Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Developing an extramural e-
learning environment to bridge
the digital divide

A dissertation presented in partial fulfilment of the requirements for the degree
of Doctor Of Philosophy in Computer Science at Massey University, Palmerston
North, New Zealand.

Russell Johnson

2005

Abstract

The research presented in this thesis conceptualises a strategy for designing e-
learning systems to bridge the digital divide between those who have access to — and
know how to use — high performance information technology, and those whose do not.
It describes the prototyping of a system to test this conceptualisation, and the

subsequent evaluation of the prototype in a realistic setting.

From a review of existing research, eight guidelines were synthesised for developing
effective extramural e-learning environments. In addition, three broad user-centred
strategies were identified as showing promise as possible ways to implement such an
environment. These strategies emphasised localised over centralised functionality,
specialised over general-purpose tools, and user-initiated adaptability over system-
initiated adaptivity. It was hypothesised that by following the design guidelines and
combining these three strategies — without making any presumptions about
technological platform — a workable way could be found to meet all the requirements
for an extramural e-learning environment that offers a significant improvement over

correspondence-based courses.

Incremental prototyping was used to evaluate and refine the main elements of the
design specification and then to integrate them into an operational system. This
prototyping confirmed that the method proposed for developing a computer-based
learning environment was workable. The prototype was then installed and tested, first
over a LAN, and then over a rural telephone-based communication system where it
was tested it with users.

The system performed very favourably under these conditions. The volunteers’
response to the leamning computer was enthusiastic, contrasting what they could
accomplish with it to the difficulties they faced with conventional systems. It was
concluded that the user testing gave strong support to the thesis that distributive,
specialised and adaptable strategies can be successfully combined to provide a widely-

accessible and usable computer-based learning environment.

Acknowledgements

There are a number of people and organisations whose advice, encouragement and

support during this research | want to acknowledge.

First and foremost | would like to | thank my principal supervisor, Assoc. Prof. Elizabeth
Kemp, for the time and effort she has put into keeping me focussed throughout this
project, but especially during the final writing up of this thesis. | would also like to
warmly acknowledge the contributions of my co-supervisors, Assoc. Prof. Ray Kemp
and Peter Blakey. | want to express my appreciation for the considered opinions, the
constructive feedback, and, above all, the space to develop my research ideas, that |

received from all of them.

There are a number of busy people from a range of disciplines who took time out to
share with me their experience and knowledge of computer-based learning during the
initial stages of my research. | would particularly like to acknowledge Assoc. Prof.
Kinshuk, Bill Anderson and Trevor Billany, in this regard. | also acknowledge the
influence of the TILE research group, led by Professor Chris Jesshope, in helping to

provide an initial framework for this research.

| want to thank the school and residents of Akitio for their enthusiastic participation in

this research, and for providing a real environment in which to test out my ideas.

| acknowledge the financial support of the Foundation for Research, Science and

Technology through a Bright Futures Top Achiever Doctoral Scholarship.

On a personal note, | would like to thank Cheryl for her support and encouragement

throughout this long process.

| would also like to acknowledge my parents, especially my late father, whose own
academic aspirations were cut short by injury, illness and family responsibilities, and for

whom | carried the flag on this march.

vi

Publications

Publications associated with this research are;

Johnson R., Kemp E., Kemp R., and Blakey P. (2004). Evaluating Immediate: A Tool
for Distance Learning. Proceedings of International Conference on Computers in
Education 2004. Melbourne Exhibition Centre, November 30th to December 3rd. 2004,
Australia. pp. 997-1006.

Johnson R., Kemp E., Kemp R., and Blakey P. (2003). The Virtual Learing Machine:
Addressing the Needs of Distance Learners Outside the Information Superhighway.
Proceedings of the International Conference of Computers in Education 2003. Hong
Kong, China. December 2-5. pp. 271-73.

Johnson R., Kemp E., Kemp R., and Blakey P. (2003). The Virtual Learning Machine:
Integrating Web and Non-Web Technologies. (V. Devedzic, J. M. Spector, S. D. G, and
Kinshuk, eds.) Proceedings of Third IEEE Conference on Advanced Learning
Technologies (ICALT). IEEE, Athens, Greece. 9-11 July. pp. 328-329

Johnson, R., Kemp R, Kemp, E., and Blakey, P. (2003). Designing a flexible learning
environment: learning from books. Artificial Intelligence in Education: Shaping the
Future of Learning through Intelligent Technologies. I0S Press. Amsterdam. AIED
2003, Sydney, Australia. July 22-24. pp. 434-436.

Johnson R., Kemp E., Kemp R., and Blakey P. (2002). From electronic textbook to
multidimensional learning environment: overcoming the loneliness of the distance
learner, Volume 1, Proceedings of 2002 International Conference on Computers in
Education (ICCE 2002), Auckland, Dec 3-6, IEEE Press pp. 632 - 636

Vi

viii

Brief Table of Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
References
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |
Appendix J

Appendix K

Introduction

Distance education and computer-based learning overview
Web-based e-learning: an evaluation

Conceptualisation of an extramural e-learning system
Towards a specification for an extramural e-learning system
Prototyping the extramural e-learning system

Use and evaluation of IMMEDIATE

Conclusion

References for e-Learning Systems Reviewed

Conceptual view of learning elements and study modes
User Interfaces to Internet-based systems

Learning Shell Requirements Specifications

Learning Shell prototyping — classes and components
Learning Shell — selected class interfaces and source code
Learning Shell — screen shots

Communications Management

Course authoring and management application

Evaluation — handy hints, scenarios for user testing

Evaluation: Information sheet, questionnaire, and interviews

35

67

83

113

175

211

223

241

251

257

263

283

297

351

3517

385

395

405

Detailed Contents

Chapter 1 Introduction

1.1 E-Learning for all
1.2 Anissue for research

1.2.1 Research objectives
i3 Research Methodology

1.4 Thesis structure

Chapter 2 Distance education and computer-based learning overview

2.1 Distance education: an historical review
2.1.1 Four threads in distance leaming

2.1.2 The technology of distance education

2.1.3 The university and distance education
2.1.4 Summary
2.2 Computers in education: Milestones in computer-based learning research
2.2.1 Teaching machines
2.2.2 Thinking machines
2.2.3 Discovery learning
2.2.4 Communities of learning
2.2.5 Summary
2.3 Networked computers and distance education
2.3.1 Constraints on use of computers in distance education
2.4 Conclusion

Chapter 3 Web-based e-learning: an evaluation

3.1 Terminology

<./ Overview of recent e-learning research

3.3 Evaluation criteria
3.3.1 A focus on extramural study in the public sector
3.3.2 End-user requirements
3.3.3 Functionality

Xi

o O b~ W =

10
12

14
17
18
18
21
24
26
28
29
31
33

35

85
36
37
37
37
38

3.3.4 Usability
3.3.5 Accessibility
3.3.6 A student-centred leaming environment

3.4 Assessment of web-based courseware

3.4.1

Courseware functionality

3.4.2 Usability concerns

343
3.4.4

Inaccessibility

Summary

3.5 Recent developments in e-learning

81541
SESN2
Aons
354
SE9lS
3.56

Anywhere, anytime study
Individualisation
Collaboration and Help
Interaction

Specialisation

Conclusion

3.6 Designing for extramural e-learning

3.6.1
3.6.2

3.6.3 Guidelines for designing extramural e-learning environments

Prioritising the student interface

Adaptation in a learning environment approach:

3 Concluding the literature review — a hypothesis

Chapter 4

Conceptualisation of an extramural e-learning system

41 A computer for learning

411
41.2
413

Everyday activities imbuing the conceptual model
Making learning possible
A reusable educational resource

4.2 Specialised interface

421
422
423

E-learning metaphors
A modular approach
Rendering the interface invisible

4.3 Individualised interface

4.3.1
432

Adaptation strategy

Integrated Support, Communication and Collaboration

4.4 Integrated network user interface

4.41
442

Network characteristics

A networked extramural e-learning system

Xii

40
41
42
42
42
46
47
48
49
49
51
55
56
57
58
59
59
61
62
63

67

67
68
69
70
70
70
72
72
74
74
75
77
78
79

4.5 Conclusion 80

Chapter 5 Towards a specification for an extramural e-learning system 83

5.1 Network User Interface 84
5.1.1 Alternative network user interfaces 84
5.1.2 Integrated Interface 89
52 Network Architecture 90
5.2.1 Architectural style 91
5.2.2 Communication Style. 92
5.2.3 Connection style 93
53 Development platform 94
5.3.1 Multi-platform 95
532 PC-based 95
5.3.3 Windows-based 96
54 A Specialised User Shell 97
55 Modular construction 100
551 System Components 102
56 Adaptable environment 103
5.6.1 Student Model 104
5.6.2 Integrated Learning Support 104
5.6.3 Individualised Support 105
Chlk IMMEDIATE specification 109
58 Summary- Prototype Focus 110
Chapter 6 Prototyping the extramural e-learning system 113
6.1 Functional requirements for student user 114
6.2 Component-based approach 115
6.2.1 Study modes 115
6.2.2 Learning elements 117
6.2.3 Delphi code modules 117
6.2.4 Reusable learning components 119
6.2.5 Learning Shell assembly 120
6.2.6 Refinements to promote consistency and modularity 123
6.2.7 Feasibility of component-based approach 124
6.3 System level support 124

xiii

6.4

6.5

6.6

6.7

6.8

6.9

6.3.1 System Tree

6.3.2 System level operations

6.3.3 Reference model specification
6.3.4 Implementation of data structures
6.3.5 Refinements to system modules
6.3.6 Embedded operating system
Interface Design

6.4.1 Learning Shell look and feel

6.4.2 Interface Refinement

Integrated learning support and communications
6.5.1 The system database

6.5.2 Communications and Group Work
6.5.3 Extramural Support

6.5.4 Coarse-grained learning help
6.5.5 Individualisation

Communications management

6.6.1 Repository Manager

6.6.2 Asynchronous messaging

6.6.3 Procedures for Resource Updating over the network
6.6.4 A challenging task

Authoring application

6.7.1 Course Authoring and Re-use
6.7.2 Authoring mechanism

6.7.3 Implementation

6.7.4 Evaluation of authoring tool

The IMMEDIATE prototype

6.8.1 Modifications to the prototype
6.8.2 Debugging

Conclusion

Chapter 7 Use and evaluation of IMMEDIATE

7.1
2

Goals of evaluation phase

The Evaluation Strategy

7.21 Focus on student as user

7.2.2 Testing for functionality and accessibility
7.2.3 Usability testing

Xiv

125
125
127
127
129
130
131
132
136
141
142
143
145
148
149
150
152
153
160
162
163
163
164
165
167
168
170
171
172

175

175
176
176
177
177

7.2.4 Field testing
7.2.5 Purposive sampling
7.3 Installation and evaluation
7.3.1 Test environment
7.3.2 Installation of the system
7.3.3 Pilot study
7.3.4 Organising the field test
7.4 Evaluation Results
7.4.1 Functionality and accessibility
7.4.2 Usability

75 Conclusion

Chapter 8 Conclusion

8.1 Summary of research

8.1.1 Literature review

8.1.2 Conceptualisation and specification of a computer for learning

8.1.3 Evaluation through prototyping and user testing
8.2 Contribution to knowledge
8.3 Future Work

References

Appendix A References for e-Learning Systems Reviewed

A1 Paper References for Initial System Comparison

A.2 Web References for Initial System Comparison

Appendix B Conceptual view of learning elements and study modes

Appendix C User Interfaces to Internet-based systems

Appendix D Learning Shell Requirements Specifications

D1 Distance learner scenarios
D2 Use Cases

XV

178
179
178
179
180
182
185
195
195
199
209

211

211
212
213
215
216
220

223

241

242
247

251

257

263

264
273

D3
D4
D5

Sequence Diagrams
Extramural Support: Query Specification

Extramural Support: Dialogue Specification

Appendix E Learning Shell prototyping — classes and components

E1
E2
E3
E4
E5

Appendix F Learning Shell — selected class interfaces and source code

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13

Prototyping basic component types
Component dependencies
Inheritance hierarchy

Class Hierarchy

Delphi Object Hierarchy

Controller object — interface and selected source code

Course Explorer object — class interface, selected source code
System Dictionary — constants

System Utilities — class interface

Resource Model Manager — interface and selected source code
Student Model Manager — class interface

System Model Manager — class interface and selected code
System Tree Manager — class interface

Sample reference model implementation — System Tree
Sample learning component implementation

Extramural Support — class interface and selected source code
Concept Map - class interface and selected source code

System Models — Models directory and selected model files

Appendix G Learning Shell — screen shots

Appendix H Communications Management

H1
H2
H3
H4
HS

FTP Server — Screen shots

Repository Manager — Screen shots

Repository Manager - interface and selected source code
Learning Shell: Update Resources — interface and selected code

Learning Shell: Update Extramural Support — interface, selected code

XVi

278
279
281

283

284
285
287
288
294

297

298
306
311
85
316
317
318
320
321
325
327
338
344

3561

357

358
360
362
374
379

H6 Learning Shell: Messaging - interface 382

Appendix | Course authoring and management application 385
11 Authoring application — screen shots 386
12 Add Learning Material — screen shot and class interface 393
Appendix J Evaluation - handy hints, scenarios for user testing 395
J1 Handy Hints sheet 396
J2 Initialisation (Scenario 1) 397
J3 Start-up, browse the Study guide (Scenario 2) 399
J4 Work on an Assignment (Scenario 3) 400
J5 Access a Lecture, Ask for Learning Support (Scenario 4) 401
J6 Monitor group discussion, get assignment feedback (Scenario 5) 402
J7 Exploring a Topic (Scenario 6) 403
J8 Completing an interactive tutorial (Scenario 7) 404

Appendix K Evaluation: Information sheet, questionnaire, and interviews 405

K1 Information sheet for participating volunteers 406
K2 Questionnaire for participants 408
K3 Outline for semi-structured interviews with each participant 409
K4 Interviews with participants 411

XVii

XViil

Figures and Tables

Figures
Figure 1.1
Figure 2.1
Figure 3.1
Figure 4.1
Figure 4.2
Figure: 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Figure 6.7

Research methodology

Innovations in distance learning technology.

Courseware environment marked by visual clutter.

Each study mode contains a unique set of learning elements
Learning computer shifts weight of system to learner
Networked extramural e-learning — conceptual view

Three basic types of web documents.

Enhanced web browser components.

Integrated Interface

IMMEDIATE accommodates diverse communication media.
Gartner Spectrum of Network Styles.

Modes implemented from pre-installed components.
Learning Shell System components.

System Tree models table of contents and student’s progress.
Knowledge-based system components.

IMMEDIATE network components and configuration.
Start-up scenario

Interface components of the Learning Shell

Message List component encapsulates multiple forms

Code to wrap Feedback learning element as Delphi component.

Shell assembled by dragging components onto Desktop form.
Desktop encapsulates all Shell components
System Tree with additional concept level.

XiX

12

47

73

78

79

85

86

89

91

92

101

102

103

108

110

116

118

119

121

121

122

125

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 6.27
Figure 6.28
Figure 6.29
Figure 6.30
Figure 6.31
Figure 6.32
Figure 7.1

Figure 7.2

Sequence diagram for Change Mode Use Case.
Reference models stored as text files in Models directory.
Learning Shell directory structure.

Content of “s01t02le.txt” in Resources directory.
Component show method gets data filepath from Controller.
Learning Shell architecture.

Nielsen’s usability heuristics (Nielsen, 1994).

Desktop with Course Explorer open.

Help screen for Lecture component.

Mode components are colour-coded.

Separate learning components may be docked together.
The integrated System Database model.

Group Work component with Desktop Menu open.

Top level methods for interactive dialogue with user.
Concept Map for “conceptual frameworks”.

Repository folder structure.

The Repository Manager.

Repository Manager architecture.

Messaging Protocols.

(a) Two-step transmission protocol.

(b) Transmission protocols accommodate overlapping users.

SQL queries for composing message lists to be transmitted.
Learning Shell update resources screen.

Interface for adding and updating learning materials.

SQL query rewritten to run outside Delphi environment.
IMMEDIATE prototype implementation.

“Attend Lectures” scenario.

Logging on to the Learning Shell.

XX

126

128

129

129

130

131

132

134

135

137

140

143

144

146

147

151

163

153

156

187

157

159

161

166

170

171

186

187

Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.5
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17

Figure 7.18

Tables
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2

Table 5.3

User Options form. “Select new topic” selected. 187
Course Explorer. Clicking Help icon opens Help screen. 188
Navigating to Lectures Mode in Topic 1.2. 188
Help screen for Lecture component. 189
Right-clicking background with mouse opens Desktop Menu. 189
Key Ideas opened via Desktop Menu. 190
Asking the tutor (and my group) for help with “metaphor”. 190
Selecting “conceptual models” in Concept Map. 191
After Extramural Support has explained “conceptual models”. 191
Starting Self-Assessment. 192
Self Assessment questionnaire component. 192

Key Ideas, Course Explorer are updated after Self-Assessment. 193
Exit after updating messages. 193

User interactions traced through log file (e.g. from Scenario 4). 196

Comparison of scenario completion times. 197
Comparison of help access frequency. 197
Extract from Repository Manager log. 199
Extract from FTP Server log. 200
Contrasting properties of adaptable and adaptive systems. 52
Forms of adaptation in learning systems. 52

Individualisation dimensions supported by the learning computer 75

Requirements for network components 80
Some higher-level protocols implemented over TCP/IP. 93
Possible methods for rendering the interface invisible. 98
The four dimensions of the Integrated Help system. 107

XXi

Table 6.1 Basic learning element categories 118

Table 6.2 System level operations defined from use cases. 126
Table 7.1 Summary of Participant Profile Questionnaires. 183
‘Table 7.2 Scenarios covered all e-learning enhancements and dimensions. 185

xXii

Chapter 1: Introduction 1

Chapter 1

Introduction

1.1 E-Learning for all

One of the more remote students of the NZ Correspondence School in recent years
lives in Nepal. To return his completed lessons for assessment and pick up his new
ones, this student must trek for two weeks through the Himalayan Mountains.' His
determination to overcome such obstacles in order to advance his education,
exemplifies the aspirations of millions in the underdeveloped countries to find a road
out of poverty through education. In fact, at least since the industrial and democratic
revolutions of the late 18" Century, “Education for alll” has been a rallying call of

movements for social progress, and is enshrined in the UN Charter for Human Rights.

The role of the NZ Correspondence School in helping this Nepalese student to achieve
his learning goals highlights how learning institutions in the more developed countries
can assist in raising educational levels world-wide through distance learning
programmes. Through such programmes, the greater educational resources of the
developed countries can be made available to poorer countries to help expand the
numbers of teachers, agronomists and others with key skills for economic and social
development. Distance education has become a major part of development initiatives
in the Third World (Cook, 1998).

Distance education also plays a major role in narrowing the gap in educational
opportunities between town and countryside in all countries, and in facilitating study by
those unable to attend conventional learning institutions by reason of geographic
location, job, disability or age. Others are attracted to distance forms of learning
because of the greater flexibility they offer in terms of acquiring new skills and
knowledge throughout one'’s lifetime. In fact, distance learning today encompasses
fields as diverse as public education from primary through to tertiary level, government-

funded and in-house job skills training, and cultural self-awareness programmes.

' Recounted in personal interview with NZ Correspondence School teacher, October 2003.

Chapter 1: Introduction 2

Demand for the provision of distance education at the university level remains strong.
In December 2003, it was reported that Massey University, New Zealand’s major
distance university education provider, had signed up record numbers of students. In
that year, “Massey had extramural® students sitting exams as far afield as Istanbul,
Saudi Arabia and Brazil. They also had distance learning students studying in prison,

on board naval ships and on overseas army postings” (Allen, 2003).

In recent years, a major shift in distance learning has been underway, with computer-
based courses delivered over the Worldwide Web increasingly replacing traditional
correspondence courses. With rapid advances in computer and communication
technology making possible real-time video-conferencing and *“virtual” classrooms
(Tiffin, 2002), some even question the future of “bricks-and-mortar” learning institutions.
In fact, what has become known as e-learning is more and more promoted as the
future of education. According to this view, the communication potential of internet-
linked computers is turning the world into a global village (Cisco, 2000; Drucker, 2000).
However, if one steps back and looks at the world as it really is today, then a more

sobering perspective emerges.

The increased reliance on technology in education is widening the gap between the
haves and have-nots. According to an Auckland communication studies lecturer, online
information services such as e-learning are focussed upon 150 to 200 “wired cities”,
while ninety-seven percent of the world’s population have no Intemet access and
almost two-thirds of households have no telephone, let alone the broadband delivery

and multimedia computer required for web-based learning (Hope, 2002).

Nor is this just a developed/underdeveloped country hiatus. Microsoft has
acknowledged that the digital divide between people who have access to and know
how to use technology and those who do not, is a growing problem in developed and
developing countries alike. In 2004, the software giant announced that it will spend tens
of millions of dollars on community-based technology learning centres around the world
(Herman, 2004).

There is tremendous unevenness in social and economic development within

developed countries themselves, including between the large urban centres and the

? Meaning study “outside the walls” of the university. “Extramural study” is used in New Zealand to refer to
correspondence-based, university-level, distance learning and its computer-supported derivatives. The
term is used in the thesis wherever it is necessary to differentiate this particular form of university distance
education from university distance learning centres or from the more general domains of “distance

learning” and “e-learning”.

Chapter 1: Introduction 3

more remote and sparsely-populated rural districts. In New Zealand, for example, an
OECD developed country centred on farming, forestry and fishing, an economically
strategic minority of the population lives in relatively-isolated rural communities, where
poor communications infrastructure remains a major issue impeding Internet use
(Searle, 2001)°.

Distance learning was begun to provide schooling for people living in areas remote
from normal educational opportunities. Paradoxically, internet-based delivery of
distance education creates a 2-tier system, determined by access to high performance

technology, in which those most in need of it can least avail themselves of its benefits.

Poor usability limits learning

At first glance, the simplest way around the problem of poor telecommunications
infrastructure is to make use of the postal system. Distance students without fast,
reliable Internet access could be mailed a removable storage disk containing their
lessons. However, this solution has the disadvantage of maintaining a 2-tier system by

sacrificing the communication strengths and speed of the Internet for some.

Moreover, whether the lessons are delivered by mail or the Internet, it is assumed that
the remote student will be able to install and effectively use the learning material

unaided. Anecdotal and other evidence suggest that this often may not be the case.

It is widely recognised that software systems tend to be more complex than they need
to be (Hurley, 1998; Cooper et al., 1999), and to be biased towards the priorities of the
developers rather than the users (Gentner et al., 1990). Educational software is not
exempt from this trend (Bork, 2001a, Murray et al., 2000). In fact, it poses an additional
problem in e-learning because most of the student’s effort may be diverted into learning
how to use the system rather than learning the content of the course (Smulders, 2003).

Poor usability can severely limit and curtail learning.

1.2 Anissue for research

This situation poses the question: Is there a universally-applicable way to apply

g By way of illustrating the scale of the urban/rural digital divide: In September, 2004, an attempt to
download the 75 MB Service Pack 2 upgrade of the Windows XP operating system from the Microsoft web
site, via a rural modem, was abandoned after the system calculated that, at the actual data transfer rate, it
would require 22 hours and 11 minutes to complete. A 240MB developer’s version of the upgrade was
downloaded from the Microsoft site via Massey University’s fast Internet connection in less than 8 minutes!

Chapter 1: Introduction 4

information technology to university-level distance education, so that it offers all

extramural students an advantage over traditional correspondence lessons?

In such a solution, technology would be applied to distance learning without widening
the digital divide. Firstly, it would work as well where infrastructure is poor as where it is
well-developed; in the countryside as well as the large urban centres. Singapore and
India, for example, are two countries which play a prominent part in the modern IT
industry. E-learning technologies developed for a relatively-prosperous city-state like
Singapore — where a developer can assume widespread access to modern computers
and broadband communications — will most likely prove unworkable in India, where
eighty percent of the population still live in impoverished rural villages. The converse,
however, is probably not true. An e-learning technology that will work across India

should also work in Singapore.

Secondly, the e-learning environment would be as usable by a student studying alone
in an isolated locality, as one studying under skilled supervision in a learning centre.
One that has been designed and tested in a regular campus environment may prove
too complex for the distance student, who may be a relative computer novice and have
no-one more experienced to turn to for help. On the other hand, a system that has
been designed for and tested with extramural students in remote localities, should be

usable anywhere.

Therefore, the question being posed here is an important one that merits further

research.

1.2.1 Research objectives

The objectives for this research are:

e To identify the ways in which computer systems can assist distance learning
and to what extent this potential has been realised in existing e-learning

technologies.

e To identify threads of current research relevant to overcoming the shortcomings
of e-learning systems for extramural study, drawing from the broad spectrum of
Computer Science including Artificial Intelligence, Software Engineering and

Human Computer Interaction.

e To develop new ideas and extend existing ones for fulfilling the potential for

computers to effectively support distance learning at the university level.

e To build and test a prototype which implements these key ideas.

Chapter 1: Introduction 5

1.3 Research Methodology

Identify research problem, research objectives

v

Conduct initial investigation to scope the problem

v

Review literature to refine problem, identify
possible solution strategies

v

Conceptualise a solution

v

Specify the framework for developing a prototype
to test conceptualisation

I

|

v |

Test the solution — build the prototype
Test the solution — evaluate prototype with users

= hemaos s

Evaluate the results against research objectives

: |
|

|
|

|
|

|
|

|
|

|
|
' |
==
e

Figure 1.1: Research methodology
In this section, the methodology used in this research is summarised. While the eight
stages of this methodology are logically separate (Figure 1.1), the actual process is
strongly iterative, especially during the later testing phases where prototyping and
evaluation experiences motivate a fresh look at higher level design issues and

concepts.

Identify the research problem

The research problem identified is: Is there a universally-applicable way to apply
information technology to distance education, so that it offers the student an advantage
over traditional correspondence lessons? To be universal, such a method should
narrow the digital divide, working as well where infrastructure is poor as where it is
well-developed. The motivation for addressing this question is outlined in the previous
sections.

Initial investigation

In order to gain a better understanding of the scope and scale of the problem domain

Chapter 1: Introduction 6

and set a framework for the subsequent phases of the research, especially the
literature review, informal interviews and discussions have been conducted with

experts, practitioners and users from a range of related disciplines. These include:

e A number of teachers with experience in preparing and coordinating distance

learning courses at the university and pre-university levels;
e Several former and current distance learning students;

e An educationalist with research and practical experience in applying technology

to learning;
e A professional instructor in the authoring of web-based university courses;

e Two researchers in the application of Artificial Intelligence to computer-based

education;
e Two researchers in usability and Human-Computer Interaction.

In addition, some of the available computer-based educational systems, or their
associated web sites, have been explored to get a *hands-on” feel for them.

Literature review

The overall objectives of the literature review phase of this research are to further
refine the problem under investigation and hypothesise a solution. The review

proceeds in two distinct steps.

In the first step, the two major strands which are brought together in computer-based

distance learning are examined:
e distance education in its various forms; and
e the educational applications of computers.

The purpose of this historical review is to identify the potential benefits (and downsides)
of computer-based distance learning systems, to determine what limits need to be
placed on the scope of the domain for this research project and, within that scope, to

establish a set of criteria for evaluating e-learning systems.

The second step in the literature review is to evaluate the existing technology,
especially the web-based course authoring tools or learning management systems
which are widely used for online education and training. These are evaluated against

the criteria developed in the previous step, and their major shortcomings listed.

Then research and development addressing issues posed by these shortcomings are

Chapter 1: Introduction 7

reviewed. The principal objectives for this step are:

e to identify some promising strategies for meeting the criteria for effective

computer-based distance learning systems; and
e to synthesise some guidelines for designing and building such systems.

Finally, on this basis, a possible solution to the refined problem is hypothesised.

Conceptualisation

To explore the solution that has been hypothesised a working prototype is needed. The
objective of this step in the research methodology is to conceptualise an e-learning
system that embodies the main principles and ideas to be evaluated. Conceptualising
the prototype also involves drawing analogies from education and other everyday
activities with which to imbue the design, as well as addressing some high level

information system analysis and design considerations.

Specification framework

Once the solution has been conceptualised at a high level, and before a system can be
built, decisions need to be made about what technologies will be used to implement the
prototype. This means investigating the major platform and design options in relation to
issues such as network architectures and interfaces, operating environments and
development platforms, and database structure and search strategies. The objectives
are to identify the key elements of the conceptualisation that need to be evaluated
through prototyping, and to determine the technological framework for the more

detailed specification of the system that will emerge from the prototyping process itself.

Testing through prototyping

Incremental prototyping (Pressman, 1997, pp. 285-288) is used to further explore and
refine the key elements of the design, which are then codified in a series of documents.
The approach taken is to develop and evaluate each element individually, through a
process of repeated iterations. Then the constituent elements are progressively
integrated into an overall working system, which in turn is evaluated under laboratory
conditions. The primary objective of this stage is to test the technical feasibility of the

ideas under consideration, and make possible the subsequent evaluation with users.

Testing through evaluation with users

In this phase, the prototype is instaliled and fieid-tesied with volunteer users under

Chapter 1: Introduction 8

realistic conditions. The objectives are
e To demonstrate that the system is fully functional under such conditions;
e To evaluate the system for accessibility and usability.

The usability experiment is prepared by a pilot study. The principal form of data
collection is semi-structured interviews with each of the participants. Observation and

log files are also used. The results are then collated and analysed.

Evaluate hypothesis in light of the testing phases

The lessons from the prototyping and evaluation phases are discussed. To what extent
the research objectives have been met and the research problem solved is assessed in

light of the results.

1.4 Thesis structure
The structure of the thesis closely follows the steps in the research methodology.

Chapter 2 and 3 present the results of the literature review. Chapter 2 outlines the
historical background to distance learning and computer-based education. Chapter 3
summarises current research in the field, and the conclusions that have been drawn

from it regarding a solution to the research problem.

In Chapter 4 the conceptualisation of a universal computer-based distance learning
system is presented. Chapter 5 specifies the technological basis on which the

conceptualisation is prototyped.

Chapter 6 summarises the extensive prototyping process, with particular attention to
the novel aspects of the system. Chapter 7 reports on the work needed to prepare the

field evaluation of the prototype, and the results of the usability experiment.

Finally, Chapter 8 concludes the thesis by summarising what has been achieved during
the project, looks at some of its broader implications, and outlines some proposals for

future work.

Chapter 2: Overview 9

Chapter 2

Distance education and computer-based

learning: an overview

Research into computer-based distance education occurs at the intersection of two
broader fields of learning research and practice: distance education in its various
forms, and the educational applications of computer systems. In this chapter, the
results of an extensive literature review of both these areas are presented. The major
steps in the evolution of each are summarised, with special attention to their role and
place in education at the university level. On the basis of the literature review, some

conclusions on the potential for computers to enhance distance education are drawn.

2.1 Distance education: an historical review

The Oxford Dictionary defines learning as acquiring knowledge of something “by study,
experience or being taught” (Fowler et al., 1974), where study is “devotion of time and
thought to acquiring information especially from books” (ibid.). All learning occurs in a

social context (Wenger, 1998, p3.) and is therefore never a completely isolated activity.

Education, in the sense of an organised system of leaming, involves guidance (Alessi
etal, 1991, p. 6) Laurillard (1993) defines teaching at the university level as "mediated
learning, allowing students to acquire knowledge of someone else’s way of
experiencing the world” (p. 29). In the classical classroom situation the emphasis of
learning is on being taught, that is, on learning activities being directly guided by a
human teacher. In distance education, the emphasis is on learning by study, especially
from books. Nevertheless it is still guided by a human teacher, albeit indirectly, via
some form of paper-based, or electronic, lessons delivered to the student by a means

such as mail, broadcast media, or the Internet.

Distance learning, therefore, is a social relationship between humans which is
mediated by technology. In computer-based distance learning, computers and

communication networks provide the facilitating medium.

Chapter 2. Overview 10

2.1.1 Four threads in distance learning

Modern distance learning can be traced back to a growing demand for popular
education spurred by the industrial and democratic revolutions that gathered steam
across Europe and North America in the late 18" and early 19" Centuries. The London
Corresponding Society, founded in the 1790s, used the early mail system to
disseminate the ideas of Tom Paine (Higgins, 1998). “The pioneers of distance
education used the best technology of their day, the postal system, to open educational
opportunities to people who wanted to learn but were not able to attend conventional
schools" (CDLP, 2004, p. 4). One of these early pioneers was Isaac Pitman who began
teaching shorthand by the penny post in England as early as 1840, and later in the
United States (PBS, 2004).

Since that time, a diverse range of institutions and motivations have been involved in
the delivery of various forms of distance teaching to an equally diverse range of

students. Within this diversity, at least four major historical threads can be identified:

e correspondence schooling of isolated rural children, usually provided by the
state;

e vocationally-oriented training, often provided on a for-profit basis by private

organisations;
e public lecture series presented by touring university academics; and

e home-based, self-improvement study, initially oriented towards women, and

often provided by voluntary organisations.

In North America and Australasia, distance learning became institutionalised through
the correspondence primary schooling of children living in remote rural areas beyond
the reach of itinerant teachers (Higgins, 1998). The New Zealand Correspondence
School was established in New Zealand in 1922 with one teacher and 100 pupils
(NZSC, 2004). In the United States, correspondence courses began in the late 19"

Century and were institutionalised as early as the 1930s (Aniebonam, 2000).

The success of the correspondence system in the United States rapidly spawned
private organisations which marketed “job-skills” distance training packages on a for-
profit basis. According to Noble (1999), such businesses proliferated during the early
20™ century. He writes that by “1924 these commercial enterprises, which catered
primarily to people who sought qualifications for job advancement in business and
industry, boasted of an enrolment four times that of all colleges, universities, and

professional schools combined” (para. 12). The best-known example of these distance

Chapter 2: Overview 11

education businesses is the International Correspondence Schools founded in
Pennsylvania in 1891 to train mineworkers, which now has millions of students world-
wide (PBS, 2004).

As early as 1920 the United States Department of Defense (DoD) began utilising
distance education technology in the training of its personnel (ibid.). In the ensuing
decades it has been a major driver in the development of this technology, especially of
the computer-based training systems now widely adopted in the commercial world. In
1997, it launched the Advanced Distributed Learning initiative to "develop a DoD-wide
strategy for using learning and information technologies to modernise education and
training and to promote co-operation between government, academia and business to

develop e-learning standardisation" (Dodds, 2003, para. 1).

Uglow (2002) and Clark (1999a) cite examples of noted scientists and other academics
during the 18™ and 19" Centuries touring Britain delivering public lectures. These
lectures presaged university extension courses - in which short educational
programmes are offered to the general public — and distance learning centres — in
which students study together in a classroom remote from the university and supported
by visiting lecturers, tutors and, more recently, satellite video, telephone and internet
hook-ups.

Learning centres, including satellite campuses, are an important component of distance
education in Japan, the United States and many other countries, and are a focal point
for e-learning research as evidenced by Hayashi et al. (2001) and Tiffin (2002). In
developing countries like India, they are a vehicle for providing distance students with
access to technology that would not otherwise be available to them (Cook, 1998, p.
20).

Learning centres are an important aspect of the Open University of the United
Kingdom, founded in 1969 to provide mature students with the opportunity for tertiary
study to the degree level (Norton, 1994). “The British Open University has broken
traditional barriers to education by allowing any student to enrol regardless of previous
educational background or experience. It currently has more than 200,000 students
and has enrolled more than 2 million people. It is recognised throughout the world as a

prototype for current day non-traditional learning” (PBS, 2004, p. 3).

The Open University draws upon the tradition of self-improvement home-based study
which began in the 19" century in part to provide educational opportunities to women
barred from attending male-only universities. An example is the volunteer-run Society

tc Ehcourage Gtudies ai Home in Boston, Massachusetts (PBS, 2004). Today, home-

Chapter 2: Overview 12

based study provides a vehicle for more general "second-chance" adult education. In
New Zealand, the Technical Correspondence School was founded in 1946 to provide
resettlement training for returned servicemen and women following World War |l. It
expanded in 1963 into national apprenticeship training and now, as the Open
Polytechnic, offers many open-admission courses (TOPNZ, 2004). Massey University,
which has offered degree and diploma courses by correspondence since the 1960s,
has about 21,000 extramural students studying by mail, phone, e-mail or the Internet

each year (Massey Extramural, 2004).

By the 1990s, almost three million tertiary students were enrolled world-wide in the
eleven largest public, distance teaching universities (Higgins, 1998). In New Zealand,
up until the late 1980s distance learning was dominated by four large, public
institutions. These institutions accounted for well over 90% of all distance education
enrolments and provided New Zealand with a comprehensive selection of school-level,
polytechnic, teacher education and university programmes (Prebble, 2001a). Today,
however, almost all universities and polytechnics offer some form of distance study as
an adjunct to their internal courses — in part to meet a demand for more flexible forms
of learning — although on a lesser scale than that offered by Massey University and the

Open Polytechnic.

2.1.2 The technology of distance education

Until the 1920s, distance education was almost exclusively based upon the postal
system. While book-based lessons delivered by mail remain a core component of
distance learning, technological innovations have been progressively incorporated
(Figure 2.1).

1840s Correspondence lessons through the mail

1920s Radio broadcasts by correspondence schools

1960s Open university public television programming

1980s Video-based teleconferencing via satellite to remote classrooms by universities and

military institutions

1990s PC-based learning in the home and workplace delivered by CD-ROMs and the Internet

2000s Online virtual universities via broadband Internet

Figure 2.1: Innovations in distance learning technology. Based on PBS (2004).

Radio broadcasts were introduced beginning in the 1920s (PBS, 2004). However, it

was not until 1964 that the Schools of the Air were introduced in Queensland, Australia,

Chapter 2: Overview 13

to directly teach numbers of similar-aged children via High Frequency radio broadcasts
(Higgins, 1998).

The first television broadcasts were introduced into distance education in the United
States in the 1930s. But again it was not until the late 1960s that the Open University of
the United Kingdom systematised the use of public television to broadcast lessons to a
wide audience. Television remains a popular vehicle for delivering distance education,
particularly in the developing countries, because of the ubiquity and cheapness of the
technology. The China TV University had 530,000 students in degree programmes in
1994 (Higgins, 1998). India has delivered agricultural training to rural villagers via
television since 1967 (Chaudhary, 1992). And Cuba has launched the “University for
All” which is “part of a campaign to widen the availability of education both among
student youth and working people of all ages. It consists of nationally televised courses

on various subjects such as English, geography, and art appreciation” (Militant, 2001).

By the 1980s, the United States military was pioneering the use of teleconferencing via
satellite, using 1-way (and later 2-way) video and 2-way audio to deliver lectures and
interact with students simultaneously to multiple sites. This technique is now widely
used by universities in the United States, Japan and elsewhere to broadcast lectures to
satellite campuses and learning centres, and is widely preferred by students as the
"next best thing to being there" (Aniebonam, 2000; PBS, 2004). More recently, the
World Bank has sponsored distance education via satellite in Africa and Latin America
(Cook, 1998).

In Queensland, during the 1980s the Education Department began to experiment with
technology in an effort to bring many of the interactive and multidimensional benefits of
classroom-based teaching to distance education. This led to the revision of the
curriculum and the development of teaching “packages”, incorporating multimedia
teaching aids such as video and audio tapes which could be studied virtually anywhere,
anytime. This created the elements of an open or flexible learning approach to teaching

and learningfor its students (Higgins, 1998).

The invention of the personal computer, the CD-ROM, and the world-wide web meant
that, by the 1990s, computers and computer networks had become the principal
alternative to the mail system for the delivery of distance education. Healey et al.
(1998) cite Canadian examples where Web-based distance education has enabled
students in isolated rural schools to study senior high school subjects like chemistry,

despite no qualified teacher being available locally.

Chapter 2: Overview 14

Most recently, “virtual universities”, resting on broadband communications networks,
have emerged as the broker for learning produced by several or many universities
(Jones and Pritchard, 1999), with mixed success. Virtual universities are discussed

further in the following section.

2.1.3 The university and distance education

The formation of the National University Continuing Education Association at the
University of Wisconsin at Madison in 1915 marked the beginning of university
involvement in distance education in an institutionalised way (PBS, 2004). Over the
ensuing decades, universities have extended into distance learning along three axes:
running courses at satellite universities and learning centres, often via video hook-up;
participating in open-learning, adult education extension programmes; and providing
individual, correspondence-based lessons for home-study that are usually an extension

of courses taught internally by the university, i.e. extramural study.

Distance education at the university level has special characteristics flowing from the
unique role of the university in society. The Dictionary of Ideas (Norton, 1994) defines
the university as "an institution of higher learning" and points to its long tradition dating
back to Salerno in the 9™ Century. The Universal Dictionary (Wyld, 1932) traces
"university" to the Mediaeval Latin word meaning "the whole" and suggests it referred
to a university being a "combination of all the Faculties", and the "idea of the whole of
learning being taught." The American Heritage Dictionary (American Heritage, 1992)
includes "the buildings and grounds ...and the body of students and faculty of such an
institution" in its definition. All these definitions point to a university amounting to more
than the sum of its courses. Higher learning is more than just instruction. It
encompasses the entire intellectual life of the university, including study, debate,
criticism, experimentation and research led by faculty, out of which university teaching
and learning is synthesised. Distance education provided by universities draws
strength from this community of learning and its greater possibilities for drawing
students into the whole of learning, including the possibilities for postgraduate research

and study.

Universities have developed strategies and techniques to try to realise more of this
potential for distance learners. Massey University has used contact courses to bring its
extramural students together into temporary learning communities and is exploring
methods for replicating this approach independently of the classroom using computer
technology (Prebble, 2001b). In 2000 Massey University's Information Technology and

Distance Education Taskforce proposed that the University should “provide an

Chapter 2: Overview 15

environment of on-line support for any and every paper offered by the University”
(Massey University, 2000, p.12).

The approach of utilising computer networks to provide distance students with a richer
learning environment, which more closely approximates the traditional university
experience, is sometimes referred to as a "virtual university" (Brusilovsky et al., 2001).
However, "virtual university" is more often used in the literature in the sense of a
completely electronic institution which replaces a “bricks and mortar” university. In this
virtual university all relations with the remote student are mediated through a computer
network, the university may not have any actual physical existence, and the student's
study programme may be sourced from multiple providers (Jones and Pritchard, 1999;
Universal, 2001). Examples are the University of Texas Telecampus (UTTC, 2004) and
the University of Phoenix (UP, 2004).

It is difficult to see how a purely electronic entity can reproduce the whole of learning -
to imbue into distance education the intellectual life associated with an institution of
higher learning with its "buildings and grounds” and “body of students and faculty".
There is a real possibility that a virtual university will produce virtual rather than real
understanding, as Chan (2003) discusses in relation to his experiences teaching with

virtual laboratories.

It is noteworthy that the prestigious and purely distance education-providing Open
University of the United Kingdom is based around a permanent, research-oriented
faculty and campus. By way of contrast, a four-year attempt to establish a British “e-
university” at a cost of £62 million was essentially scrapped in 2004. Critics labelled it a
“filasco” arguing that “the project overestimated the impact of the Internet, and that the
most successful e-operations are built on the back of successful face-to-face ventures”
(Education Review, 2004).

While Cheese (2003) argues that e-learning can potentially transform education at
every level, he notes that many universities have resisted the e-leaming trend. The
main effect has been on the corporate training world while e-learning has had "little
impact" in education, especially at the university level. "Universities don't see
themselves merely as education 'content providers.' Universities have a proud tradition
of combining learning, research, teaching, and professional development. If you look at
higher education as a whole, it's not necessarily obvious how to implement e-learning”
(ibid, para. 4) He adds that universities are also suspicious of the corporate side of e-
learning: "As the flag-bearers of the concept of free knowledge and research,

universities resist the commoditisation of knowledge" (ibid, para. 8).

Chapter 2: Overview 16

In 2002, Massachusetts Institute of Technology launched a major new initiative which
drew a clear distinction between its role as a learning institution and as a content-
provider. It decided to make its entire core teaching materials freely available on the
Internet for educators, enrolled students and self-learners. By June 1,2005, the content
of 1100 courses had been published online as part of the MIT OpenCourseWare
project (MIT, 2005).

Universities are not the only or even the main providers of post-secondary distance
learning today. They face growing competition from a range of more commercially-
oriented providers, both public and private, that offer job-oriented programmes without

the research focus of the universities.

The boundaries between university and non-university tertiary institutions are becoming
increasingly blurred as all providers compete for paying students, and for government
and industry funding. Polytechnics and even company training divisions are re-
branding themselves as universities (Huynh et al. 2003), and universities are offering

industrial training courses previously associated with polytechnics.

There is a general trend in tertiary learning away from a broad-brush, liberal education
towards more narrowly-based training geared to current business and industry
requirements. A major Australian government-sponsored study “The Business of
Borderless Education” (Cunningham et al., 2000), for example, writes of the trend
towards the “for-profit university” (p. 15), the “earner-learner” (p. xiii), and the
“marketisation or commodification of knowledge” (p. 22), and sums up the shift as from
“‘just-in-case” education to “just-in-time” training (p. xiii). Lennox (2000) calls it creating,

distributing and updating knowledge in a “just-in-time, just enough” fashion (p. 2).

The potential for packaging computer-based distance learning into marketable
education products for the “earner-learner” has driven much of the research and
development in this field. In fact, “The Business of Borderless Education” authors
comment: “Those 'hyping’ the industry often simply conflate the marketisation of
education with the emergence of online education and training” (pp 22-23). And
Drucker (2000) writes: “Online continuing education is creating a new and distinct
educational realm, and it is the future of education. There is a global market here that is

potentially worth hundreds of billions of dollars.”

Noble (1997, 1998a, 1998b, and 1999) and Taylor (2000) reflect a broad disquiet
among academic staff and students in face of this drift of universities towards
becoming what Noble calls “digital diploma mills”. Noble (1997) quotes Educom

president Robert Heterich as observing: "Today you're looking at a highly personal

Chapter 2: Overview 17

human-mediated environment [in university teaching]. The potential to remove the
human mediation in some areas and replace it with automation - smart, computer-
based, network-based systems - is tremendous. It's gotta happen" (para.24). Noble’s
conclusion is that the adoption of computer-based learning technologies by some
universities is "but a vehicle and a disarming disguise” for the commercialisation of

higher education (Noble, 1997, para. 5).

Notwithstanding this growing commercialisation of tertiary education and the particular
impetus it has given to e-learning, world-wide distance education at the university level
is still overwhelming provided on a non-profit basis by the public universities and will
continue to be so for the foreseeable future. It is also clear that computers, linked
together through the public communications system into extensive networks, are

playing an increasingly important role in the delivery of extramural courses.

2.1.4 Summary

Distance learning has a long and diverse history based around correspondence
lessons using the postal system and augmented increasingly by information
technology. From the beginning, private, for-profit, industry-oriented programmes have
been a significant component, although the primary driver has always been providing
public education to all those unable to attend normal classes. At the tertiary level, the
line between these two trends has become increasingly blurred. However, on a world-
wide basis, university-level distance education remains overwhelmingly provided by

public, non-profit institutions.

Distance learning is an umbrella term encompassing many different settings, each with
its own unique requirements — occupational training by business, military or public
institutions; home schooling of primary or secondary students; “open university” cultural
or self-improvement courses; group learning at a satellite university or learning centre;
or individual extramural university study. Students may be distance learners because

its flexibility suits them, or because they have no other option open to them.

It is therefore necessary to assess distance learning technologies in a very specific
context. Factors such as the character and aims of the teaching organisation and its
students, the subject matter and the breadth and depth to which it will be taught, the
age and learning level of the target students, the accessibility of the technology, and

the location of the students, have to be taken into account.

University-level distance learning has been most successful when it has been built on

the back of successful face-to-face teaching and a permanent research-oriented

Chapter 2: Overview 18

faculty. Traditional universities are thus better placed to deliver effective distance

education than purely electronic virtual universities.

The uptake of technology varies greatly between the different forms of distance
learning, with the greatest uptake in training applications, and the least in extramural
university study. At the least, this suggests that there are still issues to be resolved
before the broader sweep of university education can fit with e-learning technologies as

readily as does occupational training.

2.2 Computers in education: Milestones in computer-based

learning research

Since the 1950s the potential for computers in education has attracted the attention of
learning psychologists, educationalists, and computer scientists. Research has evolved
along two major axes: using computer technology as a practical tool to improve the
productivity of teachers; and using computers to better understand how people learn
and to develop more effective methods of teaching (Park et al., 1987). Milestones in
computer-based learning research have reflected both innovations in computer
technology and shifts in the underlying pedagogy. In this section, the major milestones

are reviewed chronologically.

