Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GROWTH AND PHYSIOLOGICAL RESPONSES OF ASPARAGUS (Asparagus officinalis L.) AT HIGH TEMPERATURES

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Horticultural Science at Massey University

> Yung-Fu Yen January 1993

Abstract

Asparagus is now planted in tropical climates, hence a series of experiments were carried out to examine the physiological responses of asparagus to high temperature. These included analysis and modelling of growth, and the measurement of heat tolerance of four asparagus cultivars at high temperatures.

Asparagus seeds of four cultivars were sown and grown in controlled climate rooms. These results showed that growth of young asparagus plants was exponential, and thus the parameters RLGR (relative leaf area growth rate), RFGR (relative fern dry weight growth rate), RCGR (relative crown dry weight growth rate), RPGR (relative total plant dry weight) were constant for any specific temperature regime or cultivar. The growth rate could be classified according to the parameters NAR (net assimilation rate), LAR (leaf area ratio) and RGR (relative growth rate), and could be grouped into high : 'D25/N25°C and D30/N30°C', normal : 'D20/N20°C, D30/N20°C, D35/N15°C, and D40/N30°C'. The effects of these temperature regimes on growth were greater than the differences among cultivars, although there were different responses at high temperature among cultivars.

Generally, NARs decreased with increasing age, while LARs increased with age. Both NARs and LARs varied with temperature regime, plant age and cultivar. The effects of high temperature on NAR or LAR were greater than the differences between cultivars.

The leaf production rate was the largest contributor to total plant relative growth rate, followed by the root, the stem, and the rhizome production rate. The stem and the rhizome production rates declined with age, the leaf production rate increased, and the root production rate was maintained nearly constant. The allometric coefficients of root in relation to fern for cultivars and for the various temperature regimes were essentially the same. On the contrary, the allometric intercepts between plants at various temperatures or between cultivars were significantly different, with Tainan No.1 having the highest and Larac the lowest root/ shoot ratio except at supra-optimal temperatures. The lower temperature regimes had the higher root : shoot ratios. The root : shoot ratio was higher with a 10°C day/night temperature differential compared to the equivalent constant temperature regimes.

Day or night temperatures around 26.5°C were optimal for RLGR, RFGR and RPGR, but a night temperature of 23.8°C was optimal for RCGR.

The experiment on spear yield and fern development showed that not only did high temperature depress spear yield and quality, but it also depressed total fern weight and individual fern height. The plant characteristics such as the first branch height and fern height were also depressed at high temperature. Brocks and UC157 maintained better fern characteristics than the others at high temperatures. From the parameters of Richard's equation on fern, and of the RSGRs on spear, the ability of adaptation to high temperature was in the order: Tainan No.1 > Brocks > UC157 > Larac.

In a high temperature study with germinated asparagus seedlings, the higher the temperature was the more stunted the growth. High concentrations of ABA application also markedly depressed seedling growth. There was an additive effect of heat stress and application of high ABA concentration on seedling growth, while there was an ameliorative effect with the application of ABA at a low concentration (0.1 - 1 μ M) on heat stressed seedlings. At high temperature the sensitivity difference to ABA between cultivars was clearly expressed and thus the difference in heat tolerance of asparagus cultivars may be determined by ABA insensitivity. The studies of the effect of high temperature on endogenous ABA levels showed that the endogenous ABA levels decreased with temperature and then increased to a peak around 38°C for Larac and Tainan No.1, but peaked at around 36°C or lower for Brocks and UC157 for both roots and shoots. The spears of Tainan No.1 had an extremely high ABA content at 28°C and 33°C and fell to similar levels as the other cultivars at 36°C. It is concluded that the peak of endogenous ABA occurred at supra-optimal temperature and then decreased to low levels at extreme high temperatures.

The assay of membrane thermostability (Tm) is a potentially valuable means of determining heat tolerance of asparagus. Tm varied with genotype, age, and heat acclimation. Heat acclimation may increase the membrane thermostability of young tissues. UC157 may be expected to be best adapted to tropical climate on the basis of membrane thermostability, because UC157 had the highest Tm of spears grown at high temperature. Tainan No.1, Larac and Brocks grown at high temperature also had increased heat tolerance, presumably due to heat acclimation.

