0.805 0.736  0.92 0.88 0.83  0.88 0.96 0.88 

Lysine 0.837 0.805  0.767 0.758 0.635 0.639  0.85 0.79 0.78  0.82 0.82 0.82 

Methionine 0.914 0.883  0.890 0.846 0.813 0.760  0.92 0.85 0.76  0.90 0.90 0.82 

Phenylalanine 0.938 0.909  - - - -  0.9 0.84 0.8  0.89 0.91 0.85 

Threonine 0.854 0.806  0.809 0.794 0.727 0.701  0.79 0.81 0.75  0.79 0.88 0.87 

Valine 0.877 0.825  0.833 0.808 0.755 0.722  0.86 0.86 0.79  0.88 0.93 0.86 

Tryptophan - -  0.719 0.799 0.747 0.667  0.90 0.90 0.86  0.89 0.95 0.92 
        

        
Dispensable AA                

Alanine 0.838 0.781  0.878 0.843 0.692 0.671  0.83 0.82 0.76  0.79 0.91 0.79 

Aspartic acid 0.838 0.781  0.818 0.814 0.682 0.674  0.87 0.84 0.75  0.76 0.96 0.81 

Cysteine 0.908 0.839  0.857 0.781 0.862 0.815  0.88 0.82 0.75  0.84 0.82 0.79 

Glutamic acid 0.966 0.876  0.895 0.847 0.914 0.804  0.96 0.92 0.85  0.95 0.93 0.91 

Glycine 0.841 0.767  0.745 0.713 0.731 0.652  0.83 0.82 0.72  0.79 0.84 0.85 

Proline 0.954 0.866  0.864 0.797 0.912 0.808  0.95 0.89 0.86  0.96 0.94 0.91 

Serine 0.891 0.822  0.858 0.831 0.824 0.736  0.87 0.83 0.76  0.86 0.91 0.83 

Tyrosine - -  - - - -  0.89 0.85 0.76  0.91 0.95 0.87 
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2.3.4.2. Starch  

Supported by the similar trends between starch and energy utilisation of birds fed barley-

based diets (Wu et al., 2004a; Ravindran et al., 2007), digestible starch is considered as 

the primary contributor to metabolisable energy in barley-based diets. Table 2.8 shows 

the comparison of ileal starch digestibility between different grain types and different 

barley types fed to broilers. While starch in maize is almost completely digested in broiler 

chickens (Zaefarian et al., 2015), other cereal grains show comparatively lower starch 

digestibility and greater variability than maize. Reasons for this variability include starch 

granule structure variations, anti-nutritional factors and access problems in coarse 

particles and extensively reviewed by Carré (2004), Svihus et al. (2005) and Zaefarian et 

al. (2015). 

As discussed in section 2.2.2.1, barley grains can be categorised based on the 

starch type and, in contrary to the expectation that waxy barley starch with more 

amylopectin (970-1000 g/kg of starch, Ullrich et al., 1986) is more digestible (Björck et 

al., 1990), poor starch digestibility has been observed in birds fed waxy barley-based 

diets, regardless of the hull type (Bergh et al., 1999; Ravindran et al., 2007). Bergh et al. 

(1999) and Ravindran et al. (2007) thus proposed the contribution of factors other than 

hull type, in particular β-glucan content, affecting starch digestibility of broilers fed 

barley-based diets. 

Ankrah et al. (1999) evaluated the starch digestibility in birds fed hull-less barley 

cultivars of normal or waxy starch (722 and 945 g/kg amylopectin, respectively) and, 

despite the higher digesta viscosity of birds fed waxy starch barley compared to the 

normal starch barley (276 vs. 102 cP), reported similar starch digestibility for the different 

starch types. Poor response of starch digestibility to variations in digesta viscosity in other 

grains has been previously reported (Carré et al., 2002) and among the three main 

nutrients (nitrogen, starch and fat), the extent of digestibility reduction due to viscosity 

seems to be the lowest for starch (Choct and Annison, 1992a,b; Smits et al., 1997). 

However, Carré et al. (2004) suggested that viscosity may induce a noticeable effect on 

starch digestibility in high viscosity barley types.  
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Enhanced starch digestibility of barley-based diets in response to the supplemental 

β-glucanase has been commonly observed in studies with broilers (Almirall et al., 1995; 

Bergh et al., 1999; Ravindran et al., 2007). According to Ravindran et al. (2007), 

magnitude of improvement in starch digestibility varied depending on barley type and 

was markedly greater in waxy genotypes (41 and 73%) compared to the normal starch 

genotypes (18 and 15%). Owing to the lack of sensitivity of starch digestibility to the 

digesta viscosity, it was hypothesised that that the effect of enzymes on starch digestion 

is not only through the reduction of intestinal digesta viscosity (Carré, 2004). With the 

recent finding by Andriotis et al. (2016) that endosperm cell wall degradation is an 

important determinant of the starch degradation rate in barley grains, it can be speculated 

that the supplemental carbohydrases enhance the starch digestibility primarily by 

Table 2. 8. Ileal starch digestibility of different grain types fed to broilers. 

Reference 
Grain 

type 
H/HLa 

Starch 

type 

Total 

β-glucans 

(g/kg) 

Starch 

digestibility 

coefficient 

Bergh et al. (1999) Barley H Normal 31b 0.91 

Barley H Waxy 40b 0.87 

Barley H High 

Amylose 

39b 0.89 

      
Svihus (2001) Wheat - - - 0.79 

Barley - - - 0.96 

Oat - - - 0.99 

      
Weurding et al. 

(2001) 

Wheat - - - 0.944 

Maize - - - 0.970 

Barley - - - 0.981 

Sorghum - - - 0.953 

      
Ravindran et al. 

(2007) 

Barley H Normal 50 0.804 

Barley HL Normal 40 0.837 

Barley HL Waxy 64 0.587 

      
Shakouri et al. (2009) Maize - - - 0.95 

Wheat - - - 0.97 

Sorghum - - - 0.93 

Barley - - - 0.93 
aHulled (H) or hull-less (HL) 
bSoluble β-glucans for normal, waxy and high amylose barley types were 14, 22 and 12 g/kg, 

respectively. 
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breaking down the barley endosperm cell walls and releasing the encapsulated starch 

granules.  

Ankrah et al. (1999) reported enhanced starch digestibility in reground pellets 

compared to mash (0.860 vs. 0.774) in broilers fed barley-based diets, irrespective of the 

starch type and enzyme supplementation. Hetland et al. (2002) reported enhanced starch 

digestibility in response to replacing ground barley with whole barley. The limited 

number of studies evaluating the influence of different feed processing parameters on 

starch digestibility of barley-based diets is discussed in section 2.4.3. The fact that feed 

processing techniques can have variable outcomes on starch digestibility depending on 

the grain type (Zaefarian et al., 2015) warrants further studies evaluating the impact of 

different processing parameters such as barley particle size and thermal treatment on 

starch digestion in barley-fed broilers. 

2.3.4.3. Fat 

Increased intestinal digesta viscosity in birds fed barley-based diets has been reported to 

be more detrimental to fat digestion (Edney et al., 1989; Almirall et al., 1995), making 

fat digestion to be most affected by the presence of S.NSP in the diet (Choct and Annison, 

1992a). High digesta viscosity results in difficult diffusion and passage of droplets of 

emulsion, fatty acids, mixed micelles, bile salts and lipase within the gastrointestinal tract, 

leading to reduced transport of micelles to the mucosal surface (Smulikowska, 1998; 

Smulikowska et al., 2002). Martinez et al. (1992) suggested that in addition to S.NSP, 

fat-soluble tocotrienol (subclass of vitamin E) present in barley can inhibit the cholesterol 

synthesis exacerbating the bile acid shortage created by S.NSP. In addition to the adverse 

impact by higher intestinal digesta viscosity, stimulation of gut microbial growth (Salih 

et al., 1991; Viveros et al., 1994) leading to higher bacterial activity may reduce the 

recycling of bile acids and the resultant low concentration of bile salts in birds fed barley-

based diets, leading to poor digestibility of fat. 

Bergh et al. (1999), who compared three hulled barley types differed in starch 

type, reported no differences in ileal fat digestibility between barley types, despite the 

different amounts of S.NSP. However, supplementation of β-glucanase enhanced the 

digestibility of fat with the greatest magnitude of response observed for waxy barley 

types. Friesen et al. (1992) evaluated the impact of increasing inclusion of hulled and 
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hull-less barley cultivars in a wheat-based diet (on a w/w basis and similar fat inclusion) 

and reported decreasing fat digestibility only in broilers fed hull-less barley. The 

depressed fat digestibility was, however, restored with supplemented carbohydrases.  

Indicating an age-related variation in fat digestibility in broilers fed barley-based 

diets, Viveros et al. (1994) reported a lower fat digestibility in 12-d old broilers compared 

to 28-d old broilers (73.2 vs. 83.2%). Limited production of lipase (Al-Marzooqi and 

Leeson, 2000) and bile salts (Viveros et al., 1994) that causes lower fat digestibility has 

been reported in broiler starters fed barley-based diets. Supplemental β-glucanase to 

barley-based diet elevated the lipase activity in both broiler starters and adult roosters 

with a greater magnitude in the young birds (Almirall et al., 1995). 

The nutrient digestibility response to barley inclusion in broiler diets seems to be 

nutrient-dependent due to variable sensitivity of nutrients to digesta viscosity, the storage 

location of nutrients and interactions with other nutrients. Determination of the rate and 

extent of nutrient digestion in barley-based diets will enable the manipulation of diet 

formulation, feed processing practices and strategic determinations of enzyme dosages to 

achieve the optimum inclusion of barley in poultry diets. 

2.3.5. Morphology 

Greater digesta viscosity can cause significant influence on the intestinal morphometry 

of birds fed barley-based diets. Viveros et al. (1994) reported shortening, thickening and 

atrophy of villi, and increased number (hypertrophy) and size (hyperplasia) of goblet cells 

in jejunum of birds fed barley-based diets (600 g/kg) compared to those fed maize-based 

diets. These effects were minimised, however, by supplementation with β-glucanases. 

Onderci et al. (2008) also reported shorter and narrower villus in birds fed barley- 

compared to maize-based diets. Shakouri et al. (2009) reported decreased jejunal villus 

height and villus: crypt ratio in birds fed diets with 600 g barley/kg compared to the diets 

containing maize, wheat and sorghum (623 g grain/kg). Kalantar et al. (2016) observed 

shorter villus height in birds fed diets with barley included as low as 150 g/kg in a maize-

based diet. The poor growth performance of broilers fed barley compared to other grain 

types was attributed to alterations of intestinal morphology induced by barley inclusion 

(Viveros et al., 1994; Yasar and Forbes, 1999; Mathlouthi et al., 2002). Comparative 

studies based on different barley cultivars on intestinal morphometry are limited. 
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Comparing barley with wheat for relative lengths and weights of the GIT 

segments, birds fed barley-based diets were reported to have longer duodenum, jejunum, 

ileum and caeca and lighter gizzard than those birds fed wheat-based diets (Brenes et al., 

1993). While supplemental enzymes did not impact the gut morphometry of birds fed 

wheat-based diets, it reduced the lengths of intestinal segments in barley-fed birds. 

Comparing two hull-less and hulled barley cultivars, heavier proventriculus and gizzard 

and shorter jejunum and ileum were reported in birds fed hulled barley than those fed 

hull-less cultivar (Brenes et al., 1993). As discussed in section 2.2.2.3.1, the I.NSP from 

hulled barley can facilitate gizzard development causing a substantial impact on nutrient 

utilisation. 

2.3.6. Welfare 

Incorporation of viscous cereals such as rye, barley, triticale and wheat into the poultry 

diets have been associated with litter problems caused by elevated excreta moisture or 

increased occurrence of sticky droppings. Roberts et al. (1998) compared the effect of 

sorghum, barley, wheat and triticale, on excreta moisture content in laying hens and 

reported that barley diets resulted in the wettest litter (77.5 vs. 74.5% moisture, on 

average), a finding primarily attributed to increased digesta viscosity of birds fed barley-

based diets that lowers the water absorption and thus increases water loss through the 

excreta. This situation has led to welfare and management problems in barley-fed birds. 

Dirty eggs in layers and breast muscle damage in broilers resulting from sticky droppings 

reduce the marketability of eggs and chicken meat (Gohl et al., 1978; Chesson, 1992, 

1993; McNab and Smithard, 1992; Classen, 1996). The occurrence of foot pad dermatitis 

(FPD) can also be encouraged by moist litter and is considered as a major welfare issue 

in birds fed barley-based diets. Moreover, increasing litter moisture caused by the sticky 

droppings can reduce the air quality of the poultry house (Jacob and Pescatore, 2012). 

Francesch et al. (1989, cited in Francesch and Brufau, 2004) reported increasing water 

consumption and the incidence of sticky droppings in response to increasing inclusion of 

barley in the diet whereas the effects of barley inclusion were diminished with the 

supplemental enzymes.  
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2.3.6.1. Foot pad dermatitis  

Foot pad dermatitis is a disease characterised by necrotic lesions on the plantar surface of 

feet in growing broilers and turkeys. The FPD can impair the health and productivity of 

birds and reduce the quality of chicken feet as human food resulting in economic losses 

(Mayne et al., 2007; Cengiz et al., 2012). Litter moisture less than 30% is usually 

recommended as optimal for footpad health (Mayne et al., 2007). The major cause of 

FPD is the wet litter which can depend on diverse factors such as composition of diet, 

sex, breed, body weight, initial litter moisture, environmental temperature, stocking 

density and litter type. Among these factors, the composition of diet plays a major role in 

grains with high levels of NSP such as barley. The occurrence of sticky droppings due to 

highly viscous digesta in barley-fed broilers, and the continuous sticking of excreta can 

deteriorate the epidermis and keratin layers in the footpad causing FPD (Shepherd and 

Fairchild, 2010).  

Cengiz et al. (2012) evaluated barley inclusion at 250 g/kg in a maize-based diet, 

without and with enzyme supplementation, on FPD in broiler chickens exposed to early 

high-moisture litter from d 1 to 5, and reported no influence of barley inclusion on 

development of FPD, litter moisture level, or litter pH. In a follow-up study, Cengiz et al. 

(2017) provided hulled barley at 300 g/kg in a maize-based diet and observed high litter 

moisture (32 vs. 19%), high incidence and severity of FPD in barley-fed birds in 

comparison to the birds fed maize-based diets at 42 d of age. The occurrence of FPD, 

however, cannot be solely attributed to the inclusion of NSP rich ingredients in the diet 

and, seemed to be influenced by the litter properties and management conditions as well. 

Predispose factors created by inclusion of barley in the diets can be managed through 

proper management practices and dietary modifications. However, literature on the 

efficacy of nutritional approaches on the litter quality and FPD incidence are inconsistent. 

2.3.6.2. Diseases 

Barley β-glucans can modify the intestinal microflora composition leading to increased 

susceptibility to disease (Jacob and Pescatore, 2014). Chickens fed barley-based diets 

have been reported with an increased incidence of necrotic enteritis associated with 

increased levels of Clostridium perfringens. Kaldhusdal and Hofshagen (1992) reported 

a higher occurrence of sub-clinical necrotic enteritis and associated depression in growth 
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rate in birds on a diet containing 270 g/kg barley in an oat-wheat-based diet, compared to 

birds fed 360 g/kg maize in the same oat-wheat-based diet. Riddell and Kong (1992) 

challenged broiler chickens at 18 d of age with C. perfringens and fed diets based on 

maize, wheat, rye and barley up to 42 d of age. While zero mortality occurred in birds fed 

maize-based diets, a 26.7% mortality was recorded in birds fed either wheat, rye or barley 

diets. It is reasonable to assume that a slower passage rate caused by high intestinal 

viscosity can facilitate the colonisation of potentially pathogenic bacteria (Yegani and 

Korver, 2008), deteriorating the health of barley-fed birds.  

2.3.7. Bird age 

Bird age is a determining factor for feeding value of barley primarily because of the 

influence on intestinal digesta viscosity. The changes in digesta viscosity of birds fed 

barley-based diets in response to birds’ age are discussed in section 2.3.1. The reduction 

in digesta viscosity with increasing birds’ age suggests that impact of barley antinutrients 

seem to be age-dependent due to the changes in birds’ digestive system. According to 

Almirall et al. (1995), the limited production of pancreatic enzymes and limited 

functionality of digestive enzymes are disturbed by intestinal viscosity in young birds. 

However, when diets were supplemented with enzymes, young birds had a greater 

response to β-glucanase (Almirall et al., 1995). It has been suggested that mature birds 

have a sufficiently developed GIT to counteract the negative effects of the β-glucans 

(Salih et al., 1991; Almirall and Esteve-Garcia, 1994). Petersen et al. (1999) speculated 

that the decrease in foregut viscosity with broilers age may be a consequence of 

acclimatisation to diet, while the reduction of digesta viscosity in the hindgut with age 

can be attributed to an alteration in the intestinal microflora composition.  

Salih et al. (1991) reported that WG and feed efficiency of broilers fed three 

different diets (wheat control, hull-less barley and enzyme supplemented hull-less barley) 

were not influenced beyond four weeks of age. Viveros et al. (1994) also reported lower 

fat and starch digestibility in 12 d-old-broilers compared to 28 d-old broilers fed barley-

based diets. These observations highlight the importance of considering bird age when 

determining the optimum barley inclusion and enzyme dosage rates in broiler diets as an 

important factor that can influence digestibility and performance responses in barley-

based diets. 
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2.3.8. Recommended inclusion of barley in poultry diets 

A wide range of inclusion levels of barley has been recommended for broiler diets. 

However, recommendations on the optimum inclusion of barley have been contradictory 

due to confounding factors such as starch type, presence of hull and cultivar differences, 

being overlooked in most previous studies. As shown in Table 2.9, most studies have 

replaced other cereals with barley either on a weight to weight basis (Arscott et al., 1955; 

Petersen, 1969; Moss et al., 1983; Yu et al., 1998) or by using nutrient composition data 

for barley and the substituted grain from established data sources such as National 

Research Council (Moharrery, 2006) and tables published by Spanish Foundation for the 

Development of Animal Nutrition (FEDNA; de Blas et al., 2010; Lázaro et al., 2003), or 

chemical analysis (Brake at al., 1997). There are apparently no studies where barley-based 

diets were formulated using accurate nutrient profiles specific to the barley cultivar based 

on AMEn and digestible AA contents determined in assays using broilers. 

According to previous studies, Arscott et al. (1955) suggest that barley can be 

included in broiler diets up to 153 g/kg without affecting growth performance. Jeroch and 

Danicke (1995) recommended up to 200-300 g barley/kg for broiler finishers. Brake et 

al. (1997) suggested that 200 g barley/kg can be included in both broiler grower and 

finisher diets without compromising growth, feed efficiency or litter conditions. 

According to Yu et al. (1998) and Bergh et al. (1999), 140 g barley/kg can be included in 

β-glucanase supplemented broiler diets. This discrepancy of recommendations for barley 

inclusion in broiler diets can be partly attributed to the lack of characterisation of tested 

barley types and inconsistency of research methodology, as shown in Table 2.9.  
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Table 2. 9. Comparison of previous studies evaluating barley inclusion in broiler diets. 

Reference Barley type Replaced 

or 

compared 

with 

Inclusion levels 

of barley 

(g/kg diet) 

Method of determination  Diets are balanced for 

Starch 

type 

H/HL/ 

DHa 

Weight-

to-weight 

basis 

Grain 

chemical 

composition 

Table 

values 

Digestible 

AAb 
 Energy Protein 

Moss et al. 

(1983) 

Waxy H Wheat Starter,0, 272, 

408 and 544; 

Grower, 0, 323, 

485, 646 

Yes No No No  No No 

Normal H Yes No No No  No No 

            
Friesen et al. 

(1992) 

- H Wheat 0,350,700 Yes No No No  No No 

- HL Wheat 0,350,700 Yes No No No  No Yes 

            
Fuente et al. 

(1995) 

- - Maize 300,400, 500, 

600 

Yes Yes No No  No No 

            
Yu et al. (1998) 

 

- - Maize 0, 70, 140, 278, 

557 

No No Yes No  Yes Yes 

0, 79, 157, 314, 

627 

No  Yes Yes 

            
Yu et al. (2002) - DH Maize 0, 400, 800 Yes Yes No No  Yes Yes 

            
Shakouri et al. 

(2009) 

- - Wheat, 

Maize, 

Sorghum 

600.2 No No Yes No  Yes Yes 

            
Tang et al. 

(2017) 

- - Wheat, 

Maize, 

Sorghum 

Starter diet, 

652; 

Finisher 

diet,669 

No No Yes No  Yes Yes 

aHulled (H), hull-less (HL), de-hulled (DH). 
bUsing digestible amino acid contents. 
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The nutritive value of grains for poultry is determined not only by the chemical 

and physical properties of grains but also by the interactions of ingestion, digestion, 

absorption, and metabolism in birds (Hughes and Choct, 1999). As discussed in this 

section, a minor change in NSP content and composition can have a substantial impact 

on performance and nutrient utilisation of birds with a considerable variation between 

barley types. In order to minimise the impact of barley variation and to meet birds' nutrient 

requirements based on their nutrient utilisation capacity, the use of grain-specific 

metabolisable energy and digestible nutrients, in particular AA contents in formulating 

barley-based diets, therefore, can be strongly recommended. 

2.4. Measures to overcome the limitations of barley in poultry diets 

With growing knowledge of physical and chemical characteristics of barley grain and 

mechanisms of anti-nutritive action, measures to minimise or eliminate the anti-nutritive 

impact of barley NSP in poultry diets have evolved over the years. These measures can 

be categorised as (i) morphological and compositional changes in barley grains using 

genetic selection and breeding (ii) regulation of NSP-induced anti-nutritive conditions by 

feed additives and (iii) physical manipulations of barley grains by feed processing 

methods. This section intends to provide a comprehensive review of each measure 

highlighting the specific objectives, mechanisms and outcomes. 

2.4.1. Genetic development  

2.4.1.1. Hull-less barley 

The established perception around the 1970s that the fibrous hull of barley had a 

significant anti-nutritive influence on digestible energy in poultry feeding (Bhatty et al., 

1975) led to the development of hull-less barley and raised the acceptance of barley as 

poultry feed ingredient (Bhatty, 1999; Jacob and Pescatore, 2012). Use of hull-less over 

hulled barley in poultry feed eliminates the cost and labour associated with dehulling, 

resulting in a cereal that is more compatible with nutrient-dense feeds preferred by the 

poultry industry (Campbell et al., 1993).  

As discussed in section 2.2.2., both hulled and hull-less barley types have been 

reported with variable amounts of nutrients suggesting an inconsistent effect by the hull 

type on nutrient content. Nevertheless, constant lower concentrations of I.NSP in hull-
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less barley compared to hulled barley have been reported in different studies (Oscarsson 

et al., 1996; Ravindran et al., 2007), which eventually equalised hull-less barley to wheat, 

in terms of fibre content (Li et al., 1996).  

As shown in Table 2.3, different β-glucan contents have been reported for hull-

less varieties indicating the influence of factors other than presence of absence of hull. 

Moreover, majority of these studies have neglected the other physico-chemical 

differences, such as starch type, associated with different hull-less barley cultivars. 

Ravindran et al. (2007) emphasised the need for considering the characteristics of starch 

and β-glucan content over the fibre content, when selecting barley cultivars for poultry 

diets. 

With the recent recognition on value of fibre in poultry diets to restore the gut 

integrity of birds fed highly processed diets, the tendency is to incorporate insoluble and 

functional fibre, such as hulls, into the poultry diets. The impact of barley hulls on gizzard 

development has been discussed in the literature (Sacranie et al., 2012; Adibmoradi et al., 

2016). Instead of separate hull inclusion, direct use of hulled barley in poultry diets can 

be considered as a cost- and labour-effective approach.  

2.4.1.2. Waxy-starch and high amylose-starch barley 

In addition to the conventional barley composed of normal starch (650-840 g/kg 

amylopectin), both hulled and hull-less barley have been developed into waxy (850-1000 

g/kg amylopectin) and high amylose (450 g/kg amylose; 550 g/kg amylopectin) barley 

types (Ullrich et al., 1986; Tester et al., 2004). These cultivars vary not only in starch 

composition but also with morphology and physico-chemical characteristics of starch 

granule, as discussed in section 2.2.2.1.  

From a poultry nutrition perspective, development of waxy starch barley was 

considered advantageous primarily for starch digestion. According to in vitro enzyme 

hydrolysis of barley starches, waxy barley starch has a higher susceptibility to α-amylase, 

compared to normal or high amylose barley starch (Björck et al., 1990; Li et al., 2004a). 

However, when analysed in vivo, waxy barley-based diets were reported with a lower 

starch digestibility (Table 2.8, Bergh et al., 1999; Ravindran et al., 2007). In addition, as 

discussed in section 2.2.2.1., birds fed waxy starch barley diets had a poor growth 

performance compared to those fed other barley types (Bergh et al., 1999). The impaired 
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growth performance and nutrient utilisation in birds fed waxy starch barley has been 

attributed to soluble β-glucan with high molecular weights, which occur in greater 

amounts in waxy starch barley types (Storsley et al., 2003). 

Nevertheless, waxy starch barley benefits the feed production in pellet form due 

to lower starch gelatinisation temperature, resulting higher physical pellet quality and 

reduced energy input in pellet production. According to Ankrah et al. (1999), equivalent 

pellet hardness in waxy starch hull-less barley was achieved at a lower temperature (by 

14.2 °C) than in normal starch hull-less barley. However, waxy starch barley, with higher 

soluble β-glucan content, also increased digesta viscosity compared to the normal starch 

barley. With a comparatively greater efficacy in waxy starch barley types (Table 2.10), 

exogenous enzymes are proven to mitigate the anti-nutritive effects of soluble NSP, 

making waxy starch barley an attractive feed ingredient for poultry. 

New barley varieties with different starch types, varying β-glucan content and 

diverse solubility characters are being continuously developed to minimise the anti-

nutritional effects of barley-based diets. However, large variations in the chemical and 

physical characteristics due probably to genetic and climatic factors, maturity stage and 

the storage time of barley grain (Jeroch and Dänicke, 1995; Hughes and Choct, 1999; 

Helm and Francisco, 2004) exist even in similar cultivars (Izydorczyk et al., 2000; Black 

et al., 2005). Due to this variability, Hughes and Choct (1999) highlighted the need for 

an assessment of nutritive value prior to incorporation of barley in poultry diets and 

deciding the type of treatment to be implemented with barley-based diets. Yu et al. (1998) 

proposed to measure the β-glucan content in the barley or in the poultry diet prior to the 

determination of enzyme dosage. 

2.4.2. Feed enzymes 

With the developing knowledge on the anti-nutritive impact of barley NSP in poultry 

diets, the research on the use of feed enzymes in barley-based diets has evolved over the 

years. Initially, supplementation of amylolytic enzymes to barley-based broiler diets was 

reported to be effective in reducing the sticky droppings and enhancing the growth 

performance (Fry et al., 1958; Arscott and Rose, 1960; Rose and Arscott, 1962). At this 

time, only rudimentary knowledge was available on substrate specificity of exogenous 

enzymes. However, with the finding by Burnett (1966) that viscous β-glucans present in 
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barley is the main reason for its low nutritive value, the observed improvement in birds 

fed barley-based diets by amylolytic enzyme product was attributed to a contaminant side 

activity of β-glucanase and its action of reducing digesta viscosity (O’Neill et al., 2014). 

Following this recognition (Gohl et al., 1978; Hesselman et al., 1982), the first β-

glucanase for barley-based poultry diets was commercialised in 1984 (Danisco Animal 

Nutrition, 2014). When supplementing barley-based diets with exogenous enzyme, the 

rule of thumb adopted by the poultry industry was “barley + β-glucanase = wheat” 

(Sheppy, 2001). Currently, almost all barley-based broiler diets worldwide are 

supplemented with glycanases (xylanases and β-glucanases; Ravindran, 2013). Three 

major modes of action of NSP-degrading enzymes have been recognised in the literature; 

(i) reduction of digesta viscosity via partial depolymerisation of NSP (Almirall et al., 

1995), (ii) releasing the encapsulated nutrients via cell wall degradation (Hesselman and 

Åman, 1986; Bedford, 1996) and, (iii) improving the gut microflora through the supply 

of prebiotic oligosaccharides (González-Ortiz et al., 2017; Bedford, 2018). However, the 

improvement in growth performance and nutrient utilisation in response to the 

supplementation of carbohydrase in barley-based diets has been commonly attributed to 

the viscosity reduction caused by the partial degradation of S.NSP (Almirall et al., 1995; 

Ankrah et al., 1999). Moreover, NSP-degrading enzymes can degrade endosperm cell 

walls, enabling more rapid access of endogenous proteases and amylases to the previously 

encapsulated protein and starch (Hesselman and Åman, 1986; Bedford, 1996, 2018). 

Supporting this hypothesis of cell wall solubilising effects of added carbohydrase, Ravn 

et al. (2017) has shown the in vitro destruction of the cell walls taking place in barley by 

supplemental xylanase.  

Depolymerisation of S.NSP by supplemental carbohydrases can generate 

fermentable oligosaccharides that can act as prebiotic compounds in the chicken GIT. 

Prebiotic oligosaccharides can encourage proliferation of beneficial bacteria such as 

Lactobacillius and Bifidobacteria (Józefiak et al., 2010; Rodriguez et al., 2012) 

preventing the growth of pathogenic bacteria such as Escherichia coli and Salmonella 

through competitive exclusion (Mathlouthi et al., 2002; Gabriel et al., 2006). 

Fermentation of oligosaccharides by caecal microbes stimulate the production of short-

chain fatty acids that may contribute a certain amount of energy to the host bird (Jamroz 

et al., 2002). A substantial increase in Bifidobacteria counts in the caecal digesta (from 
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3.92 to 9.69 log cfu/ml of digesta; Józefiak et al., 2010) and 61% increase in lactic acid 

production in the crop (Józefiak et al., 2006) of broilers fed barley-based diet in response 

to β-glucanase supplementation has been reported. Suggesting the positive contribution 

towards nutrient utilisation, improved protein and fat digestibility due to supplemental 

carbohydrases in a wheat-barley-based diet, has been partly attributed to the reduction of 

total anaerobic bacteria (Mathlouthi et al., 2002).  

As shown in Table 2.10, majority of studies with barley-based diets have 

confirmed the efficacy of dietary carbohydrase supplementation in enhancing the feeding 

value of barley for broilers through improved growth performance, enhanced nutrient 

utilisation and flock uniformity. In addition, supplemental carbohydrases minimise the 

variability in nutritional value of barley grains. Villamide et al. (1997) reported that 

supplementing a multi-enzyme containing β-glucanase, xylanase, and protease, reduced 

the range of AMEn by 23.9% by minimising the variability of AMEn in eight barley 

cultivars, with a greater effect on highly viscous barley types. Kocher et al. (1997) 

reported that variability of AME of 11 different barley cultivars was reduced by 55% due 

to supplemental β-glucanase.  

Combinations of different exogenous enzymes have also been evaluated in barley-

based diets (Table 2.10). Phytase has been commonly used in combination with 

carbohydrases in barley-based diets (Ravindran et al., 1999; Wu et al., 2004a). In addition 

to primary objectives of adding phytase to facilitate the release of phytate-bound P and to 

reduce the P effluents from intensive animal production (Ravindran, 1995), the 

supplementation of phytase to barley-based diets is justified by the fact that phytate is an 

integral part of barley cell wall matrix (Eeckhout and De Paepe, 1994). The combination 

of enzymes in barley-based diets is believed to facilitate each other’s substrate access. 

Nevertheless, when a combination of different enzymes is used, the response of barley to 

enzyme mixtures is largely dependent on content of carbohydrase, especially β-glucanase, 

over other enzymes (Yin et al., 2001). 
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Table 2. 10. Response of growth performance, nutrient utilisation and intestinal digesta viscosity of broilers fed barley-based diets to supplemental enzymes. 

Reference 

Barley Inclusion 

level 

(g/kg of 

diet) 

Feed 

form 

(M/P)3 

Components 

in 

carbohydrase 

(BG/XY)4 

Phytase 

Bird 

age 

(d) 

Growth performance5  Nutrient utilisation6 Reduction 

in digesta 

viscosity 

(cP) 

Hull 

type1 

Starch 

type2 

WG 

(%) 

FI 

(%) 

F/G 

(points) 

 
N 

(%) 

Starch 

(%) 

Fat 

(%) 

P 

(%) 

AME 

(%) 

AMEn 

(%) 

Almirall et al. 

(1995) 

- - 
600 M BG 

- 
24 

8.8 3.2 4  12.6 6.91 5.35 - - - 11 

- - - 13.2 6.0 3  16.6 2.01 3.14 - - - 26 

                   

Bergh et al. 

(1999) 

H 

 

N 

696 M BG + XY 

- 
13/ 

187 

8.0 4.6 7  8.2 7.7 22.1 - - - - 

HA - 18.6 6.3 24  6.8 7.9 14.1 - - - - 

W - 17.6 9.3 21  6.9 12.6 23.4 - - - - 

                   

Ankrah et al. 

(1999) 
HL 

N 

610 

M 

BG 

- 

21 

54.6 18.3 50  - 52.4 - - - - 245 

N P - 37.6 5.6 50  - 29.6 - - - - 91 

W M - 44.0 7.4 56  - 87.3 - - - - 466 

W P - 51.5 19.4 45  - 21.3 - - - - 267 

                   

Ravindran et al. 

(2007) 

H N 

963 M BG 

- 

28 

- - -  17.3 17.9 - - - 9.2 - 

HL 

 

N - - - -  20.7 15.2 - - - 5.5 - 

W - - - -  16.5 41.0 - - - 22.2 - 

W - - - -  14.7 73.0 - - - 23.1 - 

                   

Ravindran et al. 

(1999) 
- - 820 M 

BG + XY - 

42 

- - -  - - - - - 0.5 - - 

- + - - -  - - - - 2.7 - - 

BG + XY + - - -  - - - - 3.8 - - 

                   

Wu et al. 

(2004a) 
- - 990 M 

BG + XY - 

35 

- - -  13.8 9.0  9.8 8.8 8.6 - 

- + - - -  10.8 5.6  23.0 7.8 7.4 - 

BG + XY + - - -  13.8 10.1  26.2 13.2 12.9 - 
1Hulled (H) or hull-less (HL). 
2Normal (N), high amylose (HA) or waxy (W). 
3Mash (M) or pellets (P). 
4β-glucanase (BG) or xylanase (XY). 
5WG, weight gain; FI, feed intake; F/G, feed per gain. 
6N, nitrogen; P, Phosphorus; AME, apparent metabolisable energy; AMEn, N-corrected AME. 
7Growth performance determined at d 13. Nutrient utilisation and viscosity values determined at d 18. 
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The variable response to supplemental enzymes in birds fed barley-based diets 

(Table 2.10) can be attributed to the variable survival of enzymes during feed processing 

(Lamp et al., 2015), variations in barley nutritional composition mainly NSP and starch 

(Ravindran et al., 2007) and interactions with grain physical characteristics (e.g. particle 

size; Amerah et al., 2007a). 

2.4.3. Feed processing 

Different feed processing practices evaluated in barley-based diets primarily aim to 

liberate the encapsulated nutrients by modifying the physical characteristics of barley 

grain.   

2.4.3.1. Particle size 

Cereal grains are ground during feed manufacture to modify their physical characteristics 

by reducing the particle size. Grinding of whole grains can be categorised into three 

classes as fine, medium, and coarse according to the screen size in a hammer mill or 

distance between horizontal rollers in a roller mill that the grains are ground to pass 

through (Amerah et al., 2007a). Morel and Cottam (2007) achieved three different classes 

of barley particles by grinding barley through a hammer mill (7.0, 4.0 and 1.0 mm sieve 

openings for coarse, medium and fine grinds, respectively) and, reported average particle 

sizes of 1100 for coarse, 785 for medium, and 434 μm for fine grinds in barley-based pig 

diets. Fine grinding results in a greater surface area leading to greater substrate 

availability for enzymatic digestion and decreases segregation, ensuring the homogeneity 

of mixed feed. Coarse grinding, on the other hand, stimulates gizzard development and 

functionality, facilitating digestion of nutrients through enhanced grinding activity and 

gut motility (Amerah et al., 2007a).  

The particle size of a milled product can be influenced by grain type and, grinding 

different grains in the same mill under similar conditions can result in different particle 

sizes due mainly to the variations in endosperm hardness (Amerah et al., 2007a). In 

accordance, it has been speculated that variation in barley kernel hardness is responsible 

for the differences in particle size distribution observed between hard and soft barley lines 

(Nair et al., 2011). Nair et al. (2011), compared the microscopic images of endosperm 

from hard and soft-hulled spring barley lines and reported thicker endosperm cell walls 
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in hard barley lines. Moreover, Gamlath et al. (2008) reported that both β-glucan and 

arabinoxylan in barley endosperm positively correlated with kernel hardness. It is 

therefore reasonable to speculate that barley NSP may indirectly influence the particle 

size distribution in different barley types.  

Al-Rabadi et al. (2012), comparing ground barley fractions for in vitro starch 

digestion (Figure 2.7), reported that the extent of starch digestion varied between different 

barley particles sizes. Barley particles < 1.0 mm achieved a complete starch digestion 

(1.00) after 24 h, as confirmed by Fig. 2.7a showing the residual endosperm structure 

with holes where starch granules used to be. Figure 2.7b with 10-15 µm partly-digested 

granules showing amylase-mediated pits and channels confirms the incomplete starch 

digestion (0.63) in barley particles > 1.0 mm. However, these results obtained from in 

vitro studies may not be totally applicable to in vivo conditions due to the absence of the 

effects caused by NSP-induced digesta viscosity and mechanical grinding in gizzards.  

The grinding extent of barley has been compared with other physical 

manipulations such as whole barley feeding, pelleting and grit supplementation 

(Mcintosh et al., 1962; Svihus et al., 1997a) in poultry diets. However, there are no studies 

comparing the effect of different particle sizes of barley on broiler performance and 

nutrient digestibility to determine the optimum barley particle size in poultry diets. 

  

Figure 2.7. (a) Complete starch digestion in 0.125 mm barley particles (residual 

endosperm structure with holes where starch granules used to be) (b) Incomplete starch 

digestion in 1.0 mm barley particles (10-15 µm partly digested granules showing 

amylase-mediated pits and channels). Source: Al-Rabadi et al. (2012) 



53 

 

2.4.3.2. Feed form 

Supporting the established fact that pelleting enhances the economics of production by 

improving the growth and feed efficiency responses in broilers (Abdollahi et al., 2013a), 

pelleted barley-based diets have been also reported to improve growth performance over 

mash diets (Arscott et al., 1957; Al Bustany, 1996; Lamp et al., 2015). Al Bustany (1996) 

reported that pelleting a barley-based diet (500 g barley and 200 g maize/kg of diet) 

enhanced BW, FI and feed efficiency of 21-d broilers by 36 g/bird, 40 g/bird and 6 points, 

respectively. Comparing barley-based diets (450 g/kg) fed as either unprocessed mash or 

ground pellets, Lamp et al. (2015) reported that broilers (d 21) fed ground pellets resulted 

in greater WG (611 vs. 665 g/bird) and FI (879 vs. 954 g/bird) compared to the birds fed 

unprocessed mash diets. The feed efficiency, however, was not affected by the feed form. 

Ankrah et al. (1999) reported no effect of pelleting of either normal or waxy starch hull-

less barley on growth performance of 21-d old broilers. The discrepancies in the extent 

of growth performance responses of broilers fed barley-based diets to the feed form 

presumably be driven by, inter alia, the variability in barley types and different conditions 

employed during the pelleting process. 

Physical stress of pelleting can break the cell walls releasing the encapsulated 

nutrients leading to a greater accessibility by digestive enzymes. In agreement, Ankrah et 

al. (1999) reported a 17% increase in starch digestibility in broilers fed barley-based diets 

as a result of pelleting. Conversely, no effect of feed from on AA digestibility (Barua et 

al., 2019) or AMEn, DM or N retention (Khalil et al., 2019) in broilers fed barley-based 

diets has been reported.  

It has been hypothesised that pelleting can increase soluble carbohydrate 

concentrations or change the molecular weight of S.NSP, leading to an increase in digesta 

viscosity (Abdollahi et al., 2013a). Lending support to that thesis, Al Bustany (1996) 

reported that pelleting a barley-based diet increased the occurrence of sticky droppings 

of broilers (d 1-7) by 223%, due probably to an increase in digesta viscosity. However, 

Lamp et al. (2015) reported no difference in digesta viscosity in broilers fed barley-based 

diets either as unprocessed mash or ground pellets. Ankrah et al. (1999) reported 45% 

reduction in viscosity of barley after pelleting, an observation that was attributed to the 

shearing effect of the pelleting process that facilitated β-glucan degradation.  
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2.4.3.3. Heat processing 

Different heat processing methods such as autoclaving (Classen et al., 1985; Campbell et 

al., 1986; Viveros et al., 1994), steam-cooking (Gracia et al., 2003), steam-conditioning 

(Al Bustany, 1996; Lamp et al., 2015), expansion, micronisation (García et al., 2008) and 

extrusion (Vranjes and Wenk, 1995) have been evaluated to enhance the feeding value of 

barley in poultry diets. Heat processing is believed to disrupt the cell structures and to 

release the encapsulated nutrients (Gracia et al., 2003; García et al., 2008) facilitating the 

nutrient utilisation. However, thermal processing can increase the solubilisation of NSP 

in cereal grains (Silversides and Bedford, 1999), leading to higher viscosity in both feed 

and intestinal contents (Svihus et al., 2000; García et al., 2008) with an exacerbated effect 

on diets based on viscous grains such as barley (Cowieson et al., 2005). In addition, other 

common drawbacks of employing extreme heat treatments such as; formation of resistant 

starch (Abdollahi et al., 2010b, 2011), degradation of heat-labile AA (Papadopoulos, 

1989), inactivation of synthetic vitamins (Jensen, 2000) and exogenous enzymes (Inborr 

and Bedford, 1994) also apply to cereal-based diets.  

Impaired WG, feed efficiency and nutrient utilisation in birds fed autoclaved 

barley (121 °C for 20 min) compared to those fed non-treated barley has been reported in 

the literature (Classen et al., 1985; Campbell et al., 1986). According to Vranjes and 

Wenk (1995), feeding extruded barley deteriorated F/G and dietary AME in broilers by 

3.9 points and 0.82 MJ/kg, respectively. These researchers reported an increased viscosity 

of barley extract (1.3 vs. 3.7 cP) due to an increase in concentrations of S.NSP (28.4 vs. 

36.2 g/kg) induced by extrusion (120-130 °C for 20 s). In contrast, applying 

comparatively mild conditions, Viveros et al. (1994) demonstrated that autoclaving (70 

and 90 °C for 10 mins) of enzyme-supplemented barley-based diet improved the growth 

performance of young broilers compared to the unprocessed control diet.  

Gracia et al. (2003), using broiler starters (d 1-21), evaluated steam-cooked barley 

grains in mash diets, without or with a multi-component enzyme. An interaction between 

steam cooking (99 ± 2° C for 50 mins) and enzyme addition was reported for intestinal 

digesta viscosity with a greater response to enzyme in steam-cooked barley. Broilers fed 

steam-cooked barley grew faster than broilers fed unprocessed barley only up to 8 d of 

age. The F/G of broilers fed steam-cooked barley at 21 d of age was deteriorated by 8 
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points due likely to the 82% increase in intestinal digesta viscosity of broilers due to 

steam-cooking.  