2.2.1 Teaching machines

During the foundation years of computer science in the 1950s and 1960s, the
behaviourist approach to learning developed principally by J. B. Watson and later B. F.
Skinner prevailed among psychologists (Hill, 1997, pp. 33-34). Based upon laboratory
studies of animals, Skinner's behaviourism viewed learning as the modification of
observable, external behaviour through an appropriate mix of stimuli, responses,

feedback and reinforcement (Reeves, 1994).

Behaviourism focussed upon what people do rather than what they think. As such it
rested upon a theory of knowledge as immutable truths external to the mind, which only
needed to be rote-learned by students. It emphasised learning as training students to
make the correct responses to questions and inspired a teaching method known as
programmed instruction. "Programmed instruction is characterised by clearly stated
behavioural objectives, small frames of instruction, self-pacing, active learner response
to inserted questions, and immediate feedback regarding the correctness of a
response. Individualised instruction in essence replaces the teacher with systematic or

programmed materials" (Clark, 1999b, para. 1). Skinner believed that programmed

Chapter 2: Overview 19

instruction should be linear, presenting the same sequence of steps to each learner,
regardless of their responses (Hill, 1997, p. 81). In 1958, he designed an interactive

mechanical teaching machine which implemented this method.

Most early developments in computer-based learning reflected Skinner's concept of the
teaching machine, notably PLATO (Programmed Logic for Automatic Teaching
Operations) (DeCloque, 2000).

Several studies have shown that the programmed instruction approach can be an
effective learning method in areas suited to rote-learning (Park et al.,, 1987). Even
advocates of more open-ended, discovery types of learning such as Underwood et al.
(1990) acknowledged that such "practise is vital if skills are to reach the level of
automaticity necessary to allow the individual to focus attention on higher level
problems" (p. 22) although they criticise drill-and-practise software for delivering “little
more than computerised worksheets” (p. 30). The approach has been widely used,
often in a games format, to provide an interactive environment for practising skills, and

revising material that has already been taught (Alessi et al., 1991; Ch. 3).

An important modification to the linear programmed instruction method was branching.
Branching enabled the learner's response to determine what material they received
next from the teaching machine (Hill, 1997, p. 81). Branching enabled the system to
accommodate different learning levels. Students could skip steps they already knew, or
study remedial material on information already presented (Clark, 1999b). As a basic
programming construct, it is straightforward to implement in software. It has been
observed that many adaptive tutoring programs that emerged in the 1980s were in fact

"no more than courseware with sophisticated branching" (Alessi et al., 1991, p. 452).

Behaviourism no longer predominates among learning theorists, and few
educationalists or e-learning researchers would advocate the programmed learning
approach today. Nevertheless, the observation in Reeves (1992) that, despite its
widespread debunking, many computer-based learning systems continue to use
instructional models directly derived from behavioural psychology, retains validity more
than a decade later. At least two papers presented at ICCE 2003 discussed projects
which combined the latest computer technologies with programmed instruction
pedagogy. One paper outlined a hand-held PDA-based system for teaching history to
6" grade school children (Ishizuka, 2003), while another discussed a web-based

system for drilling students in basic IT concepts (Tominaga, 2003).

There are many systems still available on CD-ROM or over the Web which use

programmed instruction to drill school students in basic science, spelling, mathematics,

Chapter 2: Overview 20

etc. Equations, for example, is a chemistry primer available on CD-ROM (Keall, 2001).

And NuMaths, (Queensland College, 2004) can be accessed over the Web.

Even in courseware, the legacy of the programmed instruction approach can be seen
in the form of the fill-in-the-blank and multi-choice revision quizzes and tests.
Nevertheless, its relevance to the kind of broad-brush education associated with

university-level distance learning would seem to be quite limited.

PLATO and TICCIT

Before the advent of the personal computer in the 1980s, prototyping and testing
educational software was more problematic than it is today. Research in computer-
based instruction was based around a handful of large-scale projects backed by
government or corporate funding. PLATO and TICCIT are generally recognised as the
trailblazers of modern computer-based learning systems (Park et al., 1987; Alessi et
al., 1991; DeCloque, 2000).

From its beginnings in the 1960s, PLATO developed during the 1970s into a
mainframe-based timesharing system that could serve hundreds of students at different
localities simultaneously. PLATO's developers were guided by practical rather than
theoretical concemns (DeCloque, 2000). While it reflected the prevailing programmed
instruction approach, PLATO went beyond the usual drill-and-practice philosophy by
including tutorial material, inquiry, dialogue, simulation, computer games, and problem
solving to help students develop an understanding of the subject matter (Gledhill, 1981,
p. 153). PLATO pioneered the integration of text and graphics, course-authoring
software, and on-line conferencing and communication (Woolley, 1994). It was thus a
proving ground and a benchmark for the PC-based courseware authoring and delivery
systems that emerged in the 1980s and their web-based counterparts of the 1990s.
These systems incorporated many of the features, and the practical orientation,
pioneered by PLATO.

In 1967, the MITRE Corporation began developing a multimedia learning system by
combining the recently developed mini-computer with television technology (DeCloque,
2000). TICCIT, as it was called, was built around an instructional design approach
called Component Display Theory which introduced the concept of learner-controlled
instruction and individualisation (Kearsley, 2003; Alessi et al., 1991. p. 1). Special keys
enabled the student to exercise some control over both the content and the learning
strategies used for study. TICCIT's major legacy is being the first multimedia computer-
based leaming system, and the first to be designed around a specific instructional
theory (DeCloque, 2000).

Chapter 2: Overview 21

2.2.2 Thinking machines

Programmed instruction is concerned with whether the student gives the correct
answer to a question. However, many learning scenarios do not lend themselves to this
approach. In problem-solving, for example, the teacher may be as interested in the
intermediate steps - the reasoning process by which the student reaches an answer -
as in the answer itself. Moreover, on noting flaws in a student's reasoning, the teacher
can adjust the content and method of their instruction to address that student's learning
difficulties, which a teaching machine cannot do. “Traditional CBI programs (mostly of
the tutorial, drill, simulation or game varieties) embed their pedagogy within the content
of the lesson. That is very specific instructional techniques are selected and tailored to
the particular content of the lesson. The most immediate result of this is that such

lessons provide limited adaptation to student needs” (Alessi et al., 1991, p. 461).

During the 1970s, there was an increasing interest in improving learning strategies and
outcomes by incorporating into educational software the ability to model and adapt to
the individual student’s understanding. Well before this point, cognitive psychology had
supplanted behaviourism as the dominant trend among learning psychologists (Clark,
1999c). Cognitive psychology emphasises the inner workings of the mind in learning. In
their efforts to better understand how the brain worked, the cognitive psychologists
drew parallels with the information processing capabilities of computers. They became
interested in using computers as tools for modelling the mind and exploring their
learning theories, "so that we can say, only partly in jest, that psychologists study three
kinds of organisms: humans, animals, and computers" (Hill, 1997, p. 116).

This interest drove research into developing computer software that could teach like a
human tutor, which have become known as intelligent, or adaptive, tutoring systems
(ITS). Murray (1999) defines intelligent tutoring systems as “computer-based
instructional systems with models of instructional content that specify what to teach,
and teaching strategies that specify how to teach... Instructional models allow the
computer tutor to more closely approach the benefits of individualised instruction by a

competent pedagogue” (para. 1).

ITSs typically contain a student model, a teaching model and the course contents as
separate components. The student model contains information about the extent and
level of a student's understanding of the course. By separating the teaching model from
the course contents, the teaching strategy and content can be adjusted to suit the
student's understanding and ability. SCHOLAR (Carbonnel, 1970), a system for

teaching South American geography developed at the Massachusetts Institute of

Chapter 2: Overview 22

Technology, provided the initial impetus to intelligent tutoring research (Woolf, 1990;
Park et al., 1987). However, the major driving force has come from scientists at two
Pittsburgh universities — the Carnegie Mellon University and the University of
Pittsburgh — including major contributions on human problem-solving (Newell et al.,
1972; Chi et al., 1981), computerised tutors (Anderson et al., 1995) and automated

voice recognition (Mostow, 1994).

Research into intelligent tutoring systems is part of exploring computers as "thinking
machines." As such it has overlapped with the development of expert systems —
computer programs which provide specific problem-solving skills by manipulating
symbolic representations of knowledge to simulate the behaviour of human experts
(Harmon et al., 1985, p. 5). Both tutoring and expert systems have had most success
when focussed upon specific topics within well-structured domains such as
mathematics, programming or medical diagnosis. Knowledge in such domains can be
readily expressed as sets of facts, rules and relationships defined by formal logic. “The
database of SCHOLAR is a complex but well-defined structure in the form of a network
of facts, concepts and procedures” (Park et al.,, 1987, p. 18). A number of adaptive
tutoring systems have been built as extensions of expert problem-solving systems.
GUIDON, for example, was developed in 1979 on top of the medical diagnosis expert
system MYCIN (ibid.). The LISP Tutor developed in 1983, contains an expert system
which traces student's solutions, offering advice where necessary (Corbett et al.,
1990). The LISP Tutor's authors cite research showing that “while the tutor is more
effective than ‘learning on your own,’ it is not as effective as a human tutor” (ibid., p.
84.).

SQL-Tutor (Mitrovic et al., 2000), PAT (Ritter et al,, 1998), and RIDES (Munro et al.,
¢.1995) are examples of systems which have progressed to the point of being used in
regular school and training environments. However, most ITSs appear to have run into
problems that have made them unviable beyond their initial prototype environments.

Inhibiting factors include:

o difficulties in building the mental model of the student (Underwood et al., 1990, p.
20);

e over-ambitious goals such as trying to outperform a teacher (Patel et al., 1997);
o the complexity of the authoring task (Murray, 1998b; Alessi et al., 1991, p. 452),

e constant shifts in the technological platform rendering tutors obsolete (Patel et al.,
1997; Murray, 1998b); and

Chapter 2: Overview 23

a focus on developing learning theory, rather than on building successful
instructional systems (Laurillard, 1993, p. 76).

While the practical goal of artificial intelligence in education is to produce computer-

based instruction that is more adaptive (Park et al., 1987), this has not always been

the priority of the researchers themselves. For instance, the initial motivation of the

team that produced the LISP, Geometry and PAT Algebra tutors was learning more

about skill acquisition rather than producing practical classroom results (Anderson et
al., 1995).

During the last few years, researchers have addressed these issues along three major

axes:

The development of authoring tools, with which domain experts (i.e. teachers) can
build computerised tutors, analogous to the authoring shells that have been
developed for expert systems. Murray (1999), Munro et al., (c.1995), Nakabayashi
et al. (1996), Ritter et al. (1998), Hsieh et al. (1999) and Martin et al. (2003)
discuss examples of authoring tools.

The construction of web-based tutoring systems, either by porting standalone
tutors to the web or by building native web applications. Ritter (1997), Vassileva
(1997) and Mitrovic et al. (2000) report on existing tutoring systems being re-
engineered for the web, while Okazaki et al. (2003) and Merceron et al. (2003)
describe new web-based tutors.

Extending the techniques pioneered by ITS research into broader leaming
applications. The editors of "Artificial Intelligence in Education" describe their
domain as "applied cognitive science" in which "the focus [is] on developing
computational models of relevant aspects of learning and teaching processes
(Hoppe et al, 2003, p. v)." Of particular current interest is the application of
cognitive modelling to web-based learning. The areas that have been explored
include: adaptive courseware (Weber et al., 2001; Vassileva, 1997), interactive
electronic textbooks (Brusilovsky 1999; Murray et al., 2000), context-sensitive
adaptive help systems (Benyon et al., 1993), the integration of intelligent tutoring
tools into broader learning environments (Patel et al.,, 1997 ; Gehne et al., 2001),
class monitoring aids for teachers (Merceron et al., 2003; Despres, 2003; Mazza
et al., 2003), supporting virtual communities for collaborative learning (Greer et al.,
1998; Vizcaino et al., 2002, Tiffin, 2002), and web search strategies (Mitsuhara et
al., 2002; Hasegawa et al., 2002).

Chapter 2: Overview 24

If adaptive tutoring systems have so far had only a limited practical impact in the
classroom, nevertheless, many of their lessons have been incorporated into
subsequent research on computer-based learning. Moreover, by demonstrating that
computer software could teach skills without the immediate supervision of a human
tutor, ITSs have also demonstrated the potential for computers to assist students to

learn in their own time and at a distance from a teaching institution.

2.2.3 Discovery learning

The launching of the personal computer (PC) and the graphical user interface (GUI) for
the mass-market in the 1980s revolutionised computing. Hitherto, computers had been
for the most part the domain of highly skilled personnel operating large computer
systems for companies, government departments or research laboratories. With the
advent of the PC, computers became a practical alternative to books, tapes and videos
as a medium for popular instruction. Students could use them as a learning tool at

home or at work, as well as at school.

The PC made possible the widespread introduction of computer-based training into the
workplace. By the mid-1980s, systems were emerging that combined laser discs and
computer software to provide an interactive video training environment (Dodds, 2003,;
Alessi et al., 1991), later superseded by digital CD-ROM and DVD technology. Training
applications incorporating sound, graphics, animation, or video, could be downloaded
onto workstations via a removable disk or company local area network (LAN).
Multimedia courseware authoring tools like Authorware (Macromedia, 2005), which
built on the groundwork laid by PLATO and TICCIT, were developed to cater for this
demand. Clark (1999d) considers this marks the beginning of individualised computer-

based training that goes beyond programmed instruction.

The possibilities offered by PC-based learning programs for self-paced, individualised
and interactive education was embraced by advocates of a constructivist or discovery
approach to learning who "favour hands-on, self-directed activities oriented towards
design and discovery" (Wenger, 1998, p 279). Mayes (1993), for example, wrote of "the
important shift in recent years brought about by the power of modern computers to
provide general purpose learning environments in which the learner can seek
information in the pursuit of understanding. In such an environment the learner can
explore, discover, create, edit, ask questions, seek information, and communicate with
other learners" (para. 4). Among educationalists, a constructivist pedagogy, in which
"teachers are seen as facilitators or coaches who assist students to construct their own

conceptualisations and solutions to problems", has had numerous advocates since the

Chapter 2: Overview 25

1930s (Clark, 1999e, para. 3). Many consider this approach particularly relevant for the
more advanced level of learning required at a university (Jonassen et al., 1993). In fact,
by the 1990s this approach was so widely accepted that Mayes (1993) could write:

"There is a sense in which 'we are all constructivists now" (para. 5).

Programmed teaching and computerised tutoring approaches both involve close
control of the learning process by the computer (Hill, 1997, p. 129). This "instructivist"
approach is criticised by "constructivist" educationalists for emphasising learning as a
process of knowledge acquisition - where "one only has to organise knowledge in an
appropriate form to match the conceptual state of the individual learner and learning
will occur inevitably" - rather than as a process of knowledge construction (Mayes,
1993, para. 3).

Perhaps the simplest form of discovery learning is to explore a book at will. And in its
simplest form, computer-based discovery learning is represented by an electronic book
which the student can also explore at will, such as the online Encarta encyclopaedia
(Microsoft, 1997). An active area of research in recent years has been the development
of more interactive and individualised electronic books (Sinista et al., 1999; Anastaides,
2003). In particular, efforts have been directed towards electronic books which not only
adapt but also guide the individual student towards desired learning outcomes
(Brusilovsky et al., 2001; Murray et al., 1998).

To support a more constructivist learning environment, and provide students with a
range of learning options, efforts have been made to integrate a variety of learning

tools and technologies into a single package (Patel at al, 1997; Jesshope et al., 2000).

The World Wide Web has created new opportunities for discovery learning.
Learnz2001 (2001), for example, enabled school students to participate in a science
field trip to the Antarctica from inside their classroom. The Web presents students with
a huge database of knowledge to explore beyond anything which a single learning
institution can provide (Web-Based Education Commission, 2000). At the tertiary level,
there have been efforts to create web-based “virtual laboratories” (Chee, 2001; Cheng
etal., 2001).

Computer-based simulation offers particular opportunities for learning by exploration
and doing. Virtual environments that simulate industrial processes and machinery have
also been an important aspect of interactive computer-based training. Computers and
simulation software offer a company a cheaper and safer option for the training of
novice operators and technicians than risking expensive machinery. The British

Polymer Training organisation, for example, offers injection moulding training

Chapter 2: Overview 26

programmes, which enable trainees to set up and troubleshoot processes on a
simulated moulding machine (BPTA, 2001).

Much of the impetus for research into computer-based training in general, and
simulators in particular, has come from governments wanting to develop computer-
based systems to train military personnel (Dodds, 2003; Seidel et al., 1995). RIDES
(Munro et al., ¢.1995), developed at the University of Southern California for the United
States Air Force, is an authoring tool that enables non-programmers to develop tutoring

software which simulates machine processes.

2.2.4 Communities of learning

Initially, most computerised training was via standalone programs, although as PCs
began to be linked into LANs within companies in the early 1990s, some course
management functions were centralised (Dodds, 2003). In addition, most training
software could be could be installed and run from removable storage disks and thus
could be utilised for distance study. But none of these systems addressed the

»oou

sometimes “lonely”, “anonymous” and “boring” experience of computer-based training
for the distance learner (Lennox, 2000). It has taken the World Wide Web (WWW) to
open up to the remote leamer the communication and collaboration potential provided

by networked computers.

As early as the 1960s, the United States Defense Department funded a project to
connect university computer scientists and engineers together via their computers and
telephone lines (Bonelli, 1998, p. 4). By 1990, hundreds of thousands of users were
communicating over the public computer network which has become known as the
Internet. However, with its “entangled web of Unix, text-based commands”, sharing
documents across the Internet remained inaccessible to the lay user until a graphical,
hypertext navigation tool called the World Wide Web was introduced to the Internet in
1992 by software engineer Tim Berners-Lee (ibid., p. 9). This made accessing
documents on remote computers by means of the Internet as easy as using a graphical

operating system.

The WWW had important practical implications for university education. It meant that
instructors could place lecture notes and links to supporting materials on a course web
site where students might read them, or download them onto their own computer. In
addition, the communication and conferencing capabilities of the Internet meant that
students could use their computers to communicate with their teachers, discuss with

each other and even work together on a common project.

Chapter 2: Overview 27

The biggest implications have been for distance education. “Web courseware installed
and supported in one place can be used by thousands of learners all over the world
that are equipped with any kind of Internet-connected computer” (Brusilovsky, 1999.

para. 1).

By the mid-1990s, systems for the authoring and managing of courses delivered over
the Web were emerging. These included WebCT, developed at the University of British
Columbia (Goldberg, 1997), and Blackboard/Courselnfo, developed by graduate
students at Cornell University in 1997 (Kubarek, 1999). Today there are thousands of
courses world-wide that are being supported or taught using such software, frequently
referred to in the literature as “web-based courseware” or “Learning Management
Systems” (LMS).

The emergence of the WWW also posed new opportunities and challenges for
research into how people learn and how to improve learning through computers.
Commenting on the contributions to ITS2000 the conference organisers noted: “Most
efforts focus on ITS on the Web. The challenge is not simple, as one is expected to
demonstrate not just how the Web is used for teaching, but how it should evolve to
facilitate human learning” (Cerri et al., 2002, p. vi). It has had particular importance for
those who emphasise the social over the individual aspects of learning.

A common thread from programmed instruction through to PC-based simulation has
been the emphasis upon the student learning as an individual through one-to-one
interaction with the computer. However, learning is essentially a social rather than an
isolated, individual activity. Wenger (1998) writes of placing "learning in the context of
our lived experience of participation in the world" (p. 3), and of consciously promoting
collaborative "communities of practice” in which people learn through shared
experiences. One of the most important strengths of studying internally on a campus is
the opportunity for students to participate in the complex and multifarious learning

relationships that constitute the university.

As computers began to be linked together into LANs and then into wider networks via
the telephone system, the potential to foster more collaborative forms of distance
learning within military and business training programmes was noted (e.g. Seidel and
Chatelier, 1995). The ubiquity of the WWW and the PC raised the possibility of building

similar learning communities among those studying at home as well.

Collaborative learning strategies which take advantage of the communication and co-
operation capabilities of networked computers, and the technologies which enable

them, have now become a major focus of computer-based learning research. This has

Chapter 2: Overview 28

particular implications for computer-based distance learning. Web-based courseware
systems incorporated asynchronous email, bulletin board, and threaded discussion
tools and synchronous chat tools as standard features. WebCT's developers, for
example, “added tools that facilitate student communication and collaboration”
(Goldberg, 1997, para. 4). GENTLE (Dietinger et al., 1998) offered annotation tools,

discussion forums, and online chat.

More recently, research has been directed towards both the technical and pedagogical
challenges of transforming the basic communication facilities of the WWW into more
sophisticated collaborative learning tools (e.g. Jong et al., 2003; Pinkwart et al., 2002;
Greer et al., 2001; Ishikawa, 2002). A more detailed evaluation of web-based learning

research is the subject of Chapter 3.

2.2.5 Summary

In this section the major milestones in computer-based learning research since the
1950s have been reviewed historically, from programmed instruction on mainframe
computers, through adaptive tutoring and discovery learning on the PC, to collaborative
learning on the Web. While each new milestone has represented an advance in terms
of technology and pedagogy, the earlier approaches have not been entirely
superseded.

PLATO has provided the benchmark for those researchers interested in developing
practical computer-based teaching tools. Strongly influenced by programmed
instruction, its legacy can be seen in modem web-based and PC-based training and

authoring systems.

Researchers whose primary interest has been the use of computers to better
understand and improve the learning process have enjoyed far less practical success
in terms of systems that have moved beyond the prototype stage. Nevertheless, the
techniques they have pioneered are drawn upon by those seeking to improve the

learning effectiveness of courseware.

At the university level, it would appear that the discovery and collaborative learning are
most broadly applicable, although some ITSs have been successfully used at this level
in areas such as programming. Computer systems which can integrate all these
approaches into a single environment appear to hold particular promise for distance

learning.

Chapter 2: Overview 29

2.3 Networked computers and distance education

So far in this chapter, the evolution of distance education and of computer-based
learning research have been reviewed. In this section, some lessons are drawn from
this review concerning the potential for networked computers to enhance distance
education, with particular emphasis on university distance education. It concludes by

discussing some of the factors which limit the realisation of this potential.

A traditional university education is above all a social process involving a complex set
of interactions among students, and between students and instructors, on many levels,
formally and informally. One of the most important strengths of studying on-campus is
the opportunity for collaborating in the complex and multifarious learning relationships
that constitute the university. For computer-based distance education to be most
effective, it must find ways to draw extramural students into this university community

of learning.

The special requirements of university distance learning flow from the student's
isolation - from other students, from teachers, and from support materials and
resources. In distance learning, there is no human tutor looking over the student's
shoulder to help her/him out of a blind alley. There is no lecturer's door to knock on, nor
group of students to sit down with to work through an assignment. These social
aspects of university learning must be provided by other means such as better
preparation of learning materials and finding alternative means of accessing tutors and

other students.

In computer-based distance learning the goal is to utilise the capabilities of computer
systems to provide the functionality needed to bridge the gap between a traditional
socialised university education and the isolation of the extramural student. From the
literature review, computers and computer networks have been identified as having the

potential to enhance distance learning through the following features and functions:

1. Allowing learning material to be accessed from almost anywhere, at any time. They
can expand the opportunities to study, learn, acquire new skills and develop a
broader outlook in places where universities are not otherwise accessible. By
providing access to large banks of information, a library is placed at the door of

every distance learner.

2. Facilitating communication, thereby reducing remote students’ isolation. Students
can use their computers to consult human tutors and other students either
synchronously, as with communication by telephone, or asynchronously, as with

communication by post. Computer-based communications are fast and are largely

Chapter 2: Overview 30

distance-independent. The work of external students can be assigned, submitted
and graded in the same time frame as for internal students. The distance student

and their teacher are brought closer together.

3. Promoting co-operative work, by enabling distance learners to join-in group

discussions and work collaboratively with others on problems and projects.

4. Integrating the various media used to deliver distance education (video, audio,
telephone, mail, graphics, and text) into a single multi-media environment, making it
easier to deliver more of a multi-dimensional learning experience to the remote

learner. A student can even participate in a field trip without leaving home.

5. Simulating real world situations, processes and problems, with which the student

can interact and learn by exploration and practice.

6. Integrating materials from a variety of sources and locations. Computers can
provide a student with more learning resources than might be available in a single

classroom or learning institution.

7. Allowing the presentation of material to be adapted to suit the individual student.
Computers can enable the individual distance learner to tailor their learning
environment to take into account physical disability, language, and navigational and
learning preferences. They can track a student through a study session, and offer
context-sensitive references and help. They can remember how far a student has
progressed through a course and return to that point when the student starts their

next session.

8. Acting like a human tutor, by dynamically adapting what, how and when material is
presented to suit the individual student’s current knowledge level. Computers can
be programmed to help a student even when a human tutor is not available to

answer questions and to provide immediate feedback when needed.

9. Helping the teacher to author teaching material. Computers can provide templates
to guide teachers in preparing material that best serves a particular learning goal.
They can store learning materials in forms that facilitate their re-use by other

teachers and courses.

In short, computer systems have the potential to provide distance learning
environments, which incorporate passive, teacher-centred — or active, student-centred

— learning styles; group or individual work; interaction; and simulation.

Chapter 2: Overview 31

Notwithstanding this potential to enhance distance learning with computer technology,
there are also real limits on what can be achieved today. These limits are discussed in
the next section.

2.3.1 Constraints on use of computers in distance education

There is an extensive literature espousing the advantages of e-learning over traditional
face-to-face teaching methods. For example, an online brochure promoting a major
provider of Internet-based network engineering training argues that e-learning
"eliminates barriers of time, distance, and socio-economic status, allowing people to
take charge of their own lifelong learning...[and] is also a highly effective tool for
reaching disadvantaged and at-risk constituencies world-wide...” (Cisco, 2000, p. 5).
And, Drucker (2000) asserts that "online continuing education" is time-efficient, cost-
efficient and has an interactive advantage over the typical classroom that makes it the

future of education.

A major United States government study stresses the potential of the WWW for
discovery and collaborative learning beyond what is possible in a single classroom. It
also observes that this potential is often not fully utilised because the technology is
used to mimic the “top-down, lecture or text-driven model of instruction* rather than

“exploring its interactive potential” (Web-Based Education Commission, 2000, p59).

However, there are important constraints on the use of networked computers in
education for the foreseeable future, especially as it applies to university extramural

study. These exist on the technical, socio-economic and pedagogical levels.

Technical

Aniebonam (2000) highlights several disadvantages of computer-based distance
learning systems due to the complexity of the underlying technology, which he
contrasts to the simplicity of the book and mail system. Performance is limited by
disparities in communications infrastructure and computer platforms. Computer
networks are slower, less reliable and more vulnerable to accidental or malicious
misuse than standalone computers. Computer viruses flourish in the environment of

the Internet.

These performance problems are exacerbated when a global view is taken of distance
education. Access to telephone service is still a major issue in most developing
countries and parts of Eastern Europe (Cook, 1998). In 1999, two-thirds of the world's

households had no telephone service, and 97 percent had no Intemnet access (Hope,

Chapter 2: Overview 32

2002). Not even the more developed countries are exempt. Wright (2002) reports that
for many parts of the New Zealand countryside: "Serious Intemet use is out of the
question, with unbearably slow connections which frequently drop out plaguing many in

the rural sector."

Hope (2002) argues that web-based applications are relevant only to a minority of 150-
200 “wired cities”. While various initiatives are under way to improve telephone service
and extend broadband coverage in rural areas in New Zealand and elsewhere, there
will remain a significant number of would-be extramural students for whom serious

Internet use is out of the question for the foreseeable future.

A related issue is the question of computer literacy. Delivering distance education via
the Internet assumes that the recipient is able to use a relatively complex system
unaided. Given the older demographic of “second-chance” learners and the relatively
narrow base of experienced computer users viewed on a world scale, this is not a safe

assumption.

Socio-economic

Online learning does not address the problem of the poor and women being neglected
in education (Bork, 2001b). In socio-economic terms, technological disparities and high
entry and maintenance costs deepen the divide between the haves and have-nots,
town and countryside, developed and developing countries. A networked computer is
beyond the reach of most of the world’s population, and will remain so for the
foreseeable future. "[F]lew of the poor, even in wealthy countries, have access to the
Internet. So it increases the gap between rich and poor" (Bork, 2001a, p9). In 2002 it
was reported that the Maori university, Te Wananga o Aotearoa, was providing mobile
phones to its distance students because a majority had no access to landlines or lived

in remote areas and needed them to contact tutors (One News, 2002).

In this context, computerisation actually increases the entry cost to distance education
and reduces access for the disadvantaged. Broadband requirements for the delivery of
multimedia education further disadvantages those who cannot access such a service. It
is notable that mass-based distance education initiatives in developing countries have

been focussed upon television rather than the Internet (Cook, 1998).

Pedagogical

Computerisation cannot compensate for bad teaching and poor preparation. It may

even encourage it (Stirling, 2001). Computer-based courses are the hardest to prepare,

Chapter 2: Overview 33

because computers cannot “think on their feet”. Course materials can be difficult and
time-consuming to prepare, leading to a reliance on presenting lessons as text to be
read (Aniebonam, 2000). The good teacher must be programmed into the course. The
technological limitations of computer systems can begin to shape and limit the

pedagogy.

The focus on what computers can deliver rather than what learners need means “that
students may need to reconfigure their minds to suit the technology. The tail is now
wagging the dog” (Taylor, 2000). For instance, there has been a growing emphasis on
assessment by automated tests at the expense of the essay (Mills, 1997, p. 185). It can
encourage the “myopic tendency to view education as training”, and knowledge as a
“non-reflexive facility with large quantities of information” (Taylor, 2000). Mayes (1993)
observes that presenting learning material through multimedia to try to make it more
attractive or more palatable is doomed to failure because it rests on the mistaken
notion "that vividly presented information, with which the learner is asked to interact in

some way, will [inevitably] lead to better learning" (para.6).

Computerisation cannot substitute for the teacher altogether. Teaching is above all a
human relation between teacher and student. As such it is a dynamic process which
can never be fully captured in software. Educational software may increase the
productivity of individual teachers. It should certainly aim to extend a lecturer's scope
(Patel et al., 1997). But it can never fully replace the human teacher. Computer-based
learning tools should be seen as a means to better teaching and not as an end in
themselves (Roseth, 2001). By "using them as tools it remains for the teacher to make

the important decisions about educational policy" (Underwood et al., 1990, p. 21).

A successful strategy for utilising networked computers for distance education needs to

take into account all the pitfalls and design to minimise or avoid them.

2.4 Conclusion

This chapter began with an historical review of distance leaming from its 18™ Century
beginnings up to the present day. While there have been a variety of threads and
motivations in distance leaming, at the core of most have been correspondence-based
lessons. These have been increasingly supplemented by learning activities made
possible through technological innovations — from radio broadcasting to video-
conferencing. Networked computers have opened new possibilities for more closely

integrating these activities into a multimedia learning environment.

Chapter 2: Overview 34

The evolution of computer-based learming research and development has also been
extensively reviewed. It was noted that this evolution has been shaped both by
advances in computer technology and shifts in the influence of various theories of how
people learn and consequently what matters in education. Current research
emphasises collaborative and discovery approaches to learning, especially at the
university level, but the earlier cognitive modelling and programmed teaching

approaches retain significant influence.

Networked computers have enormous potential to enhance the leaming environment
for distance students. But realising this potential is not a given, and in many real world
scenarios a reliance upon computer delivery can have a negative impact. Furthermore,
technology that may be appropriate for one area, such as supplementing the teacher in
a primary school classroom or providing work-based training, may be inappropriate for
another such as home-based university study. For these reasons it is necessary to

clearly delineate both the domain and the target audience for an e-learning system.

The following chapter will develop some broad criteria for evaluating the suitability of
educational software for university-level distance learning. These criteria will then be

used for evaluating web-based courseware.

Chapter 3: Web-based courseware 35

Chapter 3

Web-based e-learning: an evaluation

This chapter presents an evaluation of web-based e-learning from the perspective of its
suitability for extramural e-learning. The primary focus is the tools for authoring,
administration and delivery of web-based courses. This involves first clarifying some
terminological issues, before developing a set of evaluation criteria based upon the
literature reviewed in Chapter 2, including clearly defining the target domain. To the
general criteria for evaluating software systems - functionality and usability -
accessibility for the remote user is added.

Next, web-based e-learning is assessed against the functionality, usability and
accessibility requirements of the extramural student. Some issues with courseware are
highlighted, which need to be addressed if e-learning is to offer a universal and
practicable alternative to traditional correspondence-based study. Recent technological
innovations and research relating to these shortcomings are discussed and assessed.
Drawing some strands together from that discussion, the key requirements for
computer-based delivery and support of extramural study are summarised, and the
fundamental issues that need to be resolved to achieve them are outlined. Finally, a

method for achieving a practical solution to these problems is hypothesised.

3.1 Terminology

Within the literature, computer-based educational software has been referred to by a
myriad of labels and acronyms - computer-based instruction (CBI), computer-assisted
instruction (CAIl), computer-assisted intelligent instruction (CAll), computer-based
learning (CBL), computer-based distance learning (CBDL), courseware, web-based
courseware, e-Learning, web-based learning (WBL), intelligent tutoring system (ITS),
computer-based learning environments, computer assisted collaborative learning, and
so on. While some of these terms can be and are used interchangeably, they in large
part reflect shifts in technologies, emphases and underlying theories during several
decades of evolving research and development in this field. During the 1990s the
sharpest distinction was drawn between the adaptive ITSs with their narrow subject
focus, and the broad-brushed, one-size-fits-all, courseware authoring and delivery
systems.

Chapter 3. Web-based courseware 36

More recently, a major distinction has been drawn between Learning Management
Systems (LMS) and Learning Content Management Systems (LCMS). The Brandon
Hall website, for example, explains that. "The primary objective of a learning
management system is to manage learners, keeping track of their progress and
performance across all types of training activities. By contrast, a learning content
management system manages content or learning objects that are served up to the
right learner at the right time" (Brandon Hall, 2005, para. 2). From this perspective, the
primary target users of an LMS are "training managers, instructors, administrators",
while for an LCMS they are "content deveiopers, instructional designers, project

managers" (ibid, para. 5).

Web-based courseware systems like WebCT were developed by universities to
administer and support their internal and external courses on a one-size-fits-all basis.
"Web-based courseware" is used here interchangeably with LMS and is the focus of
the evaluation in this chapter. LCMS, which use learning object technology to deliver
modules of leaming material tailored to a particular individual, have been primarily
developed to support corporate training and to date have had little or no uptake by

universities. Learning objects are discussed in Section 3.5.4.

3.2 Overview of recent e-learning research

Computer-based learning continues to be a central arena of research for computer
scientists. Several major international conferences are held on an annual or biennial
basis including ICCE (Chee et al., 2003), ICALT (Devedzic et al., 2003), ITS (Cerri et
al., 2002) and AIED (Hoppe et al., 2003). From a review of the proceedings of these
conferences and of other forums for e-learning research, and from a wider review of

relevant web-sites, a number of general observations can be made.

e While the collaborative and discovery (constructivist) approaches to learning
predominate in current research, all of the historical trends reviewed in Chapter 2
remain represented in the field. This reality perhaps supports an observation by
Nunes et al. (2003) that education designers draw upon their prior knowledge and
experience even when it is inappropriate, and that even though objectivism
(behaviourism) is considered heresy by many constructivists, it "prevails even today

in many universities” (p. 497).

e Almost all new research is geared towards the World Wide Web, so much so that,
under the label of “e-learning”, computer-based education has become practically

synonymous with web-based education.

Chapter 3: Web-based courseware 37

e \Web-based course authoring and management systems like WebCT or Blackboard
are now widely-accepted commercial products that have become the predominant
e-learning technology in the training and education fields and the de facto standard
for e-learning at the university level. A considerable portion of current research
involves conceptualising, prototyping and otherwise exploring methods for

improving courseware's functionality and performance.

¢ While intelligent tutoring systems have enjoyed much less practical success than
courseware, they remain the major alternative point of reference within computer-
based learning research. Moreover, a large part of efforts aimed at improving the
learning features of web-based courseware draws on the techniques and lessons

that have been learnt from several decades of intelligent tutoring research.

3.3 Evaluation criteria

3.3.1 A focus on extramural study in the public sector

In this thesis the focus is upon extramural study. Extramural study involves the delivery
of university-level degree and diploma programmes directed to students unable to
attend normal classes. These programmes are an extension of internally-taught
courses, and are organised around the correspondence schooling tradition of individual
home study. As a public sector activity, the priority is upon ensuring that all those
wishing to study can do so on an equitable basis, ahead of the commercial criteria that

necessarily govern for-profit distance education.

While extramural learning offers advantages of anywhere, anytime study, there is no
requirement to outperform traditional classroom-based teaching. Primary emphasis is
on delivery to individual students. However, extramural courses also try to incorporate
more of the collaborative and interactive benefits associated with face-to-face teaching
through the use of email and telephone communication and the organisation of contact

courses, especially for papers with more of a practical dimension (Prebble, 2001b).

3.3.2 End-user requirements

As an end-user computing application, good design of computer-based distance
education software means treating the users as part of the system and designing their
requirements into the interface (Moran, 1981). There are at least three types of end
users of computer-based distance education systems: teachers as course authors,

teachers as course administrators, and distance students.

Chapter 3: Web-based courseware 38

As a leaming application the most important end user of the system is the student.
Therefore, while the requirements of all three user types need to be integrated into the
design, primary emphasis should be placed upon the student view. In general, the
evaluation of software systems from the end-user’s perspective aims to establish that it
is both useful and usable (Preece, 1994, p. 603).

Evaluation typically proceeds along two dimensions - functionality and usability. When
evaluating a computer-based extramural study system from the student end-user's

view, it is proposed to add a third dimension - accessibility.

3.3.3 Functionality

The evaluation of a software system in terms of its functionality is concerned with what
the system does and how well it does it. A computer-based distance education system
is a vehicle for teaching. Teaching, in turn, aims to make student learning possible
(Laurillard, 1993; p. 13). Thus, evaluation of the functionality of such a system is
primarily concerned with its pedagogical effectiveness, with students as learners. Poor
computer-based distance education may be little more than self-directed learning in
which the students muddle through by themselves as best they can. Good computer-
based distance learning, on the other hand, should be permeated by conscious
learning outcomes determined by the course author. Therefore, the student user's
requirements cannot be defined by the student alone. They must incorporate the

pedagogical functions and features desired by the teacher user as well.

"There are many different kinds of learning theory. Each emphasises different aspects
of learning, and each is therefore useful for different purposes. To some extent these
differences reflect a deliberate focus on a slice of the multidimensional problem of
learning, and to some extent they reflect more fundamental differences about the
nature of knowledge, knowing, and knowers, and consequently about what matters in
learning" (Wenger, 1998, p. 4). When teaching an internal paper, a lecturer has a
considerable degree of flexibility in determining the learning dimensions and styles they
consider to be most appropriate for the subject and students they are teaching. They
may incorporate both passive and active styles of learning, which may involve students

studying alone or working with others.

Bork asserts that university education has traditionally relied upon the more passive
modes of learning: "Within almost every university in the world, the major courses of
the first 2 years are delivered almost entirely by a lecture-textbook method, often with

large numbers of students... [This] has been the dominant method since the 1700s,

Chapter 3: Web-based courseware 39

both in schools and universities" (Bork, 1996, para. 15).

Nevertheless, even the undergraduate student has opportunities to participate in
workshops and clinics, seminars and tutorials, laboratory sessions and library
browsing, and formal and informal group work, as well as to seek out individual help
from lecturers and tutors. This creates a richer and more multi-dimensional learning
experience — a community of learning — than is possible by the "lecture-textbook
method” alone. At least six broad dimensions to this community of learning can be
identified:

1. Learning by textbook, in which students learn by studying a prescribed set of
readings in a prescribed order, as with a course textbook. This is also the basic

form of distance correspondence learning.

2. Learning by lecture, in which learning material is presented by the teacher, often
with accompanying notes and illustrations on a board or slide, which the student

must absorb linearly, as in a lecture theatre;

3. Learning by exploration, in which students learn by following their own lines of
thought through the learning material, as they might browse a library book, or other

reference and demonstration materials;

4. Learning by collaboration, in which students learn by discussing and working on
problems together, as they would in a seminar, or through informal discussion and

joint work on an assignment;

5. Learning by doing, in which students learn by experimenting and practical problem-

solving, as in a laboratory, or by writing an essay or arranging a piece of music; and

6. Learning by tutorial, in which a tutor interacts with a student individually to provide

personalised coaching.

Furthermore, experienced teachers pragmatically adjust their teaching methods and
content to suit the subject and the students. "Applying standard recipes to all students
in all contexts simply does not work," explains one educational expert (Marland, 1997,
p. 5). It would therefore be an advantage for computer-based extramural study, for the
system to have the flexibility to accommodate multiple approaches to teaching and

learning.

If undergraduate university study has been predominantly two-dimensional, then the
traditional correspondence method of extramural leaming has been one-dimensional,

based around the textbook. To match the correspondence method, therefore, a

Chapter 3: Web-based courseware 40

computer-based system needs only to provide all necessary educational material to

support anytime, anywhere learning by prescribed textbook.

But if extramural e-learning is to offer an advantage over correspondence-based study,
then it needs to support other dimensions of university learning that have been
identified here so as to provide more individualised, interactive and collaborative study
opportunities converging towards those available to the internal student. This in turn
means realising more of the nine potential ways networked computers can enhance
extramural education as discussed in the previous chapter (Section 2.3). By utilising
these capacities, the system should enable teachers to integrate a wider range of
teaching strategies and styles into their courses and facilitate more of the multi-

dimensional learning associated with an on-campus university education.

3.3.4 Usability

There are two types of learning associated with computer-based education — learning
the course subject matter, and learning to use the courseware itself. The latter should
obtrude as little as possible upon the primary learning process. This means designing
the learning system for usability. The functionality should be presented in such a way
that it is readily usable by the student. The focus here is on students as end users of a

computer system.

In the first instance, the usability of a computer-based distance learning system needs
to be evaluated against well-established criteria applicable to any interactive software
application, such as the "eight golden rules" of Shneiderman (1998; pp. 74-75) or

Nielsen's usability heuristics (Nielsen, 1994).

Usability takes on added importance in the extramural environment, where students
may be inexperienced computer users working in isolated conditions without the
support network available to internal students. The problem of overloading computer
systems with superfluous features and functions that overwhelm the inexperienced
user (Hurley, 1998) takes on added weight in this context. Under these circumstances,
it is necessary to take a holistic approach which considers the usability of the entire
computer environment — hardware, operating system and the educational software

itself.

An extramural e-learning system must not only meet all the distance student's
functional requirements but must overcome their instinctive distrust of being taught by a
computer (Yellen, 1999). This places greater importance on transparency of system

actions and retaining the locus of control with the user wherever possible. Nowhere is

Chapter 3: Web-based courseware 41

this more important than in the provision of end-user training and help. Here, the "just-
in-time, just enough" training approach (Lennox, 2000; Donovan et al., 1999) would

seem to be the most appropriate and least obtrusive.

3.3.5 Accessibility

On top of the usual stresses of university study, the distance student must confront
issues such as:

e physical isolation from leaming materials, teachers and other students;
e dependence upon unreliable public communication networks;

e complications imposed by the student having to provide their own hardware and
software; and

e additional disruptions and distractions posed by living two lives — studying and

working, or studying and raising a family, for example.

The situation of the extramural student studying from home via the Internet is roughly
analogous to that of the remote worker telecommuting from home via a virtual private
network. The sharpest difference, however, is that the remote student must function
without the technological, financial and peer support given the remote worker by his/her

employing organisation.

There are unique aspects to the functional and usability requirements of computer-
based extramural study that are best summed up by adding a third dimension,
accessibility — access to learning materials wherever and whenever required; access to
help wherever and whenever required, and access to the necessary hardware and

software.

An extramural learning application needs to address issues such as difficulties in
communicating with other students — and in locating and accessing resources — across
a public communications network, and variations between students' computer
platforms. The requirement should be that all the functionality of a distance learning
system is as accessible to a student studying from a more remote locality, e.g. a hill-
country farm, a rural village in a developing country, or an army post abroad, as itis to

a student working in an on-campus computer laboratory.

Chapter 3: Web-based courseware 42

3.3.6 A student-centred learning environment

In this section some criteria have been enunciated for making a qualitative evaluation
of a computer-based system regarding its suitability for extramural study. In essence,
these criteria are that it should sufficiently fulfil functionality, usability and accessibility
requirements so that the learning circumstances and opportunities of extramural
students more closely parallel that of campus-based learners. If an extramural study
programme is to be delivered by computer, then the entire system — hardware,
operating system, network services, and courseware — should be conceived of, and be
assessed as, part of the learning system. It should provide a holistic environment that

promotes student study and learning.

3.4 Assessment of web-based courseware

The initial phase of the research reported in this thesis involved a wide-ranging review
of educational software. This included a more detailed investigation of about thirty
systems, based upon perusing articles and papers by the developers, considering
comparative reviews, visiting promotional web sites, and exploring sample software
(Appendix A). This review quickly established that there existed a vast array of
programs aimed at coaching very specific skills, often at a quite elementary level. But
in terms of on-line teaching at the university level, the options were much narrower. If
one-off prototypes are ignored, then the choice reduces down to a custom-built web
site or one built using any of a small number of established commercial course-

authoring products.

Some courseware systems such as Top-Class (Lennox, 2000) have been specifically
developed for the authoring and management of industry training programmes. Others
like WebCT (Goldberg, 1997) and Blackboard/Courselnfo (Kubarek, 1999) have been
developed through university research projects and were initially geared towards
supporting internal university courses. All have been promoted as suitable vehicles for
university distance learning. In this section, their suitability for extramural leaming is

critically appraised using the criteria developed in Section 3.2.

3.4.1 Courseware functionality

How far does web-based courseware enhance extramural study? As a practical
teaching tool, it realises several of the leaming features and functions potentially
supported by networked computers, although with some additional limitations in the

extramural environment.

Chapter 3. Web-based courseware 43

The main courseware products have been extensively reviewed and compared on
web-sites, in magazine articles, and in research papers (Appendix A). Brusilovsky and
Millar present a useful overview in which they classify existing courseware from a
number of different perspectives. From the delivery point of view they distinguish three
levels of sophistication — from a base level that relies on static HTML and media pages
with static links, through to those systems that store course information and content in
a database and generate most of the pages on the fly. A system with a database core
provides more functionality and is more easily managed (Brusilovsky et al., 2001).
More recent experience from Massey University's use of courseware would suggest
that, while more use is being made of database technology to manage individual
students, most learning material is still being presented as a labyrinth of static HTML

documents, through which the student must navigate.

Courseware is typically installed on a central server and delivers course content as
web pages viewed through a multi-platform browser on the user’s computer. This
places greater restraints on functionality at the student interfface compared to
applications written for a single platform or as a standalone system. Additional features
and functions can be enabled by providing special software which is downloaded with

the web page, or separately, and executes on the user’s computer.

Perhaps courseware’s strongest contribution has been in helping teachers to author
and update learning material. Initially, web-based university courses were do-it-yourself
(D1Y). Keen faculty members had to learn to build web sites from scratch, make the
best of authoring tools included in web browsers, or get what help they could from
university computing support services. Together with course email lists, they provided
on-line resources and support for internally-taught courses and external
correspondence courses. While in practise most DIY web sites were quite rudimentary,
based upon static HTML pages, in theory the only limit on their features was the
programming abilities of the developer and what can be downloaded via a web browser
to the student’s computer. The Open University of the United Kingdom warns that sites
built on a DIY basis "are like nuclear power stations: they might seem to be a great

idea at the time, but maintenance can be prohibitively expensive" (Watt, 2000, para. 5).

One approach to reducing this "nuclear power" risk, represented by the CATALYST
project at the University of Washington, is to provide a support service including just-in-
time training and a suite of tools for faculty wishing to develop course web sites
(Donovan et al., 1999). Another is to extend to the Web the concept of course
authoring software, represented by products like Macromedia's Authorware, that had

been mainly developed to author and deliver CD-ROM-based occupational training.

Chapter 3: Web-based courseware 44

Courseware tools represent an advance for teachers over DIY through: providing
templates to help them structure their course material, and to reduce or eliminate the
need for programming skills; integrating communication functionality directly into the
course structure; assisting staff with enrolment and other administrative tasks; and
providing feedback, through online testing and tracking of students’ progress through

their courses.

Standard courseware integrates various media like video and text into a single
browser-based environment. Its server-centred architecture means that it cannot easily
integrate materials stored at different locations into a student’s course, although it can

provide links that the student can pursue independently.

Generally, interactions with the student are quite limited, relying heavily on the
presentation of learning materials to be read or watched, in combination with internet-

based discussion tools.

To Brusilovsky (1999), courseware remained in essence multimedia-embellished
HTML pages. Nielsen (2001) considered it no more multi-dimensional and interactive
than its 1970s PLATO predecessor. Jesshope and his colleagues wrote that, until web-
based systems could interact dynamically with the individual student, all they would do
is provide a repository of information which replaces the disk space on stand-alone

computers or hardcopies in traditional correspondence courses (Jesshope et al., 2000).