The study on the differences between cultivars in heat shock protein production showed that changes in protein synthesis occurred when asparagus was heat shocked at 34°C or 37°C for 2 or 6 hours. Specific heat shock proteins were produced and the levels of normal proteins changed. Most of the HSPs were of low molecular weight (about 24 kD to 13 kD). A small number of the HSP's appeared to be cultivar specific. A number of ABA induced proteins might be HSPs, but ABA also depressed the production of some HSPs. However most HSPs were induced at high temperature even in the presence of ABA.

Acknowledgments

To Dr. Michael A. Nichols for his guidance and supervision;

To Dr. David J. Woolley for his valuable advice and comments;

To Dr. Keith J. Fisher for his help and suggestions;

To New Zealand Government for financial support for my studies;

To my Government (Taiwan, R.O.C.) for granting me leave for my studies;

To the Fruit and Trees Division, DSIR for making available the controlled climate rooms and other facilities;

To the staff and post graduate students of the Department of Plant Science for their help;

To the Plant Growth Unit staff for their support;

To Dr. C. L. Lee, Dr. C. C. Tu, Dr. Y. W. Chen for their support;

To my parents, brothers and sisters for their great moral support;

and to my wife, Hsiau-jan for her encouragement, patience and understanding;

MY SINCERE THANKS AND APPRECIATION.

Table of Contents

Abstract	. ii
Acknowledgements	. v
Table of Contents	vi
List of Figures	xiv
List of Tables	xix
List of Plates	xxi
List of Appendices	xxii
List of Abbreviations	xxv
Introduction	ovi
CHAPTER ONE Review of Literature	1
1.1. Asparagus Growth and Environmental Requirement	1
1.1.1. Classification	1
1.1.2. Genotypes / Cultivars	2
1.1.3. Geographic / Climatic Requirements and Production	
Regions	3
1.1.4. Potential Production Regions in Future and Present	
Studies	3
1.2. Previous Studies of Asparagus Growth and Physiology	4
1.3. Influences of High Temperature on Agricultural Ecology	9
1.4. Physiological Responses to High Temperature	10
1.4.1. Metabolism at High Temperature	10
1.4.2. Thermotolerance of Plants	12
1.4.3. Thermotolerance Adaptation	14
1.5. Growth at High Temperatures	14
1.5.1. Analysis and Modelling of Plant Growth	16
1.5.1.1. Relative Growth Rate (RGR) Derived from A	
Simple Exponential Growth Equation	18
1.5.1.2. Derived Growth Parameters	19
1.5.1.3. Root-Shoot Allometric Relationship	20
1.5.1.4. Component Production Rate (CPR)	20

1.5.1.5. Growth Models Derived with Richards Growth	
Equation	21
1.5.1.6. Plant Growth Prediction with Response Surface	
Technique	24
1.5.2. Dry Matter Accumulation at High Temperatures	25
1.5.3. Assimilate Partitioning at High Temperatures	27
1.5.4. Growth Parameters in Relation to Temperature	30
1.5.5. Seed Germination at High Temperatures	32
- 1.5.6. Leaf Growth at High Temperatures	33
1.5.7. Root Growth at High Temperatures	35
1.6. Effects of Abscisic acid on Growth at High Temperatures	37
1.6.1. Plant Hormones and High Temperatures	37
1.6.2. Changes in Endogenous ABA at High Temperatures	38
1.6.3. Exogenous ABA on Growth at high temperatures	40
1.6.4. Possible Role of ABA in Plant Growth at High	
Temperatures	41
1.6.5. Endogenous Hormone Levels and Application of Plant	
Hormones on Growth at High Temperatures	42
1.6.6. Other Hormones in Relation to High Temperatures	43
1.7. Cell Membrane Thermostability and Heat Tolerance	44
1.7.1. Electrolyte Leakage from Heat Injured Cell Membranes	44
1.7.2. Membrane Thermostability	45
1.7.3. Establishment of a Criterion for Assessing Heat Tolerance	
- a Model	46
1.8. Heat Shock Induced and Abscisic Acid Induced Proteins	47
1.8.1. Heat Shock Induced Proteins	47
1.8.2. Heat Shock Protein Difference between Genotypes	49
1.8.3. Linking ABA Induced Proteins and Heat Shock Proteins	50
1.8.4. Role of Heat Shock Proteins in Thermostability	52
1.8.5. Linking Heat Shock Proteins and Response of Plants at	
High Temperatures	54