García et al. (2008) reported that heat processing of barley increased the intestinal 

digesta viscosity at 7-d of age resulting 270, 121, and 89 cP for micronised, expanded, 

and non-processed barley, respectively. The effect of heat processing on intestinal digesta 

viscosity, however, disappeared at d 42 resulting 11, 6, and 11 cP for micronised, 

expanded, and non-processed barley, respectively. Micronisation and expansion, 

however, improved the NSP digestibility by 14.5 and 27.8%, respectively, confirming the 

heat induced NSP solubilisation. Comparing two heat processing methods, birds fed 

micronised barley gained less weight and had poorer F/G than broilers fed expanded 

barley, suggesting that micronisation might have a more severe impact on barley 

compared to the mild heating by expansion. Moreover, benefits of heat processing on 

barley seemed to be limited to broilers’ first week of age (Viveros et al., 1994; Gracia et 

al.; 2003; García et al., 2008).  

Inborr and Bedford (1994) reported that WG and feed efficiency in broilers 

decreased following conditioning a barley-based diet at 95 °C compared to diets 

conditioned at 75 and 85 °C. Samarasinghe et al. (2000) reported that conditioning 

temperature of 90 °C compared to 60 °C, in a non-supplemented barley-maize-soybean 

meal diet numerically impaired WG, daily FI and F/G of broilers (d 7-21). Moreover, 

conditioning non-supplemented barley-maize-soy diet at 75 and 90 °C increased the 

dietary viscosity by 0.11 and 0.29 cP, respectively, compared to the diet conditioned at 

60 °C. 

While most studies have compared different methods of heat processing, studies 

evaluating the optimum pelleting conditions for barley-based diets are limited (Inborr and 

Bedford, 1994; Samarasinghe et al., 2000). Based on the limited available literature, it 

can be hypothesised that the conditions (heat, moisture and mechanical pressure) applied 

during the heat processing, rather than the heat processing method are of higher 

importance in barley-based diets. It, therefore, necessitates the determination of optimum 

conditions for each heat treatment, particularly pelleting process, used for manufacturing 

barley-based broiler diets. Moreover, thermal processing conditions can also interact with 

exogenous carbohydrases in barley-based diets, due to high temperature-induced 
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viscosity increase and partial inactivation of enzymes during heat processing (Inborr and 

Bedford, 1994; Gracia et al., 2003). A better understanding of the interactions between 

exogenous enzymes and heat processing conditions, particularly on intestinal digesta 

viscosity and nutrient utilisation, is vital to minimise the viscosity related negative 

consequences and to facilitate increased use of barley in contemporary highly processed 

poultry diets. 

2.4.3.4. Whole barley feeding 

Feeding whole grain has traditionally been a part of backyard poultry operations. The 

importance of whole grains in poultry nutrition has been recognised due to its benefits 

associated with a better developed and more functional gizzard. Moreover, whole grain 

feeding can lower the feed milling cost and enhance the gut integrity of broilers fed highly 

processed diets. Different methods of whole-grain feeding have been reported in the 

literature as extensively reviewed in Singh et al. (2014).  

Wheat was usually considered as the whole grain of choice, and barley has been 

used as an alternative only when the cost or supply discourages the use of wheat (Singh 

et al., 2014). Whole barley has been recognised less preferred in free-choice feeding 

method when chickens were offered alternatives (Adret-Hausberger and Cumming, 

1985). Nevertheless, barley has been used in mixed feeding method, for its greater impact 

on gizzard development compared to other whole grain types (Biggs and Parsons, 2009). 

Whole barley has been investigated in maize- (Nahas and Lefrancois, 2001; Biggs and 

Parsons, 2009), wheat- (Hetland et al., 2002; Moss et al., 2017) and sorghum- (Taylor 

and Jones, 2004; Moss et al., 2017) based diets for determination of optimum inclusion 

level and possible interactions with supplemental enzymes (Svihus et al., 1997a,b; Moss 

et al., 2017). 

Reduced incidence of dilated proventriculus in response to whole barley has been 

evident (Taylor and Jones, 2004; Moss et al., 2017), confirming barley potential for 

enhancing gut integrity. Even though enhanced gizzard development and functionality is 

the motivation for whole grain feeding, the effect of whole barley on gizzard development 

seemed to be inconsistent. While a majority of studies (Svihus et al., 1997a; Hetland et 

al., 2002; Taylor and Jones, 2004; Moss et al., 2017) reported increased gizzard weight 

in response to replacing ground grain fractions with whole barley, Nahas and Lefrancois 
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(2001) reported no effect of whole barley inclusion on gizzard development. Furthermore, 

gizzard development response to whole barley can be confounded by the inclusion level, 

type, quality and hardness of the grain, age of birds, and whole grain feeding method. 

Nevertheless, with no difference in duodenal particle size distribution in broilers fed 

whole vs. ground barley-based diets, Svihus et al. (1997a) suggested the better grinding 

function by well-developed gizzards in broilers fed whole barley. 

The effect of whole barley feeding on growth performance has been contradictory. 

Hetland et al. (2002) reported that both WG and FI were impaired in broilers offered 

whole barley in wheat-based diets at inclusion levels of 125, 300 and 440 g/kg. Moss et 

al. (2017) reported that post-pelleting inclusion of whole barley depressed WG by 74 

g/bird, FI by 48 g/bird and FCR by 3.2 points compared to the ground barley fed birds at 

28-d of age. In contrast, higher WG (744 vs. 693) and FI (1113 vs. 1037) in birds fed 

whole barley diets compared to those fed ground barley diets was reported by Svihus et 

al. (1997a). The F/G, however, was not affected by the form of barley. According to 

Nahas and Lefrancois (2001), inclusion of whole barley (150 and 200 g/kg in the grower 

and finisher diets, respectively) in an enzyme supplemented maize-based diet, improved 

the WG and FI of broilers by 83 and 126 g/bird, respectively, compared to a non-

supplemented maize-based diet without whole barley. Moreover, the inclusion of 150 

g/kg whole barley in non-supplemented maize-based diet enhanced the F/G by 1.9 points, 

confirming the beneficial effects of whole barley inclusion in conventional maize-

soybean broiler diets. However, Biggs and Parsons (2009) reported similar WG in 21-d 

old broilers fed 100 and 200 g/kg whole barley to those fed a ground maize-soybean mash 

diet. The discrepancy in growth responses has resulted in varying whole barley inclusion 

levels being recommended for broiler diets. An inclusion of 300 g/kg (Hetland et al., 

2002) and 350 g/kg (Bennett et al., 2002) of whole barley in broiler diets has been 

suggested without any adverse effects on bird performance. However, Nahas and 

Lefrancois (2001) recommended a lower inclusion of up to 200 g/kg whole barley as an 

optimum level.  

The beneficial effects of whole barley feeding on gizzard development favourably 

influence the nutrient utilisation of birds. The enhanced starch digestibility (0.96 vs. 0.92) 

reported by Hetland et al. (2002) in response to replacing ground barley with whole barley 

(440 g/kg) was attributed to 79.0% increase in relative gizzard weight (34 vs. 19 g/kg). 
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Moss et al. (2017) also reported a 1.05% increase in ileal starch digestibility parallel to 

the 20.7% increase in the relative gizzard weight in broilers fed 125 g/kg whole barley.  

Density of whole barley grain can prevent the proper mixing with concentrate 

portion of the mash feed and consequently induce segregation in the mixed feed. When 

whole barley is added post-pelleting, separation and floating of whole barley on the top 

of the feed bins can result in incomplete distribution. Moreover, whole barley from awned 

cultivars can be hazardous to young broilers resulting in perforation or impaction of the 

crop (Singh et al., 2014). However, these limitations can probably be avoided by pre-

pelleting inclusion of whole barley, with whole barley cracked and embedded in intact 

pellets. The possible interactions of whole barley feeding with supplemental enzymes 

(Moss et al., 2017), particularly carbohydrases that are commonly added to barley-based 

diets, merits further investigation. 

2.4.4. Other strategies to enhance barley nutritional value 

Different pre-treatments such as soaking (Fry et al., 1958) and germination (Fengler et 

al., 1990; Svihus et al., 1997b; Afsharmanesh et al., 2013) have been investigated as 

possible strategies to enhance the nutritional value of barley for poultry. These treatments 

mainly focus on the activation of endogenous enzymes, mainly, β-glucanase (Fry et al., 

1958). Germinated barley was reported to have lower total and soluble β-glucan contents 

and digesta viscosity and, consequently improved growth performance and nutrient 

utilisation in broilers (Fengler et al., 1990; Svihus et al., 1997b). In comparison, the 

positive effect of soaking was not consistent and seemed to be dependent on the 

conditions (water temperature, time) employed during soaking (Fry et al., 1958; Svihus 

et al., 1997b). 

Beyond the aim of sterilising the feed ingredients, gamma irradiation has been 

evaluated in barley grains prior to dietary inclusion to induce depolymerisation of β-

glucan and consequent reduction in viscosity (Classen et al., 1985; Campbell et al., 1986). 

A 63% reduction in viscosity of a β-glucan solution in response to gamma irradiation was 

reported by Classen et al. (1985). When fed to broilers (d 1-21), irradiated hull-less barley 

improved WG and fat absorption compared to the non-treated barley (Classen et al., 

1985). Deteriorated growth performance and nutrient utilisation of broilers fed autoclaved 

barley was restored by subsequent irradiation of autoclaved barley (Campbell et al., 
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1986). Comparing two barley types subjected to gamma irradiation, Al-Kaisey et al. 

(2002) reported a gradual decrease in viscosity of barley extract in response to increasing 

dose of gamma irradiation. However, the magnitude of the reduction in extract viscosity 

to irradiation dose was dependent on the barley type. The reduction in barley extract 

viscosity was attributed to depolymerisation of β-glucans, leading to lower β-glucan 

content and viscosity. In contrast, Campbell et al. (1986) reported an increased soluble β-

glucan content in barley in response to increasing levels of irradiation. Despite the higher 

soluble β-glucan content, these researchers reported a decline in barley extract viscosity, 

due probably to an irradiation-induced reduction in molecular size. 

However, most of these strategies are not economically attractive and their large-

scale applications have been proven to be logistically difficult due to high cost and labour. 

Comparatively, supplementation of exogenous enzymes remains the most attractive 

approach because of its’ easy practice and lesser variability in response. A combination 

of compatible measures would facilitate each other mechanism enabling maximum 

efficacy in improving the feeding value of barley for poultry diets. 

2.5. Conclusions 

With the developing knowledge of physical and chemical characteristics of barley grain, 

the understanding of anti-nutritive effects of barley in poultry diets has evolved over the 

years. The fact that the nutritive value of barley for poultry is determined not only by the 

chemical and physical properties but also by the interactions of the nutrient and anti-

nutrient components highlights the need for the application of grain-specific 

metabolisable energy and digestible nutrients, in particular AA, in formulating barley-

based diets. In order to minimise the negative impact caused by the inherent variability 

of barley in poultry diets, grain specific determination of inclusion levels and processing 

conditions should be encouraged. The combination of enzyme supplementation with an 

appropriate feed processing practice may enable achieving maximum efficacy of 

supplemental enzymes by optimising the physical characteristics in barley-based diets.



1British Poultry Science, 60(4), 404-413. 
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CHAPTER THREE 

Nutritional evaluation of two barley cultivars, without and with carbohydrase 

supplementation, for broilers: Metabolisable energy and standardised amino acid 

digestibility1 

3.1. Abstract 

Two experiments were conducted to assess the nitrogen-corrected apparent metabolisable 

energy (AMEn; Exp. 1; 288 Ross 308 male broilers at d 14; six cages/treatment; eight 

birds/cage) and coefficient of standardised ileal digestibility (CSID) of amino acids (AA; 

Exp. 2; 336 Ross 308 male broilers at d 21; six cages/treatment; eight birds/cage) of two 

barley cultivars for broilers in comparison to wheat, without or with a multi-component 

non-starch polysaccharide (NSP) degrading enzyme. A 3 × 2 factorial arrangement of 

treatments was used in both experiments with three types of grains (normal starch hulled 

barley [NSH], waxy starch hull-less barley [WSHL], and wheat) and two levels of enzyme 

supplementation (0 and 200 g/tonne of feed). Enzyme supplemented diets contained 406 

and 128 of endo-1, 4-β-xylanase and endo-1, 3 (4)-β-glucanase units per kg of feed, 

respectively. Analysis showed that the starch content was higher in NSH (610 g/kg) than 

in wheat (537 g/kg) and WSHL (554 g/kg), and the composition of starch differed 

markedly among the grain types. The β-glucan content was considerably higher in WSHL 

(68.6 g/kg) compared to NSH (38.5 g/kg) and wheat (7.74 g/kg). The contribution of 

soluble fraction to the total non-starch polysaccharides was higher in WSHL (38.2%) 

compared to NSH and wheat (17.1 and 13.3%, respectively). A significant (P < 0.01) 

interaction was observed between the grain type and enzyme supplementation for AMEn. 

The WSHL, with the highest content of β-glucan, showed the greatest response to enzyme 

supplementation for AMEn. Birds fed wheat- and WSHL-based diets had the highest and 

lowest CSID of nitrogen and most of AA, respectively, with NSH diets being intermediate 

Regardless of grain type, enzyme supplementation increased (P < 0.05) the CSID of 

nitrogen. These data suggest that β-glucan content plays an important role in determining 

the digestibility of nutrients in barley for broilers, resulting in a better feeding value for 

NSH over WSHL. Supplementation of a multi-component NSP-degrading enzyme can 

improve the feeding value of barley in broiler diets by increasing the digestibility with 

the effect being more pronounced in WSHL barley. 



61 

 

3.2. Introduction 

Development of new cultivars and feed enzymes has received attention as a potential 

strategy to mitigate the negative effects of anti-nutritional factors present in barley for 

poultry. Barley cultivars with varying starch and β-glucan contents with diverse solubility 

characters are being continuously developed, while combinations of different enzymes 

are also being tested to enhance the nutrient utilisation. However, large variations in the 

chemical and physical characteristics of barley exist even among similar types of barley 

(Izydorczyk et al., 2000) and wide variability in responses to enzyme supplementation 

has been reported (Bao et al., 2013).  

Hull-less barley has gained more attention over conventional hulled barley with 

the perception that reduction of fibre components will increase the nutritive value for 

poultry. The fibre content in hull-less barley is lower than in hulled barley (Oscarsson et 

al., 1996; Ravindran et al., 2007). Receiving the same attention as hull-less barley, waxy 

barley with high contents of amylopectin is thought to result in higher starch digestibility 

compared to normal starch and high amylose barley types (Björck et al., 1990; Li et al., 

2004a). However, available reports indicate that starch digestion in waxy barley is lower 

compared to normal starch or high amylose barleys (Bergh et al., 1999; Ravindran et al., 

2007). These observations are suggestive of contribution of factors other than starch 

composition and hulls to the feed value of barley for poultry. 

It is important to determine the nutrient composition, metabolisable energy and 

digestible nutrient contents of ingredients prior to feed formulation for efficient 

utilisation. The objectives of the present study were to (i) characterise the nutrient 

composition of two barley cultivars in comparison with a sample of wheat (control) and 

(ii) determine the nitrogen-corrected apparent metabolisable energy (AMEn) and 

coefficient of standardised ileal digestibility (CSID) of amino acids (AA) in the three 

grain types, without or with carbohydrase enzyme addition. 

3.3. Materials and methods 

Two barley types namely normal starch hulled barley (NSH; cultivar, Fortitude) and waxy 

starch hull-less barley (WSHL; cultivar, Streaker) were obtained from a seed company 

(Luisetti Seeds Ltd, Rangiora, New Zealand), and ground in a hammer mill to pass 
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through the screen size of 3.0 mm. Wheat was obtained from a local commercial source 

and ground through the same screen size. The nutritional evaluation of the barley cultivars 

and wheat was carried out in three phases: (i) proximate and nutrient composition 

analysis, (ii) metabolisable energy evaluation and (iii) ileal nutrient digestibility assay. 

The experimental procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC protocol 17/13) and complied with the New Zealand Code of 

Practice for the Care and Use of Animals for Scientific Purposes. 

3.3.1. Proximate and nutrient composition 

All analyses were conducted in an ISO17025 accredited laboratory (Nutrition Laboratory, 

Massey University). Representative samples of grains were analysed, in duplicate, for dry 

matter (DM), gross energy (GE), nitrogen (N), AA, starch, fat, ash, calcium (Ca), 

phosphorus (P) and other minerals. The samples were also analysed for neutral detergent 

fibre (NDF), acid detergent fibre (ADF), non-starch polysaccharides (soluble [S.NSP], 

insoluble [I.NSP] and total [T.NSP]), amylose, amylopectin and β-glucan contents. 

3.3.2. Scanning electron microscopic (SEM) imaging of grains 

Samples of whole grains of barley and wheat were placed in primary fixative (Modified 

Karnovsky’s fixative [3% gluteraldehyde, 2% formaldehyde in 0.1M phosphate buffer, 

pH 7.2]) for 8 h at room temperature. Samples were then washed three times (15 min 

each) in phosphate buffer (0.1M, pH 7.2) followed by dehydration in graded ethanol 

series (25, 50, 75, 95 and 100%) for 5 min each, with a final 100% ethanol wash for 1 h. 

Samples were critical-point dried using liquid carbon dioxide as the critical-point fluid 

and 100% ethanol as the intermediary (Polaron E3000 series II critical point drying 

apparatus). Dried grains were manually broken along the cross section and mounted on 

aluminium stubs using double-sided tape, coated with approximately 100 nm of gold 

(Baltec SCD 050 sputter coater), and viewed in the FEI Quanta 200 Environmental 

Scanning Electron Microscope at an accelerating voltage of 20 kV at magnifications of 

×400, ×1300 and ×5000.  
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3.3.3. Carbohydrase enzyme 

A multi-component non-starch polysaccharide (NSP) degrading enzyme, Ronozyme® 

Multigrain (produced by Trichoderma reesei, also known as Trichoderma 

longiabrachiatum), was obtained from the DSM Nutritional Products, Australia. The 

activities of endo-1,4-β- glucanase, endo-1,3(4)-β-glucanase and endo-1,4-β-xylanase in 

this product were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. Endo-1,3 (4)-β-

glucanase and endo-1,4-β-xylanase activities in diet samples were measured at Biopract 

GmbH, Berlin, Germany. One unit of β-glucanase (BGU) was defined as the quantity of 

enzyme that released 1 µmol of reducing moieties from 1.5% β-glucan per minute at pH 

5.0 at an incubation temperature of 40 °C with an incubation time of 20 min. One unit of 

xylanase (XU) was defined as the quantity of enzyme that released 1 µmol of reducing 

moieties from 1.5% arabinoxylan per minute at pH 5.0 and incubation at 40 °C for 20 min 

(DSM Nutritional Products Ltd., 2013). 

3.3.4. Experiment 1- Evaluation of metabolisable energy 

Apparent metabolisable energy (AME) was determined using the direct method and total 

excreta collection. Six dietary treatments were developed from the three grains, with two 

levels of enzyme supplementation (0 and 200 g/tonne of feed). The assay diets contained 

962 g/kg of either barley or wheat as the only source of energy in the diet (Table 3.1). 

Day-old male broilers (Ross 308), obtained from a commercial hatchery, were 

raised in floor pens and fed a commercial broiler starter diet until d 14 of age. The 

temperature was maintained at 32 °C during the first week and gradually decreased to 

approximately 23 °C by the end of the third week of the entire experiment. Ventilation 

was controlled by central ceiling extraction fans and wall inlet ducts. On d 14, 288 birds 

of uniform body weights (closest to mean body weight) were selected and randomly 

assigned to 36 cages (eight birds per cage). The floor pens and grower cages were housed 

in an environmentally controlled room with 20 h of fluorescent illumination per d. Each 

diet was supplied to six replicate cages for seven days (14-21 d) with the first three days 

serving as an adaptation period. The diets, in mash form, were offered ad libitum and 

water was available at all times. During the last four days, feed intake was monitored and 

excreta was collected daily, weighed and pooled within a cage. Pooled excreta were 

mixed well in a blender and representative samples were obtained and lyophilised (Model 
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0610, Cuddon Engineering, Blenheim, New Zealand). Diets and excreta samples were 

ground to pass through a 0.5 mm sieve and stored in airtight plastic containers at 4 °C in 

preparation for laboratory analysis. The DM, GE and N contents of the diet and excreta 

samples were determined. 

 

All data were expressed on a DM basis, and the AME and AMEn values of assay 

diets and grains, without and with enzyme supplementation, were calculated using the 

following formula: 

AMEdiet (MJ/kg) = [(FI × GEdiet) – (Excreta output × GEexcreta)]/FI 

Nitrogen-corrected AME was determined by correction for zero N retention by 

multiplication using a factor of 36.54 kJ per gram N retained in the body (Hill and 

Anderson, 1958). 

AMEngrain (without and with enzyme) (MJ/kg) = (AMEn of the assay diet × 100)/96.2 

Table 3. 1. Composition of the basal diets (g/kg, as fed basis) used in metabolisable energy 

(Experiment 1) and ileal nutrient digestibility (Experiment 2) assays. 

Item Experiment 1 
 

Experiment 2 

Basal diet 
 

Basal diet Nitrogen-free diet 

Test grain 962 
 

917 - 

Dextrose - 
 

- 842 

Sodium bicarbonate 2.0 
 

2.0 2.0 

Sodium chloride 2.0 
 

2.0 2.0 

Dicalcium phosphate 19.0 
 

19.0 19.0 

Limestone 13.0 
 

13.0 13.0 

Vitamin premix1 1.0 
 

1.0 2.0 

Mineral premix1 1.0 
 

1.0 3.0 

Soybean oil - 
 

40.0 50.0 

Titanium dioxide - 
 

5.0 5.0 

Solkafloc (cellulose) - 
 

- 50.0 

Dipotassium hydrogen phosphate - 
 

- 12.0 
1Supplied per kg of diet: antioxidant, 125 mg; biotin, 0.2 mg; calcium pantothenate, 20 mg; 

cholecalciferol, 5000 IU; cyanocobalamin, 0.02 mg; folic acid, 2.0 mg; menadione, 4 mg; niacin, 

80 mg; pyridoxine, 5.0 mg; trans-retinol, 15000 IU; riboflavin, 9.0 mg; thiamine, 4.0 mg; dl-α-

tocopheryl acetate, 80 IU; choline, 0.45 mg; ascorbic acid, 100 mg; Co, 1.0 mg; Cu, 20 mg; Fe, 40 

mg; I, 2.0 mg; Mn, 100 mg; Mo, 1.0 mg; Se, 0.15 mg; Zn, 100 mg.. 
1Image Holdings Ltd., Auckland, New Zealand. 
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3.3.5. Experiment 2- Ileal digestibility assay 

The coefficient of apparent ileal digestibility (CAID) of DM, N, AA and starch of two 

barley cultivars and one wheat cultivar was determined using the direct method. Six 

dietary treatments were developed from combination of the three grains and two levels of 

enzyme supplementation (0 and 200 g/tonne of feed). The assay diets contained 917 g/kg 

of either barley or wheat as the only source of AA and starch in the diet (Table 3.1). A N-

free diet was developed to determine the endogenous N and AA losses for the calculation 

of standardised digestibility values. Titanium dioxide (TiO2; 5 g/kg; Merck KGaA, 

Darmstadt, Germany) was added to all diets as an indigestible marker to determine ileal 

digestibility.  

A total of 336, 21-d old male broilers (Ross 308), with body weights closest to 

mean body weight were selected and randomly assigned to 42 cages (eight birds per cage). 

Each diet was fed to six replicate cages for four days from d 21 to 24. The diets, in mash 

form, were offered ad libitum and water was available at all times. 

On d 24, all the birds in each cage were euthanised by intravenous injection (1 ml 

per 2 kg live weight) of sodium pentobarbitone (Provet NZ Pty Ltd., Auckland, New 

Zealand) and eviscerated. The small intestine was isolated, and the ileum was defined as 

that portion of the small intestine extending from the Meckel’s diverticulum to a point 

~40 mm proximal to the ileo-caecal junction, to avoid potential contamination from 

caecal fermentation products. The ileum was then divided into two halves and the digesta 

was collected from the lower half towards the ileo-caecal junction by gently flushing with 

distilled water, as described by Ravindran et al. (2005). Digesta from birds within a cage 

were pooled, lyophilised, ground to pass through a 0.5 mm sieve and stored at 4 ºC until 

laboratory analysis. The diets and digesta samples were analysed for DM, titanium (Ti), 

N, AA and starch. 

The CAID of nutrients were calculated from the dietary ratio of nutrient to Ti 

relative to the corresponding ratio in the ileal digesta.    

CAID of nutrient = [(Nutrient / Ti)d - (Nutrient / Ti)i] / (Nutrient / Ti)d 
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where, (Nutrient /Ti)d = ratio of nutrient to Ti in diet and (Nutrient /Ti)i = ratio of 

nutrient to Ti in ileal digesta. 

The basal endogenous AA (EAA) flow at the terminal ileum was calculated as 

grams lost per kilogram of DM intake (DMI; Moughan et al., 1992).   

Basal EAA flow (g/kg DMI) = [AA in ileal digesta (g/kg) × Tid (g/kg)]/ Tii (g/kg) 

where, Tid= titanium in diet and Tii = titanium in ileal digesta. 

Apparent digestibility data for N and AA were then converted to standardised 

digestibility values, using endogenous N and AA values determined from birds fed the 

N-free diet (Ravindran et al., 2014). 

CSID = CAID + [Basal EAA (g/kg DMI)] 

Ing. AA (g/kg DM) 

Where, CAID = coefficient of apparent ileal digestibility of the AA, Basal EAA 

= basal endogenous AA loss and Ing. AA = concentration of the AA in the ingredient. 

3.3.6. Chemical analysis 

Dry matter was determined using standard procedures (Methods 930.15; AOAC, 2016). 

Ash was determined by a standard procedure (Method 942.05; AOAC, 2016) using a 

muffle furnace at 550 ºC for 16 hours. Nitrogen was determined by combustion (Method 

968.06; AOAC, 2016) using a CNS-200 carbon, N and sulphur auto analyser (LECO 

Corporation, St. Joseph, MI). The crude protein (CP) content was calculated as N × 6.25. 

The adiabatic bomb calorimeter (Gallenkamp Autobomb, London, UK) standardised with 

benzoic acid was used for the determination of GE. The NDF (Method 2002.04; AOAC, 

2016) and ADF (Method 973.18; AOAC, 2016) were determined using Tecator 

Fibertec™ (FOSS Analytical AB, Höganäs, Sweden).  

Amino acids were determined as described by Ravindran et al. (2008). Briefly, 

the samples were hydrolysed with 6N HCl (containing phenol) for 24 h at 110  2 °C in 

glass tubes sealed under vacuum. Amino acids were detected on a Waters ion-exchange 

HPLC system, and the chromatograms were integrated using dedicated software 



67 

 

(Millennium, Version 3.05.01, Waters, Millipore, Milford, MA), with the AA identified 

and quantified using a standard AA mixture (Product no. A2908, Sigma, St. Louis, MO). 

The HPLC system consisted of an ion-exchange column, two 510 pumps, Waters 715 

ultra WISP sample processor, a column heater, a post column reaction coil heater, a 

ninhydrin pump and a dual wavelength detector. Amino acids were eluted by a gradient 

of pH 3.3 sodium citrate eluent to pH 9.8 sodium borate eluent at a flow rate of 0.4 ml/min 

and a column temperature of 60 °C. Cysteine and methionine were analysed as cysteic 

acid and methionine sulphone, respectively, by oxidation with performic acid for 16 h at 

0 °C and neutralisation with hydrobromic acid prior to hydrolysis. 

Total, soluble and insoluble NSP were determined using an assay kit (Megazyme 

International Ireland Ltd., Wicklow, Ireland) based on thermostable α-amylase, protease 

and amyloglucosidase (Englyst et al., 1994). Starch was measured using a Megazyme kit 

(Method 996.11; AOAC, 2016) based on thermostable α-amylase and amyloglucosidase 

(McCleary et al., 1997). Fat was determined using Soxtec extraction procedure for animal 

feed, forage and cereal grains (Method 2003.06; AOAC, 2016). Samples were assayed 

for Ti on a UV spectrophotometer following the method of Short et al. (1996). 

For mineral analysis, the samples were wet digested in a nitric and perchloric acid 

mixture, and concentrations of P, Ca, potassium (K), magnesium (Mg), sodium (Na), 

chloride and iron were determined by Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP-OES) using a Thermo Jarrell Ash IRIS instrument. Phytate 

phosphorus was analysed by the colorimetric procedure of Caldwell (1992). Phytate was 

extracted using hydrochloric acid and sodium sulphate solution and precipitated as ferric 

phytate. The precipitate was hydrolysed, and the P content was determined 

colorimetrically using the phosphomolybdate method (Selle et al., 2003a). 

3.3.7. Statistical analysis 

The data were analysed as a 3 × 2 factorial arrangement of treatments using the General 

Linear Models procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC.). Cages 

served as the experimental unit and differences were considered to be significant at P < 

0.05. Significant differences between means were separated by Least Significant 

Difference test. 
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3.4. Results and discussion 

3.4.1. Proximate and nutrient compositions 

The proximate and nutrient compositions of the two barley cultivars and wheat are shown 

in Table 3.2. The results, in general, were within the range reported in the literature 

(Beames et al., 1996; Jensen et al., 1998; Andersson et al., 1999; Izydorczyk et al., 2000; 

Ravindran et al., 2007). Values outside the range have been reported by some researchers 

(Hew et al., 1998; Li et al., 2004b; Rebolé et al., 2010), which highlighted the variability 

that exists between barley cultivars grown in different geographical locations (Jeroch and 

Dänicke, 1995; Hughes and Choct, 1999; Helm and Francisco, 2004).  

The composition of starch differed markedly among the grain types. A higher 

proportion of amylopectin, which is beneficial in terms of starch digestibility, was 

reported in the present study for WSHL than for NSH (860 vs. 562 g/kg starch). In vitro 

enzyme hydrolysis of barley starches has shown that the waxy form has a higher 

susceptibility to α-amylase, compared to normal or high amylose barley starch (Björck et 

al., 1990; Li et al., 2004a). 

Starch was the main chemical component followed by T.NSP in all three grains. 

The observation of higher content of starch in NSH compared to WSHL is in contrast to 

some previous studies that reported higher contents of starch in WSHL compared to NSH 

barley (Oscarsson et al., 1996; Holtekjølen et al., 2006). Knudsen (1997), with no 

reference to starch type, reported that the concentration of starch was higher in hull-less 

barley (645 g/kg DM) compared to hulled barley (587 g/kg DM) owing to a strong 

influence of hulls on the starch concentration. However, in agreement with the present 

findings, Andersson et al. (1999) reported higher contents of starch in NSH barley 

compared to WSHL barley. Asare et al. (2011) compared hull-less barley types with 

different starch composition and reported higher starch content in normal starch barley 

compared to waxy and high amylose barley. Ravindran et al. (2007) compared two 

WSHL barley cultivars with an NSH cultivar and found no consistent differences in starch 

content.  
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Higher contents of fat, CP and AA in WSHL compared to NSH were in agreement 

with published data (Edney et al., 1992; Pettersson and Lindberg, 1997; Andersson et al., 

1999), and this was attributed to a concentration effect caused by the absence of hulls.  

Higher contents of NDF and ADF were observed in NSH followed by wheat, 

which is in agreement with that reported by Knudsen (1997). In contrast, Li et al. (1996) 

observed similar contents of NDF and ADF in hull-less barley and wheat. A similar 

content of T.NSP observed in two barley cultivars disagrees with those reported by 

Beames et al. (1996) who determined higher contents of T.NSP in hulled barley cultivars. 

However, the contribution of the soluble fraction to the T.NSP was higher in WSHL 

Table 3. 2. Proximate, carbohydrate, mineral and amino acid composition (g/kg) of normal starch hulled 

barley (NSH), waxy starch hull-less barley (WSHL) and wheat (dry matter basis). 

 NSH WSHL Wheat  NSH WSHL Wheat 

Proximate and carbohydrate composition Amino acid concentration 

Dry matter 893 907 892 Essential amino acids 

Ash 17.6 17.8 18.4 Arginine 5.28 6.44 6.79 

Nitrogen 16.2 21.2 22.6 Histidine 2.35 2.82 3.46 

Crude protein (N×6.25) 101 133 141 Isoleucine 3.69 4.87 4.94 

Starch 610 554 537 Leucine 7.02 8.99 9.82 

Amylopectin 343 477 308 Lysine 3.84 4.55 3.95 

Amylose 267 77.2 229 Methionine 2.16 2.23 2.52 

Fat 21.2 27.3 21.0 Phenylalanine 5.13 7.31 6.99 

NDF1 129 89 112 Threonine 3.67 4.18 4.14 

ADF1 43.7 17.6 27.8 Valine 5.54 6.82 6.49 

Gross energy (MJ/kg) 18.1 18.4 18.3     

I.NSP1 142 110 119 Non-essential amino acids 

S.NSP1 29.2 68.0 18.3 Alanine 4.28 4.98 4.99 

T.NSP1 171 178 138 Aspartic acid 6.82 8.09 7.46 

β-glucan 38.5 68.6 7.74 Cysteine2 2.65 3.00 3.50 

    Glycine2 4.38 4.99 5.95 

Minerals    Glutamic acid 23.6 34.4 45.1 

Calcium 0.39 0.36 0.35 Proline 10.6 16.1 15.2 

Total phosphorus (P) 3.25 3.86 4.26 Serine 4.50 5.23 7.10 

Phytate P 1.32 1.79 2.22 Tyrosine 3.41 4.36 4.68 

Non-phytate P 1.93 2.07 2.04     

Magnesium 1.28 1.39 1.45     

Potassium 4.25 5.62 4.93     

Sodium 0.20 0.10 < 0.06     

Iron 0.06 0.06 0.06     

Chloride 1.31 1.27 0.71     
1NDF, neutral detergent fibre; ADF, acid detergent fibre; T.NSP, total non-starch polysaccharides; 

I.NSP, insoluble non-starch polysaccharides; S.NSP, soluble non-starch polysaccharides. 
2Semi-essential amino acids for poultry. 
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(38.2%) compared to NSH and wheat (17.1 and 13.3% of T.NSP, respectively). Beames 

et al. (1996) and Jensen et al. (1998) reported a higher level of I.NSP in NSH due to the 

presence of hulls. β-glucan content was considerably higher in WSHL (68.6 g/kg DM) 

compared to NSH (38.5 g/kg DM) and wheat (7.74 g/kg DM), which was in agreement 

with previous studies (Oscarsson et al., 1996; Izydorczyk et al., 2000; Li et al., 2001; 

Izydorczyk and Dexter, 2008; Knudsen, 2014). However, β-glucan content observed in 

WSHL was outside the range of values reported in some studies (Beames et al., 1996; Li 

et al., 1996). Asare et al. (2011), who compared ten hull-less barley types with different 

starch composition, reported higher CP, β-glucan and fat contents in waxy starch types 

compared to a normal starch barley cultivar, which is in agreement with the current study. 

The differences in CP content were reflected in AA contents, with WSHL having 

higher concentration of N and each AA compared to NSH. In all three grains evaluated, 

methionine concentration was the lowest followed by histidine and cysteine, while 

glutamic acid was the highest. In comparison with wheat, WSHL contained higher 

contents of lysine, phenylalanine, valine, proline and aspartic acid, while the other AA 

showed comparable values. Compared to the variable AA contents of barley and wheat 

reported in the literature, AA concentrations in the current study were within the range of 

AA of barley and wheat with similar CP contents reported by Ravindran et al. (2005) and 

Bandegan et al. (2011). Moreover, differences of AA contents between the current study 

and literature were consistent with the differences in CP content (Short et al., 1999; 

Ravindran et al., 2005).  

Potassium was the major mineral in all tested grains followed by P. In the current 

study, higher contents of Mg and K were observed in WSHL than NSH, while K content 

was higher in WSHL than wheat. Normal starch hulled barley contained markedly higher 

content of Na compared to WSHL and wheat. In agreement with Bartnik and Szafrańska 

(1987) results, both total and phytate P were higher in wheat compared to two barley 

types. The reported total P content for NSH (3.25 g/kg DM) was lower than the range 

reported for hulled barley types (3.5-4.3 g/kg DM) by Fairbairn et al. (1999) and 

Salarmoini et al. (2008). However, the total P content of WSHL (3.86 g/kg DM) fell 

within the range (3.8-4.6 g/kg DM) reported for two hull-less barley types by Salarmoini 

et al. (2008). The determined level of phytate for NSH and WSHL (1.32 and 1.79 g/kg 

DM, respectively) were below the range reported by Salarmoini et al. (2008) for hulled 
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low-phytate barley (3.3-5.5 g/kg DM) and hull-less low-phytate barley (6.1 g/kg DM). 

These observations indicated that both barley cultivars used in the present study were 

low-phytate types. In common with other cereals, all three ingredients contained only 

negligible amounts of Ca (0.35-0.39 g/kg DM). 

3.4.2. Microscopic characterisation of barley and wheat 

The SEM images showing cross section of the grains are shown in Figure 3.1. Starch 

granules in both wheat and barley are known to have a bimodal size distribution with 

large disc-shaped A-granules and small spherical B-granules (Song and Jane, 2000; Li et 

al., 2001; Ao and Jane, 2007). Starch granules from wheat endosperm (Figure 3.1 a, b 

and c) were mainly composed of a mixture of elliptical- and oval-shaped large starch 

granules and irregular shaped small starch granules. Moreover, starch endosperm of NSH 

(Figure 3.1 d, e and f) mainly consisted of elliptical-shaped large starch granules and 

spherical-shaped small starch granules. Conversely, starch granules from WSHL (Figure 

3.1 g, h and i) were mainly composed of spherical-shaped large and small granules of 

starch, and large starch granules were more uniform in shape compared to other two grain 

types. It has been suggested that starch granule shape depends on the amylose content and 

that the less angular, rounded starch granules have relatively higher amylose levels 

(Bewley and Black, 1978; Waldron, 1997). 

Wheat and NSH that had disc-shaped starch granules had a higher starch 

digestibility compared to WSHL (Table 3.3), which contained spherical-shaped starch 

granules. Jane (2006) described that disc-shaped starch granules in wheat and barley 

contain starch granules perpendicular to the flat surface of starch granules, allowing more 

contact with digestive enzymes.  

The size and shape of starch granules have been recognised as important 

functional properties that can control the accessibility of the enzyme to the interior of the 

granule and regulate enzymatic hydrolysis (Svihus et al., 2005; Tester et al., 2006). 

Different shapes of starch granules, as observed in the current study, can affect the surface 

area to volume ratio and, hence, the potential for enzymatic digestion (Waldron, 1997). 

The larger the granules, the smaller the surface area to volume ratio and the lower 

potential surface to be attacked and hydrolysed by digestive enzymes. Moreover, some 
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starch granules present as compound granules made from individual granules which 

reduce the capacity of enzymes to attach to starch granule surfaces (Tester et al., 2006).  

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 3. 1. Scanning electron microscopic images of cross sections of whole grains of 

wheat (a, b, c), normal starch hulled barley (d, e, f) and waxy starch hull-less barley (g, 

h, i) under magnifications of ×400 (a, d, g), ×1300 (b, e, h) and ×5000 (c, f, i) 

Izydorczyk and Dexter (2008) compared cross sections of an NSH genotype with 

a WSHL genotype with two levels of β-glucan, (45 and 97 g/kg β-glucan, respectively) 

and reported thicker endosperm cell walls in barley genotypes with high level of β-glucan. 

Accordingly, endosperm cell walls were more visible in WSHL (Figure 3.1; g and h) 

compared to NSH (Figure 3.1; d and e). 
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3.4.3. Nutrient utilisation 

The average recovery of endo-1, 3 (4)-β-glucanase and endo-1, 4-β-xylanase from 

enzyme-supplemented diets from Experiments 1 and 2 were 91.3 and 75.1%, respectively 

(data not shown).  

The AME, AMEn and nutrient digestibility in the two barley cultivars and wheat, 

with and without enzyme supplementation, are summarised in Table 3.3. A significant (P 

< 0.01) interaction between grain type and enzyme supplementation was observed for 

both AME and AMEn. The greatest energy responses to enzyme supplementation were 

observed in WSHL, which contained the highest content of β-glucan. The higher 

magnitude of response of AMEn by WSHL to added enzyme was in agreement with 

Ravindran et al. (2007), but the 9.6% improvement was considerably lower than the 

average increase of 22.8% reported by these researchers. This lends support to the 

variability in responses of barley grains to enzyme supplementation, which has been 

reported in the literature (Bao et al., 2013). The finding of lower AME and AMEn of 

WSHL compared to NSH is in agreement with Ravindran et al. (2007), but contrary to 

the study by Moharrery (2006) who reported a higher AME value for hull-less barley 

(11.17 MJ/kg DM) compared to hulled barley (10.05 MJ/kg DM). The AME value 

determined for WSHL (10.87 MJ/kg DM) fall within the range of AME (10.4 to 12.2 

MJ/kg DM) reported for Australian barley types (Kocher et al., 1997), while NSH showed 

a greater AME value (13.67 MJ/kg DM). Moreover, the AME value of wheat (14.71 

MJ/kg DM) was within the range reported for wheat (10.20 to 15.95 MJ/kg DM) 

cultivated in New Zealand (Ravindran et al., 2001). 
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A significant (P < 0.05) interaction between grain type and enzyme 

supplementation was observed for the CAID of starch. The greatest digestibility response 

(7.4%) to enzyme supplementation was observed in WSHL, which contained the highest 

level of β-glucan. Contrary to the general belief that waxy starch barley with higher 

contents of amylopectin is more digestible than the normal starch barley (Björck et al., 

1990), a lower (P < 0.05) starch digestibility was found in WSHL compared to the other 

two grains, an observation that was in agreement with the findings of Bergh et al. (1999) 

and Ravindran et al. (2007). The anti-nutritional nature of β-glucan and its effect on ileal 

starch digestibility has been previously discussed by Bergh et al. (1999) and Ravindran 

et al. (2007). Bergh et al. (1999) compared the ileal starch digestibility of three hulled 

barley cultivars with different starch composition (normal, high amylose and waxy) and 

with different contents of soluble β-glucan (14.5, 14.5 and 20.0 g/kg DM, respectively), 

Table 3. 3. Influence of grain type and enzyme supplementation on apparent metabolisable energy 

(AME, MJ/kg DM basis2), nitrogen-corrected AME (AMEn, MJ/kg DM basis2) and coefficient of 

apparent ileal digestibility (CAID) of dry matter (DM) and starch. 

 
Grain type Enzyme 

Energy3  CAID4 

AME AMEn 
 

DM Starch 

NSH1 - 13.67c 13.39c 
 

0.706b 0.985a  
+ 14.14b 13.87b 

 
0.717b 0.990a 

WSHL1 - 10.87e 10.60e 
 

0.594d 0.839c  
+ 11.89d 11.62d 

 
0.653c 0.901b 

Wheat - 14.67a 14.38a  0.731ab 0.986a  
+ 14.75a 14.43a  0.745a 0.988a 

SEM5 
 

0.132 0.131  0.0095 0.0121 

       
Main effects 

 
  

 
  

Grain type 
 

  
 

  

NSH 
 

13.90 13.63 
 

0.711 0.987 

WSHL 
 

11.38 11.11 
 

0.624 0.870 

Wheat 
 

14.71 14.40 
 

0.738 0.987 

       
Enzyme 

 
  

 
  

 - 13.07 12.79 
 

0.677 0.936 

 + 13.59 13.31 
 

0.705 0.960 

       
Probabilities, P ≤ 

 
  

 
  

Grain type 
 

0.001 0.001 
 

0.001 0.001 

Enzyme 
 

0.001 0.001 
 

0.001 0.025 

Grain type × Enzyme 
 

0.005 0.004 
 

0.027 0.031 

Means in a column not sharing a common letter (a-e) are different (P < 0.05). 
1NSH, normal starch hulled barley; WSHL, waxy starch hull-less barley. 
2DM content of the grains: NSH, 893 g/kg; WSHL, 907 g/kg; Wheat, 892 g/kg. 
3Each value represents the mean of six replicates (eight birds per replicate), measured over the last 

four days (d 18 to 21), Experiment 1. 
4Each value represents the mean of six replicates (eight birds per replicate), measured after 4 days on 

assay diets (d 24), Experiment 2. 
5Pooled standard error of mean. 