Interestingly, Nielsen, a usability expert, warns against trying to reproduce the textbook
electronically. "Large amounts of text just do not work very well on a computer screen
simply because it is painful and slow to read" (Nielsen, 2001, para. 5). He considers

that a book is better for transmitting large amounts of information.

The courseware teaching systems characteristically cover their subject matter with a
broader brush than adaptive systems do. Murray (1999), as a result, criticises
commercial courseware for its shallow representation of content and pedagogy. The
student is presented with the material and then left to pursue things further on his/her

own.

Characteristically, courseware is neither adaptive nor adaptable from the student user's
point of view. From the system administrator's viewpoint, commercial courseware such
as Top-Class (Lennox, 2000) or GENTLE (Dietinger et al., 1998) has the capacity to
restrict individual student's access to some learning materials, or determine the order in

which they may view it, in line with the requirements of education providers.

Brusilovsky considers it a challenging research goal to develop advanced Web-based

Chapter 3: Web-based courseware 45

educational applications that offer some amount of adaptivity and intelligence. These
features are especially important for distance learning applications "since distance
students usually work on their own (often from home). An intelligent and personalised
assistance that a teacher or a peer student can provide in a normal classroom situation
is not easy to get. In addition, being adaptive is important for Web-based courseware
because it has to be used by a much wider variety of students than any ‘standalone’
educational application...[CJourseware that is designed with a particular class of users

in mind may not suit other users" (Brusilovsky, 1999, para. 1).

In contrast to the individualised character of adaptive tutors, however, courseware
systems can more easily accommodate collaborative study. WebCT, for example, is

intended to facilitate communication and collaboration (Goldberg, 1997).

Support for multi-dimensional learning

While web-based courseware is not explicitly built around any particular approach to
learning, in practise it relies heavily on the more passive lecture and textbook methods
of study, what Brusilovsky and Miller call learning by reading and watching (Brusilovsky
et al., 2001). Even then, learning by lecture is generally only supported in the sense of
being able to store and display multimedia files. A course delivered in this ways offers
very little advantage to the extramural student over the study outlines and texts of
traditional correspondence learning. In fact, Cheung (2001) provides evidence that

students may prefer hardcopy-based study to this form of e-learning.

Of the more active dimensions of university learning, only learing by collaboration is
realised to any extent. Courseware facilitates co-operation and communication
between students studying alone from separate locations. However, the anywhere,
anytime requirement of extramural study means that the utility of synchronous
collaborative features such as conferencing and chat may be severely restricted. Many
extramural students must rely upon the asynchronous functions like email for

collaboration.

Courseware does not support one-on-one tutorial learning beyond electronic

correspondence with a human tutor.

None of the systems reviewed matched the potential of the textbook for exploratory
learning. While a course web-site allows the freedom to explore, it is harder to navigate
around, slower to leaf through, and easier to get lost in than a book. Some courseware

systems have features built into them which militate against learning by exploration, by

Chapter 3: Web-based courseware 46

imposing a predefined learning path upon students or restricting access to particular

learning materials (Lennox, 2000; Dietinger et al, 1998).

3.4.2 Usability concerns

Whatever its functional deficiencies, a more fundamental barrier to the successful
application of courseware to extramural learning is concern about its usability.
Courseware does not meet key usability requirements for extramural study such as
avoiding function and feature overload and providing just-in-time and just-enough user

help.

For the extramural student, especially the less experienced computer user, using
courseware is a far from trivial task. This is not a problem of the learning system alone.
Even where the student interactions with the courseware have been carefully thought
out, or the student's path through course material is constrained, it remains a
component of a larger computer environment. The courseware interface is presented
within the web browser interface, which in turn is presented within the operating system
interface. Accessing particular learning materials may cause new windows to be
opened. The result is a visual clutter in which the student can become lost, confused,
or distracted (Figure 3.1).

The online help system poses the same layers of complexity to the user. Each open
application provides its own help database which the user must try to query. There is a

real likelihood of their being overwhelmed by too much information.

In short, courseware adds additional layers of complexity to a computer system whose
complexities the extramural student may already be struggling with. It requires a level
of computing experience beyond what can be assumed of an extramural student

working alone at home.

Courseware reflects a more general problem in e-learning that the design of the
student interface has not been prioritised (Kruse, 2002; Murray, 1999). Kruse considers
the interface between students and computers to be the "single most neglected topic in
the field of e-learning" and a major reason for students expressing a preference for
classroom-based over computer-based instruction (Kruse, 2002, para. 1). Bork
criticises the tendency of educational software developers to incorporate the standard
Windows and web browser interface features and functions, such as menus and tool
bars, even though these items have no connection with the learning task. They amount

to "visual garbage" which distracts the student from this task (Bork, 2001a).

Chapter 3: Web-based courseware 47

| = port =
5 5‘ % A 159.356 Software Engineering Proje ct- WebCT 3.1.3 - Microsoft Inteet Explorer M[=]E3
Newh | File Edit View Favorites Tools Help H
. = = = LinK
Docu b | [FR S) B A a = 3 | B B & 2
i =% Folders Back Stop Refresh Home Search Favorites History Mail Print
X =
i Lo f < Outio Address [iﬂ F#tp:/ fwebrthome massey ac.nz/SCRIPT /159356 /scnpts/serve _hame L] & Go | Links ®
| RecyfiSE@G RS
' (She & ~ Massey MYWEBCT | RESUME COURSE | COURSE MAP | HELP | COURSE RESOURCES
‘[| Hide Navigation. o @ :
E 2| Expand Centent _ o N . - i
3 139.356 Sofrware Engineering Pro ject
)
v
¥ | Contact:
0| _B"BNZ
§ _1*Cust
X BHAdva|
faen _BAlan
iyl |1 Bl A
Mess | 1iBond
S 348 mes:
- GolZilla Hd putg
[« o
[
WW-’ 85 Download Docunents -
o -
¥ & e &) @ Internet
S BT . X e CT S R o e R T TE TR a

Figure 3.1: Courseware environment marked by visual clutter and distractions.

Because of their promotion as authoring and management tools, courseware systems
emphasise the requirements of educational organisations and businesses, ahead of
the requirements of students. From this perspective, the most important end user — the
distance student — is viewed as the object rather than the subject of the system, or the

back-end rather than the front-end.

3.4.3 Inaccessibility

The essential requirement for a wholesale shift from correspondence-based to
computer-based extramural study is that all the learning material be available

anywhere, anytime. Courseware is unable to achieve this.

Theoretically, courseware is accessible from every home or workplace with a telephone
connection. In practise, however, the vast majority of households in the world do not
have telephone service. Even among those that do, the quality of the service for those
living outside the most developed urban areas may mean painfully slow and unreliable

Internet connections (2.3.1).

Poor communications infrastructure is fatal for courseware, because it relies upon the
learner maintaining a live connection with the server on which the course is stored.

First, some extramural students may not be able to download their lessons. Second, a

Chapter 3. Web-based courseware 48

slow response time frustrates and distracts the student and inhibits learning (Nielsen,
2001). Third, a slow connection restricts the content of the course. If the course makes
extensive use of the multimedia capabilities of the technology, as some proprietary
applications like the Cisco networking courses (Cisco, 2002) do, then it simply will not
work under these conditions. Fourth, it gives an unfair advantage to those students with

access to high speed communications technology.

Historically, extramural university study has existed in the first instance to provide
tertiary educational opportunities where they would not otherwise exist, viz. in
developing countries and in the more remote parts of developed countries. But it is

precisely in these areas where web-based courseware is least effective.

3.4.4 Summary

From this review it is concluded that web-based courseware systems have been
primarily designed as learning management systems to support company training
programmes or internal university courses. The emphasis is upon cross-platform
capabilities, and upon the requirements of education and training providers such as
authoring and course administration. They provide a complex, multimedia environment
that requires a fast and reliable network service and assumes that user training and
support will be at hand when needed. Neither can be assumed in the extramural

environment.

Courseware is a useful option by which experienced computer users with good Internet
access can study a course without having to sit in a class or lecture theatre. This form
of distance education is often called flexible learning.

As a tool which enables teachers to author e-learning material without recourse to a
skiled programmer, and which facilitates collaboration and communication among
students, web-based courseware has contributed greatly to the explosion in online

education.

From the perspective of the extramural student, courseware’s limited interactivity and
individualisation offers little advantage over email-and-book-based extramural study.
Moreover, courseware’'s management from a central web server means that learning
materials and features may not be accessible by the distance student "anywhere,
anytime" because of unreliability and slowness in the telecommunications system. And
the complexity of the computer environment in which the user interacts with the
learning material, and insufficient attention to interface design, poses usability concerns

that further limit the learning functions and features available to the extramural student.

Chapter 3: Web-based courseware 49

3.5 Recent developments in e-learning

The growing interest in web-based education and training is spurring new research and
development into improving systems for the authoring and delivery of online learning. It

has also prompted some old ideas to be revisited.

This section reviews some significant trends in this research that have a bearing on
improving the functionality, usability or accessibility of e-learning software for
extramural study.

3.5.1 Anywhere, anytime study

One-way Broadband

Cook (1998) writes that the biggest problem in providing Internet access in the
developing countries is “that of ‘the last mile’ (or first mile) linking between the towns
and the villages” (p. 22). Advances in communication technology — based upon
variations of wireless microwave or satellite technologies — have opened up new
possibilities for widening the bandwidth beyond what the local telephone infrastructure
can offer for delivery of learning material into rural areas. However, this is by no means
a solved issue, with many of these new technologies also failing at “the last mile”, even
in the developed countries.

One line of attack uses wireless networking technology to provide a 2-way internet
service, which is typically several times faster than that available over standard copper
wire lines. A wireless modem has the advantage that it can be used anywhere within a
wireless network's coverage, although its bandwidth is below that recommended for
streaming audio/video, very large downloads or viewing graphic-intensive Web sites
(NZWireless, 2004).

Unfortunately, node-to-node links in a wireless network require a line-of-sight
connection over a relatively short distance. This is difficult and expensive to provide in

remote and hilly terrains.

Hand-held wireless systems using mobile cell phone technology have also been
explored (Jo et al., 2001, Boada et al, 2003). Mobile phone networks face similar
performance issues as wireless networks. Moreover, they exacerbate the usability

issues relating to e-learning because of poor performance and inadequate user
interface (Quinn, 2002).

Satellite transmission technology is opening up promising new possibilities for high

bandwidth delivery to individual distance students as telecommunication and media

Chapter 3: Web-based courseware 50

companies drive research into linking the Internet with digital television services (Blyth,
2001). Two-way broadband satellite transmission is an important technology that is
used by learning centres and schools. Satellte communications have the added
advantage of being a global technology that does not require a well-developed local
communications infrastructure. Thus satellite broadcasts have been used for some
years to deliver distance education on an international basis to leaming centres in

Africa, Latin America and elsewhere in the developing world (Cook, 1998, p. 29).

For individual users, satellite reception is as straightforward as satellite television
reception. Satellite transmission is more problematic and expensive’. To be cost
effective, home users would have to be linked through some other technology such as
a landline to a shared transmitter. Such transmitters are not generally available in rural
areas. Moreover, links to them face the same performance issues as for rural

telephone or wireless communications.

A more practicable approach for the individual extramural distance student would be to
employ a hybrid approach which uses satellite reception for rapid downloading of
learning material and a terrestrial link to the transmitter for receiving communications
from the student machine, including system information necessary to maintain the
connection and ensure the integrity of the data transferred. Early efforts along these
lines managed download speeds four times faster than a dial-up (Arora et al, 1996).
Pioneer NZ internet service provider, IHUG, has since developed a commercial version
of this technology providing download speeds of up to 40 times that of dial-up
connection. In this way, rural customers could be offered a one-way broadband service
at an affordable price that uses a standard dial-up internet connection to link to a
central satellite transmitter, and special satellite reception hardware and software to

receive downloads from the Web via the transmitter (IHug, 2004).

While video-conferencing over the Internet is technically straightforward, the results for
the rural home user, employing standard copper wire connections, mirror those
described in a computer journal as "teleconferencing where you have a Webcam on
your PC and look at a postage stamp-sized fuzzy image changing twice per second"
Honeyball (2002a, p. 172). However, integrating satellite broadcasts into e-learning not
only provides a more effective medium for streaming video to a rural home computer,
but opens up possibilities for using parallel television broadcasts to complement

computer-based learning materials.

Chapter 3: Web-based courseware 51

“A truckload of tapes”

To ensure that a student's course material is accessible anywhere, anytime, Gehne et
al. (2001) advocate distributing part or all of the system's functionality to the student's

machine, so that the system will work off-line.

The TILE system duplicates web server functions on the student's computer, and
requires that the student machine and the central server be periodically synchronised
online (Gehne et al., 2001). If necessary, teaching materials can then be distributed by
mail using portable media like CD-ROMs. Gehne et al. cite computer pioneer E.E.
Dykstra ("never underestimate the bandwidth of a truck-load of tapes", p.2) in support
of this approach.

A similar tack is taken in Dietinger et al. (1998) and Bork (2001a).

3.5.2 Individualisation

Efforts to individualise educational software systems have proceeded along two axes —
system-initiated adaptivity and user-initiated adaptability (Oppermann et al., 1997). The

major differences between adaptable and adaptive approaches are listed in Table 3.1.

Adaptation may be implemented across a range of dimensions as illustrated in Table
3.2. A learning system may employ adaptation across all, some or none of these
dimensions. Some features, e.g. the help system, may be adaptive, while others, e.g.

the interface look and feel, may be adaptable.

In arguing for adaptive interfaces, Benyon and D. Murray asserted that the drawback
with the adaptable approach is that “the user must learn functions which are tangential
to their main task. Although some routines will only have to be set once, others involve
learning specialised commands. Tailoring facilities are typically very general, do not
take fine-grained, individual differences into account and do not cater for a user's task

needs, either perceived or implicit" (Benyon et al., 1993, p. 198).

Efforts to imbue courseware with adaptive capabilities have drawn upon three decades
of experience in the development of intelligent ITSs. One method of developing
adaptive web-based systems has been to customise existing standalone ITSs so that
they can be accessed from anywhere via the Internet. SQL-Tutor (Mitrovic and
Hausler, 2000) and PAT (Ritter, 1997) are examples of standalone tutors that have

been successfully ported to the Web. However, the narrow subject focus of such tutors

' In an October 2004 personal interview, the principal of a rural primary school reported that 2-way satellite
internet had been offered to his school for $1500 per month. In a February 2001 letter, a satellite

Chapter 3. Web-based courseware

52

makes them an unsatisfactory choice for teaching whole courses. Efforts have

therefore expanded along the lines of:

e integrating tutors and other adaptive learning tools into broader courseware;

and

e the development of adaptive systems that can teach whole courses.

Property Adaptability Adaptivity
Primary research discipline HCI Al
Manner of adaptation Static Dynamic
Locus of control User System
Flexibility of user view More Less
Complexity of user view (cognitive load) More Less
Hidden complexity (implementation) Less More

Table 3.1: Contrasting properties of adaptable and adaptive computer systems

Dimension

Interface “look and feel” - how user interacts with the system

Sequencing — what part of the course is presented next

Learning style — how the material is presented to the student

Learning level — the degree of difficulty of the material
presented

Learning help — what help is presented to the user and when

Table 3.2: Forms of adaptation in learning systems.

telephone provider quoted set-up costs in excess of $20,000 for a voice/data service!

Chapter 3: Web-based courseware 53

Another approach, which is discussed under the subheading of “Collaboration and
Help”, is to incorporate software agents that collaborate with and assist the user in the

learning task.

Interactive tools to foster multidimensional learning

The United Kingdom-based Byzantium project sought to achieve more practical results
for artificial intelligence in education by limiting the goal to producing intelligent tutoring
tools that extend the scope of a lecturer rather than replacing him or her (Patel et al.,
1997). Patel et al. (1997) propose that Web-based versions of such tools be integrated

into broader courseware.

Audiograph (Jesshope et al., 1998) and MANIC (Stern et al., 1998) support learning-
by-lecture through providing synchronised audio and slide presentations. MANIC

supports individualisation by adapting presentation sequencing to suit each student.

A number of web-based tools have been developed, at least at the prototype level, to
offer better support to active learning dimensions such as learning by doing, by
exploring, by tutorial and by collaboration. But even when they have been successfully
prototyped, lack of standardisation makes it difficult to integrate them into commercial
courseware systems. The "Model for Distributed Curriculum" (Murray, 1998a) proposed
standards by which an e-learning system could dynamically locate relevant tutorials on
the World-Wide Web. More recent standardisation efforts have focussed upon reusable

learning objects, which will be discussed later in this chapter.

InterBook (Brusilovsky et al.,, 1998) and Metalinks (Murray et al., 2000) are electronic
textbooks which guide students while allowing them to access material in the order of
their choice. In this way they provide an environment for students to learn by exploring.
This is especially so of Metalinks, which enables the individual student to adapt
navigation paths and the presentation of material to their own leaming level and

preferences.

Adaptive courseware

Adding adaptivity to educational software may come at the expense of other learning
goals. For instance, with ITSs the locus of control is typically with the system rather

than the user.

Overall ITSs have had a narrower teaching focus than web-based courseware. They
have taught a particular problem-solving skill in a well-defined and structured topic.

WITS however, is a course-oriented intelligent tutoring environment which gives

Chapter 3: Web-based courseware 54

students the more coarse-grained treatment aimed at the average student that they

would receive from a class teacher (Callear, 1999).

Other researchers have explored ways to build adaptation directly into the Web
technology itself so as to produce adaptive courses. Adaptive courseware systems
employ a user model and an adaptation strategy to generate an individualised user
view. Two early efforts were the Dynamic Course Generator (DCG) (Vassileva, 1997)
and ELM-ART (Weber et al., 2001). DCG generates individual courses according to the
learners’ goals and previous knowledge and dynamically adapts the course according
to the learning progress of the student (Vassileva, 1997). ELM-ART is an intelligent,
interactive, educational system to teach LISP which incorporates tools that enable

students to communicate with each other and with their tutor (Weber et al., 2001).

Both DCG and ELM-ART were developed to teach computing-related subjects. They

have not made the transition into broader educational use.

Interbook, an offshoot of ELM-ART, is a tool for authoring adaptive electronic
textbooks. Interbook uses a depth-first strategy, i.e. encouraging the leamer to

demonstrate thorough knowledge of one topic before moving on to another topic.

ITSs are typically not adaptable by the user. An alternative adaptable, breadth-first

approach represented by Metalinks will be discussed in the following section.

The customisable (adaptable) interface

Benyon et al. (1993, p. 197) wrote that the practical results from the adaptive approach
had been “rather disappointing and problems have proved far harder to deal with than
was first expected." Even today, more than ten years after that article was written,

adding adaptive features to courseware remains at the level of research prototypes.

T. Murray (1999) and Bork (2001a) argue that individualisation goals can be achieved
more simply by paying greater attention to design of the student interface. Murray
writes that since basic graphics authoring is considered a solved problem, most ITS
researchers have not prioritised student interface design, but have restricted their
systems to predefined screens and styles. This “severely constrains the types of tasks

and interactions that an ITS can have with the student” (Murray, 1999, para. 28).

Murray and his colleagues (Murray et al., 2000) present evidence from the
development of the Metalinks project that adapting the content to the individual student
may be better and more simply achieved through deeper design of the interface,
keeping the locus of control with the student. They argue that underestimating the

importance of interface design (adaptability) in learning systems can lead to

Chapter 3: Web-based courseware 55

overestimating the importance of artificial intelligence capability (adaptivity).

Metalinks uses a breadth-first approach to allow the student to traverse the course at
the level they choose. It was designed to accommodate intelligent software features
but was implemented in a less sophisticated version. This version was then evaluated
for evidence that students would benefit from adding more advanced features. The
researchers were somewhat surprised by the results, which indicated that well-
designed interface features and non-intelligent tools satisfied many of the user needs
that they expected would have to be addressed by adding intelligent software
capabilities. "This work supports the notion that good interface design and passive but
powerful user features can sometimes provide the benefits that are ascribed to more
sophisticated or intelligent features (which can be more presumptive, controlling, or

intrusive than passive features)" (Murray et al., 2000, para. 42).

The authors felt this experience also underscored a more general lesson that
inadequacies in the design of the interface or usability of educational software will
overshadow any benefits from more sophisticated features it may possess (Murray et
al., 2000).

3.5.3 Collaboration and Help

Collaborative agents

Benyon and D. Murray (1993) point to the development of interface agents as a more
promising (and less ambitious) approach to imbuing systems with adaptive capabilities.
With this approach, interffaces employ agents that can interact with users and with
other agents to assist users to accomplish specific tasks individually, or co-operatively
across a network. "Essentially agents are adaptive systems, but systems which are
specialised and know about only a very small part of the world" (Benyon et al., 1993, p.
200).

Collaborative agents are an adaptation of intelligent tutoring technology to support
collaborative forms of leaming beyond the simple email, chat rooms and threaded

discussion lists of commercial courseware.

Collaborative learning has not generally been the focus of adaptive tutors, which are
geared to the individual student. Vassileva argues that while an adaptive system "truly
'cares' for the learner"”, by tailoring the course to them, it can reinforce the problem of
the "lonely learner". She holds that adapting to other’s ideas and experiences is part of

the leamning process, so, "maybe sometimes the learner should adapt, not the

Chapter 3: Web-based courseware 56

environment?" (Vassileva, 2001, Slide 12).

I-Help (Greer et al., 2001), uses intelligent agents to attempt to overcome the learner's
isolation by organising and monitoring computer-based collaboration within a
community of learners. I-Help attempts to find the most suitable member of such a
community to respond to another member's query. A variant to this approach (Ishikawa
et al., 2002) channels questions posted to a courseware bulletin board to other

students or teachers currently online to answer.

VINCENT (Paiva and Machado, 1998), which is built around an animated software
agent that acts as an intelligent helper to assist trainees to complete their courses,
intervenes when students get off-track. Lopez etal. (2002) and Rasseneur et al. (2002)
use virtual student software agents to foster collaboration and discussion among

networked students.

Natural language querying

Another approach to the lonely learner problem is to provide a means by which
students can ask the system questions about a subject and get a meaningful response,
even if a human tutor is not available online. The Flexible Structured Coding Language
approach enables querying of a database, using a natural language-like syntax, which
can return known facts to the student (Heinrich et al., 2001). Heinrich and Kemp
propose extending this approach by using artificial intelligence techniques to enable the
system to infer additional facts from this database to pass on to students (Heinrich et
al., 2000).

3.5.4 Interaction

Specialised languages

Bork criticises the "very limited forms of interaction" possible with courseware using
HTML-based browsers (Bork, 2001a, p. 59). He counterposes a graphical scripting
language with which experienced teachers can design highly interactive, natural
language-based tutorials (Bork, 2001a, p. 64; Bork et al., 1992).

Specialised languages for simplifying the programming of learning material are not a
new idea. They were an integral part of the PLATO and TICCIT projects. This approach
has now been taken up more widely in the form of developing specialised languages
for authoring web-based learning material using the Extensible Mark-up Language

(XML). XML provides a cross-platform format for defining a wide range of documents

Chapter 3: Web-based courseware 57

as text files, using a set of author-defined HTML-like tags. The file can then be parsed
by an XML parser and passed to a specialised browser or other application to execute.
The result may be a standard web page, a web page displaying specialised content
such as mathematical formulae, or an interactive program running on the user’s
computer (Harold et al., 2002, pp. 3-10).

E-learning researchers expect that using XML in this manner will offer a standardised,
multi-platform means of providing interactive and individualised learning material. Gerdt
et al. (2002) and Bergstedt et al. (2002) are applications of an XML-based approach.

Standardisation through learning objects

Learning objects are reusable and easily modifiable educational modules designed to
be assembled into larger educational units such as activities, lessons, or whole
courses. These objects may be distributed across a number of repositories from which
they are retrieved and integrated into learning management systems for delivery to the
student (Brooks et al., 2003). Through learning objects it is hoped to produce reusable
learning materials that are more interactive and individualised than courseware can

currently provide.

A range of organisations have been involved in a major international effort to develop
standardised, reusable learning objects based upon XML (Tansey, 2003). The
Sharable Content Object Reference Model (SCORM) is a suite of technical standards
that enable web-based learning systems to find, import, share, reuse, and export
learning content in a standardised way built upon XML. This content can then be
picked up by learning management systems and course authoring tools that conform to
the SCORM standards. The base unit of a SCORM-compliant course is a learning
object (web page) authored using specialised tags to define the learning content.
Courses are individualised by the course management system through tracking
individual learner's progress and sequencing and branching between learning objects
accordingly.

SCORM'’s principal sponsor has been the United States Department of Defense and is
strongly oriented towards the provision of skills training within organisations with a
large geographic spread (SCORM, 2002).

3.5.5 Specialisation

Bork has been a tireless advocate of providing simpler interfaces for courseware than

that typically associated with Windows-based and browser-based applications:

Chapter 3: Web-based courseware 58

"Nothing should be on screen that is not directly relevant for learning the material at
hand. Many years ago we made the operating system invisible for such use. That
seems to be a desirable direction for the future. Learning does not need the

complexities of today's interfaces" (Bork, 2001a, p. 64).

Bork (2001a) also questions the assumption that the general-purpose computer is the
best tool for learning applications. He points out that embedding computers into other
more specialised devices is "a common occurrence" these days (p. 61). NIMIS (Hoppe
et al., 2000) draws upon the "ubiquitous computing" concept of using "special purpose
networked devices (rather than uniform computing equipment) embedded in natural
environments, be it at home, at work, or in educational settings" to develop a

computer-integrated' primary school classroom” (para 1).

Embedding computers in everyday environments does not in itself resolve usability
issues. There are some good examples such as the Smart Drive washing machine?
where, through careful interface design, embedding a computer in an appliance has
improved usability. However, Cooper and Saffo discuss a wide range of cases where
embedding a computer has added complexity to everyday tasks such as using a
camera, in part because the computer makes possible the addition of a myriad of

unneeded features (Cooper et al., 1999).

3.5.6 Conclusion

In this section aspects of recent research into improving the performance of e-learning
systems have been reviewed. Perusing this research, three broad strategies stand out
which contrast with the approach taken by conventional web-based courseware and
show promise in addressing the functionality, usability and accessibility issues

confronting computer-based extramural study. These are:

1. Specialisation vs. generalisation. That special-purpose computer tools (interfaces,
programming languages, hardware...) offer a way of providing a simpler and more
usable learning environment than general-purpose ones (web browser, HTML,

PC...) by helping to render the computer invisible to the learmning process.

2. Adaptability vs. adaptivity. That user-oriented interface design, incorporating
customisable and collaborative strategies, can more easily and simply achieve
many of the individualisation and interactivity goals of adaptive systems, while

maintaining the locus of control with the student.

Chapter 3: Web-based courseware 59

3. Localised vs. centralised functionality. That by placing more of the system's
functionality on the student’'s computer and then using the internet or alternative
media to update the student’s computer, the greater functionality associated with
standalone systems, and the collaborative benefits of networked computers, can be
incorporated into an e-learning system that better meets the anywhere, anytime

requirements for extramural study than server-centred systems.

Of particular interest is whether, by combining some or all of these strategies, a

workable means can be found for meeting the requirements for extramural e-learning.

3.6 Designing for extramural e-learning

In this section some important lessons for designing extramural e-learning systems as

learning environments are discussed in the framework of the literature reviewed.

3.6.1 Prioritising the student interface

In this chapter it has been emphasised that there are special user requirements for
computer-based extramural study that cannot be subsumed under those for e-learning
in general. It is especially important that all the system's learning functions are usable
and accessible by an extramural student studying in less than ideal circumstances, e.g.
an inexperienced computer user working from home in a remote district with
substandard telecommunications. Developers of any computer-based learning must
consider students both as learners and as users, that is, they must design both for form
and content (Smulders, 2003).

Poor usability inhibits learning and may prevent it altogether. A review of the literature
on computers and education supports the assessment that interface issues have
received limited recent attention from educational software researchers.’ Research has
been focussed upon the student as learner, at the expense of the student as user, for a
range of reasons. These reasons include researchers' focus on the learning process
and on developing and evaluating learning theories, and an assumption by e-learning
researchers that interface design is a solved problem and therefore less important than
the learning technology itself. It has been reinforced by the emphasis of courseware on
the authoring and management requirements of educational and training providers as

the front-end of the system. In this sense, courseware emphasises reusability over

2 http://www fisherpaykel.co.nz/laundry/washers/washers.cfm.

Chapter 3: Web-based courseware 60

usability.

Other factors inhibiting usability include the interface limitations and the complexities of
the web browser environment itself, and a more general design problem of software
engineers’ interfaces tending to emphasise their own domain (i.e. how the system
works) over the end user’s task domain (i.e. what it actually does) (Gentner et al.,
1990).

The dominance of the e-learning field by web-based courseware flows from its utility as
a practical course authoring and management tool for instructors. Its strength lies in its
holistic (whole course) and reusability approach to computer-based education, in
contrast to the more restricted domains and one-off character typical of the more

adaptive and interactive systems.

However, courseware's limitations in meeting the functionality, usability and
accessibility requirements of extramural study, make it less than ideal as a candidate
for replacing traditional correspondence-based courses. While a number of these
limitations have been at least partly addressed at the research level, the results from
this research have yet to be successfully integrated into real courseware products.
Moreover, some of the concerns seem inseparable from the technological limitations
flowing from the multi-platform, thin-client architecture of the Web itself. The ubiquity of
the Internet has encouraged researchers to accept the graphical browser interface as
the basis of the interface between the learner and the learning system. In seeking to
meet the requirements for extramural e-learning, therefore, it may be necessary to look
beyond the technology of the World Wide Web.

Nielsen (2001) emphasises that online learning is inherently not very motivational and
not as effective as studying on campus, and that a textbook works better than a
computer for presenting large amounts of information for students to read. Computer-
based extramural learning should complement the textbook and extend the teacher,
and add new multi-dimensional capabilities a book cannot provide. It does not need to
replace them. Extramural study is an adjunct or extension to a university — with its
"buildings and grounds" and its "body of students and faculty" — rather than an

alternative to it.

The introduction of internetworked personal computers has shaken up education in all

its forms, and will continue to do so. Learning theory research which seeks out new

® For instance, of the more than 220 papers accepted for two 2001 conferences on computer-based
learning, only one is focussed upon the issue of the design of the learner interface (Lee, 2001; Kinshuk,
Jesshope and Okamoto, 2000)

Chapter 3: Web-based courseware 61

ways that computers can improve learning outcomes in comparison to conventional
teaching methods are an important area of scientific endeavour. Extramural e-learning
researchers, however, do not need to be that ambitious. Their goal need not be to
outperform the classroom, but only to find ways to outperform correspondence-based
and courseware-based study. From this perspective it is an advantage if a system
supports a more pragmatic and flexible approach that can accommodate multiple

learning paradigms and styles.

Effective extramural e-learning does not require the wholesale development of new
technologies. At a minimum it means finding workable ways of utilising existing
technologies so that they are usable by, and accessible to, the extramural student. It
means recognising that, while meeting the learning needs of the student are
paramount, this will not be possible without also prioritising the requirements of the
student as a user. From the standpoint of the extramural learner, the student view is

the learning system.

3.6.2 Adaptation in a learning environment approach

A learning environment approach to computer-based distance education implies that
the system can provide some level of adaptation to the individual learning task and/or

student. Some of the areas in which individualisation may be appropriate include:

e The adaptation of content to the individual learner e.g. what topics and sub-topics

are presented to the student, and at what level of complexity.

e The adaptation of the form in which the content is presented to the individual

learner e.g. as a lecture, tutorial, or a text to be read.

e Support to the student in terms of help and training in the use of the system itself,
help in understanding the subject matter; and assistance in searching the entire

network for related subject matters.

However, it may not always be desirable or feasible to individualise learning material. A
considerable portion of conventional university education is, as Callear (1999) put it,
coarse-grained and aimed at the average student. And the design should
accommodate the point made in Vassileva (2001) that, from a pedagogical point of
view, sometimes the learner should adapt in order to facilitate collaborative work and

discussion between students.

Chapter 3: Web-based courseware 62

3.6.3 Guidelines for designing extramural e-learning environments

The following principles for designing computer-based distance learning systems as

interactive and collaborative learning environments have been synthesised from this

review of computer-based learning research:

1.

Identify the users clearly. Systems with a focus on ease of course administration,
on supporting internal papers, or providing in-house training, may have quite
different requirements from those oriented to supporting university-level distance

learning.

Prioritise interface design. Designing as a multi-dimensional learning environment
means focussing upon the content, interactions, presentation styles, and user
support at the student interface. Treat the student view as the front end of the
system and design from there. This requires designing the interface as a leaming
environment, rather than as the student interface to a teaching application. A
learning environment integrates all the functions and features that support the
student's learning tasks. A specialised interface may be more effective for learning

than a general purpose one.

Recognise the university itself as the most important leaming community. The goal
should be to extend the reach of the university as a community of learning rather
than replace it, simulate it rather than compete with it. This means emphasising
collaborative, interactive and multi-dimensional learning functions, which

complement the roles of the teacher and the textbook rather than replace them.

Design as an information system. A computer-based distance learming system
should not be conceived of as a single piece of software but as an information
system incorporating the users and their requirements. In an information system
approach, automation (computerisation) is not assumed to be better. A decision is
made on what to computerise and what not to. Some aspects of a course may be

better implemented using alternative technologies or a human teacher.

Design for reusability on three levels - the programmer, the course author, and the
student. For an extramural e-learning system to provide a practical alternative to
the existing courseware products, it must match their utility for authoring, managing
and delivering multiple courses of study. In addition, it should be able to readily

integrate new and improved learning technologies.

Avoid making presumptions about implementation technologies. Information

technologies which work for computer-based training programmes, flexible learning,

Chapter 3: Web-based courseware 63

and supporting intemal university courses may not best meet the special
requirements for extramural e-learning. Other possibilities besides the ubiquitous

web browser should also be considered as the basis of the student interface.

7. Enable adaptation to the individual learning task and/or student. This includes how
material is presented, help in the use of one or other system features, querying of
subject matter, and assistance in locating supporting material. However, it may not
always be desirable or feasible to individualise learning material. Providing an
online human tutor may be preferable. And sometimes the learner should adapt to

facilitate collaborative work and discussion between students.

8. Evaluate for functionality, usability and accessibility. All the system's functions and
features should not only work on high-speed urban communication networks, but
should be accessible, and tested, in worst case scenarios like that of the farm-
based rural student. Multidimensional features should be prioritised ahead of multi-
media ones. For the distance student, multimedia enhancements may be nothing

more than a form of bloatware, which inhibits accessibility.

3.7 Concluding the literature review — a hypothesis

Chapters 2 and 3 summarise an extensive review that has been conducted of the
literature on distance education and computer-based learning. The framework of this
review was the research question: “Is there a universal way to apply information
technology to distance education, so that it offers the student an advantage over

traditional correspondence lessons?”

The breadth of the domain reviewed, and the diverse research agendas, requirements
and technologies encompassed by it, underscored the necessity to narrow down the
domain of the research problem to a distinct subsection of the broader e-learning field
— university-level extramural students within the public education system. The potential
benefits (and the downsides) for extramural study of computer-based leaming systems

were summarised and some criteria for evaluating their suitability were enunciated.

The mainstream computer-based learning technology - web-based course authoring
and management systems — was evaluated against these criteria. The areas where
courseware fulfilled, or failed to fulfil, this potential were noted, and major unsolved
problems identified. The various solutions that have been advanced to address these
problems have been reviewed, including the adaptive and artificial intelligence-based

technologies which influence much of the research in this field.

Chapter 3. Web-based courseware 64

The key requirements for a successful computer-based leaming environment for
extramural students have been synthesised. Such an environment needs to meet
additional functionality, usability and accessibility requirements in order to
accommodate scenarios such as inexperienced computer users, students working
alone from remote locations, students with older machines and/or poor communication
infrastructure, and courses where computer skills are incidental to the content. It needs
to be simple and usable enough for a relative computer novice to learn without direct
supervision; it should provide some ability to adapt, or be adapted, to an individual
student's learning needs; and it needs to work as well in the context of slow and

unreliable communications infrastructure as on the information superhighway.

The central theme of this chapter has been the need to more clearly identify the
specific needs of the university distance student, and to design computer-based
distance leaming systems as learning environments that meet those needs. This
means shifting the weight of the system to the student end by designing it as a /earning
system rather than as a teaching or course administration system. This approach
places a greater emphasis on interface design than is to be found in most computer-
based learning literature. It means starting from the requirements of the user rather

than from the constraints of current technology.

Fulfilling the requirements for extramural e-learning would enable a computer-based
system to supplant the correspondence system as the basis for all extramural study.
However, to find a workable way to achieve this some outstanding issues need to be
resolved satisfactorily, above all the accessibility and usability limitations of

courseware.

From a review of more recent e-learning research it is concluded that very little has
been specifically directed to identifying and solving the particular challenges of
computer-based extramural university study. None of the working and prototype
learning systems reviewed, even where they offered significant improvements over
commercial courseware, met sufficient of the key requirements to be considered
workable in this domain. However, several themes have been identified in this
research, which suggest possible ways to fulfil these requirements. These themes point
outside the predominant framework for e-learmning research and development by
emphasising student-centred strategies of specialisation over generalisation,

adaptability over adaptivity, and localisation over centralisation.

Drawing upon the review, it is hypothesised that, by combining these three strategies,

and following the guidelines for designing an extramural e-learning environment, a

Chapter 3: Web-based courseware 65

workable way can be found to fulfii the key requirements for computer-based
extramural study. In the next chapter a prototype system is conceptualised through

which this hypothesis can be tested.

Chapter 3: Web-based courseware

66

Chapter 4: Conceptualisation 67

Chapter 4

Conceptualisation of an extramural e-learning
system

The previous chapter concluded with the hypothesis that a practicable way can be
found to provide the key requirements for an extramural e-learning environment, by
combining three strategies — specialisation over generalisation, adaptability over
adaptivity, and localised over centralised functionality — and by observing a set of
design guidelines synthesised from the literature review. The first step towards
evaluating this hypothesis is to conceptualise, in broad outline, a learning system
based on these principles. In this chapter a conceptualisation is presented of an e-

learning system as a specialised computer for learning.

First an overview of the conceptual design is presented. Then each of the key aspects

of the design is discussed in more detail.

Only once the system has been conceptualised is the technological platform for a
prototype considered. No assumptions are made about implementation technologies.
Therefore, discussion of more specific issues concerning the technical framework for

implementing a learning computer is postponed to Chapter 5.

4.1 A computer for learning

An extramural e-learning environment is conceptualised as a specialised computer for
learning, in which the three underlying strategies are embedded. The starting point for
this idea is an observation by Bork that: “In the developed countries the general-
purpose computer will still be widespread for learning, but for many situations a
computer built just for learning, a learning appliance, will furnish a new paradigm, much

cheaper and simpler than today’s personal computer" (Bork, 2001a, p. 64).

The idea of the learning computer is to provide a minimalist, specialised environment
that integrates all the functionality an extramural student needs to successfully
complete a course, and only that functionality. And this functionality will work where the
infrastructure is less than optimal for multi-media networking. It is a simplified system

which a relative computer novice can quickly master, thereby allowing it to rapidly

Chapter 4: Conceptualisation 68

become invisible to the learning process. It is an adaptable environment that a student

can customise to suit their learning preferences.

In place of the specialised hardware of Bork’s learning appliance, the learning
computer is conceived of as a software system implemented over a general-purpose
personal computer, in combination with the necessary support applications at the
university end. This means that it is available to anyone who has a computer of almost

any vintage in his or her home.

4.1.1 Everyday activities imbuing the conceptual model

In the initial stages of conceptualising the learning computer, a brainstorming process
was undertaken. The goal of this brainstorming was to draw analogies between the
learning computer and some everyday objects and activities to help conceptualise key

features of the learning computer’s design. These analogies include:

Doing the Laundry. Some automatic washing machines provide a good example of
simplifying a task environment by using a special-purpose, embedded computer. A
person need only provide some facts about the state of their dirty laundry through a
simple interface and then press the start button, leaving the computer to accomplish
the rest. Few users are even aware of the presence of the computer. It has become
invisible to the process. Similarly, a student is able to interact with the learning
computer through a few, simple operations defining what the student wants to learn
and in what manner. Once those operations have been mastered, the computer

becomes invisible to the learning task.

Navigating with a GPS. Sailors, soldiers, and car drivers equipped with a Global
Positioning System (GPS) can roam at will and remain focussed on what interests
them without worrying about getting lost. The GPS always knows their current position
and can guide them back to where they began or to wherever else they want to be. The
learning computer also tracks the student through the course and — no matter what
path they take or where they arrive — can always bring them back to any desired
position. Learning dimensions are synchronised so that a student can change their

method or means of study without losing their position in the course.

Listening to the Radio. Radio and television are both popular means of communicating
information about the world. The more multi-media character of television leaves less
to the imagination of the audience than does radio. However, radio can also be a highly
effective communicator which, because of its simpler technology, can be accessed and

used in a greater range of situations than television. The learning computer is more

Chapter 4: Conceptualisation 69

radio than television. It is not a multimedia simulation of a university and does not need
to be. Its more minimalist approach still provides an effective learning environment that

is accessible from almost anywhere.

Working From A Briefcase. Company sales representatives carry all their tools of trade
in their briefcase, and can sit down anywhere to work at their tasks. They are not in
permanent contact with their office, but can get in touch whenever they need to in order
to exchange and update data or obtain a second opinion on a key transaction. The

briefcase is their office. The learning computer is the extramural student’s briefcase.

Learning from Books. The study guide and the textbook have provided the flexible core
of successful distance learning for many years. While they have been carefully
structured to guide the student in the most logical sequence of study, they do not
impose it. The student may approach the material in any order they choose, provided
they submit their assignments on time for grading. Additional learning resources, like
revision exercises and glossaries, are organised around the book’s chapters. Tables of
contents and indexes provide points of entry for exploring and accessing those learning
resources. The learning computer reproduces this flexible study environment, without

attempting to reproduce or replace the textbook electronically.

Going to University. A university is a community of learning in which the student learns
through participating in a wide range of formal and informal interactions with other
students and with teachers. He or she can attend a lecture or a smaller tutorial session,
go tothe library, or just sit at a table and read a book. He or she can get additional help
by knocking on a tutor's door, by arranging special one-on-one tutorials, or by sitting
down with other students to work through a problem. The learning computer enables
the extramural student to participate in this university community from the

asynchronous, geographically-isolated environment of the distance learner.

4.1.2 Making learning possible

The learning computer is not a means for implementing or evaluating a particular
learning paradigm. Nor is it a means for demonstrating that computer-based education
can outperform the classroom. It embraces and incorporates the best available
educational technologies that support the multiple teaching strategies and learning
styles associated with university study, in order to outperform traditional

correspondence-based lessons.

If there is a bias in the learming computer it is towards the user-centred, self-paced,

exploratory learning style associated with learning from books, and towards capitalising

Chapter 4: Conceptualisation 70

on the collaborative learning potential opened up for extramural students by the

Internet.

The primary focus is upon the distance student as user of a computer system. This is
based on the presumption that solving the usability and accessibility challenges is the

prerequisite to making computer-based distance learning possible.

4.1.3 A reusable educational resource

Courseware emphasises course authoring and other teaching and administrative
support. The learning computer emphasises support to the learner. From this
perspective it is primarily a learning environment, rather than a teaching, authoring and
administrative application. Nevertheless, to offer a practical solution to the challenges
of extramural e-learning, the learning computer provides authoring support and

promotes reusability across courses.

For the student, the learning computer works for any course for which they are
enrolled. However, to maintain simplicity and focus, the student can only view one

course at a time.

For the teacher, materials prepared for internal papers may be re-used in external
ones. They may be updated while the course is in progress and re-used in subsequent
semesters. Course authoring for the learning computer is conceived of as a dynamic
process in which leaming materials can be added and updated, in much the same way
as a tutor may maintain any course website. Thus the tools for authoring a course are

also tools for updating it.

A certain level of complexity is unavoidable in computer-based-learning systems. The
objective of the leaming computer is to place most of the burden of that complexity
upon the builders of the system - the programmers and the course authors — and the
least upon the student. A greater level of complexity for course authors and
administrators is permissible because they can be assumed to be more computer

literate and have access to computing and other support services at their university.

4.2 Specialised interface

4.2.1 E-learning metaphors

Metaphor is used to help the distance student develop a mental image of the learning

computer and improve its usability.

Chapter 4: Conceptualisation 71

Reflecting a large body of research on the subject, Collins (1995, pp. 192-209, pp. 223-
24) emphasises the role of metaphor in interface design, writing that "old media serve
as metaphors for new ones". The designer seeks to extend the metaphor, and surprise
the user, by "adding magic," that is adding new functionality made possible by the

computer environment.

An alternative view is presented by Benyon and Murray who stress the limitations of
using metaphor to improve the usability of interfaces. They cite research findings that
the "use of metaphor and analogy as a means of making system functionality
accessible to user populations... can be a hit-and-miss affair, well-suited for some but
not for the population as a whole, dependent as it is upon a closely shared appreciation
of the basis of the metaphor" (Benyon et al., 1993, p. 198).

Collins stresses the importance of not surprising the user too much. He points to the
computer spreadsheet application as an example of the tension between literalism and
magic: "A literal interpretation of the metaphor would demand that the user open a
computer calculator to do sums, then type the results back into the spreadsheet. But
the spreadsheet is magical - the cells in a row or column can sum themselves, and
automatically update the cell containing the sum. Literalism maximises understanding,
but does not add any power, magic maximises power, but may interfere with
understanding”" (Collins, 1995, p. 192). Recognising this tension is of particular

importance in computer-based educational applications.

Courseware typically uses the textbook metaphor implemented as HTML pages, to
which magic is added via hypertext navigation and multimedia enhancements such as
animation and video. Bork's highly-interactive tutorial method (Bork, 2001a) draws
upon the metaphor of the private tutor, which historically was the preferred method of
instructing the children of the rich. Hoppe et al. (2000) uses the classroom and its

artefacts like the blackboard and the student slate.

The learning computer uses the university itself as its principal metaphor, and seeks to
simulate its learning dimensions and study tools, with a minimum of surprises so as to
maximise understanding. However, the learning computer does add magic to the
university metaphor, in the form of its GPS-like tracking facility whereby the student can
explore the course without getting lost and the system can synchronise the use of

different learning dimensions and tools.

Another important metaphor is the traditional study guide and its table of contents,
around which the learning computer is structured to give it a modular character. This is

discussed next.

Chapter 4: Conceptualisation 72

4.2.2 A modular approach

The environment provided by the learning computer is conceived of as a hierarchy of
educational modules, as defined in the traditional study guide. A course is subdivided
into sections which in turn are subdivided into topics. Each topic is structured around a

small number of learning objectives and key concepts.

A course, or the individual topics in a course, may be taught in different modes
approximating the different dimensions of an on-campus course (2.5.3). However, each
topic offers the traditional textbook mode of correspondence learning as a minimum.
Other modes are added by the course author, when and where they are available and

will assist in learning that particular topic.

A study mode is defined by a set of elements, each of which corresponds to a basic
constituent of university study. Learning by lecture, for example, may involve a
presentation by the lecturer, a set of notes handed out by the lecturer, and notes taken
by the individual student. Learning by tutorial, on the other hand, may involve a one-to-
one interaction with a tutor, as well as notes made by the individual student (Figure
4.1).

At Massey University, an extramural study guide may contain a course overview and
administration guide, a table of contents, assignment specifications, and for each study
module - learning goals, reading guides and revision exercises. Each of these

elements should be accessible when studying by textbook.

An element may be available in more than one learning mode. Some elements, e.g. a
lecture presentation, are only available in particular modes, while others, e.g. notes

taken by the student, are accessible from any mode.

Each learning element performs a distinct learning function independently of any other
element. Learning resources are attached to each element, according to the current
position (topic) in the course. This ensures synchronisation between elements and
across modes. Students can then change mode without losing their place in the
course, in order to take another approach to solving the learning task at hand. The
initial learning elements and study modes of the learning computer are listed in

Appendix B.

4.2.3 Rendering the interface invisible

To best support intellectual and creative activity, “designers can pursue the goal of

having the computer vanish as users become completely absorbed in their task

Chapter 4: Conceptualisation 73

domain” (Shneiderman, 1998, p. 18). For learning applications at least, this means
simplifying the computer environment: “Nothing should be on the screen that is not
directly relevant for learning the material at hand.... Learning does not need the
complexities of today’s interfaces" (Bork, 2001a, p. 64). An effective way of simplifying
the environment for the user is to focus the interface upon the task domain (i.e. the
“What” of the user) rather than the means of achieving those tasks (i.e. the “How” of

the software engineer) (Gentner et al., 1990).