vii

CHAPTER TWO An Investigation on the Growth of Asparagus Plants	
at High Temperature 5	58
2.1. Introduction	58
2.2. Materials and Methods 6	30
2.2.1. Seeds 6	30
2.2.2. Sowing and Planting	30
2.2.3. Treatment Temperatures and Experimental Design 6	30
2.2.4. Environmental Conditions of Growth Rooms and	
Nutrients 6	51
2.2.5. Harvesting and Plant Component Measurements 6	51
2.2.6. Growth Analysis 6	32
2.2.6.1. Relative Total Plant Dry Weight Growth Rates	
(RPGR)	52
2.2.6.2. Relative Fern Weight Growth Rates (RFGR) 6	53
2.2.6.3. Relative Crown Weight Growth Rates (RCGR) 6	53
2.2.6.4. Relative Leaf Area Growth Rates (RLGR) 6	53
2.2.6.5. Leaf Area Ratios (LAR)	54
2.2.6.6. Net Assimilation Rates (NAR)	54
2.2.6.7. Allometry of Crowns in Relation to Ferns 6	65
2.2.6.8. Component Production Rates	66
2.2.7. Growth Predictions	68
2.3. Results	69
2.3.1. Plant Growth	69
2.3.2. Relative Growth Rates	70
2.3.2.1. Analysis of Variance of the Influences of	
Temperature and Cultivar on Plant, Fern, Crown	
and Leaf Relative Growth Rates	70
2.3.2.2. Comparison of Relative Growth Rates among	
Plant Components	76
2.3.2.3. Comparison of Relative Total Plant Growth	
Rates	81
2.3.2.4. Comparison of Relative Leaf Growth Rates 8	31

2.3.2.5. Comparison of Relative Fern Growth Rates	82
2.3.2.6. Comparison of Relative Crown Growth Rates	82
2.3.3. Comparison of Net Assimilation Rates	83
2.3.4. Analysis of Leaf Area Ratios	83
2.3.5. Analysis of Allometry of Crowns in Relation to Ferns	86
2.3.5.1. Comparison of Allometric Coefficients between	
Temperatures and Cultivars	90
2.3.5.2. Comparison of Allometric Intercepts between	
Temperatures and Cultivars	91
2.3.5.3. Analysis of Variances of the Influences of	
Temperature and Cultivar on Allometric	
Intercepts	92
2.3.5.4. Comparison of the Corrected Allometric	
Intercepts between Temperatures and Cultivars	93
2.3.6. Analysis of Component Production Rates	97
2.3.6.1. Interrelationship between Component Production	
Rates	97
2.3.6.2. Comparison of Component Production Rates	
between Temperatures	97
2.3.7. Prediction of Asparagus Growth	104
2.3.7.1. Predicted Growth of Plant Components	104
2.3.7.2. Prediction of Relative Total Plant Growth Rates	106
2.3.7.3. Prediction of Relative Leaf Area Growth Rates	108
2.3.7.4. Prediction of Relative Fern Growth Rates	111
2.3.7.5. Prediction of Relative Crown Growth Rates	116
2.4. Discussion	119
2.4.1. Influence of Temperature on Asparagus Growth	119
2.4.2. Growth Analysis of Asparagus at High Temperatures	121
2.4.3. Assimilate Partitioning in Relation to Ontogeny	127
2.4.4. Growth Prediction	132

ix

CHAPTER THREE Growth of Asparagus Spears and Fern at High
Temperatures
3.1. Introduction
3.2. Materials and Methods 138
3.2.1. Plant Materials 138
3.2.2. Growing Conditions for Evaluating Spear Yield and Quality
at High Temperatures
3.2.3. Growing Conditions for Evaluating Fern Development and
Characteristics at High Temperatures
3.2.4. Analysis of Spear Growth at High Temperatures 139
3.2.5. Fern Growth at High Temperatures
3.2.6. Experimental Design and Statistical analysis
3.3. Results
3.3.1. Spear Yield and Quality at High Temperatures
3.3.2. Fern Development Characteristics at High Temperatures . 146
3.3.2.1. Fern Characteristics at High Temperatures 146
3.3.2.2. Spear Growth at High Temperatures 149
3.3.2.3. Fern Growth at High Temperatures
3.4. Discussion
CHAPTER FOUR Influences of Exogenous ABA on Asparagus
Seedling Growth at High Temperatures
4.1. Introduction
4.2. Materials and Methods 163
4.2.1. Plant Materials
4.2.2. Seedling Growth with ABA at High Temperatures 163
4.2.3. Experimental Design and Statistic Analysis
4.3. Results
4.3.1. Analysis of Variance of the Influences of ABA,
Temperature and Cultivars on Seedling Growth 165
4.3.2. Comparison of Seedling Growth at High Temperatures
and Exogenous ABA 165