 



75 

 

and reported a lower CAID of starch for non-supplemented waxy barley diet (0.87), 

compared to the non-supplemented normal starch barley diets (0.91). However, no 

significant difference in CAID of starch was observed between enzyme supplemented 

normal and waxy barley diets, confirming the efficacy of the β-glucanase enzyme. 

Ravindran et al. (2007) also reported poor starch digestibility in non-supplemented hull-

less waxy barley types (0.53 and 0.65) compared to a non-supplemented normal barley 

(0.80).  

The similar treatment trends in the AME, AMEn and CAID of starch in the current 

study are in agreement with Wu et al. (2004a) and Ravindran et al. (2007), suggesting 

that digestible starch is the major contributor to metabolisable energy in barley. The 

relationship between the AME and starch digestibility in wheat has been identified by 

Mollah et al. (1983), who analysed 22 samples of 13 wheat cultivars for energy and 

nutrient utilisation, where low-AME wheats exhibited relatively low starch digestibilities. 

Despite the high content of starch present in wheat (659 g/kg DM) compared to barley 

(630 g/kg DM), a similar level of AME (11 MJ/kg DM) for barley and wheat was reported 

by Perttilä et al. (2005). However, starch composition of the barley type used was not 

identified. Moss et al. (1983), who reported comparatively similar AME values for hulled 

normal starch and hulled waxy starch barley types, suggested that metabolisable energy 

is not affected by type of starch.  

Shakouri et al. (2009), who compared the main cereal grains (maize, barley, 

sorghum and wheat) in terms of nutrient digestibility and ileal digesta viscosity, reported 

an improvement in ileal starch digestibility due to the addition of NSP-degrading 

enzymes. However, based on the non-significant effect of the enzyme supplementation 

on digesta viscosity (except in wheat), the improvement of starch digestibility was not 

attributed to a change in digesta viscosity alone, but believed to be associated with 

degradation of cell wall which consequently released encapsulated starch.  

A significant (P < 0.05) interaction between grain type and enzyme 

supplementation was observed for the CAID of DM. The responses to enzyme 

supplementation were markedly higher in WSHL (9.9%) which contained the highest β-

glucan content, compared to NSH and wheat (1.6 and 1.9%, respectively). With the 

improved DM digestibility due to supplemental enzyme, the excretion of undigested 
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materials is reduced and, therefore, environmental and management problems would be 

minimised. Moharrery (2006) reported a higher DM digestibility for hull-less barley 

(0.73) compared to hulled barley (0.66). The values observed for CAID of DM for barley 

(0.711 and 0.624 for NSH and WSHL, respectively) and wheat (0.738) were in general 

agreement with values (0.67 and 0.72 for barley and wheat, respectively) reported by 

Shakouri et al. (2009). 

Influence of grain type and enzyme supplementation on CSID of AA is presented 

in Table 3.4. No interaction (P > 0.05) between grain type and enzyme supplementation 

was observed for the CSID of N or any AA. Grain type had significant (P < 0.001) effects 

on the CSID of N and average AA digestibility, whereas enzyme effect was significant 

(P < 0.05) only for N digestibility. Birds fed wheat- and WSHL-based diets had the 

highest and lowest CSID for N and AA respectively, with NSH diets being intermediate. 

Despite the fact that contents of N and AA were higher in WSHL compared to NSH 

(Table 3.2), CSID values were lower for WSHL, indicating poorer digestion. The 

improved N digestibility due to the enzyme supplementation was in agreement with Wu 

et al. (2004a), who evaluated the effect of β-glucanase and xylanase on nutrient 

digestibility in barley and wheat, respectively. However, the response of improvement in 

N digestibility (1.9, 4.1 and 2.5% increase for NSH, WSHL and wheat, respectively) was 

comparatively lower than the responses in CAID of N for wheat and barley (6.6 and 

13.8%, respectively) reported by Wu et al. (2004a). 

Similar to the pattern observed for the CSID of N, grain type had significant (P < 

0.001) effects on the CSID of all AA, except for cysteine. In general, wheat and WSHL 

showed the highest and lowest CSID, respectively, with NSH being intermediate. Lower 

CSID values for N and AA for two barley types compared to wheat was in agreement 

with Bandegan et al. (2011), who compared CSID of six wheat and seven barley samples. 

These researchers reported threonine (0.854 and 0.806), lysine (0.837 and 0.805) and 

arginine (0.852 and 0.804) as the least digestible indispensable AA in wheat and barley, 

respectively. Moreover, methionine (0.914 and 0.883) and phenylalanine (0.938 and 

0.909) in wheat and barley respectively had the highest CSID values. Comparing CSID 

for individual AA in NSH, all digestibility coefficients except phenylalanine, threonine 

and serine were within the range of values reported by Bandegan et al. (2011). In 

comparison to CSID for individual AA in WSHL, all CSID values except arginine, 



77 

 

histidine and alanine were below the range reported by Bandegan et al. (2011). The range 

of CSID (0.837 for lysine to 0.938 for phenylalanine) for the indispensable AA in wheat 

reported by Bandegan et al. (2011) was higher than the range reported in the present study 

(0.784 for lysine to 0.914 for methionine). This is to be expected as wheat cultivars 

evaluated by Bandegan et al. (2011) had a higher CP content (162 g/kg DM) compared 

to wheat (141 g/kg DM) in the current study. 

Short et al. (1999), who compared true ileal digestibility of four wheat cultivars 

with two levels of protein, suggested that AA digestibility coefficients were higher for 

the cultivars with higher protein level. Conversely, in the current study, WSHL with a 

higher CP and AA content resulted in lower CSID values compared to NSH with lower 

CP and AA content. This suggests that the observation by Short et al. (1999) on higher 

CP and AA digestibility coefficients for wheat cultivars with a higher protein contents 

might be valid only for grains with a lower anti-nutritive NSP contents, such as wheat. 

Szczurek (2009), who compared two wheat and barley types (CP; 135.9 and 120.4 g/kg 

DM, respectively) for standardised ileal digestibility of AA, reported a similar average 

CSID for indispensable AA in both grain types. Even though CP content of wheat was 

higher in wheat compared to barley, no significant difference was observed in CSID of 

individual AA except cysteine, leucine and serine.  
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Table 3. 4. Influence of grain type and enzyme supplementation on the coefficient of standardised ileal digestibility2 (CSID) of nitrogen (N) and amino acids3, Experiment 2. 

 
Grain type Enzyme N AA4 Met Cys Lys Thr Arg Ile Leu Val His Phe Gly Ser Pro Ala Asp Glu Tyr 

NSH1 - 0.781 0.785 0.849 0.808 0.757 0.702 0.784 0.789 0.810 0.783 0.799 0.811 0.719 0.725 0.849 0.742 0.759 0.870 0.788 

 + 0.796 0.790 0.842 0.831 0.741 0.714 0.788 0.794 0.812 0.788 0.795 0.817 0.724 0.750 0.862 0.738 0.748 0.875 0.801 

WSHL1 - 0.732 0.727 0.744 0.754 0.698 0.658 0.738 0.731 0.744 0.724 0.734 0.763 0.671 0.678 0.791 0.687 0.717 0.801 0.720 

 + 0.762 0.754 0.770 0.772 0.715 0.684 0.758 0.758 0.776 0.755 0.766 0.797 0.693 0.708 0.831 0.712 0.734 0.837 0.754 

Wheat - 0.838 0.852 0.916 0.793 0.831 0.765 0.833 0.858 0.880 0.820 0.896 0.892 0.809 0.809 0.917 0.820 0.810 0.956 0.884 

 + 0.859 0.868 0.912 0.839 0.833 0.803 0.843 0.877 0.890 0.844 0.895 0.903 0.826 0.846 0.933 0.831 0.829 0.959 0.895 

SEM5  0.0112 0.0143 0.0128 0.0289 0.0183 0.0205 0.0151 0.0145 0.0133 0.0156 0.0122 0.0126 0.0168 0.0229 0.0119 0.0155 0.0152 0.0098 0.0126 

                     

Main effects                     

Grain type                     

NSH  0.788b 0.787b 0.846b 0.819 0.749b 0.708b 0.786b 0.791a 0.811b 0.786b 0.797b 0.814b 0.722b 0.738b 0.856b 0.740b 0.753b 0.873b 0.795b 

WSHL  0.747c 0.74c 0.757c 0.763 0.707c 0.671b 0.748c 0.745c 0.760c 0.740c 0.750c 0.780c 0.682c 0.693b 0.811c 0.699c 0.726b 0.819c 0.737c 

Wheat  0.849a 0.86a 0.914a 0.816 0.832a 0.784a 0.838a 0.868a 0.885a 0.832a 0.896a 0.897a 0.818a 0.828a 0.925a 0.826a 0.820a 0.957a 0.889a 

                     

Enzyme                     

 - 0.784b 0.788 0.842 0.785 0.763 0.709 0.785 0.793 0.811 0.776 0.810 0.822 0.733 0.737 0.852b 0.749 0.762 0.876 0.798 

 + 0.806a 0.804 0.836 0.814 0.762 0.734 0.796 0.810 0.826 0.796 0.819 0.839 0.748 0.768 0.875a 0.760 0.771 0.891 0.817 

                     

Probabilities, P ≤                     

Grain type  0.001 0.001 0.001 0.107 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Enzyme  0.023 0.179 0.610 0.226 0.921 0.143 0.371 0.153 0.184 0.120 0.385 0.112 0.299 0.105 0.025 0.395 0.489 0.074 0.079 

Grain type × Enzyme 0.805 0.725 0.359 0.873 0.659 0.820 0.876 0.744 0.521 0.718 0.270 0.480 0.875 0.966 0.456 0.660 0.556 0.184 0.608 

Means in a column not sharing a common letter (a-c) are different (P < 0.05). 
1NSH, normal starch-hulled barley; WSHL, waxy starch hull-less barley. 
2Apparent digestibility values were standardised using the following basal ileal endogenous flow values (g/kg DM intake), determined by feeding N-free diet: N, 1.13; Met, 0.13; Cys, 0.22; Lys, 0.31; Thr, 0.51; Arg, 0.31; Ile, 0.27; Leu, 0.44; Val, 

0.37; His, 0.13; Phe, 0.27; Gly, 0.35; Ser, 0.48; Pro, 0.41; Ala, 0.30; Asp, 0.60, Glu, 0.77 and Tyr, 0.25. 
3Each value represents the mean of six replicates (eight birds per replicate), measured after 4 days on assay diets (d 24). 
4Average standardised ileal digestibility of 17 amino acids. 
5Pooled standard error of mean. 
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Enzyme addition improved the ileal digestibility of proline (P < 0.05) and tended 

to improve that of glutamic acid (P = 0.07) and tyrosine (P = 0.08) but had no effect (P > 

0.05) on the other AA. There are apparently no studies which evaluated the influence of 

NSP-degrading enzyme on CSID of AA in barley and wheat in poultry diets. However, 

available reports on the effect of NSP-degrading enzymes on CAID of AA in barley- 

(Bedford, 1995; Perttilä et al., 2001; Ravindran et al., 2007) and wheat-based diets (Hew 

et al., 1998; Ravindran et al., 1999) have shown significant improvements in CAID of 

AA due to supplementation of enzymes. However, the effect of enzyme supplementation 

on individual AA has been inconsistent, which may be related to variations in chemical 

and physical characteristics of grains and different efficacies in supplemented enzymes.  

3.5. Conclusions 

It can be concluded that, in addition to amylose: amylopectin ratio, the level of β-glucan 

plays a crucial role in determining the feeding value of barley for broilers. Normal starch 

hulled barley had a better nutritive value compared to WSHL, showing higher 

metabolisable energy and, DM, starch, N and AA digestibility. The current work confirms 

that the feeding value of barley in broiler diets can be improved through multi-component 

carbohydrase supplementation, with the effect being more pronounced in WSHL.



2British Poultry Science, 60(6), 736-748. 
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CHAPTER FOUR 

Influence of inclusion level of barley in wheat-based diets and supplementation of 

carbohydrase on growth performance, nutrient utilisation and gut morphometry 

in broiler starters2 

4.1. Abstract 

The influence of barley inclusion level and supplementation of a multi-component non-

starch polysaccharide degrading enzyme on performance and nutrient utilisation in 

broilers was investigated. Normal-starch hulled barley was evaluated with five levels of 

inclusion (0, 141, 283, 424 and 565 g/kg) in a wheat-based diet and two levels of enzyme 

supplementation (0 and 150 g/tonne of feed; a 5 × 2 factorial arrangement of ten dietary 

treatments). All diets were equivalent in metabolisable energy and digestible amino acid 

contents. A total of 400, one-d-old male broilers (five cages/treatment; eight birds/cage) 

were used in the experiment. Regardless of enzyme supplementation, weight gain (WG) 

increased up to 283 g/kg of barley and reduced at higher inclusion levels (P < 0.01). 

Increasing levels of barley resulted in greater (P < 0.001) feed per gain (F/G). Enzyme 

addition increased WG (P < 0.05) and F/G (P < 0.001) at each barley inclusion level. 

Birds fed diets with 0 and 565 g/kg barley showed the lowest and highest (P < 0.001 to 

0.05) digestibility for all nutrients measured, respectively. Digestibility of all nutrients 

was improved by enzyme supplementation at each barley inclusion level (P < 0.05). The 

nitrogen-corrected apparent metabolisable energy improved with increasing inclusion of 

barley (P < 0.001) and supplemental enzyme (P < 0.01). Increasing inclusion of barley 

increased the relative weight of gizzard (P < 0.001) and reduced jejunal digesta viscosity 

(P < 0.001). Supplemental enzyme (P < 0.001) reduced the digesta viscosity. The 

optimum inclusion level of barley, with respect to growth performance, was 283 g/kg of 

diet. Increasing barley inclusion improved nutrient and energy utilisation, possibly 

through lowered digesta viscosity and better function of the gizzard. Feed efficiency and 

nutrient and energy utilisation can benefit from carbohydrase supplementation in barley-

based diets, regardless of barley inclusion level.
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4.2. Introduction 

The proportion of barley (Hordeum vulgare L.) used in poultry diets remains low (less 

than 1.0% of total barley utilised as animal feed; Black et al., 2005) due to its low energy, 

relatively high fibre content (220 g/kg), and high content of non-starch polysaccharides 

(NSP; Jacob and Pescatore, 2012). β-glucans, the dominant NSP present in barley, are 

recognised as the main anti-nutritional factor that limits the nutritive value for poultry. 

The NSP encapsulates the nutrients within endosperm cells (Åman and Graham, 1987), 

known as the cage effect, and increases digesta viscosity in birds fed barley-based diets 

(Wang et al., 1992; Almirall et al., 1995). Ways to improve the feeding value of barley 

in poultry diets has been studied over the years, however, the published data have been 

contradictory, resulting in variable range of inclusion levels being recommended in 

broiler diets. Arscott et al. (1955) suggested that barley can be included in broiler diets 

up to 153 g/kg without affecting growth performance. According to Brake et al. (1997), 

200 g barley/kg can be included in both broiler grower and finisher diets without 

compromising growth, feed efficiency or litter condition. Jeroch and Danicke (1995) 

recommended 200-300 g barley/kg for broiler finishers. According to Yu et al. (1998) 

and Bergh et al. (1999), 140 g barley/kg can be included in β-glucanase supplemented 

broiler diets. 

This discrepancy of recommendations for barley inclusion in broiler diets is partly 

because most studies replaced other cereals with barley either on a weight to weight basis 

(Arscott et al., 1955; Petersen, 1969; Moss et al., 1983; Yu et al., 1998) or by using 

nutrient composition data for barley and the substituted grain from established sources 

such as National Research Council (1994; Moharrery, 2006) and Spanish Foundation for 

the Development of Animal Nutrition (FEDNA; De Blas et al., 2010; Lázaro et al., 2003), 

or chemical analysis (Brake et al., 1997). To the authors’ knowledge, there are no 

published studies that formulated barley-based diets using nutrient profiles for the 

specific barley cultivar based on apparent metabolisable energy (AME) and digestible 

amino acids (AA) contents. Moreover, most of the available recommendations on 

inclusion levels of barley have overlooked the influence of the hull, NSP and starch type 

on the feeding value of barley for poultry.  
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Non-starch polysaccharide degrading enzymes can reduce the intestinal digesta 

viscosity through partial depolymerisation of NSP in cereal grains (Almirall et al., 1995; 

Józefiak et al., 2006), wherein cell wall integrity is disrupted by the enzyme action and 

encapsulated nutrients are exposed to the digestive enzymes (Hesselman and Åman, 

1986; Bedford, 1996), leading to better interaction of endogenous digestive enzymes with 

their respective substrates. Extensive research evaluating the effect of enzyme 

supplementation on the feeding value of barley for broilers with special reference to 

growth performance and nutrient digestibility has been conducted (Hesselman and Åman, 

1986; Marquardt et al., 1994; Almirall et al., 1995; Bergh et al., 1999). The findings have 

shown the capability of exogenous enzymes in poultry fed barley-based diets through 

increased feed consumption, weight gain, improved feed efficiency, enhanced nutrient 

utilisation and flock uniformity.  

Only minimal attempts have been made to elucidate the possible interaction 

between barley inclusion level and enzyme addition on the utilisation of nutrients and 

performance of broilers and this aspect merits further evaluation. The present experiment 

was designed to investigate the possible interaction between inclusion level of a normal-

starch hulled barley (NSH), previously evaluated for nutrient composition, nitrogen-

corrected AME (AMEn) and digestible AA content (Chapter 3) and supplementation of 

a carbohydrase on the performance, nutrient and energy utilisation and gut morphometry 

in broiler starters. 

4.3. Materials and methods  

4.3.1. Enzymes 

A multi-component NSP-degrading enzyme, Ronozyme® Multigrain, (produced by 

Trichoderma reesei, also known as Trichoderma longiabrachiatum) and Ronozyme® 

HiPhos were obtained from DSM Nutritional Products, Australia. The activities of endo-

1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in Ronozyme® 

Multigrain were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. One unit of β-

glucanase (BGU) is defined as the quantity of enzyme that releases 1µmol of reducing 

moieties from 1.5% β-glucan per minute at pH 5.0 at incubation temperature of 40 °C for 

20 min. One unit of xylanase (XU) is defined as the quantity of enzyme that releases 
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1µmol of reducing moieties from 1.5% arabinoxylan per minute at pH 5.0 and incubation 

temperature of 40 °C for 20 min. Ronozyme® HiPhos was a granular 6-phytase 

preparation expressed by submerged fermentation of Aspergillus oryzae and contained > 

10,000 phytase units (FYT)/g. One FYT is defined as the activity of enzyme that releases 

1.0 μmole of inorganic phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC 

(DSM Nutritional Products Ltd., 2013). The activities of phytase, endo-1,3 (4)-β-

glucanase and endo-1,4-β-xylanase in samples of final, pelleted diets were measured at 

Biopract GmbH, Berlin, Germany. The enzyme recovery was calculated as the percentage 

of measured enzyme activity in the diet to the expected enzyme activity estimated from 

the amount and minimum activity (DSM Nutritional Products Ltd., 2013) of enzymes 

added to the diets.  

4.3.2. Diets 

Normal-starch hulled barley (cultivar, Fortitude) was obtained from a seed multiplication 

company (Luisetti Seeds Ltd., Rangiora, New Zealand) and ground in a hammer mill to 

pass through the screen size of 3.0 mm. Wheat was obtained from a commercial supplier 

and ground through the same screen size. Nutrient composition, AMEn and standardised 

digestible AA contents of same batches of non-supplemented barley and wheat, 

determined in Chapter 3, were used in formulating the experimental diets.  

Five levels of inclusion of barley (0, 141, 283, 424 and 565 g/kg) in a wheat-based 

diet and two levels of enzyme supplementation (0 and 150 g/tonne of feed) was evaluated 

in a 5 × 2 factorial arrangement of ten dietary treatments. Five basal diets, with different 

inclusion levels of barley, were formulated to meet the Ross 308 strain recommendations 

for major nutrients for broiler starters (Ross, 2014; Table 4.1).  

All diets were formulated to be equivalent in respect of AMEn and digestible AA 

contents. Ronozyme® HiPhos was added (1000 FYT/kg diet) across all basal diets. Each 

mixed diet was then divided into two equal batches, with one of the batches supplemented 

with Ronozyme® Multigrain (150 g/tonne of feed), resulting in ten dietary treatments. 

The diets contained 5.0 g/kg of titanium dioxide (TiO2, Merck KGaA, Darmstadt, 

Germany) as an indigestible marker to determine ileal nutrient digestibility. A pellet 

binder (KEMBIND®, Kemin Industries [Asia] Pte Ltd, Singapore), at an inclusion rate 
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of 2.0 g/kg, was added on top of all diets. Diets were mixed in a single-screw paddle 

mixer. Following mixing, all diets were steam-conditioned to 70 °C for 30 seconds and 

pelleted using a pellet mill (Model Orbit 15; Richard Sizer, Kingston-upon-Hull, UK) 

capable of manufacturing 180 kg of feed/h and equipped with a die ring with 3.0 mm 

holes and 35 mm thickness. Representative samples of all diets were collected after 

pelleting for chemical analysis. 

4.3.3. Pellet durability  

Pellet durability was determined in a Holmen Pellet Tester (New Holmen NHP100 

Portable Pellet Durability Tester, TekPro Ltd., Willow Park, North Walsham, Norfolk, 

UK) using the method described by Abdollahi et al. (2013b). Briefly, clean pellet samples 

(100 g; ten replicates per diet), with no fines, were rapidly circulated in an air stream 

around a perforated test chamber for 30 seconds. Resulting fines were removed 

continuously through the perforations using the test cycle. After the test cycle, the subject 

pellets were ejected and weighed manually. The pellet durability index (PDI) was 

calculated as the percentage of weight of pellets not passing through the perforations at 

the end of the test to weight of whole pellets at the start. 

4.3.4. Birds and housing 

The experimental procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC protocol 17/13) and complied with the New Zealand Code of 

Practice for the Care and Use of Animals for Scientific Purposes. A total of 400, one-d-

old male broilers (Ross 308), obtained from a commercial hatchery, were individually 

weighed and allocated to 50 cages in electrically heated battery brooders so that the 

average bird weight per cage was similar. Each of the ten dietary treatments was randomly 

assigned to five cages, each housing eight birds. The birds were transferred to grower 

cages on d-12 and continued on the same starter diets until the end of the trial (d-21). The 

battery brooders and grower cages were housed in an environmentally controlled room 

with 20 h of fluorescent illumination per d. The temperature was maintained at 31 °C on 

d-1 and was gradually reduced to 22 °C by 21 d of age. The diets, in pellet form, were 

offered ad libitum and water was available at all times. 
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 Table 4. 1. Composition, calculated analysis, analysed values (g/kg, as fed) and pellet durability index (PDI; 

%) of the experimental diets based on wheat and normal-starch hulled barley. 

 Barley inclusion level (g/kg) 

Item 0 141 283 424 565 

Wheat 629 472 314 157 0.0 

Normal-starch hulled barley 0.0 141 283 424 565 

Soybean meal 278 288 297 307 316 

Maize gluten meal 50.0 50.0 50.0 50.0 50.0 

Soybean oil 3.4 9.9 16.4 22.9 29.4 

Di-calcium phosphate 10.4 10.7 11.0 11.2 11.5 

Limestone 9.3 9.0 8.75 8.5 8.2 

L-Lysine HCl 3.8 3.6 3.45 3.3 3.1 

DL-Methionine 2.0 2.1 2.2 2.3 2.4 

L-Threonine 1.3 1.3 1.3 1.2 1.2 

Sodium chloride 2.3 2.2 2.1 1.9 1.8 

Sodium bicarbonate 3.4 3.5 3.6 3.7 3.8 

Titanium dioxide1 5.0 5.0 5.0 5.0 5.0 

Pellet binder2 2.0 2.0 2.0 2.0 2.0 

Vitamin premix3 1.0 1.0 1.0 1.0 1.0 

Mineral premix3 1.0 1.0 1.0 1.0 1.0 

Phytase4 0.1 0.1 0.1 0.1 0.1 

      
Calculated analysis 

Apparent metabolisable energy, MJ/kg 11.9 11.9 11.9 11.9 11.9 

Digestible methionine 5.5 5.6 5.8 5.7 5.8 

Digestible methionine + cysteine 9.0 9.0 9.0 9.0 9.0 

Digestible lysine 12.2 12.2 12.2 12.2 12.2 

Digestible threonine 8.2 8.2 8.2 8.2 8.2 

Crude fat 18.9 24.7 30.5 36.3 42.1 

Crude fibre 31.0 34.4 37.8 41.2 44.7 

Calcium 9.6 9.6 9.6 9.6 9.6 

Non-phytate phosphorus 4.8 4.8 4.8 4.8 4.8 

Sodium 2.0 2.0 2.0 2.0 2.0 

Chloride 2.0 2.0 2.0 2.0 2.0 

Potassium 8.3 8.3 8.4 8.4 8.4 

      
Analysed values      

Dry matter 883 880 883 879 884 

Gross energy, MJ/kg 16.4 16.4 16.6 16.6 16.8 

Crude protein (Nitrogen × 6.25) 250 246 246 236 231 

Starch  343 337 330 324 317 

Fat 19.1 24.1 28.5 35.4 37.9 

      
PDI5 87.9a 86.9ab 85.6b 82.4c 82.1c 
1Merck KGaA, Darmstadt, Germany. 
2KEMBIND® (Kemin Industries [Asia] Pte Ltd) pellet binder, which contained modified lignosulphonate, guar gum, edible fatty acids 

and mineral oil, was added on top of each diet. 
3Supplied per kg of diet: antioxidant, 125 mg; biotin, 0.2 mg; calcium pantothenate, 20 mg; cholecalciferol, 5000 IU; cyanocobalamin, 
0.02 mg; folic acid, 2.0 mg; menadione, 4 mg; niacin, 80 mg; pyridoxine, 5.0 mg; trans-retinol, 15000 IU; riboflavin, 9.0 mg; thiamine, 

4.0 mg; dl-α-tocopheryl acetate, 80 IU; choline, 0.45 mg; ascorbic acid, 100 mg; Co, 1.0 mg; Cu, 20 mg; Fe, 40 mg; I, 2.0 mg; Mn, 100 

mg; Mo, 1.0 mg; Se, 0.15 mg; Zn, 100 mg. 
3Image Holdings Ltd., Auckland, New Zealand. 
4Ronozyme® HiPhos (1000 phytase units (FYT)/kg diet). One FYT is defined as the activity of enzyme that releases 1.0 μmole of inorganic 

phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC. Nutrient matrix values (1.5 g/kg non-Phytate P and 1.8 g/kg Ca) were 
used in basal diet formulation. 
5Each value represents the mean of ten replicate samples. Means not sharing common letters (a, b, c) are different (P < 0.05). 
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4.3.5. Performance data 

Body weights and feed intake (FI) were recorded on a cage basis at weekly intervals. 

Mortality was recorded daily. Feed per gain (F/G) values were corrected for the body 

weight (BW) of any bird that died during the course of the experiment. 

4.3.6. Energy and nutrient utilisation  

4.3.6.1. Nitrogen-corrected apparent metabolisable energy (AMEn)  

The AMEn was determined using the classical total excreta collection method. Feed intake 

and total excreta output of each cage were quantitatively measured from d-17 to 20 post-

hatch. Daily collections from each cage were pooled, mixed in a blender and sub-sampled. 

Sub-samples were lyophilised (Model 0610, Cuddon Engineering, Blenheim, New 

Zealand), ground to pass through a 0.5 mm sieve and stored in airtight plastic containers 

at 4ºC pending analysis. The diets and excreta samples were analysed for dry matter 

(DM), gross energy (GE) and nitrogen (N). 

4.3.6.2. Coefficient of apparent ileal digestibility (CAID) of nutrients  

On d-21, six broilers per cage were euthanised by intravenous injection (0.5 mL per kg 

live weight) of sodium pentobarbitone (Provet NZ Pty Ltd., Auckland, New Zealand), 

and digesta were collected from the lower half of the ileum by gently flushing with 

distilled water, as described by Ravindran et al. (2005). The ileum was defined as that 

portion of the small intestine extending from the Meckel’s diverticulum to a point ~40 

mm proximal to the ileo-caecal junction. The ileum was then divided into two halves and 

the digesta was collected from the lower half towards the ileo-caecal junction.  

Digesta from birds within a cage were pooled, frozen immediately after collection 

and subsequently lyophilised. Diet and lyophilised digesta samples were ground to pass 

through a 0.5 mm sieve and stored at 4 °C until laboratory analysis. The diets and digesta 

samples were analysed for DM, titanium (Ti), N, starch and fat. 
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4.3.7. Intestinal morphology 

Two birds from each replicate cage (euthanised for ileal collection) were used for 

intestinal morphological examinations using the method described by Naderinejad et al. 

(2016). Sections from the middle of the duodenum and jejunum (about 5 cm in length) 

were excised and flushed with cold saline and immediately placed in 10% formalin 

solution. Samples were transferred to 70% ethanol after 72 h. Each fixed sample was then 

processed on a tissue processor. The samples were dehydrated through graded alcohol 

concentrations (70%, 95% and absolute alcohol) at ambient temperature, cleared in 

graded concentrations of isopropyl alcohol to remove any residual alcohol and then 

impregnated with Histosec pastilles under pressure at 60 °C. The samples were embedded 

in wax and cut using a rotary Microtome using Feather S35 disposable blades to a 

thickness of 5 µm. Samples were then stained with alcian blue and hematoxylin-eosin and 

examined by light microscopy. Four segments were fixed in each slide and the slides were 

viewed on an Olympus microscope (BX51TF, Olympus, Tokyo, Japan). The following 

variables were measured: 

- Villus height (the distance from the apex of the villus to the junction of the 

villus and crypt) 

- Crypt depth (the distance from the junction to the basement membrane of 

the epithelial cell at the bottom of the crypt) 

- Epithelial thickness (the distance from the epithelial surface to the 

basement membrane of the epithelial cell) 

- Goblet cell numbers (per 100 µm villus height) 

Measurements of villus height and crypt depth were made on 10 villi at 4× 

magnification while epithelium thickness and goblet cell number were made at 40× 

magnification using microscopy imaging software (cellSens Standard [Ver.1.18] 

Olympus, Tokyo, Japan). 

4.3.8. Relative weight of the proventriculus and gizzard 

On d-22, two additional birds per cage with body weights closest to the mean weight of 

the cage were weighed and euthanised by intravenous injection (0.5 mL per kg live 

weight) of sodium pentobarbitone. The proventriculus and gizzard were carefully excised 
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and adherent fat was removed. The empty weight of these organs in individual birds were 

determined and reported as g/kg of BW. 

4.3.9. Gizzard pH 

Gizzard pH was measured in the same two birds using a pH meter (pH spear, Oakton 

Instruments, Vernon Hill, IL). The glass probe was inserted directly through an opening 

made in the gizzard and placed in the digesta. Three values were taken from the proximal, 

middle and distal areas of gizzard and the average value was considered as the final pH 

value. 

4.3.10. Viscosity 

Viscosity of jejunal digesta from these two birds was also measured. Digesta obtained 

from the lower jejunum was centrifuged at 3000 × g at 20 oC for 15 min. A 0.5 mL aliquot 

of the supernatant was used in a viscometer (Brookfield digital viscometer, Model 

DV2TLV; Brookfield Engineering Laboratories Inc., Stoughton, MA) fitted with CP-40 

cone spindle with shear rates of 5 to 500/s to measure the viscosity.  

4.3.11. Chemical analysis 

Dry matter was determined using standard procedures (Method 930.15; AOAC, 2016). 

Nitrogen was determined by combustion (Method 968.06; AOAC, 2016) using a CNS-

200 carbon, N and sulphur auto-analyser (LECO Corporation, St. Joseph, MI). An 

adiabatic bomb calorimeter (Gallenkamp Autobomb, London, UK) standardised with 

benzoic acid was used for the determination of GE. Starch was measured using a 

Megazyme kit (Method 996.11; AOAC, 2016) based on thermostable α-amylase and 

amyloglucosidase (McCleary et al., 1997). Fat was determined using Soxtec extraction 

procedure for animal feed, forage and cereal grains (Method 2003.06; AOAC, 2016). 

Samples were assayed for Ti on a UV spectrophotometer following the method of Short 

et al. (1996). 

4.3.12. Calculations  

The AMEn of diets was calculated using the following formula: 
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AMEdiet (MJ/kg) = [(FI × GEdiet) – (Excreta output × GEexcreta)]/FI 

Correction for zero N retention was made using a factor of 36.54 kJ per gram N 

retained in the body (Hill and Anderson, 1958). 

AMEndiet (MJ/kg) = AMEdiet – (36.54 × N retention)/1000 

Apparent digestibility coefficients of nutrients were calculated from the dietary 

ratio of nutrients to Ti relative to the corresponding ratio in the ileal digesta. 

CAID of nutrient = [(Nutrient / Ti)d - (Nutrient / Ti)i] / (Nutrient / Ti)d 

where, (Nutrient / Ti)d = ratio of nutrient to Ti in diet and (Nutrient / Ti)i = ratio 

of nutrient to Ti in ileal digesta. 

4.3.13. Statistical analysis 

The data were analysed as a 5 × 2 factorial arrangement of treatments using the general 

linear model procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC.). Cage served 

as the experimental unit. Significant differences between means were separated by Least 

Significant Difference test. In addition, data on inclusion level of barley in the diet (as an 

average for without and with enzyme supplementation) were subjected to orthogonal 

polynomial contrasts using the general linear model procedure of SAS to study whether 

responses to increasing levels of barley had any linear or quadratic nature. Significance 

of effects was declared at P < 0.05. 

4.4. Results  

4.4.1. Pellet durability 

The PDI of the experimental diets are shown in Table 4.1. A significant effect of inclusion 

level of barley (P < 0.001) was observed for PDI, with pellet durability deteriorating with 

increasing inclusion of barley in wheat-based diets. 

4.4.2. Enzyme recovery 

The average recovery of phytase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase from 

enzyme-supplemented diets were 113.5, 97.0 and 96.2%, respectively. 
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4.4.3. Growth performance 

Mortality during the experiment was negligible. Only 11 out of the 400 birds died and the 

deaths were not related to any dietary treatment. 

Influence of inclusion level of barley and enzyme supplementation on the weight 

gain (WG), FI and F/G of broiler starters fed diets with increasing levels of barley is 

summarised in Table 4.2. Neither the WG, FI nor F/G was subject to an interaction (P > 

0.05). Inclusion level of barley had a significant effect on WG (P < 0.01), FI and F/G (P 

< 0.001). Barley inclusion tended to have a quadratic effect (P = 0.06) for WG; WG 

increased up to 283 g/kg of barley inclusion and then decreased with further inclusion. A 

linear reduction in FI (P < 0.001) and a quadratic improvement in F/G (P < 0.05) was 

observed with increasing inclusion of barley in the diet. Feed intake was similar up to 283 

g/kg and then declined. The addition of enzyme increased the WG (P < 0.05) and F/G (P 

< 0.001) at each level of barley inclusion. 

4.4.4. Nutrient digestibility  

The CAID of DM, starch, N and fat in broiler starters fed diets with different inclusion 

levels of barley, without and with enzyme supplementation, are presented in Table 4.3. 

Inclusion level of barley and enzyme supplementation did not show any interaction (P > 

0.05) for any nutrient, indicating similar impact of enzyme supplementation at each level 

of barley inclusion. However, significant effects of inclusion level of barley (P < 0.05 to 

0.001) and enzyme supplementation (P < 0.01 to 0.001) were found for all nutrients. The 

CAID of DM, starch, N and fat, regardless of enzyme supplementation, was progressively 

improved with increasing inclusion of barley in the diet (linear effects, minimum P < 

0.003). The lowest CAID of each nutrient was observed at 0 g/kg inclusion of barley, 

while the highest digestibility of each nutrient obtained for complete replacement of 

wheat with barley. Digestibility of all nutrients was improved (P < 0.05) by enzyme 

supplementation, regardless of the barley inclusion level.  
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Table 4. 2. Influence of barley inclusion (g/kg) and enzyme supplementation on weight gain (WG; 

g/bird), feed intake (FI; g/bird) and feed per gain (F/G; g feed/g gain) of broiler starters1 (d1-21) fed 

diets based on wheat and normal-starch hulled barley. 

Inclusion level of barley  Enzyme WG FI F/G 

0 - 1102 1524 1.396 

 + 1128 1530 1.358 

     
141 - 1128 1522 1.354 

 + 1140 1484 1.308 

     
283 - 1142 1525 1.345 

 + 1152 1473 1.287 

     
424 - 1074 1456 1.357 

 + 1119 1446 1.293 

     
565 - 1102 1435 1.308  

+ 1116 1439 1.290      

SEM2 
 

14.5 18.8 0.0150 

     
Main effects 

    

Inclusion level of barley 
    

0 
 

1115bc 1527a 1.377a 

141 
 

1134ab 1503a 1.331b 

283 
 

1147a 1499a 1.316bc 

424 
 

1097c 1451b 1.325bc 

565 
 

1109bc 1437b 1.299c      

Enzyme 
    

 - 1110b 1492 1.352a 

 + 1131a 1474 1.307b      

Probabilities, P ≤ 
    

Inclusion level of barley 
 

0.010 0.001 0.001 

Enzyme 
 

0.025 0.141 0.001 

Inclusion level of barley × Enzyme 
 

0.726 0.448 0.575 

     
Orthogonal polynomial contrast     

L3   0.148 0.001 0.037 

Q4   0.056 0.623 0.011 

Means in a column not sharing common letters (a,b,c) are different (P < 0.05). 
1Each value represents the mean of five replicates (eight birds per replicate). 
2Pooled standard error of mean. 
3L = Linear effect of inclusion level of barley. 
4Q = Quadratic effect of inclusion level of barley. 
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Table 4. 3. Influence of barley inclusion (g/kg) and enzyme supplementation on coefficient of apparent 

ileal digestibility (CAID)1 of dry matter (DM), starch, nitrogen (N) and fat and N-corrected apparent 

metabolisable energy (AMEn; MJ/kg DM)2 in broiler starters fed diets based on wheat and normal-starch 

hulled barley.  

Inclusion level of barley Enzyme DM Starch N Fat AMEn 

0 - 0.522 0.836 0.714 0.762 11.95 

 + 0.531 0.861 0.733 0.771 12.02 

       
141 - 0.520 0.864 0.731 0.741 12.12 

 + 0.566 0.904 0.752 0.810 12.24 

       
283 - 0.530 0.901 0.740 0.780 12.38 

 + 0.589 0.937 0.761 0.849 12.49 

       
424 - 0.536 0.888 0.730 0.797 12.40 

 + 0.603 0.923 0.767 0.835 12.70 

       
565 - 0.579 0.918 0.751 0.827 12.64 
 

+ 0.642 0.948 0.796 0.911 13.03 
      

 
SEM3 

 
0.0142 0.0127 0.0145 0.0240 0.107 

       
Main effects 

     
 

Inclusion level of barley 
     

 

0 
 

0.526c 0.849d 0.723b 0.766c 11.98c 

141 
 

0.543bc 0.884c 0.741b 0.775bc 12.18c 

283 
 

0.559b 0.919ab 0.751ab 0.815b 12.44b 

424 
 

0.569b 0.905bc 0.749ab 0.816b 12.55b 

565 
 

0.610a 0.933a 0.773a 0.869a 12.83a 
      

 
Enzyme 

     
 

 
- 0.537b 0.881b 0.733b 0.782b 12.30b 

 
+ 0.586a 0.914a 0.762a 0.835a 12.50a 

      
 

Probabilities, P ≤ 
     

 

Inclusion level of barley 0.001 0.001 0.026 0.001 0.001 

Enzyme 
 

0.001 0.002 0.003 0.001 0.006 

Inclusion level of barley × Enzyme 0.270 0.981 0.849 0.539 0.479 

       
Orthogonal polynomial contrast      

L4  0.001 0.001 0.003 0.001 0.001 

Q5  0.383 0.099 0.962 0.481 0.930 

Means in a column not sharing common letters (a,b,c,d) are different (P < 0.05). 
1Each value represents the mean of five replicates (six birds per replicate). 
2Each value represents the mean of five replicates (eight birds per replicate), measured from d-17 to 20. 
3Pooled standard error of mean. 
4L = Linear effect of inclusion level of barley. 
5Q = Quadratic effect of inclusion level of barley. 
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4.4.5. Energy utilisation 

Influence of inclusion level of barley and enzyme supplementation on AMEn in broiler 

starters is summarised in Table 4.3. The AMEn was not subject to an interaction (P > 

0.05), showing a consistent and positive effect (P < 0.01) of enzyme at each level of 

barley inclusion. Inclusion level of barley had a significant (P < 0.001) effect on AMEn. 

A gradual improvement (linear effect, P < 0.001) was observed with increasing level of 

barley in the diet, while the highest (P < 0.05) value for AMEn was observed for the diet 

with complete replacement of wheat with barley.  

4.4.6. Digestible nutrient intake 

The influence of barley inclusion and supplementation of enzyme on digestible intake of 

nutrients (starch, protein and fat) and intake of AMEn is shown in Table 4.4. No 

interaction between barley inclusion and enzyme addition was present (P > 0.05). The 

main effect of inclusion level of barley was significant (P < 0.01 to 0.001) on digestible 

intake of each analysed nutrient. Digestible starch and protein (linear effects, P < 0.01 

and 0.001, respectively) intakes were unaffected up to 283g/kg of barley inclusion, and 

then decreased with further inclusion. Digestible fat intake increased (linear effect, P < 

0.001) with increasing inclusion of barley in the diet. Supplementation of enzyme 

increased (P < 0.05) digestible intake of starch and fat, but had no effect on N (P > 0.05). 

Neither inclusion level of barley nor enzyme supplementation affected AMEn intake (P 

> 0.05). 

4.4.7. Relative weights of proventriculus and gizzard, gizzard pH and jejunal digesta 

viscosity 

Table 4.5 shows the effect of barley inclusion level and enzyme supplementation on 

relative weight of proventriculus and gizzard, gizzard pH, and jejunal digesta viscosity. 

The relative weight of gizzard increased (linear effect, P < 0.001) with increasing 

inclusion of barley in the diet. The gizzard pH remained unchanged up to 283g/kg of 

barley and then reduced with further inclusion (P < 0.01), however, supplemental enzyme 

had no effect (P > 0.05). 
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No interaction (P > 0.05) between inclusion level of barley and enzyme 

supplementation was observed for digesta viscosity, while inclusion level of barley and 

enzyme supplementation had significant (P < 0.001) effects. Regardless of enzyme 

supplementation, the jejunal digesta viscosity decreased in a decreasing rate (quadratic 

effect, P < 0.05) with increasing barley inclusion in the diet. The addition of enzyme 

decreased the jejunal digesta viscosity at each level of barley inclusion. 