Help
Key Ideas/ Learning
Goals
Menu
Lecture Slides
Lecture
Student Notes Presentation
Learning by lecture

Help

Key Ideas/ Learning
Goals

Menu

Interactive
Tutorial

Student Notes

Learning by tutorial

Figure 4.1: Each study mode contains a unique set of learning elements

The learning computer interface focuses upon the content of the learning material
rather than the form in which it is stored and displayed on the computer. For example,
the student elects to study a particular topic in lecture mode, or selects their notes on
that topic. They need know nothing about what a particular file holding their learning

material is called, where it is stored, or what application is needed to run it.

Chapter 4: Conceptualisation 74

4.3 Individualised interface

4.3.1 Adaptation strategy

The learning computer is not a "one size fits all" system but has the capacity to adapt
(or be adapted) to the learner and the learning material. As discussed in Chapter 3
(3.4.2, 3.4.3), a computer-based distance learning environment may, as appropriate,

provide for three forms of adaptation:
o the system adapts to suit the student;
e the student customises the system to suit his/her needs; or

e the student adapts in order to collaborate through the system with other

humans - tutors or students.

The emphasis of the learning computer is on providing a customisable and
collaborative environment. However, where an adaptable or collaborative solution is
unsatisfactory, or there is a proven need, a more sophisticated adaptive approach can

also be integrated.

The learning computer’'s adaptable environment is designed to make it as easy as

possible for the student to modify the system to suit his/her study needs (Table 4.1).
The basic forms of adaptation of the learning content are:

e choosing the mode in which a topic is studied, as when an internal student

attends a lecture or reads in the library;

e choosing the topic that is studied and the order topics are studied in, as might

be done using a correspondence study guide;

At the university level, supplementary individualised help is provided in the form of
private consultations with a tutor, peer collaboration and personalised reading
programmes. The learning computer takes the same approach to providing
individualised study. The student may ask the system, the tutor or other students for

guidance on a particular issue.

Different learning levels are also accommodated through one-on-one tutorials
(incorporating adaptive tutoring tools where available), and through supplementary
learning resources and activities, rather than by adapting all learning materials to the
individual user. Furthermore, the learning computer assumes that sometimes the

learner will adapt to facilitate collaborative work and discussion among students.

Chapter 4: Conceptualisation 75

Dimension

Support

Interface “look and feel” - how user interacts with
the system.

The minimalist interface provides little opportunity
for customising screens apart from re-sizing and

re-positioning screen objects.

Sequencing — what part of the course is presented

next?

Student can select any topic in the course at any

time.

Learning style — how the material is presented to
the student.

Different learning styles are selected by the user
choosing different study modes.

Learning level — the degree of difficulty of the
material presented.

Some individual learning tools and study modes
may accommodate different learning levels rather
than the system as a whole. This accommodation

is typically adaptable but may be adaptive.

Learning help — what help is presented to the user
and when.

Queries are initiated and defined by the student

user from anywhere in the course, individualised

through user-driven interactive dialogue and
exploration.

Table 4.1: Individualisation dimensions supported by the learning computer.

4.3.2 Integrated Support, Communication and Collaboration

The basic means by which the learning computer addresses the lonely learner problem
confronting extramural students is by integrating communication, collaboration, and
study help into a single framework. Distance students can communicate with each
other, collaborate together on joint projects and help each other solve problems, seek
help and guidance from the course tutor when necessary, and seek help and guidance

from the system itself as an avenue of first — or last — resort.

This integrated approach represents a simpler method of achieving the individualised
help goals of adaptive help systems. Atthe same time it adopts the approach of Murray
et al. (2000) of developing a design which provides for more advanced or intelligent
software features, but implements a less sophisticated version that can then be

evaluated for evidence that students would benefit from the more advanced features.

The fundamental concept behind each aspect of this integrated system is outlined in

the following paragraphs.

Chapter 4: Conceptualisation 76

Communications

Students receive messages from other individual students or their tutor, and send
messages to individuals, to their work group, or to all participants in the course. These
messages are asynchronous, as with standard email, and can be transmitted whenever
a student is logged onto the learning network. However, they can be read and written
whenever the student is using their own learning computer. All messages are
automatically marked with the position in the course (section and topic) at which they

were composed.

Collaboration

Internal students organise themselves into workgroups for collaborative projects, and
designate group responsibilities such as leader. The learning computer supports the
organisation of extramural students on a similar basis. Co-operation is effected through
tools that enable sending and receiving messages between individuals, sending and

receiving messages within groups, and sharing documents within groups.

Group members communicate with the course tutor as well as with each other. These
simple forms of collaboration enable assessment of group work through monitoring

group discussion, peer assessment and deliverables produced jointly by the group.

Extramural Support

The learning computer provides two kinds of help — help with how to use the system
and help with learning the course material. Help with using the system is provided in a
context-sensitive, just-in-time, just enough, basis. Within the learning computer this is
called “Help” and is taken up further in Chapter 5. In this section the concern is with
providing additional learning help to the extramural student. This is called “Extramural

Support”.

A student can obtain extra support in understanding any concept covered by a course.
For the internal student, the most effective way to get this support is to ask another
student or a tutor. In the learning computer this means sending an electronic message.
However, in an extramural context there is no guarantee that someone is on-line and
available to answer a query promptly. Therefore, the student can also query the
Extramural Support system itself as a first attempt to get a meaningful response to their

question, or when no other avenue is available in a timely manner.

The learning computer monitors the student’s interactions with Extramural Support and

reports the results anonymously to the course tutor. For example, it notifies the course

Chapter 4: Conceptualisation 77

tutor whenever a student finds a system response unhelpful. The student may also
notify the tutor directly. These notifications, together with other queries and group
discussions, including tutor responses, provide the basis for the dynamic updating of

E xtramural Support by the tutor to improve the system’s response to particular queries.

Information gained from monitoring student interactions with the support system may

also be used for guiding students towards concepts which they need to revise.

4.4 Integrated network user interface

The learning computer provides all the functions and features the extramural student
needs for learning, through a single integrated interface. This means transparently
integrating study materials sourced from a variety of locations, and in different media
formats and learning styles. It includes communicating with other course participants
and updating the computer when new or revised course materials become available.
The learning computer is therefore more than an interface to learning materials stored

on the student’s machine. It is also an interface to a network of computers.

Course materials are accessible and usable whether or not the distance student's
computer is currently connected to the university. Provision is made to incorporate
learning material delivered by alternative means, e.g. the post (CDs) or satellite TV
(video). Therefore, the learning computer provides a richer and more specialised user
interface than that provided by a standard web browser, including the ability to display

and execute software that runs in non-web-browser environments.

At the network level, these characteristics are made possible through the network
acting as a delivery system for documents, programs and correspondence, rather than

as an interactive learning medium. The interactivity resides on the student machine.

In this way, reliance upon the network to support learning functions is greatly reduced,
as the entire weight of the system is shifted away from the education provider and to
the individual learner. Most functionality now resides on the student machine (Figure
4.2).1t also means that learning materials delivered by alternative means - such as
portable storage media through the post, or satellite broadcast — can be seamlessly

integrated into the learning environment.

Furthermore, the localised functionality of the learming computer fits well with the move
among educationists away from top-down styles of teaching to more exploratory and
collaborative forms of learning at the tertiary level. It is a vehicle through which the
student can more easily explore their subject, including throughout the available

network.

Chapter 4: Conceptualisation 78

Learner Provider Learner Provider

@, ()
/\ /\

Courseware Learning Computer

Figure 4.2: Learning computer shifts weight of system to learner.

4.4.1 Network characteristics

The learning computer takes advantage of the communication and co-operative work

potential of computers linked into networks (and internetworks). But this potential is

realised in forms that work over slow and unreliable network connections, while

supporting the special requirements and preferences for an extramural learning

environment. Using the time-space matrix for computer supported co-operative work in
Shneiderman (1998, p. 481, based on Elis et al, 1991) the system is both
asynchronous and distributed:

Asynchronous. The network supports anytime, anywhere study, including in
different time zones and with different media and levels of sophistication in
telecommunications. Key functionality cannot require synchronous
communications between any components of the network, or assume high-
speed network connections, and makes provision for an unreliable network.

This requires an asynchronous communication model as with email.

Distributed. Most system functionality resides on the student machine.
Extramural study is largely self-paced with minimal requirements for centralised

monitoring of students' activities. The network supports the frequent exchange

Chapter 4: Conceptualisation 79

of short messages and periodic larger updates of the student’s course materials

from a central repository.

At the same time, to support co-operative work — i.e. for students (and tutors) to
collaborate and communicate with each other over the network — the data held by each

participant is periodically synchronised and updated through a central distribution point.

[A
I Work group [
1 I
I I
I I
Course |, |
Communicati External Internal authoring | Student Student || Student
ons learning learning & 1 USEr W or 1 -
manager resources resources managem || |
ent | 1
| 1 y
A A T A T A I__‘_t___‘_L_I AL
Key

—> Transfer of learning resources

—> Communications

Figure: 4.3: Networked extramural e-learning — conceptual view.

4.4.2 A networked extramural e-learning system

The conceptual view of the overall network required to support the leaming computer is
depicted in Figure 4.3. The high-level requirements each for the network components
are summarised in Table 4.2.

The system supports two-way communications among all users, including the
exchange of documents within workgroups, and the one-way downloading of leaming
resources from the university to individual students. It provides an internal repository
for storing course resources and communications, as well as access to external

repositories through which the student can access additional learning resources.

There is a communications manager which controls users’ access to internal course
resources (repository), including workgroup files and messages, and two distinct user
components — the learning computer for the student and the course authoring and

management system for the tutor.

Chapter 4: Conceptualisation

80

Component

Rights

Responsibilities

Student

View own course

View own grades

Receive messages

View group discussion
View assignments

View group biographies
View supporting material
Access Extramural Support

Receive course updates

Logon onto system
Make notes

Send messages
Add to discussion

Submit assignments

Ask questions to system

Course Author

View course

View own messages
View all assignments
View all grades

View all students

View supporting material
View Extramural Support

View student records

Log onto system
Edit/Update course material
Send messages

Add to discussion

Grade assignments

Update grades
Locate/update links
Update, respond to queries
Add/delete students

Communications &
Repository Manager

Access all internal resources

Control network access
Manage messaging system

Provide updated resources to users

Internal Resources None Store all course learning materials -
documents, videos, tutorials; work
group files, messages

External Resources None Provide supplementary materials -

library, www

Table 4.2: Requirements for network components.

Provision is made for students to be organised into workgroups, which are monitored
by the tutor. All

deliverables and workgroup participation is private to the student component and used

monitoring of individual student performance beyond course

only to support an individualised help system.

4.5 Conclusion

In this chapter, a high level conceptual view of an extramural e-learning system has
been presented, built around three design strategies -- specialisation, customisation
and decentralisation. At its heart is the concept of a learning computer providing the

extramural student with a simplified, easy to use, networked learning environment. To

Chapter 4: Conceptualisation 81

support this environment a range of network services and support is required. In
Chapter 5, the technological platform for this overall extramural e-learning system is

specified.

Chapter 4: Conceptualisation

82

Chapter 5: Towards a specification 83

Chapter 5

Towards a specification for an extramural e-

learning system

In Chapter 4, an extramural e-learning system was conceptualised as a learning
computer. In this chapter, a prototype e-learning system called IMMEDIATE
(Integrating MultiMEdia in a DIstAnce learning and TEaching environment) is
introduced. IMMEDIATE embodies a specification for a learning computer and its

networked support services.

Incremental prototyping has been used to develop IMMEDIATE. This prototyping
process is discussed in Chapter 6. In the present chapter, the major technological
platform and design decisions that provide the framework for this prototyping are
discussed. They are:

e the style of network user interface for the learning computer;

the architecture of the IMMEDIATE communications network;

e the development platform upon which IMMEDIATE will be implemented,;
e the basis for the learning computer’'s modular construction;

e the framework for providing an adaptable learning environment; and

e the overall architecture of the IMMEDIATE prototype needed to prove the
concept.

None of these issues could be decided without reference to any of the others. The
order in which they are discussed in this chapter reflects the priority in which they had

to be addressed flowing from this interdependence.

The user-centred approach of the leaming computer meant that the logical starting
point for the design was the character of the user interface. Once this question was
settled then the network architecture necessary to support this interface could be
determined. To minimise any technological bias, the hardware and software

development platform was not considered until these issues had been resolved.

Chapter 5: Towards a specification 84

5.1 Network User Interface

Fundamental to the concept of the learning computer is the integration of all the
functionality an extramural student needs into a simplified graphical interface. This
interface seamlessly combines resources located on the user's computer with those
accessed over a network, or delivered via different communication media. Most
functionality resides on the learning computer, with the network acting as a delivery

medium. The system should be usable with or without a network connection.

For a student to link their home computer to a university server they must connect via
the telephone system — either through a direct dialup connection or using the Internet
via a dialup connection to their ISP. From the remote student’s perspective, there is no
performance benefit and considerably more expense (toll charges) to the direct dialup
alternative. From the university’s perspective, there is little to choose between the two
methods, especially where the university network uses the Internet communication
protocols (TCP/IP). Therefore, for the purposes of the IMMEDIATE prototype, network

requirements can be addressed in the framework of the Internet.

In this section, alternative network user interface (NUI) styles are considered in light of

these requirements, and an approach for providing an integrated interface is outlined.

5.1.1 Alternative network user interfaces

To determine the best method for implementing an Integrated Interface, a
comprehensive review of alternative internet-oriented NUI styles has been carried out
(Appendix C). While most such NUIs are referred to under the generic term, "web
browser", their functionality and relationship to the underlying operating system have
undergone an evolution, which have taken most of them a long way from the “write
once, run anywhere” concept which browsers were originally designed to support. The
main variations that can be identified are classified here as the standard web browser,
the multi-platform enhanced web browser, the single-platform enhanced web browser,
the specialised client interface, and the telecommuting interface. Each of these will be

discussed in turn.

General-purpose browsers

The standard web browser accepts as input, text documents containing embedded
instructions (tags) which describe the format in which the document is to be displayed.
These text documents are stored on a web server and served over the network to the

browser client. In this way, the same document can be correctly displayed on any

Chapter 5: Towards a specification 85

computer, regardless of its underlying hardware and operating system platform,
provided a web browser application is available for that platform (Tanenbaum, 1996, p.
695).

These browser applications are known as thin-clients to distinguish them from
client/server applications in which the client machine runs software that is stored locally
(Dewire, 1998, p. 118).

To provide some interactivity, static web documents may be replaced by dynamic or
active documents, which can respond to user inputs (Comer, 1999, p. 434). A dynamic
document is created at the server end whenever a browser request is received,
enabling the contents to vary from one request to the next. An active document is a
program which is downloaded to the user’s browser where it continuously recompiles
and re-displays the document in response to user input. To run active web pages a
browser must be “enhanced” by adding the capacity to compile pages from programs
before displaying them to the user. The three basic types of web document are
compared in Figure 5.1.

Presentation J Presentation Presentation

Page
HTML HTML Compiler
internet Java + | ActiveX +
4 HTML HTML >
Active Page
Page Server Page Server o8] Pag? Database Program
Compiler
Server
Static Presentation Dynamic Presentation Active Presentation

Figure 5.1: Three basic types of web documents.

Dewire notes: “In striving to be portable, HTML sacrificed some of the interactive

capability that is proprietary to each operating system” (Dewire, 1998, p. 31). Most

Chapter 5. Towards a specification 86

browsers have been enhanced in order to utilise more of the functionality offered by the

computer than is available through HTML' (Figure 5.2).

A wide range of technologies has been applied to extending the functionality of web
browsers. One useful way these can be categorised is whether they work across

multiple hardware/software platforms or whether they are specific to a single-platform.

Text & graphics Plug-ins Containers for components
Shockwave
Acrobat VB Script Java Script
HTML Real Audio
Cool Fusion
: Active X Java Applet
Live 3D

Figure 5.2: Enhanced web browser components (from Dewire, 1998, p124).

The multi-platform, enhanced browser provides additional functionality by using its own
Java Virtual Machine to run Java programs (applets) downloaded with web pages.
These programs run within the confines of the web browser and only interact indirectly
with the operating system. They should work on any platform for which the web
browser itself has been written. The applets are not persistent and must be
downloaded each time they are required (Dewire, 1998, p. 210-13).

However, to use computer functions not available inside the browser environment —
e.g. to print files or to write them to disk — Java programs will often be written to make

direct calls on the operating system, tying them directly to the wunderlying

! Many browsers also have some capability to handle documents stored in some XML formats
(Harald et al., 2002, p. 102). While this may increase the range of documents a browser can

display, it has no effect on the architectural issues under discussion here.

Chapter 5. Towards a specification 87

hardware/software platform (Goldman et al., 1999, pp. 338-39). They are then

essentially a single-platform enhanced browser.

The single-platform enhanced browser installs special programs called helper
applications or plug-ins, on the user's machine, which interact directly with the
operating system to provide extra capabilities. The browser passes a file to a helper
application which runs directly on the Desktop in a separate window, whereas the plug-
in displays the file within the browser environment. Such programs must be written for
each computer platform.

For the Windows platform, plug-ins and helpers have been generalised as reusable
software components called ActiveX controls. These are downloaded as required and
stored locally for use by any application installed on the computer. For Java,

JavaBeans play an analogous role within a browser (Dewire, 1998, p. 210-13).

The vast majority of browsers in use today are single-platform enhanced browsers,

mostly in the form of the Windows-specific Internet Explorer.

Myth of the platform-independent thin-client,

In the course of reviewing various Intermet-oriented NUI styles it has become clear that
two attributes of the web browser favouring anytime, anywhere functionality — its thin

client architecture and multi-platform capability — have become more myth than reality.

Goldman et al. (1999, pp. 287-88) noted that the scope of web browser software has
expanded horizontally to include accessing resources on the client machine and local
network, as well as Internet-attached resources. And this scope has also expanded
vertically to include all Internet-attached resources and services, and not only the
World Wide Web.

“Web browsers’ transition to managing local attached hardware resources means that
they must now be more closely integrated with client operating systems. Whereas in
the past, web browsers were just another application program executing over a
particular operating system via APls and operating systems calls they are now more
like a single integrated piece of software with a particular client operating system
embedded within the web browser software...” (ibid., pp. 288).

The Microsoft/Netscape browser war of the 1990s transformed browsers into huge and
complex software systems, as Netscape attempted to embed operating systems within
their web browsers and Microsoft attempted to embed web browsers within their

operating systems (ibid. p. 288). With Windows 95, before Microsoft merged its web

Chapter 5: Towards a specification 88

browser with its operating system, Internet Explorer required more disk space to install

than the operating system (Dewire, 1998, p. 123).

The implications for web application developers is that rather than writing one program
that will run anywhere, they find themselves increasingly having to provide different
versions for each browser/operating system platform. For instance, the main impetus to
Jade developing a special-purpose internet thin client for its database applications “was
that the different suppliers’ browsers were not always synchronised to each other with
their functionality and we ended up with a multiplicity of special code to generate for

each version/make of browser.” ?

The same problems face courseware developers who use the general-purpose web
browser for presenting course materials to the learner. Web-based courseware’s
multimedia content requires standard plug-in and helper modules like a media player
and PDF document reader. Any specialised functionality, such as TILE's Audiograph
(Jesshope et al., 1998), requires application-specific software modules which must be

written for each platform.

The implications for the student user of a web-based learning system are that they face
the complexity of installing additional software on their computer, as well as opening

them up to greater security risks (Goldman et al., 1999, pp. 337-38).

Specialised interfaces

Specialised client interfaces provide enhanced functionality more simply by building an
interface exclusively for the specific application. Jade, for example, uses a three-tier
architecture in which the interface accesses the application over the Internet, which in
turn accesses the database over a local network (Jade, 2000). JADE provides an
example where the functionality and usability of an Internet-based client-server
database application has been improved by dispensing with the general-purpose
browser in favour of a purpose-built thin client. A three-tier structure also allows for the
application to be moved to the client, so that only data has to cross the Internet, while

presenting the same interface to the user.

With the telecommuting interface the remote user logs onto their company LAN via a

direct dial-up connection (Goldman et al., 1999, pp. 462-66), or via the Internet using

2 Private communication from Keith Cowan, 10 September, 2001

Chapter 5: Towards a specification 89

tunnelling protocols as discussed later in this chapter (5.2.3). The NUI provides the
same view and functionality to the remote user, as if they were directly connected to
the LAN. Application logic is located on the remote machine or it is distributed between
the client and the server. Remote resources are presented to the user as if they were
stored locally. In the mobile computing variation, the user must be able to work off-line,

requiring only periodic updating and synchronising of files across the network.

5.1.2 Integrated Interface

None of the NUI styles reviewed above exactly match the requirements for a learning
computer interface. Rather, its integrated interface (Figure 5.3) combines aspects of

several of these styles.

Of the general-purpose browsers, the integrated interface shares most technically with
the single-platform enhanced browser delivering active web documents. With this style,
the functionality resides on the client with the Internet acting as a delivery mechanism.
And it combines the display of web pages with other interface objects that directly
access additional operating system functionality as needed. However, the single-
platform browser remains connection-dependent and presents its documents within the

clutter and complexity of the general-purpose environment.

Integrated Interface

Presentation
o iy pem———
| Java
Application
Network '

< >

interface

Operating System

Data
Management

IMMEDIATE

Figure 5.3: Integrated Interface.

Chapter 5: Towards a specification 90

The integrated interface implements the specialised client interface style in that the
needed functions and features are simplified for the user by being presented within a
specific interface for learning. Unlike the specialised thin client, however, the learning
computer is not connection-dependent and makes richer user of local computer

functionality.

The integrated interface combines the simplified interface of the specialised client with
the integration of network and local features of the telecommuter interface. And, like
the mobile computing client, the learning computer has all the required functionality

available locally. Only periodic synchronisation with the university back-end is required.

It is now necessary to define a network architecture for IMMEDIATE that can support

this combination of aspects of several different NUI styles reviewed above.

5.2 Network Architecture

If the learning computer constitutes the front-end of an extramural e-learning system
then the back-end is the supporting services provided by the university. These services
may be located on a single computer or a network of computers connected by the
university LAN. Each learning computer connects to these services via a variety of
possible paths encompassed by the wider Internet.

The learning computer only requires one-way broadband service for the downloading
of learning materials from the course repository in the form of text, graphics, programs,
audio and video. Collaboration and communication between students can be supported
by narrow band two-way telecommunications as with Internet email. Figure 5.4
highlights the rich variety of communication media that can be supported with this
approach. They include copper wire and wireless-based Internet, high-speed fibre optic
backbones, satellite broadband download, as well as the transmission of data by
satellite television broadcasts or via the postal system using portable storage media
such as CDs or DVDs.

Within this spectrum of digital communication media, it is practical and feasible for a
university to support unidirectional broadband and bi-directional narrowband

communications world-wide.

Television broadcasts, textbooks and other non-computer-based materials can also be
part of the overall learning environment supported by the learning computer, but
IMMEDIATE leaves it to the user to synchronise them with related computer-based

material.

Chapter 5: Towards a specification 91

Communications Teacher Internal
Manager User Student Internal
Service User Resources

Services

ampus LAN /

Student
User

Satellite dish
J

Student

. = v g N User
A\ A A
i Student \

External
Resources
Services

Wiretess Network User SatellteTV
Transmitter Broadcaster

Satellte
Broadband

Figure 5.4: IMMEDIATE accommodates diverse communication media.

5.2.1 Architectural style

Tagg et al. (1997, p. 238) use an analysis tool called the Gartner Spectrum to
distinguish between major client/server architectural styles (Figure 5.5). Using this
spectrum it is possible to highlight the contrasting network characteristics of
IMMEDIATE and web-based courseware.

Courseware is a centralised, hierarchical system, which implements the remote
resource style. Only presentation software (i.e. a web browser) is located on the
student machine. Application logic (functionality) must be downloaded with the data

from the university server.

In contrast, IMMEDIATE is best represented by the distributed logic (peer-to-peer)
style. All essential application logic and data are distributed to each user's machine.
Data is periodically updated through a remote database, which acts only as a central
repository rather than as the centralised data manager of the remote data management
style.

Chapter 5: Towards a specification 92

Remote Remote Remote Distributed Distributed
Presentation Resource Data Database Logic
Management (Peer-to-Peer)

Presentation

Presentation Presentation

‘ Emulation

‘ Presentation l

Data
LMpllwtlonJ LAppllcanon HManagemem

Data
Management
Network
. o Data
resentation Management

Data
I Application [Application ’ Application I Application Management}

[l | |

Data Data Data
Management Management Management

I Application

<

Presentation Presentation

(From: Tagg et al, 1997, p.238)

Figure 5.5: Gartner Spectrum of Network Styles.

5.2.2 Communication Style.

There are two main styles of communication where one application is requesting a
service from another across a network — synchronous or asynchronous — which Tagg
et al. (1997, pp. 280-81) aptly describe as hot or cool. With hot (synchronous)
communications, the client and server applications are tightly integrated through
intermediate software called middleware. With a Remote Procedure Call, for example,
the calling application accesses the server application through the middleware’s API,
treating the request in the same way as a request for a service from the local operating
system. The client waits for a response from the server before executing further code.
If the request is not immediately executed by the remote application because that
application is not running, is executing another request, or the connection is broken,
then the calling program will fail. This style of communication is best suited to a fast,
reliable communication network such as an Ethernet LAN (Comer, 1999, pp. 476-79;
Goldman et al., 1999, pp. 252-253).

With the altemative cool (asynchronous) message-oriented style, communications are
more like email. The client application sends a request to the server as a message.
Once the server receives the message and has been able to process the request, it

sends its response back to the client as another message.

IMMEDIATE will use a variety of the message-oriented style called message queuing

Chapter 5: Towards a specification 93

which is well-suited to communications across a less reliable network: "Message
queuing replaces the direct connection between applications with a message queue.
Each application attaches to a message queue that holds all incoming and outgoing
messages until they can be processed. Because the message queue exists
independently of the application, this removes the message-passing requirement that
both applications be running before communication is attempted" (Goldman et al.,,
1999, p. 243).

5.2.3 Connection style

The communication protocols defined by the TCP/IP Reference Model (Tanenbaum,
1996, pp. 35-38), which underpin the Internet, have increasingly replaced proprietary
protocols like Novell and Microsofts NetBeui on LANs as well. For simplicity, all
IMMEDIATE'’s network components should be built upon TCP/IP.

Under TCP/IP, all communications are broken down at the starting point into small
parcels of data called packets, which may be transported by a variety of means and
routes to the destination computer, where they are reassembled in the appropriate
format. These communications can be as varied as a short asynchronous text
message, a Remote Procedure Call, a large data file transfer, or a connection to a
remote server for an entire work session. The correct handling of different types of
communications is determined by additional protocols implemented on top of TCP/IP at
each end of the line. Several relevant higher-level protocols in the TCP/IP family are

summarised in Table 5.1.

SMTP HTTP S-HTTP FTP PPTP
Simple Mail Hypertext Secure-Hypertext | File Transfer Point-to-Point
Transfer Protocol | Transfer Protocol | Transfer Protocol Protocaol for Tunnelling
for delivering for for secure logging on to a Protocol for virtual
email across an communications transmissions server and private networking
internet between web between web downloading any over the Internet

servers and servers and permitted file
browsers browsers.

Table 5.1: Some higher-level protocols implemented over TCP/IP.

Web-based courseware provides for email messaging between course participants and
the direct transfer of data files. However, it is mainly built around web pages (HTML)
which use the HTTP protocol. HTTP is a stateless protocol in which each access of a

file on the server (i.e. a web page or component of a web page such as an image or an

Chapter 5. Towards a specification 94

applet) is treated as a separate connection (Comer, 1999, p. 425). It is designed so
that anyone can download any web page from any web site in any order. Thus,
systems like courseware, which control who can access a website and may also
constrain what they can see, must implement additional measures on top of HTTP.
This may be as little as capturing user information for logon purposes or it may involve
using database technology to generate web pages dynamically according to
information obtained from the user, to restrict what that user can see and provide some

interactivity.

If necessary, tunnelling technology can be used to implement a secure VPN across the
Internet, using encryption (Goldman et al., 1999, pp. 603-05). Tunnelling provides the
user with a continuous connection to a remote computer over an entire session. VPNs
are used by remote employees to securely log onto their company network via the
Internet to periodically update their files and exchange data or, where a broadband
service is available, to maintain a permanent connection with the company LAN for

telecommuting.

IMMEDIATE's support for a learning computer requires only that the network provide a
mechanism for transferring files and synchronising data between computers. It is more
analogous to the model of the remote worker updating their work files over a VPN than
to the modified web browser/web server model of courseware. However, IMMEDIATE
does not require the complexities of tunnelling. Therefore, IMMEDIATE will use custom

protocols to ensure correct synchronisation built on top of the File Transfer Protocol.

Access to the repository of learning resources can be secured through password—
protected logons. If additional protection is required for any data transfers, then
encryption/decryption utilities can be implemented at either end of the file transfer
process, using a freely available encryption algorithm such as the single key RC4

algorithm.®

5.3 Development platform

Given the ubiquitous nature of the World-Wide Web, the Personal Computer (PC) and
the Windows operating system, there are only three basic options for a development
platform on which to build the student end of IMMEDIATE for installation on a home

computer. These are:

% http://mwww.vocal.com/RC4. pdf

Chapter 5: Towards a specification 95

e a multi-platform implementation based around an enhanced web browser,
e a multi-operating system solution specific to the PC, or
e a Windows-specific implementation.

Each of these options will now be considered in turn.

5.3.1 Multi-platform

The multi-platform approach is the one usually adopted for developing computer-based
learning systems today. It centres upon using Java applets to add additional features
and functions to an HTML- (or more recently, XML-) based browser environment. This
approach, however, has a number of disadvantages for implementing the learning

computer strategy.

In order to work on all operating systems and hardware platforms Java applets must be
limited to those features and functions available on all of them (Honeyball, 2002b). The
learning computer requires a richer interface than can be easily built using these lowest
common denominator capabilities. It would also be an advantage to have greater
control of the application’s look and feel than is possible using Java’s algorithm-based

screen organisation and display (Naughton et al., 1999, p745).

To provide all the required leaming functionality, extensions such as applets, plug-ins
and ActiveX controls, have to be written for each platform on which the learning
computer is to run, negating many of the multi-platform benefits of using Java in first
place.

Lastly, and most importantly, the simplified and integrated requirements of the learning
computer interface are at odds with the visual clutter and complexity which
accompanies a general-purpose web browser (Figure 3.1). Therefore, to effectively use
the multi-platform approach, a special-purpose web interface would have to be built for

every major computer platform.

5.3.2 PC-based

There are essentially two types of operating systems that are available for the PC —
Microsoft Windows and Linux. A number of business users, and a small layer of
experienced home PC users have shifted to the Linux operating system, an open
source product based on Unix, due to its cheapness, adaptability and reliability. It has
become especially popular as a server system for the Internet (Hall et al., 2000, p12).

However, the great majority of home computer users, including almost all extramural

Chapter 5. Towards a specification 96

students (Extramural News, 2002), use PCs supplied with one or another version of
Windows. To re-configure a Windows PC to run a Linux-based learning computer is not
a trivial task and could not be expected of most computer users working in isolation.

This is discussed further on in the chapter (5.4).

More interestingly, because Windows and Linux are both PC-based and therefore
share the same hardware instruction set, applications written for one operating system
are often relatively easily ported to the other (Wells, 2000). For example, applications
built with the Delphi Integrated Development Environment (IDE) can be designed so as
to be portable to the Linux platform via the Kylix development environment (Swart,
2001). Thus, in theory at least, a Windows-based implementation of a learning

computer can be readily customised to work in all PC-based environments.

5.3.3 Windows-based

The Windows operating system appears to the systems programmer as a set of
specialised C libraries, the WIN32 API, which can be directly included in a standard C
or C++ program (Hart, 1997, Ch 2, Petzold, 1996, Ch. 2). Thus, the components of a
learning computer might be built directly from the basic Windows libraries and made
available to a learning system developer as ActiveX controls. "ActiveX controls are
precompiled software objects that can be embedded into other applications. ActiveX
controls can be written in a variety of programming languages including C, C + +,
Visual BASIC, and Java" (Goldman et al., 1999).

A simpler and more efficient method for achieving the same end is to use a visual
programming development environment, such as the Java-based JBuilder or the
Object Pascal-based Delphi, which offers more direct support for an object-oriented,

component-based, software engineering approach.

Java has become a popular programming language because of its strong support for
object-orientation and its portability across computer platforms. But as an interpreted
language that only uses a subset of the Windows API functionality it is a less effective
option for building a Windows-specific application than Delphi, which is fully compiled

and more tightly integrated with the underlying operating system.

According to Cantu (1999), Delphi “was and still is the best combination of object-
oriented programming and visual programming for Windows” (pp. xxix). Delphi
maximises what a competent programmer can get from Windows, without their having
to directly deal with the complexities of the Win32 API. Because Windows libraries can

be dynamically linked to any calling program at runtime, the full functionality of the

Chapter 5: Towards a specification 97

operating system can be accessed through the Delphi development environment. It
does not matter that Delphi itself is not C-based.

The components of a learning computer can be built in Delphi and then made available
to a system developer as a package (i.e. a “tab”) within Delphi's “drag and drop" visual
component library (“palette”), or they can be "re-wrapped" by Delphi as ActiveX
controls, thereby becoming available to any Windows-based development environment
supporting ActiveX (Cantu, 1999, pp757-59).

A more recent development has been the introduction of the NET Framework by
Microsoft, which is intended to eventually replace the Win32 API as the basis of all
Windows applications. . NET provides a standard framework for developing standalone
or web-based applications, which may be written in any language, removing the need
for each language to have their own framework. The programs are then compiled to
run on a virtual machine that draws upon the full functionality of the Windows operating
system. The latest versions of Delphi are .NET-based and provide a facility for
migrating Win32 applications to the .NET Framework (Microsoft, 2005; Borland, 2004).

Based on all these considerations it was decided that IMMEDIATE should be
prototyped for the Windows platform using the Delphi IDE.

5.4 A Specialised User Shell

The goal of the learning computer is to simplify the computer environment and render
the interface invisible to the user. In this section, the technical outlines for meeting
these requirements within a Windows framework are discussed. The student view of
the learning computer is a special-purpose, direct-manipulation, graphical interface,
which provides all the functionality needed for a user to complete a task in the learning
domain.

To achieve thisitis necessary to remove any visual garbage not directly relevant to the
task at hand. General-purpose features and functions associated with the operating
system or a web browser, that are not needed to accomplish a task in this domain,

should be treated as a distraction and not be made available.
In a Windows context, this means:

e preventing the user from accessing or being distracted by general-purpose

features such as the Desktop and the directory system;

e removing the standard menus and toolbars associated with individual windows,

including web browser windows; and

Chapter 5: Towards a specification

98

Approach

Possible
implementation

Comments

Specialised machine

General purpose PC that is

only used for a single purpose.

The "visual garbage" would
still be there. Not realistic to
expect it to remain single
purpose in the home

environment.

Specialised user profile

User profile with specialised
system settings i.e.
customised desktop and
directory view

Goes beyond options available
for Windows profiles. More
realistic on Linux which has
unique directory system for
each user and can be
customised to meet special
requirements. Does not hide
superfluous features and

functions.

Specialised application

A Windows application with

standard menus etc removed.

Simplest implementation. Can
be readily installed on any
machine using same operating
system. User still within the

Windows environment.

Specialised operating system

Dual boot Windows/Linux with
a customised Linux GUI as

learning computer.

Requires skilled installation

Specialised user shell

Superimposes own desktop
over the operating system
desktop. User can access
operating system features and
functions only through the
specialised shell

Can be installed as an
application, but shuts out the
general Windows

environment.

Table 5.2: Possible methods for rendering the interface invisible.

e limiting generic functions like electronic mail and web browsing to the current

learning domain.

Five possible methods have been considered for implementing these requirements on

a PC running some version of the Windows operating system (Table 5.2):

e A single-use computer. Implementing a single-use Windows-based PC approach

requires that the extramural student maintain a special computer at home reserved

Chapter 5 Towards a specification 99

for learning. All Windows general-purpose functions and features would remain

accessible.

e A special-purpose user profile. Windows operating systems allow user profiles to be
set up which restrict what is displayed on the Desktop and what data files can be
seen by a particular user. All programs installed on the machine can be accessed,
however, as can all their general-purpose features and functions. It is not realistic
to expect all extramural students to be able to set up and maintain their own user

profile for learning.

e A special application. Installation wizards have made it possible for relatively
inexperienced computer users to install Windows applications. A special application
can be presented through a custom interface without all the standard Windows
features like menus and taskbars. However, the learner is still working within the
overall operating system environment whose complexities and distractions are just

a mouse-click or keystroke away.

e A specialised operating system with a dual-boot PC. Operating systems are
implemented on at least two levels — an inner kernel containing the functionality,
and an outer user command interface, or shell, through which the user interacts
with the kernel functionality (Flynn et al., 1997, pp. 4-7, Brookshear, 2003, pp. 113-

115). Modern operating systems offer a direct manipulation graphical user shell.

Linux, with its open source code and a separately-available kernel, has been
designed so that programmers can add their own user shell (Dyer, 2004). In theory,
the learning computer could be implemented as a specialised user shell for the
Linux operating system. However, to run on a Windows-based PC would mean
creating a dual-boot system by partitioning the computer’s hard drive and installing
the specialised operating system in the space created (Hall et al., 2000, p. 54). This

is way beyond what can be asked of a typical home computer user.

o A special-purpose graphical user shell for Windows. Another possibility is to add a
special-purpose user shell to Windows. Implementing this shell is more problematic
than in Linux, because Microsoft’'s proprietary system does not provide an open
source or kernel-only version that would allow its GUI to be easily replaced by a
custom version. It, therefore, would have to be superimposed over the Windows

GUI in such a way that Windows becomes invisible to the user.

From reviewing these alternatives it was concluded that the best approach for
implementing the learning computer would be as a special-purpose user shell. This

could be done most cleanly as a Linux-based implementation. But to meet the

Chapter 5: Towards a specification 100

requirements that the learning computer be simple to install and run from the Windows
environment, the best solution was for IMMEDIATE to be implemented as a specialised

graphical user shell — a Learning Shell — over the Windows operating system.

5.5 Modular construction

The learning computer should be designed and built on a modular basis, with separate
interface, application logic and data management layers. To further facilitate
maintenance and reusability, distinct logical functions within each of these layers

should be implemented in separate software modules.

A requirement of the learning computer is that it teaches a topic in a number of
alternative study modes. These modes are defined by a unique subset of elements,
each of which encapsulates a specific learning artefact. This modularity would suggest
that the component approach to assembling interfaces, popularised by rapid
application development (RAD) environments like Delphi and Visual Basic (Osier et al.,
1997, p. 4), is a good fit for building an Integrated Interface. Study modes can then be
implemented through a mechanism for selecting from a pre-installed set of learning

components (Figure 5.6).

Dewire (1998, pp. 198-99) describes a component as a reusable software module,
designed to be used within another application called a container. It may consist of one
class, be a composite of several classes, or be an entire application. In contrast to an
object, whose code must be accessible for the object to be used, a component is

designed so that it can be used without modifications to its source code.

With a RAD approach each learning element can be implemented as a separate
software component encompassing the necessary functionality. The following

functionality may be provided by the component:

e customising a general-purpose tool provided by the underlying operating

system (e.g. a media player);

e linking to a separate application installed on the user's machine or accessed

via the network (e.g. an adaptive tutoring application); or

e encapsulating a more sophisticated, purpose-built learning tool utilising new

educational technologies (e.g. XML-based learning objects).

A learning component uses the same general form to display different content to the
student at different points in a course. Conversely, different learning components map

the same general learning content to different forms at the same point in a course. The

Chapter 5: Towards a specification 101

learning computer maps the appropriate data file to a component.

Not all elements of the learning computer interfface embody learning tasks. Some
perform system management tasks such as capturing logon or other information about
the student, or to enable the student to navigate the course and access different study

modes. These should also be implemented as reusable software components.

Learning by lecture

Lecture Lecture Notes Learning Goals Group Work

Tutoriat Stugegiotes Assignment Study Guide

Learning by Tutorial

Lecture Lecture Notes Learning Goals Group Work

Tutorial Siudenndiotes Assignment Study Guide

Figure 5.6: Modes implemented by selecting from pre-installed components.

Just-in-Time Help

To provide help in using the various elements of the system, a Help component should
be linked to every interface element. This component should provide specific, context-
sensitive help on using the particular interface element. It should not merely provide a
path to an overall help system, which the user must try to navigate to find what they are
looking for.

In the Delphi RAD environment, very specific help on a component is provided to the
user (i.e. the programmer) by their selecting the component with the mouse and
clicking the “F1” key (Inprise, 1999b, pp. 2.11-12). In an analogous way, IMMEDIATE
should provide just-in-time, just enough information for using a component whenever

the user (i.e. the student) selects that component and clicks the “F1” key.

Chapter 5: Towards a specification 102

5.5.1 System Components

The Learning Shell is required to manage Windows functions like file input and output,
document printing, the opening and closing of screen windows, and networking, in such
a way as to render the operating system invisible to the learner. This requires an
intermediate level between the learning computer interface and the operating system.
This system level is required for translating and synchronising actions between the
domain-oriented objects and interactions of the Learning Shell and the generic file-
oriented functions of the operating system. To facilitate modification and re-use the

system level should also have a modular design.

Interface components

API

Controller

Model Layer

Operating system

Figure 5.7: Learning Shell System components.

The essential parts of the system level are shown in Figure 5.7. They consist of a
Controller object and a model layer. The Controller object provides an API through
which interface components interact with each other and with the system level. It plays
an analogous role to a browser’s controller, which manages the other components and
calls on them to perform operations specified by the user (Comer, 1999, p. 427). The
learning computer Controller, however, has additional capacities to manage the

interface for the user, through reference to the model layer.

The model layer is a set of data structures and related operations, each of which
models a different aspect of the learning computer. These data structures together

constitute a reference model, enabling interface objects to interact and synchronise

Chapter 5: Towards a specification 103

with each other correctly and with the Windows file system.

The reference model incorporates the System Tree, a hierarchical structure modelling
the course table of contents. The System Tree provides the basis for navigation to
different sections and topics within the course and records the student’s progress
through the course, using a traffic light metaphor (Figure 5.8). Changing position in the

System Tree does not change the student's study mode.

The reference model stores information about each study mode and learning
component offered by a course. This provides the basis for swapping between study
modes within the course. Changing study mode does not change the student's position
in the System Tree. The reference model also models the directory system containing

course learning resources. It maps a learning component to its correct resource file.

To facilitate individualisation, the model level must model the student as well as the
system. It therefore includes a Student Model, which stores information about the user
needed by the learning computer that would not otherwise be available. The Student

Model is discussed further in the next section.

Course

Section 1 » Section 2 >

y

Topic 2 Topic 1 Topic 2
Attempted

Figure 5.8: System Tree models table of contents and student’s progress.

5.6 Adaptable environment

A Learning Shell must provide an adaptable environment which the student can

individualise to suit his or her own learning preferences and needs. Murray et al. (2000)

Chapter 5. Towards a specification 104

highlight advantages of the adaptable approach to individualising a learning system

such as retaining the locus of control with the user and being simpler to implement.

This section specifies the key elements for achieving this goal within the IMMEDIATE
prototype.

5.6.1 Student Model

Individualisation of the Learning Shell is made possible through reference to a locally-
stored Student Model.

Adaptive teaching systems model the student's knowledge so that the system can
dynamically adapt its teaching strategies to suit the individual student (Allessi et al.,
1991, p. 463). IMMEDIATE models the student’s knowledge so that the system can

help the student adjust their learning strategies and priorities.

The Student Model records the student’s current state vis-a-vis the course, which

includes:
e theirname and password;
e their current position in the course (section and topic);
e their current study mode;
e the sections and topics they have attempted or completed;
o their progress in meeting key learning goals and concepts; and
e any other information necessary for configuring the user’s environment.

The information in the Model is saved to permanent storage whenever the student’s
state is changed.

The Student Model enables the system to track the student through the course in order
to preserve their position when changing study mode or quitting the system. On re-
entering the Learning Shell, the user can be given the options of returning to where
they left off previously, or of viewing how far they have progressed through the course

and selecting a new topic or mode of study.

5.6.2 Integrated Learning Support

Providing learning support to individual students is facilitated by the integration of this

support with the communication and collaboration facilities.

The basic techniques for collaboration and communication amongst students and with

Chapter 5: Towards a specification 105

a tutor across a public communications network are well-established and are now a
basic component of courseware packages. The simplest method is to provide email-
based correspondence and discussion groups. Courseware systems may utilise their
database capabilities to organise these discussions in specific threads or link them with

specific parts of a course (Goldberg, 1997).

Extramural Support should enable direct student queries on a particular subject. And it
must work when the student is off-line and therefore cannot be connected to a central

database.

To meet these requirements the integrated system should be built upon a relational
database, which stores all correspondence, discussion and learning support
information. SQL queries offer a straightforward mechanism for providing individual
student and tutor views of this database, and for searching for answers to student

queries.

This database should be organised along the lines of IMMEDIATE’s distributed logic
architecture. The best fit would be along the lines of models that have been developed
to support mobile computing such as the “Briefcase model” (Inprise, 1999a, pp. 13.17-
13.18) or “asynchronous replication” (Connolly et al., 1999, p. 712). These represent a
more peer-to-peer style of distributed database organisation in which each user has a
local copy of the database and some mechanism is provided for caching of updates to

allow asynchronous, off-line remote functioning.

Separate email-based communications are not necessary in IMMEDIATE because all
students can be linked to a central copy of the database over the Internet. Local copies
of the database on student machines can then be synchronised and updated

automatically whenever the student logs onto the network.

5.6.3 Individualised Support

As well as integrating learning support with the system's communications and
collaboration, IMMEDIATE must individualise it so that a student can receive
meaningful, relevant help from the system itself, without having to turn to the course

tutor or fellow students with every query.

IMMEDIATE should provide an adaptable mechanism through which the user initiates
a dialogue with the system by defining a query on a particular subject and then
receives a specific, context-sensitive response. Laddering, i.e. the repeated probing of
an issue via Why-type questions (Reynolds et al., 1988) should be supported. In other

words, if the student is not satisfied with the system response then it should be

Chapter 5: Towards a specification 106

possible for the student to repeat or re-define the query to multiple depths, in addition

to being able to pass the query on to the tutor.

Extramural Support should be able to learn from its experience and improve its

responses to the same or similar queries over time.

The starting point for meeting these requirements is recognising that because the
learning computer tracks the student as they work, all communications -- including
queries and their responses -- are linked to a particular position in the course. This
provides the framework for organising these communications into a coarse-grained

knowledge base.

Organising Learning Support as Knowledge System

There are three elements to be considered in utilising the system database for a

knowledge system:

e Providing a more user-friendly interface query interface than standard SQL or

Query By Example can provide;

o Developing a directed search strategy which aims to return a more meaningful
result set than is possible through a blind or brute force search of the entire

database.

¢ Modifying the structure of the database (e.g. by adding fields) to facilitate

implementing either of the above strategies.

User-Friendly Query Interfaces

Harmon et al. (1985, p. 262) note that: “In many cases, small knowledge systems
derive their utility from their user-friendly nature rather than from their ability to capture

knowledge that would be difficult to represent in a conventional program."

Querying databases is considered a promising arena for applying Artificial Intelligence
techniques for natural language parsing because databases usually represent a
coherent and restricted domain (Luger et al., 1998, Ch. 8). Another simpler approach
allows a subset of English to be used in natural-language-like queries which may be

parsed by their syntax or their semantics (Heinrich et al., 2000; Heinrich et al., 2001).

For the purposes of this initial prototype a highly-simplified modification of the semantic
querying approach in Heinrich et al. (2001) will be used. Queries are limited to four pre-
defined types “What?”, “Why?”, “Where?”, “Who?” .The semantics of these queries are

summarised in Table 5.3. The user selects one of these query-types and then

Chapter 5. Towards a specification 107

associates it with a key word or phrase in the course material. The efficacy of this

approach may then be evaluated, and the need for a more sophisticated approach

assessed.
Dimension Meaning Comment
What? What is the meaning of this | Involves finding the best match for the phrase (or its
word or phrase? synonym) in a course glossary.
Why? Explain this concept Involves searching a database for the most
further. appropriate explanation or combination of
explanations of a particular concept (phrase).
Where? Where can | find further Involves searching a database for further references
reading on this concept? (links) to the current phrase, subtopic or topic.
Who? Who has written further on | Involves searching a database (or internetwork of
this concept? databases) for further references (links) to authors on
the current phrase, subtopic or topic.

Table 5.3: The four dimensions of the Integrated Help system.