	4.3.2.1. Root Growth at High Temperatures and
	Exogenous ABA 166
	4.3.2.2. Shoot Growth at High Temperatures and
	Exogenous ABA 171
4.4. Discussi	on
4.4.1.	Effect of High Temperatures on Seedling Growth 178
4.4.2.	Influences of ABA on seedling growth at high
	temperatures 179
CHAPTER F	IVE Endogenous ABA in the Response of Asparagus
Plant	to High Temperatures 185
5.1. Introduc	tion
5.2. Material	s and Methods 187
5.2.1.	Seedlings 187
	5.2.1.1. Plant Materials 187
	5.2.1.2. Growing and Conditioning 187
5.2.2.	Spears
	5.2.2.1. Plant Materials 187
	5.2.2.2. Growing and conditioning 188
5.2.3.	Determination of ABA by an Indirect Enzyme Linked
	Immunoassay (ELISA) 188
	5.2.3.1. ABA Extraction 188
	5.2.3.2. ELISA Assay Materials 188
	5.2.3.3. ELISA Assay Procedures 190
	5.2.3.4. Estimating ABA Concentrations in Plant
	Samples 191
5.3. Results	
5.3.1.	Immunoassay for Asparagus Tissue ABA 192
5.3.2.	Influences of High Temperatures on Endogenous ABA of
	Seedlings 192
5.3.3.	Endogenous ABA in the response of spears to high
	temperatures 195

×ii
5.4. Discussion
CHAPTER SIX Membrane Thermostability and Heat Tolerance of
Asparagus
6.1. Introduction
6.2. Materials and Methods 205
6.2.1. Plant Materials 205
6.2.2. Heat Injury Treatment
6.2.3. Analysis of Membrane Thermostability with Mathematic
model
6.3. Results
6.3.1. Effects of Spear Maturity and Duration of heat injury on
thermostability 208
6.3.2. Comparing Membrane Thermostabilities between Cultivars
and Growing Temperatures
6.4. Discussion
CHAPTER SEVEN Heat Shock Proteins, ABA and Heat Tolerance in
Asparagus
7.1. Introduction
7.2. Materials and Methods 216
7.2.1. Heat Shock and ABA Induced Proteins
7.2.2. In Vivo Protein Labelling 216
7.2.3. Protein Extraction and Electrophoresis
7.2.3.1. Protein Extraction and One-dimension Gel
Electrophoresis
7.2.3.2. Protein Extraction and Two-Dimension Gel
Electrophoresis
7.2.3.3. Fluorographic procedures
7.3. Results
7.3.1. Heat Shock Induced Pattern of Protein Synthesis 218
7.3.2. ABA Induced Patterns of Protein Synthesis

7.3.3.	Comparin	g Protein Synthe	esis Induce	d by Heat Shoo	k and	
	ABA				22	8
7.4. Discuss	ion			•••••	22	9
7.4.1.	Heat Sho	ck Induced Patte	ern of Prot	ein Synthesis.	22	9
7.4.2.	ABA Indu	ced Patterns of	Protein Sy	nthesis	23	0
CHAPTER E	IGHT Su	mmary	• • • • • • • •	•••••••••	23	3
CHAPTER	NINE	Conclusions,	General	Discussions,	and	
Recor	mmendatio	ns	. <u></u>		24	1
9.1. Conclus	ions and G	General discussi	ons		24	1
9.2. Recomm	nendations				24	7
Appendices					25	0
Literature Ci	ted				27	5

/

-

:

List of Figures

Fig. 2	.1. The plot of natu	ral logarithm total plant we	eight against age	
	fitted to a linear reg	ression		74
Fig. 2	.2. The comparison	of the RPGRs between pla	ints	
	A : at various temp	erature regimes (means of	four cultivars).	
	B-1 : of cultivars at	the constant day/night terr	nperatures.	
	B-2 : of cultivars at	the 10°C day/night differen	ntial.	
	B-3 : of cultivars at	the 20°C day/night differen	ntial	77
Fig. 2	.3. The comparison	of the RLGRs between pla	nts	
	A : at various temp	erature regimes (means of	four cultivars).	
	B-1 : of cultivars at	the constant day/night ten	nperatures.	
	B-2 : of cultivars at	the 10°C day/night differen	ntial.	
	B-3 : of cultivars at	the 20°C day/night differen	ntial	78
Fig. 2	.4. The comparison	of the RFGRs between pla	Ints	
	A: at various temp	erature regimes (means of	four cultivars).	
	B-1 : of cultivars at	the constant day/night ten	nperatures.	
	B-2 : of cultivars at	the 10°C day/night differen	ntial.	
	B-3 : of cultivars at	the 20°C day/night differen	ntial	79
Fig. 2	.5. The comparison	of the RCGRs between pla	ants	
	A : at various temp	erature regimes (means of	four cultivars).	
	B-1 : of cultivars at	the constant day/night ten	nperatures.	
	B-2 : of cultivars at	the 10°C day/night differen	ntial.	
	B-3 : of cultivars at	the 20°C day/night differen	ntial	80
Fig. 2	.6. The comparison	of the NARs (means of fou	ır cultivars)	
	A : at the constant	day/night temperatures.		
	B: at the 10°C day	/night differential.		
	C: at the 20°C day	/night differential		84
Fig. ¹ 2	.7. The comparison	of the NARs between culti	vars at	
	A : D20/N20°C.	D : D30/N30°C.	G : D35/N35°C.	
	B : D25/N25°C.	E : D35/N15°C.	H : D40/N20°C.	
	C : D30/N20°C.	F : D35/N25°C.	I: D40/N30°C	85

Fig. 2.8. The comparison of the LARs (means of four cultivars) A : at the constant day/night temperatures. B : at the 10°C day/night differential. C : at the 20°C day/night differential 87 Fig. 2.9. The comparison of the LARs among cultivars at A : D20/N20°C. D : D30/N30°C. G : D35/N35°C. E : D35/N15°C. H : D40/N20°C. B : D25/N25°C. C : D30/N20°C. F : D35/N25°C. I: D40/N30°C . . 88 Fig. 2.10. The plot of natural logarithm crown weight against natural logarithm fern weight fitted to linear regression (solid line) and secondary order polynomial function (dotted line) at (mean of four cultivars): A : D20/N20°C. D : D30/N30°C. G : D35/N35°C. B : D25/N25°C. E : D35/N15°C. H : D40/N20°C. C : D30/N20°C. F : D35/N25°C. I: D40/N30°C . . 89 Fig. 2.11. The comparison of the root weights when the fern weight 1 gram between A : plants at various temperature regimes (means of four cultivars). B-1 : cultivars at the constant day/night temperatures. B-2 : cultivars at the 10°C day/night differential. B-3 : cultivars at the 20°C day/night differential 96 Fig. 2.12. The interrelationship of leaf, stem, rhizome, and root production rates (means of four cultivars) A : D20/N20°C. D : D30/N30°C. G : D35/N35°C. B : D25/N25°C. E : D35/N15°C. H : D40/N20°C. C : D30/N20°C. F : D35/N25°C. I: D40/N30°C . . 98 Fig. 2.13. The comparison of the leaf production rates against age (means of four cultivars) A : at the constant day/night temperatures. B : at the 10°C day/night differential. C : at the 20°C day/night differential 99

XV

Fig. 2.14. The comparison of the stem production rates against age	
(means of four cultivars)	
A : at the constant day/night temperatures.	
B: at the 10°C day/night differential.	
C: at the 20°C day/night differential	100
Fig. 2.15. The comparison of the rhizome production rates against age	
(means of four cultivars)	
A : at the constant day/night temperatures.	
B: at the 10°C day/night differential.	
C: at the 20°C day/night differential	101
Fig. 2.16. The comparison of the root production rates against age	
(means of four cultivars)	
A : at the constant day/night temperatures.	
B: at the 10°C day/night differential.	
C: at the 20°C day/night differential	102
Fig. 2.17. The predicted contours of the relative growth rate (means of	
four cultivars) of A : leaf area (RLGR). B : fern dry weight	
(RFGR). C : crown dry weight (RCGR). C : total plant dry	
weight (RPGR)	105
Fig. 2.18. The comparison of the predicted relative growth rates	
between RLGR, RFGR, RCGR, and RPGR (means of four	
cultivars) at	
A : the constant day/night temperature.	
B: the 5°C day/night differential.	
C: the 10°C day/night differential.	
D: the 15°C day/night differential	107
Fig. 2.19. The predicted contours of RPGR	
A: Brocks. B: Larac. C: Tainan No.1. D: UC157	109
Fig. 2.20. The comparison of the predicted RPGRs	
A : constant day/night temperature	
B: the 5°C day/night differential.	
C: the 10°C day/night differential.	