4.4.8. Intestinal morphology 

The influence of barley inclusion and enzyme supplementation on the morphometry of 

the duodenum and jejunum is shown in Table 4.6. A significant barley inclusion × enzyme 

interaction (P < 0.05) was observed only for duodenal crypt depth. Added enzyme 

increased the duodenal crypt depth only in the 424 g/kg barley inclusion, while it had no 

effect at other inclusion levels. Inclusion level of barley tended to have a significant effect 

on duodenal goblet cell number (P = 0.07). Supplemental enzyme increased the epithelial 

thickness in the duodenum (P < 0.05). In the jejunum, no interaction between barley 

inclusion and enzyme supplementation was observed for any morphometric parameter (P 

> 0.05). However, the inclusion level of barley had a significant effect on jejunal villus 

height (P < 0.05). All barley inclusion levels, except 424 g/kg, resulted in higher jejunal 

villi compared to 0 g/kg of barley. The inconsistent responses of jejunal villus height to 

increasing inclusion of barley tended to result in a quadratic effect (P = 0.06). Moreover, 

barley inclusion level tended to have a significant effect on jejunal epithelial thickness (P 

= 0.08). Jejunal epithelial thickness increased with increasing inclusion of barley (linear 

effect, P < 0.01). Enzyme supplementation had no effect on the morphometric parameters 

in the jejunum (P > 0.05). 
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Table 4. 4. Influence of barley inclusion (g/kg) and enzyme supplementation on digestible 

nutrient (starch, protein and fat) intake1 (g/bird) and nitrogen-corrected apparent metabolisable 

energy (AMEn)2 intake (MJ/bird) of broiler starters from 1 to 21 d, fed diets based on wheat 

and normal-starch hulled barley.  

Inclusion level of barley  Enzyme Starch Protein Fat AMEn 

0 - 438 272 22.2 16.07 

 + 452 280 22.5 16.23 

      
141 - 442 274 27.1 16.22 

 + 452 274 28.8 15.98 

      
283 - 454 277 33.8 16.68 

 + 456 275 35.6 16.25 

      
424 - 418 250 40.8 15.87 

 + 432 262 42.4 16.15 

      
565 - 417 249 44.5 16.01  

+ 432 265 49.1 16.56       

SEM3 
 

8.4 6.7 1.19 0.176       

Main effects 
     

Inclusion level of barley 
 

    

0 
 

445a 276a 22.4e 16.15 

141 
 

447a 274a 28.0d 16.10 

283 
 

455a 276a 34.7c 16.46 

424 
 

425b 256b 41.6b 16.01 

565 
 

425b 257b 46.8a 16.29       

Enzyme       
- 434b 264 33.7b 16.17  
+ 445a 271 35.7a 16.23       

Probabilities, P ≤ 
     

Inclusion level of barley 
 

0.002 0.002 0.001 0.108 

Enzyme 
 

0.048 0.110 0.011 0.578 

Inclusion level of barley × Enzyme 0.928 0.659 0.476 0.055 

      
Orthogonal polynomial contrast     

L4  0.002 0.001 0.001 0.664 

Q5  0.068 0.357 0.847 0.759 

Means in a column not sharing common letters (a-e) are different (P < 0.05). 
1Digestible nutrient intake (g/bird) = Feed intake (kg) × nutrient content of the feed (g/kg) × coefficient 

of apparent ileal digestibility of nutrient. Each value represents the mean of five replicates (eight birds 

per replicate). 
2AMEn intake (MJ/bird) = Feed intake (kg, DM) × AMEn of the feed (MJ/kg, DM). Each value 

represents the mean of five replicates (eight birds per replicate), measured from d-17 to 20. 
3Pooled standard error of mean. 
4L = Linear effect of inclusion level of barley. 
5Q = Quadratic effect of inclusion level of barley. 
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Table 4. 5. Influence of barley inclusion (g/kg) and enzyme supplementation on relative weight 

of proventriculus and gizzard (g/kg of body weight), gizzard pH, and viscosity (cP) in jejunal 

digesta of 21-d old broilers fed diets based on wheat and normal-starch hulled barley1 

Inclusion level of barley Enzyme Relative weight Gizzard 

pH 

Jejunal digesta 

Viscosity  Prov. Gizzard 

0 - 3.87 7.59 3.68 5.32 

 + 3.48 7.30 3.47 4.65 

      
141 - 3.76 8.50 2.97 4.07 

 + 3.04 7.33 3.79 3.68 

      
283 - 3.68 9.11 3.63 3.89 

 + 3.25 8.32 3.94 2.96 

      
424 - 3.80 8.92 2.96 3.39 

 + 3.68 9.28 2.80 2.76 

      
565 - 3.70 10.23 3.07 3.09  

+ 4.00 10.30 3.18 2.53 

      
SEM2 

 
0.291 0.520 0.245 0.274 

      
Main effects 

 
   

 

Inclusion level of barley 
 

   
 

0 
 

3.68 7.45d 3.58ab 4.99a 

141 
 

3.40 7.91cd 3.38ab 3.87b 

283 
 

3.47 8.71bc 3.79a 3.43bc 

424 
 

3.74 9.10b 2.88c 3.07cd 

565 
 

3.85 10.27a 3.13bc 2.81d   
   

 

Enzyme 
 

   
 

 
- 3.76 8.87 3.26 3.95a  
+ 3.49 8.51 3.44 3.32b   

   
 

Probabilities, P ≤ 
 

   
 

Inclusion level of barley 
 

0.515 0.001 0.006 0.001 

Enzyme 
 

0.149 0.273 0.271 0.001 

Inclusion level of barley × Enzyme 0.492 0.589 0.238 0.905 

      
Orthogonal polynomial contrast     

L3  0.306 0.001 0.016 0.001 

Q4  0.220 0.472 0.519 0.030 

Means in a column not sharing common letters (a,b,c,d) are different (P < 0.05). 
1Each value represents the mean of five replicates (two birds per replicate). 
2Pooled standard error of mean. 
3L = Linear effect of inclusion level of barley. 
4Q = Quadratic effect of inclusion level of barley. 
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Table 4. 6. Influence of barley inclusion (g/kg) and enzyme supplementation on villus height (µm), goblet cell number 

(per 100 µm villus height), epithelial thickness (µm) and crypt depth (µm) of the duodenum and jejunum of 21-d old 

broilers fed diets based on wheat and normal-starch hulled barley1. 

 

Inclusion 

level of 

barley 

Enzyme 

Duodenum  Jejunum 

Villus 

height 

Goblet 

cell 

number 

Epithelial 

thickness 

Crypt 

depth 
 

Villus 

height 

Goblet 

cell 

number 

Epithelial 

thickness 

Crypt 

depth 

0 - 1081 13.5 20.1 94.3a  605 13.5 17.7 78.5 

  + 1097 15.9 22.4 90.1ab  579 15.6 18.0 80.7 

           
141 - 984 14.7 19.9 81.9de  636 15.1 18.9 79.7 

  + 991 15.0 21.8 91.8ab  667 16.0 18.0 79.0 

           
283 - 1014 17.1 21.1 87.5bcd  727 16.2 19.3 76.6 

  + 988 16.2 20.9 86.7bcd

e 

 651 16.3 19.0 78.0 

           
424 - 910 13.4 19.6 81.6e  618 14.7 18.9 73.0 

  + 1040 14.1 21.5 82.6cde  626 13.8 20.0 81.7 

           
565 - 1049 14.4 20.7 88.3bc  643 16.9 19.7 80.1 

  + 1038 13.7 20.9 86.4bcd

e 

 673 13.9 19.9 78.8 

  
     

 
    

SEM2 
 

46.9 1.07 0.81 2.11  29.5 1.01 0.75 2.41 

  
     

 
    

Main effects 
    

 
    

Inclusion level of barley 
   

 
    

0 
 

1089 14.7 21.2 92.2  592c 14.5 17.8 79.6 

141 
 

987 14.9 20.9 86.9  651ab 15.6 18.4 79.4 

283 
 

1001 16.7 21.0 87.1  689a 16.3 19.2 77.3 

424 
 

975 13.8 20.5 82.1  622bc 14.2 19.4 77.4 

565 
 

1044 14.1 20.8 87.4  658ab 15.4 19.8 79.4 

  
     

 
    

Enzyme  
     

 
    

 - 1008 14.6 20.3b 86.7  646 15.3 18.9 77.6 

 + 1031 15.0 21.5a 87.5  639 15.1 19.0 79.7 

  
     

 
    

Probabilities, P ≤ 
    

 
    

Inclusion level of barley 0.101 0.066 0.940 0.001  0.019 0.258 0.077 0.766 

Enzyme 
 

0.438 0.576 0.019 0.554  0.729 0.812 0.884 0.182 

Inclusion level of barley 

× Enzyme 

0.480 0.568 0.419 0.014  0.332 0.133 0.737 0.253 

           
Orthogonal polynomial contrast 

L3   0.323 0.328 0.514 0.004  0.123 0.878 0.004 0.673 

Q4   0.017 0.116 0.778 0.007  0.055 0.343 0.618 0.306 

Means in a column not sharing common letters (a-e) are different (P < 0.05). 
1Each value represents the mean of five replicates (two birds per replicate, 10 readings per bird). 
2Pooled standard error of mean. 
3L = Linear effect of inclusion level of barley. 
4Q = Quadratic effect of inclusion level of barley. 
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4.5. Discussion  

In contrast to the study by Ankrah (1994) who reported no difference in the hardness of 

pellets made from normal starch hull-less barley and wheat, increasing inclusion of barley 

in the diet worsened the PDI in the present study. A high content of fat was used in diets 

with greater inclusion of barley to maintain similar energy levels and explains the results 

observed. Fat lubricates feed particles and reduces the friction generated in the die holes, 

which results in lower pellet durability. Dietary fat can also partially cover feed particles 

and create a barrier for penetration of steam to feed particles, preventing starch 

gelatinisation and development of binding adhesions (Löwe, 2005; Abdollahi et al., 

2013a). Buchanan and Moritz (2009) evaluated the influence of small amounts of fibre, 

in the form of oat hulls, on pellet quality and observed that pellets tended to break at oat 

hull contact points. Ground NSH barley contained a considerable amount of hulls and this 

may have also contributed to the reduced PDI in diets with greater barley inclusions.  

The lack of significant interaction between barley inclusion and enzyme addition 

for WG and F/G indicated that the efficacy of enzyme was similar at each barley inclusion 

level, and was strong enough to make significant improvements in WG of 21 g/bird and 

F/G of 4.5 points. Regardless of the enzyme supplementation, WG increased gradually 

up to 283 g/kg barley inclusion and reduced at inclusions above this point. Dietary 

inclusion of barley beyond 283 g/kg decreased the FI irrespective of enzyme 

supplementation. The reduced FI at 424 and 565 g/kg barley inclusions can be partly 

attributed to the deteriorated PDI at these inclusion levels (Abdollahi et al., 2018). The 

impaired WG at barley inclusion levels of 424 and 565 g/kg corresponded with lowered 

FI, and consequent reduction in digestible starch and protein intake at these inclusion 

levels. This observation confirms the importance of FI on the growth performance of 

broiler starters.  

Slower feed passage rate associated with greater digesta viscosity (Salih et al., 

1991; Almirall and Esteve-Garcia, 1995; Almirall et al., 1995) can affect FI in young 

broiler chickens (McNab and Smithard, 1992). However, this is not applicable to the 

findings of the current study, as the highest FI was observed in birds fed the diet with no 

barley, which had the highest jejunal digesta viscosity. The lower palatability of barley 

compared to wheat (Hughes, 1984) presumably played a role in determining FI in the 
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current study. Despite different AMEn values of diets, similar AMEn intakes were 

observed across all dietary treatments. Therefore, the lower FI associated with highest 

inclusions of barley (424 and 565 g/kg) can be considered as birds’ response to maintain 

a constant energy intake (Classen, 2017). 

Friesen et al. (1992) evaluated different inclusion levels of hulled barley (0, 350 

and 700 g/kg diet) and supplementation of a cellulase enzyme and reported a reduction in 

FI with increasing dietary levels of barley. In agreement with the present study, the 

depression of FI reported by these researchers was most severe at the total replacement 

of wheat with hulled barley (700 g/kg diet), and feed efficiency of chicks fed the non-

supplemented hulled barley diets (350 and 700 g/kg diet) was better compared to those 

fed the control wheat diet. The highest inclusion of hulled barley (700 g/kg) resulted in 

the lowest WG, while the WG in birds fed with 0 and 350 g/kg hulled barley were similar. 

Moss et al. (1983) increased NSH barley inclusion in a wheat-based broiler diet 

from zero to 272, 408 and 544 g/kg with no enzyme supplementation and reported that 

increasing levels of barley consistently decreased WG and increased F/G by 14.0 points 

at barley inclusion of 544 g/kg. In their study, however, barley replaced wheat on a 

weight-to-weight basis, resulting in dietary treatments being different in respect to energy 

and protein contents. Therefore, the poor performance observed with the increasing levels 

of barley was most likely due to the lower AME content and digestible AA of barley-

based diets compared to those based on wheat.  

Yu et al. (1998) studied five isoenergetic and isonitrogenous diets with varying 

levels of barley (0, 70, 140, 278 and 557 g/kg in diet) substituted for maize and reported 

lower WG and FI with increasing inclusion of barley. However, when the diets were 

supplemented with β-glucanase, WG and FI increased up to 140 g barley/kg diet (25% 

replacement of maize), but depressed with barley inclusion beyond this point. It is 

noteworthy that even though these diets were formulated to be equivalent in energy and 

protein density, diets were formulated based on nutrient and total AA composition 

obtained from chemical analysis. Accordingly, decreased performance observed in the 

study by Yu et al. (1998) with increasing inclusions of barley may be partly due to the 

lower digestibility of nutrients, especially AA, in barley grain compared to maize. 
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Moreover, the inconsistencies in the literature suggest the importance of formulating diets 

based on digestible nutrient contents.  

Bergh et al. (1999) added a carbohydrase enzyme complex consisting of xylanase 

and β-glucanase to a barley-based (696 g/kg) diet and reported greater BW and FI and 

improved feed conversion ratio. The increase in FI due to enzyme supplementation 

reported by these researchers was not observed in the current study. Mathlouthi et al. 

(2002) reported that addition of an NSP degrading enzyme to wheat- and barley-based 

diets resulted in a growth performance similar to a non-supplemented maize-based diet.  

Contrary to the inconsistent responses of WG to the increasing levels of barley in 

the present study, F/G gradually improved with increasing barley inclusion regardless of 

enzyme supplementation. Observations on F/G in the current study are consistent with 

effects on jejunal digesta viscosity, indicating that changes in the digestive tract due to 

dietary NSP sources affect the feed efficiency of birds. Almirall et al. (1995), who 

evaluated the growth performance in broilers fed maize and two barley types, attributed 

the improved WG and feed efficiency in barley-based diets to the reduction in intestinal 

viscosity due to the action of supplemental enzyme. In agreement with Almirall et al. 

(1995), depressions in F/G in birds with greater digesta viscosity was observed in the 

current study. Consequently, the improvements in the WG and F/G with supplemental 

enzyme observed in the present study can be attributed to the reduction in digesta 

viscosity due to the action of enzymes (Bedford et al., 1991; Steenfeldt et al., 1998; 

Shakouri et al., 2009). 

Increasing inclusions of barley in wheat-based diets improved the CAID of all 

analysed nutrients. Improvements of nutrient digestibility due to complete replacement 

of wheat with barley for DM, starch, N and fat were 16, 9.9, 6.9 and 13.5%, respectively. 

The improvement of DM digestibility with increasing barley in the diet was indicative of 

improved digestibility of all nutrients. Svihus (2001) compared the ileal starch 

digestibility of four varieties of wheat and barley substituted on a weight basis at 770 g/kg 

diet. Barley diets had greater CAID of starch (0.96) than all four wheat diets without 

supplemental enzyme (average of 0.78), and tended to have a greater starch digestibility 

than an enzyme-supplemented wheat-based diet (0.93). This observation implies the 
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presence of factors other than soluble NSP that interfere with starch digestion. Svihus and 

Hetland (2001) hypothesised that an overload of wheat starch in the digestive tract can 

lower the starch digestion in broiler chickens. According to the analysed starch contents 

of the experimental diets in the present study, the highest starch content (343 g/kg, as fed 

basis) was determined for the diet with 0 g/kg barley, and dietary starch values reduced 

with increasing barley inclusion in the diet.  

Svihus and Hetland (2001) identified the gizzard as the key site for preventing 

starch overload in the digestive tract by regulating digesta passage rate (Hetland et al., 

2004). The development of the gizzard is facilitated by the presence of insoluble NSP in 

the diet (Svihus, 2011a). According to the nutrient composition of the wheat and barley 

used in the current study analysed in Chapter 3, barley contained more insoluble NSP 

than wheat (142 vs. 119 g/kg). In consequence, greater concentrations of insoluble NSP 

are anticipated in diets with greater inclusion of barley. Increased weights of the gizzard 

and greater CAID of starch in birds fed diets with greater inclusion of barley in the current 

study lend support to the hypothesis of Svihus and Hetland (2001) that a well-developed 

gizzard can prevent the starch overload in the digestive tract and will facilitate better 

digestion and absorption. Moreover, a greater starch digestibility in wheat- and raw potato 

starch-based diets supplemented with oat hulls was attributed to actions of oat hulls in 

gizzard enlargement and mechanical abrasion resulting in disruption of starch granules 

and modification in gut microflora (Rogel et al., 1987a,b). Similarly, the increased 

occurrence of barley hulls with increasing inclusions of NSH barley in the diet might have 

contributed to improved starch digestion.  

The proventriculus and gizzard (ventriculus) are the true stomach compartments 

in birds. Hydrochloric acid (HCl) and pepsinogen are secreted by the proventriculus and 

mixed with digesta in the gizzard. The proventriculus is the initial site of protein digestion 

in chickens where proteins are exposed to HCl, which denatures the protein and then 

exposes peptide bonds for enzyme hydrolysis. Adequate acid secretion is necessary for 

conversion of pepsinogen to pepsin, the enzyme initiating protein digestion. The amount 

of time that feed is retained in the proventriculus is insufficient for adequate exposure to 

secretions. Extended retention and mixing in the gizzard is necessary to allow for 

increased contact between feed, gastric juices and pepsin, thus, facilitating the 
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denaturation and digestion of proteins (Rynsburger, 2009). Accordingly, the larger 

gizzards in birds fed greater inclusion levels of barley might have aided in initial protein 

hydrolysis and, subsequently, resulted in greater CAID of N. 

Due to the lower AMEn of barley (13.63 MJ/kg) compared to wheat (14.40 MJ/kg; 

Chapter 3), more fat was added to diets with greater inclusion levels of barley to equalise 

the energy content across diets in the current study. Therefore, the greater magnitude of 

response (13.5%) in CAID of fat in the diet with complete replacement of wheat with 

barley is mainly attributed to greater concentration of soybean oil.  

Friesen et al. (1992) reported similar apparent excreta digestibility of protein and 

decreasing lipid digestibility in broilers as the hulled barley increased from 0 to 700 g/kg 

in a wheat-based diet with no enzyme supplementation. Svihus (2001) compared the 

CAID of protein and fat of four wheat types with barley (at 770 g grain/kg diet) and 

reported a greater average digestibility for wheat (0.79 vs. 0.68 and 0.73 vs. 0.66 for 

protein and fat, respectively). However, the nutrient composition of the grain samples 

was not provided in the paper. Bolarinwa and Adeola (2012) used wheat and barley to 

partly replace maize, soybean meal, maize starch, and soy oil, on a weight basis, in a 

reference diet at 100 or 200 g/kg. Inclusion of wheat did not cause any change in the 

CAID of any nutrient, while the CAID of DM and N decreased with increasing levels of 

barley in the diet. According to the nutrient composition, both barley and wheat were 

similar except for fibre fractions, with barley containing more crude fibre (55.4 vs. 23.8 

g/kg). 

Regardless of the inclusion level of barley, the magnitude of response to enzyme 

supplementation on ileal digestibility of DM, starch, N and fat were 9.1, 3.8, 4.0 and 

6.8%, respectively. Starch and N digestibility might be facilitated from the enzyme action 

on cell wall integrity, which subsequently released the encapsulated starch and protein. 

Moreover, reduced digesta viscosity due to the added enzyme allows better interactions 

of digestive enzymes with respective substrates. Increased intestinal digesta viscosity is 

believed to be more detrimental on fat digestion (Edney et al., 1989; Almirall et al., 1995), 

making fat digestion the most affected by the presence of soluble NSP (Choct and 

Annison, 1992a). This observation was confirmed in the current work. High digesta 
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viscosity reduces the diffusion and passage of droplets of emulsion, fatty acids, mixed 

micelles, bile salts and lipase within the gastrointestinal tract, leading to reduced transport 

of micelles to the mucosal surface (Smulikowska, 1998, 2002). Three major modes of 

action of NSP-degrading enzymes have been proposed in the literature (i) reduction of 

digesta viscosity (Almirall et al., 1995), (ii) release of encapsulated nutrients via cell wall 

degradation (Hesselman and Åman, 1986; Bedford, 1996), and (iii) modification of gut 

microbiota through supply of prebiotic oligosaccharides (González-Ortiz et al., 2017; 

Bedford, 2018). The production of fermentable substrates for favourable microbial groups 

is proved to have beneficial effect on gut health (Józefiak et al., 2010) and villus growth 

(González-Ortiz et al., 2017), and to improve nutrient utilisation. Mathlouthi et al. (2002) 

attributed the improved protein and fat digestibility with supplementation of NSP-

degrading enzymes in wheat- and barley-based diets to the reduction of total anaerobic 

bacterial load in the caeca. In addition, the presence of Lactobacillius and Bifidobacter 

spp. in the ileum induced by supplemental enzymes in barley-based diets (Rodriguez et 

al., 2012) might have indirectly enhanced the nutrient digestibility in broilers. 

Linear improvements in AMEn were observed with increasing levels of barley in 

the diet, and AMEn was improved with enzyme addition at each inclusion level. Friesen 

et al. (1992) reported that increasing levels of hulled barley in a wheat-based diet (0, 350 

and 700 g/kg) resulted in linear reductions in AMEn in diets without or with 

supplementation of a cellulase enzyme. The improvement of 7.1% (0.85 MJ/kg) in AMEn 

in the present study due to complete substitution of wheat with barley was contrary to 

reduction of AMEn (5.2%) reported by Friesen et al. (1992) with complete replacement 

of wheat with hulled barley. However, the increase of 0.2 MJ/kg in AMEn due to added 

NSP-degrading enzyme in the present study is lower than the improvement of AMEn 

(0.75 MJ/kg) due to enzyme supplementation reported by these researchers. Fuente et al. 

(1995), who evaluated increasing levels of barley in a maize-based diet, reported 

decreasing AMEn with increasing inclusion of barley. However, these researchers 

reported an increase in AMEn of enzyme-supplemented diet by 0.26 MJ/kg. 

Despite that the diets in the present study were formulated to contain the same 

amount of energy by using AMEn values of the grains obtained in Chapter 3, AMEn 

values observed in the present study varied from 11.98 to 12.83 MJ/kg. Fuente et al. 
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(1995) suggested that digesta viscosity accounts for 97% of the variation in AMEn among 

barley-based diets and reported 59 kJ decline in AMEn per unit (cP) increase in digesta 

viscosity. A significant (P < 0.001) negative correlation (r = -0.488) between AMEn and 

jejunal digesta viscosity observed in the present study supports previous findings on the 

influence of digesta viscosity on energy utilisation by birds (Choct and Annison, 1992b; 

Smulikowska et al., 2002). Moreover, similar trends in treatment effects on nutrient 

digestibility and AME demonstrate a link between nutrient digestibility and AMEn. 

Changes in gastrointestinal morphology associated with variation of dietary fibre 

concentrations were previously observed with special reference to the gizzard (Hetland 

et al., 2003; Amerah et al., 2009). A more developed musculature in the gizzard, as an 

adaptive response to increased dietary fibre in the diet, can lead to increased gizzard 

weight. In the present experiment, the complete replacement of wheat with barley resulted 

in 37.9% increase in the gizzard weight, from 7.45 to 10.27 g/kg body weight. More 

extensive grinding by larger gizzards might have facilitated the improvements in F/G, 

AMEn and nutrient utilisation at greater levels of barley inclusion. An increase in gizzard 

size can improve digestive function through increased retention time, lower pH, and better 

grinding and mixing with digestive enzymes (Svihus, 2011a, 2014).  

Although the pH of gastric secretions is around 2.0 (Denbow et al., 1988), the 

amount, retention time and chemical characteristics of the digesta in the 

proventriculus/gizzard can result in a more variable and usually higher pH (Svihus, 

2011a). When birds have a greater FI, the neutral pH in feed (Ravindran, 2013) can lead 

to a higher gizzard pH unless HCl secretion is able to increase in conjunction with intake 

(Svihus, 2014). Moreover, increased grinding in the gizzard and a longer retention time 

allows for more HCl secretion, resulting reduced pH. In accordance with these 

observations, the reduction of FI beyond 283 g/kg barley inclusion in the current study 

was associated with a reduction in gizzard pH. Besides lower FI, the increased size of the 

gizzard in birds fed greater inclusion levels of barley in the diet might have facilitated 

more HCl secretion resulting a lower pH. 

Yu et al. (1998) measured the viscosity in duodenal digesta at different 

replacement levels of maize with barley, without and with a β-glucanase, and reported 
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increased intestinal viscosity as the inclusion of barley increased. Supplemental β-

glucanase tended to decrease the viscosity at complete replacement of maize with barley, 

in which the concentration of soluble NSP was at maximum. Yaghobfar and Kalantar 

(2017) reported similar digesta viscosity for non-supplemented wheat and barley diets 

(150 g/kg diet), where the supplementation of a mixture of phytase and NSP degrading 

enzyme reduced the digesta viscosity in both diets. Fuente et al. (1995) reported a digesta 

viscosity increase of 3.5 cP per every 100 g/kg of barley inclusion. The lack of significant 

interaction for digesta viscosity in the current study is suggestive of a consistent enzyme 

efficacy at each level of barley inclusion. Contrary to previous observations, the highest 

digesta viscosity (4.99 cP) was observed, at 0 g/kg barley inclusion, and decreased with 

the increasing inclusion of barley. In agreement with present findings, Shakouri et al. 

(2009), who compared intestinal viscosity of broilers fed barley, maize, sorghum and 

wheat, reported greater digesta viscosity in the birds fed wheat-based diets (5.74 cP) 

compared to barley-based diets (2.92 cP). This surprising observation on decreasing 

digesta viscosity with increasing inclusion of barley confirms that digesta viscosity is 

dependent not only on the concentration of NSP, but also on its molecular weight. 

Therefore, a grain with a low content of soluble NSP might result in high viscosity if the 

NSP is of a high molecular weight (Saulnier et al., 1995; Dusel et al., 1997; Cowieson et 

al., 2005). Moreover, it was suggested that wheat gluten and its endosperm proteins 

(gliadins and glutenins) have an effect on the viscosity of aqueous extract of wheat flour. 

Glutenin acts as a cohesive elastic solid when hydrated while gliadin together with water 

behaves as a viscous liquid and, therefore, wheat varieties with a high level of crude 

protein can contain more gliadin and glutenin, resulting in greater viscosity in aqueous 

extracts (Dusel et al., 1997). Accordingly, the greater digesta viscosity observed in the 

current study from diets with low barley inclusion (i.e., great content of wheat) suggests 

that the wheat cultivar used had high molecular weight NSP, which consequently 

increased the digesta viscosity irrespective of NSP concentration.  

Contrary to the current finding of increased jejunal villus height in barley fed 

birds, shorter jejunal villi in birds fed barley- compared to maize-based diets was reported 

previously (Viveros et al., 1994; Onderci et al., 2008; Kalantar et al., 2016). Shakouri et 

al. (2009) also reported decreased jejunal villus height in birds fed diets with 600 g 

barley/kg compared to three diets containing maize, wheat and sorghum (623 g/kg in each 
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diet). The observations on increased jejunal villus height and subsequent greater villus 

absorptive area correspond with the positive effect of barley inclusion on feed efficiency 

and CAID of nutrients in the current study.  

The lack of response from gut morphology parameters (except epithelial 

thickness) to enzyme supplementation was in agreement with Iji et al. (2001) and Wu et 

al. (2004b). However, Wu et al. (2004b) reported that xylanase supplementation tended 

to increase the number of goblet cells in the duodenum and decreased jejunal crypt depth. 

Viveros et al. (1994) reported a relative reduction in the goblet cell number of jejunal 

mucosa in birds fed barley supplemented with β-glucanase. Enzyme supplementation 

increased the duodenal crypt depth only at 141 g/kg inclusion of barley in the current 

study, resulting a significant interaction between barley inclusion and enzyme 

supplementation. However, this observation is difficult to explain as enzyme 

supplementation in previous studies reduced the crypt depth (Wu et al., 2004b; Rebolé et 

al., 2010). 

4.6. Conclusions 

Despite impaired pellet quality, increasing inclusion of barley in wheat-based diets 

improved feed efficiency, nutrient digestibility and energy utilisation, due likely to 

lowered digesta viscosity and better functionality of gizzard. The corresponding 

improvements in feed efficiency, nutrient digestibility and energy utilisation with lowered 

digesta viscosity in birds fed enzyme-supplemented diets confirmed the benefits from the 

viscosity reducing mechanism of supplemental carbohydrases in barley-based diets. With 

respect to growth performance, the optimum inclusion level of barley in a wheat-based 

broiler starter diet is 283 g/kg of diet. Future studies inter alia on the influence of feed 

processing parameters such as grain particle size and conditioning temperature, in 

combination with enzyme supplementation, are warranted to explore the barley inclusion 

beyond this level. 
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CHAPTER FIVE 

The effect of graded inclusions of waxy starch hull-less barley and a multi-

component exogenous carbohydrase on the growth performance, nutrient 

digestibility and intestinal morphometry of broiler chickens3 

5.1. Abstract 

A 21-d experiment was conducted to investigate the effect of graded inclusions of waxy 

starch hull-less (WSHL) barley and a multi-component exogenous carbohydrase on the 

growth performance, nutrient digestibility and intestinal morphometry of broiler 

chickens. Five levels of WSHL barley inclusion (0, 65, 130, 195 and 260 g/kg) in a wheat-

based diet and two levels of enzyme supplementation (0 and 150 g/tonne of feed) were 

evaluated in a 5 × 2 factorial arrangement of 10 dietary treatments. All diets were 

equivalent in metabolisable energy and digestible amino acid contents. A total of 400, 

one-d old male broilers (five cages/treatment; eight birds/cage) were used in the 

experiment. Regardless of enzyme supplementation, feed intake declined (P < 0.001) with 

increasing inclusion of WSHL barley. Increasing levels of WSHL barley (P < 0.001) and 

supplemental enzyme (P < 0.05) improved feed per gain. Birds fed diets with 0 g/kg 

WSHL barley showed the lowest (P < 0.001 to 0.01) digestibility for all nutrients except 

starch. Only the starch digestibility was improved (P < 0.05) by enzyme supplementation. 

The nitrogen-corrected apparent metabolisable energy improved with increasing 

inclusion of WSHL barley (P < 0.001) and supplemental enzyme (P < 0.001). Increasing 

inclusion of WSHL barley increased the relative weight of gizzard (P < 0.001) and 

reduced jejunal digesta viscosity (P < 0.01). Supplemental enzyme (P < 0.001) reduced 

the digesta viscosity. All levels of WSHL barley inclusion improved digestibility of dry 

matter, nitrogen and fat, whilst energy utilisation improved at inclusions of 130 g/kg 

WSHL and above, due likely to lowered digesta viscosity and better development of the 

gizzard. Feed per gain, starch digestibility, energy utilisation and jejunal digesta viscosity 

can benefit from carbohydrase supplementation in wheat-based diets, regardless of barley 

inclusion level. 
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5.2. Introduction 

Inclusion of barley (Hordeum vulgare L.) in poultry diets is limited due mainly to its high 

fibre content, low energy and high content of non-starch polysaccharides (NSP; Jacob 

and Pescatore, 2012). Hull-less barley was developed to counter the perception of anti-

nutritive influences from the fibrous hull and increase acceptance of barley as a poultry 

feed ingredient (Bhatty, 1999; Jacob and Pescatore, 2012). This development has resulted 

in a cereal that is more compatible with nutrient dense feeds preferred by the poultry 

industry (Campbell et al., 1993). Other advantages of using hull-less over hulled barley 

in poultry feed include elimination of cost and labour associated with dehulling and 

concentration of nutrients created from the removal of hull. Hull-less barley types have 

been reported to have greater concentrations of energy, fat, protein and starch compared 

to hulled barley types (Edney et al., 1992; Xue et al., 1997; Svihus and Gullord, 2002). 

Nevertheless, some studies report of hulled barley types with greater content of starch 

compared to hull-less barley types (Andersson et al., 1999; Asare et al., 2011).  

Removal of the hull through the development of hull-less barley types in 

conjunction with incorporation of the waxy starch trait was expected to further improve 

the feeding value of barley for poultry. However, in contrary to the expectation that waxy 

grain starch with more amylopectin (970-1000 g/kg of starch, Ullrich et al., 1986) is more 

digestible (Björck et al., 1990), poor starch digestibility has been observed in birds fed 

waxy barley-based diets (Bergh et al., 1999; Ravindran et al., 2007). The poor growth 

performance observed in birds fed hull-less, waxy starch barley can be attributed to 

soluble β-glucan with high molecular weights, which occur in greater amounts in waxy 

starch barley types (Storsley et al., 2003).  

Supplementation of barley-based broiler diets with NSP- degrading enzymes has 

been reported to increase feed intake (FI), weight gain (WG), flock uniformity, improve 

feed efficiency, and enhance nutrient utilisation (Hesselman and Åman, 1986; Marquardt 

et al., 1994; Almirall et al., 1995; Bergh et al., 1999). Exogenous NSP-degrading 

enzymes are thought to act on barley-based diets by: (i) reduction of digesta viscosity 

(Almirall et al., 1995; Józefiak et al., 2006), (ii) release of encapsulated nutrients via cell 

wall degradation (Hesselman and Åman, 1986; Bedford, 1996), and (iii) modification of 

gut microbiota through the supply of prebiotic oligosaccharides (González-Ortiz et al., 

2017; Bedford, 2018). Because of the higher contents of soluble β-glucans, waxy starch 
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barley in comparison to normal and high amylose starch barley, and hull-less barley in 

comparison to hulled barley, have shown greater responses to supplemental enzymes 

(Rotter et al., 1990; Ravindran et al., 2007). 

The benefits of waxy starch barley associated with lower starch gelatinisation 

temperature, such as higher physical pellet quality and reduced energy input in pellet 

production (Ankrah et al., 1999) and the efficacy of exogenous enzymes to mitigate the 

anti-nutritive effects of soluble NSP make waxy starch barley an attractive feed ingredient 

for poultry. Recommendations on the optimum inclusion of hull-less barley have been 

contradictory due to confounding factors such as starch type and cultivar differences, and 

most of the studies have overlooked the influence of starch type and cultivar. Three 

approaches have been used in previous research to replace other cereals with barley, 

namely: (a) weight to weight basis (Arscott et al., 1955; Petersen, 1969; Moss et al., 1983; 

Yu et al., 1998); (b) using nutrient composition data for barley and the substituted grain 

from established sources such as National Research Council (Moharrery, 2006) and 

Spanish Foundation for the Development of Animal Nutrition (FEDNA; Lázaro et al., 

2003; de Blas et al., 2010); and (c) using nutrient composition data obtained from 

chemical analysis (Brake et al., 1997).  

The fact that anti-nutritive components in barley play a key role in determining 

the availability of dietary components to poultry emphasises the importance of using 

nutrient profiles for the specific barley cultivar based on measured contents of apparent 

metabolisable energy (AME) and digestible amino acids (AA) to formulate barley-based 

diets. Starch characteristics of the barley grain can, to some extent, explain the variability 

in responses to some evaluated factors (e.g. enzyme addition) in previous reports, 

suggesting that observed variations could not be attributed to one factor alone. Therefore, 

the present study was aimed to evaluate the influence of graded levels of a waxy starch 

hull-less (WSHL) barley cultivar previously evaluated for nitrogen-corrected AME 

(AMEn) and digestible AA content (Chapter 3), and supplementation of a multi-

component carbohydrase on the performance, nutrient and energy utilisation and 

intestinal morphometry in broiler starters. 
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5.3. Materials and methods  

5.3.1. Enzymes 

A multi-component NSP-degrading enzyme, Ronozyme® Multigrain, (produced by 

Trichoderma reesei, also known as Trichoderma longiabrachiatum) and Ronozyme® 

HiPhos were obtained from DSM Nutritional Products, Australia. The activities of endo-

1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in Ronozyme® 

Multigrain were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. One unit of β-

glucanase (BGU) is defined as the quantity of enzyme that releases 1µmol of reducing 

moieties from 1.5% β-glucan per min at pH 5.0 at incubation temperature of 40 °C for 20 

min. One unit of xylanase (XU) is defined as the quantity of enzyme that releases 1µmol 

of reducing moieties from 1.5% arabinoxylan per min at pH 5.0 and incubation 

temperature of 40 °C for 20 min. Ronozyme® HiPhos was a granular 6-phytase 

preparation expressed by submerged fermentation of Aspergillus oryzae and contained > 

10,000 phytase units (FYT)/g. One FYT is defined as the activity of enzyme that releases 

1.0 μmole of inorganic phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC 

(DSM Nutritional Products Ltd., 2013). The activities of 6-phytase, endo-1,3 (4)-β-

glucanase and endo-1,4-β-xylanase in diet samples were measured at Biopract GmbH, 

Berlin, Germany. The enzyme recovery was calculated as the percentage of measured 

enzyme activity in the diet to the expected enzyme activity estimated from the amount 

and minimum activity (DSM Nutritional Products Ltd., 2013) of enzymes added to the 

diets.  

5.3.2. Diets 

Waxy starch hull-less barley (cultivar, Streaker) was obtained from a seed multiplication 

company (Luisetti Seeds Ltd., Rangiora, New Zealand) and ground in a hammer mill to 

pass through the screen size of 3.0 mm. Wheat (undetermined cultivar) was obtained from 

a commercial supplier and ground through the same screen size. Nutrient composition, 

AMEn and standardised digestible AA contents of same batches of non-supplemented 

barley and wheat, determined in Chapter 3, were used in formulating the experimental 

diets. Considering the low AMEn value of WSHL, the maximum inclusion of WSHL in 

the wheat-based diet was set at 260 g/kg to avoid poor pellet quality and confounding 

effects on nutrient and energy utilisation associated with higher dietary fat inclusion.   
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Five levels of WSHL barley inclusion (0, 65, 130, 195 and 260 g/kg) in a wheat-

based diet and two levels of enzyme supplementation (0 and 150 g/tonne of feed) were 

evaluated in a 5 × 2 factorial arrangement of 10 dietary treatments. Five basal diets, with 

different inclusion levels of WSHL barley, were formulated to meet the Ross 308 strain 

recommendations for major nutrients for broiler starters (Ross, 2014; Table 5.1), and to 

be equivalent in respect of AMEn and digestible AA contents. Ronozyme® HiPhos was 

added (1000 FYT/kg diet) across all basal diets. Each mixed diet was then divided into 

two equal batches, with one of the batches supplemented with Ronozyme® Multigrain 

(150 g/tonne of feed), resulting in 10 dietary treatments. The diets contained 5.0 g/kg of 

titanium dioxide (TiO2, Merck KGaA, Darmstadt, Germany) as an indigestible marker to 

determine ileal nutrient digestibility. A pellet binder (KEMBIND®, Kemin Industries 

[Asia] Pte Ltd, Singapore), at an inclusion rate of 2.0 g/kg, was added on top of all diets. 

Diets were mixed in a single-screw paddle mixer. Following mixing, all diets were steam-

conditioned to 70 °C for 30 seconds and pelleted using a pellet mill (Model Orbit 15; 

Richard Sizer, Kingston-upon-Hull, UK) capable of manufacturing 180 kg of feed/h and 

equipped with a die ring with 3.0 mm holes and 35 mm thickness. Representative samples 

of all diets were collected after pelleting for chemical analysis. 

5.3.3. Pellet durability  

Pellet durability was determined in a Holmen Pellet Tester (New Holmen NHP100 

Portable Pellet Durability Tester, TekPro Ltd., Willow Park, North Walsham, Norfolk, 

UK) using the method described by Abdollahi et al. (2013b). 
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Table 5. 1. Composition, calculated analysis, analysed values (g/kg, as fed) and pellet durability index (PDI; 

%) of the basal experimental diets based on wheat and waxy-starch hull-less barley. 

Item Barley inclusion level (g/kg) 

0 65 130 195 260 

Wheat 629 550 471 393 314 

Waxy starch hull-less barley 0.0 65.0 130 195 260 

Soybean meal 278 282 286 289 293 

Maize gluten meal 50.0 50.0 50.0 50.0 50.0 

Soybean oil 3.4 13.3 23.2 33.1 43.0 

Di-calcium phosphate 10.4 10.5 10.6 10.7 10.8 

Limestone 9.3 9.1 9.2 9.1 9.2 

L-Lysine HCl 3.8 3.8 3.7 3.7 3.6 

DL-Methionine 2.0 2.1 2.2 2.2 2.3 

L-Threonine 1.3 1.3 1.3 1.3 1.3 

Sodium chloride 2.3 2.3 2.2 2.2 2.1 

Sodium bicarbonate 3.4 3.5 3.5 3.6 3.6 

Titanium dioxide1 5.0 5.0 5.0 5.0 5.0 

Pellet binder2 2.0 2.0 2.0 2.0 2.0 

Vitamin premix3 1.0 1.0 1.0 1.0 1.0 

Mineral premix3 1.0 1.0 1.0 1.0 1.0 

Phytase4 0.1 0.1 0.1 0.1 0.1 

      
Calculated analysis      

Apparent metabolisable energy, MJ/kg 11.9 11.9 11.9 11.9 11.9 

Digestible methionine 5.5 5.6 5.6 5.6 5.7 

Digestible methionine + cysteine 9.0 9.0 9.0 9.0 9.0 

Digestible lysine 12.2 12.2 12.2 12.2 12.2 

Digestible threonine 8.2 8.2 8.2 8.2 8.2 

Crude fat 18.9 28.2 37.5 46.8 56.1 

Crude fibre 31.0 32.3 33.7 35.0 36.4 

Calcium 9.6 9.6 9.6 9.6 9.6 

Non-phytate phosphorus 4.8 4.8 4.8 4.8 4.8 

Sodium 2.0 2.0 2.0 2.0 2.0 

Chloride 2.0 2.0 2.0 2.0 2.0 

Potassium 8.3 8.4 8.4 8.5 8.5 

      
Analysed values      

Dry matter 883 885 888 886 894 

Gross energy, MJ/kg 16.4 16.6 16.9 17.1 17.4 

Crude protein (Nitrogen × 6.25) 250 253 247 246 251 

Starch  343 333 322 312 301 

Fat 19.1 29.5 39.0 49.8 58.8 

      
PDI5 87.9a 86.1b 85.8b 86.2b 84.2c 
1Merck KGaA, Darmstadt, Germany. 
2KEMBIND® (Kemin Industries [Asia] Pte Ltd) pellet binder, which contained modified lignosulphonate, 

guar gum, edible fatty acids and mineral oil, was added on top of each diet. 
3Supplied per kg of diet: antioxidant, 125 mg; biotin, 0.2 mg; calcium pantothenate, 20 mg; cholecalciferol, 

5000 IU; cyanocobalamin, 0.02 mg; folic acid, 2.0 mg; menadione, 4 mg; niacin, 80 mg; pyridoxine, 5.0 mg; 

trans-retinol, 15000 IU; riboflavin, 9.0 mg; thiamine, 4.0 mg; dl-α-tocopheryl acetate, 80 IU; choline, 0.45 

mg; ascorbic acid, 100 mg; Co, 1.0 mg; Cu, 20 mg; Fe, 40 mg; I, 2.0 mg; Mn, 100 mg; Mo, 1.0 mg; Se, 0.15 

mg; Zn, 100 mg. 
3Image Holdings Ltd., Auckland, New Zealand. 
4Ronozyme® HiPhos (1000 phytase units (FYT)/kg diet). One FYT is defined as the activity of enzyme that 

releases 1.0 μmole of inorganic phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC. Nutrient 

matrix values (1.5 g/kg non-phytate P and 1.8 g/kg Ca) were used in basal diet formulation. 
5Each value represents the mean of ten replicate samples. Means not sharing common letters (a,b,c) are 

different (P < 0.05). 
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5.3.4. Birds and housing 

The experimental procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC protocol 17/13) and complied with the New Zealand Code of 

Practice for the Care and Use of Animals for Scientific Purposes. A total of 400, one-d 

old male broilers (Ross 308), obtained from a commercial hatchery, were individually 

weighed and allocated to 50 cages in electrically heated battery brooders so that the 

average bird weight per cage was similar. Each of the 10 dietary treatments was randomly 

assigned to five cages, each housing eight birds. The birds were transferred to grower 

cages on d 12 and continued on the same starter diets until the end of the trial (d 21). The 

battery brooders and grower cages were housed in an environmentally controlled room 

with 20 h of fluorescent illumination per d. The temperature was maintained at 31 °C on 

d 1 and was gradually reduced to 22 °C by 21 d of age. The diets, in pellet form, were 

offered ad libitum and water was available at all times. 