Directed Search

A perusal of Table 5.3 shows that the concept of searching a database is at the centre
of Extramural Support. The simplest method is a text search of the entire database
looking for key words, and returning every matching record. This blind or brute force
search strategy will find any and all references to the key words in the database but will
have no way of selecting and ranking those results likely to be most helpful to the user.

A more directed search strategy is required.

Gonzalez et al. (1993, Ch. 1) describe search strategies as the "foundation of artificial
intelligence" (p. 3). The principal components of a Knowledge-Based System are a
database, a user interface, and an intelligent program, or inferencing mechanism,

mediating between the user and the database (Figure 5.9).

Within the Extramural Support system, the inferencing mechanism consists of the rules
for searching the database to provide the most meaningful possible result. A directed
search strategy includes what to look for, where to look for it, and how to rank/present

results? Extramural Support implements these in the following manner:

Chapter 5: Towards a specification 108

Intelligent
program
User= User
Interface
Database

Figure 5.9: Knowledge-based system components (Gonzalez et al., 1993).

e What to look for. The user selects what type of query to make and on what subject
(i.e. what key word or phrase). The system maps the key word or phrase to related

terms.

e Where to look for. The system uses the system tree to search the database,
beginning with the current topic, then the closest adjacent topics (i.e. leaf nodes in

the System Tree), until sufficient results have been found.

e How to present/rank results. The query results are ranked so that the most relevant
result is presented first and the least relevant, last. At its simplest level, the results
are automatically ranked by their proximity in the System Tree to the current node.
The implementation should allow for more sophisticated ranking algorithms to be

added during the prototyping process.

Modifications to the database

Because the System Tree is the meta-description of the learning computer — used by
the student model, extramural support and the directory system — text and keyword
searches of such a structured database are directed in a way not otherwise possible.
The teacher edits his or her responses to student queries and other useful discussion
items, including by adding keyword and other links between entries to facilitate various
query types and deeper searching. In this way the integrated help system is built

dynamically and collaboratively by the tutor and students.

Chapter 5: Towards a specification 109

5.7 IMMEDIATE specification

The learning computer is conceptualised as the front-end of a networked e-learning
system for extramural study. The main components of this network, and their high level
requirements, are discussed in Chapter 4 (4.4.2). Ease of maintenance and reusability

require a clear separation of functionality between these network elements

IMMEDIATE is a prototype system developed to test and evaluate the concept of the
learning computer. It therefore needs to implement only those elements that are

necessary to achieve this.

While the student interface is central to the learning computer concept, this project is
much more than an interface evaluation exercise. It is also about proving the feasibility
of a mechanism for the authoring and delivery of learning material in support of a
collaborative learning environment, that is accessible and usable by extramural
students studying alone, utilising strategies of specialisation, localisation and
adaptability. This means that to implement IMMEDIATE for the purposes of evaluating
the hypothesis, three separate prototypes need to be built and then integrated into a
working system. They are a Learning Shell, a Course Authoring and Management

Application and a Communications Manager.

The Authoring application is linked to the Communications Manager and the Course
Repository via a Local Area Network (LAN).

Earlier in this chapter (5.4), the rich variety of communication media that can be
supported within this approach was highlighted, including standard telephone, wireless,
digital satellite and postal technologies. The essential requirements are the provision of
a bi-directional narrowband Internet connection for communications and a uni-
directional broadband media for downloading learning resources from the course
repository to the learning computer. Variations between telephone, wireless and
satellite broadband delivery are resolved at the level of the computer hardware and
operating system, and appear to the learning computer as an Internet connection.
Therefore the two main categories of communication media that need to be evaluated

through prototyping are the Internet and portable storage media.

The Learning Shell is linked to the Communications Manager via the Internet using a
secure FTP connection and through portable storage media such as CD-ROM. This
provides one bi-directional communications medium (i.e. the transfer of message files
over the Internet using FTP) and two unidirectional download media (i.e. downloading
resource files using FTP via any Internet-enabled channel or by mail using portable

data storage). Resources external to the Repository are accessed via the Internet.

Chapter 5. Towards a specification 110

The essential components of IMMEDIATE and its configuration are depicted in Figure
5.10. This is a simplified network architecture specification, compared to that in Figure

5.4, but it is sufficient to evaluate the learning computer concept.

Authoring, Tutoring Reposnory
System == P (database, files)
LAN
L 4
External
On-campus Communications
Resources Manager | __ T T T T
Off-campus W ww) Trae.,, Portable data
v ® - storage
“a VN i
BN)
~. v
Internet R
T » Learning Shell
(Student user)
Key
Internal links
-~~~ Externallinks

Figure 5.10: IMMEDIATE network components and configuration.

5.8 Summary - Prototype Focus

This chapter has presented a partial specification for a specialised computer for
learning, and its supporting network services. This provides the framework for
implementing a prototype system called IMMEDIATE. Key aspects to IMMEDIATE’s
design include:

o A client/server network architecture in which the student client is implemented as a
specialised Learning Shell over the Windows operating system. The university
server provides data updates to the student clients over the network, or by
alternative media, and enables two-way communications between students and
between students and teaching staff. Learning functionality is distributed to the
student clients.

e The Learning Shell is assembled from reusable RAD "drag and drop" components
with settable properties. Different study modes (learning dimensions) are defined
by particular combinations of components, to which appropriate learning resources

are bound. Learning components are defined from the user's perspective by the

Chapter 5: Towards a specification 111

“what” rather than the “how” e.g. "lectures" not "media player", "study guide" not

"web browser".

e The integrity of the Shell is maintained by a system layer, containing a Controller
object and a reference model, which maps Shell operations to the operating
system. The reference model is centred upon a System Tree, defined by the
structure of the study guide, as the basis for a directory system, a student model
and learning support. The System Tree defines a hierarchical course structure by
course title, section, and topic. Each learning component has a directory system
mapped to it Changing the study mode does not change the student's position in
the System Tree. Changing the position in the System Tree does not change the

study mode.

e The integration of communication, collaboration and extramural learning support
into a single distributed database system organised on a mobile computing model.
This is mapped to the System Tree to provide the structure for a coarse-grained

knowledge base which can be queried along several dimensions.

The next step in the methodology is to use prototyping to further explore and refine the
key elements of IMMEDIATE'S design. These elements can then be integrated into a
working prototype, including additional applications to test the networking and

authoring support. This prototyping work is the subject of the next chapter.

Chapter 5: Towards a specification

112

Chapter 6. Prototyping 113

Chapter 6

Prototyping the extramural e-learning system

This chapter discusses the prototyping phase of the research. The primary objective of
this phase was to build a working version of IMMEDIATE to test the technical feasibility
of the leaming computer concept, introduced in Chapter 4, and to make possible a

subsequent evaluation with users.

The focus of the prototyping effort has been the Learning Shell, reflecting the primary
emphasis IMMEDIATE gives to the student end of an e-learning system. However, in
order to evaluate the overall concept adequately, it has also been necessary to develop
working prototypes of the course authoring and communications management

applications and to integrate them into a functional network.

IMMEDIATE has been implemented using the open-ended evolutionary, or
incremental, prototyping method (Pressman, 1997, pp. 285-288). Beginning with the
framework outlined in Chapter 5, the design has been explored and refined through the
prototyping process itself. This has involved developing and evaluating the key
elements of the design individually. Then the refined elements have been progressively
incorporated into an overall working system. This in turn was evaluated and refined
under laboratory conditions in preparation for field-testing with users. The results have

been codified in a series of documents and in the prototype itself.

To assist in the incremental prototyping, scenarios, use cases, and sequence diagrams
have been used to capture key interactions between the user and the Learning Shell
interface, and between various system elements which support interface functions
(Appendix D). This documentation subsequently provided the basis for the scenarios

used to evaluate the prototype with users.

Borland Delphi Professional Version 5.0, running on top of Windows 98, was chosen as
the prototyping environment. In order to facilitate rapid prototyping, wherever possible
application modules have been assembled from reusable Delphi or third party software

components using the Visual Component Library (VCL).

Delphi also offers a fully SQL-compliant database functionality which interfaces with
most popular database systems. For prototyping purposes, Paradox tables were used.

In conjunction with the Borland Database Engine, they provided the necessary

Chapter 6: Prototyping 114

functionality and could be freely and easily installed on multiple computers.

The key aspects tested in the prototyping process were:

Identifying the functional requirements for a student user.

Using a components-based approach to assemble a leaming system by

transforming individual learning elements into software components.

Simplifying the interface, by using a system level reference model to embed

user calls on the operating system in the learning tasks themselves.
Refining the overall interface design for simplicity and usability.
Integrating learning support and communications functionality.

Resolving network and communications management issues.
Demonstrating a method for the authoring and re-use of learning material.

Merging the Learning Shell, the course authoring and the communications

management prototypes into a working system.

Discussing each of these aspects in turn provides the framework for the remainder of

this chapter.

6.1 Functional requirements for student user

The essential starting point for prototyping IMMEDIATE was to identify more clearly the

functional requirements (Bennet et al., 1999, p. 99) which the student end of the

system, i.e. the Leaming Shell, must fulfil. These requirements emerged through the

process of reviewing the literature on distance learning, from personal experience as

an extramural student and tutor, from perusing several extramural course study guides,

and from a series of informal interviews with people with practical experience in this

area. Those interviewed included:

A number of teachers with experience in preparing and coordinating distance

learning courses at the university and pre-university level;
Several former and current distance learning students;

An educationalist with research and practical experience in applying technology

to learning; and

A professional instructor in the authoring of web-based university courses.

Chapter 6. Prototyping 115

These requirements were further refined during the process of conceptualising a
learning computer. The starting point in the prototyping process was to represent and
refine these functional requirements using scenarios (Carroll, 2000). The Start-up

scenario is shown in Figure 6.1. All the scenarios are included in Appendix D1.

The functional requirements which the Learning Shell must satisfy can be broadly
categorised as those specific to a particular learning element, and those related to
more general interactions between the student and the system. Primary attention was
given to capturing the latter on the basis that they define the fundamental mechanisms
which the Shell must support. They were further documented in the form of use cases

and sequence diagrams (Appendix D2 and D3).

6.2 Component-based approach

In the proposed approach the Learning Shell is assembled from reusable "drag and
drop" software components with settable properties. Different study modes are defined
by particular combinations of components, to which appropriate learning resources are
bound.

Prototyping of learning components was broken down into seven steps:
e Identify study modes
o |dentify learning elements that make up each mode
e Simulate these elements in Delphi code
e Translate these code modules into reusable Delphi components
e Assemble into learning interface
o Refine for modularity, reusability and ease of maintenance

e Evaluate the results.

6.2.1 Study modes

In Chapter 3 at least six dimensions of learing at the university level were identified
(3.2.3). These were learning by textbook, by lecture, by exploration, by collaboration,
by doing and by tutorial. Learning by exploration, for example, involved students
acquiring knowledge by following their own lines of thought through the course subject
matter, as they might browse a library book or other relevant material. These

dimensions were used as the basis of the Learning Shell's study modes.

Chapter 6: Prototyping 116

Start-up Scenario

Mary starts up her PC, logs on to Windows using her learner profile, and double-clicks the Learning
Computer icon to enter the learning system. The Windows desktop is replaced by the Learning Computer
desktop. Mary is now presented with a login screen which welcomes her to Communication 101, displays
her username and prompts her to enter her password. She enters her password and clicks the OK button
(or hits enter).

Mary has mistyped her password. A message notifies her of this and she is given the option of selecting
CANCEL and quitting the Learning Computer, or OK, after which she can re-enter her password. Mary
selects OK, enters her password correctly, and a screen appears offering Mary a number of options. She
clicks on the Help icon and a page is displayed that explains each of these options thus:

= Return to previous topic The course will open in the study mode and topic that you were in when you

last used the system

= Select new topic The Course Explorer will open from where you may choose to explore any available
topic and study mode

= Update course material. You should select this option if you wish to update your course resources.

You will be presented with the options of updating from a CD-ROM that has been mailed to you, or
directly from the University via the Internet

= Restore from backup You should select this option if your course materials have become corrupted.

You will be presented with the options of updating your course material from a CD-ROM that has been
mailed to you, or directly from the University via the Internet

= Update system settings Select this option if you wish to change your personalised system settings,

such as the drives you use for updating, backing up or accessing course materials.
= Exit Exit the course.

Mary selects "Update Course Material”. She is asked to nominate whether she will update from a disk or
from the Internet. Mary chooses the update form disk option and she is asked to place the disk in the D
drive. She does so clicks OK and she returns to the user options screen. (If she had chosen the update
from the Internet option, she would only have to click OK and wait for the Learning Computer to connect to
the course repository and download any updates to her machine. If no updates are available the system
will notify Mary of this.)

If Mary had chosen the "Restore from backup” option a similar process would be followed.

Now Mary chooses the "Update System Settings" option. A screen opens presenting Mary with her current
personalised system settings and options for changing them. She opts to change her backup drive to the
floppy drive (A), clicks OK and is returned to the User Options screen again. This time she hits ENTER and
the course opens at Section 1, Topic 2 in Text Book Mode, which is where Mary was working when she
last exited the course.

<End of start-up scenario>

Figure 6.1: Start-up scenario

Chapter 6. Prototyping 117

Learning by doing was further broken down into an Assignment and Practice mode,
better reflecting the actual structure of an extramural course. While the Learning Shell
as a whole has been designed to support self-paced, exploratory learning, a separate
Exploration mode was created to support student browsing of the university library and

other supplementary reading sources.

6.2.2 Learning elements

The learning artefacts defining each study mode have been identified through analysis
of the different dimensions of university teaching and learning, and of a typical
university extramural course, as part of the functional requirements analysis. As
discussed earlier (6.1), this analysis drew upon personal experience with extramural
and internal university study, perusal of course study guides and web sites, and

discussions with university lecturers and online course designers.

The set of scenarios, depicting interactions between a student and the learning
computer in each of the study modes, helped further identify learning elements and

other necessary screen artefacts (Appendix D).

Sixteen separate learming elements have been specified. They fit into two general
categories: mode-specific artefacts that are only used when studying in a particular
mode (e.g. a lecture object), and generic objects which students may use in any mode
(e.g. a notepad). Three additional interface elements were specified that provide
general support to the computerised learning environment (e.g. a User Options object
needed for logging on and off the course). All interface components are shown in
Figure 6.2

6.2.3 Delphi code modules

Simulating the learning elements in software required investigating a wide range of
implementation methods. Most of the learning artefacts could be grouped by
functionality into five basic categories representing generic functions like text editing or
viewing web pages (Table 6.1). Each of these categories was implemented as a super
class, from which classes representing the actual artefacts were inherited and
customised (Appendix E). Many of these super classes were able to be built by

modifying existing Delphi and third party software components or sample code.

Chapter 6: Prototyping 118
Mode specific
Start- Doing
up & Text . Collabo Explora .
Shutdo Lecture Bodk Tutorial et Assign | Practic tipoﬁ All modes (Generic)
wn ment e
: Practice | Extramu | Adminis
User Study Messag Assign Web Course
3 Lecture s Tutorial Assign | ral tration
Options Guide e List ment | Explorer | Explorer Support Guide
Assign
o Key ment Library e Student
Notes | Assess
deas Worksp Explorer Notes
ment
ace
Assign
ment Desktop Igeeays
Feedba
ck
Figure 6.2: Interface components of the Learning Shell
Category Basic functionality Implementation

Multimedia viewer

Display multi-media file

Delphi component wrapping
Windows media player

Document viewer

Display an HTML-based

document

Delphi web browser component
encapsulating Internet Explorer

engine
Editor Word processing Customise sample RTF editor
Browser Browse selected websites Delphi web browser component
Launcher Launch or link to independent Third party component that
application launches executable files
Custom Various application-specific Build from scratch using basic

functions

Delphi components where

possible

Table 6.1: Basic learning element categories

A sixth category consisted of the remainder of the learning elements. These had
functionality very specific to the Learning Shell, such as the messaging function. These

had to be custom-built, using Delphi controls as building blocks wherever possible.

Working versions of all interface artefacts were successfully prototyped. Each interface

Chapter 6: Prototyping 119

element is a self-contained software module that performs a specific task

independently of any other.

While the implementation was in some cases complex, involving multiple windows and
data files, it has been encapsulated so that each learning artefact appears to the
Learning Shell as a single form, e.g. the Message List component (Figure 6.3). When a
learning element is required to be displayed, the Shell supplies this form with the path

of the learning element’s start-up data file and then shows it.

var
Messagelist: TMessageList;
implementation
uses viaController, vlaSystemDictionary, vlaSystemUltilities, viaMsgData, vlaMessaging,
vlaAddMessage, vlaReplyMessage, viaForwardMessage, viaAllNewMessages;
procedure TMessagelist.FormCreate(Sender: TObject);
begin
inherited;
MessageSystem:= TMessageSystem Create(self);
MessageSystem.setMsgList(self);
MessageSystem.Color:= self.Color;
beforeUpdate:= 0.0;
loadGroupMembers;
end;
procedure TMessagelist.addNewMessage(addressee: string);
begin

NewMessage:= TNewMessage. Create(self);

NewMessage.ShowModal,
if NewMessage.ModalResult = 1 then begin
dsMessage.DataSet Close;
dsMessage.DataSet.Open,;
self.Paint;
end;
end;

Figure 6.3: Message List component encapsulates multiple forms.

6.2.4 Reusable learning components

Delphi components are software modules which encapsulate a single logical function
or group of functions. This functionality may be relatively simple as in a list box, or very
complex as in a complete web browser. There are two forms of components
recognised by Delphi and similar visual programming environments — those that can be
"dragged and dropped' from a component palette onto a base form, and those that can
be copied or inherited from a form template stored in the Object Repository. Once a
component has been added to a project it is then customised by setting its properties.
A Delphi component may also be extended by a programmer to provide additional
functionality (Inprise, 1999a, Ch. 2 & Ch. 31).

Chapter 6: Prototyping 120

Learning elements are software modules which perform a single logical learning
system service or related group of services, and provide a standardised interface to the
rest of the Leaming Shell when this service is required. To maximise modularity and
reusability, these elements do not directly interact with each other. Instead, each
interfaces to the Shell Controller object, which manages the interface and passes

requests for services between interface components and the system layer.

Because the Shell is Windows-specific, each element can directly call on the Windows
API (libraries), e.g. to draw itself on the screen, open data files, etc. These calls are
only managed through the Controller where necessary to maintain the integrity of the

Learning Shell by avoiding directly exposing the operating system to the user.

Due to the careful modular design of the leaming elements, embodying them in a
single parent form (Appendix F10), transforming them into reusable Delphi components
is quite straightforward. Delphi provides a template for writing the source code for
wrapping the learning element module, including defining any settable properties and
their default values (Figure 6.4). Each learning component implements a
createLearningComponent method which creates an instance of the component’s
parent form, which, in turn, creates any subsidiary forms on an as-needed basis
(Figure 6.4). Delphi uses this template to compile and install the modules as visual

components on the VCL palette (Figure 6.5).

Two levels of learning components have been prototyped. A base level component
encapsulates a super class such as an RTF editor and must be dragged onto a form
and then customised. An implementation-ready component wraps a fully functional
learning element, such as Assignment Feedback, and needs only to be dragged onto a

form.

6.2.5 Learning Shell assembly

For a fully operational Learning Shell to be assembled from learning components, an
application template is required that embodies all the logic needed to manipulate these

components correctly. This has been achieved using Delphi’s form template facility.

The Learning Shell appears to a learning system application programmer as a
component in the Delphi Object Repository. This component creates the Learning
Shell background screen or Desktop. The Desktop form encapsulates all the system
functionality of the learning computer. By inheriting this form from the Repository, and
dragging the desired learning components onto it from the VCL palette, a full Learning
Shell can be built (Figure 6.5).

Chapter 6: Prototyping 121

unit vimFeedback;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
vlaComponent, vlaFeedback;

type
TvimFeedback = class(TvlaComponent)

public

procedure createLearningComponent; override;
end;

procedure Register;
var

Feedback: TFeedback;
implementation

procedure Register;

begin

RegisterComponents('VLM', [TvimFeedback]);
end;

procedure TvimFeedback.createLearningComponent;

begin

inherited;

Feedback:= TFeedback.Create(application);
end;
end.

Figure 6.4 : Code to wrap Feedback learning element as Delphi component.

5% Delphi 5 - Prototype3 _[8]%
File Edit Search Yiew Project Bun Component Database Jools Help FormDesgn -] | 2 &
De-d #0 32 & | ineBasel Intemet| FasiNet] QReoort| Dialoas | win 3.1 | Samoles | Acvex | Servers [via | untoors| L1 ®

93maL-nise t O=B02 . OBCCHEENG2 9

% A RN 4 =
R e % ZEZI

v =
“hng ¥
'r‘ buu_l,

Object it pecto X

Desktop TDesktop
Properties l Events |

@HorzSaollB (TControiScr=) | |« R s 3
icon (None)
KeyPreview True

Left ICTURSIRRERN - M| 58 fhi su N b n s S EB N BN L IBPL s =
Menu 3
Name Desktop %‘
ObjectMenu
ParentBiDih T rue
ParentFont False

PixelsPerinc 36
PopupMenu puDeskiopM
Position poDesigned

PrintScale | poProportion _I

Scaled True r
| ShowHint False G &
| Teag 0
{ Top . |135

UseDockMeFalse |

EVenScmllBa (TContralSer.
S—: Xy

2hidden

N

‘

[IbCourseTitle .
IbSection bTopic IbStudyMode

., o] o]
Ssn| ADEEE || Qvou|Isdasfowimod | |1 | | | | @0 [BEISPE 64

wl|o|w|d

Figure 6.5: Shell assembled by dragging components onto Desktop form.

Chapter 6: Prototyping 122

This encapsulation has been implemented in the following manner.

By default in Delphi, an application object creates all the main objects as instances of
global variables, usually forms, which are then available from anywhere in the
application. In the Learning Shell, the application only instantiates a Desktop object,
which in turn creates all the Shell objects through its constructor method, including the
principal forms of all learning components (Figure 6.6). The Controller and all interface
components are created as instances of global variables accessible from anywhere in
the application. System objects, such as the reference models, are created by the
Controller object as instances of local variables, and can only be accessed through the

Controller's public methods.

All these implementation details are hidden from the application programmer.

procedure TDesktop. FormCreate(Sender: TObject);
begin
controller := TController.Create(self);
CourseExplorer :=TCourseExplorer.Create(self);
StartUpDesktop :=TStartupDesktop. Create(self);
UserOptions:= TUserOptions.Create(self);
ResourceMenu :=TResourceMenu.create(self);
SystemLog:= TSystemLog.Create(self);
ExtramuralSupport := TExtramuralSupport.Create(application);

createComponents; // that have been dropped onto form
end,

procedure TDesktop. createComponents;

var
i :integer;
comp: TvlaComponent;
begin
for i = 0 to self.ComponentCount - 1 do
if (self.Components[i] is TvlaComponent) then begin
comp:= self. Components[i] as TvlaComponent;
comp. createLearningComponent;
end;
end;

Figure 6.6: Desktop encapsulates all Shell components.

At the time when the Learning Shell (Desktop) component is compiled and added to
the Object Repository, it is not known what learning components will be added to a
particular application. In fact, some entirely new components may be written and
added by a learning system programmer. Therefore, the names of learning
component’s principal forms cannot be included in the source code of the Shell

component, which is not available to the programmer.

To enable the Controller to manipulate the forms created by learning components, the
parent forms of all learning components must follow a naming convention. The name

must:

Chapter 6. Prototyping 123

e be unique and not be used by any other component in the application;

e use upper case characters rather than spaces or underlines to separate
words; and

e be meaningful, so that it can be parsed as the component form’s caption.

The programmer must add this name to a file ‘components.txt’ which the System Model

(Section 6.2.3) uses to construct a list of learning components. This list is used by the

Controller to reference the actual screen forms through a processForm method
(Appendix F1).

6.2.6 Refinements to promote consistency and modularity

A number of refinements have been made to promote consistency throughout

IMMEDIATE and to enhance modularity, reusability and maintainability:

A System Dictionary unit has been created to define constants such as system
directory paths and other values that are used in different modules in the Learning
Shell and its supporting applications. In this way, changes only need to be made
once to be reflected throughout the system (Appendix F3).

A System Utilities unit (Appendix F4) has been provided containing frequently-used
functions and procedures that can be accessed by classes and units anywhere in
the overall IMMEDIATE project.

Another “write once, use anywhere” approach was found to be useful for some
frequently-used routines, such as file and folder manipulation, that may involve
complex direct programming of operating system API calls. This was to implement
the routines as the properties and methods of non-visual Delphi components. As
components, they may encapsulate existing Delphi controls, whose methods
implement some or all of the required API calls. As non-visual components, they
may be dragged onto forms where they are accessible to the application, while

remaining hidden from the user.

The Controller APl has been made available to component programmers. This
enables components to utilise a wider range of system functionality and to enable
some information to be passed indirectly between components in a uniform manner
(Appendix F1).

A comprehensive Delphi object hierarchy has been defined for the Learning Shell,

to support consistency and reusability throughout the application. The object

Chapter 6: Prototyping 124

hierarchy defines the inheritance paths for all the approximately 80 classes making
up the Shell (Appendix E2).

6.2.7 Feasibility of component-based approach

The process of prototyping and refining the classes and components making up the

Learning Shell is documented in Appendix E.

The prototyping has confirmed that it is technically feasible to assemble an extramural
e-learning system using a component-based approach. The experience of actually
implementing the learning computer prototype has shown that this approach allows for
a very large degree of flexibility in defining and redefining learning dimensions and

components.

Working components supporting all the defined modes were successfully implemented.
These provided all the leaming functionality offered by typical web-based courseware
systems. Moreover, additional functionality not generally offered by courseware, such
as one-on-one adaptive tutorials, was also successfully prototyped and integrated into
the Shell. And, the modular design of the learning components demonstrated a
mechanism by which existing components can be easily updated, or replaced by ones
with more sophisticated functionality.

At the programmer level, reusability is achieved by adopting the object-oriented
template and component approach of "drag and drop" Rapid Application Development

environments.

6.3 System level support

The third major prototyping task was to evaluate a method for embedding user calls on
the operating system in the learming tasks themselves, thereby rendering the operating

system invisible to the student.

The proposed method, as discussed in Chapter 5, was to create an intermediate layer
between the Learning Shell interface and the operating system which models the
course structure (5.5.1). This system layer tracks the student through the course and
maps user interactions with Shell components to the correct files and objects within
Windows. A System Tree defined by the course Table of Contents is central to this

reference model.
The prototyping steps followed were:

e Implement the System Tree data structure.

Chapter 6: Prototyping 125

¢ |dentify system level operations required to support the Learning Shell.
e Specify a modular structure to best support these operations.

e Implement system modules as classes encapsulating the necessary data

types.
o Refine for modularity, reusability and ease of maintenance

e Evaluate the results.

6.3.1 System Tree

A table of contents is a shallow tree structure of sections and topics. This is easily
represented by a list of lists. This implementation accommodates additional levels such
as attaching a list of learning goals or key concepts to each topic (Figure 6.7). The
System Tree is made visible to the user through the Course Explorer interface

component (Figure 6.15)

Course

4

Section 1 Section 2

Topic 2 Topic 1 Topic 2
Attempted
Concept 5 Concept 6
Revise
Concept 1 Concept 2 Concept 3
Revise

I

Concept 4
[Gadersiond |

Figure 6.7: System Tree with additional concept level.

6.3.2 System level operations

At the heart of the learning computer concept is navigation — tracking and storing the
user's current position and taking them to any new position they select. An initial list of

operations (Table 6.2) needed to support the Learning Shell’s navigational logic was

Chapter 6: Prototyping 126

extracted from use cases and interaction diagrams. This included storing and providing
information about the current state of the system and of the student. The sequence
diagram for the Change Mode use case is shown in Figure 6.8. Further sequence

diagrams are included in Appendix D3.

System Level Operations

Initialise System Model

Save System Model

Initialise student model

Save student model

Get current student position (mode, section, topic)

Set current student position (mode, section, topic)

Get current resource (section, topic, component)

Set current resource (section, topic, component)

Get topic status — not started/attempted/completed

Set topic status — not started/attempted/completed

Save student work (section, topic, component)

Change Study Mode (new_mode)

Change Topic (new_Section, new_Topic)

Get Component List (selected_mode)

Open (this_component)

Close (this_component)

Set Revision Mode

Table 6.2: System level operations defined from use cases.

User

Interface

Controller

Syst Model Man
Sys Model

Stud Model Man
Stud Model
Resource Manager

selectMode(Mode) >>
changeMode(Mode) >>
updateMode(Mode)>>
updateModel (Mode)>>
<<toClose (CompList)
<< close (Comp)
<< toOpen(CompList)

getResource(Comp) >>
getFile(;

<<Resource (file)
<<open(Comp, File)
updateModel(Mode)>>
<<updateDesktop(Mode) updateMode >>
saveModel >>

Figure 6.8: Sequence diagram for Change Mode Use Case.

Chapter 6: Prototyping 127

6.3.3 Reference model specification

In addition to the System Tree object it was found to be advantageous to subdivide the
reference model into modules with specific responsibilities. It was also more efficient to
store certain information about the student, such as what topics they had completed,

with the system data structures themselves, rather than in the separate Student Model.

The System Model object stores information about each study mode and learning
component offered by a course. For example, it knows whether the data displayed by a
component can be edited and saved by the user or is read-only. The System Model

provides the information for swapping between study modes within the course.

The Resources Model object encapsulates the directory system that contains course
learning materials. It maps a learning component to its correct resource file, if one
exists. For any topic in the course, it provides a list of all components for which
resources are available. The Resource Model must map to the actual directory
structure to provide for updates, insertions, deletions and graceful recovery from errors

(e.g. file not found).

The Student Model object stores the student’s current position in the course (i.e.
section, topic and study mode) and any other data necessary to individualise the

course to a particular user that would not otherwise be recorded.

6.3.4 Implementation of data structures

The class implementations for the reference models are generally straightforward.
Each model class is defined as a data type with a set of public operations, and contains
the data structure and additional functions and procedures needed to implement these

operations.

Most of the data types involve the manipulation of lists of strings, which are
implemented using arrays. Custom string list classes were used, rather than those
provided by Delphi, to enable more direct support to the required operations. To
initialise and permanently update the reference models, the data structures are stored
as text files (Appendix F13) in the Models sub-directory of the System folder (Figure
6.9). The complete folder system for the Learning Shell is shown in Figure 6.10.

The Resources Model encapsulates the Resources folder structure. Files stored in the
root Resources folder follow a naming pattern indicating the learning component they
belong to and their position in the course. This file contains the names of all the

resources associated with a particular component at a given point in the course. These

resources are stored as files in that component’s subdirectory in the Resources folder

(Figure 6.

For example, “s01t02le.txt” is the file associated with the lecture component in Section
1.02 of the course (Figure 6.11). This file contains the name of a video file and of an
image file of the lecturer making the presentation, which are located in the Lecture sub-

folder of the Resources directory. The lecture component obtains this information from

10).

Chapter 6: Prototyping

the Controller when its show method is called (Figure 6.12).

The Resources Model uses algorithms based on this naming pattern to return the file

path for a component, and other related operations.

The Controller object uses the information supplied by the reference models to map

learning components to Windows forms, pass the correct data files to those forms, and

then show them to the user (Appendix F1).

& CA'rngram 1 ile iV MM ystemiMndels

I File Edit View Go Favorites Help

o ¥ = r x
e = T R
Back Formard Upiesl Copy Paste | Undo 3 Delete '
]MUIBSB'_} C'I,FTngmF|Esl,"-"l_h'|'~,by’iarn"~,hﬂud5|s " ‘
Name I Size l Type I Mudlhed l
=)ialimodaE i | 1KB TestDocument 08-0c-03 1230
2 alwaysavailable.tet KB TextDocument 10003 12:38
=] alwaysthasame s KB TextDocument 14-JuH33 144E
=] cliphonrd tt 1KB TextDocument 25tm+-0318:28
=| codas.ta 1KB TestDocument 019-0a03 12:31
'E colours bt 1KB TextDocument 29-Sep03 14:28
=) componants. bt KB TextDocument 03003 12:32
=) cantere.tt 1KB TextDocument 01ec03 1536
=] centa rcDicdault wi 1KB TestDocument 26-Sep-0314:30
g endings ixt 1KB TextDocument 03-0a0-1112:19
E] gencemp tt 1KB TextDocumant 09-0x1312:31
=) modoldisplay.td 1KB TextDocument 09-0a312:31
=] costionwicatt 1KB TextDocurnent 24-Jun03 1543
2] studmodel xt 1KB TextOocument 91Dec4315:36
=] studmodaliDafaut s 1KB TextDocument 020103 1539
2) suffixes et 1KB TextDocument 13-Jun03 18:07
=] syemodal bt 1KB TextDocumeant 09-O30312:32
2 systemsetlings.td 1KB TestDocument 10-Oz-13 1305
=] systamsatingsCratault. s 1B TextDocurnant 10-Ca3-0310:0
2) useredit et 1KB TextDocument 26-Jun83 1747
Z] vistedbt 1KB TextDocumsant 10-0ct-13 130
=) visitedD Elault t¢ 1KB TextDocument JLE e gIKRPE
i22 object(s) 'E.QSKB Ig My Computar 2

Figure 6.9: Reference models stored as text files in Models directory.

Chapter 6: Prototyping 129

I Student Machine J

|\

Desktop C drive Update Drive Backup Drive

Imports ‘; Backups
Exports l: Models
Resources

+—— Program Files UserEditComp1

’: UserEditComp2
VLM :
Database

| - .
HelpUpdates UserEditCompN

Resources
System |: Learning Comp1
: Leaming Comp2

Help

Log
Models L Learning CompN
Temp

Figure 6.10: Learning Shell directory structure.

s01t02cle - Notepad
iEiIe Edit Format View Help

|
Eolt0zcle.mpy Al
{chris.bmp

| 4

P — — _ |

Figure 6.11: Content of “s01t02le.txt” in Resources directory.

6.3.5 Refinements to system modules

Through the prototyping process the modular design of the system layer was refined to
improve reusability and make modification easier. Figure 6.13 shows the Learning

Shell’s refined architecture.

A model manager object was introduced to remove any dependencies between the
Controller object and each model, for easier modification of the prototype. This was
important because implementations that use Windows controls, e.g. a hidden form, are
not interchangeable with custom-built classes that make no calls on the operating

system libraries. The interfaces for the model managers are included in Appendix F.

Chapter 6: Prototyping 130

procedure TLecture.FormShow(Sender: TObject);

begin
getFilelnfo;
imLecture.Picture.LoadFromFile(imageFile);
StatusBar1.SimpleText:= caption+": Click picture to load.’,
end;

procedure TLecture.getFilelnfo;
var
infile: textfile:
line: string;
begin
filepath:= controller.getFilePath(self.name);
try
AssignFile(infile, filepath);
Reset (infile);
readIn(infile, line);
lectureFile .= LECTURE_DIR+ line;
readIn(infile, line);
if not eof(infile) then
imageFile:= IMAGE_DIR+line
else begin
imageFile:=IMAGE_DIR+DEFAULT_IMAGE;
end;
closeFile(infile);
except
showVLAMessage('Could not load lecture.");
exit;
end;

end;

Figure 6.12: Component show method gets data filepath from Controller.

Mechanisms were successfully added for saving and backing up student’s work, and

performing management tasks like logging on and off, with minimal input from the user.

The reference models were modified to also support IMMEDIATE's authoring and
course management responsibilities. The model manager layer provides the interface
to the authoring application, passing different parameters to the model layer depending
on whether it is being used for learning or authoring. (See, for instance, the System

Tree Manager class interface in Appendix F8).

6.3.6 Embedded operating system

The creation of an intermediate system layer between the Learning Shell interface and
the operating system, successfully embedded operating system operations in the task

domain. In particular, by direct manipulation of the Course Explorer, it was possible to

Chapter 6: Prototyping 131
navigate to any point within the course, and to change from one study mode to another,

with the system automatically handling the necessary opening and closing of files.

However, during the course of prototyping the Shell it became clear that to manually
define a course, and then correctly add learning materials, was a complex task
requiring a thorough understanding of the Learning Shell's implementation. For the
learning computer approach to be a viable alternative to conventional courseware, a
method had to be demonstrated for a non-programmer to author and update a course
without being exposed to the internal complexities of the system. This issue is
addressed further in the section on the authoring prototype (6.6).

Desktop

Mode-Specific
Enables user to Mode-Specific

Generic_Learnin
User Info

interact with the
system controller
to change modes,

Enables system to
directly coflect info
from the user - logon,

Component
Tools available in any

mode. Managed by
the user, e.g. Student

Learning Component
Accessible only by
changing mode -
managed by system

launch interface
components, etc.

backup drive,...

Notes e.g. Lecture Notes

System Controller
All interactions between components are channelled through here.
Manages the interface components - mode changes, etc. Interacts
with system components via respective managers.

Operating
System API
ettt Student Mode| System Tree Resources
components | “o|4s student | System Model | (YSEMtree TESUULES
for their ; Maps structure Model
i nfelpcedediby) Maps of course Maps stored
internal system & not | components to ened zles i System
functionality stored modes and it , Database
dynamic info - learning
Sieathersy holds other nodes (topics) components itedaies
e.g. current static info S P messages &
- visited or .
topic & mode, | about system e learning help
password P]
Learning shell directory system

Figure 6.13: Learning Shell architecture.

6.4 Interface Design

Successful e-learning requires designing the computer environment for form as well as
content (Smulders, 2003). In this section the overall look and feel of the Learning Shell
is described. Important considerations shaping the design and refinement of the
interface are discussed using Nielsen’s usability heuristics (Figure 6.14) as a

framework.

In the initial stages of developing the Learning Shell, the primary focus was upon

implementing the individual interface components and the underlying mechanisms

Chapter 6: Prototyping 132

needed to support the special learning computer functionality. As new learning
components were developed and tested, they were added to the prototype one-by-one.
Similarly, new system functions and their corresponding interface artefacts were added
step-by-step.

While consideration was given to the general design of the interface during these
stages, it was inevitable that some inconsistencies and redundancies would be
introduced that inhibited usability. Therefore, once these objectives had been achieved,
the prototyping emphasis shifted to the design and refinement of the overall
environment provided by the Shell. In this phase, consideration had to be given to the

general principles of good interface design and the special requirements for a learning

computer.
1. Visibility of system status 6. Error prevention
2. Match between system and real world 7. Recognition rather than recall
3. User control and freedom 8. Flexibility and efficiency of use
4. Consistency and standards 9. Aesthetic and minimalist design
5. Help users recognise, diagnose recover 10. Help and documentation
from errors

Figure 6.14: Nielsen’s usability heuristics (Nielsen, 1994).

6.4.1 Learning Shell look and feel

The concept of the learning computer entails a domain-specific, minimalist interface in
which many functions normally managed by the user are managed by the system. The
emphasis is on usability and simplicity. In line with this minimalist design, the Shell
does not provide many of the features and shortcuts that experienced Windows users

have come to expect.

The Learning Shell provides a direct manipulation graphical user interface
(Shneiderman, 1998, p. 71), centred upon the use of a mouse pointing device. User
interactions with the Learning Shell are documented in the scenarios outlined in
Appendix D1. Additional screen shots of the Shell can be found in Chapter 7 (Figures
7.2 —-7.13) and Appendix G.

The Learning Shell replaces the Windows GUI with its own special-purpose one. In this
way it provides a minimalist interface with just the functionality that the student needs

for his/her current learning task. However, Microsoft does not directly support the

Chapter 6: Prototyping 133

development of alternative GUIs for its operating systems, by providing programmers
with source-code and kernel-only versions, as Linux does. Therefore, the Learning
Shell could only be implemented by “tricking” Windows. It has been implemented as a
Windows application with some special properties that shut out, rather than replace,

the Windows shell in the following manner:

e Upon opening, the Learning Shell overlays the Windows Desktop with its own
Desktop screen, and disables all the special Windows system keys on the
keyboard. In this way, all keyboard and mouse interactions are confined within the
Learning Shell environment. The Desktop is implemented as a maximised,
borderless window. Disabling the system keys is activated by a method in the
System Utilities unit (Appendix F4) and is achieved by a call to the Win32 API. The

keys are re-enabled by a similar method when the user exits the Shell.

e To remain visible and accessible to the user, all learning components within a study
mode must remain above the Desktop, even when they are not the immediate
focus of the learner’s attention. This is achieved using Windows forms’ FormStyle
property. The Desktop’s form style is set to normal, and the style of the base form
inherited by all learning components is set to always stay on top, i.e. above the
Desktop (Appendix F10).

e Conventions for the design of components in the form of inheritance hierarchies,
templates and guidelines have to be upheld by component programmers to avoid

exposing the operating system, e.g. through file saving dialogues.

Desktop

The Learning Shell environment is entered by clicking an icon on the Windows
Desktop. The Windows Desktop is then replaced by the Shell Desktop displaying a
logon form. Once the user has logged on, the logon form is replaced by a User Options
form. From the User Options form the user can complete housekeeping tasks such as
updating the course content, return to where they were in the course when they last

logged off, or navigate to a new position via the Course Explorer.

The Desktop (Figure 6.15) provides a plain background for the Shell. The only items
displayed on it are the university logo and course title, a help icon, and the current
section, topic, study mode and time. All other features must be accessed through a
Desktop Menu which pops up when the Desktop is right-clicked with the mouse. A key
aspect of the Learning Shell's minimalist interface is that all its functionality is

accessible by memorising just three paths:

Chapter 6: Prototyping 134

= Pressing the F1 key brings up a Help screen for the selected interface component
(Figure 6.16). Clicking on its Help icon has the same effect. Performing this action

when the Shell Desktop is selected brings up help on the system as a whole.

= Right-clicking with the mouse on the Desktop pops up the Desktop Menu, from
where the user can navigate forward and backward through the course, open the
Course Explorer, access additional learning tools like Student Notes, get Help, or

exit the system.

= From the Course Explorer (Figure 6.15), the student can navigate to any topic, and

change to any study mode within that topic.

All system-related features except the Help icon are hidden when the user is engaged

in a learning task.

=
yuRversiy
Course Explorer
1.4 Modelling The Interaction 2
Course Directory
159353 Human-Computer Interaction SecioE 14
1.HCI Fundamentals Modeling The Int P
s 1.1 Designing for Usabilty oceHii helinteraeion
1.2 Medelling The User Interface
e 1.3 The User Cognitve Issues Siolsr pAtenpted
1.4 Modelling The Interaction f
2_Analysis and Conceptual Design Study Options
+ ® 3.Physical Design and Implementatien {Boltyourself
+ ® 4 User-centred Design and Evaluation |Exploration
® 5 Other Issues GroupWork
Lectures
TextBoek
OK I
Cancel I
a N

159.353 Human-Computer Interaction

Section 1.03 Exploration Mode

Figure 6.15: Desktop with Course Explorer open.

Course Explorer

The most important interface feature is the Course Explorer (Appendix F2), through
which the learner navigates their course. It has been implemented using Delphi’'s
TTreeView component, which uses the graphical control developed by Microsoft to

display the Windows directory system.

Chapter 6: Prototyping 135

The Course Explorer provides an example of how the Learning Shell implements many
of the qualities emphasised by Nielsen such as visibility of system status, user control

and freedom, recognition rather than recall, and flexibility and efficiency of use.

When the student opens the Explorer, the course table of contents is visible in the form
of a collapsible tree. The student’s current position, i.e. topic, in the course is displayed.
The current section node is expanded to show all its child (topic) nodes (Figure 6.15).
The Explorer also displays separately a list of all the study modes available for that
topic. This design draws upon the findings of Larson et al. (1998) that broader and
shallower menu structures are quicker and easier to use than narrower and deeper

ones, which have more levels to navigate.

Leciore Nates 6t i e el B i S S R S ;
- ‘ e
4 a] x
Lecture Help K
i 1e User Interface
. Massey Extramural Help
Help on using Lecture = |Jul-03
Overview i))
This compenent enables you to view or listen te a multimedia presentation re [Q Stﬂl t

such as a video or audio lecture

Lecture: Click picture to | Author: Chns Phillips
To load the presentation the lecturer's image should e double-clicked with
the mouse Largs video clips may take some time to load Once Ioaded
resize the component to suit the presentation by dragging corner wath
mouse

The buttens simulate the functions of a video player The functions from left

ta nght are
Flay Runs the lecture presentation
Pause Pauses presentation If already paused when clicked

resumes playing

Stop Stops the presentation b
Nexd Skips to the next track, or to the end if the ecture doesnt
use tracks
Previous ikalfilg—,'::]f p:r‘ew/w‘u’s Irtr:qu:m the beginning i the :_J) L]
A‘ / -
159.353 Human-Computer Interaction S
Topic 1.02 Lectures Mode

Figure 6.16: Help screen for Lecture component.

Whenever a topic is selected in the tree, the list of available study modes is updated by
the controller from information supplied by the Resource Manager. Clicking an OK
button or double-clicking a topic or study mode, passes the selected items to the
controller for processing as a Change Topic, Change Mode, or Change Mode and
Topic, event. Colour-coding, based on a traffic light metaphor, is used to show the
student’s progress through the course, in line with Najjar's recommendations on the

effective use of colour (Najjar, 1990). It shows which sections and topics have been

Chapter 6: Prototyping 136

previously attempted (amber), which have been successfully completed (green), and
which have not yet been attempted (red). The status codes are stored in the System
Tree (Figure 6.7) and are updated whenever the student carries out some self-

assessment tasks, as is discussed in Section 6.4.

6.4.2 Interface Refinement

The goal in refining the Leaming Shell interface design was to have the computer
vanish as users become absorbed in their task domain (Shneiderman, 1998, p 18).
This requires a user-centred-design that minimises presumptive, controlling, or

intrusive features (Murray et al., 2000).

The framework for refining the interface was a self-evaluation using Nielsen’s usability
heuristics. As a result of the evaluation, a number of modifications were made to
individual interface objects, to how they appear in relation to one another, and to the

underlying system functionality of the Shell.

In the remainder of this section, some important features of the refined interface are

discussed by reference to each of Nielsen’s heuristics.

Visibility of system status

While the Learning Shell interface is minimalist, this is not at the expense of
transparency. The student’s current position in the course is displayed on the Shell

Desktop. This display is updated, via the Controller, whenever the screen is repainted.

Visual cues are used where operations may take seconds or even minutes to complete
(e.g. loading a video file). An egg-timer cursor is wrapped around all such routines, and
a sequence of messages conveying the status of the selected operation are displayed

in the component window’s status bar.

Match between system and real world

On the understanding that "old media serve as metaphors for new ones" (Collins, 1995,
p. 223), the Learning Shell implements, in electronic form, the basic artefacts of the
correspondence-based extramural course and of the core modes of university study. In
this way, the Shell seeks to create a familiar and intuitive environment for the student.
However, elaborate graphical representations of real world objects have been rejected

in favour of simple, plain screens.

Chapter 6: Prototyping 137

User control and freedom

A number of devices have been introduced to keep the user informed and in control,
and to extricate themselves from unexpected situations. The most important of these is
the Course Explorer, which enables the user to rapidly navigate to and from any point

in the course.

The Shell strongly supports user-driven self-learning. But to maximise freedom of
learning it places greater constraints on what the learner can do as a computer user,
compared to the Windows environment. Nevertheless, while managing many tasks for
the student, the user is always informed of any significant change and given the

chance to cancel the action before it becomes irreversible.

It is sometimes essential that the user completes one task, encapsulated by a
particular interface component, before moving onto another e.g. when logging on to the
course or completing a self-assessment to register progress through a topic. This
requirement is recorded in the System Model. In such cases, the user’'s freedom of
choice is constrained by the Controller presenting the component’s parent form in a

modal state. This means that the user must do what is necessary to close the form, i.e.

to complete the task, before being able to access anything else on screen.

2-MODELLING-THE-USER- INTERF 3 ‘

ﬁ""Read'P:eece-Chapterz; Sections-2.1,-2.2and 2.3

A-key- element- of- designing: for- usatality, 1dentified- 1n- Chapter
iterative: design: process lving: a- design - proteiyping — ¢
cycle - This-implies- that- design- 15 tackled progressively- over- a-
time,rather-than-as-a:single-discrete-activity --So-where-sheuld-y
On- the' assumption: that- designing: a- user- interface: is- no- di
pnnciple: from- de s1gning: any- other-kind- of -product,: you- shauld
gairung: an understanding: of user- requuements- through- constru
evaluating: a- high- level- model: of- the: system - Chapter- 2- p
framework -tor-thisfurst-designiteration

Section-2.2-dealswith-scoping-and requirements-1ssues - ‘The-foc 2
on-identfying- WHAT-the-product-should-do-and- WHY ,-rather- tL2

Romnromeonts st-miohtcheeachieved wTninartientar sderizsianserelatinostan hysical 2
»

Key ldeas

@ Conceptual models -
@ Interaction paradigms Lo
@ Interaction styles

@ Towards physical design
@ metaphor

=] 2] «|

s

omputer Interaction o
Text Book Mode

Figure 6.17: Mode components are colour-coded.