xvi

	xvii
D: the 15°C day/night differential	110
Fig. 2.21. The predicted contours of RLGR	
A: Brocks. B: Larac. C: Tainan No.1. D: UC157	112
Fig. 2.22. The comparison of the predicted RLGRs	
A: the constant day/night temperature.	
B: the 5°C day/night differential.	
C: the 10°C day/night differential.	
D: the 15°C day/night differential	113
Fig. 2.23. The predicted contours of RFGR	
A: Brocks. B: Larac. C: Tainan No. 1. D: UC157	114
Fig. 2.24. The comparison of the predicted RFGRs	
A: the constant day/night temperature.	
B: the 5°C day/night differential.	
C: the 10°C day/night differential.	
D: the 15°C day/night differential	115
Fig. 2.25. The predicted contours of RCGR	
A : Brocks. B : Larac. C : Tainan No.1. D : UC157	117
Fig. 2.26. The comparison of the predicted RCGRs	
A: the constant day/night temperature.	
B: the 5°C day/night differential.	
C: the 10°C day/night differential.	
D: the 15°C day/night differential	118
Fig. 3.1. The effects of temperature on (means of three cultivars) (A)	
spear yield. (B) spear number. (C) spear weight. (D) spear	
diameter	144
Fig. 3.2. The comparison of cultivars of (A) spear yield. (B) spear	
number. (C) spear weight. (D) spear diameter	145
Fig. 3.3. The distribution of spear sizes of harvesting time of	
A-1 : Brocks at 28°C. B-1 : Larac at 28°C. C-1 : UC157 at 28°C.	
A-2 : Brocks at 33°C. B-2 : Larac at 33°C. C-2 : UC157 at 33°C.	
A-3 : Brocks at 36°C. B-3 : Larac at 36°C. C-3 : UC157 at 36°C	147

Fig. 3.4. Comparison of the effects of temperatures on fern	
development (A) at 28, 33, 36°C (means of four cultivars). (B)	
between cultivars at 28°C. (C) between cultivars at 33°C. (D)	
between cultivars at 36°C	153
Fig. 4.1. Comparison of relative growth among plant components	
(means of four cultivars) at high temperatures and exogenous	
ABA (A) at 28°C. (B) at 33°C. (C) at 34.5°C. (D) at 36°C	167
Fig. 4.2. The effects of high temperature and exogenous ABA on root	
weight of (A) Brocks. (B) Larac. (C) Tainan No.1. (D) UC157	168
Fig. 4.3. Comparison of root weight among cultivars (A) at 28°C. (B) at	
33°C. (c) at 34.5°C. (D) at 36°C	169
Fig. 4.4. The effects of high temperatures and exogenous ABA on root	
length of (A) Brocks. (B) Larac. (C) Tainan No.1 (D) UC157	170
Fig. 4.5. Comparison of root length among cultivars (A) at 28°C. (B) at	
33°C. (C) at 34.5°C. (D) at 36°C	172
Fig. 4.6. The effects of high temperatures and exogenous ABA on	
shoot weight of (A) Brocks. (B) Larac. (C) Tainan No.1. (D)	
UC157	173
Fig. 4.7. Comparison of shoot weight between cultivars (A) at 28°C. (B)	
at 33°C. (C) at 34.5°C. (D) at 36°C	174
Fig. 4.8. The effects of high temperature and exogenous ABA on shoot	
length of (A) Brocks. (B) Larac. (C) Tainan No.1 (D) UC157	176
Fig. 4.9. Comparison of shoot length between cultivars (A) at 28°C. (B)	
at 33°C. (C) at 34.5°C. (D) at 36°C	177
Fig. 5.1. The standard curve of logit (B/B ₀) against In (12.5 - 200	
pg/well (±)ABA) fitted to a linear regression	193
Fig. 5.2. The effect of high temperatures on the endogenous ABA levels	
of (A) seedling shoots. (B) seedling roots	194
Fig. 5.3. The effect of high temperatures on the endogenous ABA levels	
of spears	196