5.3.5. Performance data 

Body weights (BW) and FI were recorded on a cage basis at weekly intervals. Mortality 

was recorded daily. Feed per gain (F/G) values were corrected for the BW of any bird 

that died during the course of the experiment. 

5.3.6. Energy and nutrient utilisation  

5.3.6.1. Nitrogen-corrected apparent metabolisable energy 

The AMEn was determined using the classical total excreta collection method. Feed intake 

and total excreta output of each cage were quantitatively measured from d 17 to 20 post-

hatch. Daily collections from each cage were pooled, mixed in a blender and sub-sampled. 

Sub-samples were lyophilised (Model 0610, Cuddon Engineering, Blenheim, New 

Zealand), ground to pass through a 0.5 mm sieve and stored in airtight plastic containers 

at 4 ◦C pending analysis. The diets and excreta samples were analysed for dry matter 

(DM), gross energy (GE) and nitrogen (N). 

5.3.6.2. Coefficient of apparent ileal digestibility (CAID) of nutrients  

On d 21, six broilers per cage were euthanised by intravenous injection (0.5 mL per kg 

live weight) of sodium pentobarbitone (Provet NZ Pty Ltd., Auckland, New Zealand), 



114 

 

and digesta were collected from the lower half of the ileum by gently flushing with 

distilled water, as described by Ravindran et al. (2005). The ileum was defined as that 

portion of the small intestine extending from the Meckel’s diverticulum to a point ~40 

mm proximal to the ileo-caecal junction. The ileum was then divided into two halves and 

the digesta was collected from the lower half towards the ileo-caecal junction.  

Digesta from birds within a cage were pooled, frozen immediately after collection 

and subsequently lyophilised. Diet and lyophilised digesta samples were ground to pass 

through a 0.5 mm sieve and stored at 4 ◦C until laboratory analysis. The diets and digesta 

samples were analysed for DM, titanium (Ti), N, starch and fat. 

5.3.7. Intestinal morphology 

Two birds from each replicate cage (euthanised for ileal digesta collection) were used for 

intestinal morphological examinations of villus height (the distance from the apex of the 

villus to the junction of the villus and crypt); crypt depth (the distance from the junction 

to the basement membrane of the epithelial cell at the bottom of the crypt); epithelial 

thickness (the distance from the epithelial surface to the basement membrane of the 

epithelial cell); and goblet cell numbers (per 100 µm villus height), using the methods 

described by Naderinejad et al. (2016). Measurements of villus height and crypt depth 

were made on 10 villi at 4× magnification while epithelium thickness and goblet cell 

number were made at 40× magnification using microscopy imaging software (cellSens 

Standard [Ver.1.18] Olympus, Tokyo, Japan). 

5.3.8. Relative weight of the proventriculus and gizzard and jejunal digesta viscosity 

On d 22, two additional birds per cage with body weights closest to the mean weight of 

the cage were weighed and euthanised by intravenous injection (0.5 mL per kg live 

weight) of sodium pentobarbitone. The proventriculus and gizzard were carefully excised 

and adherent fat was removed. The empty weight of these organs in individual birds were 

determined and reported as g/kg of BW.  

Viscosity of jejunal digesta from two birds per cage (euthanised for the 

determination of relative weights of proventriculus and gizzard) was also measured. 

Digesta obtained from the lower jejunum was centrifuged at 3000 × g at 20 ◦C for 15 min. 

A 0.5 mL aliquot of the supernatant was used in a viscometer (Brookfield digital 
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viscometer, Model DV2TLV, Brookfield Engineering Laboratories Inc., Stoughton, MA) 

fitted with CP-40 cone spindle with shear rates of 5 to 500/s to measure the viscosity.  

5.3.9. Chemical analysis 

Dry matter was determined using standard procedures (Method 930.15; AOAC, 2016). 

Nitrogen was determined by combustion (Method 968.06; AOAC, 2016) using a CNS-

200 carbon, N and sulphur auto-analyser (LECO Corporation, St. Joseph, MI). An 

adiabatic bomb calorimeter (Gallenkamp Autobomb, London, UK) standardised with 

benzoic acid was used for the determination of GE. Starch was measured using a 

Megazyme kit (Method 996.11; AOAC, 2016) based on thermostable α-amylase and 

amyloglucosidase (McCleary et al., 1997). Fat was determined using Soxtec extraction 

procedure for animal feed, forage and cereal grains (Method 2003.06; AOAC, 2016). 

Samples were assayed for Ti on a UV spectrophotometer following the method of Short 

et al. (1996). 

5.3.10. Calculations  

The AMEn of diets was calculated using the following formula: 

AMEdiet (MJ/kg) = [(FI × GEdiet) – (Excreta output × GEexcreta)]/FI 

Correction for zero N retention was made using a factor of 36.54 kJ per gram N 

(g N/kg DM intake) retained in the body (Hill and Anderson, 1958). 

AMEndiet (MJ/kg) = AMEdiet – (36.54 × N retention)/1000 

Apparent digestibility coefficients of nutrients were calculated from the dietary 

ratio of nutrients to Ti relative to the corresponding ratio in the ileal digesta. 

CAID of nutrient = [(Nutrient / Ti)d - (Nutrient / Ti)i] / (Nutrient / Ti)d 

where, (Nutrient / Ti)d = ratio of nutrient to Ti in diet and (Nutrient / Ti)i = ratio 

of nutrient to Ti in ileal digesta. 

5.3.11. Statistical analysis 

The data were analysed as a 5 × 2 factorial arrangement of treatments using the general 

linear model procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC.). Cage served 
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as the experimental unit. Significant differences between means were separated by Least 

Significant Difference test. In addition, data on inclusion level of barley in the diet (as an 

average for without and with enzyme supplementation) were subjected to orthogonal 

polynomial contrasts using the general linear model procedure of SAS to determine 

whether responses to increasing levels of barley had any linear or quadratic nature. 

Significance of effects was declared at P < 0.05. 

5.4. Results 

5.4.1. Pellet durability and enzyme recovery 

The pellet durability deteriorated with increasing inclusion of barley in the diet (Table 

5.1; P < 0.05). The average recovery of phytase, endo-1,3(4)-β-glucanase and endo-1,4-

β-xylanase from enzyme-supplemented diets were 130, 101 and 93.4%, respectively. 

5.4.2. Growth performance 

Mortality during the experiment was negligible. Only 11 out of the 400 birds died and the 

deaths were not related to any dietary treatment. The interaction between the inclusion 

level of barley and enzyme supplementation was not significant (P > 0.05) for any of the 

performance parameters (Table 5.2). Inclusion of WSHL barley had a significant (P < 

0.001) effect on FI and F/G. Increasing dietary inclusion of WSHL barley to 130 g/kg and 

above decreased FI, with the highest inclusion of WSHL barley (260 g/kg) showing the 

lowest FI. There was a gradual improvement in the F/G with increasing inclusions of 

barley. 

Addition of enzyme improved (P < 0.05) the F/G of birds at all barley inclusions. 

According to orthogonal polynomial contrasts, regardless of enzyme supplementation, 

both WG (P < 0.05) and FI (P < 0.001) reduced linearly with increasing barley inclusion 

in the diet. Increasing barley inclusion from 0 to 65 g/kg improved F/G, resulting in a 

quadratic effect (P < 0.05) of barley inclusion level. 
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Table 5. 2. Influence of barley inclusion (g/kg) and enzyme supplementation on weight gain 

(WG; g/bird), feed intake (FI; g/bird) and feed per gain (F/G; g feed/g gain) of broiler starters 

(d1-21) fed diets based on wheat and waxy starch hull-less barley1. 

Inclusion level of barley Enzyme WG FI F/G 

0 - 1102 1524 1.396 

 + 1128 1530 1.358 

     
65 - 1129 1489 1.326 

 + 1137 1492 1.322 

     
130 - 1135 1484 1.313 

 + 1101 1427 1.300 

     
195 - 1079 1419 1.317 

 + 1120 1429 1.283 

     
260 - 1073 1405 1.310  

+ 1100 1403 1.272 

    
   

SEM2   18.93 20.62 0.0154 

    
   

Main effects   
   

Inclusion level of barley    
   

0   1115 1527a 1.377a 

65   1133 1490ab 1.324b 

130   1118 1456bc 1.307bc 

195   1100 1424cd 1.300bc 

260   1086 1404d 1.291c 

    
   

Enzyme    
   

 - 1104 1464 1.333a 

 + 1117 1456 1.307b 

    
   

Probabilities, P ≤   
   

Inclusion level of barley   0.154 0.001 0.001 

Enzyme   0.272 0.545 0.012 

Inclusion level of barley × Enzyme   0.330 0.473 0.725 

     
Orthogonal polynomial contrast     

L3  0.041 0.001 0.001 

Q4  0.198 0.505 0.025 

Means in a column not sharing common letters (a,b,c,d) are different (P < 0.05). 
1Each value represents the mean of five replicates (eight birds per replicate). 
2Pooled standard error of mean. 
3L= Linear effect of inclusion level of barley. 
4Q= Quadratic effect of inclusion level of barley. 



118 

 

5.4.3. Nutrient digestibility and energy utilisation  

The results indicate no interaction between barley inclusion and enzyme supplementation 

for CAID of any analysed nutrient or AMEn (Table 5.3). Inclusion of WSHL barley 

increased CAID of DM, N and fat (P < 0.01 to 0.001), however, no differences were 

observed with level of inclusion. All barley diets showed a greater digestibility of DM, N 

and fat than the diet with no barley resulting in a significant quadratic effect (P < 0.05 to 

0.01) of barley inclusion level. Supplemental enzyme improved CAID of starch (P < 0.05) 

only.  

Because of consistent and significant (P < 0.001) effects of enzyme 

supplementation at each level of barley inclusion, no interaction (P > 0.05) between 

barley inclusion level and enzyme supplementation on AMEn was observed. Inclusion 

level of WSHL barley had a significant effect and elicited a progressive improvement of 

AMEn (linear effect, P < 0.001) with increasing level of barley in the diet. Regardless of 

barley inclusion level, carbohydrase supplementation improved (P < 0.05) the AMEn of 

the diet.   

5.4.4. Digestible nutrient and energy intake 

There was no interaction (P > 0.05) between the inclusion level of barley and enzyme 

supplementation for intake of digestible starch, protein and fat, and AMEn intake (Table 

5.4). Despite the lack of significant differences in CAID of starch across different 

inclusion levels, the digestible starch intake was affected (P < 0.001) by barley inclusion 

level. The highest and lowest digestible starch intakes were observed for 0 and 260 g/kg 

barley inclusion levels, respectively. Linear (P < 0.001) decline and increase was 

observed for digestible starch and fat intakes, respectively, with increasing dietary 

inclusion of WSHL barley. The digestible protein intake tended (P = 0.057) to decline 

linearly with increasing barley inclusion from 0 to 260 g/kg of the diet. There was no 

influence (P > 0.05) from enzyme supplementation on the digestible intake of any 

analysed nutrient. Inclusion level of barley had no significant effect (P > 0.05) on AMEn 

intake, but orthogonal polynomial contrasts revealed a linear drop (P < 0.05) in AMEn 

intake with increasing WSHL barley inclusion in the diet. The addition of enzyme 

increased (P < 0.05) the intake of AMEn. 
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Table 5. 3. Influence of barley inclusion (g/kg) and enzyme supplementation on coefficient of 

apparent ileal digestibility (CAID)1 of dry matter (DM), starch, nitrogen (N) and fat and N-

corrected apparent metabolisable energy (AMEn; MJ/kg DM)2 in broiler starters fed diets based 

on wheat and waxy starch hull-less barley. 

Inclusion level of barley Enzym

e 

DM Starch N Fat AMEn 

0 - 0.522 0.836 0.714 0.762 11.95 

 + 0.531 0.861 0.733 0.771 12.02 

       
65 - 0.548 0.853 0.755 0.831 12.04 

 + 0.568 0.878 0.768 0.813 12.19 

       
130 - 0.583 0.844 0.789 0.853 12.17 

 + 0.569 0.849 0.766 0.818 12.56 

       
195 - 0.562 0.809 0.777 0.846 12.17 

 + 0.586 0.855 0.773 0.846 12.67 

       
260 - 0.551 0.836 0.755 0.832 12.39  

+ 0.587 0.838 0.773 0.863 12.74   
         

SEM3 
 

0.014 0.014 0.015 0.018 0.099 

           
Main effects 

  
        

Inclusion level of barley 
  

        

0 
 

0.526b 0.849 0.723b 0.766b 11.98c 

65 
 

0.558a 0.866 0.761a 0.822a 12.12c 

130 
 

0.576a 0.847 0.778a 0.835a 12.36b 

195 
 

0.574a 0.832 0.775a 0.846a 12.42a

b 260 
 

0.569a 0.837 0.764a 0.847a 12.57a   
          

Enzyme 
 

           
- 0.553 0.836b 0.758 0.825 12.14b  
+ 0.568 0.856a 0.762 0.822 12.43a   

          
Probabilities, P ≤ 

 
          

Inclusion level of barley 
 

0.008 0.170 0.006 0.001 0.001 

Enzyme 
 

0.098 0.026 0.641 0.802 0.001 

Inclusion level of barley × Enzyme 
 

0.477 0.532 0.580 0.430 0.193 

       
Orthogonal polynomial contrast       

L4  0.003 0.091 0.006 0.001 0.001 

Q5  0.020 0.628 0.004 0.024 0.619 

Means in a column not sharing common letters (a,b,c) are different (P < 0.05). 
1Each value represents the mean of five replicates (six birds per replicate). 
2Each value represents the mean of five replicates (eight birds per replicate), measured from d-

17 to 20. 
3Pooled standard error of mean. 
4L= Linear effect of inclusion level of barley. 
5Q= Quadratic effect of inclusion level of barley. 
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5.4.5. Relative weights of proventriculus and gizzard, and jejunal digesta viscosity 

Neither the inclusion level of barley nor enzyme supplementation affected (P > 0.05) 

proventriculus weight (Table 5.5). However, inclusion level of barley significantly (P < 

0.001) affected the gizzard weight and a linear (P < 0.001) gain was observed with 

increasing inclusion of barley in the diet.  

No interaction between the inclusion level of WSHL barley and enzyme 

supplementation was evident for jejunal digesta viscosity (Table 5.5; P > 0.05). Both 

inclusion level of barley (P < 0.01) and enzyme supplementation (P < 0.001) reduced the 

jejunal digesta viscosity. Irrespective of enzyme supplementation, jejunal digesta 

viscosity dropped linearly (P < 0.001) with increasing barley inclusion in the diet. 

5.4.6. Intestinal morphology 

Neither barley inclusion level nor supplemental enzyme influenced (P > 0.05) duodenal 

villus height and epithelial thickness (Table 5.6). A significant (P < 0.05) barley inclusion 

× enzyme interaction was observed for duodenal goblet cell number. Enzyme addition 

increased the duodenal goblet cell number at 0 g/kg barley inclusion, but reduced goblet 

cell number at 260 g/kg barley inclusion with no effect at other barley inclusion levels. 

Showing a significant effect (P < 0.05), barley inclusion level influenced duodenal crypt 

depth in a quadratic manner (P < 0.01) with a reduction at 65, 130 and 195 g/kg barley 

inclusion levels, compared to 0 g/kg barley in the diet.  

The inclusion level of barley influenced the villus height, epithelial thickness and 

crypt depth in the jejunum (P < 0.011 to 0.001). Inclusion of barley at all levels resulted 

in greater jejunal villus heights compared to the diet with no barley. Barley inclusion at 

130 g/kg increased the jejunal epithelial thickness compared to other inclusion levels. The 

jejunal crypt depth increased beyond 65 g/kg of barley inclusion. Villus height, goblet 

cell number and epithelial thickness in the jejunum increased up to 130 g/kg barley 

inclusion, and declined afterwards, resulting in significant quadratic effects (P < 0.05 to 

0.001). A significant barley inclusion × enzyme interaction was observed for jejunal 

goblet cell number (P < 0.01). Supplemental enzymes reduced the jejunal goblet cell 

number at inclusion levels of 65, 130 and 260 g/kg. 
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Table 5. 4. Influence of barley inclusion (g/kg) and enzyme supplementation on digestible nutrient 

(starch, protein and fat) intake1 (g/bird) and nitrogen-corrected apparent metabolisable energy 

(AMEn)2 intake (MJ/bird) of broiler starters from 1 to 21 d, fed diets based on wheat and waxy-

starch hull-less barley. 

Inclusion level of barley Enzyme Starch Protein Fat AMEn 

0 - 438 272 22.2 16.07 

 + 452 280 22.5 16.23 

      
65 - 423 284 36.5 15.85 

 + 436 289 35.7 16.10 

      
130 - 404 289 49.4 16.04 

 + 390 270 45.5 15.91 

      
195 - 357 271 59.8 15.30 

 + 380 271 60.2 16.04 

      
260 - 353 266 68.7 15.55 

 + 354 272 71.1 15.96 

      
SEM3  7.8 6.9 1.11 0.193 

      
Main effects 

 
    

Inclusion level of barley 
 

    

0  445a 276 22.4e 16.15 

65  429a 287 36.1d 15.97 

130 
 

397b 280 47.4c 15.97 

195 
 

369c 271 60.0b 15.67 

260 
 

353c 269 69.9a 15.76   
    

Enzyme      

 - 395 276 47.3 15.76b 

 + 402 276 47.0 16.05a 

      
Probabilities, P ≤ 

 
    

Inclusion level of barley 
 

0.001 0.098 0.001 0.119 

Enzyme  0.133 0.982 0.678 0.025 

Inclusion level of barley × Enzyme 
 

0.177 0.278 0.095 0.266 

      
Orthogonal polynomial contrast      

L4  0.001 0.057 0.001 0.022 

Q5  0.814 0.149 0.039 

 

0.688 

Means in a column not sharing common letters (a,b,c,d,e) are different (P < 0.05). 
1Digestible nutrient intake (g/bird) = Feed intake (kg) × nutrient content of the feed (g/kg) × 

coefficient of apparent ileal digestibility of nutrient. Each value represents the mean of five 

replicates (six birds per replicate). 
2AMEn intake (MJ/bird) = Feed intake (kg, DM) × AMEn of the feed (MJ/kg, DM). Each value 

represents the mean of five replicates (eight birds per replicate), measured from d-17 to 20. 
3Pooled standard error of mean. 
4L= Linear effect of inclusion level of barley. 
5Q= Quadratic effect of inclusion level of barley. 
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Table 5. 5. Influence of barley inclusion (g/kg) and enzyme supplementation on relative weight 

and pH of proventriculus (prov.) and gizzard (g/kg of body weight), and viscosity in jejunal 

digesta (cP) of 21-d old broilers fed diets based on wheat and waxy-starch hull-less barley1. 

Inclusion level of barley Enzyme Relative weight  Jejunal digesta 

viscosity Prov. Gizzard  

0 - 3.87 7.59  5.32 

 + 3.48 7.30  4.65 

      
65 - 3.89 8.38  4.98 

 + 3.93 8.41  3.61 

      
130 - 3.48 8.55  4.19 

 + 3.47 8.85  3.62 

      
195 - 3.87 9.99  4.27  

+ 3.49 9.63  3.31 

      
260 - 3.62 10.3  4.19 

 + 3.54 10.2  2.82 

      
SEM2  0.310 0.524  0.38 

      
Main effects      

Inclusion level of barley      

0  3.68 7.45c  4.99a 

65  3.91 8.39bc  4.29ab 

130  3.47 8.70b  3.91bc 

195  3.68 9.81a  3.79bc 

260  3.58 10.3a  3.51c 

 
 

    
Enzyme - 3.75 8.97  4.59a 

 + 3.58 8.89  3.60b 

      
Probabilities, P ≤      

Inclusion level of barley  0.704 0.001  0.004 

Enzyme  0.399 0.809  0.001 

Inclusion level of barley × Enzyme 0.929 0.971  0.728 

      
Orthogonal polynomial contrast     

L3  0.527 0.001  0.001 

Q4  0.985 0.911  0.344 

Means in a column not sharing common letters (a,b,c) are different (P < 0.05). 
1Each value represents the mean of five replicates (two birds per replicate). 
2Pooled standard error of mean. 
3L = Linear effect of inclusion level of barley. 
4Q = Quadratic effect of inclusion level of barley. 
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Table 5. 6. Influence of barley inclusion (g/kg) and enzyme supplementation on villus height (µm), goblet cell number 

(per 100 µm villus height), epithelial thickness (µm) and crypt depth (µm) of the duodenum and jejunum of 21-d old 

broilers fed diets based on wheat and waxy starch hull-less barley1. 

Inclusion 

level of 

barley 

Enzyme 

Duodenum  Jejunum 

Villus 

height 

Goblet 

cell 

number 

Epithelial 

thickness 

Crypt 

depth 
 

Villus 

height 

Goblet 

cell 

number 

Epithelial 

thickness 

Crypt 

depth 

0 - 1081 13.5cd 20.1 94.3  605 13.5de 17.7 78.5 

 + 1097 15.9ab 22.4 90.1  579 15.6bcd 18.0 80.7 

           
65 - 1077 16.5a 20.6 86.9  657 17.3ab 19.2 75.5 

 + 963 14.6abcd 21.6 84.5  632 14.9cde 18.3 76.8 

           
130 - 1007 15.1abc 20.7 84.5  720 17.8a 21.1 80.6 

 + 1051 14.1bcd 21.5 89.5  649 14.9cde 20.2 87.0 

           
195 - 1011 14.2bcd 21.5 88.2  636 15.5bcd 18.7 81.6 

 + 1074 14.7abcd 21.3 87.3  690 13.9de 18.8 81.8 

           
260 - 1001 16.3a 20.7 89.4  688 16.3abc 18.7 82.2 
 + 1017 12.8d 20.1 91.8  638 13.0e 17.8 80.4 
  

         
SEM2  44.5 0.738 0.61 2.19  25.9 0.81 0.64 1.99 
      

 
    

Main effects          

Inclusion level of 

barley 
         

0  1089 14.7 21.2 92.2a  592b 14.5 17.8b 79.6b

c 65  1020 15.5 21.1 85.7c  645a 16.1 18.8b 76.1c 

130  1029 14.6 21.1 87.0b

c 
 685a 16.3 20.6a 83.8a 

195  1043 14.4 21.4 87.7b

c 
 663a 14.7 18.8b 81.7a

b 260  1009 14.5 20.4 90.6a

b 
 663a 14.6 18.3b 81.3a

b   
         

Enzyme           

 - 1035 15.1 20.7 88.7  661 16.1 19.1 79.7 

 + 1041 14.4 21.4 88.6  638 14.5 18.6 81.3 
  

         
Probabilities, P ≤          

Inclusion level of 

barley 
0.415 0.568 0.575 0.022  0.008 0.058 0.001 0.004 

Enzyme  0.854 0.126 0.085 0.981  0.154 0.002 0.248 0.198 

Inclusion level of 

barley × Enzyme 
0.308 0.002 0.156 0.231  0.168 0.009 0.752 0.336 

           
Orthogonal polynomial contrast 

L3  0.167 0.422 0.338 0.814  0.008 0.567 0.557 0.050 

Q4  0.523 0.765 0.382 0.002  0.019 0.031 0.001 0.498 

Means in a column not sharing common letters (a,b,c,d,e) are different (P < 0.05). 
1Each value represents the mean of five replicates (two birds per replicate, 10 readings per bird). 
2Pooled standard error of mean. 
3L = Linear effect of inclusion level of barley. 
4Q = Quadratic effect of inclusion level of barley. 
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5.5. Discussion 

With a higher level of amylopectin and lower starch gelatinisation temperature compared 

to normal starch types, waxy cultivars of barley can benefit poultry feed in terms of starch 

hydrolysis (Li et al., 2004a) and physical pellet quality (Ankrah et al., 1999). According 

to Ankrah et al. (1999), equivalent pellet hardness in WSHL was achieved at a lower 

temperature (by 14.2 °C) than in normal starch hull-less barley. Even though better pellet 

quality was anticipated at greater dietary inclusions of WSHL, the higher levels of 

soybean oil used to equalise the AME contents across diets compromised the potential 

economic advantage offered by the inclusion of WSHL. High dietary fat lubricates feed 

particles and reduces the friction generated in the die holes, resulting in lower physical 

pellet quality. Dietary fat also partially covers feed particles and creates a barrier for 

penetration of steam to feed particles, reducing starch gelatinisation and development of 

binding adhesions (Löwe, 2005; Abdollahi et al., 2013a). 

Despite the absence of effect of WSHL barley inclusion on WG and consistent 

with the previous studies (Moss et al., 1983; Friesen et al., 1992), orthogonal polynomial 

contrasts showed that WG reduced linearly with increasing WSHL inclusion in the diet. 

This observation can be attributed to the decreasing FI at dietary inclusions of WSHL 

beyond 65 g/kg. In the current study, FI linearly decreased with increasing inclusion of 

WSHL in the diet. In contrast, Yu et al. (2002) reported a linear increase in FI with 

increasing dehulled barley inclusion in a maize-based diet (0, 400 and 800 g/kg), which 

was partly attributed to improved palatability due to the removal of fibrous hull. The 

AMEn increased with increasing inclusions of barley in the diet, and the lower FI 

associated with higher WSHL inclusion (130, 195 and 260 g/kg) may be reflective of 

birds’ attempt to maintain a constant energy intake (Classen, 2017), and is supported by 

similar AMEn intakes of the birds fed diets with different WSHL inclusions. The 

declining FI with increasing barley inclusion in the diet corresponded to lower PDI at 

these inclusion levels and support the positive relationship between pellet physical quality 

and FI suggested by Abdollahi et al. (2018). 

Compared to the diet with no barley, WSHL inclusion at 65, 130, 195 and 260 

g/kg improved the F/G by 5.3, 7.0, 7.7 and 8.6 points, respectively. Regardless of barley 

inclusion level, this improvement was 5.1% (0.729 vs. 0.766), compared to the diet with 

no barley. Consistent treatment effects on jejunal digesta viscosity, relative weight of 



125 

 

gizzard and F/G of birds explain the underlying reasons for improved feed efficiency in 

birds fed greater inclusion of barley and suggested the contribution of the changes in the 

digestive tract caused by dietary NSP sources on the feed efficiency of birds. 

Moss et al. (1983), replaced wheat (w/w basis) with 0, 272, 408 and 544 g/kg of 

waxy starch hulled barley (cultivar, Wapana) in a broiler diet with no enzyme addition 

and reported that increasing levels of barley consistently decreased WG, but had no effect 

on F/G. Classen et al. (1988) substituted hull-less barley (cultivar, Scout; starch type, 

unidentified) on weight basis (0, 200, 400 and 600 g/kg) for wheat in a broiler starter diet 

and reported a linear decrease in BW with increasing levels of hull-less barley in the diet, 

while no depression was reported for F/G. Friesen et al. (1992) evaluated the influence 

of different inclusion levels of hull-less barley (0, 350 and 700 g/kg) in a wheat diet and 

supplementation of a cellulase enzyme on growth performance and, energy and nutrient 

utilisation in 14-d old broilers. Weight gain and F/G of birds fed the non-supplemented 

hull-less barley at 350 g/kg was similar to those fed the control wheat diet, wherein barley 

inclusion at 700 g/kg resulted in the lowest WG and highest F/G. The deterioration of 

growth performance associated with barley inclusion reported in previous studies may be 

partly explained by weight-to-weight substitution of barley for the major cereal in the 

diets (Moss et al., 1983; Friesen et al., 1992), resulting in lower metabolisable energy and 

digestible AA content than the corresponding cereal-based diet. Yu et al. (2002) evaluated 

the inclusion of de-hulled barley at levels of 0, 400 and 800 g/kg, and supplementation of 

β-glucanase in isonitrogenous and isocaloric maize-based diets. Contrary to the current 

results, these reserachers reported that increasing inclusion of barley increased FI and 

WG with no effect on the feed efficiency. The improvement in WG and FI reported by 

Yu et al. (2002) was attributed mainly to the greater amounts of fat added to the diets 

with higher inclusion of dehulled barley with a low energy value. Moreover, both the 

greater amount of fat and the removal of fibrous hull from barley in Yu et al. (2002) was 

believed to increase the palatability of the diets, improving the FI and WG. 

As indicated by the absence of significant interaction between barley inclusion 

and enzyme addition, the efficacy of the enzyme on F/G was similar at each barley 

inclusion level and contributed to F/G by 2.6 points. In partial agreement with the current 

observation, Yu et al. (2002), who evaluated the inclusion of de-hulled barley and 

supplementation of β-glucanase in isonitrogenous and isocaloric maize-based diets, also 
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reported that added enzyme failed to improve WG, FI and F/G. Using a barley type similar 

to the current study, Ankrah et al. (1999) reported improved WG (429 vs. 650 g), FI (907 

vs. 1083 g) and lowered F/G (2.12 vs. 1.67) in birds fed WSHL barley-based diets (610 

g/kg) supplemented with β-glucanase. Bergh et al. (1999), in a study with a hulled waxy 

starch barley-based (696 g/kg) diet, reported increased BW (216 vs. 254 g) and FI (366 

vs. 400 g), and lowered F/G (2.07 vs. 1.86) in 13-d old broilers due to carbohydrase 

enzyme supplementation. Although the enhanced BW and FI due to enzyme 

supplementation reported by Ankrah et al. (1999) and Bergh et al. (1999) was not evident 

in the current study, enhanced feed efficiency due to supplemental enzymes reported by 

these researchers was consistent with present findings. 

Compared to the diet with no barley, WSHL inclusion supported higher CAID of 

DM by 8.2% (0.569 vs. 0.526), N by 6.4% (0.769 vs. 0.723) and fat by 9.3% (0.837 vs. 

0.766), and this advantage was present regardless of barley inclusion level. 

Interestingly, the inclusion of waxy barley, despite having higher amylopectin 

content than wheat (477 vs. 388 g/kg DM) which is thought to be highly digestible 

(Björck et al., 1990), did not cause any improvement in starch digestibility. Svihus and 

Hetland (2001) hypothesised that a well-developed gizzard can prevent starch overload 

in the digestive tract and facilitate better starch digestion. A close relationship between 

gizzard size and starch digestibility has also been reported in previous studies (Rogel et 

al., 1987a,b; Hetland et al., 2003; Amerah et al., 2009). Despite an increase of 38% in 

relative gizzard weight (10.3 vs. 7.45 g/kg BW) and 42% reduction in digesta viscosity 

(3.51 vs. 4.99 cP) of the broilers fed diet with 260 g/kg WSHL compared to the wheat-

based diet in this study, CAID of starch was unaffected. The poor response of starch 

digestibility to variations in digesta viscosity has been previously reported (Carré et al., 

2002; Zaefarian et al., 2015). It can be speculated that the extent of encapsulated starch 

might be increased with increasing inclusion of barley, owing to thicker endosperm cell 

walls in WSHL as observed in Chapter 3, and resulted in no effect from inclusion level 

on starch digestibility.  

Regardless of barley inclusion level, enzyme supplementation enhanced CAID of 

starch by 2.4% (0.856 vs. 0.836). Ankrah et al. (1999) and Ravindran et al. (2007) found 

similar results investigating the effect of a carbohydrase in barley-based diets. Among 

different modes of action of NSP-degrading enzymes, starch digestibility seemed to 
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benefit from degradation of endosperm cell wall by added enzymes. This could 

consequently increase the release of encapsulated starch granules allowing better 

interaction with digestive enzymes (Hesselman and Åman, 1986; Bedford, 1996). 

The prominent influence of enzyme supplementation to improve fat digestibility 

has been previously observed as fat digestion is the most affected by increased digesta 

viscosity caused by soluble NSP (Edney et al., 1989; Almirall et al., 1995; Choct and 

Annison, 1992a). In the present study, despite 42% reduction in jejunal digesta viscosity 

(4.59 vs. 3.60 cP) in enzyme-supplemented diets, no enzyme effect on CAID of fat was 

observed. This finding might indicate the presence of factors other than digesta viscosity, 

such as fat type (Dänicke et al., 1997) that can affect the efficacy of supplemental 

enzymes on digestibility of fat in birds fed grains rich in NSP. 

The association between the changes in starch digestibility and AMEn of the diets 

reported in previous studies suggest that digestible starch is the major contributor to the 

AME in barley- (Wu et al., 2004a; Ravindran et al., 2007) and wheat- (Mollah et al., 

1983) based diets. However, the lack of relationship between the CAID of starch and 

AMEn, and greater CAID of fat in barley containing diets in the current study suggests 

that improved AMEn with increasing inclusion of barley might be associated more with 

fat digestibility and digestible fat intake in WSHL diets. As discussed earlier, the amount 

of soybean oil was increased with increasing WSHL inclusion to balance the AME 

content across the experimental diets.  

In the current study, regardless of the supplemental enzyme, all barley diets 

showed a similar level of N digestibility that was greater than that of the 0 g/kg barley 

diet. Compared to the diet with no barley, WSHL inclusion at 65, 130, 195 and 260 g/kg 

improved the CAID of N by 5.26, 7.61, 7.19 and 5.67% respectively. Rotter et al. (1990) 

replaced wheat with hull-less barley (cultivar, Scout) at 250 g/kg increments up to 750 

g/kg in the diet and reported a reduction in apparent excreta protein digestibility from 

89.5 to 76.1% and AMEn from 14.8 to 11.6 MJ/kg. In their study, a supplemental crude 

cellulase resulted in uniform response in both the apparent protein digestibility (89.9-

90.8%) and AMEn (14.7-15.1 MJ/kg) regardless of hull-less barley inclusion level. In 

this study, however, barley replaced wheat on a weight-to-weight basis, resulting in 

dietary treatments being different in respect to energy (ranging from 12.54 to 13.22 

MJ/kg) and protein (ranging from 218 to 232 g/kg) contents. Friesen et al. (1992) reported 
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quadratic reductions in the apparent excreta digestibility of protein with increasing 

inclusions of hull-less barley (0, 350 and 700 g/kg diet) in non-supplemented wheat-based 

diets. These researchers also observed linear reductions in the apparent excreta 

digestibility of lipids, with increasing inclusion of hull-less barley in non-supplemented 

diet. Yu et al. (2002) reported that increasing inclusions of processed de-hulled barley (or 

pearled barley) in maize-based diets at levels of 0, 400 and 800 g/kg, linearly reduced 

DM and digestibility coefficients from 0.726 to 0.698 and from 0.760 to 0.693, 

respectively, in three-week old broiler chicks. In six-week old birds, DM digestibility 

linearly decreased from 0.753 to 0.704, while digestibility of fat quadratically reduced 

from 0.803 to 0.757, with the lowest fat digestibility noted at 400 g barley/kg diet. The 

protein digestibility was unaffected by the inclusion level of barley at both ages.  

Decreasing FI of birds and similar CAID of starch in diets with increasing 

inclusion of WSHL in the diet resulted in lower starch intakes in birds fed diets with 

barley inclusion beyond 65 g/kg. Compared to the diet with no barley, WSHL inclusion 

at 65, 130, 195 and 260 g/kg lowered the digestible starch intake by 16, 48, 76 and 92 

g/bird, respectively. In contrast, the corresponding increases in digestible fat intake were 

13.7, 25.0, 37.6 and 47.5 g/bird, respectively. The marked differences in digestible fat 

intake between dietary treatments were due to the greater incorporation of soybean oil 

into the diets with higher barley inclusions.  

The effect of structural components such as insoluble fibre (hulls and wood 

shavings) on gizzard development is well documented (Rogel et al., 1987a; Hetland et 

al., 2003; Amerah et al., 2009; Svihus, 2011a; Abdollahi et al., 2019a). In the current 

study, the relative gizzard weight increased linearly by 38% (from 7.45 to 10.3 g/kg BW) 

with increasing inclusions of WSHL from 0 to 260 g/kg in the diet. However, the larger 

gizzards associated with the diet containing 260 g WSHL/kg could not have been caused 

solely by insoluble fibre as the insoluble NSP content in 260 g/kg barley diets (66.0 g/kg 

DM) was lower than the insoluble NSP content in the diet with no barley inclusion (74.9 

g/kg DM). Moreover, due to the impaired FI in birds fed higher inclusions of WSHL in 

the diet, insoluble NSP intake of the birds fed the 260 g/kg barley diet was lower 

compared to the birds fed 0 g/kg barley diet (92.7 vs. 114 g/bird), suggesting a 

contribution of factors other than insoluble fibre content on gizzard development. 

Although the wheat and barley grains were not tested for grain hardness in the current 
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study, according to scanning electron microscopic images of the same grains obtained in 

Chapter 3, WSHL seemed to have thicker endosperm cell walls compared to wheat. Nair 

et al. (2011), who observed the microscopic images of endosperms of hard and soft-hulled 

spring barley lines, also reported thicker endosperm cell walls in hard barley lines. 

Moreover, Gamlath et al. (2008) reported that both β-glucan and arabinoxylan contents 

of the barley endosperm positively correlated with kernel hardness in barley. Therefore, 

it may be speculated that the WSHL barley in the current experiment had a greater grain 

hardness than wheat, which facilitated gizzard development to meet the increased 

requirement for grinding activity in the gizzard. More extensive grinding, increased 

retention time, regulation of digesta flow, lower pH and greater pancreatic enzyme 

secretion (Svihus, 2011a) by developed gizzards might have facilitated the improvements 

in F/G, AMEn, and digestibility of DM, N and fat at higher levels of barley inclusion. 

However, the reported advantage of having a well-developed gizzard on starch 

digestibility (Rogel et al., 1987a,b; Svihus and Hetland, 2001) was not observed in this 

study. 

Surprisingly, regardless of the higher content of β-glucan in WSHL compared to 

wheat (68.6 vs. 7.74 g/kg DM; Chapter 3), the highest (4.99 cP) and lowest (3.51 cP) 

jejunal digesta viscosity values were observed for the 0 and 260 g/kg of WSHL, 

respectively. In agreement, Shakouri et al. (2009) reported higher digesta viscosity in 

broilers fed wheat-based diets (5.74 cP) compared to barley-based diets (2.92 cP). In 

contrast, Fuente et al. (1995) and Yu et al. (1998) reported increasing digesta viscosity in 

response to increasing inclusion of barley in the diet. This discrepancy in the literature 

suggests that digesta viscosity is reflective not only of the concentration of NSP, but also 

of its molecular weight. It has been suggested that a low content of soluble NSP can result 

in high intrinsic viscosity if the NSP is of a high molecular weight (Saulnier et al., 1995; 

Dusel et al., 1997; Cowieson et al., 2005). Moreover, Dusel et al. (1997) suggested the 

contribution of wheat gluten and its endosperm proteins (gliadins and glutenins) towards 

increased viscosity of aqueous extract of wheat flour. Due to the greater digesta viscosity 

observed in birds fed diets with low barley inclusion (i.e., greater content of wheat) in the 

current study, it is possible that the wheat cultivar contained NSP of high molecular 

weight, with a consequent increase in jejunal digesta viscosity regardless of NSP 

concentration. 
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In agreement with previous studies (Salih et al., 1991; Almirall et al., 1995; 

Józefiak et al., 2006), enzyme supplementation reduced the digesta viscosity by 0.99 cP, 

a reduction of 22%. The reduction in digesta viscosity due to the action of enzyme was 

associated with increases in starch digestibility, AMEn and F/G by 2.4%, 0.29 MJ/kg, 

and 2.6 points, respectively.   

Jejunal villus heights were different only between 0 g/kg barley diet and all barley-

included diets, while no differences were observed between different inclusions of barley. 

Interestingly, consistent treatment effects of jejunal villus height and DM, N and fat 

digestibility values in response to barley inclusion were observed, suggesting the 

contribution of increased absorptive surfaces on enhanced nutrient digestibility and 

consequently on AMEn and F/G. In contrast to the increased jejunal villus height caused 

by barley inclusion in wheat-based diets, inclusion of barley in maize-based diets, 

however, resulted in shorter jejunal villi (Viveros et al., 1994; Onderci et al., 2008; 

Kalantar et al., 2016). Shakouri et al. (2009) reported lower jejunal villus height in birds 

fed diets with 600 g/kg barley compared to diets containing maize, wheat or sorghum 

(623 g/kg). 

The goblet cells in the chicken intestine secrete mucin glycoproteins, which are 

the main components of the mucus layer that protects epithelial cells and transports 

nutrients between the lumen and brush border membrane (Specian and Oliver, 1991; 

Wang and Peng, 2008). The lack of response from gut morphology parameters (except 

duodenal and jejunal goblet cell number) to enzyme supplementation was in agreement 

with Iji et al. (2001) and Wu et al. (2004b). The interactive influence of barley inclusion 

level and supplemental enzyme was observed as supplemental carbohydrase caused 

different responses in duodenal goblet cell numbers at 0 and 260 g/kg WSHL inclusions 

in the diet. In accordance with the present observation at 0 g/kg of barley inclusion (i.e., 

sole inclusion of wheat), Wu et al. (2004b) reported that xylanase supplementation tended 

to increase the duodenal goblet cell number in broilers fed wheat-based diets.  

When alternative feed ingredients are included in commercial poultry diets, the 

current practice in the feed industry is to balance the energy and AA contents across the 

diets. It is, therefore, important that research data on the use of alternative ingredients 

should be generated using diets to resemble the feeding practice commonly used in the 

feed industry. To ensure the compatibility of the current research design to industry 
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context, the experimental diets were formulated to be isocaloric and isonitrogenous. 

Although the current design had some limitations, the results nevertheless have 

implications to the understanding of the effect of barley inclusion and supplemental 

enzyme on the growth performance and nutrient digestibility of broilers. First, 

considering the low AMEn value of WSHL, WSHL was included only up to 260 g/kg in 

the wheat-based diet to minimise the confounding effects associated with higher 

inclusions of dietary fat. Second, soybean oil added to equalise the energy content across 

the diets that might have resulted in a confounded fat effect especially on pellet durability 

and, fat and energy utilisation. However, a pellet binder was added to all diets to minimise 

the impact of higher fat inclusion on pellet quality.  