Chapter 6: Prototyping 138

Consistency and standards

A consistent, minimalist look and feel to the interface has been enforced through
constraints built into the implementation of learning components. This includes the size,
positioning and labelling of widgets, the captioning of screen forms and the use of
custom dialogue boxes to display system messages. Wherever possible, these
constraints have been embedded in super classes within the Learning Shell object
hierarchy. A new learning component then inherits these constraints via a form
template within the Delphi Object Repository. The source code for the learning

component super class is included in Appendix F10.

To help visually distinguish study modes, it was decided to colour code their
components (Figure 6.17). Research such as that of Wright et al. (2001) has shown
that appropriate use of colour can aid user memory and facilitate the formation of
effective mental models. A colour-coding scheme is stored in the System Model and
passed to a component at run-time. To allow for a component to be shown in different
modes, it obtains its colour-code from the controller whenever its paint method is

called. System interface objects have their own colour-code as well.

Help users recognise, diagnose, recover from errors

Because the Shell tracks the leamner through the system, and has a simplified,
transparent structure without a myriad of hidden features, it is able to utilise a few
simple strategies to prevent the user getting lost and to help them to identify and
recover from errors. This includes always clearly displaying the student’s study mode
and current position in the course, visualising the entire course in the Course Explorer,
and providing just-in-time, just enough help for the interface component with which the

user is currently interacting.

The Help screen for each component emphasises a “handy hints” approach for how to

use that component.

Error prevention

To prevent errors, for all critical actions — e.g. the saving of student work such as an
assignment before shutting down, or modifying settings such as how the system will be
updated from the Repository — dialogue boxes are displayed that provide the user with
a clear description of the selected course of action and the option to confirm or cancel

that action.

Chapter 6: Prototyping 139

However, the major error prevention strategy has been to manage the user’s
environment so as to minimise what the learner has to remember or do vis-a-vis basic
computer tasks. All essential functionality can be accessed by right-clicking the
Desktop to pop-up the Desktop Menu, or by pressing the F1 key, or clicking the Help

Icon on each component, to access context-sensitive help.

Some functionality required by learning components (e.g. word processing or web
browsing) was available ready-made as fully-featured Windows ActiveX controls with
which the Shell could interface. However, maintaining the integrity and simplicity of the
Shell was problematic because these controls were separate applications, which
exposed the user to more features than were required for their learning, and could
provide a path for exposing the user to the underlying Windows environment. Where
possible it was found to be better to use a Delphi component which “wraps” an ActiveX
control, hiding its functions, or to produce a simpler version of the control by adapting
and re-using sample code. These approaches enable the system developer to provide
a customised component, making available to the user only those features needed to
achieve the desired learning task.

Recognition rather than recall

To aid recognition rather than recall, a design consistency is maintained across all
interface components and study modes. Wherever possible the functions of interface
controls like buttons are suggested by appropriate icons and labels. All features are
readily accessible from the Desktop, without the need to memorise or navigate

complex pathways to them.

Flexibility and efficiency of use

The most important way that flexibility and efficiency of use has been supported by the
Shell, is in the ability of the student to rapidly and effortlessly switch between study

modes, between different topics in the course, and in and out of the system altogether.

To maintain simplicity, there is generally only one way for the user to activate a
particular function, mostly through clicking a screen item with the mouse. However,
some standard shortcut features have been introduced. All learning components
support the Help, Copy, Cut, and Paste accelerator keys. And the student may use the

Desktop Menu to move back and forth between adjacent topics.

Because each component of a study mode is opened in a separate window, the

interface could appear somewhat disjointed. “Docking” was introduced to address this

Chapter 6: Prototyping 140

problem. This involved adding the capability for individual components of a mode to be
dragged into position with the mouse, and docked together into a single composite

window (Figure 6.18).

Aesthetic and minimalist design

There are two categories of interactions the user has with the Shell — those associated
with learning tasks, and those associated with setting up and maintaining the system.
To simplify the users environment, and minimise distractions during study,
maintenance tasks such as changing system settings, updating resources, and backing
up the student’s work, are embedded in the User Options component. This is only

available to the student when entering or exiting the Shell.

2-MODELLING-THE-USER- INTERFACE

&"“Read'l’meceChapterl,‘Sectionrll,'l.l-and-'.’.3

A- key element- of- designing- for- usability,” 1dentified- 1n- Chapter 1, 1 an-
iteratwe- design® process- involving: a- 2§ o0
B This- imples- that- design- 1s- tackled- pro gressr: over- a: penod)t-
time ‘ratherthan-as-a-single-discrete-activity --So-where - should-you-be gin?-
On- the- assumption- that- designing: a- user- interface- 1s- no different- in-
principle: from- designing- any- other-kind- of* product.: you should-be gin- by-
gainung-an- understanding: of- user- requrements- through- constructing: and-
evaluating' a- high- level model: of- the systera- Chapter- 2- provides: a-
frame work-for-this-first-design-iteration.

Section-2.2-deals-with-scoping-and-requuwements-issues - -The- focus-here-is-
ondentfying WHAT the-product-should-do-and- WHY ,-rather- than-HOW-

Roasriroments st ohtheachieued <Tnmarticular sdericinnarelatinotaen hueiraloasnerte afe

i Cancepualmadsle s (EE R PIEEEIE ™

@ Interaction paradigms

@ Interaction styles

@ Towards physical design
@ metaphor

design — prototyping — evaluation cycle. |

SECUOoIT 1T.UZ

Figure 6.18: Separate learning components may be docked together.

Simplicity is also maintained by the Controller opening and closing individual learning
components whenever the user changes topic or study mode. Users only open and
close general-purpose learning tools, which they access through the Desktop Menu
(Figure 6.20).

Chapter 6: Prototyping 141

Help and documentation

A pop-up hint is attached to each interactive control such as a form button. This is

displayed when the mouse cursor is on the widget.

All form templates include a Help component encapsulated in a tutor icon (button)
(Figure 6.16). The Help screen is organised to first present quick hints for using the

component, followed by more in-depth explanations.

The Help file is written in rich text format using a document template to enforce a
consistent format and style. These files are stored in a Help folder under the name of
its component. This provides a generic way for the system to match the help file to the
calling component. If a correct help file has not been provided, then a default screen
will be displayed when the user clicks the Help icon, informing them that no help is

available yet.

The provision of additional hardcopy training documentation is addressed in Chapter 7.

6.5 Integrated learning support and communications

So far in this chapter, the aspects of IMMEDIATE's prototyping that have been
discussed focus on the standalone features of the Learning Shell. The remainder of
this chapter will address the Leaming Shell's networked features to support
collaborative learning and dynamic updating of learning resources, and the authoring

application.
There were two main stages in prototyping IMMEDIATE's networked features:
¢ Developing the additional functionality for the Learning Shell, and

e Developing the communications and networking services needed to support this

functionality.

The first stage is discussed here. The second stage is discussed in the Communication

Management section (6.6).

The major prototyping task addressed in this section is to develop and evaluate a
method for integrating the learning support, communications and collaborative work
aspects of the Learning Shell, by means of a relational database. This was broken

down into the following steps:
e Design and build the integrated database system.

o Develop the communication and collaboration components.

Chapter 6: Prototyping 142

o Refine and evaluate for usability and modularity.
e Develop the learning support subsystem.

o Refine and evaluate for usability and modularity.

6.5.1 The system database

To meet the requirements for integrating communications and learning support a
relational database is implemented at the system level of the Learning Shell. The
integrated database model is shown in Figure 6.19. The database stores all
communications to and from the student in the Messaging table. "Section" and 'Topic"
fields allow these communications to be organised by position in the course. The
"GroupNo" field enables communications to be organised as collaborative group
discussions. Keyword fields enable the tutor to link communications received by
him/her to key concepts as well as topics in the course to facilitate monitoring student
learning and updating the support database. Some tables, e.g. Concept, have only one
attribute and function as look-up tables to ensure consistency in terminology, and

facilitate linking, across the entire course.

The Connection table links individual concepts to broader themes to support more in-
depth querying and exploration of learning support by the student. In the prototype,
student queries on a concept may return additional information on that or related
concepts stored in the What table, further reading (References), or related web urls
(Links), depending on the type of query. The QueryType table maps natural language
phrases selected by the student to the allowable query types.

The UserStats table stores system-level data tracking student interactions with the
support system, which can be used to improve responses to student queries. This and
other system information can be sent anonymously across the network using a special
user type stored in the UserType table. The tutor receives a different view of the

database , also determined by a different user type.

The database is replicated on each user's computer and is periodically updated by and
updates a central copy, as described in Section 6.6. It has been implemented as a set
of Paradox tables using Delphi's Database Desktop utility. The utility allows features
like indexes and foreign keys to be defined, and SQL queries to be developed and

tested separately from the application.

Learning components access the database through a Delphi data module, which

belongs in the system layer of the Learning Shell architecture (Figure 6.13). The

Chapter 6: Prototyping 143

module is a non-visual form which enables direct database access to be shifted from

individual interface components to an intermediary layer for greater modularity and

easier maintenance.

What Concept Connection Theme
*Concept >0 H | ©< ‘Concept “Theme
*Section - Goncapt ‘Theme >9—I_
*Topic
*Keyldea]
Elaboration Reference Link Links
LastUpdated
*Concept *Concept “Link
“Section *Section
“Topi .
References _,—GQ ';Z?e(r:ence 'Iit:s(lc >9J7 QueryType
PageReferences .
*Reference Lagtupdated Lasilipdated QuType
QuPhrase
Messaging Class List UserStats
*ID *Name *Entered
*F_From y UserType UserType Concept
F_To GroupNo Section
Copy._To O Biography ‘UserType Topic
GroupNo Snapshot FirstResponse
Section GroupLeader LastResponse
Topic ResponseCount
MsgType CopyTo
Entered
€| Keyword1 MessageType *CopyTo -
B<| Keyword? * Primary Key
©<| Keyword3 “Type)
Header Description Foreign Key
Text
-9< 1 to M relationship

Figure 6.19: The integrated System Database model.

6.5.2 Communications and Group Work

Communications are handled in the Learning Shell through a Message List component
(Figure 6.20) with a similar look and feel — and functionality — to an email client such as

Microsoft's Outlook Express. The principal differences are:

e All messages are tied to a particular topic in the course, and can only be viewed

when the Group Work study mode is selected for that topic.

¢ Incoming and outgoing messages can be shown together in sequence to facilitate

collaborative discussion.

All new messages are added to the System Database. To provide for working offline,
new messages may be sent immediately or later. When the student clicks the Update
button (or sends a new message immediately) the Shell attempts to connect to the
Course Repository via an FTP Client, providing appropriate messages in the status bar

of the Message List. The FTP Client is implemented using a Third Party Delphi

Chapter 6: Prototyping 144

component. If the connection succeeds, then all unsent messages are transmitted to
the Course Repository, and all new messages for the user are downloaded from the

Repository.

Group Leader
o Wi o .
¥y T#

Pally Bob

[Fvom ITo ICc IDate Subject .
¥ Chris Bok All 03-Oct-0316.0135 Assignment 1
Polly Bok MyGroup 03-Oct-0316:01:35 Assignment]

o o3

Hi Group

Has anyene made any progress on Assignment 17 How do you? design an interface with PowerPoint?

Pally

Nex
Explorer Previous

Update ! VlewAlll Reply | Forwardl New | Print l Delete Learning Aids
- Help Sl
[Faur me: Exit ted this session.
Topic 1.04 —_— Group Work Mode

Figure 6.20: Group Work component with Desktop Menu open.

Refinements to Group Work component

A refinement added during the pilot study (Chapter 7) allows a list of all new messages

received to be viewed on arrival, from anywhere in the course.

To facilitate collaboration, some additional features have been added. Photos of each
member of a student’s work group and their tutor are displayed. By clicking on a picture
with the mouse, the user can access a short biography of that person or send them a
message. Students may send a message to anyone involved in the course by selecting
from a look-up list. Copies may be forwarded to the student’s work group, to the tutor or

to all students in the course.

A method was outlined for the storing and sharing of documents among group
members to facilitate collaboration, but was not implemented in the prototype. In

essence, this involved storing the file path as a field in the Messaging table and

Chapter 6: Prototyping 145

providing a shared storage space in the Repository. To observe the narrow bandwidth
constraint of the electronic mail service, shared files would be limited to text-based data
rather than large multimedia executables like Word documents, which may run to

several megabytes.

Integration of basic communication and collaborative facilities

The Message List component implements sufficient functionality to demonstrate the
viability of the method for integrating basic communication and collaborative facilities
into the Shell architecture, and for adding more sophisticated features where these will
assist learning. Additional refinements to assist collaboration that could be usefully
explored are an alternative format for displaying messages that better visualises the
interactive dialogue within work groups, and directly incorporating a communication
facility in the Assignment mode.

6.5.3 Extramural Support

Learning support has been implemented in the form of an Extramural Support
component (Appendix F11). This component has been developed using the approach
of starting simple, but providing for the addition of more sophisticated features should
they prove necessary. Therefore, key aspects of the specification have been
implemented at a basic level, but in a modular form that would easily accommodate

new functionality. These include:

e The subject of queries. The point of entry to Extramural Support is selecting one of
the key concepts or learning goals in a particular course module (topic). These
have been defined by the course author, but can be updated by the tutor. Selecting
a concept from the displayed list opens the Extramural Support window initialised to
that concept. The student may then query the system on that concept. The
database stores information on a greater range of subjects than are listed as key
concepts or learning goals. These can be accessed within Extramural Support by

searching related concepts as discussed under “Refinements”.

e Natural language-like querying and dialogue. This is currently limited to the user

»oou

choosing one of three initial questions on a selected topic (“Explain...”, “Who wrote
more on ...", “Where do | find more on...”) and receiving a response. The student
can then continue a dialogue with the Support system via a set of buttons, which
are enabled or disabled according to the state of the dialogue (Appendix D4 and
DS5). Figure 6.21 shows the top level methods for supporting this dialogue.

Provision is made for accommodating a wider range of query types. This would

Chapter 6: Prototyping 146

require adding a more sophisticated parsing mechanism to enable translation into

more detailed specification of SQL queries.

o A directed search algorithm to return the best available result to the user. In the
base implementation, the ranking of the results is determined solely on proximity in
the database to the current topic. Additional ranking criteria could be easily added.
For instance, providing for a ranking to be added to each database entry (e.g. Level
1, 2 or 3) would enable multi-level support to be offered. Results could then be
based on a breadth-first or depth-first search of the database, depending on the

preference of the learner.

procedure TExtramuralSupport.HelpUser;

begin
prepareHelp;
parseUserinput;
executeAsSQL;
presentBestResultToUser;
waitForUserResponse;
end;

procedure TExtramuralSupport.respondToUser;
begin

actionUserResponse;
end,

procedure TExtramuralSupport. TryHelpingUserAgain;,
begin
presentNextBestResult;
waitForUserResponse;
end;

Figure 6.21: Top level methods for interactive dialogue with user.

e Dynamic updating which improves the response to users’ questions over time. The
course tutor may update the items in the support database at any time. The tutor is
automatically informed whenever a student rejects the system’s response to a
query (i.e. clicks the NO button). In addition, the student can redirect the question
to the tutor with his or her own comments. The tutor may respond personally to the
tutor, to all students, update the database, or all of the above. Provision has also
been made to track students’ dialogues with the system and store them in a
UserStats table. These can be periodically transmitted to the tutor to help in

analysing and updating the database entries.

Concept Map

An early refinement was to add the Concept Map (Appendix F12). This component
uses the technique of concept mapping (Novak et al., 1984) to assist learning through

visualisation. It provides a user-centred avenue for exploring the Support database

Chapter 6: Prototyping 147

more deeply in a guided manner. When the student chooses to view a Concept Map for
the current concept, all related concepts in the database, and the relationships

between them are graphically displayed (Figure 6.22).

Any related concept may be selected as the basis for a new query. Concepts and their
relationships are entered into the database by the tutor. The map itself is implemented
as a graph ADT in which the nodes are concepts and the arcs are relationships.

Drawing the map is then a matter of processing the graph.

Extramural Support was re-implemented to be accessible from any component through
the Controller, rather than as an independent learning component in its own right. The
student accesses Extramural Support via a Key Ideas component, which lists the key
concepts to be learnt in the current topic (Figure 6.17). A future refinement is to make
context-sensitive learning support accessible from every learning component by
opening Key Ideas via an icon on all forms, in the same way that the Help feature

currently is offered.

%] Concept Mag HES

Conceptual trameworks
T

Interaction styles

/ rnéaphcu

/
Conceptual models

Figure 6.22: Concept Map for “conceptual frameworks”.

Self-Assessment

In the Leaming Shell, Self-Assessment is a separate learning component
approximating to a revision quiz in a textbook. It assesses the leamer’s understanding
of the key learning goals in a particular topic. This information is passed to the
Controller which stores it in the System Tree. It is then available to be used by the
Course Explorer to visually display the student’s progress through the course as
described earlier (6.3.1).

Chapter 6: Prototyping 148

A further refinement takes advantage of the ability of the System Tree to store
additional levels of information (Figure 6.7). The self-assessment information is used to
display to the student their progress in understanding individual concepts and learning
goals. An icon is displayed to the left of each concept in the Key Ideas component
(Figure 6.17). The traffic light metaphor is again used to colour-code this icon to show
the student’'s level of confidence in that idea — GREEN (fully understood), AMBER

(partially understood but requires further revision), or RED (not understood at all).

Self-assessment may be by any method that can be implemented on a computer. The
prototype currently provides for assessment via a multiple-choice quiz — if the author
has provided one — or by default, a questionnaire through which the student expresses
their confidence in each concept. Concepts are presented to the student in random
order. Once the student has completed the self-assessment, the results are saved via
the Controller. They are then used by the Key Ideas component to update each
concept icon, as well as by the Course Explorer to update topic and section icons in the

course Table of Contents. (This is illustrated in Figure 7.12.)

Self-assessment can also serve as a revision tool. Initialising the Learning Shell, for the
purposes of revision, is simply a question of setting values for all topics and concepts in
the model to the default. This sets their icons in the Key Ideas and Course Explorer

components to RED.

6.5.4 Coarse-grained learning help

As implemented, Extramural Support is a coarse-grained form of learning help
structured by topic and limited to a few basic query types. In the first instance, it
organises material that might appear in a textbook’s glossary, chapter summaries and
bibliography, in a way that it can be accessed by topic. This base is then built upon by

the tutor adding in and updating material as required, or as it becomes available.

Integration with the communications system offers a number of advantages by
combining both individualised and collaborative forms of learning support, and by
providing a mechanism for dynamic updating of the content. Provision has been made,
in its modular design and implementation, for the incorporation of more sophisticated

guerying and search mechanisms on an as-needed basis.

Chapter 6: Prototyping 149

6.5.5 Individualisation

The learning computer was conceptualised as supporting individualisation along four
dimensions: sequencing, presentation, learning level, and learning support (4.3.1). This

section discusses how these have been addressed in the prototype.

Sequencing

Sequencing is concerned with the order in which parts of the course are presented to
the student for study? In the learning computer prototype this feature is adaptable, i.e.
the student can select any topic in the course at any time from within the Course
Explorer component. Colour-coding associated with each section, topic and key
concept, as described under System Tree (6.3.1) and Self-Assessment (above), guides
the student in their choice. This same mechanism would allow more prescriptive
sequencing (e.g. hiding some sections and topics until prerequisites have been
successfully completed) although this would conflict with the learning computer's

student-centred exploratory emphasis.

Presentation

Learning style, or how the content of a particular topic is presented to the student, is
selected by the user through choosing from the different study modes supported by the
course author. These are displayed in the Course Explorer for the currently-selected
topic. The modular character of the Learning Shell means that a new mode can easily
be defined, and learning components can be added or modified to support any desired,
computer-runnable functionality for that mode. The new mode will then be displayed for
any topic in which the course author has provided the necessary files. These files may
be learning content, they may provide links to learning content stored on a CD or a
networked computer, or they may launch an independent application installed on the

student’s machine.

Learning level

The leaming computer concept does not require that all content be adapted to the
student's current level of understanding. However, the Student Model makes provision
for storing the individual user's learning level, which would be determined through a
similar self-assessment process as that used to assess understanding of individual
concepts and topics. This would enable some individual learning components or study
modes to accommodate different leaming levels, using adaptive or adaptable

strategies. Both these approaches have been well-evaluated (Brusilovsky et al., 1997;

Chapter 6: Prototyping 150

Murray et al., 2000) and were not in implemented in this prototype. Some components
in the prototype use their own internal mechanism to provide adaptive or adaptable

content, e.g. a Tutorial component that links to a separate ITS application.

Learning support

The most important dimension of individualisation to be prototyped is learning support
(Section 6.5). An adaptable mechanism is provided through which students can initiate
and define queries from anywhere in the course. This is individualised through user-
driven interactive dialogue and exploration. Important information is stored in the
Student Model and other system layer modules about the student’s understanding of
individual concepts and topics and his/her previous interactions with Extramural
Support. This provides the basis for implementing more sophisticated search
algorithms to better tailor system responses to the individual student, as the need for

this is demonstrated.

6.6 Communications management

This section discusses the issues addressed in developing the communications and

networking services needed to support the Learning Shell.

The requirements for an e-learning system (Table 4.2) demand that students be able to
exchange messages within the course, update their course materials as needed, and
receive up-to-date leaming support. Tutors, on the other hand, must be able to
communicate with students and update learning materials and the support database as
required. All these tasks require communication over the network. Some IMMEDIATE
features, such as Extramural Support, also require behind-the-scenes communication

across the network at the system level.

In the network specification for IMMEDIATE (Figure 5.9), each Learning Shell connects
to the Course Repository via a Communications Manager, using custom protocols on
top of FTP. In the implemented version the Communications Manager has been broken
down further into two components — an FTP Server (Appendix H1) and a Repository
Manager (Appendix H2) — which have been installed together with the Repository on a

single computer.

The implementation assumes that the Repository would be managed by an
experienced systems administrator, who would set up new users, complete some tasks
semi-manually, and optimise settings as required. Repository management services

operate at two levels — the FTP Server and the Repository Manager.

Chapter 6: Prototyping 151

The FTP server acts as the point of entry into the IMMEDIATE network. It logs the user
onto the network, assigns them to their correct folders, and allots them the permissions
to complete the necessary file transfers. To support this, two separate user profiles
have been created in the server — a tutor and a student. All tutors are assigned a single
profile and share a “Teachers” folder system. Each student shares the same profile, but
is also allotted their own root directory (Figure 6.23).

I University Machine l
[
C drive
VLM_Repository
Repository
Archive — Resources
—— Students
—— Database .: Learning Comp1
Student1
l: — System .
Learning Comp2
Student2 Ry (- Log |
| PR MessageBox '
Updates L Learning CompX
StudentN
—— CD_Only — Resources
Backup Learning Comp1
—— MessageQueue
MessageBox Temp Learning Comp2
Updates —— UpdatesArchive '
Teach ——
cachers VLM Leaming CompY
‘: HelpUpdates
Backup Resources
MessageBox Learning Comp1
Updates Learning Comp2
Working_Files E
I-— Leamning CompZ

Figure 6.23: Repository folder structure.

The FTP server used is War_FTP, developed by Jarle Aase and freely downloadable
from his web site.”

For the IMMEDIATE network to be accessible, both the FTP Server and Repository
Manager must be online at all times. Once launched, they remain running in the
background in a minimised state, appearing as icons in the Windows task bar. The

system administrator double-clicks on these icons to bring the applications back into
view.

' http://www.jgaa.com.

Chapter 6: Prototyping 152

6.6.1 Repository Manager

The Repository Manager implements those aspects of communications and data
transfers unique to IMMEDIATE. It enables data on users' machines to be
synchronised and updated across the network, while allowing for simultaneous access
by multiple users, and for the possibility that the connection with any or all users may
be broken at any time during the process. To meet the requirements of the Learning
Shell three kinds of data transfers are managed: asynchronous electronic messaging
between course participants, periodic updating of the Extramural Support system on
each student’s computer, and the uploading of updated learning resources. This has

required:

e an appropriate Repository structure;

a set of communication protocols, implemented over the TCP/IP protocol family

which ensure accurate synchronisation between sender and receiver;

e a message-queuing mechanism, which ensures that the earliest message received

is the first processed;
e a parsing mechanism for reading/writing messages from/to a database; and

e a separate set of protocols for updating learming resources on each student’s

machine.

A detailed, daily log is provided to enable the administrator to monitor network traffic
and troubleshoot problems, and optimise settings. The main screen of the Repository
Manager can be seen in Figure 6.24. Its underlying architecture is shown in Figure

6.25. Selected source code is attached as Appendix H3.

Repository

The Repository is a set of folders with the structure outlined in Figure 6.23 . The folders
contain an archive of the entire course content including a master copy of the Learning
Shell System Database; all communications amongst those involved in the course;
updated course materials for the students to upload; and individual folder systems for
each student, including a mailbox for new messages and space for the Learning Shell

to store backups of the student’s work if desired.

E_ELL)

Messages

Help Update

Zip Resources

Help

Chapter 6: Prototyping

< ANOISEC ML I3

Servetlayner

0 = U SENONTS

102020 En 12() 224110 EOL

'Beb

D ZOul3 101 Dt 03

Type 100 &

Montceimansal E

(secancs)

Vigw message @
queue

View hig =3

Soiog ~

atomahzaly

Ok | _Comel |

| AS B & | 3vm | Sitog | Ssys | sy | e | FEoat | St | o |[RRe

Figure 6.24: The Repository Manager.

Repository Manager Main Screen

System Administrator manages the repository from here. Module implements

synchronisation prototcols for managing communications.

!

!

Update Help Database

Message Module Access Module Help Screen
Server Set-up Viewer Prepares m Guides
Customising | Window to view updated Jra—— ?0 the administrator

monitoring messages to extramural Repositor through various

intervals, log administrator & | support tables dat;base g repository
visibility, etc all messages in for other Y management

database transmission cdponcnie tasks

across network P
A

Repository

Course archive, updates, system database, mailboxes

Figure 6.25: Repository Manager architecture.

Chapter 6: Prototyping 154

6.6.2 Asynchronous messaging

To meet IMMEDIATE's specification, asynchronous electronic messaging has been
implemented using a message-queuing technique that automatically handles
communications from multiple users on a first-in, first-out basis. These messages may
be between course participants, between the tutor and the system administrator,
between system components and the tutor or administrator, or between constituent

applications at the system-to-system level.

Only the administrator can view all mail held in the database.

Messaging protocols

A set of communication protocols had to be designed and implemented at both the
client and server end, to ensure the integrity of communications over an unreliable
network, to which multiple users may be connected concurrently. These protocols
operate on top of the File Transfer Protocol. Messages are aggregated into a single file
for transmission, which is parsed into individual messages by the receiving application.
The message transfer process entails a two-way exchange of messages between the

user and the Repository.

Because messages are stored in relational tables they must preserve the constraints

on a replicated database distributed over multiple computers:

e Each message is unique within a single copy of the database so as to avoid

redundancy or a primary key conflict.

e Duplication of messages between different copies of the database must be

possible.

e Copies of all messages connected with a particular user must be stored on that

user's computer. But all messages do not need to be stored on all computers.
At a minimum the protocols had to ensure that:

e any message lost through a network interruption will be re-transmitted the next

time that user connects;
e transmissions from multiple users can be interwoven without difficulty; and
e no message will be transferred twice.
A set of protocols has been designed to meet these requirements (Figure 6.26).

These protocols, together with the messaging-queuing and file-parsing mechanisms

Chapter 6: Prototyping 155

discussed next, proved sufficient to meet these requirements.

Central to the protocols is a two-step synchronisation process to ensure that all the
messages that need to be sent, and only those that need to be sent, are transmitted
from each end of the connection, while allowing for overlapping communications from
different users (Figure 6.27).

Message-queuing

Message-queuing applications communicate by the client passing a message to an
intermediate structure in which incoming requests are queued until the server is ready
and able to deal with them. Any response from the server is returned via a similar
mechanism. Through the prototyping process, the following mechanisms were
determined for implementing message-queuing in IMMEDIATE.

Client-to-server communications are handled through a Repository folder named
‘MessageQueue’ to which all users are assigned access. All incoming communications
are placed in this folder, which is monitored by the Repository Manager at a regular
interval. The monitoring interval is determined by a timer component (thread) to which
a checkMsgQueue method is attached. The administrator can adjust this interval.

Server-to-client communications are handled through an individual ‘MessageBox’ folder
located in each user’s Repository root directory.

The MessageQueue folder is organised as a priority queue of messages in the

following manner:

1. At the end of each monitoring interval, the checkMsgQueue method is called. The
files in the MessageQueue folder are sorted by name. These file names will look
like '67888.txt' or '67864 .txt'.

2. The first item, which will be the one with the earliest date_time stamp (smallest

integer), is processed.

3. Once processed, the response is named either ‘answer.txt' or 'messages.txt' in line
with the messaging protocols, and placed in the user's MessageBox. This naming
convention ensures that any older versions of these responses inadvertently left

behind will be overwritten by the new ones.

Chapter 6: Prototyping 156

Precondition:
The user has successfully established a connection via the FTP server.

Message Format:

e Alltransmissions are in the form of text files, in which the first five lines constitute a header which
must follow a set format as below.

<TO RCVR> Who the transmission is addressed to. Must be
the actual receiver of the transmission, and be the
System, the Tutor or a name on the class list

<FROM SNDR> Who has sent the transmission. Must be the
System, the Tutor or a name on the class list.

<MESSAGE TYPE> May be a last received request/answer, a list of
messages or a test transmission

<GROUP NUMBER> The Work Group to which the user belongs. -1
means the tutor. The default group is 0.

<DATETIME STAMP OF LAST Default = 0.0, which means send all messages for

TRANSMISSION SNDR RECEIVED | the sender in the repository database

FROM RCVR>

e Each message within the body of a communication is separated by a new line containing only the
string ‘[END]’.

e A transmission from a client application is named with the string form of an integer representing

the date and time that the transmission was composed and sent, as in '<date_time_as_no>.txt".

e Atransmission from the Repository Manager will be named either ‘answer.txt’ or ‘messages.txt’ in

line with the steps inthe handshake protocol
Message Transfer
Messages must be updated via a two-step synchronisation and transfer process:

e The client application sends a transmission to the Repository requesting the date-time stamp of
the last message successfully transferred from the client to the Repository.

e The Repository sends a transmission to the client containing the date-time stamp of the last
message successfully transferred from the client to the Repository. This message must be
named 'answer.txt’.

e The client sends a transmission containing the date-time stamp of the last message successfully
transferred to the client from the Repository, and all the outgoing messages with a date-time
stamp later than the date-time received from the Repository.

e The Repository sends the client a transmission containing all the incoming messages for that
client having a date-time stamp later than the date-time received from the client. This message
will be named 'messages.txt'.

Figure 6.26: Messaging protocols

Chapter 6: Prototyping

157

A A Date_Time
New messages A
or user

Outgoing messages & last received
data for Repository

Last received data for user

Last Received
request H
Y

Student or Repository
Tutor User Manager

Figure 6.27 (a): Two-step transmission protocol.

. A T Date_Time
o
g ‘....‘...;
e e
R
<4 =1 o
1 .
S . S e
S ... »
el I
A B
Repository

Student or Tutor

Users Manager

Figure 6.27 (b): Transmission protocols accommodate overlapping users.

Chapter 6: Prototyping 158

From the user end:

1. The Learning Shell checks its Message Box in the Repository at regular intervals

for the required file.

2. When the file is found it is moved to the user's machine and deleted from the

server.

3. If nofile arrives within a specified time period, or the connection is broken, then the
transaction is aborted by the Leaming Shell and the user is notified and requested

to try again later.

File-Parsing
All transmissions within the IMMEDIATE system are text files in which the first five lines
constitute a header and the remainder the body, as defined in Figure 6.26. These files
must be composed at one end of the transmission and parsed at the other. The code
for achieving this at the Repository Manager end of transmissions is included in
Appendix H3.

When the Repository Manager finds a file in the Message Queue end, it passes it to

the processMsgList procedure. The processing steps taken by this procedure are:

1. Process the transmission header
2. Iftransmission is a message list, then

a. Update the Repository with the messages

b. Return a listof messages to sender based on Last_Received information provided
3. Elseiftransmission is a Last_Received request, then

a. Return Last_Received information to sender

Processing the header is simply a matter of parsing the first five lines of the file for the

necessary information.

Messages are stored in a relational database on each computer within the IMMEDIATE
network. They are not transmitted as individual text files but as a list of messages each
separated by an ‘[END] symbol. This list includes all the outgoing messages in the
sender's database that have not already been successfully added to the recipient's

database.

All messages include a date_time stamp, recording when they were composed (i.e. the
“Entered” field in the Messaging table in Figure 6.19). A Last_Received request from a

client, viz. a Learning Shell or authoring application, is fulfilled by the Repository finding

Chapter 6: Prototyping 169

the incoming message from that client with the most recent date_time stamp, using an
SQL query like:

select MAX(entered) from Messaging where F_From = : F_From;
where the :From’ variable takes the value of the client user name. And the user

responds with a Last_Received message to the Repository Manager based on the
result of:

select MAX(entered) from Messaging where F_From <> : F_From;

where “F_From’ again takes the value of the client user name.

To compose a message list, the sender uses the Last_Received data to run an SQL
query on the local copy of the Messaging table (Figure 6.28). The result set is then
written to a text file, with each field written to a new line and ‘[END]' separating the
messages. Updating the Messaging table at the receiver end is just a matter of

reversing this process.

(a) Query run atclient end:

select *

from Messaging

where (F_From =:F_From or MsgType = "Q")
and entered> :entered;

(b) Query run at Repository end:

select *
from Messaging
where entered> :entered and F_From <> :F_From
and(F_To=:F_Toor CopyTo = "All"
or (CopyTo = "MyGroup" and GroupNo =:groupNo));

Figure 6.28: SQL queries for composing message lists to be transmitted.

However, the main body (“Text” field in the Messaging table in Figure 6.19) of a
message may be many (or zero) lines long. Thus, the primary role of the ‘[END]

symbol is to mark the end of the Text field.

An advantage of transmitting messages as straight text files is that they are platform-
independent. It is not necessary that the Repository and Learning Shell databases
have the same physical implementation. It is only necessary that they have the same

logical structure.

The key methods for implementing the messaging system at the Repository end are
shown in Appendix H3. Implementation at the Learning Shell end is similar. The

interface for the Shell messaging module is included as Appendix H6.

Chapter 6: Prototyping 160

6.6.3 Procedures for Resource Updating over the network

The updating of resources over the network is a semi-automatic process involving the
tutor, the system administrator, and the student. The primary challenge has been to
ensure the integrity of the update process — while minimising user intervention — by
ensuring that all students receive all updates, and that more recent updates are not

overwritten by older ones.

Database updates

The updating of the Extramural Support system, which involves updating a database,
has been handled differently from the updating of other Learning Resources, which
involve adding or replacing files. This was to simplify the transfer process at the

Learning Shell and to minimise any demands placed upon the student.

The Repository copy of the Support database is directly updated by the course tutor.
The administrator uses a Repository Manager facility that converts each updated table
into a text file and transfers it to a HelpUpdates folder in the Repository, in preparation

for downloading to student machines with other course updates.

Data file updates

The course authoring application automatically transfers updated resource files to a
special location in the Repository. The updated resource files and updated Support
tables are then zipped (compressed) into an appropriately named executable
resources file and placed in the UpdatesArchive folder. These zipped files are named
consecutively in the format ‘Resources_<NextAvailableNo>.exe’. In the prototyped

version the zipping process is performed by the :;dministraton

Learning Shell

The operations outlined above greatly simplify the updating procedure from the student

user’s perspective.

On logging on to the Learning Shell the user may choose to update learning resources
from the Internet or from a disk (Figure 6.29). Whenever the student opts to update
from the Internet the Learning Shell automatically connects to the Repository, checks
for new updates, and then automatically downloads and installs any updates not

previously installed.

Chapter 6: Prototyping 161

Update Resources

-

Massey University
Extramural

Select update method

& Update via Internet

B

Select an option © Update from disk
c

Cancel

2 R R e

N

Figure 6.29: Learning Shell update resources screen.

This has involved implementing the following algorithm in the Leaming Shell (Appendix
H4):

1. Connectto FTP server.
2. Change directory to the Repository Updates_Archive folder.
3. Get file number of last resource update stored in Student Model.

4. Download all update files with more recent file numbers to an Updates
folder.

5. Execute file with lowest update number.
6. Waitforthe user to unzip the file by default to a temp folder.

7. Move the updated resources to the Learning Shell and delete the temp
folder.

8. Repeat steps 5 to 7 until there are no more update files to unzip.

9. Update the student model with the most recent file number successfully
unzipped.

Chapter 6: Prototyping 162

10. Return control to the user.

As part of this process, updated Extramural Support files are placed in the
HelpUpdates folder (Figure 6.9). At the end of the start-up procedures and before the
course is opened, the Controller's UpdateExtramuralSupportFiles routine is
automatically called. If there are any files in the HelpUpdates folder, then they are used

to update the Extramural Support database and then deleted (Appendix H5).

The most urgent updates — e.g. assignment results or query responses — involve small
text files suitable for transmission over a narrowband Internet connection. Provision
has been made for larger updates — e.g. multimedia files or executables — to be stored
separately in the CD_Only folder to be distributed by one-way broadband (e.g. CD,

satellite download or fast internet).

The key to maintaining the integrity of the update process was to ensure that update
files were downloaded consecutively from oldest to newest, and that the separate file
zipping application had successfully completed its task and the updates had been
installed, before the Shell updated the Student Model. The file naming system
addressed the first issue, while the second was solved by attaching the updating code

to a Delphi timer component (Appendix H).

Updating from a disk is a simplified version of this procedure without the unzipping
step, and only requires loading the disk in the computer and clicking an on-screen
button with the mouse.

6.6.4 A challenging task

Implementing the Communications Manager proved to be one of the more challenging
tasks in the overall implementation of IMMEDIATE. This reflected both the inherent
complexity in getting multiple separate applications to successfully communicate and
cooperate over a network, and the need to simplify and minimise the associated tasks

for the student user.

The goal of minimising the load on the student has been successful. In the
implemented version, the only requirement demanded of the student user is to confirm
the unzipping processing during the transfer of learning resources, by clicking on an
‘OK’ button to accept all the default parameters. If, however, the student does
something else then an error may occur and the transfer will not succeed and will have

to be repeated.

The updating process at the student end should be completely automated by adding a

Chapter 6. Prototyping 163

file compression/decompression utility to the Learning Shell similar to the ones
developed for automatic file and folder manipulation. This would also simplify the
zipping process at the Repository end. Such utilities exist but were not available for this

project.

The techniques developed for updating course resources could also be used to update
the Learning Shell executable itself. This makes maintenance straightforward.
Improvements to Shell modules could be incorporated, and the updated software

distributed, with course content.

Further information on the communications management implementation is included in
Appendix H.

6.7 Authoring application

This section summarises the experience in developing IMMEDIATE's course authoring
and management application. The primary prototyping goal was to demonstrate a

mechanism by which a teacher can author and update a course for the Learning Shell.

Given time constraints and IMMEDIATE’s focus on proving the learning computer
concept at the student interface, the design of the authoring application was very much
the RAD process itself. Wherever possible, code developed for the Leaming Shell was
re-used in this prototype. Nevertheless, it still required a significant programming effort,
with the functional authoring prototype running to nearly 7000 lines of source code. Its
main components are depicted in Appendix |.

The prototyping steps followed were:
¢ Define course authoring for IMMEDIATE.
e Propose an authoring mechanism.
o Implement sufficient functionality to demonstrate the mechanism.
e Evaluate the results.

Each of these steps is now discussed in turn.

6.7.1 Course Authoring and Re-use

For the leaming computer approach to be feasible, there had to be a practical way for a
teacher to author and update course materials, and maintain the learning support
system, without the teacher being required to understand how the learning computer

works. To solve this problem it was useful to consider how a teacher prepares an

Chapter 6. Prototyping 164

extramural course.

For IMMEDIATE, extramural distance teaching is viewed as an extension of internal
university teaching. The teacher, drawing upon his/her classroom experience, prepares
a study guide for the extramural student. This study guide is fleshed out with additional
materials from the internal course — lecture notes and handouts, supplementary
reading materials, etc — together with materials specifically directed to external

students.

IMMEDIATE’s task was to transfer that authoring process to a computer-based
extramural environment. In support of multidimensional learning, it should provide for

adding further learning materials beyond what can be offered in a paper-based course.

From this perspective, IMMEDIATE does not offer templates for improving the
educational effectiveness of individual learning materials. It offers a mechanism for
quick assembly and effective organisation of pre-authored material into a complete

extramural course.

6.7.2 Authoring mechanism

The proposed mechanism was a course authoring and management application built
around the same core data structures and algorithms as the student application,
especially the System Tree. This provided a framework for the teacher to define a
course structure and its study modes from the available components, and to add or edit
learning materials in the appropriate format and location, using a "drag and drop"

graphical interface.

A greater level of complexity was permitted for the authoring application than for the
Learning Shell. It could be assumed that while course authors are not programmers,
they are more experienced computer users than extramural students, and are backed

up by university computing support services.

The authoring application is built upon the complete separation of functionality and data
in the Leaming Shell. Students would be supplied with a compiled version of the
Learning Shell with pre-installed learning components, and a folder system containing
the reference models, the learning support and messaging database, and all learning

materials for the particular course.

A central copy of this folder system is stored on the university repository server (Figure
6.23). The authoring files are stored on the teacher's computer. At the end of each

authoring session, updated files are automatically transferred from the authoring

Chapter 6: Prototyping 165

application on the teacher’'s computer to the appropriate Shell directory in the
Repository. From the Repository, the learning materials are transferred to the students’

computers by CD or the Internet.
This authoring process was broken down into three main stages:
o define the overall course structure (table of contents).
o define the study modes that will be available to the student.

e add the course learning materials.

6.7.3 Implementation

The implementation of the principal components of the authoring application is now

described. Sample screen shots are attached as Appendix 11 & 2.

Table of contents

The authoring application provides a direct manipulation interface in which the teacher
creates a Table of Contents (TOC). This is an instance of the Learning Shell’s System
Tree data type which models the basic structure of the extramural course. The
application then saves the TOC to file in the appropriate format to be read by the

Learning Shell, using the System Tree’s operations.

Study modes

At the start of the authoring process, an interface is presented containing a System
Model initialised to the core study modes, which must be included in any course, and
their constituent leaning components. These approximate to the basic elements of a
correspondence-based extramural paper. They are also necessary for the Leaming
Shell to function correctly.

The teacher may then add components to these core modes or create new study
modes, by selecting from a list of all the pre-installed learning components available in

the compiled Learning Shell.

Learning resources
Once the TOC and Study Modes have been defined, learning materials may be added

or updated using an Add Learning Material form (Figure 6.30, Appendix 12).

IMMEDIATE provides a simple drag and drop mechanism for correctly adding (re-

using) pre-authored learning materials such as lectures or tutorial programs without

Chapter 6: Prototyping 166

requiring any special programming skills or understanding of how the system works.

Tools and templates have been provided for authoring learning modules specific to the
Learning Shell, such as self-assessment tests and definitions of key concepts and
learning goals for each topic. These templates provide the vehicle for adding such

modules to the course.

The Add Learning Material screen displays the TOC, the learning components
available to the course, and the teachers folder system where the pre-authored
materials are stored. Selecting a topic in the TOC with the mouse causes a list of all
the learning resources that have been added to that topic to be displayed in a separate
box below. The nodes in the TOC are marked with coloured crosses and ticks to
indicate which sections and topics have had the minimum resources added for proper
functionality. A course is not ready for distribution until the root course node is marked

with a green tick.

Add Learning Material

Course Structure—— = = Author's File System— e et e
= % 158 353 Human-Computer In e [& ¢ fsystem) =
= v 1. HCl Fundamentals P > C\
v 1.1 Designing for Usat | & VLM_Repository
(1 2Modelling The User Intertace] > Teachers
v 1.3 The User Cognitiv
 1.4Modelling The Inte O3 Evaluation

= % 2. Analysis & Conceptual
X 2.1 Designlssues [

¥ 22 Life-cycle: Require ‘ MyAssignment doc
|
|

; MyAssignment_1_2.doc
X 2.3 Task description: £ -
X 2.4 Task Analysis, HT MyLectirelotesihim

MyLectureNotes_2_t html
¥ 25 Lo-fi and Hi-fi Protc s00100cst b

% 2.6 Cenceptual Desigr | 1
X 3. Physical Design & Impl [
R 4. User-centred Design & {Evaluation]

X 5 Otherlssues

IMyAssignmem_1_2 doc

Resources | Learning Components
Keyldeas | AdministrationGuide
LectureNotes Delete | [

LibraryExplorer { AssignmentworkSpace

"WebExplorer

LectureNotes
LibraryExplorer
SelfTest ‘
StudyGuide |
Tutonal b |

\
StudyGuide Update ‘
\
\

Figure 6.30: Interface for adding and updating learning materials.

To add a resource the author selects the topic and component for which the resource
will be added, and then the appropriate data item in their directory system. This data

item may be a file, or a folder with sub-folders. If a folder is selected, then the user is

Chapter 6: Prototyping 167

asked to identify the index or start up file within it.

The application stores information about each component. If special processing is
required, such as adding multiple files or authoring a resource, the user is guided
through that process. The system uses the Learning Shell Resources Model module to
code the resources so they can be identified by the Shell and transfers them to the

appropriate position in the Repository archive at the end of the authoring session.

Authoring and Updating the Support System

Several facilities have been provided to enable tutors to author and update the
Extramural Support system: When a course is authored, the authoring tool requires
that a Key Ideas resource be provided for every topic in the course. A facility is
provided for entering each key concept or learning goal in a topic, and its elaboration,
into the course database. From this facility, tools may be accessed for linking concepts
to more general themes (i.e. relationships) which will be displayed in the Concept Map,
and for adding book and web references.

While only the key learning goals are added to the Key Ideas component during the
authoring stage, additional concepts can be added to the database or edited at any
time via the Group Work interface, through which the tutor monitors and responds to
course discussion and queries. From here the tutor may classify discussion items by up
to three keyword phrases for easy reference. They may also be edited and added to

the support database.

6.7.4 Evaluation of authoring tool

To fulfil the key requirements for a computer-based distance learning environment,

IMMEDIATE must support authoring and re-use.

The component-based architecture of the Learning Shell supports code re-use by a
programmer. But it also provides a flexible means by which a teacher can select the

components and define the study modes with which he/she wishes to teach the course.

This functionality is achieved by building the authoring system around the basic data
structures of the Learing Shell. Using these data structures the authoring tool embeds
algorithms that automatically position and name learning materials so that the Learning

Shell will function correctly.

For the teacher, authoring a course is primarily a question of systematically re-
organising their teaching materials from existing internal and external courses into a

suitable form to be integrated into the Learning Shell. This information engineering

Chapter 6: Prototyping 168

does not require any specialised programming or other technical knowledge.

The authoring process follows similar lines to what is necessary to transform internal
teaching materials into a successful paper-based extramural course. Where it goes
further, is in the greater range of materials and media that can be integrated into a
computer-based course, in providing a template for structuring the course, and in

ensuring that the author provides all the essential learning elements for every module.

At the teacher level, reusability primarily means that a competent teacher without
previous programming experience is able to author and update a course using a

generic shell provided by a programmer. Reusability features supported include:

e Modes can be defined and built to templates using re-usable components

with settable properties.

¢ Internal teaching materials can be re-used. Lectures, for example, can be
recorded in class and provided to external students together with notes

provided to internal students.

e Tutorials and other interactive learning programmes in a runnable format

(e.g. Web or Windows) can be picked up and linked into the course.

e Discussions and queries can be edited and made available to students as
part of the help system.

e A facility for updating courses is built into both the authoring and learning

applications at minimal effort for student or teacher.

For the student, the Learning Shell works for any course. The Shell is independent of
the course content. Using the Shell for a different course simply involves loading a

different set of resource files.

The current prototype operates with only one course at a time. However, with a
separate folder structure for each paper’s learning resources and database, and a few
modifications to the source code so that the Shell can be pointed to the correct folder

system at logon, it could be used for simultaneously studying several courses.

The authoring application was used successfully to install a section of a real extramural
course for the user testing of IMMEDIATE discussed in Chapter 7.

6.8 The IMMEDIATE prototype

Once the constituent applications had been coded and tested individually, they then

needed to be tested in relation to each other. An important part of the incremental

Chapter 6. Prototyping 169

prototyping process has been assembling the applications into the overall IMMEDIATE
system, and then testing and modifying them so that they worked together to support

all the required functionality of the Learning Shell.