List of Tables

Table 2.1. The treatment temperatures, sowing date, harvesting on	
growth analysis	61
Table 2.2. Comparing the effects of temperature on allometric	
coefficients of asparagus	90
Table 2.3. Comparing the effects of temperature on allometric intercepts	
of asparagus	92
Table 2.4. Comparing the effects of temperature on predicted allometric	
intercepts of asparagus, when they are assumed to have same	
allometric coefficient (0.932)	94
Table 2.5. The effects of temperature on predicted allometric intercepts	
of asparagus, when they are assumed to have same allometric	
coefficient (0.939)	95
Table 2.6. The predicted optimal temperatures and corresponding	
RGRs	106
Table 2.7. The predicted optimal temperatures and corresponding	
RGRs	108
Table 3.1. Comparison of the influences of temperature on fern	
characteristics and weight at 28, 33, 36°C	148
Table 3.2. Comparison of the influences of temperature on RSGR of	
spear growth from 10 to 100 mm or 10 to 200 mm at 28, 33,	
36°C	150
Table 3.3. The parameters of K, N, H_f (mm) and predicted inflexion	
points of fern developing (H ⁱ , mm), aging (D ⁱ , day), weighted	
mean relative growth rates (WMRGR per day) and mean	
absolute growth rates (MAGR mm / day) from Richard growth	
equation for each temperature	152
Table 6.1. The effect of heating time on the Ingram's equation	
parameters of different sections	209
Table 6.2. Comparison of the Ingram's equational parameters between	
cultivars at various growth temperatures	210
Table 7.1. Comparison of the heat shock induced protein patterns using	

one-dimensional SDS-PAGE	219
Table 7.2. Comparison of heat shock plus / minus ABA induced protein	
patterns using two-dimensional IEF/SDS-PAGE	221
Table 7.3. Comparison of the heat shock plus ABA induced protein	
patterns using one-dimensional SDS-PAGE	224

.

1

۰.

1

xx

÷

List of Plates

Plate 2.1. 59 days old plants at (A) D20/N20°C. (B) D25/N25°C. (C)	
D30/N30°C. (D) D35/N35°C	71
Plate 2.2. 59 days old plants at (E) D30/N20°C. (F) D35/N25°C. (G)	
D40/N30°C	72
Plate 2.3. 59 days old plants at (H) D35/N15°C. (I) D40/N20°C	73
Plate 7.1. Comparison of protein patterns at 28°C, 34°C and 37°C for	
2h (hours) or 6h of Larac (top) and UC157 (Bottom) using	
one-dimensional SDS-PAGE	220
Plate 7.2. Heat shock induced protein patterns of Larac using	
two-dimensional IEF/SDS-PAGE	222
Plate 7.3. Heat shock induced protein patterns of UC157 using	
two-dimensional IEF/SDS-PAGE	223
Plate 7.4. Comparison of protein patterns at 28°C, 34°C and 37°C plus	
ABA for 2h (hours) or 6h of Larac (top) and UC157 (Bottom)	
using one-dimensional SDS-PAGE	225
Plate 7.5. Heat shock plus ABA induced protein patterns of Larac using	
two-dimensional IEF/SDS-PAGE	226
Plate 7.6. Heat shock plus ABA induced protein patterns of UC157	
using two-dimensional IEF/SDS-PAGE	227

:

List of Appendices

Appendix 1A. The number of seeds sown, seedlings after thinning, and	
harvested plants (D25/N25°C, D30/N30°C, D35/N35°C1)	250
Appendix 1B. The number of seeds sown, seedlings after thinning, and	
harvested plants (D30/N20°C, D35/N25°C, D40/N30°C ¹ ,	
D20/N20°C, D35/N15°C, D40/N20°C ¹)	251
Appendix 2. The Climate room	252
Appendix 3A. The environmental conditions of climate rooms	
(D25/N25°C, D30/N30°C, D35/N35°C)	253
Appendix 3B. The environmental conditions of climate rooms	
(D30/N20°C, D35/N25°C, D40/N30°C)	254
Appendix 3C. The environmental conditions of climate rooms	
(D35/N15°C, D40/N20°C, D20/N20°C)	255
Appendix 4. The formula : a modified half-strength Hoagland's	
	256
Appendix 5. The rates of half-strength Hoagland's solution were applied	
pots via an automatic microtube system	257
Appendix 6A. The analysis of variance of the influences of day	
temperature, night temperature, cultivar and interaction on RPGR	
of asparagus plants	258
Appendix 6B. The analysis of variance of the influences of day	
temperature, night temperature, cultivar and interaction on RLGR	
of asparagus plants	258
Appendix 6C. The analysis of variance of the influences of day	
temperature, night temperature, cultivar and interaction on RFGR	
of asparagus plants	259
Appendix 6D. The analysis of variance of the influences of day	
temperature, night temperature, cultivar and interaction on RCGR	
of asparagus plants	259
Appendix 7A. The analysis of variance of the influences of day	
temperature, night temperature and interaction on RPGR of	
asparagus plants	260

Appendix 7B. The analysis of variance of the influences of day	
temperature, night temperature and interaction on RLGR of	
asparagus plants	261
Appendix 7C. The analysis of variance of the influences of day	
temperature, night temperature and interaction on RFGR of	
asparagus plants	262
Appendix 7D. The analysis of variance of the influences of day	
temperature, night temperature and interaction on RCGR of	
asparagus plants	263
Appendix 8A. The analysis of variance of the influences of day	
temperature, night temperature, cultivar and interaction on	
allometric intercept of asparagus plants	264
Appendix 8B. The analysis of variance of the influences of day	
temperature, night temperature and interaction on allometric	
intercept of asparagus plants	265
Appendix 9A. The analysis of variance of the influences of cultivar,	
temperature and ABA on root weight of asparagus seedlings	266
Appendix 9B. The analysis of variance of the influences of cultivar,	
temperature and ABA on root length of asparagus seedlings	266
Appendix 9C. The analysis of variance of the influences of cultivar,	
temperature and ABA on shoot weight of asparagus seedlings.	267
Appendix 9D. The analysis of variance of the influences of cultivar,	
temperature and ABA on shoot length of asparagus seedlings.	267
Appendix 10A. The analysis of variance of the influences of	
temperature and ABA on root weight of asparagus seedlings	268
Appendix 10B. The analysis of variance of the influences of	
temperature and ABA on root length of asparagus seedlings	269
Appendix 10C. The analysis of variance of the influences of	
tomporature and ARA on sheet weight of apparague coodlings	
	270
Appendix 10D. The analysis of variance of the influences of	270
Appendix 10D. The analysis of variance of the influences of temperature and ABA on shoot length of asparaous seedlings.	270

xxiii

Appendix	11.	The	formulae	of	1-Dimension	polyacrylamide	
elec	tropho	oresis (gel				272
Appendix 1	2. Isc	electri	c focus gel	solu	tion		273
Appendix 1	3. UK	(S solu	ition	•••			273
Appendix 1	4. Eq	uilibrat	tion solutior	۱	••••••••		274
Appendix 1	5. SC)S sam	ple buffer				274
Appendix 1	6. Br	omoph	enol blue tr	ackir	ng dye solution		274

,

1

xxiv

List of Abbreviations

Abbreviation	Meaning				
ABA	Abscisic acid				
D20/N20°C	D : day; N : night; Day 20°C/night 20°C				
GA	Gibberellic acid				
HMW	High molecular weight				
HSPs	Heat shock proteins				
IEF/SDS-PAGE	Isoelectric focus/sodium dodecyl sulfate				
×	polyacrylamide gel electrophoresis				
J _{leaf}	Leaf production rate				
J _{rhizome}	Rhizome production rate				
J _{root}	Root production rate				
J _{stem}	Stem production rate				
kD	Kilo-Dalton				
LAR	Leaf area ratio				
LMW	Low molecular weight				
MAGR	Mean absolute growth rate				
NAR	Net assimilation rate				
RCGR	Relative crown growth rate				
RFGR	Relative fern growth rate				
RGR	Relative growth rate				
RLGR	Relative leaf area growth rate				
RPGR	Relative plant growth rate				
RSGR ₁₀₀	Relative spear growth rate of spear from 10 to 100				
	mm.				
RSGR ₂₀₀	Relative spear growth rate of spear from 10 to 200				
	mm.				
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel				
	electrophoresis				
WMRGR	Weighted mean relative growth rate				