5.6. Conclusions 

The fact that maximum WSHL inclusion in the current study had no compromising effect 

on WG and even improved F/G efficiency suggests that WSHL could be safely included 

up to an inclusion level of 260 g/kg in a wheat-based broiler starter diet. Although one 

may question the applicability of this inclusion level for other barley cultivars, it is 

important to note that the broader objective of this study was to emphasise the importance 

of using nutrient profiles for the specific barley cultivar based on measured contents of 

AMEn and digestible AA to formulate barley-based diets and therefore, the optimum 

inclusion level obtained for the WSHL examined in this study may not be recommended 

to other barley types. The results of the present study confirmed the previously reported 

benefits of exogenous carbohydrases on starch digestibility, energy utilisation, digesta 

viscosity and feed efficiency when added to diets based on viscous grains. 
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CHAPTER SIX 

The interactive influence of barley particle size and enzyme supplementation on 

growth performance, nutrient utilisation and intestinal morphometry of broiler 

starters4 

6.1. Abstract  

The influence of barley particle size and enzyme supplementation on performance, 

nutrient and energy utilisation, and intestinal morphometry of broiler starters (d 1-21) fed 

pelleted barley-based diets was evaluated. Two barley particle sizes (fine and coarse) and 

four enzyme treatments (non-supplemented [control], carbohydrase [0.15 g/kg of feed; 

Carb], phytase [0.10 g/kg; Phy] and combination of carbohydrase and phytase [0.15 and 

0.10 g/kg, respectively; Carb + Phy]) were evaluated in a 2 × 4 factorial arrangement. 

Fine and coarse barley particles were achieved by grinding whole barley in a hammer 

mill to pass through 2.0 and 8.0 mm screens, respectively. A total of 384, one-d-old male 

broilers (eight birds/cage; six cages/treatment) were used. Supplemental enzymes tended 

(P = 0.056) to increase the weight gain of birds with a synergetic effect from Carb + Phy. 

The response of feed intake to supplemental enzymes interacted (P < 0.05) with barley 

particle size, as Phy increased feed intake only in fine barley diets. Both coarse particles 

and supplemental Carb, either individually or in combination with phytase, reduced feed 

per gain (P < 0.001). Digestibility of dry matter, nitrogen and fat was greater in birds fed 

coarse barley diets (P < 0.05). Dry matter, starch, fat and phosphorus digestibility values 

were improved by supplemental enzymes (P < 0.05). Coarse barley (P < 0.05) and Carb 

(P < 0.001), either individually or in combination, increased the nitrogen-corrected 

apparent metabolisable energy. Coarse barley reduced the gizzard pH (P < 0.001). Birds 

fed diet with supplemental enzymes had shorter jejunum (P < 0.05). Neither the barley 

particle size nor supplemental enzymes (P > 0.05) affected the jejunal digesta viscosity. 

In summary, feeding coarse barley particles and supplemental Carb improved the feed 

efficiency, and nutrient and energy utilisation. The effects of barley particle size on 

measured parameters suggest that the particle size effect was preserved even after 

pelleting. The combination of Carb and Phy tended to improve the weight gain but caused 

no further improvements in nutrient utilisation.
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6.2. Introduction 

Due to possible impairment of pellet physical quality associated with coarser grain 

particles, fine grinding of ingredients followed by pelleting has become the standard 

practice in feed manufacture. However, the lack of structural components in highly 

processed poultry diets masks the benefits offered by superior pellet quality and, result in 

sub‐optimal functionality of the foregut followed by feed overconsumption, poor nutrient 

digestibility, and increased consumption of litter leading to poor intestinal health (Hetland 

et al., 2004; Svihus, 2011a; Rodrigues and Choct, 2018). This concern has increased the 

interest on methods to restore the structure of the diet. Inclusion of insoluble fibre sources 

(Hetland et al., 2004), coarse cereal particles (Amerah et al., 2007a; Abdollahi et al., 

2019a) or whole grains (Singh et al., 2014) in broiler diets has been practised to improve 

the physical microstructure of feed. However, insoluble fibre and whole grains can only 

be incorporated up to a certain level due to possible nutrient dilution, feed intake (FI) 

depression and increased segregation (Singh et al., 2014; Rodrigues and Choct, 2018). 

Manipulation of grain particle size therefore provides a promising solution due to easier 

adaptation into normal feed processing practice.  

Cereal grains are ground to reduce the particle size with the aim of modifying their 

physical characteristics. Grinding facilitates handling, mixing and further processing 

(extrusion and pelleting) and increases the exposure of nutrients in the endosperm to 

digestive enzymes (Amerah et al., 2011). Fine grinding results in greater surface area, 

and consequently greater substrate availability for enzymatic digestion, and decreases 

segregation ensuring the homogeneity of mixed feed. Coarse grinding, on the other hand, 

stimulates gizzard development and functionality, facilitating digestion of nutrients 

through enhanced grinding activity and gut motility (Amerah et al., 2007a). A key benefit 

of feeding coarse particles is stronger reverse peristaltic contractions between the gizzard 

and proventriculus resulting in increased secretion of hydrochloric acid and proteolysis 

by pepsin (Svihus, 2011a). Accordingly, the use of coarse particles in pelleted diets may 

optimise intestinal development and function (Abdollahi et al., 2019a).  

However, the pelleting process may further reduce the size of feed particles, 

especially of coarser particles, and equalise the differences in particle size distribution 

(Svihus et al., 2004; Amerah et al., 2007b; Abdollahi et al., 2013a), suggesting that the 

particle size impact is more pronounced in mash diets than in pelleted or crumbled diets 
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(Zaefarian et al., 2016). However, some reports indicate that the effects of feed particle 

size on bird performance exist even after pelleting (Nir et al., 1995; Naderinejad et al., 

2016). Moreover, recommendations regarding the optimum particle size are contradictory 

due to the confounding effects from several factors including grain type, feed form, 

complexity of the diet, endosperm hardness, grinding method, particle size distribution 

and pellet quality (Amerah et al., 2007a; Abdollahi et al., 2018). The influence of grain 

particle size on growth performance and nutrient utilisation of broilers fed maize- 

(Amerah and Ravindran, 2009; Naderinejad et al., 2016) and wheat- (Lentle et al., 2006; 

Amerah et al., 2007b; Abdollahi et al., 2019a) based diets has been examined, but 

corresponding studies with barley are lacking. 

In addition to carbohydrases (Carb) that target non-starch polysaccharides (NSP) 

present in viscous grains such as wheat and barley, phytases (Phy) are routinely added to 

cereal-based diets to facilitate the release of phytate-bound phosphorus (P) and reduce the 

P effluent from intensive poultry production (Ravindran et al., 1995). Several researchers 

have evaluated the individual and combined supplementation of Carb and Phy to maize- 

(Juanpere et al., 2005), wheat- (Ravindran et al., 1999; Wu et al., 2004a,b; Juanpere et 

al., 2005; Abdollahi et al., 2016) and barley- (Ravindran et al., 1999; Wu et al., 2004a; 

Juanpere et al., 2005) based diets. The combination of Carb and Phy is believed to 

facilitate each other’s substrate access; however, the effects seem to be inconsistent (Selle 

et al., 2003b) and require further elucidation.  

With the aim of maximising the benefit from supplemental enzymes, only a 

limited number of studies has focused on determining the optimum dietary conditions for 

enzyme action. Along with many other factors, particle size was recognised to cause 

variability in responses to supplemental enzymes (Ravindran, 2013) and their 

effectiveness could be improved by optimising the particle size in diet formulations 

(Amerah et al., 2008b). Consequently, there has been some interest in the interaction 

between particle size and supplemental enzymes (Amerah et al., 2011). Findings from 

limited studies that evaluated the interaction between particle size of maize (Kasim and 

Edwards, 2000; Amerah and Ravindran, 2009) and wheat (Amerah et al., 2008b) and 

supplemental enzymes are contradictory and, to the authors’ knowledge, no 

corresponding studies are available with barley. Moreover, the interaction of particle size 

and supplemental enzymes can be influenced by the feed form due to pelleting-induced 
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particle size reduction. Accordingly, the present study was conducted to assess the 

potential interactive influence of barley particle size and Carb and Phy addition, 

individually or in combination, on growth performance, nutrient digestibility and 

intestinal morphometry of broiler starters fed pelleted diets.  

6.3. Materials and methods 

6.3.1. Enzymes 

A multi-component NSP-degrading enzyme, Ronozyme® Multigrain (produced by 

Trichoderma reesei, also known as Trichoderma longiabrachiatum), and Ronozyme® 

HiPhos were obtained from DSM Nutritional Products, Australia. The activities of endo-

1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in Ronozyme® 

Multigrain were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. One unit of β-

glucanase activity (BGU) is defined as the quantity of enzyme that releases 1.0 µmol of 

reducing moieties from 1.5% β-glucan per minute at pH 5.0 at incubation temperature of 

40 °C for 20 min. One unit of xylanase activity (XU) is defined as the quantity of enzyme 

that releases 1.0 µmol of reducing moieties from 1.5% arabinoxylan per minute at pH 5.0 

and incubation temperature of 40 °C for 20 min. Ronozyme® HiPhos is a granular 6-

phytase preparation expressed by submerged fermentation of Aspergillus oryzae and 

contains > 10,000 phytase units/g (FYT). One FYT is defined as the activity of enzyme 

that releases 1.0 μmole of inorganic P/min from 5.0 mM sodium phytate at pH 5.5 at 37 

ºC (DSM Nutritional Products Ltd., 2013). The activities of phytase, endo-1,3 (4)-β-

glucanase and endo-1,4-β-xylanase in samples of pelleted diets were measured at 

Biopract GmbH, Berlin, Germany. The enzyme recovery was calculated as the percentage 

of measured enzyme activity in the diet to the expected enzyme activity estimated from 

the amount and minimum activity (DSM Nutritional Products Ltd., 2013) of enzymes 

added to the diets.  

6.3.2. Diets 

Normal-starch hulled barley (cultivar, Fortitude), obtained from a seed company (Luisetti 

Seeds Ltd, Rangiora, New Zealand), was ground in a hammer mill to pass through 2.0 

and 8.0 mm screens, to achieve fine and coarse barley particles, respectively. Nutrient 

composition, nitrogen (N)-corrected apparent metabolisable energy (AMEn) and 

standardised digestible amino acid contents of barley, determined in Chapter 3, were used 
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to formulate a basal diet to meet the Ross 308 strain recommendations for major nutrients 

for broiler starters (Ross, 2019; Table 6.1). The basal diet contained 4.8 g/kg non-phytate 

phosphorus. Two diets, mixed using fine or coarse barley, were developed into eight 

dietary treatments using four methods of enzyme supplementation: non-supplemented 

(control), carbohydrase (0.15 g/kg of feed; Carb), phytase (0.10 g/kg; Phy) and 

combination of carbohydrase and phytase (0.15 and 0.10 g/kg, respectively; Carb + Phy). 

The diets contained 5.0 g/kg of titanium dioxide (TiO2, Merck KGaA, Darmstadt, 

Germany) as an indigestible marker to determine ileal nutrient digestibility. Diets were 

mixed in a single-screw paddle mixer. Following mixing, all diets were steam-

conditioned to 70 °C for 30 seconds and pelleted using a pellet mill (Model Orbit 15; 

Richard Sizer, Kingston-upon-Hull, UK) with capacity of manufacturing 180 kg of feed/h 

and equipped with a die ring with 3.0 mm holes and 35 mm thickness. Representative diet 

samples were collected after pelleting for chemical analysis, determination of particle size 

distribution and pellet durability. 

6.3.3. Determination of particle size distribution 

Particle size distribution of ground barley samples was determined using a dry sieving 

method as described by Baker and Herrman (2002). Briefly, ground barley samples (100 

g; four replicates per particle size) were passed through a sieve stack with a set of six 

sieves (2.0, 1.0, 0.5, 0.25, 0.125 and 0.063 mm) on shakers for five min. The amount of 

sample retained on each sieve was determined and the geometric mean diameter (GMD) 

and geometric standard deviation (GSD) was calculated for each sample. These 

calculations assumed that weight distribution of the sample was logarithmically normal. 

The following equations were used to calculate the GMD and GSD.  

di = (du × do) ^ 0.5 

GMD = log-1 {∑ (Wi log di) / ∑Wi} 

GSD = log-1 {∑Wi (log di – log GMD)2 / ∑Wi}0.5 

Where,  

di = diameter of ith sieve on stack  

du = diameter opening through which particles were passed (sieve preceding ith)  

do = diameter opening through which particles were not passed (ith sieve)  

Wi = weight fraction of sample on ith sieve 
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Particle size distribution of the two basal pelleted diets were determined by wet 

sieving using the method described by Lentle et al. (2006). Two weighed samples (100 g 

each; two replicates per particle size) of diets were used in the analysis. One sample was 

dried at 80 °C in a forced draft oven for 3 d for the determination of dry matter (DM). 

The second sample was soaked in 400 mL water and was left to stand for 2 h prior to 

sieving. The same sieve sizes used in the dry sieving method were used. The contents of 

each of the sieves were subsequently washed onto dried, pre-weighed filter papers, dried 

in a forced draft oven at 80 °C for 24 h and re-weighed. The dry weight of particles 

retained by each sieve was expressed as proportion of total DM recovered. 

6.3.4. Pellet durability  

Pellet durability was determined in a Holmen Pellet Tester (New Holmen NHP100 

Portable Pellet Durability Tester, TekPro Ltd., Willow Park, North Walsham, Norfolk, 

UK) using the method described by Abdollahi et al. (2013b). Briefly, samples of whole 

pellets (100 g; five replicates per diet) with no fines, were rapidly circulated in an air 

stream around a perforated test chamber for 30 seconds. Resulting fines were removed 

continuously through the perforations during the test cycle. After the test cycle, pellets 

were ejected and weighed manually. The pellet durability index (PDI) was calculated as 

the percentage of weight of pellets not passing through the perforations at the end of the 

test to weight of whole pellets at the start. 
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Table 6. 1. Composition, calculated analysis and analysed values (g/kg, as fed) and pellet 

durability index (%) of the basal diet. 

Item   Calculated analysis  

Normal starch hulled barley  550  Apparent metabolisable energy, MJ/kg 11.9 

Soybean meal 318.4  Total protein 238 

Maize gluten meal 50.0  Digestible protein 196 

Soybean oil 33.8  Digestible methionine 5.8 

Di-calcium phosphate 20.4  Digestible methionine+ cysteine 9.0 

Limestone 6.0  Digestible lysine 12.2 

L-Lysine HCl 3.1  Digestible threonine 8.2 

DL-Methionine 2.4  Digestible arginine 13.1 

L-Threonine 1.2  Digestible valine 9.5 

Sodium chloride 1.9  Crude fat 46.0 

Sodium bicarbonate 3.8  Crude fibre 43.9 

Vitamin premix1 1.0  Calcium 9.6 

Mineral premix1 1.0  Non-phytate phosphorus 4.8 

Titanium dioxide2 5.0  Sodium 2.0 

Pellet binder3 2.0  Chloride 2.0 

   Potassium 8.4 

     
   Analysed values  

   Dry matter 900 

   Gross energy, MJ/kg 17.3 

   Crude protein (Nitrogen × 6.25) 248 

   Starch  315 

   Fat 49.5 

   Calcium 8.5 

   Total phosphorus 7.6 

     
   Pellet durability index (%)4  

   Finely ground diet 82.5a 

   Coarsely ground diet 79.0b 
1Supplied per kg of diet: antioxidant, 125 mg; biotin, 0.2 mg; calcium pantothenate, 20 mg; 

cholecalciferol, 5000 IU; cyanocobalamin, 0.02 mg; folic acid, 2.0 mg; menadione, 4 mg; 

niacin, 80 mg; pyridoxine, 5.0 mg; trans-retinol, 15000 IU; riboflavin, 9.0 mg; thiamine, 4.0 

mg; dl-α-tocopheryl acetate, 80 IU; choline, 0.45 mg; ascorbic acid, 100 mg; Co, 1.0 mg; Cu, 

20 mg; Fe, 40 mg; I, 2.0 mg; Mn, 100 mg; Mo, 1.0 mg; Se, 0.15 mg; Zn, 100 mg. 
1Image Holdings Ltd., Auckland, New Zealand. 
2Merck KGaA, Darmstadt, Germany. 
3KEMBIND® (Kemin Industries [Asia] Pte Ltd) pellet binder, which contained modified 

lignosulphonate, guar gum, edible fatty acids and mineral oil. 
4Each value represents the mean of five replicate samples. Means not sharing common letters 

(a,b) are different (P < 0.05). 
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6.3.5. Birds and housing 

The experimental procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC protocol 17/13) and complied with the New Zealand Code of 

Practice for the Care and Use of Animals for Scientific Purposes. A total of 384, one-d-

old male broilers (Ross 308), obtained from a commercial hatchery, were individually 

weighed and allocated to 48 cages containing eight birds each of similar weight in 

electrically heated battery brooders so that the average bird weight per cage was similar. 

Each of the eight dietary treatments was randomly assigned to six cages. The birds were 

transferred to grower cages on d-12 and continued on the same starter diets until the end 

of the trial (d-21). The battery brooders and grower cages were housed in an 

environmentally controlled room with 20 h of fluorescent illumination per d. The 

temperature was maintained at 31 °C on d 1 and was gradually reduced to 22 °C by 21 d 

of age. The diets were offered ad libitum and water was available at all times. 

6.3.6. Performance data 

Body weights (BW) and FI were recorded on a cage basis at weekly intervals. Mortality 

was recorded daily. Feed per gain (F/G) values were corrected for the BW of any bird 

that died during the course of the experiment. 

6.3.7. Energy and nutrient utilisation  

6.3.7.1. Nitrogen-corrected apparent metabolisable energy 

The AMEn was determined using the classical total excreta collection method. Feed intake 

and total excreta output of each cage were quantitatively measured from d 17 to 20 post-

hatch. Daily collections from each cage were pooled, mixed in a blender and sub-sampled. 

Sub-samples were lyophilised (Model 0610, Cuddon Engineering, Blenheim, New 

Zealand), ground to pass through a 0.5 mm sieve and stored in airtight plastic containers 

at 4 ºC pending analysis. The diets and excreta samples were analysed for DM, gross 

energy (GE) and N. 

6.3.7.2. Coefficient of apparent ileal digestibility (CAID) of nutrients 

On d 21, 6 broilers per cage were euthanised by intravenous injection (0.5 mL per kg 

BW) of sodium pentobarbitone (Provet NZ Pty Ltd., Auckland, New Zealand), and 
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digesta were collected from the lower half of the ileum by gently flushing with distilled 

water, as described by Ravindran et al. (2005). The ileum was defined as that portion of 

the small intestine extending from the Meckel’s diverticulum to a point ~40 mm proximal 

to the ileo-cecal junction. The ileum was then divided into two halves and the digesta 

were collected from the lower half towards the ileo-cecal junction. Digesta from birds 

within a cage were pooled, frozen immediately after collection and subsequently 

lyophilised. Diet and lyophilised digesta samples were ground to pass through a 0.5 mm 

sieve and stored at 4 ◦C until laboratory analysis. The diets and digesta were analysed for 

DM, titanium (Ti), N, starch, fat, calcium (Ca) and P.  

6.3.8. Gizzard pH and jejunal digesta viscosity 

Gizzard pH was measured in two birds, from each replicate cage, euthanised for ileal 

collection using a pH meter (pH spear, Oakton Instruments, Vernon Hill, IL). The glass 

probe was inserted directly through an opening made in the gizzard and placed in the 

digesta. Three values were taken from the proximal, middle and distal sections of gizzard 

and the average value was considered as the final pH value. 

The viscosity of jejunal digesta from two birds euthanised for ileal collection from 

each replicate cage was also measured. The jejunum is defined as portion of small 

intestine extending from pancreatic loop to the Meckel’s diverticulum. The jejunum was 

divided into two halves and the digesta were collected from the lower half towards the 

Meckel’s diverticulum. Digesta collected from each bird were centrifuged at 3000 × g at 

20 °C for 15 min. A 0.5 mL aliquot of the supernatant was used in a viscometer 

(Brookfield digital viscometer, Model DV2TLV, Brookfield Engineering Laboratories 

Inc., Stoughton, MA) fitted with CP-40 cone spindle with shear rates of 5 to 500/s to 

measure the viscosity. 

6.3.9. Digestive tract measurements  

On d 22, two additional birds with body weights closest to the mean weight of the cage, 

were weighed and euthanised by cervical dislocation. The digestive tract from the 

proventriculus to ceca was carefully excised and adherent fat was removed. The length 

of duodenum (pancreatic loop), jejunum (from the pancreatic loop to Meckel’s 

diverticulum), ileum (from Meckel’s diverticulum to ileocecal junction) and ceca were 

recorded as described by Amerah et al. (2008b) and reported as cm/kg of BW. The empty 
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weights of proventriculus, gizzard, duodenum, jejunum, ileum and caeca were determined 

and reported as g/kg of BW. 

6.3.10. Chemical analysis 

Dry matter was determined using standard procedures (Method 930.15; AOAC, 2016). 

Nitrogen was determined by combustion (Method 968.06; AOAC, 2016) using a CNS-

200 carbon, N and sulphur auto-analyser (LECO Corporation, St. Joseph, MI). An 

adiabatic bomb calorimeter (Gallenkamp Autobomb, London, UK) standardised with 

benzoic acid was used for the determination of GE. Starch was measured using a 

Megazyme kit (Method 996.11; AOAC, 2016) based on thermostable α-amylase and 

amyloglucosidase (McCleary et al., 1997). Fat was determined using the Soxtec 

extraction procedure for animal feed, forage and cereal grains (Method 2003.06; AOAC, 

2016). For mineral analysis, the samples were wet digested in a nitric and perchloric acid 

mixture, and concentrations of P and Ca were determined by inductively coupled plasma-

optical emission spectroscopy (ICP-OES) using a Thermo Jarrell Ash IRIS instrument. 

Samples were assayed for Ti on a UV spectrophotometer following the method of Short 

et al. (1996). 

6.3.11. Calculations  

The AME of diets was calculated using the following formula: 

AMEdiet (MJ/kg) = [(FI × GEdiet) – (Excreta output × GEexcreta)]/FI 

Correction for zero N retention was made using a factor of 36.54 kJ per gram N 

retained in the body (Hill and Anderson, 1958). 

AMEndiet (MJ/kg) = AMEdiet – (36.54 × N retention)/1000 

Apparent ileal digestibility coefficients of nutrients were calculated from the 

dietary ratio of nutrients to Ti relative to the corresponding ratio in the ileal digesta. 

CAID of nutrient = [(Nutrient / Ti)d - (Nutrient / Ti)i] / (Nutrient / Ti)d 

where, (Nutrient / Ti)d = ratio of nutrient to Ti in diet and (Nutrient / Ti)i = ratio 

of nutrient to Ti in ileal digesta. 
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6.3.12. Statistical analysis  

The data were analysed as a 2 × 4 factorial arrangement of treatments using the general 

linear model procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC.). Cage served 

as the experimental unit. Significant differences between means were separated by least 

significant difference test. Significance was declared at P < 0.05. 

6.4. Results 

6.4.1. Particle size distribution and pellet durability 

As shown in Table 6.2, the GMD of barley ground through 2.0 and 8.0 mm screen sizes 

were 648 and 1249 µm, respectively, with corresponding GSD values of 2.0 and 1.9 µm. 

The GMD values of fine and coarse barley-based diets were 215 and 263 µm, 

respectively, with corresponding GSD values of 3.6 and 4.0 µm. 

A significant effect of barley particle size (P < 0.001; Table 6.1) was observed for 

PDI, with poorer pellet durability in diets made of coarsely-ground barley (79.0%) 

compared to the diets made of finely-ground barley (82.5%).  

Table 6. 2. Determined particle size distribution (percentage of retained particles on sieves), 

and geometric mean diameter ± geometric standard deviation (GMD ± GSD) of ground barley 

and diets. 

Particle size 
Sieve pore size (µm) 

GMD ± GSD 
2,000 1,000 500 250 125 63 < 63 

Ground barley1         

Fine 0.04 28.9 43.1 17.5 7.93 1.83 0.70 648 ± 2.0 

Coarse 31.8 44.1 15.0 5.74 2.25 0.94 0.17 1249 ± 1.9 

  
      

 
 

Pelleted diets2         

Fine 0.66 13.1 20.0 18.1 7.55 4.82 35.8 215 ± 3.6 

Coarse 5.96 16.9 16.8 16.3 7.60 3.39 33.0 263 ± 4.0 

Fine and coarse grade were achieved using screen sizes of 2.0 and 8.0 mm, respectively.  
1Each value represents the mean of four replicates. 
2Each value represents the mean of two replicates. Fine and Coarse refers to particle size of 

barley used to make pellets. 

 

6.4.2. Enzyme recovery 

The average recovery of phytase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase from 

enzyme-supplemented diets were 78, 52 and 67%, respectively. 
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6.4.3. Growth performance 

Mortality during the experiment was insignificant. Only seven out of the 384 birds died, 

and the deaths were not related to any dietary treatment. 

As summarised in Table 6.3, supplemental enzymes tended (P = 0.056) to 

improve the weight gain (WG) of birds with a synergetic effect from the combined use of 

enzymes. Regardless of barley particle size and, in comparison to the control diet, the 

combination of enzymes increased the WG by 28 g/bird. The FI response to the 

supplemental enzymes interacted (P < 0.05) with barley particle size, as the individual 

supplementation of Phy resulted in greater FI only in fine barley diets. Coarse particle 

size and supplemental Carb, either individually or in combination with Phy, reduced (P 

< 0.001) the F/G. 

6.4.4. Nutrient and energy utilisation 

The effects of barley particle size and enzyme supplementation on nutrient and energy 

utilisation are summarised in Table 6.4. No significant (P > 0.05) interaction between 

particle size and enzyme supplementation was observed for the CAID of any nutrient or 

AMEn. Greater (P < 0.05) CAID of DM, N and fat were observed in birds fed coarse 

barley diets. Feeding coarse barley tended (P = 0.071) to increase the CAID of Ca. 

Regardless of barley particle size, all supplemental enzymes increased (P < 0.05) the DM 

digestibility. Carb addition (Carb and Carb + Phy) improved (P < 0.05) starch and fat 

digestibility. Phosphorus digestibility was positively influenced (P < 0.01) by enzyme 

supplementation, with greater P digestibility in diets with phytase (Phy and Carb + Phy; 

P < 0.05). Coarse grinding of barley (P < 0.05) and Carb enzyme improved (P < 0.001) 

the AMEn. 

  



 
144 

 

 

Table 6. 3. The influence of barley particle size and carbohydrase (Carb) and phytase (Phy) 

supplementation, individually or in combination (Carb + Phy) in pelleted diets on weight gain (WG; 

g/bird), feed intake (FI; g/bird) and feed per gain (F/G; g feed/g gain) of broiler starters1 (d 1-21). 

Particle size Enzyme WG FI F/G 

Fine Control 1185 1477bc 1.246 

Carb 1198 1442c 1.214 

Phy 1208 1519a 1.256 

Carb + Phy 1223 1501ab 1.235 

    
   

Coarse Control 1197 1474bc 1.235 

Carb 1204 1456c 1.209 

Phy 1199 1463c 1.220 

Carb + Phy 1215 1458c 1.203 

    
   

SEM2   9.8 12.6 0.0074 

     

Main effects   
   

Particle size   
   

Fine   1203 1485 1.238a 

Coarse   1204 1463 1.217b 

    
   

Enzyme   
   

  Control 1191 1475 1.240a 

  Carb 1201 1449 1.211b 

  Phy 1204 1491 1.238a 

  Carb + Phy 1219 1479 1.219b 

    
   

Probabilities, P ≤   
   

Particle size   0.962 0.018 0.001 

Enzyme   0.056 0.014 0.001 

Particle size × Enzyme   0.634 0.026 0.107 

Means in a column not sharing common letters (a,b,c) are different (P < 0.05). 
1Each value represents the mean of six replicates (eight birds per replicate). 
2Pooled standard error of mean. 
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Table 6. 4. The influence of barley particle size and carbohydrase (Carb) and phytase (Phy) supplementation, individually or in combination (Carb + Phy) in 

pelleted diets on coefficient of apparent ileal digestibility (CAID)1 of dry matter (DM), nitrogen (N), starch, fat, calcium (Ca), phosphorus (P) and N-corrected 

apparent metabolisable energy (AMEn; MJ/kg DM)2 of 21-d old broiler starters. 

Particle size Enzyme CAID AMEn 

DM N Starch Fat Ca P 

Fine Control 0.582 0.725 0.930 0.811 0.311 0.455 12.57 
Carb 0.626 0.757 0.947 0.876 0.381 0.486 12.86 

Phy 0.607 0.751 0.936 0.810 0.343 0.557 12.46 

Carb + Phy 0.621 0.741 0.945 0.852 0.355 0.560 12.82     
     

Coarse Control 0.608 0.757 0.927 0.850 0.387 0.485 12.60 

Carb 0.631 0.768 0.940 0.864 0.382 0.508 12.89 

Phy 0.633 0.772 0.933 0.873 0.398 0.529 12.68 

Carb + Phy 0.639 0.775 0.948 0.905 0.374 0.554 12.94     
     

SEM3 
 

0.0112 0.0101 0.0067 0.0161 0.0287 0.0237 0.053 

         

Main effects 
   

     

Particle size 
   

     

Fine 
 

0.609b 0.744b 0.939 0.837b 0.347 0.514 12.68b 

Coarse 
 

0.628a 0.768a 0.937 0.873a 0.385 0.519 12.78a     
     

Enzyme  
   

      
Control 0.595b 0.741 0.929b 0.831c 0.349 0.470c 12.58b  
Carb 0.629a 0.763 0.943a 0.870ab 0.381 0.497bc 12.88a  
Phy 0.620a 0.761 0.935ab 0.842bc 0.370 0.543ab 12.57b  
Carb + Phy 0.630a 0.758 0.946a 0.878a 0.365 0.557a 12.88a     

     
Probabilities, P ≤ 

   
     

Particle size 
 

0.022 0.002 0.600 0.003 0.071 0.773 0.013 

Enzyme 
 

0.012 0.129 0.044 0.014 0.722 0.002 0.001 

Particle size × Enzyme 0.754 0.645 0.877 0.108 0.559 0.607 0.230 

Means in a column not sharing common letters (a,b,c) are different (P < 0.05). 
1Each value represents the mean of six replicates (six birds per replicate).  
2Each value represents the mean of six replicates (eight birds per replicate) measured from d 17 to 20 post-hatch. 
3Pooled standard error of mean. 
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6.4.5. Relative weight and length of intestinal segments, gizzard pH and jejunal 

digesta viscosity 

Table 6.5 shows the influence of barley particle size and enzyme supplementation on the 

relative weight and length of intestinal segments, gizzard pH and jejunal digesta viscosity. 

A significant (P < 0.01) barley particle size × enzyme interaction was observed for the 

relative weight of gizzard, as supplemental phytase in fine and coarse barley diets resulted 

in the lowest and the highest relative gizzard weights, respectively. No significant (P > 

0.05) differences in the weight of other digestive organs and segments were observed in 

response to either barley particle size or supplemental enzymes. Barley particle size had 

no effect (P > 0.05) on the relative length of intestinal segments. Carb and Carb + Phy 

tended (P = 0.055) to reduce the relative length of duodenum and significantly (P < 0.01) 

reduced the relative length of jejunum. Coarse grinding of barley reduced (P < 0.001) the 

gizzard pH. Neither barley particle size nor supplemental enzymes influenced (P > 0.05) 

jejunal digesta viscosity, but a tendency (P = 0.071) for an interaction between barley 

particle size and enzyme supplementation was observed. 
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Table 6. 5. The influence of barley particle size and carbohydrase (Carb) and phytase (Phy) supplementation, individually or in combination (Carb + Phy) 

in pelleted diets on relative weight (g/kg of body weight) of proventriculus (Prov.), gizzard (Giz.), duodenum (Duo.), jejunum (Jej.), ileum (Ile.) and caeca; 

relative lengths (cm/kg of body weight) of Duo., Jej., Ile. and caeca; pH of the gizzard; and jejunal digesta viscosity (cP) of 21-d old broilers1. 

 Particle size 

Particle size 

Enzyme 

Enzyme 

Relative empty weight  Relative length Giz. 

pH 

Jej. digesta 

viscosity Prov. Giz. Duo. Jej. Ile. Caeca  Duo. Jej. Ile. Caeca 

Fine Control 3.80 9.13cd 4.09 7.53 5.71 2.11  22.2 64.0 64.8 13.8 3.66 2.83 
Carb 4.29 9.90bc 3.81 7.40 5.40 2.18  22.3 62.2 63.3 14.7 3.26 3.09 

Phy 3.59 8.33d 4.24 7.64 5.64 1.94  22.1 62.6 62.8 13.6 3.77 2.70 

Carb + Phy 4.17 9.69c 3.78 7.42 5.35 1.99  20.8 59.3 61.2 13.3 3.69 2.81 

  
       

 
    

  
Coarse Control 3.79 10.3bc 3.64 7.27 5.55 2.04  23.3 69.6 65.6 14.0 2.77 2.93 

Carb 3.70 11.2ab 3.82 7.93 5.46 2.17  20.9 61.0 60.8 13.8 2.81 2.50 

Phy 3.98 12.2a 3.63 7.46 5.30 1.97  23.3 61.5 64.6 13.6 2.67 2.91 

Carb + Phy 3.57 10.4bc 3.66 7.87 5.06 1.97  21.9 58.0 61.2 13.5 2.92 2.68 

  
       

 
    

  
SEM2 

 
0.286 0.459 0.331 0.557 0.319 0.134  0.62 2.27 2.31 0.55 0.228 0.159 

               
Main effects 

 

      
 

    
  

Particle size 

 

      
 

    
  

Fine 
 

3.96 9.26 3.98 7.50 5.52 2.06  21.85 62.0 63.0 13.84 3.60a 2.86 

Coarse 
 

3.76 11.0 3.69 7.63 5.34 2.04  22.34 62.5 63.0 13.70 2.79b 2.75 

  
       

 
    

  
Enzyme 

       
 

    
  

  Control 3.79 9.70 3.86 7.40 5.63 2.08  22.74 66.8a 65.2 13.9 3.22 2.88 

  Carb 4.00 10.53 3.82 7.67 5.43 2.18  21.61 61.6b 62.0 14.2 3.03 2.79 

  Phy 3.79 10.26 3.93 7.55 5.47 1.95  22.70 62.1b 63.7 13.6 3.22 2.80 

  Carb + Phy 3.87 10.06 3.72 7.64 5.20 1.98  21.33 58.6b 61.2 13.4 3.31 2.75 

  
       

 
    

  
Probabilities, P ≤ 

 

      
 

    
  

Particle size 

 

0.327 0.001 0.218 0.732 0.423 0.841  0.273 0.756 0.999 0.712 0.001 0.357 

Enzyme 
 

0.874 0.338 0.933 0.963 0.605 0.346  0.055 0.010 0.319 0.438 0.674 0.872 

Particle size × Enzyme 0.250 0.006 0.768 0.844 0.921 0.986  0.132 0.354 0.819 0.720 0.543 0.071 

Means in a column not sharing common letters (a,b) are different (P < 0.05). 
1Each value represents the mean of six replicates (two birds per replicate). 
2Pooled standard error of mean. 
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6.5. Discussion 

Particle size distribution results showed that the relative proportion of particles > 1,000 

μm increased from 28.9% in the fine barley grind to 75.9% in coarse barley grind, 

showing the improvement in the diet structure by incorporating coarsely-ground barley. 

Proportion of particles > 1,000 μm in the diet were 13.8 and 22.9% for fine and coarse 

barley diets, respectively. Previous reports on the effect of grain particle size on pellet 

durability are contradictory. Some authors reported no effect of grain particle size on 

pellet durability (Reece et al., 1986a; Amerah et al., 2007b; Naderinejad et al., 2016), 

while Reece et al. (1986b) observed superior pellet durability of pellets made from 

coarsely ground maize particles compared to those made from fine particles. The current 

study showed a significant impact of barley particle size on pellet durability, which agrees 

with that of Angulo et al. (1996), supporting the suggestion that coarse grain particles 

result in more weak points in pellets, leading to pellet breakages and consequent poor 

pellet durability (Thomas et al., 1998). Although starch gelatinisation was not measured 

in the current study, it may be postulated that larger grain particles were more resistant to 

gelatinisation during processing than fine particles (Svihus et al., 2004) and, thus, 

resultant pellets were less durable.  

Based on the lack of effect from grain particle size in pelleted diets, previous 

studies hypothesised that pelleting can mask the influence of particle size (Amerah et al., 

2007b; Chewning et al., 2012). Amerah et al. (2007b) evaluated the effect of wheat 

particle size (3.0 vs. 7.0 mm) in mash and pelleted diets and, reported improvements in 

WG and F/G in broilers (d 1-21) fed 7.0 mm wheat in mash diets. In pelleted diets, 

however, wheat particle size had no influence on growth performance. Chewning et al. 

(2012) evaluated the effect of feed form (mash vs. pellets) and maize particle size (300 

vs. 600 µm) on broiler performance and also reported the lack of particle size effect on 

performance of broilers (d 1-44) fed pelleted diets. In contrast, the present study showed 

that the effect of barley particle size on FI was preserved after pelleting and interacted 

with supplemental enzymes. The response of Phy on FI in the current study was 

influenced by barley particle size. Amerah and Ravindran (2009), in a study with broilers 

(d 1-21), evaluated medium and coarse grinds (3.0 and 7.0 mm, respectively) of maize in 

mash diets, without and with microbial Phy and reported increased FI by supplemental 

Phy regardless of particle size. Adding Phy to low P diets is expected to result in better 
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FI and WG; however, Phy inclusion in diets with adequate P levels do not necessarily 

generate greater responses in broilers (Selle and Ravindran, 2007). However, the FI 

response to phytase addition seems to be dependent on diet particle size, a finding that is 

not readily explainable. 

Lentle et al. (2006) examined the performance of broiler starters fed pelleted diets 

based on wheat cultivars that were similar in nutrient composition and NSP content but 

differed in grain hardness. After grinding in a hammer mill to pass through a 4.0 mm 

screen, the wheat cultivars showed different particle size distributions owing to 

differences in grain hardness. The diet with a greater proportion of coarse particles 

resulted in improved feed efficiency. Amerah et al. (2007b) reported that wheat particle 

size did not influence the performance of birds fed pelleted diets, but in mash diets, F/G 

improved by 8.8 points in birds fed coarse compared to medium grind. Moreover, Deaton 

et al. (1995) and Naderinejad et al. (2016) reported that pelleting eliminated any possible 

effect of particle size on the F/G of birds fed pelleted maize-based diets. In the present 

study, however, the effects of particle size existed even after pelleting, with birds fed 

pellets made with coarsely ground barley having F/G improved by 2.1 points. This 

contradictory evidence from comparisons of pelleted diets with different grain particle 

sizes on growth performance can be explained, at least in part, by the changes in particle 

size distribution following pelleting process. It is evident that when particle size 

differences were preserved after pelleting, diets with coarser particles improved feed 

efficiency of broilers (Lentle et al., 2006). On the other hand, when pelleting evened out 

any differences in particle size distribution, no particle size effect on performance was 

observed (Naderinejad et al., 2016). It is, therefore, reasonable to speculate that grain 

hardness may have a substantial impact on the resistance of grain particles in the feed to 

the frictional force inside the pellet die and, hence, the particle size distribution after 

pelleting. 

The presence of Carb in the diet (Carb and Carb + Phy) improved the F/G by an 

average of 2.5 points. Previous studies (Bedford et al., 1991; Shakouri et al., 2009) 

consistent with this finding, attributed the improvement in F/G to reduction in digesta 

viscosity by the action of Carb, but the viscosity effect was not observed in the current 

study. Amerah et al. (2008b) evaluated coarse and medium ground wheat (7.0 and 3.0 

mm, respectively), without and with supplemental xylanases, on performance of broiler 
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starters. They observed a significant particle size × xylanase interaction for F/G as 

xylanase improved F/G only in the coarse wheat diet. In agreement with the current results 

with barley, these researchers did not observe any effect of wheat particle size or 

supplemental enzymes on digesta viscosity. 

 Surface area per unit volume of grain is increased with the extent of grinding, 

which can facilitate the in-situ gel formation by partial solubilisation of NSP in finely 

ground cereals, leading to poor efficacy of exogenous enzymes (Amerah et al., 2007a). 

In coarsely-ground grains, on the other hand, in situ gel formation happens to a lesser 

extent, causing only a minor impact on the efficacy of supplemental enzymes (Amerah et 

al., 2008b). Accordingly, the improvement in F/G observed only in birds fed coarse wheat 

diets by Amerah et al. (2008b) was attributed to enzyme action of hydrolysing the cell 

wall matrix (Bedford and Schulze, 1998), which can happen more effectively in coarse 

grain particles due to lower extent of in situ gel barriers. In the current study, however, as 

indicated by the absence of significant interaction, the action of supplemental enzymes 

on F/G was not influenced by the barley particle size. Furthermore, due to the lack of 

effect of barley particle size on jejunal digesta viscosity, it can be speculated that other 

mechanisms, as suggested by Amerah et al. (2008b), might have contributed to the 2.5 

points improvement in feed efficiency by added Carb.  

The improvements of 3.1, 3.2 and 4.3% in the CAID of DM, N and fat, 

respectively, in coarsely-ground barley diets is contrary to that of Naderinejad et al. 

(2016) and Abdollahi et al. (2019a), who reported no effect of maize and wheat particle 

size on the digestibility of nutrients. Improved DM, N and fat digestibility in birds fed 

coarse-barley diets can be attributed to a greater functionality of the gizzard (Svihus et 

al., 2011a) which results in greater mechanical breakdown of digesta (Svihus et al., 

1997a; Hetland et al., 2002) and lower digesta pH, as illustrated by the lower gizzard pH 

of birds fed coarse barley in the current study. Moreover, coarse grain particles reduce 

the digesta passage rate through the gizzard (Nir et al., 1994b), and therefore, are retained 

longer than finer particles in the digestive tract (Amerah et al., 2007a), increasing the 

exposure time of nutrients to digestive enzymes. 

With reference to protein digestion, extended retention and mixing in the gizzard 

is necessary for better contact between feed, gastric juices and pepsin, thus facilitating 

the denaturation and digestion of proteins. Accordingly, the larger gizzards in birds fed 
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coarse barley and the consequent increased gastric reflux between gizzard and 

proventriculus results in more time for gastric enzyme and protease activities in the 

foregut, aiding protein digestion. In addition, the lower gizzard pH increases the pepsin 

activity (Gabriel et al., 2003), which facilitates initial protein hydrolysis. All these 

modifications might have acted to enhance the CAID of N in birds fed coarsely ground 

barley in the current study. The improvement in CAID of N in birds fed coarse barley in 

the current study is, however, contrary to the findings by Naderinejad et al. (2016), who 

reported no effect of maize particle size on CAID of N in both mash and pelleted diets, 

despite well-developed gizzards and lower gizzard pH in birds fed coarser maize-based 

diets. Jacobs et al. (2010) also reported no effect of maize particle size on the apparent 

total tract digestibility of most amino acids in birds fed maize-based mash diets. 