To begin with, IMMEDIATE was assembled and debugged on a single computer. Then,
the university-end components and the Learning Shell were installed on separate PCs

and modified to run over a peer-to-peer LAN.

This section concentrates on the main challenges to get IMMEDIATE to run over a

network. These were:

e |Integrating the three component applications (student, authoring and repository
management) and the FTP server into a working prototype running on an Ethernet
LAN. On the network level this was quite straightforward. It involved linking two PCs
running Windows 98 using a 10Base2 Ethernet coaxial bus (Tanenbaum, 1996, p.
277), and configuring the PCs to communicate over TCP/IP protocols. Within the
client applications (Shell and authoring), the hard coding of the FTP server's IP

address was changed to a parameter to be read from a set-up file.

As an application, the Learning Shell was easily installed, together with its folder
system and data files, from CD or the Internet. It could then be accessed from an
icon on the Windows Desktop.

The Delphi installation utility was used to create a set of installation files, which
were used to install the Shell on the second PC. This highlighted some issues
caused by variations in graphics capabilities (e.g. available colours) and screen
resolution. A lowest common denominator approach has to be taken to the use of
colour in the Shell. In relation to varying screen resolutions, all interface
components must be designed for the lowest resolution, an algorithm has to be
introduced to resize screen objects to match the resolution on the user’'s computer,
or the user has to be guided to set the screen resolution to the optimal level. For

the purposes of this initial prototype, the latter strategy was assumed.

¢ Installing a section of an extramural computer science paper, using the authoring
application. This proceeded smoothly. But as the course author was also the
system developer, it could only be a test of the application’s functionality, not its

usability.

The main change introduced at this stage was to provide for a wider range of
materials to be displayed by learning components, for instance, multiple web pages

instead of a single document. This entailed altering the resources directory

Chapter 6: Prototyping 170

structure of the Learning Shell. And it required additions and alterations to the
authoring system to support the functionality added to the Learning Shell e.g.
enabling a hierarchy of folders (as with web pages) to be added to course material

in the same manner as a single file.

Improvements were also introduced at this stage for updating the Extramural
Support database in response to student queries and communications. This is

discussed under “Authoring and Updating the Support System” (6.7.3).

A self-evaluation of the prototype for functionality using the set of scenarios that

defined the main functional requirements of the Learning Shell (Appendix D).

Modifying and debugging the prototype until it satisfied the essential functional

requirements in these scenarios. This is discussed in the following sections.

6.8.1 Modifications to the prototype

Considerable effort was directed at this stage to perfecting the methods by which the

three core applications communicated with each other over the network so as to

accurately transfer data and maintain consistency across the overall system.

Modifications of all three component applications were made to simplify updating of

course materials and the extramural support database by the student, and to provide

more visual feedback. Many of these changes have already been discussed.

Some changes also had to be made at this stage that were required by technical

limitations of the tools used. For example, the database engine that Delphi provided for

free distribution with an application supported a smaller subset of SQL functionality

than the version provided with the programming environment itself.

(a) failed query:

select MAX(entered) from Messaging
where F_From =: F_From,

(b) replaced by selecting the first member of result set from this alternative:

select entered from Messaging
where F_From = :F_From
order by entered desc;

Figure 6.31: SQL query rewritten to run outside Delphi environment.

For instance, updating of messages between the Leaming Shell and Repository
databases relied on use of the MAX function in SQL (6.5.2). But the call to MAX

function failed in the distributed version. This meant that when the Learning Shell was

Chapter 6: Prototyping 171

installed on a separate computer synchronisation of data between the databases failed.
Because this problem only occurred outside the Delphi IDE, it was very difficult to
locate. Once located, however, it was easily solved by rephrasing SQL queries where
necessary, as in Figure 6.31.

The final network specification for IMMEDIATE is shown in Figure 6.32.

Authoring, Tutoring
System

Repository
(Database
update files)

A
v

LAN

Repository
Manager

On-campus
____________ FTP Server

Off-campus (Security)

T by
A

N
Internet "~ A 4

Learning Shell
<P (Student user)

Figure 6.32: IMMEDIATE prototype implementation.

6.8.2 Debugging

The difficulties in troubleshooting a relatively simple SQL problem highlights how
challenging it can be to locate and fix errors in programming logic and semantics in a
project of this scope.

One of the advantages of software development in Delphi is the programming
environment’s comprehensive set of integrated debugging features, including being
able to step through source code line by line while the program is running. However,
implementing some of the requirements of the Learning Shell inhibited debugging using

the Delphi tools.

For example, shutting out Windows operating system features while the Learning Shell
is being used had the side effect of shutting out Delphi’'s debugging windows as well.

This function of the Shell had to be switched off during debugging sessions.

Chapter 6: Prototyping 172

And, for debugging the complex logic of the overall system — especially the interactions
between the different applications -- it was often more helpful to trace component
interactions using the well-proven method of writing status messages direct to the

screen and to a log file as the application ran, using the method:
procedure tellUser(component, msg: string; loglt, telllt: boolean);overload;

available in the Shell’'s System Utilities unit (Appendix F). Special debugging code is
inherited or added to screen forms to support these features and enable Delphi’'s own

debugging tools to work unimpeded.

This code is activated by a DEBUG variable in the controller object which activates a
DEBUG variable in parent component forms, through which it is passed to its child
forms. Alternatively, by directly activating the DEBUG variable in a parent component
form, the programmer can troubleshoot that part of the code, while the rest of the

application functions normally.

The tellUser method has also been used to provide an application-specific standard
format to display a message to the student user where necessary, such as if an

unexpected error occurs.

By using these debugging features to track user interactions with the Learning Shell,
the Log File became an evaluation tool during user testing.

6.9 Conclusion

To implement IMMEDIATE for the purposes of evaluating the learning computer
hypothesis, three separate applications have been built and then networked with an
FTP Server into a working system. They are a Learning Shell, a Course Authoring and
Management Application and a Repository Manager. This chapter has summarised

that experience.

Prototyping IMMEDIATE proved to be a substantial programming task involving more
than 25,000 lines of source code. Often, several different approaches needed to be

tried before a satisfactory way of meeting a specification was found.

Perhaps the most challenging aspect of this prototyping work was developing and
implementing a method for communicating and transferring data files over an unreliable

network, while shielding the complexities of this process from the student user.

Using incremental prototyping, all the main requirements and functionality were
successfully implemented. From an initial evaluation over a LAN, it was concluded that

the prototype has demonstrated the technical feasibility of the learning computer

Chapter 6: Prototyping 173

concept, at least under laboratory conditions.

Once IMMEDIATE was up, running and fully functional over a LAN, the next task was
to install and test it under realistic field conditions. This aspect of prototyping and

refining IMMEDIATE was combined with the user testing and is covered in Chapter 7.

Chapter 6: Prototyping 174

Chapter 7: User evaluation 175

Chapter 7

Use and evaluation of IMMEDIATE

The focus of this chapter is the testing and evaluation of IMMEDIATE with users in a
small farming and fishing community in the North Island of New Zealand. This will be

discussed under the following headings:
e Goals
e Strategy
¢ Installation and evaluation
e Results

e Conclusion

7.1 Goals of evaluation phase

Preece et al. (2002) define evaluation as “the process of systematically collecting data
that informs us about what it is like for a particular user or group of users to use a
product for a particular task in a certain type of environment” (p. 317). In an interview
from the same book, Shneiderman distinguishes between an experiment and usability
testing. The goal of an experiment is to confirm or refute a hypothesis using repeatable,
guantitative means, while the goal of usability testing is to refine a product as quickly as
possible, through identifying frequent problems (ibid., pp. 457-458).

In Chapter 3 it was hypothesised that to successfully provide a computer-based
university-level distance-learning environment on an anywhere, anytime basis, three
student-centred design strategies should be emphasised. They are: a distributed,
rather than a centralised, network architecture; a user-initiated adaptable and
collaborative, rather than system-initiated adaptive, approach to presentation and
content; and a special-purpose, rather than a general-purpose, GUI environment. In
Chapter 4 a learning computer was proposed as a conceptualisation of these
strategies, which was then partially specified in Chapter 5 as the IMMEDIATE system.

The successful prototyping of IMMEDIATE was summarised in Chapter 6. This
included testing the system on a peer-to-peer LAN. This experience furnished a more

detailed specification for a learning computer implementation and provided provisional

Chapter 7: User evaluation 176

support for the underlying hypothesis. To provide more conclusive evidence, it was
important to evaluate IMMEDIATE under conditions more closely approximating those

faced by its target users.

It was argued in Chapter 3 that extramural e-learning environments should be
evaluated along the three dimensions of functionality, accessibility and usability (3.2).
The goal of the evaluation phase was to confirm or refute the hypothesis, by evaluating
IMMEDIATE along all three dimensions. This would require testing with users under

realistic conditions, using quantitative and qualitative measures.

7.2 The Evaluation Strategy

Several key issues had to be decided in determining the evaluation strategy — what
was to be evaluated, how, where, and by whom. In line with the goals, the evaluation
would focus on assessing the completeness, accessibility, and usability of the Learning
Shell functionality. The emphasis would be on the student as user rather than as

learner.

The evaluation would combine aspects of a field trial and of more formal usability
testing. It would be conducted with volunteer users representative of extramural
students, who would work under field conditions reflecting the more challenging end of
the spectrum in which distance learning takes place. If IMMEDIATE worked and was
usable under these conditions, then it could reasonably be asserted that it would work
and be usable anywhere, anytime. At the same time, each volunteer would be required
to complete the same set of prescribed tasks under the same conditions. In this way,
their interactions with the system could be monitored and compared in a measurable
way.

The testing with users would have two facets. It would test the completeness and
accessibility of the system functionality, primarily using quantitative data. And it would
assess the usability of the Learning Shell interface, using quantitative and qualitative
means. It would be important to demonstrate with quantitative data that the system was
accessible, functional and usable in the field. But it would also be valuable to obtain the
views of the users on IMMEDIATE and how it compared with other computer systems

they have used.

7.2.1 Focus on student as user

The evaluation would focus on the student as user, i.e. how easily he or she could

learn to use the system and carry out all the required tasks in the Learning Shell

Chapter 7: User evaluation 177

environment. It would not address the issue of the student as learner —i.e. how well the

user could learn the course subject matter.

IMMEDIATE has been designed to overcome the usability and accessibility problems
associated with web-based and standalone educational software, by providing a
system which makes minimal technical demands on the student user, both in terms of
technological platform and computing experience. It does not introduce new learning or
teaching methods that need to be evaluated.

What needed to be evaluated was the ability of the system to deliver a wide range of
learning functionality in a usable form to remote students, and therefore that it was a
workable, universal alternative to correspondence-based extramural study. The
emphasis was upon the completeness of the functionality, on its form rather than its
content.

7.2.2 Testing for functionality and accessibility

Evaluating IMMEDIATE for functionality and accessibility involved testing whether the
three core components of the system — the Learning Shell, the Course Authoring and
Management System, and the Communications Manager - could deliver the
appropriate functionality in a timely manner to remote users, and assessing the
reliability and performance of the system under these circumstances. For students to
use IMMEDIATE for learning, all the three subsystems had to work together effectively.

This required installing and running the entire IMMEDIATE system in the field with
actual users, and observing the results. This would be combined with the usability

testing and observation.

Event logs would be used at both the client and server ends of the network to record
quantitative data verifying that all functions worked and were accessible, and to identify

and analyse any problems that might arise.

7.2.3 Usability testing

The centrepiece of IMMEDIATE is the Leaming Shell. Therefore, considerable
emphasis in the evaluation phase was placed upon assessing the Shell interface for
usability. Would an extramural student studying at home alone be able to complete a
set of typical tasks unaided (e.g. attend a lecture or participate in a group discussion)?

How easily could they achieve this?

Chapter 7. User evaluation 178

The evaluation method selected was scenario-based usability testing, because of its
focus on what the user does (Pressman, 1997, pp.654-55). This usability testing would
not be directed to identifying improvements in the interface, but to provide evidence in
support of the leaming computer concept. The scenarios and use cases drawn up as

part of the design process would form the basis of the test scenarios.

Two criticisms of usability testing are that it emphasises first-time usage and cannot
cover all the interface features in the space of a couple of hours (Shneiderman, 1998,
pp.132). However, in the Learning Shell evaluation, the primary objective was to test
the ability of an inexperienced user to get started with the system and complete the

basic tasks in a couple of hours with minimal outside help.

7.2.4 Field testing

Usability testing would usually be conducted in a specially designed laboratory where
the users can be carefully monitored. However, for the purposes of testing for
functionality and accessibility, as well as usability, it would be difficult to reproduce all
of the conditions faced by extramural students in a laboratory. Is the system runnable
where the Intemet is slow and unreliable? Are its features usable when more

experienced help is not immediately at hand?

For this reason, the field test approach to usability testing (Shneiderman, 1998, pp.131)
— where the system is installed, run and tested with users in a more realistic

environment — was adopted.

The field test would involve the installation of the system over a telephone network, the
selection volunteers, a pilot study with one user and an in-depth study with the
remainder. Data would be collected for analysis using observation, log files, and

interviews.

The criteria decided upon for the field test environment was that it be conducted using
older computer hardware in a rural area where slow and unreliable Internet
connections were the norm, with volunteer users working in isolation from one another.
Equally important would be the choice of suitable volunteer users for the evaluation. In
this way, the Shell could be evaluated under field conditions approximating the more
difficult environments faced by university-level distance students to determine the

universality of the underlying approach.

Chapter 7. User evaluation 179

7.2.5 Purposive sampling

It is convenient to test educational software developed by university researchers with
volunteers drawn from the university population at hand. Quite often these turn out to
be undergraduate information science students. This choice of user would have been
problematic for this evaluation, because the demographics of extramural student users
differ in important respects from internal students — involving more who are “second-
chance” learners, older, studying in isolation from their peers, or less computer-literate.
It was necessary to verify that IMMEDIATE met the requirements of extramural

learners.

It was therefore important to select volunteer users who more closely-matched the
profile of the extramural student. It was decided to select them on the basis that they
lived in a rural area, had distance learning experience and some knowledge of
computers. The relevant information would be obtained by a questionnaire. This is an
example of purposive sampling (Yin, 1984; Patton, 1990) where appropriate individuals
who meet the specified requirements are selected. It was necessary to find individuals
who had the potential to successfully complete the exercises under conditions similar

to those faced by a distance student, working unassisted from a remote location.

7.3 Installation and evaluation

7.3.1 Test environment

During October 2003 the prototype was installed to run over the telephone network in
an isolated coastal farming and fishing community in New Zealand. This rural
community was chosen for the field test because its profile reflected some of the most
difficult conditions that may be faced by those who undertake distance study from
necessity rather than choice. From a telecommunications standpoint, these conditions
are often more reminiscent of those associated with towns and villages in developing
countries than to the “wired” urban environment in which the World Wide Web

flourishes.

The selected community consists of approximately 40 permanent families scattered
along a 10 kilometre stretch of coastline and throughout the surrounding hill country,
about one hour’s drive (75 kilometres) from the nearest town of some 5000 people. The
main economic activities are farming, fishing and forestry. The community is centred on

a small school of 20-30 pupils located along a beach, and surrounded by a couple of

Chapter 7: User evaluation 180

dozen holiday homes mostly owned by people living outside the district. High school

students must board out of the district or study by correspondence.

From informal discussions with residents, it was evident that a number of adults,
especially women, were involved in correspondence-based home study. In part this

reflected a situation in which there were few local opportunities for female employment.

Conditions typical of many of the more remote parts of rural New Zealand - hilly
terrain, stormy weather conditions, interference from agricultural equipment such as
electric fences, and ageing, over-extended and unreliable telephone and electric power
infrastructure — created a difficult environment for Internet computing. There was little
advantage in obtaining the latest computer equipment. Anecdotal evidence indicated
that while many families owned computers, they were often older models which they
had taught themselves to use, if only to a limited extent. Often they were mainly utilised
by the children in the household. Adult usage was mainly for email, games, some farm

management and study tasks, and — for the patient — Internet browsing.

A drive around the district would show that most homes have satellite TV dishes.
Broadband satellite reception for Internet downloading was therefore feasible.
However, uploading by satellite broadcasting was still prohibitively expensive. Even if
the means was found to fund a full broadband Internet service for the school, which
would have to be satellite-based, there would still be no feasible means for linking up

most of the farm households to it.

7.3.2 Installation of the system

In specifying IMMEDIATE (5.7) it was stressed that, while a wide variety of
communication media such as satellite download were embraced by the learning
computer concept, once the necessary hardware and their drivers were installed on a
computer, all these media appeared to the user as either an internet connection or a
portable storage device. Therefore, to simplify the prototyping process, the options
implemented in the Learning Shell were updating by dialup internet connection or by
portable disk. This limitation would only have a minimal impact in assessing the
usability of the Learning Shell. It would only adversely affect the Shell's performance
for those few functions which involved real-time Web access such as searching the
university's library resources. Most web-based material accessed by the Shell is stored

on the user's computer and could be updated by CD.

For the experiment, a client/server network was chosen with the communications

management system installed on the network server, the teaching application installed

Chapter 7: User evaluation 181

on a separate PC connecting to the server via a LAN, and the student application

connecting from a remote location via the telephone network.

It was important that during the pilot study and the field test, both ends of the network
be easily accessible to the researcher. Therefore, it was not feasible to install the
server end at the researcher's university, several hour's drive from the field test locality.
Instead it was installed at a farm building several kilometres inland from the user's
locality. The farm was chosen because the necessary hardware was available there,
and because it offered no advantage in the speed or reliability of the dialup connection

over an internet connection to the university.

However, for the Learning Shell to connect to the server via an ISP, the server was
required to obtain its own publicly-usable IP address. It was not possible to organise
this for the trial. Therefore, the Learning Shell had to be set up with two dial-up
connections — a connection to an ISP for accessing web pages, and another to the
IMMEDIATE server. This required installing the university end applications on a LAN to
which the Learner Shell connected as a dial-up client. The IMMEDIATE components
could then communicate with each other using IP addresses reserved for private

networks.
The installation steps were:

e Install the student application at the local school on a PC running Windows 95,
using CD-ROM download. All volunteers would use the one PC. To preserve the
integrity of each volunteer’s data, each would have their own copy of the Shell and
data files installed in a separate folder system. This would require the re-setting of

the computer between each user.

e Establish a client/server LAN at the farm building using an operating system that

supports the server end of dialup networking. Windows 2000 was chosen for this.

e |Install the university end applications on the Windows 2000 LAN. The
communications management subsystem (FTP server, Repository Manager) would
be installed on the PC running the LAN server and the authoring application would

be installed on another client PC.

e Set-up a dial-up connection between the student and university end over the local

telephone lines.
Installing the Learning Shell at the school was a three-step process:

e Install a file compression and decompression utility. This is provided as a standard

service in Windows XP, but earlier versions of the Windows operating system

Chapter 7: User evaluation 182

usually require third party software to provide this service. In this case, WinZip was

used.

e Load a full version of the database tool provided with the Delphi development
environment. This would not normally be required because the database engine is
part of the Shell application installation. However, installing the full database tool
allowed direct access to the database independently of the Shell application, to
locate and fix any unexpected problems should they arise during the pilot study and

subsequent usability experiment.

e Install the Learning Shell application, including the folder structure and course
materials. This involved activating a self-extracting compressed file from a CD,

using the previously installed decompression utility.

All the steps in installing IMMEDIATE proceeded smoothly. The few minor problems
that arose mostly related to the configuration and administration of the Windows 2000
network. No outside technical support was used at any point during the prototyping,
installation and evaluation of IMMEDIATE, so a little experimentation was needed on

occasion.

7.3.3 Pilot study

Four members of the rural community serviced by the school made themselves
available to assist in evaluating the prototype. They were provided with an information
sheet (Appendix K1) and signed a consent form. Each completed a copy of the
questionnaire profiling his or her computer and learning experience (Appendix K2).

Table 7.1 presents a summary of the questionnaire results.

All four volunteers had studied at the tertiary level and three were current or very recent
tertiary distance students. One agreed to make herself available for the pilot study. The

objectives of this pilot study were:

e To ensure sufficient course material had been incorporated into the prototype to

enable all essential functionality to be accessed and tested by the user.

e To detect and fix as many usability problems as possible, that might otherwise

impinge on evaluating the underlying conceptions of the Shell.

e To refine a set of exercises (scenarios) that takes the user through all major

aspects of the system.

Chapter 7: User evaluation 183

1. Username:' Pilot User User 1 User 2 User 3
2. Gender (circle one). Female/ Male F M = F
3. Areyou currently studying at university or polytechnic Y N N Y

level? (circle one) Y/ N

4. If not, have you studied at university or polytechnic NA Y ¥ NA
level? (circle one) Y/ N

5. Major subject Education | Education | Communi | Marketing
cation
6. Have you ever studied by correspondence Y N Y Y

(extramurally)? (circle one) Y/ N

7. Computer usage:

In what year did you first use MS Windows? 1996 1996 1999 1992

In a typical week, how many hours, including work and 8 8 10 8-10

leisure use, would you spend at a computer?

. Hours per | Hours per | Hours per | Hours per
Now please detail how many hours per week on average P P P P

over the last year you have used computers for the week week week vESK
following tasks, by circling the appropriate number:
Write and send emails 1 1 2 5 or more
Browse the internet for news/information 1 1 4 5 or more
Write letters or reports with a word processing program 3 3 4 5 or more
(e.g. Word, WordPerfect, MS Works, etc.)
Keep accounts and budgets with a spreadsheet program 0 0 0 0
(e.g. Excel, Lotus 123, etc.)
For your own university or polytechnic studies 2 0 4 5 or more
To help others (e.g. your children) with their education 2 3 2 5 or more

Table 7.1: Summary of Participant Profile Questionnaires. ?

' For the purposes of logging onto IMMEDIATE the participants used the aliases “Mike”, “Bob”, “Mim” and
“Pom”. In the text, they are referred to as Pilot User, User 1, User 2 and User 3.

? All participants gave an estimate of the total time spent on the computer each week which was
significantly less than the sum of the total time they estimated they spent on each task category. This
suggested a considerable overlapping of tasks or that their estimates were very approximate. When asked
about the discrepancy, two of the respondents expressed surprise and said it meant that they probably
spent more time on the computer than they had thought.

Chapter 7: User evaluation 184

Test scenarios

The scenarios covered setting up the student Learning Shell and exploring all aspects
of its functionality, including accessing learning material in six different study modes:
lecture, group work, tutorial, textbook, collaboration, and assignment. The volunteers
were expected to complete these in two one-hour sessions spread over two days. The
first exercises were quite detailed in their instructions, the later ones, progressively less

so. The sequence of activities was as follows:
1. Initialise Learning Shell to own preferences
2. Logonto course
3. Join Group Discussion
4. Attend Lectures, Seek Help, and Complete Self-Assessment
5. Monitor The Assignment Discussion
6. Explore On-line resources
7. Complete Individual Tutorial

The “Attend Lectures” scenario is shown in Figure 7.1. A walkthrough of this scenario,

demonstrating the use of the Learning Shell, is provided by Figures 7.2-7.13.
All seven scenarios are included in Appendix J.

To ensure that all essential features were included in the trial, the scenarios were
checked against the nine potential features of computer-based learning systems (2.3)
and the six dimensions of university leaming (3.2.3) identified during the literature

review phase of the project. The results have been summarised in Table 7.2.

Out of the pilot study a number of modifications were made. Further materials were
added to the course, so that all scenarios were fully supported. Some inconsistencies
between screens were identified and corrected, such as placing Help and other

function buttons in the same place on all interface components.

A "Handy Hints" page (Appendix J1) was prepared listing key tips for navigating and
using the system, the Help Screens were reorganised to emphasise hints for using
each learning component, and the exercises were edited to present each user task

more clearly and logically.

Chapter 7: User evaluation 185

E-Learning Enhancement Scenario
Allowing learning material to be accessed from almost anywhere, at any time. All
Facilitating communication. 35
Promoting co-operative work. 35
Integrating the various media used to deliver distance education (video, audio, 4

telephone, mail, graphics, and text) into a single multi-media environment.

Simulating real world situations, processes and problems. 7

Integrating materials from a variety of sources and locations. 6

Allowing the presentation of material to be adapted to suit the individual student. | 2, 6

Acting like a human tutor. 7,4

Helping the teacher to author teaching material. 5

Learning Dimension

Learning by textbook 2
Learning by lecture 4
Learning by exploration 4,6
Learning by collaboration 3,5
Learning by doing 3,7
Learning by tutorial 7

Table 7.2: Scenarios covered all e-learning enhancements and dimensions.

The docking function, introduced during the latter stages of prototyping, was removed
from the scenarios as it was clearly confusing to a less experienced user. It was felt
that, while the idea of organising the components of a study mode into a coherent
screen was worth investigating further, it would only work if it were performed by the
Shell itself. It was also at this point that a feature was added to the Group Work
component enabling all newly received messages to be viewed immediately by the

student, without their having to navigate to the appropriate point in the course.

7.3.4 Organising the field test

The three remaining volunteers participated in the in-depth study. They were
representative of the demographics of the primary target users for IMMEDIATE, viz.
mature students, studying alone from remote locations with limited communications

infrastructure, and with a range of largely-self-taught computing experience.

Chapter 7: User evaluation 186

Access a Lecture, Ask for Learning Support

(Prerequisite: Ensure the computer is connected to university)

{In this scenario, you access a video presentation, seek support in understanding one of the concepts

raided in the lecture, and then evaluate your understanding of these concepts.}

1.
2.

4.

Log on to Massey Extramural

Use the Course Explorer to navigate to the lecture at Topic 1.2. (Click the Help icon or press F1 if
you need guidance).

Load and start the lecture (For this trial it is only a sample clip. In a real situation you would follow the
presentation with the help of the slides contained in Lecture Notes.)

Use Desktop Menu to open Key Ideas. This is the gateway to Extramural Support.

Getting help with Key Ideas

5. You are confused about "metaphor". Select this concept and open Extramural Support.

6. Press F1 and read the Help page.

7. Ask Extramural Support to explain "metaphor".

8. RETRY for further information.

9. Response is inadequate. Click NO.

10. ASK the tutor for more information on "metaphor".

11. Open the Concept Map

12. Select the related item "conceptual models" there.

13. Ask Extramural Support to explain "conceptual models".

14. RETRY.

15. Click NO .

16. Exit Help.

Self-Assessment

17. You decide to register how well you understand Topic 1.2. Note the colour of the icons next to each
concept in Key ldeas.

18. Find and start the Self-Assessment questionnaire. Give a range of responses over the questions.
Rate "metaphor" and "conceptual models" as poor.

19. Update Key Ideas. Note the changes to the colours of the faces to the left of the concepts.

20. Open the Course Explorer. Note the changed colour at Topic 1.2.

21. Change study mode to Group Work. Update your messages. Wait until the process is complete before
continuing.

22. Exit Massey Extramural. Do not backup your work.

<End of Lecture and Ask for Help scenario>

Figure 7.1 : Attend Lectures scenario.

Chapter 7: User evaluation 187

% Massey U

Kunenga

Extramural

|
Welcome to 159.353 Human-Computer lsl
Interaction.
Please enter your password

Password @

Figure 7.2: Logging on to the Learning Shell.

Starting 159.353 Human-Computer Interaction ..

Select an option

C Return to previous topic

¢ Select new topic

‘ C Update course material
€ Restore from backup

" Update system settings

C Exit
OK |

Figure 7.3: User Options form. “Select new topic” selected.

Chapter 7: User evaluation

[se

e lorer Help
Massey Extramural Help

IThe Course Explorer

Overview

The Course Explorer displays the table ¢ fcontents of the course in the
form of an expandable iree, together with the study choices available for any
selected topic

Tips on using
e To select atopic. click it with the mouse

e To nawgate to a new topic, use the mouse to double-click on that topic
in the Course Tree, or select the topic and click QK

e To change to a new study mode, double-click the mode in the list
displayed, or select the mode and then clock QK

e To change topic and mode, select the new topic first, and then change
the mode

e To expand an item in the Course Tree, click on the '+ sign next to it To
coilapse child tems back into the parent item, click on the " next to it

e Towview sectiens in the Tree, click on the ‘+' sign next to the course
title

e Toviewtopics In a section, click on the ‘+ sign next to that section

IC 14

Helling The Interaction
us. Notattempted

kiy Options

hnment

Book

=

159.353 Human-Computer Interaction
Topic 1.04

Assignment Mode

Figure 7.4: Course Explorer. Clicking Help icon opens Help screen.

159.353 Human-Computer Interaction

159 353 Human-Computer Interaction

= & 1 HClFundementals
= 11 Designing for Usability
= 12 Modeiling The User Interface
® 13 The User Cognitnve Issues
» 1 4Modelling The Interaction

® 2 Anslysis and Conceptual Design

Topic 14
Modelling The Interaction

Status

Study Options

Not attempted

Deteil

= 3 Physicel Design and implementation
® 4 User-centred Bestgn and Evaluation
u 5 Other Issues

Assignment
Eploiation
GroupWork
Lectures
TextBook

ok |
Cuncgl l

159.353 Human-Computer Interaction
ITopic 1.04

Group Work Mode

Is ot selected topic

Figure 7.5: Navigating to Lectures Mode in Topic 1.2.

188

Chapter 7: User evaluation

Be
il -
re Help | x] . |
re User Interface J
Massey Extramural Help |
Help on using Lecture = Jul-03 ‘
|
|
Overview e et 1
This component enables youto view or fisten to a multimedia presentation re to star t |
such as a video or audio lecture |
|
Lecture Clickpicturetol | Tips on using Author: Chns Philips
To load the presentation the lecturer's image should be double-clicked with
the mouse Large video clips may take some time toload Once loaded
resize the component to suit the presentation by dragging corner with
mouse
The buttons simulate the functions of a3 video player The functions from left
a nght are
Runs the fecture presentation
|
FPauze Pauses presentation if alieady paused when clicked
lesumes playing |
Stop Stops the presentation g |
|
Next Skips to the next track, ar to the end if the [ecture doesnt [
use tracks |
Previous Skips 10 the previous track, or 1o the beginning if the :l
nNrpsentatinn dnesat 1ice tracks pi| = = .
a a
9 / N
. s
159.353 H C ter Int ti
Topic 1.02 Lectures Mode

Figure 7.5: Help screen for Lecture component.

2. Modelling the User Interface

08-Jul-03

Click here to start

Tabhle of Contents Author: Chni; Phillips

] nceptual Model i

conceptual Models based on Actiines

1
i » <
g’plc Conceptual Models based on Objects :;
Explorer

Lea"‘ing Aids O Laooopsiat M- ot 2 = ;J l:
Help . T

Exit - =k ©
-

.

. 5 #

159.353 Human-Computer Interaction ’
opic 1.02 Lectures Mode

Figure 7.5: Right-clicking background with mouse opens Desktop Menu.

189

Chapter 7: User evaluation 190

2. Modelling the User Interface

08-Jul-03

Click here to start

Author: Chnz Phillips

Table of Contents
2 Modelhng the User Interface

Conceptual Desygn

Conceptual Design

Scoping the Problem Space
Conceptual Model

Conceptual Models based on Activihes

Conceptual Models based on Objects

smanseival Madal

@ Conceptusl models
onceptual frameworks

@ Interaction peradigms

@ Interaction styles

@ Towsrds physical design

by reference to tamiliar model

"metaphor": Sectton 1.1
the use of One idea or object t

Metaphor is used widely in gre
suggest that a computer scree!
notepads A general physical
draggabie

Metaphors are also usefu tecl
land unrelated metaphors as 8

Figure 7.7: Asking the tutor (and my group) for help with “metaphor”.

Chapter 7: User evaluation 191

Concept Map 18] x]

Conceptusl rameworks

\ Interaction styles

159.353 Human-Computer Interaction 3]
—@_ Search for help on "Conceptual models"?

metaphor

/
Conceptual models

- Question

|

leanceptual models

“metaphor", Section 12
Metaphors suppotit the apphication of existing knowledge to less well understcod, more abstrast concepts They are employed in user intertace design to increase

the familiarity of the system image to the user and assistthe uset in constructing a mental model ot the system They needto be generated on a case bycase basis
by reference to femiliar models in the problem domain

LRSI

*metaphor”. Section 11
the use of one idea or objectto represent another making an imphcit companson between concepts to provide insight into those concepts

Rils

N Metaphor is used widely in graphical user intertaces to help set users' epectations and make the behavsor ot computers cleares The “desktop metaphor” s used to
\\|suggest thet a computer screen is like a physical desh. with papers and folders to shuttle sround and vanous desk sccessories. such as ralculstors. printers end

otepads A general physical world metaphor iswhatallows abeveledberder to suggest a button and allows close parallel ines to suggest that something is
‘|draggable

Metaphors & 12 aiso useful techniguess tor designers to explore representatons ot concepts and the behavior of intertace elements Besigners may also apply wild
*land unrelated metaphors as a usetu! bramnstorming device

"Conceplua\ models". Sectien12

""‘ [The high level system model is retersed to as a conceptua! madel. Itis a representation of user tasks and work (domain) objects. with consideration in broadterms of
L |how these concepts will be conveyed to the user Itrequires consideration ot the overall structure of the system and at the interaction styte which might be employed
“|although at a high level of abstraction It may also involve the identitication of metaphars which could be used to increase the tamilianty of the 'system image*

[NG FURTHER USEFIIL ANSWERS FOUND
FORFURTHERHELPSELECT A RELATED CONCERPT FROM THE CONCEPT MAF
ORTRYASKING THE TUTOR

Figure 7.9: After Extramural Support has explained “conceptual models”.

Chapter 7: User evaluation 192

2. Modelling the User Interface

08-Jul-03

Selt Assess ¢ -

I

;{m be,ng aske psist ydur own btoa‘ |

ka&uﬂas bamg‘mugmm'fns hpu:thvma i

i

I

Y

1

i

|

h Conceptual Models based on Object: j

. ~ RSN =] |

i R T

| fkh i

@ Conceptuaimodels 2 4 T il
@ Conceptual frameworks . "

@ Interaction paradigms
@ Interaction sty es M T— o
@ Towards physical design N N

® mersphor mputer Interaction

Lectures Mode]

Figure 7.10: Starting Self-Assessment.

%|Self Assess

joumn!d FA’dica[Jedi;n

Figure 7.11: Self Assessment questionnaire component.

Chapter 7: User evaluation

193

Key Ideas £ || Course Explorer

159.353 Human-Computer Interaction

@ Conceptual models

\=/

@ Conceptusl frameworks = = 158353 Human-Computer Interaction T
epic

@ Interaction paradigms = « 1.HCl Fundamentals

@ Interaction styles s 11 Designing for Usakilty

@ Tewards physical design = 12 Maodelling The User Interface Stat

@ rmetaphor = 13 The User Cognitve Issues e

8 1 4Maedelling The Interaction

12

Medelling The User Intzrface

Cempleted

2. Analysis and Conceptual Besign Study Options

Key Ideas |] :
Update | 1=

4. User-centred Besign and Evaluation
5. Other Issues

@ Conceptual models

® Conceptual trameworks
® Interaction waradigms

@ Interaction styles

@ Towards physical design
@ metaphor

3 Physical Design and Implementation |Exploration

Cancel

OK |
P

Figure 7.12: Key Ideas, Course Explorer are updated after Self-Assessment.

Polly

[From lTo]Cc [Data ISub’yed

L Bob Tutor 15-Dec-04165817 Section 1 2 "metaphor Please help me on this

159.353 Human-Computer... £
=¥

Backup data before closing?
Lel | B
I don‘t think the explanation is very clear here
Bob
Updete | ViewAll | Repty | Forward| New | Prit | Delete |
[Fetching messeges.. [Imessagesreceved b ek %
Topic 1.02) Group Work Mode

Figure 7.13: Exit after updating messages.

Chapter 7: User evaluation 194

All three were adults in their late 20s to early 30s. Analysis of the questionnaire results
(Table 7.1) showed that all the volunteers had had at least some computing experience
ranging from 3-4 years to a decade. One (User 3) had been studying as a distance
student with the NZ Open Polytechnic for a number of years and used her home
computer to support her hard-copy-based course wherever possible. Another (User 1)
had been an internal university student who now used computers for his work as a
primary school teacher. The third and least-experienced computer user (User 2) had
recently enrolled at the Open Polytechnic, but had subsequently put her studies on

hold because of increased family responsibilities.

The three volunteers were asked to complete all seven scenarios. To ensure that no
user was advantaged by knowledge of the course content, the material was taken from
a third year university paper on a topic that none of them had studied. This was

appropriate given the nature of the evaluation.

One issue that had to be faced was of training. When the system was fully developed,
student users would be supplied with a CD-ROM containing the software and course
materials, a demonstration video and a hardcopy guide. Since at this stage there was

no demonstration video, some training had to be provided to the users.

Each user was given a demonstration of the student software as it would be shown in
the video, and then completed the first two exercises under supervision. They were
then left to complete the scenarios unassisted, except for the provision of the sheet of

Handy Hints that would form part of the hardcopy guide.

Three forms of data collection were used during the experiment — logging their
activities (Dix et al., 1993), observation and interviews (Patton, 1990, Scott et al,,
1991). Where, when and what each user did during their sessions was tracked by the
system and saved in a log file, primarily to analyse users' navigation paths and
completion times, and record where they ran into difficulties, and to record and trace
any errors in the functioning of the system itself. Because the student software is
designed to support user-centred exploration and multiple navigation paths, a user
should be able to complete a task even if they diverge from the shortest path that an

experienced user may be expected to follow.

For each user, the following were observed while they worked through Scenarios 1 and
2:

e Their general demeanour before, during and after each scenario (confident,

hesitant, anxious, frustrated).

Chapter 7: User evaluation 195

e Their familiarity with the manipulation of screen objects with the mouse and
keyboard (confident, hesitant, unconfident).

e \Where they hesitated, where they used the Help icon, and where they asked for

another demonstration.

Each participant was interviewed individually, immediately after they had completed
each session (i.e. twice). Interviews were structured along the lines recommended in
Scott et al. (1991, Ch. 14). A set of questions was prepared as the starting point for
exploring each person's experience with the prototype. Questions, such as the
difficulties faced, what aspects of the system they liked, and what they would want
changing, were asked. At the same time, the interviews were allowed to digress where
it helped to clarify the interviewee’s experience with IMMEDIATE or other computer
systems. These interviews were recorded and transcribed by the interviewer for
subsequent analysis.

7.4 Evaluation Results

7.4.1 Functionality and accessibility

IMMEDIATE ran successfully and without major incident during the entire evaluation.
The results were very positive, with all volunteers able to complete the exercises within
the two one-hour sessions. Completion times, excluding wait times for downloads and
updates over the network, ranged from just under 52 minutes for User 3 to a little over
89 minutes for User 2. All three stated that by the end of the exercises they were

confident that they were able to use the system unaided.

The conclusion that all the features tested were functional and accessible was

supported by the data collected in the log files.

Log Files

What each user did during their sessions was tracked by the Shell and saved in a log
file. The log files traced the user’s path through the scenarios by recording the state of
the system after each significant interaction with the user. This included, the current
time, topic, study mode and learning component, as well as the specific action called

by the user and the system response to it (Figure 7.14).

An analysis of the log files revealed that, whilst each of the volunteers got held up at
least once, they were all able to complete each scenario. Most difficulties were

encountered in completing Scenario 3, which involved finding an Assignment, and then

Chapter 7: User evaluation 196

asking the tutor a question concerning it using the electronic messaging system. User 3
completed this scenario in 16 minutes, which involved 19 logged events including
accessing Help 6 times for 2 minutes in total. User 1 was only slightly slower in 18
minutes, but logged 38 events and accessed Help 10 times for a duration of 4 minutes.
On the other hand, User 2 took 27 minutes, logging 26 events but only spent | minute
in Help, accessing it 5 times. This user also had difficulties when accessing the

Assignment mode the second time (Scenario 5).

13/10/03 5:17:07 PM: System launched

17 17 12: Logon: Pom logged on

17 17 24: UserOptions: Select new topic

17 17 24: CourseExplorer: Show

17 17 35: Controller: Change topic: 1.02

17 17 35: Controller: Change mode: Lectures

17 17 47: LectureNotes: Help requested for this component

17 17 52: LectureNotes: Help page closed

17 19 23: Desktop Menu: Learning Aids

17 19 25: Keyldeas: Show

17 19 52: ExtramuralSupport: Concept = metaphor

17 19 53: ExtramuralSupport: Show

17 19 58: ExtramuralSupport: Help requested for this component
17 20 19: ExtramuralSupport: Help page closed

17 20 27: ExtramuralSupport: qWhat

17 20 40: ExtramuralSupport: User action: Retry

17 20 48: ExtramuralSupport: NotifyTutor system message saved.

17 20 48: ExtramuralSupport: User action: No

Figure 7.14: User interactions traced through log file (e.g. from Scenario 4).

Graphs were compiled to compare the time each user took to complete the scenarios
(Figure 7.15) and the frequency with which they referred to the Help system whilst

completing each scenario (Figure 7.16).

The log files also helped to locate one or two bugs remaining in the system, including
an incorrect system status message that initially caused the volunteers to wait

unnecessarily when updating their messages from the IMMEDIATE server.

Chapter 7: User evaluation

197

Seconds

6000

5000

4000

3000

2000

1000

S1 S2 S3 S4 S5 S6 S7

Scenarios

’El User 1 @ User 2 OUser 30 AverageJ

All

Figure 7.15: Comparison of scenario completion times.

Frequency

30

N
[6,]

N
o

-
[6,]

-
o

AT e | B e

S e G

1 2 3 4 5 6 7

Scenarios

{D User 1 @ User 2 O User 3 O Average (

Al

Figure 7.16: Comparison of help access frequency.

Chapter 7: User evaluation 198

Authoring system

The field study provided an initial opportunity to assess the functionality of the
university end of IMMEDIATE in a realistic setting. Supporting the three volunteer users

involved:

e Sending messages from the authoring application to the student users, in

response to their messages and queries;

e Updating the Extramural Support database from the authoring application, in

response to student and system messages, for transfer to the Learning Shell;

e Adding new resources (assignment grades) to the Repository from the

authoring application for update by the Shell.

These activities involved logging on to the FTP server over the LAN as a teacher user
in order to send and receive messages from the authoring application, including
communicating with the System Administrator. Updated help and learning resources
files then had to be zipped at the Repository Manager and made available for
downloading by the Leaming Shell. These tasks were accomplished without any

significant problems.

Communications performance and reliability

An important corollary of the user testing was to assess the performance and reliability
of IMMEDIATE when it was run in the realistic environment provided by a rural
telephone network. At the client end, all communications with the Repository server
were recorded in the Learning Shell log. At the server end, client interactions with the
Repository, including system responses, were logged by the Repository Manager
(Figure 7.17) and the FTP server (Figure 7.18)°,

Analysing these files revealed that IMMEDIATE was able to handle communications
between the students and the tutor, and allow learning resources to be updated,
efficiently and reliability over the two days of the testing. The only unexpected delays
detected were traced to a bug at the interface design, rather than any problem in the
communications technology. No other issues adversely affecting IMMEDIATE's

performance and reliability were identified.

®In Figurs 7.17 and 7.18, "Chris" is the course tutor.

Chapter 7: User evaluation 199

7.4.2 Usability

The quantitative data provided by the logs, especially the comparable times taken by
all users to complete all scenarios, provide evidence for the usability of the Learning
Shell. However, the qualitative data, from the observations and the interviews, provided
even more compelling evidence supporting the Shell's usability, and contrasting it with

the volunteers’ experiences using other computer systems.

The users were only observed working through the first two scenarios. The data from
this observation was of somewhat secondary value because these two exercises were
part of the supervised demonstration. However, it did reinforce the information from the

volunteers’ profile questionnaires regarding their previous computing experience.

13 06 57: Last received request from Mim

13 06 57: Last received request processed for Mim: 14 10 03 13 01 22

13 06 57: Deleting C:\VLM_Repository\Repository\MessageQueue\55099.txt...
13 06 57: Deleted

13 07 12: Message update requested by Mim

13 07 12: 3 messages received from Mim

13 07 12: 0 messages transferred to Mim directory

13 07 12: Deleting C:\VLM_Repository\Repository\MessageQueue\55112.txt...
13 07 12: Deleted

13 49 57: Last received request from Chris

13 49 57: Last received request processed for Chris: 07 10 03 21 30 31

13 49 57: Deleting C:\VLM_Repository\Repository\MessageQueue\57632.txt...
1349 57: Deleted

13 50 12: Message update requested by Chris

13 50 12: 4 messages received from Chris

13 50 12: 4 messages transferred to Chris directory

13 50 12: Deleting C:\VLM_Repository\Repository\MessageQueue\57638..txt...

1350 12: Deleted

Figure 7.17: Extract from Repository Manager log.

Chapter 7: User evaluation 200

[L 2003 10 14 13:06] 00004 Mim cntr User from 192.168.0.4 logged in

[F 2003 10 14 13:06] 00004 Mim data C:\VLM_Repository\Repository\MessageQueue\55099.txt
Receiving.

[F 2003 10 14 13:06] 00004 Mim data C:\VLM_Repository\Repository\MessageQueue\55099.txt Received
file successfully. Size: 44 bytes. 0.043 Kbytes/sec

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Students\Mim\MessageBox\answer.txt Sending.

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Students\Mim\MessageBox\answer.txt File sent
successfully. Size: 44 bytes. 0.043 Kbytes/sec

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Repository\MessageQueue\55112 txt
Receiving.

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Repository\MessageQueue\55112.txt Received
file successfully. Size: 1813 bytes. 1.771 Kbytes/sec

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Students\Mim\MessageBox\messages.txt
Sending.

[F 2003 10 14 13:07] 00004 Mim data C:\VLM_Repository\Students\Mim\MessageBox\messages.ixt File
sent successfully. Size: 44 bytes. 0.043 Kbytes/sec

[L 2003 10 14 13:07] 00004 Mim cntr User from 192.168.0.4 logged out
[L 2003 10 14 13:49] 00005 Chris cntr User from 192.168.0.2 logged in

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Repository\MessageQueue\57632.txt
Receiving.

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Repository\MessageQueue\57632.txt
Received file successfully. Size: 47 bytes. 0.046 Kbytes/sec

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Teachers\MessageBox\answer.txt Sending.

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Teachers\MessageBox\answer.txt File sent
successfully. Size: 46 bytes. 0.045 Kbytes/sec

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Repository\MessageQueue\57638.txt
Receiving.

[F 2003 10 14 13:49] 00005 Chris data C:\VLM_Repository\Repository\MessageQueue\57638.txt
Received file successfully. Size: 6612 bytes. 6.457 Kbytes/sec

[F 2003 10 14 13:50] 00005 Chris data C:\VLM_Repository\Teachers\MessageBox\messages.txt Sending.

[F 2003 10 14 13:50] 00005 Chris data C:\VLM_Repository\Teachers\MessageBox\messages.txt File sent
successfully. Size: 2477 bytes. 2.419 Kbytes/sec

[L 2003 10 14 13:50] 00005 Chris cntr User from 192.168.0.2 logged out

Figure 7.18: Extract from FTP Server log.

Users 1 and 2 were clearly inhibited by previous negative experiences with computers,
including the fear of crashing the system if they did something wrong. Interestingly, an
analysis of their interviews and log files show that, once they had gained some
confidence in the robustness of the Learning Shell, these two users took a very

exploratory approach, popping in and out of things almost at will.

Chapter 7: User evaluation 201

For example, when interviewed, User 2 described her experience of “being able to go
into the menu like that and surf around and see where everything is...rather than going

to Help.”

All participants completed the first two scenarios without any major difficulties. While
User 1 and User 3 were confident with their use of mouse and keyboard from the

outset, User 2 was noticeably more hesitant.

All participants paused at what was the most challenging task in these opening
scenarios (Scenario 2.4): finding the Course Explorer immediately after logging on, and
then using it to navigate to a section of the course. User 3 opened Help, as suggested
in the scenario, read it through until she saw what to do, and carried on without further
delay. User 1 followed the same path, but rather more slowly and cautiously. User 2
was even more hesitant, first trying to figure out how to proceed from what she saw on

the screen, without accessing Help.

The data from this observation was of most value when correlated with data on the
participants' previous learning and computing experience supplied by the user profile
questionnaires, with the transcripts of the interviews, and with additional observations
made during the course of the evaluation as a whole. It confirmed that they
represented a range of computing experience with User 3 the most confident, and User

2 the least so.

In addition, User 3, the quickest in completing the scenarios, as the most experienced
distance learner of the three appeared to have the clearest mental picture of the
system and what she was trying to accomplish with it. She also appeared to make the

most judicious use of the Help facility.

Interviews

The most valuable form of data collection, from the usability perspective, proved to be
the interviews which were undertaken with each user individually at the end of each
one-hour session. These were semi-structured interviews (Preece et al., 2002, p.394)
in which each volunteer was asked the same set of questions as the starting point for
exploring their experience with the prototype (Appendix K3). The interviews averaged

between 20 and 30 minutes.

