Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GateOS: A minimalist Windowing Environment and Operating System for FPGAs

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering
In
Computer Systems Engineering

At Massey University, Palmerston North, New Zealand

Andreas Buhler 2007

ABSTRACT

In order to debug and tune stand-alone FPGA image processing configurations, it is necessary for a developer to also create the required debug tools and to implement them on the FPGA. This process takes both time and effort that could be better spent on improving the image processing algorithms. The Gate Array Terminal Operating System (GateOS) is proposed to relieve the developer of the need to construct many of these debugging tools. In GateOS we separate the image processing algorithms from the rest of the operating system. GateOS is presented to the developer as a Handel-C library, which can be customised at compile-time, to facilitate the creation of windows and widgets. Several types of widgets are described that can manipulate the parameters of image processing algorithms and enable the end-user to dynamically rearrange the position of a window on the VDU. An end user is able to interact with GateOS with both a keyboard and a mouse.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Associate Professor Donald Bailey, for all the guidance given to me over the previous year. Without his sound advice, GateOS would not be what it is today. I thank him for being brutally honest with me whenever I became sidetracked and deviated from dealing with the core issues of GateOS. I am also grateful for the considerable amount of time and patience expended on his behalf proofreading this thesis. Personally, I am astounded at how he was able to do this on his very tight schedule. I am thankful to Donald and Massey University for allowing me to use and take home various FPGA development boards. I have appreciated all the advice given to me by Chris Johnston and Kim Gribbon during the year. Their ideas for GateOS, recorded in a conference paper (Bailey et al, 2006) have proved invaluable in formulating the requirements of GateOS and to some extent, its design. I would like to thank Massey University for allowing me to complete the research for my thesis using their equipment in the computer labs.

I also acknowledge the role of Xilinx in providing me with licences to the ISE suite of software tools, which were required for the implementation of GateOS.

Finally, I would like to thank Roger Gook of Celoxica who has provided me with licences for the DK suite of software, so that I was able to use Handel-C to implement GateOS. He has also been very helpful by providing me with the source code for various board level drivers.

TABLE OF CONTENTS

ABSTR	ACT	i
ACKN	OWLEDGEMENTS	ii
TABLE	OF CONTENTS	iii
LIST O	F FIGURES	vi
LIST O	F TABLES	viii
CHAP	ΓER One INTRODUCTION & LITERATURE REVIEW	1
CHAP	ΓER Two REQUIREMENTS ANALYSIS & HIGH LEVEL DESIGN.	7
2.1	Introduction	7
2.2	Proposal	8
2.3	Hardware Environment	9
2.4	System Overview	11
2.5	Non-Volatile Storage Manager	14
CHAP	TER Three WINDOW MANAGEMENT	15
3.1	Introduction	15
3.2	Representing a window's size and location	16
3.2	2.1 Virtual Coordinate Space	17
3.2	2.2 Window extent	18
3.3	Overlap of windows	19
3.4	Window States	20
3.5	Window Regions	21
3.6	Managing and displaying windows	23
3.6	5.1 Parallel Incidence Test	23
3.6	5.2 Window Transition Method	26
3.7	Discussion	34
CHAP	TER Four WIDGET MANAGEMENT	36
4.1	Introduction	36
4.2	Widget Display Layers	37
4.3	Widget Details	38
4.3	3.1 Label Widget	38

4.3	3.2	Button Widget	39
4.3	3.3	Text Edit Widget	40
4.	3.4	Slider Widget	43
4.3	3.5	Imaging Widgets	46
4.4	Da	ta-Structures and Interactions	50
4.	4.1	Imaging widgets	52
4.5	Scl	neduling and Display of Widgets	53
4.	5.1	Image Layer	53
4.	5.2	Algorithm Control Layer	53
4.	5.3	Window Control Layer	56
4.6	Di	scussion	56
CHAP	TER	Five MANAGEMENT & DISPLAY OF TEXT	58
5.1	Int	roduction	58
5.2	Re	quirements and Intended Usage	59
5.	2.1	Window Labels	59
5.	2.2	Widget Annotations	60
5.	2.3	Output Text Box	61
5.	2.4	Image annotations	61
5.	2.5	Text editing	61
5.3	Ar	nalysis and Design	62
5.3	3.1	Image-Table Lookup Method	63
5.3	3.2	Font Table Lookup Method	66
5.4	Im	plementation	71
5.5	Di	scussion	73
CHAP	TER	Six INPUT MANAGEMENT	75
6.1	Int	roduction	75
6.2	Cu	ırsor Layer	76
6.3	Ke	yboard Input	79
6.4	Mo	ouse Input	79
6.5	Di	scussion	81
СНАР	TFR	Seven DISCUSSION & CONCLUSIONS	82

REFERENCES	8	7

LIST OF FIGURES

Figure 2-1 Timing Regions within a video frame, active, H-blanking and V-blanking	.10
Figure 2-2 GateOS IP Core and its relationship to the rest of GateOS	.12
Figure 3-1 Windowing System architectural overview	.16
Figure 3-2 Choices of origin within virtual coordinate space	.17
Figure 3-3 Virtual coordinate space based on the two encoding schemes	19
Figure 3-4 Changing the z-index of a window	.20
Figure 3-5 Final layer with a grip for resizing windows	.22
Figure 3-6 Detecting whether a window is present at a screen coordinate	.24
Figure 3-7 Updated window identification that uses less hardware per window	25
Figure 3-8 Selecting the window with the highest z-index	25
Figure 3-9 How WLL entries for each scan-line are related to window positions	.28
Figure 3-10 Worst case scenario with each windows vertical edges displayed	.28
Figure 3-11 Edge list lookup-table	.30
Figure 4-1 Content window layer split into three widget sub-layers	.37
Figure 4-2 A simple Label Widget	.38
Figure 4-3 The background of a Button Widget can be one of two possible colors	.40
Figure 4-4 An Edit Widget displaying the string "The brown fox jumped"	.41
Figure 4-5 Vertical and horizontal slider widgets	.43
Figure 4-6 The offset of a horizontal Slider Bar from the left border	.44
Figure 4-7 Two zoom buttons, one in and the other out	.46
Figure 4-8 Slider widget is used to manipulate denominator of zoom fraction	.47
Figure 4-9 Sample Histogram Content	.48
Figure 4-10 B_VALUE and I_VALUE data structures	.51
Figure 4-11 The data structures necessary for each widget type	.51
Figure 4-12 Aligning common properties between widgets	. 52
Figure 4-13 Valid and invalid widget layouts	.54
Figure 4-14 Order of widget data structures is determined by row then column	55
Figure 5-1 A simple textual label displayed on a window	.60
Figure 5-2 String annotations on label and button widgets	.60
Figure 5-3 The construction of the String LUT at compile-time	.64
Figure 5-4 The use of an external utility to construct Image Table	65

Figure 5-5 Possible implementation strategies	. 66
Figure 5-6 Using bitmaps for individual characters	.67
Figure 5-7 The string id and how it relates to the string, offset, and length tables	. 69
Figure 5-8 The Text Manager design	. 70
Figure 5-9 GUI Utility that manipulates the String Table	.72

LIST OF TABLES

Table 4-1 Cursor movements	.42
Table 4-2 Available numeric string conversions	.43
Table 7-1 Slices used on a Xilinx ML402 (Virtex 4) for 8, 16, 32 and 64 windows	. 84
Table 7-2 Breakdown of resources required, as estimated by the Celoxica build tools	.85