According to Mtei et al. (2019), who evaluated the interaction between bird type (broilers 

and layers) and maize particle size, the CAID of N was not influenced by maize particle 

size, regardless of bird type. In the studies of Jacobs et al. (2010) and Mtei et al. (2019), 

despite well-developed gizzards, gizzard pH remained unaffected, suggesting that gizzard 

pH might be of more importance in enhancing the protein digestibility compared to other 

mechanisms facilitated by a functional gizzard.  

The gizzard has been identified as a key site for regulating the digestibility of 

starch by preventing starch overload into the lower gut, and a positive correlation between 

gizzard weight and starch digestibility has been reported (Svihus, 2011b). Despite larger 

gizzards in birds fed coarse barley diets, no influence of barley particle size on the CAID 

of starch was observed in the current study. Fine feed structures do not facilitate gizzard 

development and can result in poor starch utilisation due to suboptimal regulation of feed 

flow (Svihus, 2011a). Naderinejad et al. (2016) reported a greater starch digestibility in 

pelleted coarse maize diets, while Péron et al. (2005) reported improved starch 

digestibility in birds fed pelleted fine wheat (hard cultivar) diets. The improved starch 

digestibility in coarse maize-based pelleted diets (Naderinejad et al., 2016) was attributed 

to higher gizzard weights and reduction in gizzard pH. On the other hand, the poor starch 

digestibility in coarse wheat-based pelleted diets (Péron et al., 2005) was attributed to a 

starch accessibility problem due to physical entrapment of starch granules in coarse 

particles of hard wheat (Carré, 2004) and, hence, the improved digestibility with fine 

grinding. The inconsistent response of starch digestibility with grain particle size is likely 
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related to a complex array of confounding factors such as grain type (Carré, 2004), 

hardness (Carré et al., 2002) and feed form (Naderinejad et al., 2016). 

 The CAID of Ca in birds fed coarse barley diets tended to be greater in the current 

study (0.347 vs. 0.385, P = 0.071), possibly due to a more acidic pH in the gizzard of 

birds fed coarse particles. Most phytate-mineral complexes are soluble at pH lower than 

3.5 and become insoluble at pH values between 4.0 and 7.0 (Champagne, 1988; Selle et 

al., 2000). The low gizzard pH of birds fed coarse barley diets (2.79) fell within the 

soluble range of pH (< 3.5) and could explain the observed results. However, the lower 

pH failed to enhance the CAID of P in the current study. Naderinejad et al. (2016) 

evaluated the effect of different particle sizes of maize on the digestibility of minerals and 

reported an 18.3% improvement in Ca digestibility (0.429 vs. 0.508) and an improvement 

in CAID of P by 7.82% (0.467 vs. 0.504) for medium and coarse grinding compared to 

finely ground maize. Amerah and Ravindran (2009) also reported that coarse maize diets 

improved the total tract retention of Ca, by 16.4%, but had no effect on P retention. 

Increasing coarseness of the barley grind in the current study caused a small, but 

significant, improvement of AMEn by 0.79% (from 12.68 to 12.78 MJ/kg DM). 

Naderinejad et al. (2016) observed greater AME in birds fed coarse maize-based pelleted 

diets (14.95 MJ/kg DM) compared to fine and medium maize-based pelleted diets (14.71 

and 14.81 MJ/kg DM, respectively). Highlighting the inconsistent nature of particle size 

effect on energy utilisation, Svihus et al. (2004) and Amerah et al. (2007b) reported that 

different particle sizes in either mash or pelleted wheat-based diets had no effect on 

energy utilisation. These contradictory results may be explained by confounding factors 

such as grain type (Amerah et al., 2007b), hardness (Péron et al., 2005) and feed form 

(Kilburn and Edwards, 2001).  

Regardless of the nature of response, previous studies (Péron et al., 2005; Svihus 

et al., 2011b) observed a strong correlation between starch digestibility and energy 

utilisation. The 4.66% improvement in AMEn (from 12.23 to 12.80 MJ/kg DM) reported 

by Péron et al. (2005) was attributed to a 6.18% enhancement in starch digestibility in 

response to increasing fineness. In contrast, the increase in AMEn (0.10 MJ/kg DM) with 

increasing coarseness of barley grind in the present study, was not reflected in starch 

digestibility response. Nevertheless, similar trends in AMEn with CAID of DM, N and 
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fat responses to barley particle size are reflective of a link between energy utilisation and 

nutrient digestibility. 

Irrespective of the barley particle size, the magnitude of response to Carb, Phy 

and Carb + Phy on the ileal digestibility of DM were 5.7, 4.2 and 5.9%, respectively. 

Phytate in wheat and barley is largely located in the aleurone layer (Eeckhout and De 

Paepe, 1994). Therefore, improvement of CAID of DM in response to supplemental 

phytase, at least in part, was caused by the action of phytase in disrupting of cell wall and 

consequent release of encapsulated nutrients in a manner similar to that of carbohydrase 

(Ravindran et al., 1999). 

Nutrients, such as starch and protein, encapsulated within intact endosperm cell 

walls in barley are released due to the action of supplemental carbohydrase on cell wall 

integrity (Bedford, 2018) and, as a consequence, digestibility increases. Similarly, 

supplemental phytase releases not only phytate P, but also phytate-bound protein and 

proteolytic enzymes, thus enhancing protein digestion (Ravindran et al., 2000; Selle and 

Ravindran, 2007). The benefits of individual and combined supplementation of 

carbohydrase and phytase in wheat- and barley-based diets in terms of protein and amino 

acid digestibility has been previously reported (Ravindran et al., 1999; Wu et al., 2004a). 

Wu et al. (2004a) reported that CAID of N enhanced by 13.8, 10.8 and 13.8% in broiler 

starters fed barley-based diets in response to glucanase, phytase and glucanase + phytase, 

respectively. The observations of the current study contrast from these findings by 

showing no effect from supplemental enzymes on the CAID of N, with only numerical 

improvements in the CAID of N (3.0, 2.7, 2.2% increments in response to Carb, Phy and 

Carb + Phy, respectively) being observed.  

Regardless of barley particle size, starch digestibility was enhanced by 

carbohydrase in both individual and combined supplementation, with magnitude of 

response of 1.51 and 1.83%, respectively. The effect of supplemental carbohydrase on 

enhanced starch digestibility in barley is well documented (Bergh et al., 1999; Ravindran 

et al., 2007). Carbohydrase disrupts the endosperm cell wall and releases encapsulated 

starch granules, thus allowing them to interact unhindered with digestive enzymes. 

However, reports on improved starch digestibility in diets supplemented with phytase are 

limited (Camden et al., 2001). Improvements have been attributed to the release of starch 
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granules bound in phytate complexes (Thompson, 1988) and alleviation of the inhibitory 

action of phytate on α-amylases (Sharma et al., 1978). 

Fat digestibility is detrimentally affected by greater digesta viscosity (Edney et 

al., 1989; Almirall et al., 1995). In this study, however, despite the lack of enzyme effect 

on digesta viscosity, CAID of fat was increased by 4.7 and 5.7% due to individual use of 

carbohydrases and combination with phytase, respectively. Carbohydrase is believed to 

enhance fat digestibility by the release of encapsulated nutrients, whilst phytase can 

partially prevent the formation of metallic soaps by prior hydrolysis of phytate in more 

proximal parts of the gut and thereby increasing fat digestibility (Selle and Ravindran, 

2007). This beneficial impact of phytase on fat digestibility, however, was not evident in 

the current study.  

Individual addition of phytase increased the CAID of P by 15.5%, from 0.470 to 

0.543. The CAID of P was further improved by 18.5% when carbohydrases and phytase 

were added together, showing that activity of phytase was facilitated by NSP-degrading 

enzymes, perhaps by allowing greater access to substrates. Juanpere et al. (2005) 

evaluated the effect of carbohydrases and a phytase, individually and in combination, in 

maize-, wheat- and barley-based diets, and reported a synergistic effect of phytase + 

xylanase on P retention of wheat-based diets, and phytase + β-glucanase on P and Ca 

retention of barley-based diets. The improvement of Ca retention by supplemental 

enzymes, however, was not observed in the current study.  

Regardless of barley particle size, 2.4% (0.30 MJ/kg DM) improvement in AMEn 

was reported in response to both individual and combined supplementation of 

carbohydrase. The beneficial effect from individual use of phytase (Selle et al., 2003b) 

on energy utilisation, reported in previous studies, was not observed in the current study. 

The improvement in AMEn in response to addition of carbohydrase was closely 

associated with enhanced digestibility of starch and fat, the main energy yielding 

nutrients. In agreement to the current findings, and despite the absence of effect on digesta 

viscosity, Amerah et al. (2008b) reported improved AMEn in response to added 

carbohydrase in both medium (1.6%) and coarse (5.6%) wheat diets. These improvements 

were attributed to the action of carbohydrase on the physical barriers of endosperm cell 

wall and gel barriers on digesta particles formed by partial solubilisation of NSP.  
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Barley particle size influenced the response of gizzard size to supplemental 

enzymes, as phytase in fine and coarse barley diets resulted in the lowest and the highest 

relative gizzard weights, respectively. This finding is hard to explain and highlights the 

need for evaluating the mechanisms of phytase interactions at different particle sizes. 

Increased gizzard weights in birds fed coarse maize (Nir et al., 1994a,b; Parsons 

et al., 2006) and wheat (Amerah et al., 2007b; Abdollahi et al., 2019a) have been 

observed previously. Amerah et al. (2008a) reported higher gizzard weights in response 

to increasing grain particle size from 1.0 mm to 7.0 mm in maize-based (34% increase 

from 9.40 to 12.6 g/kg of BW) and wheat-based pelleted diets (10.7% increase from 9.03 

to 10.0 g/kg of BW). Nir and Ptichi (2001) and Svihus et al. (2004) reported that coarse 

grinding increased gizzard size only when mash diets were fed, while this effect was not 

apparent in pelleted feeds. In the present study, however, the effects of particle size on 

gizzard size remained even after pelleting with 18.8% increase from 9.26 to 11.0 g/kg of 

BW. 

In agreement with the present results, previous researchers reported no influence 

of maize (Naderinejad et al., 2016) and wheat (Péron et al., 2005) particle size on the 

relative weight and length of digestive tract components apart from the gizzard. However, 

Nir et al. (1994a) reported reduced duodenal weight in coarse wheat fed birds, but in a 

follow-up study, Nir et al. (1995) observed greater relative weights of jejunum, ileum and 

small intestine in birds fed coarse maize particles.  

In a study by Wu et al. (2004b), supplementation of xylanase and phytase 

individually reduced the relative length (16.5 and 14.1%, respectively) and weight (15.5 

and 11.4%, respectively) of the small intestine, while the combination of enzymes had no 

further effect. It was suggested that the heavier intestinal weight was caused by greater 

digesta viscosity (Wu et al., 2004b), reduced passage rate and subsequent rise in 

pathogenic microbial activity (Brenes et al., 2002) that stimulated intestinal tissue growth. 

In the current study, individual additions of carbohydrase and phytase significantly 

shortened the jejunum by 8.38 and 7.54%, respectively, while combining the two 

enzymes had a synergetic effect causing 13.9% reduction. As the reduction in the relative 

length of the jejunum paralleled the improvements in DM, starch and fat digestibility in 

response to supplemental enzymes, it is tempting to speculate that the reduced jejunal 
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length may be a consequence of the decreased need for digestive and absorptive capacity 

resulting from supplemental enzymes.   

Birds fed coarse barley diets showed lower gizzard pH that tended (P = 0.058) to 

negatively correlate (r = -0.276) with the relative weight of gizzard. A significant negative 

correlation (r = -0.451) between the relative gizzard weight and gizzard pH reported by 

Liu et al. (2015) lends support to the present observation. Nir et al. (1994b) evaluated 

coarse, medium and fine particle sizes of maize, wheat and sorghum and observed that 

the pH of the gizzard contents decreased with increasing particle size, irrespective of the 

grain type. Naderinejad et al. (2016) reported a particle size × feed form interaction for 

gizzard pH of birds fed different maize particle sizes in mash and pellet diets, as in mash 

diets, gizzard pH was not influenced by particle size, whereas, in pelleted diets, medium 

and coarse grinding lowered gizzard pH compared to fine grinding. In addition, secretion 

of pepsinogen and hydrochloric acid from proventriculus is encouraged when digesta is 

refluxed into the proventriculus by contraction of a functional gizzard (Duke, 1992). On 

other hand, smaller gizzards may have resulted in fewer refluxes, which inhibited gastric 

secretions (Svihus, 2011a) and contributed to elevated pH in birds fed fine barley diets. 

Contrary to the current findings, Wu et al. (2004b) reported that addition of xylanase or 

the combination of xylanase plus phytase reduced the viscosity of digesta in all segments 

of the intestine.  

The potential impact of grain hardness on particle size distribution, particularly 

after pelleting, justifies the need for further evaluation of the optimum particle size for 

different barley types that vary in grain hardness. Moreover, as a potential approach for 

restoring the structure in pelleted barley-based diets, whole barley inclusion should be 

evaluated concerning optimum inclusion and interactions with supplemental enzymes.  

6.6. Conclusions 

In summary, improving the structure of the diet by increasing coarseness of barley grind 

enhanced the feed efficiency, and nutrient and energy utilisation in broiler starters fed 

pelleted diets. The fine barley diet was superior only from a pellet quality perspective. 

Pelleting did not mask the effect of barley particle size. Supplementation of carbohydrase 

individually or in combination with phytase enhanced the feed efficiency, and starch, fat 

and energy utilisation, while addition of phytase individually or in combination enhanced 
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P utilisation. Supplementation of either enzyme improved DM digestibility, and the 

combination of carbohydrase plus phytase tended to improve WG. 
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CHAPTER SEVEN 

Influence of carbohydrase supplementation and conditioning temperature on 

performance, nutrient utilisation and gastrointestinal tract development of broiler 

starters fed barley-based diets 

7.1. Abstract 

The influence of supplemental carbohydrase (Carb) and conditioning temperature (CT) 

on growth performance, nutrient utilisation and intestinal morphometry of broilers (d 1-

21) fed barley-based diets was examined in a 2 × 3 factorial arrangement, evaluating two 

levels of Carb (0 and 150 g/tonne of feed) and three CT (60, 74 and 88 °C). The activities 

of endo-1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in the tested 

Carb were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. A total of 288, one-d-

old male broilers (eight birds/cage; six cages/treatment) were used. On d 21, ileal digesta 

was collected for the determination of nutrient digestibility. There was no significant (P 

> 0.05) interaction between Carb and CT for any tested parameter. The pellet durability 

of diets conditioned at 88 °C was superior (P < 0.05) to those diets conditioned at 60 °C. 

Addition of Carb increased weight gain (WG; P < 0.05) and reduced feed per gain (F/G; 

P < 0.001) by 30 g/bird and 6.5 points, respectively. Birds fed diets conditioned at 60 and 

74 °C had a similar (P > 0.05) WG but higher (P < 0.05) than those fed diets conditioned 

at 88 °C. Birds fed diets conditioned at 88 °C tended (P = 0.054) to have a lower feed 

intake than birds fed diets conditioned at 60 °C. Conditioning the diets at 88 °C increased 

(P < 0.05) F/G compared to the diets conditioned at 60 and 74 °C. Regardless of CT, Carb 

enhanced the CAID of starch (P < 0.01), and nitrogen-corrected apparent metabolisable 

energy (AMEn; P < 0.05) by 1.15% and 0.13 MJ/kg, respectively. Birds offered diets 

conditioned at 88 °C showed lower digestibility of dry matter, nitrogen, phosphorus, gross 

energy (P < 0.001), and AMEn (P < 0.01) compared to those fed diets conditioned at 60 

and 74 °C. Diets conditioned at 88 °C resulted in poor (P < 0.05) starch digestibility 

compared to diets conditioned at 60 °C. Conditioning at 88 °C increased (P < 0.05) jejunal 

digesta viscosity by 10.2% compared to diets conditioned at 60 and 74 °C. In conclusion, 

supplementation of barley-based diets with Carb improved WG, F/G and, starch and 

energy utilisation in broilers. Conditioning barley-based diets at 88 °C negatively 

influenced WG, F/G and utilisation of dry matter, nitrogen, starch, phosphorus and 

energy. The lack of significant interactions between Carb and CT indicated that negative 
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impacts caused by high CT on bird performance and nutrient utilisation were regardless 

of supplemental Carb. Supplemental Carb per se failed to restore these deteriorated 

parameters. 

7.2. Introduction  

The use of barley in poultry diets is limited due mainly to its high contents of soluble non-

starch polysaccharides (NSP) that results in increased intestinal digesta viscosity, leading 

to impaired nutrient utilisation and performance of birds fed barley-based diets. Different 

heat processing methods such as steam-cooking (Gracia et al., 2003), expansion, 

micronisation (Zheng et al., 1998; García et al., 2008) and extrusion (Vranjes and Wenk, 

1995) have been evaluated as potential methods to enhance the feeding value of barley in 

poultry diets. Expansion, extrusion and micronisation are short-time high-temperature 

processes that involve temperature > 100 °C. Heat processing is believed to disrupt the 

cell structures and to release the encapsulated nutrients (Gracia et al., 2003; García et al., 

2008) facilitating the nutrient utilisation. However, thermal processing can increase 

solubilisation of NSP (Silversides and Bedford, 1999), leading to greater viscosity in both 

feed and intestinal contents particularly in diets based on viscous grains such as barley 

(Svihus et al., 2000; Cowieson et al., 2005; García et al., 2008). Accordingly, to achieve 

the desired outcome of the thermal processing, the application of optimum conditions 

during feed manufacture is vital. 

High conditioning temperatures (CT; > 80 °C) are commonly employed by 

poultry feed manufacturers to obtain high-quality pellets (Cutlip et al., 2008; Abdollahi 

et al., 2013a) and to maintain feed hygiene by controlling foodborne pathogens, such 

as Salmonella and Campylobacter (Amerah et al., 2011; Abdollahi et al., 2013a). High 

CT, however, can result in the formation of resistant starch (RS; Abdollahi et al., 2010b, 

2011), degradation of heat-labile amino acids (AA; Papadopoulos, 1989), inactivation of 

synthetic vitamins (Jensen, 2000) and supplemental enzymes (Inborr and Bedford, 1994), 

reduced nutrient utilisation (Abdollahi et al., 2010a,b) and compromise growth 

performance (Cutlip et al., 2008; Abdollahi et al., 2011). Impaired nutrient utilisation of 

birds fed diets conditioned at higher CT can be attributed to losses in nutritional value of 

feed ingredients (Papadopoulos, 1989) and viscosity-induced interferences to nutrient 

absorption (Smulikowska et al., 2002) in the gastro-intestinal tract.  
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On the other hand, lower CT and consequent under-processing of diets can hinder 

the inactivation of anti-nutritive factors and result in insufficient starch gelatinisation and 

protein denaturation, while failing to assure satisfactory feed hygiene. These phenomena 

emphasise the importance of determining the optimum CT of feed and, the fact that 

impact of CT varies depending on the grain type (Abdollahi et al., 2010a,b) necessitates 

determination of optimum CT for each grain type. The influence of CT on growth 

performance and nutrient utilisation of broilers fed maize- (Cutlip et al., 2008; Abdollahi 

et al., 2010a,b; Loar II et al., 2014), wheat- (Abdollahi et al., 2010a, 2011) and sorghum- 

(Abdollahi et al., 2010b) based diets have been understood to a better extent. However, 

studies evaluating the influence of CT on barley-based diets are limited (Inborr and 

Bedford, 1994; Samarasinghe et al., 2000). 

The NSP-degrading enzymes are routinely added to barley-based diets to 

overcome the adverse effects of anti-nutritional factors, mainly the higher digesta 

viscosity in birds fed barley-based diets. Improved performance and nutrient utilisation 

in birds fed barley-based diets by supplemental enzymes have been mostly attributed to 

the reduction of digesta viscosity (Almirall et al., 1995; Józefiak et al., 2006). As high 

CT may exacerbate the adverse effects of viscosity in diets based on viscous grains such 

as barley, use of exogenous enzymes becomes even more critical (Cowieson et al., 2005). 

A better understanding of possible interactions between enzyme and CT, particularly on 

intestinal digesta viscosity, whether enzymes are more effective in diets conditioned at 

higher CT, would allow poultry nutritionists to increase the barley inclusion in poultry 

diets, by strategically minimising the viscosity related negative consequences. 

Accordingly, the objectives of this study were set to evaluate whether interactive effects 

between Carb and CT exist on the performance, energy and nutrient utilisation, and gut 

morphometry in broiler starters fed barley-based diets. 

7.3. Materials and methods  

7.3.1. Enzymes 

A multi-component NSP-degrading enzyme, Ronozyme® Multigrain, (produced by 

Trichoderma reesei, also known as Trichoderma longiabrachiatum) and Ronozyme® 

HiPhos were obtained from DSM Nutritional Products, Australia. The activities of endo-

1,4-β- glucanase, endo-1,3(4)-β-glucanase and endo-1,4-β-xylanase in Ronozyme® 
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Multigrain were 800 BGU/g, 700 BGU/g and 2700 XU/g, respectively. One unit of β-

glucanase (BGU) is defined as the quantity of enzyme that releases 1.0 µmol of reducing 

moieties from 1.5% β-glucan per minute at pH 5.0 at incubation temperature of 40 °C for 

20 min. One unit of xylanase (XU) is defined as the quantity of enzyme that releases 1.0 

µmol of reducing moieties from 1.5% arabinoxylan per minute at pH 5.0 and incubation 

temperature of 40 °C for 20 min. Ronozyme® HiPhos was a granular 6-phytase 

preparation expressed by submerged fermentation of Aspergillus oryzae and contained > 

10,000 phytase units (FYT)/g. One FYT is defined as the activity of enzyme that releases 

1.0 μmole of inorganic phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC 

(DSM Nutritional Products Ltd., 2013). The activities of phytase, endo-1,4-β-xylanase, 

endo-1,3 (4)-β-glucanase and endo-1,4-β-glucanase in the diet samples obtained after 

pelleting were measured at Biopract GmbH, Berlin, Germany. The enzyme recovery was 

calculated as the percentage of measured enzyme activity in the diet to the expected 

enzyme activity estimated from the amount and minimum activity (DSM Nutritional 

Products Ltd., 2013) of enzymes added to the diets.  

7.3.2. Diets 

Normal-starch hulled barley (cultivar, Fortitude) was obtained from a seed multiplication 

company (Luisetti Seeds Ltd., Rangiora, New Zealand) and ground in a hammer mill to 

pass through the screen size of 8.0 mm. Nutrient composition, nitrogen-corrected 

apparent metabolisable energy (AMEn) and standardised digestible AA contents of barley 

determined in Chapter 3, were used in formulating a basal diet to meet the Ross 308 strain 

recommendations for major nutrients for broiler starters (Ross, 2014; Table 7.1). 

Ronozyme® HiPhos (DSM Nutritional Products, Australia) was used in the basal diet and 

phytase matrix values (1.5 g/kg non-phytate phosphorus and 1.8 g/kg calcium) were used 

in basal diet formulation. The basal diet was then used to develop two feed batches, 

without and with an NSP-degrading enzyme (Ronozyme® Multigrain; DSM Nutritional 

Products, Australia). Each diet, without and with Carb, was divided into three equal 

batches and, conditioned at three different temperatures (60, 74 and 88 °C) by adjusting 

the steam flow rate. Mash diets were steam-conditioned for 30 s and the CT was measured 

at the outlet (close to the exit point) of the conditioner before the mash feed entered the 

pellet die. The CT of the mash was measured continuously, as a single-point measure 

during the conditioning time. Following conditioning, all diets were pelleted using a pellet 
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mill (Model Orbit 15; Richard Sizer, Kingston-upon-Hull, UK) capable of manufacturing 

180 kg of feed/h and equipped with a die ring with 3.0 mm holes and 35 mm thickness. 

Representative samples were collected after pelleting for the determination of gelatinised 

starch (GS) content and pellet durability. 

7.3.3. Pellet durability  

Pellet durability of diets was determined in a Holmen Pellet Tester (New Holmen 

NHP100 Portable Pellet Durability Tester, TekPro Ltd., Willow Park, North Walsham, 

Norfolk, UK) using the method described by Abdollahi et al. (2013b). Briefly, clean pellet 

samples (100 g; five replicates per diet), with no fines, were rapidly circulated in an air 

stream around a perforated test chamber for 30 seconds. Resulting fines were removed 

continuously through perforations during the test cycle. After the test cycle, the subject 

pellets were ejected and weighed manually. The pellet durability index (PDI) was 

calculated as the percentage of weight of pellets not passing through the perforations at 

the end of the test to weight of whole pellets at the start. 
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7.3.4. Birds and housing 

The experimental procedures were approved by the Massey University Animal Ethics 

Committee (MUAEC protocol 17/13) and complied with the New Zealand Code of 

Practice for the Care and Use of Animals for Scientific Purposes. A total of 288, one-d-

old male broilers (Ross 308), obtained from a commercial hatchery, were individually 

weighed and allocated to 36 cages in electrically heated battery brooders so that the 

Table 7. 1. Composition, calculated analysis and analysed values (g/kg, as fed) of the basal diet. 

Item   Calculated analysis  

Normal starch hulled barley  565.4  Apparent metabolisable energy, MJ/kg 11.9 

Soybean meal 316.1  Crude protein 238 

Maize gluten meal 50.0  Digestible protein 196 

Soybean oil 29.4  Digestible methionine 5.8 

Di-calcium phosphate 11.5  Digestible methionine + cysteine 9.0 

Limestone 8.2  Digestible lysine 12.2 

L-Lysine HCl 3.1  Digestible threonine 8.2 

DL-Methionine 2.4  Digestible arginine 13.1 

L-Threonine 1.2  Digestible valine 9.5 

Sodium chloride 1.8  Crude fat 42.1 

Sodium bicarbonate 3.8  Crude fibre 44.7 

Vitamin premix1 1.0  Calcium 9.6 

Mineral premix1 1.0  Non-phytate phosphorus 4.8 

Titanium dioxide2 5.0  Sodium 2.0 

Pellet binder3 2.0  Chloride 2.0 

Phytase4 0.1  Potassium 8.4 

     

        Analysed values  

   Dry matter 916 

   Gross energy, MJ/kg 17.1 

   Crude protein (Nitrogen × 6.25) 250 

   Starch  315 

   Fat 53.0 

   Insoluble NSP5 

T 

136 

   Soluble NSP 30.0 

   Total NSP6 166 
1Supplied per kg of diet: antioxidant, 125 mg; biotin, 0.2 mg; calcium pantothenate, 20 mg; cholecalciferol, 

5000 IU; cyanocobalamin, 0.02 mg; folic acid, 2.0 mg; menadione, 4 mg; niacin, 80 mg; pyridoxine, 5.0 

mg; trans-retinol, 15000 IU; riboflavin, 9.0 mg; thiamine, 4.0 mg; dl-α-tocopheryl acetate, 80 IU; choline, 

0.45 mg; ascorbic acid, 100 mg; Co, 1.0 mg; Cu, 20 mg; Fe, 40 mg; I, 2.0 mg; Mn, 100 mg; Mo, 1.0 mg; 

Se, 0.15 mg; Zn, 100 mg. 
1Image Holdings Ltd., Auckland, New Zealand. 
2Merck KGaA, Darmstadt, Germany. 
3KEMBIND® (Kemin Industries [Asia] Pte Ltd) pellet binder, which contained modified lignosulphonate, 

guar gum, edible fatty acids and mineral oil, was added on top of each diet. 
4Ronozyme® HiPhos (1000 phytase units (FYT)/kg diet). One FYT is defined as the activity of enzyme 

that releases 1.0 μmole of inorganic phosphorus/min from 5.0 mM sodium phytate at pH 5.5 at 37 ºC. 

Nutrient matrix values (0.15% non-Phytate P and 0.18% Ca) were used in basal diet formulation. 
5NSP, non-starch polysaccharides. 
6Total NSP= Insoluble NSP + Soluble NSP. 
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average bird weight per cage was similar. Each of the six dietary treatments was randomly 

assigned to six cages, each housing eight birds. The birds were transferred to grower cages 

on d 12 and continued on the same starter diets until the end of the trial (d 21). The battery 

brooders and grower cages were housed in an environmentally controlled room with 20 

h of fluorescent illumination per d. The temperature was maintained at 31 °C on d 1 and 

was gradually reduced to 22 °C by 21 d of age. The diets were offered ad libitum and 

water was available at all times. 

7.3.5. Performance data 

Body weights and feed intake (FI) were recorded on a cage basis at weekly intervals. 

Mortality was recorded daily. Feed per gain (F/G) values were corrected for the body 

weight (BW) of any bird that died during the course of the experiment. 

7.3.6. Energy and nutrient utilisation  

7.3.6.1. Nitrogen-corrected apparent metabolisable energy (AMEn)  

The AMEn was determined using the classical total excreta collection method. Feed intake 

and total excreta output of each cage were quantitatively measured from d 17 to 20 post-

hatch. Daily collections from each cage were pooled, mixed in a blender and sub-sampled. 

Sub-samples were lyophilised (Model 0610, Cuddon Engineering, Blenheim, New 

Zealand), ground to pass through a 0.5 mm sieve and stored in airtight plastic containers 

at 4 ºC pending analysis. The diets and excreta samples were analysed for dry matter 

(DM), gross energy (GE) and nitrogen (N). 

7.3.6.2. Coefficient of apparent ileal digestibility (CAID) of nutrients  

On d 21, six broilers per cage were euthanised by intravenous injection (0.5 mL per kg 

live weight) of sodium pentobarbitone (Provet NZ Pty Ltd., Auckland, New Zealand), 

and digesta were collected from the lower half of the ileum by gently flushing with 

distilled water, as described by Ravindran et al. (2005). The ileum was defined as that 

portion of the small intestine extending from the Meckel’s diverticulum to a point ~40 

mm proximal to the ileo-caecal junction. The ileum was then divided into two halves and 

the digesta was collected from the lower half towards the ileo-caecal junction. Digesta 

from birds were pooled within a cage, frozen immediately after collection and 

subsequently lyophilised. The diets and lyophilised digesta samples were ground to pass 



 
165 

through a 0.5 mm sieve and stored at 4 ºC until laboratory analysis. The diets and digesta 

samples were analysed for DM, titanium (Ti), N, starch, fat, calcium, phosphorus and GE. 

7.3.7. Gizzard pH 

In two birds from each replicate cage euthanised for ileal collection, gizzard pH was 

measured using a pH meter (pH spear, Oakton Instruments, Vernon Hill, IL). The glass 

probe was inserted directly through an opening made in the gizzard and placed in the 

digesta. Three values were taken from the proximal, middle and distal sections of gizzard 

and the average value was considered as the final pH value. 

7.3.8. Jejunal digesta viscosity 

The viscosity of jejunal digesta from two birds euthanised for ileal collection from each 

replicate cage was also measured. Digesta obtained from the lower jejunum was 

centrifuged at 3000 × g at 20 oC for 15 min. A 0.5 mL aliquot of the supernatant was used 

in a viscometer (Brookfield digital viscometer, Model DV2TLV; Brookfield Engineering 

Laboratories Inc., Stoughton, MA) fitted with CP-40 cone spindle with shear rates of 5 to 

500/s to measure the viscosity.  

7.3.9. Relative length and weight of digestive tract segments 

Two additional birds, with body weights closest to the mean weight of the cage, were 

weighed and euthanised by cervical dislocation. The digestive tract, from the crop to 

caeca was carefully excised and adherent fat was removed. The lengths of duodenum 

(pancreatic loop), jejunum (from the pancreatic loop to Meckel’s diverticulum), ileum 

(from Meckel’s diverticulum to ileo-caecal junction) and caeca were recorded as 

described by Amerah et al. (2008b). The empty weights of crop, proventriculus, gizzard, 

duodenum, jejunum, ileum and caeca in individual birds were determined and reported 

as g/kg of body weight.  

7.3.10. Chemical analysis 

Dry matter was determined using standard procedures (Method 930.15; AOAC, 2016). 

Nitrogen was determined by combustion (Method 968.06; AOAC, 2016) using a CNS-

200 carbon, N and sulphur auto-analyser (LECO Corporation, St. Joseph, MI). An 

adiabatic bomb calorimeter (Gallenkamp Autobomb, London, UK) standardised with 



 
166 

benzoic acid was used for the determination of GE. Starch was measured using a 

Megazyme kit (Method 996.11; AOAC, 2016) based on thermostable α-amylase and 

amyloglucosidase (McCleary et al., 1997). Fat was determined using Soxtec extraction 

procedure for animal feed, forage and cereal grains (Method 2003.06; AOAC, 2016). For 

mineral analysis, the samples were wet digested in a nitric and perchloric acid mixture, 

and concentrations of phosphorus and calcium were determined by inductively coupled 

plasma-optical emission spectroscopy (ICP-OES) using a Thermo Jarrell Ash IRIS 

instrument. Total, soluble and insoluble NSP were determined using an assay kit 

(Megazyme International Ireland Ltd., Wicklow, Ireland) based on thermostable α-

amylase, protease and amyloglucosidase (Englyst et al., 1994). Gelatinised starch content 

of diet samples was determined using an assay kit (Megazyme International Ireland Ltd., 

Wicklow, Ireland). Samples were assayed for Ti on a UV spectrophotometer following 

the method of Short et al. (1996). 

7.3.11. Calculations  

The AME of diets was calculated using the following formula: 

AMEdiet (MJ/kg) = [(FI × GEdiet) – (Excreta output × GEexcreta)]/FI 

Correction for zero N retention was made using a factor of 36.54 kJ per gram N 

retained in the body (Hill and Anderson, 1958). 

AMEndiet (MJ/kg) = AMEdiet – (36.54 × N retention)/1000 

The CAID of nutrients were calculated from the dietary ratio of nutrients to Ti 

relative to the corresponding ratio in the ileal digesta. 

CAID of nutrient = [(Nutrient / Ti)d - (Nutrient / Ti)i] / (Nutrient / Ti)d 

where, (Nutrient / Ti)d = ratio of nutrient to Ti in diet and (Nutrient / Ti)i = ratio 

of nutrient to Ti in ileal digesta. 

Ileal digestible energy (IDE) was calculated using the following formula. 

IDE (MJ/kg) = GEdiet × CAID of GE 
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7.3.12. Statistical analysis 

The data for GS contents were analysed as a 2 × 3 factorial arrangement evaluating two 

stages of feed processing (conditioned-only and conditioned-pelleted) and three CT. All 

other data were analysed as a 2 × 3 factorial arrangement of treatments evaluating two 

levels of Carb supplementation and three CT. Cage served as the experimental unit. The 

general linear model procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC.) was 

used. Significant differences between means were separated by Least Significant 

Difference test. Significance of effects was declared at P < 0.05.  

7.4. Results 

7.4.1. Gelatinised starch content, pellet durability and enzyme recovery 

There was a significant (P < 0.05) processing stage × CT interaction for GS content of 

the diets (Table 7.2). In conditioned-only diets, increasing CT to 88 °C resulted in higher 

(P < 0.05) GS content compared to the diets conditioned at 60 and 74 °C. In conditioned- 

pelleted diets, GS content was not influenced by CT of the diet. At each CT, pelleting 

increased (P < 0.05) the GS content compared to the respective conditioned-only diets. 

As shown in Table 7.3, PDI improved (P < 0.05) with increasing CT, with a greater PDI 

for the diet conditioned at 88 °C than the diet conditioned at 60 °C (66.4 vs. 62.2%).  

The recovery of phytase at 60, 74 and 88 °C was 153, 128 and 48.5% respectively. 

The recovery of endo-1,4-β-xylanase was 81, 55 and 16% at 60, 74 and 88 °C, 

respectively. The endo-1,4-β-glucanase recovery at 60, 74 and 88 °C was 70, 50 and 0%, 

respectively. Moreover, endo-1,3 (4)-β-glucanase recovery at 60, 74 and 88 °C was 62, 

46 and 0%, respectively.  

7.4.2. Growth Performance 

Mortality during the experiment was negligible. Only three out of the 288 birds died, and 

the deaths were not related to any specific treatment. The effects of dietary treatments on 

growth performance are shown in Table 7.3. There was no interaction between Carb and 

CT for any of growth performance parameters. Addition of Carb increased weight gain 

(WG; P < 0.05) and reduced F/G (P < 0.001) by 30 g/bird and 6.5 points, respectively. 

Regardless of the Carb addition, WG (P < 0.001) and F/G (P < 0.01) was deteriorated by 

increasing CT. Birds fed diets conditioned at 60 and 74 °C had a similar (P > 0.05) WG 
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but higher (P < 0.05) than those fed the diets conditioned at 88 °C. Birds fed diets 

conditioned at 88 °C tended (P = 0.054) to have a lower FI than birds fed diets conditioned 

at 60 °C. Conditioning at 88 °C increased (P < 0.05) F/G compared to the diets 

conditioned at 60 and 74 °C. 

7.4.4. Nutrient and energy utilisation 

As shown in the Table 7.4, no interaction between supplemental Carb and CT was 

observed for CAID of any analysed nutrient. Supplemental Carb enhanced (P < 0.01) the 

starch digestibility. Digestibility of phosphorus tended (P = 0.079) to be lowered by the 

supplemental Carb. Birds offered diets conditioned at 88 °C had lower (P < 0.05) 

digestibility of DM, N, phosphorus and GE compared to the birds fed diets conditioned 

at 60 and 74 °C. Diets conditioned at 88 °C resulted in lower (P < 0.05) starch digestibility 

than diets conditioned at 60 °C.  

Regardless of CT, supplemental Carb increased AMEn by 0.13 MJ/kg. Steam-

conditioning at 88 °C reduced (P < 0.05) IDE and AMEn compared to the diets 

conditioned 60 and 74 °C. 



 
169 

 

  

Table 7. 2. Influence of processing stage and conditioning temperature on gelatinised starch 

content (g per 100 g total starch) of the diets1 

Processing stage 
Conditioning 

temperature, (°C) Gelatinised starch2 

Conditioned-only 60 11.4c 

Conditioned-only 74 10.8c 

Conditioned-only 88 13.2b 

   
Conditioned-pelleted 60 16.0a 

Conditioned-pelleted 74 15.4a 

Conditioned-pelleted 88 16.3a 

   
SEM3  0.31 

   
Main effects   

Processing stage   

Conditioned-only  11.8 

Conditioned-pelleted  15.9 

   
Conditioning temperature, (°C)    

 60 13.7 

 74 13.1 

 88 14.8 

   
Probabilities, P ≤   

Processing stage  0.001 

Conditioning temperature 0.001 

Processing stage × Conditioning temperature 0.044 

Means not sharing common letters (a,b,c) are different. 
1Each value represents mean of four replicate samples. 
2Non-supplemented diets (0 g/kg of Ronozyme® Multigrain) were used in the analysis. 

Unconditioned diet contained 9.93 g gelatinised starch per 100 g total starch.  
3Pooled standard error of mean. 
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Table 7. 3. Influence of carbohydrase enzyme addition and conditioning temperature on 

weight gain (WG; g/bird), feed intake (FI; g/bird) and feed per gain (F/G; g feed/g gain) of 

broiler starters1 (d1-21), and pellet durability index (PDI; %). 

Enzyme addition Conditioning temperature, (°C) WG FI F/G  PDI2 

- 60 1040 1405 1.365  - 

- 74 1026 1376 1.355  - 

- 88 938 1360 1.452  - 

+ 60 1064 1369 1.288  - 

+ 74 1033 1371 1.327  - 

+ 88 996 1357 1.363  - 

        

SEM3  13.6 11.2 0.0217  - 

       

Main effects       

Enzyme addition       

-  1001b 1380 1.391a  - 

+  1031a 1366 1.326b  - 

       

Conditioning temperature, (°C)      

 60 1052a 1387 1.327b  62.2b 

 74 1029a 1373 1.341b  64.8ab 

 88 967b 1358 1.408a  66.4a 

        

Probabilities, P ≤       

Enzyme addition  0.011 0.122 0.001  - 

Conditioning temperature 0.001 0.054 0.002  0.021 

Enzyme addition × Conditioning temperature 0.175 0.272 0.355  - 

Means in a column not sharing common letters (a,b) are different (P < 0.05). 
1Each value represents the mean of six replicates (eight birds per replicate). 
2Each value represents the mean of five replicate samples. 
3Pooled standard error of mean. 
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Table 7. 4. Influence of carbohydrase enzyme addition and conditioning temperature on coefficient of apparent ileal digestibility (CAID)1 of dry matter (DM), 

nitrogen (N), fat, starch, calcium (Ca), phosphorus (P), gross energy (GE), ileal digestible energy (IDE; MJ/kg DM)1 and N-corrected apparent metabolisable 

energy (AMEn; MJ/kg DM)2 of 21-d old broilers. 

Enzyme addition 
Conditioning 

temperature, (°C)    

CAID 
IDE AMEn 

DM N Fat Starch Ca P GE 

- 60 0.648 0.792 0.936 0.963 0.475 0.618 0.660 12.31 12.47 

- 74 0.672 0.821 0.951 0.956 0.466 0.606 0.687 12.82 12.46 

- 88 0.617 0.752 0.921 0.951 0.458 0.512 0.633 11.80 12.28 

                  
+ 60 0.654 0.818 0.925 0.973 0.453 0.606 0.670 12.50 12.67 

+ 74 0.656 0.809 0.931 0.971 0.440 0.574 0.673 12.56 12.56 

+ 88 0.597 0.772 0.891 0.958 0.423 0.479 0.614 11.45 12.39 
  

         
SEM3  0.0139 0.0136 0.0193 0.0046 0.0272 0.0175 0.0136 0.254 0.006 
  

         
Main effects           

Enzyme addition           

-  0.646 0.788 0.936 0.956b 0.466 0.579 0.660 12.31 12.41b 

+  0.636 0.800 0.916 0.967a 0.439 0.553 0.652 12.17 12.54a 
  

         
Conditioning temperature, (°C)            
 60 0.651a 0.805a 0.931 0.968a 0.464 0.612a 0.665a 12.41a 12.57a 
 74 0.664a 0.815a 0.941 0.963ab 0.453 0.590a 0.680a 12.69a 12.51a 
 88 0.607b 0.762b 0.906 0.954b 0.440 0.495b 0.623b 11.63b 12.33b 
  

         
Probabilities, P ≤          

Enzyme addition 0.381 0.310 0.211 0.007 0.226 0.079 0.496 0.502 0.021 

Conditioning temperature 0.001 0.001 0.192 0.021 0.688 0.001 0.001 0.001 0.003 

Enzyme × Conditioning temperature 0.591 0.347 0.884 0.705 0.974 0.802 0.536 0.541 0.718 

Means in a column not sharing common letters (a,b) are different (P < 0.05). 
1Each value represents the mean of six replicates (six birds per replicate).  
2Each value represents the mean of six replicates (eight birds per replicate) measured from d 17 to 20. 
3Pooled standard error of mean. 
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7.4.5. Relative length and weight of digestive tract segments, gizzard pH and jejunal 

digesta viscosity 

No interaction was observed between supplemental Carb and CT on the relative empty 

weight or length of any measured intestinal segment (Table 7.5). Supplemental Carb 

reduced (P < 0.05) the relative length of the ileum and small intestine and, tended to 

reduce the relative length of the duodenum (P = 0.076) and jejunum (P = 0.087). 

Conditioning the diets at 74 °C tended (P = 0.082) to reduce the relative weight of small 

intestine compared to those conditioned at 60 and 88 °C. Increasing CT to 88 °C tended 

(P = 0.093) to increase the relative weight of the gizzard. Birds offered diets conditioned 

at 88 °C had lighter (P = 0.050) caeca compared to those fed diets conditioned at 60 °C, 

and longer (P < 0.05) duodenum and jejunum compared to those fed diets conditioned at 

60 and 74 °C.  

Supplemental Carb and CT did not interact (P > 0.05) to influence the gizzard pH 

or jejunal digesta viscosity. However, the gizzard pH tended (P = 0.065) to increase with 

the increasing CT. Jejunal digesta viscosity was significantly (P < 0.05) influenced by the 

CT, as the diet conditioned at 88 °C resulted in 10.1% (0.32 cP) higher digesta viscosity 

compared to the diets conditioned at 60 and 74 °C. 
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Table 7. 5. Influence of carbohydrase enzyme addition and conditioning temperature on relative weight (g/kg of body weight) of crop, proventriculus (Prov.), gizzard (Giz.), 

duodenum (Duo.), jejunum (Jej.), ileum (Ile.) and caeca, and relative lengths (cm/kg of body weight) of Duo., Jej., Ile. and caeca, pH of the gizzard and jejunal digesta viscosity (cP) 

of 21-d old broilers. 

 

Enzyme addition 

Conditioning 

temperature, 

(°C)   

Relative empty weight  Relative length Giz. 

pH 

Jej. 

digesta 

viscosity Crop Prov. Giz. Duo. Jej. Ile. Caeca SI3  Duo. Jej. Ile. Caeca SI3 

- 60 2.38 3.55 11.7 4.93 11.2 7.09 2.46 23.2  20.6 55.2 61.3 24.8 137 2.35 3.06 

- 74 2.20 3.75 11.8 4.49 9.2 6.30 2.44 20.0  19.7 52.2 57.7 24.0 130 2.56 3.20 

- 88 2.65 3.65 12.1 5.07 10.5 6.64 2.11 22.2  22.1 57.3 61.0 24.8 140 2.91 3.55 

                   
+ 60 2.31 3.40 11.5 4.92 10.2 6.62 2.60 21.7  19.3 49.5 54.6 24.3 123 2.60 3.20 

+ 74 2.43 3.79 11.8 4.98 10.3 6.25 2.39 21.5  19.9 53.6 56.5 25.6 130 2.59 3.15 

+ 88 2.43 3.84 12.8 4.88 10.9 6.75 2.42 22.5  20.7 54.8 58.0 25.5 134 2.71 3.38 

                   
SEM2  0.128 0.159 0.40 0.215 0.52 0.307 0.105 0.84  0.57 1.53 1.76 0.75 3.5  0.14

1 

0.131 

                   
Main effects                  

Enzyme addition                   

-  2.41 3.65 11.9 4.83 10.3 6.67 2.34 21.8  20.8 54.9 60.0a 24.5 136a 2.60 3.27 

+  2.39 3.68 12.0 4.93 10.5 6.54 2.47 22.0  19.9 52.7 56.4b 25.2 129b 2.63 3.24 

                  
Conditioning temperature, (°C)                   

 60 2.34 3.47 11.6 4.92 10.7 6.86 2.53a 22.5  19.9b 52.3b 58.0 24.5 130 2.47 3.13b 

 74 2.31 3.77 11.8 4.73 9.75 6.27 2.42a

b 

20.8  19.8b 52.9b 57.1 24.8 130 2.58 3.17b 

 88 2.54 3.74 12.5 4.97 10.7 6.69 2.26b 22.4  21.4a 56.1a 59.5 25.2 137 2.81 3.47a 

                  
Probabilities, P ≤                  

Enzyme addition  0.836 0.824 0.727 0.575 0.697 0.590 0.127 0.852  0.076 0.087 0.018 0.302 0.028 0.814

  

0.806 

Conditioning temperature 0.178 0.135 0.093 0.500 0.113 0.163 0.050 0.082  0.015 0.046 0.405 0.709 0.095 0.065 0.032 

Enzyme × Conditioning temperature 0.221 0.572 0.502 0.285 0.176 0.622 0.219 0.244  0.325 0.082 0.294 0.359 0.152 0.293 0.494 

Means in a column not sharing common letters (a,b) are different (P < 0.05). 
1Each value represents the mean of six replicates (two birds per replicate). 
2Pooled standard error of mean. 
3Small intestine = duodenum + jejunum + ileum. 
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7.5. Discussion 

In the current study, the effect of CT on the formation of GS interacted with the stage of 

processing. In conditioned-only diets, CT of 88 °C resulted in higher GS content 

compared to both 60 and 74 °C, while in conditioned-pelleted diets the GS content was 

not influenced by CT. The differences of GS contents in response to CT in conditioned-

only diets were equalised in conditioned-pelleted diets. Pelleting increased the GS content 

of the conditioned-pelleted diets compared to the respective conditioned-only diets in 

mash form (15.9 vs. 11.8 g GS per 100 g total starch). The higher GS formation in 

conditioned-pelleted diets demonstrates that pelleting has a greater effect on starch 

gelatinisation than steam conditioning. In agreement, Abdollahi et al. (2010a) reported 

that GS content of maize- and sorghum-based diets increased in the conditioned-pelleted 

diets compared to the conditioned-only diets (9.9 vs. 15.5 g GS per 100 g total starch), 

attributable to the frictional heat and mechanical shear generated during the pelleting 

process. Accordingly, it has been hypothesised that only a portion of starch gelatinisation 

occurs during steam-conditioning, but most of the gelatinisation takes place during the 

actual pelleting process (Abdollahi et al., 2013a). 

Increasing CT from 60 to 88 °C enhanced the pellet durability by 4.2 percentage 

points. This finding agrees with the literature (Cutlip et al., 2008; Abdollahi et al., 2010a, 

2011) that has attributed the improved pellet quality to an increased GS content in 

response to increasing CT. In the current study, however, no difference in GS contents of 

pelleted diets conditioned at different temperatures was observed, suggesting the lack of 

GS effect on pellet durability. Svihus et al. (2005) suggested that an increase in diet 

viscosity, due partly to starch gelatinisation, may enhance the binding capacity of feed 

particles leading to improved pellet quality. Even though not assessed in the current study, 

the positive impact of Maillard reaction products generated at higher CT on pellet binding 

ability has also been acknowledged (Thomas et al., 1998; Abdollahi et al., 2013a). It can, 

therefore, be speculated that a combination of factors induced by high CT might have 

resulted in the higher pellet durability in diets conditioned at 88 °C. 

Regardless of the CT, addition of Carb to barley-based diets in the present study 

increased the WG by 30 g/bird and improved F/G by 6.5 points. Inborr and Bedford 

(1994), evaluated the supplementation of β-glucanase (0.0, 1.0 and 10 g/kg) to a barley-

based diet conditioned at 75, 85 or 95°C for either 30 s or 15 min and reported no 
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interaction between enzyme, temperature and time for growth performance. These 

researchers, however, reported a linear improvement in WG and F/G with increasing 

enzyme addition. Samarasinghe et al. (2000) reported that CT of 90 °C compared to 60 

°C, in a non-supplemented barley-maize-soybean meal diet numerically impaired WG of 

broilers (d 7-21) by 2.6 g/bird, daily FI by 2.0 g/bird and F/G by 4.1 points. These 

researchers reported that despite the 82.2% reduction in exogenous enzyme activity in 

diets conditioned at 90 °C compared to 75 °C, the impaired WG at 90 °C was restored by 

the added enzyme. The 11.1% improvement in WG due to the enzyme addition at 90 °C 

in study by Samarasinghe et al. (2000) was not, however, observed at 60 and 75 °C, 

indicating a greater enzyme efficacy at higher CT. In contrast, as indicated by the lack of 

interaction between the Carb and CT in the current study for WG and F/G, the exogenous 

enzymes had similar efficacy at each CT, despite the low recovery at higher CT. 

Moreover, due to the lack of effect of Carb on jejunal digesta viscosity, it can be 

speculated that enzyme action of hydrolysing the cell wall matrix (Bedford and Schulze, 

1998) and generation of prebiotic oligosaccharides (González-Ortiz et al., 2017) might 

have contributed to the improvements in WG and F/G by supplemental Carb. 

Feeding pelleted diets enhances economics of meat chicken production mainly 

through facilitating ingestion, increased FI (Abdollahi et al., 2018) and, subsequent 

improvements in growth rate and feed efficiency. However, the benefits of pellet feeding 

on bird performance partly depends on the CT applied during the pelleting process 

(Abdollahi et al., 2010a,b, 2011). In the current study, compared to diets conditioned at 

60 °C, birds offered diets conditioned at 88 °C tended to consume 29 g less feed, gained 

85 g less weight and showed deterioration of F/G by 8.1 points during the 21-d 

experimental period, while no differences were observed when the CT increased from 60 

to 74 °C. These observations are in agreement with previous studies (Samarasinghe et al., 

2000; Creswell and Bedford, 2006) reporting deteriorated growth performance in broilers 

fed diets conditioned at temperatures above 80 °C. Consistent with the present findings, 

Inborr and Bedford (1994) reported no effect from increasing CT of a barley-based diet 

from 75 to 85 °C. However, when CT increased from 85 to 95 °C, both WG and F/G were 

poorer. Loar II et al. (2014) reported that increasing the CT from 74 to 85 and 96 °C in a 

maize-soybean meal diet deteriorated F/G by 3.0 (1.96 vs. 1.99) and 8.0 (1.96 vs. 2.04) 

points, respectively. Raastad and Skrede (2003) reported similar BW and F/G in 21-d old 

broilers fed maize-wheat-oat-based diets conditioned at 69 and 78 °C, but lower BW by 



 
176 

5.4% and impaired feed efficiency by 11.5 points in birds fed diets conditioned at 86 °C. 

Cowieson et al. (2005) showed that increasing CT from 80 to 90 °C reduced the WG by 

154 g per bird and increased F/G by 9.0 points (1.94 vs. 2.03) in broilers (1-42 d) fed non-

supplemented wheat-based diets. Supplemental xylanase restored WG and F/G in the 

birds fed diets conditioned at 85 or 90 °C but not in those fed the diet conditioned at 80 

°C.  

The negative effect of high CT on digesta viscosity is believed to be primarily 

responsible for the poorer performance of birds fed high-temperature conditioned diets 

(Cowieson et al., 2005; Abdollahi et al., 2019b). Lending support to this thesis, 

conditioning the diets at 88 °C tended to lower FI by 29 g/bird compared to the 

conditioning at 60 °C, due possibly to the slower feed passage associated with greater 

digesta viscosity (McNab and Smithard, 1992; Almirall et al., 1995) in birds fed the diets 

conditioned at 88 °C. Moreover, F/G of the birds was impaired by 2.4 points per 0.1 cp 

increase in jejunal digesta viscosity in response to the increasing CT from 60 °C to 88 °C. 

In contrast, Abdollahi et al. (2010a) reported lack of CT effect on F/G of birds fed maize- 

and sorghum-based diets conditioned at 60, 75 and 90 °C, showing that the feed efficiency 

deterioration due to the application of high CT is more severe in diets based on viscous 

grains than those made of non-viscous grains. 

Evaluating the influence of increasing CT in maize- and wheat-based diets, 

Abdollahi et al. (2010b) reported that reduction in WG and FI in response to increasing 

CT from 60 to 75 °C in maize-based diets was restored in the birds fed diets conditioned 

at 90 °C. This effect was not, however, reported for wheat-based diets, with WG of birds 

fed diets conditioned at 75 and 90 °C were lower than those fed diets conditioned at 60 

°C. In another study, Abdollahi et al. (2010a) reported that increasing CT from 60 to 75 

°C in both maize- and sorghum-based diets reduced the WG, but the gain was restored in 

birds fed diets conditioned at 90 °C. These observations led to the hypothesis that WG 

and FI responses of broilers fed diets conditioned at different temperatures represent a 

balance between the negative effect of high CT on nutrient availability and the positive 

effect of high CT on pellet quality. Accordingly, the positive effect of conditioning at 90 

°C on pellet quality in non-viscous maize- and sorghum-based diets reported by Abdollahi 

et al. (2010a,b), might have been greater than the negative effect on nutrient utilisation. 

On the other hand, the improvements in pellet quality gained by applying higher CT to 
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diets based on viscous grains such as wheat and barley seemed to be insufficient to 

overcome the adverse effects of high CT on nutrient utilisation (Abdollahi et al., 2010b), 

due, most probably, to the greater magnitude of damage to nutrient utilisation caused by 

the increased digesta viscosity. In agreement with above explanation, the higher pellet 

quality achieved at 88 °C in the current study was probably incapable of ameliorating the 

negative impacts of high CT and restoring the impaired WG and F/G.  

Regardless of the CT, supplemental Carb enhanced starch digestibility by 1.15%. 

The positive effect of the supplemental Carb on starch digestibility in broilers fed barley-

based diets has been reported previously (Bergh et al., 1999; Ravindran et al., 2007). The 

enhanced starch digestibility, and the lack of Carb effect on digesta viscosity, implies the 

action of Carb on hydrolysing the cell wall matrix (Hesselman and Åman, 1986; Bedford, 

1996) that releases encapsulated starch granules leading to better interactions with 

digestive enzymes.  

Enzyme addition increased the AMEn by 0.13 MJ/kg in the current study, which 

is paralleled to the enhanced digestibility of starch as the main energy yielding nutrient. 

Both the improvement of AMEn in response to exogenous enzymes and the correlation 

with starch digestibility is recognised in the literature (Ravindran et al., 2007; Svihus et 

al., 2011b).  

It has been suggested that heat treatment of diets containing viscous grains at high 

temperatures may impair the ability of birds to utilise the nutrients through both increased 

digesta viscosity and reduced activity of the enzymes (Amerah et al., 2011; Abdollahi et 

al., 2013a). In the current study, when the CT increased to 88 °C, digestibility of all 

nutrients except fat and calcium reduced. Despite the recognised sensitivity of fat 

digestibility to the higher digesta viscosity (Edney et al., 1989; Almirall et al., 1995), the 

CAID of fat was only numerically reduced (by 2.69%) in response to increasing CT from 

60 to 88 °C.  

Digestibility of N in the current study was influenced by the CT with diets 

conditioned at 88 °C had lower N digestibility by 5.3% compared to the diets conditioned 

at 60 °C. Increasing the CT to a certain level can benefit the protein digestibility through 

inactivation of enzyme inhibitors and protein denaturation that exposes new sites for 

enzyme attack (Camire et al., 1990; Abdollahi et al., 2013a). However, extreme CT can 
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potentially reduce the N digestibility by degradation of heat-labile AA with a marked 

impact on cysteine, the most heat-labile AA, followed by lysine, arginine, threonine and 

serine (Papadopoulos, 1989). Loar II et al. (2014) reported that methionine, isoleucine 

and proline digestibility was reduced by 3-5% in response to increasing CT from 74 to 85 

and 96 °C. Even though not measured in the current study, inactivation of proteolytic 

enzymes at higher CT may also have impaired the protein digestibility (Abdollahi et al., 

2013a). 

Starch gelatinisation increases the susceptibility for amylolytic degradation due to 

loss of crystalline structure (Svihus et al., 2005). Upon gelatinisation, the starch granules 

are opened allowing the entrance of enzymes into the granule structure (Abdollahi et al., 

2013a). Starch gelatinisation can occur in temperature ranged from 45-90 °C depending 

on the starch source and moisture content (Eliasson and Gudmundsson, 1996; Abdollahi 

et al., 2013a). Song and Jane (2000) evaluated the starch extracted from different barley 

types (normal, waxy, high amylose) and reported the gelatinisation of starch extracted 

from normal starch barley to onset at 55 °C and reach peak gelatinisation at 59 °C. It can, 

therefore, be speculated that conditioning the normal starch barley-based diets at 60 °C 

might have generated a substantial amount of GS to result in starch digestibility high as 

0.968. Moreover, as a linear relationship between extent of gelatinisation due to 

processing and starch digestibility is not evident, higher GS contents does not necessarily 

mean a higher starch digestibility (Svihus et al., 2005). Accordingly, despite the similar 

GS contents in conditioned-pelleted diets, CAID of starch in birds offered the diet 

conditioned at 88 °C was 1.45% lower than those fed diets conditioned at 60 °C. In partial 

agreement, Abdollahi et al. (2010b) reported that conditioning wheat-based diets at 90 °C 

lowered the starch digestibility compared to that of 60 and 75 °C, while starch 

digestibility in maize-based diets was not affected by increasing CT. Abdollahi et al. 

(2011) reported that CAID of starch in pelleted wheat-based diets decreased from 0.977 

in diets conditioned at 60 °C to 0.940 and 0.913 in diets conditioned at 75 and 90 °C, 

respectively. Crystallisation of the GS upon cooling to the room temperature, known as 

retrogradation, re-associates starch molecules separated during gelatinisation. As the 

opposite of gelatinisation, retrogradation can decrease the digestibility of starch 

(Abdollahi et al., 2013a) by forming RS that is resistant to enzymatic hydrolysis. Higher 

RS content in response to increasing CT to 90 °C has been reported in maize-, sorghum- 

(Abdollahi et al., 2010a) and wheat- (Abdollahi et al., 2011) based broiler diets. Even 
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though RS content was not measured in the current study, it can be speculated that 

conditioning barley-based diets at higher temperature would have encouraged the 

formation of RS, negatively influencing the starch digestibility. 

Studies on the effect of CT on mineral digestibility are scant. However, it might 

be reasonable to speculate that the higher digesta viscosity in birds fed diets conditioned 

at 88 °C is partly responsible for the 17.6% reduction in CAID of phosphorus compared 

to those fed the diets conditioned at 60 °C. The reductions in the CAID of GE, IDE and 

AMEn in response to increasing CT from 60 to 88 °C were 6.32, 6.29 and 1.91%, 

respectively. In comparison to diets conditioned at 60 °C, conditioning diets at 88 °C 

reduced the digestible protein and phosphorus contents of diets by 10.75 and 0.79 g/kg, 

respectively. As protein and phosphorus play critical roles in driving broiler growth, the 

deficit in the digestible contents of these nutrients due to the extreme heat treatment can 

cause a substantial negative impact on performance parameters, as evidenced by impaired 

WG and F/G at 88 °C in the present study. Moreover, poor digestibility in birds fed high 

CT diets can result in greater amounts of substrate available for bacterial growth in the 

hindgut (Creswell and Bedford, 2006). In consequence, the efforts to sterilise the feed by 

application of higher CT may unwittingly increase the risk of other microbial infections 

such as necrotic enteritis (Creswell and Bedford, 2006; Amerah et al., 2011; Abdollahi et 

al., 2019b).  

Compared to diets conditioned at 60 °C, conditioning at 88 °C reduced the IDE 

and AMEn by 0.78 and 0.24 MJ/kg, respectively. The reports on the effect of CT on 

energy utilisation in broilers are not consistent and seemed to be confounded by the grain 

type. Abdollahi et al. (2010a) reported grain type × CT interaction for energy utilisation, 

with increasing CT from 60 to 90 °C decreased the AME of sorghum-based diets but had 

no effect on the AME of maize-based diets. Abdollahi et al. (2010b), in a study with 

maize- and wheat-diets, reported no effect of CT on AME of the diets conditioned at 

either 60, 75 or 90 °C. However, in a follow up study (Abdollahi et al., 2011), increasing 

CT of pelleted wheat-based diets from 60 °C to 90 °C reduced the AME by 0.31 MJ/kg. 

In agreement with these studies, the negative impact of high CT on IDE and AMEn in the 

present study showed a direct link to CAID of starch and can be attributed to possible 

formation of RS, which is refractory to enzymatic hydrolysis.  
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Birds offered diets with supplemental enzymes had 6.0 and 5.1% shorter ileums 

and small intestines, respectively, compared to those fed non-supplemented diets. 

Reduction in the length of jejunum in response to the enzyme supplementation has been 

observed previously (Wu et al., 2004b) and was attributed to an enzyme-induced 

improvement in nutrient digestibility that might have decreased the need for digestive and 

absorptive capacity.  

Compared to the diet conditioned at 60 °C, conditioning diets at 88 °C resulted in 

10.7% reduction in caecal weight. It was hypothesised that high viscosity of digesta 

impedes the passage of material into the caeca, allowing only small, non-viscous 

polysaccharides, but not large, highly viscous materials (Svihus et al., 2013). Caeca 

enlarge as a consequence of an increased amount of fermentable material in the diet 

(Svihus, 2014) and it can be therefore speculated that the impeded passage of fermentable 

material into the caeca, by greater digesta viscosity in birds offered diets conditioned at 

88 °C, has resulted in a significant reduction in the relative weight of caeca. 

Feeding diets conditioned at 88 °C increased the relative length of duodenum and 

jejunum by 7.5 and 7.3%, respectively, compared to the diets conditioned at 60 °C. In 

agreement, Abdollahi et al. (2010b) reported 6.3% longer small intestine in birds fed diets 

conditioned at 75 °C and 90 °C than at 60 °C. This can be considered as the natural 

response of the small intestine to the reduced availability of nutrients in diets exposed to 

higher CT. 

The proven impact of NSP-degrading enzymes in alleviating the higher digesta 

viscosity caused by extreme heat treatments of the wheat- (Silversides and Bedford, 1999; 

Cowieson et al., 2005) and barley- (Samarasinghe et al., 2000; Gracia et al., 2003; García 

et al., 2008) based diets was not observed in the current study. Gracia et al. (2003) 

evaluated steam-cooked barley grains in mash diets, without or with a supplemental 

multi-component enzyme, for broiler-starters (d 1-21). An interaction between steam 

cooking and enzyme addition was reported for intestinal digesta viscosity due to the 

marked reduction of digesta viscosity in response to the supplemental enzyme in steam-

cooked barley diets. Samarasinghe et al. (2000) reported greater dietary viscosity in a 

barley-maize-soy diet due to conditioning at 75 and 90 °C compared to 60 °C. Enzyme 

addition reduced the viscosity by 11, 14 and 17% in diets conditioned at 60, 75 and 90 

°C, respectively, showing greater magnitudes of response at high CT diets. Despite the 
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lack of enzyme effect on digesta viscosity in the current study, WG, F/G, AMEn and 

CAID of starch improved by supplemental Carb, suggesting the involvement of 

mechanisms other than reduction of digesta viscosity. 

Application of higher temperatures during conditioning process can increase the 

viscosity of feed and intestinal digesta by increasing starch gelatinisation (Svihus et al., 

2005), greater release of encapsulated NSP (Cowieson et al., 2005), increased 

solubilisation of NSP (García et al., 2008), increased molecular weights due to less 

depolymerisation of carbohydrates (Abdollahi et al., 2013a) or destruction of enzymes 

(Inborr and Bedford, 1994; Silversides and Bedford, 1999; Samarasinghe et al., 2000). It 

has been hypothesised that digesta viscosity is dependent not only on NSP concentration 

but also on its molecular weight. A diet with a low content of soluble NSP might result 

in high viscosity if the NSP is of a high molecular weight (Cowieson et al., 2005). 

Impaired enzyme activity due to high CT has been reported to result in less 

depolymerisation of NSP contributing to an increase in molecular weight of NSP and 

consequent greater digesta viscosity (Silversides and Bedford, 1999; Cowieson et al., 

2005).  

The thermostable enzyme product with maximum CT tolerance of 90 °C (DSM, 

2020) used in this experiment has been used in previous studies in this thesis (Chapters 

3, 4, 5 and 6) and were found to have high enzyme recoveries under high-temperature 

thermal processing. In contrast, extremely low enzyme recoveries were determined in 

diets conditioned at 88 °C in the present study. It is difficult to provide a reason for this 

unexpected finding. In this study, CT was continuously measured and maintained at 

desired temperatures of 60, 74 and 88 °C by adjusting the steam flow rate. During the 

conditioning process, the temperature of diets increases from ambient temperature in 

mash diets to higher temperatures in the conditioning chamber. The amount of heat 

required to achieve a particular CT depends on the difference between the pre-

conditioning diet temperature (which is almost identical to ambient temperature) and the 

desired temperature in the conditioning chamber. Accordingly, lower the gap between 

ambient temperature and conditioner temperature, the requirement of heat to achieve that 

CT will be low. When the gap is greater, extra heat is needed to achieve the target CT. 

The current experiment was conducted during early spring and the diets were processed 

during a day with an average ambient temperature of < 10 °C. To achieve the 88 °C, 
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therefore, excess heat, and consequently excess moisture, was added to the diets, which 

may explain, at least in part, the low enzyme recoveries that are atypical for this enzyme 

product. Moreover, it can be hypothesised that the amount of heat and moisture applied 

to the diet seems to be more important than final CT and that, if the same diets were 

conditioned at 88 °C under higher ambient temperature, the recoveries of enzyme activity 

would have been much higher. Moreover, the pellet die hole frictional heat generated 

during the pelleting process (Abdollahi et al., 2010b) may also have exacerbated the loss 

of enzyme activity in high CT diets.  

7.6. Conclusions 

In conclusion, the efficacy of the test enzyme was similar at each CT as indicated by the 

lack of significant interactions between supplemental Carb and CT. Supplementation of 

Carb in barley-based diets improved WG, F/G, starch digestibility and AMEn in broiler 

starters. Steam-conditioning diets at 88 °C negatively influenced the WG, F/G, ileal 

digestibility of N, starch, phosphorus and GE, IDE and AMEn. Even though conditioning 

barley-based diets at 88 °C delivered more durable pellets, nutrient utilisation was 

seriously compromised, most likely due to the increased digesta viscosity, causing a 

substantial negative impact on growth rate and feed efficiency of the birds. Taken together 

with previous published data, it is evident that the response of viscous grains to increasing 

CT differ from those of non-viscous grains highlighting the need of determining grain-

specific optimum CT. 
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CHAPTER EIGHT 

GENERAL DISCUSSION 

8.1. Introduction 

With the ever-increasing demand for poultry products, the supply of adequate and 

sustainable feed resources become critical justifying continuous exploration for 

alternative poultry feed ingredients. Despite potential as a poultry feed ingredient, barley 

remains a comparatively underutilised grain because of the anti-nutritive impact of non-

starch polysaccharides (NSP) and, the variability in nutrient composition and quality. 

Different measures that have been evaluated to ameliorate the anti-nutritive factors in 

barley have failed to prompt widespread utilisation because of variable responses in birds 

fed barley-based diets. 

Inconsistent research methodology used in published studies has exacerbated the 

variability and prevented a clearer understanding of the feed value of barley. The lack of 

characterisation of tested barley types in publications questions the validity of previous 

recommendations for barley inclusion in poultry diets. Moreover, most research aimed to 

optimise processing conditions for barley-based diets have not used barley as the sole 

cereal in the diet, which makes it difficult to reach clear conclusions on the effect of barley 

per se. Accordingly, the broader objective of this thesis was to establish the correct 

scientific approach for evaluating barley in poultry diets based on grain specific 

metabolisable energy and digestible amino acid (AA) contents. In order to achieve the 

optimal performance of broilers fed pelleted barley-based diets, the effect of supplemental 

enzymes and the optimum feed processing parameters were also investigated. It was 

hoped that recommendations based on this thesis research will facilitate greater inclusions 

of barley in commercial broiler diets while maintaining bird performance. 

8.2. Development of the study 

The first experiment in this project was conducted to characterise the nutrient 

composition, and to determine grain specific nitrogen (N)-corrected apparent 

metabolisable energy (AMEn), and coefficient of standardised ileal digestibility of AA in 

two barley types (NSH [normal starch hulled barley] and WSHL[waxy starch hull-less 

barley]) compared with wheat (Chapter 3). The two barley types were New Zealand origin 
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and available in adequate quantities for a series of experiments. Wheat, the most 

commonly used cereal grain for poultry diets in New Zealand, was evaluated in parallel 

as the control grain. Nutrient composition, AMEn and standardised digestible AA 

contents of non-supplemented barley and wheat, determined in Chapter 3, were used to 

formulate the dietary treatments in subsequent experiments.  

The next two experiments were conducted to determine the optimum inclusion 

levels of NSH (Chapter 4) and WSHL (Chapter 5) in wheat-based diets. When alternative 

feed ingredients are included in commercial poultry diets, the current industry practice is 

to balance the energy and AA contents across the diets. To ensure the current research 

designs are compatible to industry context, experimental diets (Chapters 4 and 5) were 

formulated to be isocaloric and isonitrogenous.  

After determining the optimum inclusion rate for barley in wheat-based diets, the 

optimum barley particle size (Chapter 6) and conditioning temperature (CT; Chapter 7) 

were evaluated in diets containing barley as the sole grain source. These evaluations were 

limited to NSH barley (Chapters 6 and 7). In addition, effects of carbohydrase and phytase 

(that are routine additions in cereal-based commercial diets) and their possible 

interactions with grain type (Chapter 3), barley inclusion rate (Chapter 4 and 5), barley 

particle size (Chapter 6), and CT (Chapter 7) were evaluated.   

8.3. The effect of grain type on nutritional quality  

The results from Chapter 3 suggested that the β-glucan content, rather than starch 

composition and presence or absence of hulls, plays an important role in determining the 

utilisation of nutrients in barley for broilers. Moreover, digestible AA and AMEn contents 

of NSH were superior to WSHL, despite the higher concentrations of nutrients in WSHL. 

This finding questions the appropriateness of table values or chemical composition data 

in formulating barley-based diets in commercial poultry production. The main conclusion 

from this study was that cultivar-specific values for metabolisable energy and digestible 

nutrients, AA in particular, should be used when formulating broiler diets to account for 

barley variation and ensure that birds' nutrient requirements are met. 
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8.4. Influence of barley inclusion rate and feed processing on pellet quality of barley-

based diets 

Apart from the first study (Chapter 3), barley-based diets were offered in pellet form, and 

pellet durability index (PDI) of the diets was determined in each study. Increasing 

inclusion levels of NSH (Chapter 4) and WSHL (Chapter 5) in wheat-based diets resulted 

in decreased pellet durability. Soybean oil added to barley diets to maintain isocaloric 

conditions is the likely cause of the decreased PDI at higher barley inclusions (Chapters 

4 and 5). This decreased pellet quality in diets with high oil and barley was observed 

despite the precautionary use of pellet binder in all diets. The confounding effect of oil 

on pellet quality was more prominent in WSHL-based diets (Chapter 5) due to the greater 

amount of added oil compared to NSH diets (Chapter 4). Moreover, the presence of hulls 

in NSH barley may have generated weak points in pellets, thus contributing to reduced 

PDI in these diets (Chapter 4) with increasing barley inclusions.  

Based on the assumption that large grain particle size results in poor pellet quality, 

the grains were finely ground for the manufacture of pellets. This assumption was 

confirmed by the impairment of PDI in coarsely ground barley diets (Chapter 6), due 

probably to more weak points leading to pellet breakages. Data reported in Chapter 7 

demonstrated that increasing the CT for barley-based diets improved the pellet quality, as 

shown by greater PDI with conditioning at 88 vs. 60 °C. However, greater PDI at higher 

CT was not due to starch gelatinisation as no difference in gelatinised starch contents of 

pelleted diets was observed.  

8.5. Influence of barley inclusion rate on growth performance of broilers 

The optimum inclusion levels of NSH and WSHL in wheat-based diets were determined 

in Chapters 4 and 5, respectively. In Chapter 4, weight gain of birds increased up to 283 

g/kg of NSH inclusion and then decreased with further inclusion. The feed per gain, 

however, was improved with increasing NSH inclusions in diets. Accordingly, the 

optimum inclusion level of NSH in a pelleted wheat-based broiler diet was determined as 

283 g/kg of diet. In Chapter 5, because maximum WSHL inclusion had no negative effect 

on weight gain and even improved feed efficiency, it was concluded that WSHL could be 

safely included up to an inclusion level of 260 g/kg in a balanced, pelleted wheat-based 

broiler diet. 
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8.6. Influence of feed processing on growth performance of broilers fed barley-based 

diets 

According to the results from Chapter 6, the effects of barley particle size existed even 

after pelleting, with birds fed pellets made with coarsely ground barley having improved 

feed per gain by 2.1 points. Moreover, the effect of barley particle size on feed intake was 

preserved after pelleting and interacted with supplemental enzymes. These findings 

contradict the previous hypothesis that pelleting can mask the influence of particle size 

on growth performance (Amerah et al., 2007b; Chewning et al., 2012).  

Abdollahi et al. (2010a,b) hypothesised that growth responses of broilers fed diets 

conditioned at different temperatures represent a balance between the negative effect of 

high CT on nutrient availability and the positive effect of high CT on pellet quality. In 

diets based on viscous grains (e.g., barley and wheat), improvements in pellet quality 

gained by applying higher CT seemed insufficient to overcome the adverse effects of high 

CT on nutrient utilisation (Abdollahi et al., 2010b). Results reported in Chapter 7 support 

this contention, with better pellet quality achieved at 88 °C failing to ameliorate the 

negative impact of high CT on nutrient utilisation and consequently causing substantial 

losses of growth and feed efficiency.  

8.7. Influence of barley type and inclusion rate on nutrient utilisation of broilers  

The findings from Chapter 3 showed that, despite the higher contents of N and AA in 

WSHL compared to NSH, coefficient of standardised ileal digestibility values were lower 

for WSHL, emphasising the importance of using grain specific digestible AA contents 

for formulation of barley-based diets. The enhanced coefficient of apparent ileal 

digestibility (CAID) of N reported in response to increasing NSH inclusion (Chapter 4) 

can be attributed to a higher functionality of the gizzard that resulted in greater 

mechanical breakdown of feed particles, longer retention time and lower digesta pH. 

The higher CAID of starch for NSH compared to WSHL reported in Chapter 3 

contradicted the expectation that WSHL, with greater amounts of amylopectin, would be 

highly digestible compared to NSH. Enhanced starch digestibility with increasing NSH 

inclusion reported in Chapter 4 was primarily attributed to gizzard development induced 

by insoluble NSP, which can prevent starch overload in the digestive tract. In both 

Chapters 4 and 5, the highest dietary starch content (343 g/kg, as fed basis) was associated 
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with the diet containing 0 g/kg barley, and dietary starch content reduced with increasing 

barley inclusion in the diet. The starch digestibility was enhanced with increasing NSH 

inclusion (Chapter 4), but remained unchanged across WSHL inclusion levels (Chapter 

5) despite the significant impact of WSHL inclusion on relative gizzard weight. This 

observation suggests that dietary starch content does not always influence starch 

digestibility. 

Similar trends in AMEn and CAID of starch reported in Chapter 3 suggested that 

digestible starch content is the major contributor to metabolisable energy in barley. 

Despite the experimental diets in Chapters 4 and 5 being formulated to be isoenergetic, 

AMEn was improved linearly with increasing barley inclusion. The AMEn intake, 

however, was not influenced by barley inclusion level, suggesting that the lower feed 

intake associated with higher barley inclusion may be reflective of birds’ attempt to 

maintain a constant energy intake (Classen, 2017).  

8.8. Influence of feed processing on nutrient utilisation of broilers fed barley-based 

diets 

The enhanced CAID of N reported in response to increasing coarseness of the barley 

grind (Chapter 6) can be attributed to a higher functionality of the gizzard that results in 

greater mechanical breakdown of feed particles in situ, longer digesta retention time and 

lower digesta pH. Despite larger gizzards in birds fed coarse barley diets, no influence of 

barley particle size on the CAID of starch was observed in Chapter 6. Coarse grinding of 

barley in Chapter 6 caused a small, but significant, improvement of AMEn by 0.10 MJ/kg 

(from 12.68 to 12.78 MJ/kg DM).  

According to Chapter 7, N digestibility of birds fed diets conditioned at 88 °C 

were lower than those fed diets conditioned at 60 and 74 °C. It has been suggested that 

even though increasing CT to a certain level can benefit the protein digestibility through 

inactivation of enzyme inhibitors and protein denaturation that exposes sites for enzyme 

action (Camire et al., 1990; Abdollahi et al., 2013a), extreme CT can potentially reduce 

N digestibility by degrading heat-labile AA (Papadopoulos, 1989). Results from Chapter 

7 showed that birds fed diets conditioned at 88 °C had a poor starch digestibility compared 

to those fed diets conditioned at 60 °C due probably to increased intestinal digesta 

viscosity in birds fed diets conditioned at 88 °C. It was also found that the birds offered 
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diets conditioned at 88 °C had lower AMEn compared to those fed diets conditioned at 

60 and 74 °C. Based on these findings, coarse particle size (8.0 mm) and conditioning the 

diets up to 74 °C is recommended for the tested NSH barley type.  

8.9. Influence of enzyme supplementation on feeding value of barley for broilers 

Previously reported benefits of exogenous carbohydrase on nutrient and energy 

utilisation, digesta viscosity and feed efficiency when added to barley-based diets were 

confirmed in this thesis research. Chapter 3 showed that supplemental carbohydrase 

improved starch and energy utilisation, with a more pronounced effect in the barley 

(WSHL) that contained the highest content of β-glucan. In Chapters 4 and 5, 

improvements in feed efficiency, nutrient digestibility and energy utilisation 

corresponded with reduced digesta viscosity in birds fed enzyme-supplemented diets. In 

Chapter 5, however, regardless of the recognised fact that fat digestion is highly sensitive 

to digesta viscosity, fat digestibility of WSHL-based diets remained unaffected despite 

42% reduction in jejunal digesta viscosity in enzyme-supplemented diets. This finding 

implies that factors other than digesta viscosity, such as fat type (Dänicke et al., 1997), 

affects the efficacy of supplemental enzymes on fat digestibility in birds fed diets based 

on viscous grains. 

Despite the lack of carbohydrase effect on digesta viscosity in Chapters 6 and 7, 

supplemental carbohydrase enhanced nutrient utilisation and growth performance which 

implies the involvement of other mechanisms, such as hydrolysis of cell wall matrix 

(Bedford and Schulze, 1998) and generation of prebiotic oligosaccharides (González-

Ortiz et al., 2017). The study reported in Chapter 7 showed that the addition of 

carbohydrase resulted in increased weight gain and reduced feed per gain by 30 g/bird 

and 6.5 points, respectively. The lack of interaction between the carbohydrase and CT 

reported in Chapter 7 indicated that the exogenous carbohydrase used in this study had 

similar efficacy at each CT.  

8.10. The role of intestinal digesta viscosity in broilers fed barley-based diets 

The negative impact of high intestinal digesta viscosity on growth performance and 

nutrient utilisation in poultry fed barley-based diets is well recognised. In Chapters 4 and 

5, however, increasing inclusion of barley in wheat-based diets reduced the intestinal 

digesta viscosity despite the higher content of β-glucan in barley compared to wheat. This 
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observation contrasted with most of the previous literature and implies the contribution 

of factors other than β-glucan concentration that can influence the intestinal digesta 

viscosity of birds fed barley-based diets. 

The barley particle sizes used in this thesis research did not impact the intestinal 

digesta viscosity. Application of extreme heat during the conditioning process could 

exacerbate the adverse effects of intestinal digesta viscosity on nutrient utilisation and 

bird performance. Supplemental carbohydrase reduced the intestinal digesta viscosity in 

Chapters 4 and 5, while no effects were observed in Chapters 6 and 7. The variable 

response of digesta viscosity to supplemental carbohydrase in different experiments of 

this thesis emphasises the need for strategic determination of enzyme dosage in barley-

based diets, with close attention to feed processing conditions. The observation that the 

positive effects of supplemental carbohydrase in barley-based diets were not necessarily 

mediated through a reduction in digesta viscosity suggested the involvement of other 

mechanisms of action by added enzyme.   

8.11. The role of gizzard in broilers fed barley-based diets 

The studies reported in Chapters 4 and 5 demonstrated greater relative gizzard weight in 

response to increasing barley inclusions, regardless of the barley type. The greater gizzard 

weight observed in Chapter 4 was attributed to increased insoluble NSP in the diets with 

greater NSH inclusions. However, as neither dietary insoluble NSP content nor insoluble 

NSP intake was greater in WSHL-based diets compared to the control wheat diet, this 

postulation was not applicable to WSHL (Chapter 5). Consequently, the greater gizzard 

weight in response to increasing WSHL inclusion reported in Chapter 5 led to speculation 

that high level of β-glucan in WSHL (68.6 g/kg; Chapter 3) would have positively 

contributed to the barley hardness (Gamlath et al., 2008) and subsequently to the gizzard 

development. This speculation was supported by the microscopic images with thicker 

endosperm cell walls for WSHL (Chapter 3). Feeding coarsely ground barley benefited 

the gizzard development (Chapter 6).  

Recently, attempts have been made to understand the sub-optimal starch 

digestibility in pellet-fed broilers with relation to gizzard development. Consequently, it 

was hypothesised that a well-developed gizzard could regulate feed consumption and 

prevent starch overload in the digestive tract, facilitating better starch digestion (Svihus, 
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2011a,b). The positive influence of gizzard development on starch digestibility reported 

in Chapter 4 supports this hypothesis. Nevertheless, the CAID of starch remained 

unaffected despite an increase in relative gizzard weight in response to increasing WSHL 

inclusion (Chapter 5) or coarse barley particles (Chapter 6). This shows that the 

relationship between gizzard development and starch digestibility can be confounded by 

barley characteristics such as hardness and particle size, which can affect the access to 

starch granules regardless of mechanical grinding by a functional gizzard. 

In addition to starch utilisation, the beneficial impact of a functional gizzard may 

also extend to a favourable influence on feed efficiency, protein and energy utilisation. A 

well-developed gizzard can improve digestive function through increased retention time, 

lower pH, and better grinding and mixing with digestive enzymes (Svihus 2011a, 2014). 

This hypothesis is supported by the findings from Chapters 4, 5 and 6, and suggests the 

potential of manipulating feed processing practices to enhance gizzard development and, 

thereby improve the feeding value of barley in poultry diets. Matching physical 

characteristics of barley, such as hull type and grain hardness, with the appropriate feed 

processing method, with particular attention to grain particle size, will enhance use of 

barley in poultry diets. 

8.12. Suggestions for future studies 

Future studies on optimum inclusion level of barley for broiler finisher diets are justified. 

The optimum inclusion level of barley for starter and finisher growth phases can then be 

used to build a complete understanding of the economic feasibility of feeding barley to 

broilers up to market age. Further evaluation of the optimum particle size for different 

barley types that vary in grain hardness and hull type is warranted. Whole barley feeding 

is an unexplored area and inclusion of whole barley either pre-or post-pelleting should be 

evaluated as a potential approach for restoring the structure in pelleted barley-based diets. 

Hard barley types with a continuous protein matrix show greater starch-protein adhesion 

than soft barley types, suggesting that starch-protein binding may be one of the factors 

influencing barley hardness (Nair et al., 2011). Accordingly, evaluation of protease 

enzyme in combination with carbohydrase and phytase in diets based on barley types that 

differ in hardness is also suggested to explore effect of the protein matrix and cell wall 

on nutrient accessibility in barley-based diets.  
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8.13. Conclusions 

The primary objective of this thesis research was to establish a scientific approach for the 

evaluation and application of barley in broiler diets. Moreover, to build a complete picture 

on barley use in broiler diets, the influence of feed processing and supplemental enzymes 

were also evaluated. The comprehensive discussion in this thesis on the effect of feed 

processing and supplemental enzymes in barley-based diets enables a nutritionist to 

manipulate conditions to minimise the inherent variability of barley grains and, 

consequently, increase inclusion of barley in broiler diets. This thesis showed the 

importance of using nutrient profiles for the specific barley cultivar based on measured 

contents of AMEn and digestible AA to formulate barley-based diets. Moreover, 

considering the variability of barley grain, processing conditions should be tailored to the 

specific barley in use and, hence, the optimum processing parameters reported herein may 

not be recommended to other barley types. Apart from its direct value in providing 

information on the optimum barley use in poultry diets, this thesis research can also be 

used as a model for evaluating other alternative feedstuffs.   
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