No major usability problems were identified during the interviews. Those problems that
did emerge were relatively minor interface design issues and errors missed (or
introduced!) in the pilot study, and the odd technical hiccup related to limitations in the

test environment. An example of the former was a confusing status message displayed

Chapter 7: User evaluation 202

after users’ had downloaded their messages from the server that has already been
alluded to. Examples of the latter were using the same machine for each user, and
requiring separate dial-up connections to access the “university” (i.e. the farm building
several kilometres back in the hills where the Windows 2000 server was installed) and

the Internet, when normally they would be accessed through the same connection.

The most substantial proposal to improve usability came from User 1 who favoured a
“‘Back” key or undo facility. There were times, he said when he had made an error in
working through a scenario and “l knew that | had to go back but there was no way to

go back except exit completely, but | [only] needed to go one step backwards.”

An interesting point noted by User 2 was that her mental picture of what she could do
in the Learning Shell was constrained by her prior experience of what was and was not
possible in Windows. For instance, she initially struggled to understand how you could
easily move between different sets of programs (i.e. study modes). “And that's the
thing, you can't do that generally on a computer because you lose something or you've
got to close it all down completely and put it away before you open something else up, |
find. Well, at least, that's how | do things, whereas this time | didn't have to do that. |

could to and fro and | think | struggled to adjust to that."

As has already been noted, the most experienced distance student, User 3, completed
the scenarios consistently faster than the other two volunteers and her observations on
the Leaming Shell often exhibited the clearest understanding of its learning features.
This supported the conclusion that there was a good match between many of the
Shell's features and the real world of extramural study, helping distance students to
understand these features intuitively, and improving its usabilty as a leaming

environment.

The complete interviews were transcribed and then analysed for significant, common
themes relating to the goals of the evaluation. Full transcripts are attached as Appendix

K4. Major themes identified were:
e Frustration with the complexity of existing computer systems.
e The problem of poor internet service.
o The effects of personal isolation.
e Support for the Learning Shell.
e The importance of training and help.

¢ Simplifying searches to avoid information overload

Chapter 7: User evaluation 203

All participants were enthusiastic about the usability of the Learning Shell, contrasting

what they accomplished through it with the difficulties they often faced completing tasks

in the Windows/Internet Explorer environment.

Complexity of existing systems

One of the most important themes to emerge from the interviews was the frustration of

the interviewees when trying to use their home computers for study and other tasks. At

times the interviews read like a litany of the problems users face negotiating the

complexities of the Windows environment. The interviewees alluded to:

Feeling overloaded with unnecessary features and functions. User 2 observed that
computers were “not as simple as they should be”, while User 1 talked of “so many
hidden things that you stumble across” in Windows and of still not knowing what
many features were for. User 3 noted that “with a normal computer, and other
software, there's a lot of stuff that you just don't need. And to get around to doing
the task that you want to do, it's harder to get there because you've got obstacles in

the way.”

Getting lost in a maze of too many open windows. User 1 summed this up in
explaining his resort to “alt+ctrl+del™ “You've got to get out to start again, because
you have no idea where you have gone and what you've done and the computer
won't tell you what you've done..." User 2 talked of running into problems by “being
too busy, trying to go here and do this and do that and not closing the boxes that
need to be closed and running things on top of other things and stuff like that.” User
3 thought that people “lose patience, because you have to go different ways around
to do different things. You have to close boxes down, you've got to go back to the

start when you log off, you've got to find your way back around again.”

Frustration at not being able to complete tasks. User 3. "Half the problem with
doing a lot of things on a computer is that a lot of it is just irrelevant stuff, and you
get sick of waiting just to get to your original stuff. | think that is where a lot of
people think, | can't be bothered doing that anymore.” User 2 spoke of trying to do

something using her computer and just giving up: “l would end up turning it off.”

Not getting the help they needed from the help system. User 3 explained how she
was unable to find the appropriate help to complete a task in a spreadsheet: “And |
knew that | could do it, that it was possible to do it, but to actually find out how to do
it was really hard. Especially when the help is [supposed to be] designed to do

that.” In her experience, help systems often presented her with "irrelevant drivel”.

Chapter 7: User evaluation 204

User 1 found that accessing the help system on his home computer didn't solve his
problem because “quite often it's not the scenario where you have got yourself...

you have done something different.”

e Being overwhelmed by too much information. The interviewees found that general-
purpose tools like help systems and search engines presented too much
information to the user, which they found difficult to narrow down for their specific
purpose. “Especially when you search the Internet, you type in say 5 key words or
3 key words and then it comes up with 250,000 or a million possibilities and you
think ‘Gee. | 'm not going to go through all that™(User 3). “I get 300 sites of which
275 of them are useless. It's a lot slower on the internet the other way than your
way, because | have to physically open it and have a look at it to see if its relevant

or not, and then go on to the next one and it's a long process” (User 1).

These experiences offer strong support for one of the major premises on which the
learning computer concept is based viz. existing computer systems are too complex for

effective distance learning.

Poor Internet service

Another theme to emerge related to the quality of rural Internet connections. The
usability problems the interviewees faced in the general-purpose Windows environment
were compounded by extremely poor Internet service. This was especially the case for
User 2 and User 3 who lived back on hill country farms. User 3 spoke of “waiting,
waiting” for items to download. User 2 told of waiting half an hour for two emails and
being told to wait 31 hours for a web page: “I have seen it at 1 [kilobit per second]. |
know that it should be 26,000 or 24,000 and it is 1, literally just one. You can get a
connection. You can dialup and get online. But you can't get anything. Not even a

home page. And you're paying your $2.50 per hour for nothing!”

Any web-based learning system relying upon downloading learning materials from a

central server simply cannot work under the circumstances the interviewees described.

Isolation

These usability and accessibility problems are especially challenging when it is

combined with the pressures of study in isolation from one’s peers.

User 3, with more than 10 year's computer experience, reported how she would be

unable to figure out how to complete assignment tasks on the computer by herself. “It

Chapter 7: User evaluation 205

was really hard to find out what you were supposed to be doing. So | just leave it.” It

was easier to shut down the computer and complete the assignment on paper.

User 2 spoke of her frustrations trying to obtain information for her course off the
Internet because “you’ve got to be a brain box to use it.” For her it was sometimes
easier to drive the 70 kilometres into town. “It's easier to do the basic stuff, do the hard
yards, like go to the library and things like that and photocopy pages out of a library
book...Because its just easier. But it should be easier on a computer but | find that it is

”

not.

In an on-campus environment, the problems they confronted — how to copy text from
one document to another, or how to format an Excel chart correctly — would be quickly
sorted out with the help of more experienced peers. But in their isolated situation, these

problems rendered their computers unusable.

The experiences described by the volunteers strongly supports the premise advanced
in this thesis that the isolation of distance students compounds the usability problems
of general-purpose computing environments. Standalone systems may overcome the
delivery problems of web-based courseware. But they exacerbate the isolation

problem.

Usability of Learning Shell

The dominant theme to emerge from the interviews in relation to the Learning Shell
itself was an overwhelming endorsement of its usability. In contrast to the general
frustration the interviewees expressed with their normal computing environment, they
all embraced the Learning Shell enthusiastically and indicated they would be keen to

use it for their own studies.

User 1 thought the Shell was “user-friendly”, and that it would be especially useful for a
new user who had purchased a computer to study online and “this is the first time they
have had to come to grips with a computer as well as their new course. It's not
intimidating at all.” They would quickly grasp that they couldn’t do any damage by

experimenting.

For User 2, “If | was to be studying at Massey and there was a program like that, that

would probably be one of the main reasons why | would study online.”

User 3, the most experienced computer user and distance student, emphasised: “Well |
could see that | could use it for [my study] quite easily. | think. God. It would just make

it a lot easier."

Chapter 7: User evaluation 206

The Learning Shell is distinguished from a general-purpose window and web
environment by its minimalist, integrated interface that manages many housekeeping
tasks normally left to the user, and limits what the user can do themselves in order to
free the user for learning. The volunteers commented favourably on this approach in

the course of their interviews.

User 3, for example, thought that compared to her own computer “this is a lot easier
because you just close everything at the same time, you don't have to worry about
closing boxes here and there, and when you log back on, it comes straight back exactly

to where you started from. It was a lot easier.”

User 1 liked it that there were “limited...buttons, shall we say, that you can use” for

navigating the system.

User 2 observed: "And even when | went ... where | shouldn't have been it was very
easy for me to get out and start again. | just found it so easy, whereas normally, if | was
on my computer and something like that happened, | would end up turning it off...and

going back to it another day because I'd get frustrated."

Some of the favourable characteristics of the Learning Shell the volunteers singled out
were: simplicity, ease of use, speed, relevance, robustness, friendliness, transparency,

and consistency.

e Simplicity. The interviewees liked the way the Shell simplified tasks they often
struggled with in the Windows and Web environments, such as managing
transitions between different screens and programs. "If | wanted to [email the tutor
with a question on my course], | had to close down, hook up to the Internet, bring
up all that. It would take a long time, and that's when | think, | can't be bothered
doing all that. I'll just struggle through. Whereas with this one it was right there, and
you could just easily do it" (User 3). For User 2, “Half the time | get frustrated when
| have to work with my computer because it is not as simple as it should be. And
this is as simple as it should be.“ User 3 noted that one of the advantages of this

simplicity is that “you don’t have to remember a lot of things.”

User 1 liked the way that complexity was hidden from the user. He would never
have “gathered that it was a complex computer program.” Otherwise he “would
have panicked straightaway.” He also liked the fact that only three basic operations
had to be memorised to use the entire system: “And that it's very easy to find your
way around the whole thing with those three keys. To me that’s the most appealing

thing about it."

Chapter 7: User evaluation 207

e FEase of use. User 2 said that she had completed many tasks that she would have
given up on at home as too hard: “But | find it really odd that I'm doing this and it's
so easy.” User 3 linked this ease of use to the simplicity of the environment as “you
don't have to worry about all the bells and whistles and everything else going on

because it is all just there”.

e Speed. ‘“It's quick...I'm just thinking of computer programs in general, basically.
Some, when you are jumping from one field to another...Oh | have got to shut that
down, load that up. And not with changing disks, but just in general. But here, going
from that one to the other was very quick to get from here to there. It was a matter
of within 5 seconds | was gone from one to the other. There's no sitting and ‘please

wait’ while it does this and that..." (User 1).

e Relevance. User 1 and User 3 particularly contrasted the relevance of the
information they received from the help and search facilities associated with the

Shell: “At least here the content is relevant to what you are doing" (User 3).

e Robustness. In User 1’s view a new user “within half an hour will have the grasp
that they can't do any damage” and that “if you get yourself in trouble, it's very easy
to get yourself out of trouble.” User 3 “felt confident enough to whiz around,
because you've got all the help things”. User 2 “knew that | could go into that and |

could go wherever | wanted and | am not going to get stuck anywhere.”

e Friendliness. User 1 felt “that it is really user-friendly compared to my computer"

and “not intimidating at all”.

e Transparency. User 1 noted that the interface is “very transparent... it's all very

clear what you use to do what you want it to do. There's no hidden features.”

e Consistency. "lt's pretty much... standardised. Because you are using the same
three keys for every area. So you go into a new area and these three keys are
applicable. Whereas if you go into different things on say your normal computer,

well sometimes this is for that and that is for that, and that and that..."[User 1]

Training and Help

The interviews also highlighted the importance of the initial training and the help

system to the overall usability of the Learning Shell.

An important element in the success of the usability experiment was in the training
documentation that accompanied the software: the demonstration (video), the Handy

Hints sheet, and the set of training exercises (scenarios). Each of the participants

Chapter 7: User evaluation 208

emphasised the importance of these, with the least experienced user ("l would be your
best guinea pig ever!"), User 2, being most enthusiastic. She repeatedly stressed the
importance of the clear instructions making it possible for her to complete tasks in the
Shell beyond what she had thought herself capable of: “But obviously it's not over my
head ... if someone gives you instruction and its easy to follow you can pretty much do
anything, can't you? You don't have to be extremely intelligent to be able to do things
like this."

The evaluation also showed the effectiveness of linking Help to each component in the
system and of emphasising a "Handy Hints" approach. This provided a simple
mechanism for delivering just-in-time, just-enough, context-sensitive help to the user.
User 1 and User 3 emphasised that the way the help system was organised, it was
always relevant and easy to find out what they needed to use a feature of the Shell: For
User 1 “if | click on Help | have found every time what | need to do and its been able to

solve it for me.” User 3 noted, “the content is relevant to what you are doing".

For User 2, completing the scenarios on the Leaming Shell was her first ever
instruction in basic computing skills. Prior to the experiment she had “never, ever done”
tasks like copying and pasting which are the ABCs of computing. From this
perspective, the Learning Shell is a stripped-down version of general-purpose GUI like
Windows that implements a subset of its functionality. By training users in basic skills
that also apply in the general-purpose environment, such as copying and pasting
between applications, using the Shell has the side effect of introducing users to

general-purpose GUIs and providing a bridge to their more complex environment.

Many of the improvements to the Shell's training and help documentation, such as the
‘handy hints” emphasis, were introduced as a result of the pilot study. They had a big
impact on the success of the usability testing, which underscores the value of including

a pilot study in the overall evaluation process.

Simplified search mechanism

Another theme emphasised by the users was the effective support the Shell provided

for finding additional learning material through Extramural Support.

The extramural learning support system is one of the more complex aspects of the
Learning Shell. It is essentially a database of useful definitions, book references and
web sites, and a mechanism for searching that database to provide the student with

material relevant to what they are currently studying. Interacting with this support

Chapter 7: User evaluation 209

system was one of the more challenging tasks the volunteers were required to do. All
were able to complete these tasks.

While they could not judge the content of the search results, their comments were
nevertheless valuable in highlighting some of the strengths of the learning computer

approach, compared to the search mechanisms they normally would be faced with.

For User 3, "It was easy and it was fast. And that is my two main things at home...
Because you didn't have to waste all that time in sorting through the information that

you are given as to what's relevant and what's not."

User 1 also found it easier because “obviously it's trimming it down to what's relevant
and what's not. So | presume for web sites that | have been given there, that they will

be useful forwhat | want, not may be useful, will be useful.”

In future the completed system will also need to be used by students who are actually
enrolled on a paper whose content is included within the shell. This will provide a more
meaningful test of the effectiveness of the help and search facilities. It will also allow

the issue of student learning to be addressed.

7.5 Conclusion

An evaluation of IMMEDIATE was carried out under realistic field conditions in a
remote farming and fishing community with the software running over the telephone
network. It was a major undertaking setting up an evaluation of this kind in a rural area
and finding suitable participants. Whilst there were only three users in the in-depth

evaluation, they were representative of distance learners in remote environments.

The number of users was sufficient to demonstrate the practicability of the concept. It
showed that the Repository Manager could handle communication between the
university and student end, that the Course Authoring and Management system could
assist a remote student, and that the system was able to operate over a two day period
without any problem. The system proved fully functional and accessible to users,
providing speedy access in contrast to the long delays that occur when using the

Internet in similar circumstances.

Whilst the users took varying lengths of time to accomplish the tasks, all were able to
complete them even though the course material was unfamiliar. In their comments the
participants all acknowledged the benefits of a system of this kind. They were able to
run this distributed system over a telephone network and demonstrate that the main

functions could all be used.

Chapter 7: User evaluation 210

The user testing demonstrated that the leaming computer approach was feasible and
offered accessibility and usability advantages. By extension it can be presumed that it
also offers learning advantages through the range of functionality it offers, the
minimisation of distractions and ease of use offered by the specialised interface, and
the speed of access to learning material. However, this was not able to be directly

tested in the course of the evaluation.

Something highlighted in this study was the depth of frustration felt by isolated
computer users at being often unable to complete what should be quite simple tasks. In
contrast, the three volunteers who took part in the in-depth usability evaluation were
confident that in the two one-hour sessions, they had gained enough experience and
confidence to be able to use IMMEDIATE effectively for their own study. Indeed the

overwhelming level of enthusiasm shown by the participants had not been anticipated.

The experiences and impressions of the volunteers captured in the interviews strongly
support the key thesis of the research concerning the advantages of organising a
distance learning environment as a special purpose computer, tailoring the interface to
the task, and managing transitions between tasks, so as to minimise the demands

upon the user.

The consensus of the volunteer users in favour of the Learning Shell, summed up in
User 2's comment: "If | could do my study using this type of program it would be so
easy” is the most compelling argument in favour of the learning computer approach as
realised by IMMEDIATE.

Chapter 8: Conclusion 211

Chapter 8

Conclusion

In this chapter the research that has been conducted is reviewed in light of the initial
objectives that were set. What has been achieved vis-a-vis these objectives? What has
been learnt in the process? And what future work needs to be done to further advance
these objectives?

8.1 Summary of research

The starting point for this research was anecdotal evidence and personal observation
that existing web-based e-learning systems are too difficult to use, and require too
much sophisticated technology, to work in all distance learning situations, and too
limited in their functionality to offer a significant learning advantage over
correspondence-based courses, especially when the latter are combined with course
web-sites and email. This would be particularly true for rural communities in the
developed and developing countries for whom, paradoxically, correspondence
schooling was originally developed.

Furthermore, it was observed that less experienced users frequently struggle to
complete even basic computer tasks in an unsupervised environment, and it was

surmised that this could be a serious impediment to computer-based distance learning.

Preliminary research, including informal meetings with experts and trying out some
educational software, supported these concerns. This suggested that e-learning —
rather than offering new opportunities to narrow the gap between the world’s haves and
have-nots — may perpetuate and even widen educational inequalities, through
introducing a two-tier system based on access to, and ability to use, sophisticated

computer and communication technology.

These observations initiated a search for ways in which computer technology can be
applied to distance learning so as to offer a learning advantage over correspondence-
based courses, without incurring a disadvantage in terms of accessibility. The

objectives for this research were:

Chapter 8: Conclusion 212

e To identify the ways in which computer systems can assist distance learning
and to what extent this potential has been realised in existing e-learning

technologies.

e To identify threads of current research relevant to overcoming the shortcomings
of e-learning systems, drawing from the broad spectrum of Computer Science
including Artificial Intelligence, Software Engineering and Human Computer

Interaction,

e To develop new ideas, and extend existing ones, for fulfilling the potential for

computers to effectively support distance learning.
e To build and test a prototype which implements these key ideas.

The research conducted to meet these objectives can be broken into three main
phases viz. investigating the problem through a literature review, conceptualising a
solution, and testing the conceptualisation through prototyping and evaluation with
users. A formal iterative research methodology was used, utilising qualitative and
quantitative methods.

8.1.1 Literature review

The first two research objectives have been met through an extensive literature review,
which included conference papers, joumnal articles, books, web sites, industry
publications and news reports. This began with a systematic review of the origins and
evolution of distance education and of computer-based learning research. From this
review, it became clear that “distance learning” covered a broad range of scenarios —
from specialised in-house industrial training to television-based, mass-oriented cultural
improvement campaigns - with very different requirements. For the purposes of this
research, it was necessary to focus upon computer-based delivery of extramural
courses — university-run programmes for students unable to attend normal classes —
designed for individual home study. Nine contributions that networked computers can
make to improve extramural learning were identified, ranging from facilitating
communication among students to providing individualised tutoring help when a

teacher is not available.

In the next step, the rich record of contemporary computer-based, and especially web-
based, leaming research was reviewed. From this review it was concluded that the
potential for computers to improve the extramural study environment is far from being

realised. In fact, very little research was found that was explicitly directed towards the

Chapter 8: Conclusion 213

specific problems of this sector. Research tended to be weighted more towards the

needs of the education provider than towards those of the distance student.

Much of the literature is critical of the limited functionality of commercial web-based
courseware and learning management systems; a smaller, but significant body of
research addresses usability problems; and a very small section addresses
accessibility problems. But most research is centred upon innovations to web-based
systems, which incorporate more sophisticated teaching or course management
methods, which are more suited to training scenarios than higher education, or which
assume the hi-tech urban communications environment within which only a small
minority of the world’s population resides. From the student’s standpoint, they tended
to assume levels of computer literacy and access to high-end multi-media and
broadband technology that was more in line with what can be expected for on-campus

courses, than for individual students studying from home.

8.1.2 Conceptualisation and specification of a computer for learning

From the review of current research, eight guidelines were synthesised for developing
effective extramural e-learning environments. In addition, three broad user-centred
strategies were identified as showing promise as possible ways to implement such an
environment. These strategies emphasise localised over centralised functionality,
specialised over general-purpose tools, and user-initiated adaptability over system-
initiated adaptivity. It was hypothesised that by following the design guidelines and
combining these three strategies — without making any presumptions about
technological platform — a workable way could be found to meet all the requirements
for an extramural e-learning environment that offers a significant improvement over

correspondence-based courses.

In order to meet the third objective, the next step was to conceptualise a learning
system that could test out this approach. The idea emerged of a learning computer —
which integrates all the features a student needs for learning into a simplified,
specialised, individualised, network user interface. In visualising the learning computer,
analogies were drawn with many everyday objects and activities. The central
metaphor, however, was that of the multi-dimensional university community of learning,
which the learning computer extends to the extramural student. Within the learning
computer, each learning dimension or study mode is defined by a set of elements,

each of which corresponds to a basic constituent of university study.

Chapter 8: Conclusion 214

Having visualised the new system in this way, it was then necessary to specify a
prototype in more detail that was in line with the design strategies and guidelines of the
underlying hypothesis. In particular it meant specifying the technological platform on
which it would be built, and the services that would need to be employed at the

university end to support it. The key decisions made at this stage were:

e That the learning computer would be implemented as the client in a client/server
network, in which most functionality is distributed to the client side.
Communications and learning content would be updated by periodically linking to a
central repository of messages and learning resources via the Internet and, where
necessary, via alternative media such as CDs delivered through the post; rather

than as a browser client downloading documents from a web server.

e That the student interface would be implemented on the Windows platform as a
specialised direct manipulation graphical Learning Shell replacing the operating
system GUI; rather than using courseware’s approach of adding functionality to a
general-purpose web browser. This Shell would be assembled on a modular basis,
in which each learning element or other interface object is implemented as a
reusable software component, using the Delphi rapid application development

environment.

o That user interactions with the Shell, including navigation, would be simplified by
managing them through an intermediate system layer between the interface and
the operating system, which references a tree data type that models the modular,
hierarchical structure of an extramural course. This layer would also model the

student to provide the reference point for individualising the Shell to a specific user.

e That leaming assistance would be provided to the student through integrating
communications, collaboration and support, by means of a replicated SQL-
compliant database which is maintained by the course tutor, and can be queried by
the student via a user-friendly interface. In this way, the student can obtain
assistance through discussion with other students, asking the tutor, or querying the
support database; and the outcomes can be logged, edited and incorporated into

the database, as a means of dynamically improving the support system.

To implement these decisions and prove the overall concept, a course authoring and
management application and a communications management component needed to be

built and integrated with the learning computer into a network. This overall prototype

Chapter 8. Conclusion 215

has been called IMMEDIATE (Integrating MultiMEdia in a DIstAnce learning and
TEaching environment).

8.1.3 Evaluation through prototyping and user testing

Incremental prototyping was used to evaluate and refine the main elements of the
design specification and then to integrate them into the operational IMMEDIATE
network. This prototyping confirmed that the method proposed for developing a
computer-based learning environment was workable. In its simplest form, IMMEDIATE
provides an integrated, easy-to-use, structured environment for the extramural student
to navigate his/her study guide, communicate with others electronically, and access a
database of helpful definitions, references and URLs. At the same time it provides a
framework in which the full functionality for e-learning — i.e. the nine ways in which
networked computer systems can support extramural study — can be integrated as
appropriate. IMMEDIATE provides a dynamic authoring and management system
which enables a course to be updated, improved and re-used after it has been
deployed.

The second step in the evaluation and testing process was to get the IMMEDIATE
network up and running, first over a LAN and then over a rural telephone-based
communication system, so as to test it with users. It was especially important to
evaluate IMMEDIATE under as realistic conditions as possible — including lower-end
technology, unreliable communications infrastructure, and users representative of the
more inexperienced and geographically-isolated among extramural students. To
achieve this, the prototype was installed and tested over the rural telephone network
with volunteer users in a small New Zealand farming and fishing community. The
evaluation here was for functional completeness, accessibility and usability, using

scenario-based user testing. This evaluation was prepared by a pilot study.

IMMEDIATE performed very favourably under these conditions. The volunteers’
response to the learning computer was enthusiastic, contrasting what they could
accomplish with it to the difficulties they faced with conventional systems. It was
concluded that the user testing gave strong support to the thesis that distributive,
specialised and adaptable strategies can be successfully combined to provide a
learning environment that is more widely-accessible and usable than web-based
courseware, and that offers a learning advantage for extramural students over

correspondence and email-based courses.

Chapter 8: Conclusion 216

8.2 Contribution to knowledge

The central contribution to knowledge of this research has been the development and
demonstration of the learning computer as a new concept distinct from either a LMS or

a LCMS in several important respects.

First, the learning computer does what the web-based LMS’s and LCMS’s have so far
been unable to do viz. deliver distance education on an anybody, anywhere, anytime
basis. It demonstrates a method by which it is possible to combine the benefits and
power of standalone computing with the collaborative potential of the network, in an
easy-to-use extramural study environment. This approach is universally-applicable, and
is especially effective in supporting the individual distance student in circumstances

where an LMS fails, and the only realistic option has been correspondence study.

Anybody. The learning computer combines the technological advances
represented by networked PCs with the simplicity and ease of use of the earlier
dedicated computer systems like TICCIT or PLATO, providing a dedicated
learning environment. The navigation, file management, networking and other
housekeeping functions the user would have to perform themselves in a system
built upon a general-purpose environment are embedded into the learning

computer itself, requiring minimal input from the student.

Anywhere. By distributing most content and functionality to the client side, the
IMMEDIATE architecture enables the leaning computer to be used almost
anywhere, and minimises the student's vulnerability to slow or unreliable
Internet connections. Because it only requires periodic background updating
and synchronisation when and where a network connection is available, it is
able to utilise the speed and functionality of standalone systems without
sacrificing the communication and collaborative strengths of the internetworked
PC.

Anytime: All the collaborative and communication functionality of the learning
computer, including group work and learning support, is implemented using an
asynchronous model and a replicated database that can be accessed and used
anytime, regardless of whether a network connection is currently available.

Students can access their course content at anytime.

The second and most fundamental difference from a LMS or LCMS is that the distance
students themselves, rather than the education providers, are the primary target users.

It demonstrates the importance of designing e-learning systems with student

Chapter 8: Conclusion 217

requirements paramount, and shows how this can be achieved. The learning computer
is first and foremost a specialised learning environment, in which network and
education provider features are designed as support services rather than as authoring,
teaching or course administration productivity tools. An integrated, holistic approach is
taken to e-learning, in which the usability of the student's overall computing
environment is considered as important to successful learning outcomes as the

learning content itself.

The learning computer embodies a set of guidelines for designing course-oriented
educational software as a student-centred learning system. These guidelines have
been successfully followed in the implementation of the IMMEDIATE prototype. It
demonstrates the potential for specialised environments to address usability concerns
resulting from the increasing complexity of general purpose environments like the PC

as they encompass more and more functions and features.

The third unique facet of the learning computer is its support for the trend towards
ubiquitous computing, i.e. invisibly integrating computer power into everyday life
through embedding dedicated computing devices into common appliances such as
washing machines, automobiles or watches. The idea of specialised embedded
computers to simplify and improve learning as found in Bork (2001a) and Hoppe et al.
(2000), focuses upon the use of specialised hardware. The IMMEDIATE prototype
furnishes additional support to this approach. At the same time, it contributes a method
for implementing the approach with specialised software, as a graphical user shell over
the most widely-used family of operating systems, Microsoft Windows. The Learning
Shell offers a method for implementing a “what” interface centred upon the task in the
users domain rather than a “how” interface focussed upon the mechanism for
achieving that task. This addresses a long-recognised challenge for simplifying and
improving the usability of computer systems especially in industrial applications, as
discussed in Gentner et al. (1990).

This research has also furnished additional support for other conclusions drawn by
researchers relating to the efficacy of applying the strategies of specialisation,

localisation and adaptability to the development of e-learning systems. In particular:

e Interface design: This research has underscored the design principle that simpler is
often better. IMMEDIATE was conceptualised from the requirements for an
extramural e-leaming environment, without making any presumptions about
technology. This opened the door to considering alternatives outside the prevailing

web-based framework for e-learning, and revisiting some basic elements of user-

Chapter 8. Conclusion 218

oriented interface design that are at the core of the learning computer conception.
By combining an emphasis on interface design — especially user-centred adaptable
and collaborative strategies — with an emphasis on e-learning as an extension of
the human teacher and the university, the framework for an integrated,
individualised, multi-dimensional, easy-to-use learning environment has been laid.
This supports the findings of Murray et al. (2000) that “good interface design and
passive but powerful user features can sometimes provide the benefits that are

ascribed to more sophisticated or intelligent features” (para. 41).

Distributed functionality: Learning Management Systems conventionally require the
student to maintain a live connection to a central web server, which dynamically
generates learning material and then uploads it as web pages to the student's
browser application. Supporting a student without a live link is complex because
key functionality resides on the server. TILE (Gehne et al., 2001) addresses this by
duplicating some web server functions on the student's computer so that some data
can be updated via CDs, and the student can work offline when a connection to the
server is unavailable. IMMEDIATE extends this approach by relocating all learning
functionality to the student machine so that only periodic updates and

synchronisation with the server are needed, either by the Internet or CD.

IMMEDIATE is innovative in using the Internet as a delivery mechanism rather than
as an integral part of student’s interactions with their learning material. Web-based
material can be accessed and displayed alongside any other material, and a
messaging system similar to email is integrated into the Learning Shell, but no key
functionality relies upon maintaining a live connection to the Internet. This
implementation enables the Learning Shell to utilise the fuller functionality of a
standalone computer while incorporating the communication and collaborative

learning capabilities of web-based systems.

The IMMEDIATE network functionality is achieved using an FTP Server, and
custom message-queuing and database synchronisation protocols, which require
only the exchange of compact text files. Because there is no direct connection
between the databases on the client and the server, they need only be compatible
at the logical rather than the physical level. Large multimedia files can be sent via
alternative media such as satellite or post if necessary. IMMEDIATE'’s architecture
provides a simpler and more flexible framework than web-based learning

management systems, and can accommodate almost any kind of learning material,

Chapter 8: Conclusion 219

while giving especially strong support to student-centred discovery and

collaborative learning methods.

Form vs. content: Some educational software designers such as Smulders (2003)
have stressed the importance of designing for form in order to make leaming the
content possible. Much current research into improving e-learning systems focuses
upon ways of modelling the content viz. the knowledge a course is trying to teach,
how it is going to teach it, and what the student understands of it. The success and
simplicity of IMMEDIATE is based upon modelling form (structure) in the first
instance, and then modelling content only as necessary within that framework.
IMMEDIATE introduces the idea of reusable learning components as an extension

of Delphi's drag and drop visual components.

Learning components differ from software components (controls) in that they
encapsulate a single domain task rather than a single software task. They differ
from reusable leaming objects in that they implement the form rather than the
content of a learning module. The learning components are the centrepiece of a
modular construction which supports reuse on three levels — the student (multiple
courses), the teacher (authoring, updating and re-using learning materials), and the
programmer (reusable code).

Knowledge-base: Typically, extramural university courses are highly modular,
broken down into units and sub-units with learning goals and assessments
attached to each. By using the form of the course to define a reference model for
the Learning Shell, a powerful mechanism is created for navigation, integration,
synchronisation and individualisation of the Shell. Many courseware systems have
a facility for linking student discussions to a particular topic in a course. With
IMMEDIATE, students can do more than view and contribute to discussions linked
with a particular topic. The reference model underpins a dynamic, context-sensitive
and adaptable system for helping the student to learn the course content, by
providing a framework for organising a database of discussions, definitions,

references and URLSs, into a coarse-grained knowledge-base.

The student can query and search this knowledge-base through a user-friendly
interface, and discuss the results with others. Through the Learning Shell tracking
these discussions and recording student satisfaction with the system’s responses,
and its integration with the course authoring and management application,

IMMEDIATE supports dynamic updating of the knowledge-base by the course tutor

Chapter 8: Conclusion 220

in light of those responses. This contribution builds on research initially carried out
within the TILE group (Heinrich et al., 2000; Heinrich et al., 2001).

8.3 Future Work

Developing the IMMEDIATE prototype was a large and complex engineering task
involving specifying the system, writing thousands of lines of source code, locating and
customising reusable software components, installing and configuring the elements of
a client/server network, installing modules of an actual extramural course, and
evaluating the system with users. During the course of this work it was necessary to
keep clearly in mind that the principal objective of the project, despite its intensely
practical side, was to evaluate a hypothesis, rather than the development of a practical
educational tool.

The conclusion of this research is that the prototyping and user testing of IMMEDIATE
offers strong support for the underlying hypothesis, and that this approach to providing
an extramural e-learning environment merits further exploration and refinement.
Because of the pervasively-modular structure of IMMEDIATE, the “nuts and bolts” of
the current prototype provide the basis for further research, without precluding a

systematic revision of all existing elements and the incorporation of new ones.
Three areas of IMMEDIATE for further research and refinement are:

e Learning Shell Interface:. The heart of IMMEDIATE is the student interface
represented by the Learning Shell. During the successful evaluation phase, some
areas were noted where the interface could be modified to improve usability, such
as a greater ability to step back from (undo) a particular course of action, and
making the leaming support facility accessible from any interfface component in a
similar manner to the help facility. As part of developing an improved version of
IMMEDIATE for further learning trials with students, a thorough review of the
interface should be carried out, including drawing upon independent usability

experts.

e Individualisation: Evidence from the IMMEDIATE prototype supports the view that a
special-purpose educational computer makes it easier to realise many of the
individualisation goals of computer-based learning researchers. In line with the
Learning Shell’s user-centred approach, individualisation is mainly achieved
through visual cues to guide students to adapt the system to their individual needs.

Most scope for increased individualisation relates to the learning help (Extramural

Chapter 8: Conclusion 221

Support) system. This includes improving the mechanism for natural-language
querying of the knowledge base, mapping text phrases to key learning concepts,
and integrating more sophisticated algorithms and strategies for searching the
knowledge base, including suggesting where help is needed based on the student’s

personal learning history.

The learning help system is one of the more innovative aspects of the Leaming
Shell. It needs to be tested in further trials by students who are actually enrolled in
the paper whose content is included within the Shell. This will provide a more
meaningful test of the learning effectiveness of the student support and search
facilities, and what advantage if any would be offered by adding these more

sophisticated algorithms and tools.

e Course authoring and management tool: This part of IMMEDIATE took full
advantage of the capabilities of a Rapid Application Development tool like Delphi to
quickly assemble an application for the purposes of prototyping. The focus was on
working out mechanisms by which a non-programming teacher could construct and
manage a course, wherever possible re-using software modules from the Learning
Shell. The tool has not been tested with users beyond utilising it for the authoring
and updating tasks associated with the evaluation phase. A future task is to
evaluate and refine the authoring application for functionality and usability, through

testing it with non-programmer teachers.

New directions

Since this research project began in 2001, new technologies have emerged or gained
greater prominence, as researchers have sought to improve the effectiveness of
educational software or raise teachers’ productivity. For instance, the application of
XML to learning and the development of reusable learning objects based on XML are

receiving increased attention.

The component-based architecture of the Learning Shell makes the incorporation of
new learning technologies straightforward. As part of reviewing and refining the Shell’'s
learning components for pedagogical effectiveness and usability, incorporating XML-

based techniques and modules should be explored.

IMMEDIATE implements the leaming computer concept for the Windows platform. This
involves hiding the Windows GUI from the learner, through disabling some features,
and through the programmer following certain constraints in developing new learning

components. The next step is to customise the Learning Shell so that it can be installed

Chapter 8: Conclusion 222

on and run from a portable storage device as a mobile learning computer. The
increasingly-affordable USB-based “memory stick” portable storage devices — through
their compact size, large storage capacity, speed and aesthetic look — offer promising

possibilities for implementing this approach.

A Linux-based implementation of a learning computer for the PC would carry a greater
programming overhead while offering a cleaner approach, because the learning shell
can be built as a GUI directly on top of the Linux kernel. Future work will investigate the

feasibility of implementing a Linux-based learning computer along two lines:

e As a single-use learning computer. Because the learning computer works with
lower end information technology, this has practical potential for re-using older

PCs that might otherwise be dumped.

e As a self-booting portable device which can be plugged into any PC to
temporarily convert it into a specialised leaming computer. This offers a way for
a learner to take full advantages of the learning computer approach, while
sharing a general-purpose PC with other household members and other tasks.
Kawato et al. (2003) have researched running Linux-based learning systems in
a Windows environment, by launching them from a bootable, auto-configuring
CD-ROM, based on the Knoppix system'. Black Dog is a compact mobile Linux-
based computing device that attaches via USB to Linux, Windows, or Mac
computers, commandeering the host's keyboard/video/mouse/modem functions
to run it's own applications (LinuxDevices, 2005). Black Dog offers a promising

technological basis for implementing the mobile learning computer concept.

IMMEDIATE’s approach to improving the usability and accessibility of a complex
software system has application to other domains, which would benefit from
specialised, easy-to-use, task-oriented interfaces, e.g. computerised systems for
operating industrial machinery, or integrated farm management systems. This will also

be explored further in the future.

! http//www. knopper.net/knoppix/index-en.html

References 223

References

Alessi, S. M. and Trollip, S. R (1991): Computer-Based Instruction: Methods and
Development. Prentice Hall. Englewood Cliffs. Second Edition.

Allen, S. (2003): Massey amasses record student numbers. Dominion Post. December

5. Wellington.

American Heritage (1992): The American Heritage Dictionary of the English Language,
Third Edition, Houghton Mifflin Company. Electronic version included in Microsoft
Bookshelf, 1996-1997 edition.

Anastaides, P.S. (2003): The Future of the Book, the Book of the Future. The 3Y IEEE
International Conference on Advanced Learning Technologies. Athens, Greece pp.246-
247. IEE Computer Society.

Anderson, J. R., Corbett, A. T., Koedinger, K., and Pelletier, R. (1995): Cognitive tutors:
Lessons learned. The Journal of Learning Sciences, 4, 167-207.

Aniebonam, M. (2000): Effective Distance Learning Methods as a Curriculum Delivery
Tool in Diverse University Environments. Communications of the Association for
Information Systems. Vol. 4(8). October. United States.

Arora, V., Suphasindhu, N., Baras, J. S., Dillon, D. (1996):. "Effective Extensions of
Internet in Hybrid Satellite-Terrestrial Networks". AIP Conference Proceedings, March
1, 1996. Vol. 361(1). pp. 339-344.

Bennet, S., McRobb, S., and Farmer, R. (1999): Object-Oriented Systems Analysis and
Design using UML. McGraw-Hill. London.

Benyon, D. R. and Murray, D. M. (1993): Adaptive Systems: From Intelligent Tutoring
To Autonomous Agents. Knowledge-based Systems, 6 (3). Butterworth-Heinemann
Ltd.

Bergstedt, S., Wiegreffe, S., Wittmann, J., and Moller, D. (2003): Content Management
Systems and e-Learning Systems — A Symbiosis? The 3° IEEE International
Conference on Advanced Learning Technologies. Athens, Greece pp.155-159. |IEEE

Computer Society.

Blyth D. (2001): We're waiting to be taken to the next Web level. NZ Infotech. 511. Oct.
15.

References 224

Boada, A., Cervera, A., Prieto, J. (2003): SMS Technology as an Academic
Communication Tool. A Case Study: The Open University of Catalunya (UOC).
Proceedings of the International Conference of Computers in Education 2003. Hong
Kong, China. December 2-5. pp.527-31.

Bonelli, S. (ed.). (1998): Internet Complete. SYBEX. San Francisco.

Bork, A. (1996): Rebuilding Universities with Highly Interactive Multimedia Curriculum.
International Journal of Engineering Education. Vol. 12, pp. 320-332.

Bork, A. (2001a). Tutorial Learning for the New Century. Journal of Science Education
and Technology. 10(1), 57-71.

Bork, A. (2001b): What is Needed for Effective Learning on the Internet. Educational
Technology and Society. Special Issue on Curriculum, Instruction, Learning, and the
Internet. Vol. 4, No 3, pp. 139 — 144.

Bork, A., Ibrahim, B., Levrat, B., Milne, A. and Yoshii, R (1992): The Irvine-Geneva
course development system, education and society. In Aiken, R. (Ed.), Information
Processing 92, Vol. ll, Elsevier Science Publishers, New York. Available at
http://www.ics.uci.edu/~bork as at 12/12/04.

Bork, A., lbrahim, B., Levrat, B., Milne, A., and Yoshi, R (1992): The Irvine-Geneva
Course Development System. Aiken, R. (ed). Education and Society. Information

Processing, 2. Elsevier. Netherlands.

Borland (2004): Introducing Borland Delphi 8 for the Microsoft NET Framework. A
Borland White Paper.
http//www.borland.com/products/white papers/pdf/delphi for dotnet.pdf as at 5/1/05

BPTA (2001). British Polymer Training organisation web site. http://www.bpta.co.uk as
at 10/05/01.

Brandon Hall (2005): LMSs and LCMSs Demystified.

http://www.brandonhall.com/public/resources/Ims Icms/Ims lcms.htm as at 21/9/05.

Brooks, C., Cooke, J. and Vassileva, J. (2003): Versioning of Learning Objects. The 3“
IEEE International Conference on Advanced Learning Technologies. Athens, Greece.
pp. 296-297. IEEE Computer Society.

Brookshear, J. G. (2003): Computer Science: an Overview. Seventh Edition. Benjamin-

Cummings Publishing. California.

References 225

Brusilovsky, P. (1999). Adaptive and Intelligent Technologies for Web-based
Education. Kiinstliche Intelligenz, Special Issue on Intelligent Systems and
Teleteaching. (ed. C. Rollinger and C. Peylo). 4, 19-25.

Brusilovsky, P. and Miller, P. (2001). Course Delivery Systems for the Virtual
University. Access to Knowledge: New Information Technologies and the Emergence
of the Virtual University (ed. T. Tschang and T. Della Senta). Amsterdam: Elsevier

Science.

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998) Web-based education for all: A tool
for developing adaptive courseware. Computer Networks and ISDN Systems.
Proceedings of Seventh International World Wide Web Conference, 14-18 April 30 (1-
7), pp. 291-300.

Brusilovsky, P., Schwarz, E., and Weber, G. (1997): Electronic Textbooks on the
World-Wide Web: From Static text to Interactivity and Adaptivity. Web-Based

Instruction (ed. Khan B). Educational Technology Publications. Englewood Cliffs.

Callear, D. (1999): Intelligent Tutoring Environments as Teacher Substitutes: Use and

Feasibility. Educational Technology. 39(5). September-October. New Jersey.
Cantu, M. (1999): Mastering Delphi. Sybex. San Francisco.

Carbonnel, J. R (1970): Al in CAlL An Artificial Intelligence Approach to Computer-
Assisted Instruction. IEEE Transactions on Man-Machine Systems, MMS-11(4),

December.

Carroll, J. M. (2000): Making Use: Scenarios and scenario-based design. Interfacing
Reality in the New Millenium. OZCHI 2000 Conference Proceedings. CHISIG. Sydney.
December 4-8. pp. 38-48.

CDLP (2004): “What is Distance Learning? California Distance Learning Project.

http://www.cdlponline.org/index.cfm?fuseaction=whatis&pg=4 as at 8/5/04.

Cerri, S.A., Gouarderes, G., and Paraguacu, F. (eds.) (2002): Intelligent Tutoring
Systems. 6" International Conference, ITS 2002. Proceedings. Biarritz, France and

San Sebastion, Spain. June.

Chan; C. W. (2003): Virtual Understanding from Virtual Laboratory. Proceedings of the
International Conference of Computers in Education 2003. Hong Kong, China.
December 2-5. pp. 1017-18.

Chaudhary, S.S. (1992): Television in Distance Education: The Indian Scene. Indian
Journal of Open Learning 1(1): pp. 23-31.

References 226

Chee, Y.S. (2001): Networked Virtual Environments for Collaborative Learning.
Proceedings of the International Conference of Computers in Education/ SchoolNet
2001. Seoul, Korea. November 12-15. 1. pp. 3-11.

Chee, Y.S., Law, N. Lee, K. T, and Suthers, D.(eds.) (2003). The “Second Wave” of
ICT in Education: from Facilitating Teaching and Learning to Engendering Education
Reform. Proceedings of the International Conference of Computers in Education 2003.

Hong Kong, China. December 2-5.

Cheese, P (2003): What Keeps Universities from Embracing e-Learning? LT/

Magazine. November 5. www.ltimagazine.com/Itimagazine as March 2004.

Cheng, KW.E., Chan, C.L., Chan K.W. (2001): Development of a Web-based Virtual
Power Electronics Experiment. Proceedings of the International Conference of
Computers in Education/ SchoolNet 2001. Seoul, Korea. November 12-15. 1. pp. 47-
50.

Cheung, E.KW. (2001): Empirical Study of Students' Perceptions in E-Learning.
Proceedings of the International Conference of Computers in Education/ SchoolNet
2001. Seoul, Korea. November 12-15. 2. pp. 719-724.

Chi, M. T. H., Feltovich, P. J. and Glaser, R. (1981): Categorisation and Representation
of Physics Problems by Experts and Novices. Cognitive Science. 5. pp 121-152

Cisco (2000): Cisco Networking Academy Program. Available at
http://www.cisco.com/warp/public/779/edu/academy as at 1/5/01.

Clark, D. (1999a): A Time Capsule of Training and Learning: Correspondence Schools.
Northwestern University. Last updated 22/1/00.

http://www.nwlink.com/~donclark/hrd/history/correspondence.html as at 1/2/05.

Clark, D. (1999b): A Time Capsule of Training and Leaming: B. F. Skinner (1904 -
1990). Northwestern University. Last updated 22/1/00.
http://www.nwlink.com/~donclark/hrd/history/skinner.html as at 1/2/05.

Clark, D. (1999c). A Time Capsule of Training and Learning: Cognitive Science.
Northwestern University. Last updated 22/1/00.
http://www.nwlink.com/~donclark/hrd/history/cognitive.html as at 1/2/05.

Clark, D. (1999d): A Time Capsule of Training and Learning: Computer Based Training
(CBT). Northwestern University. Last updated 22/1/00.
http://www.nwlink.com/~donclark/hrd/history/cbt.html as at 1/2/05.

References 227

Clark, D. (1999e): A Time Capsule of Training and Leaming: Constructivism.
Northwestern University. Last updated 22/1/00.

http://www.nwlink.com/~donclark/hrd/history/constructivism.html| as at 1/2/05.

Collins D. (1995). Designing Object-Oriented User Interfaces. Benjamin/Cummings.
Redwood City.

Comer, D. E. (1999): Computer Networks and Internets. Second Edition. Prentice Hall.

New Jersey.

Connolly, T., Begg, C. and Strachan, A. (1999). Database Systems: A Practical
Approach to Design, Implementation, and Management. Second Edition. Addison-

Wesley. Harlow.

Cook, J. F. (1998): Distance Education for Rural Development: The Third Wave.

Agricultural Extension and Rural Development Department. University of Reading.

Cooper, A. and Saffo, P. (1999). The Inmates are Running the Asylum. SAMS.

Indianapolis, Indiana.

Corbett, A. T., Anderson, J. R., and Patterson, E. G. (1990): Student Modelling and
Tutoring Flexibility in the Lisp Tutoring System. Intelligent Tutoring Systems (ed.

Frasson C. and Cauthier G). Ablex. Norwood, New Jersey.

Cunningham, S., Ryan, Y., Stedman, L., Tapsall, S., Bagdon, K., Flew, T., and
Coaldrake, P. (2000): The Business of Borderless Education. Department of Education,

Training and Youth Affairs, Commonwealth of Australia.

DeCloque, P. (Ed) (2000). lllustrated History of Computer Assisted Language Learning.
History of CALL Web Exhibition. http://www.history-of-call.org at 10/05/04

Devedzic, V. Spector, JM., Sampson, D.G. and Kinshuk. (eds.) (2003): The 3 IEEE
International Conference on Advanced Learning Technologies. Athens, Greece. IEEE

Computer Society.

Dewire, D.T. (1998): Thin Clients: Delivering Information Over the Web. McGraw-Hill.
New York.

Dietinger, T., & Maurer, H. (1998). GENTLE - (GEneral Networked Training and
Learning Environment). In T. Ottmann, T. & | Tomek (Eds) ED--Media/ED--
Telecom'98, Charlottesville, VA, AACE, Association for the Advancement of

Computers in Education. pp. 358-364.

Dix, A., Finlay, J., Abowd, G., & Beale R (1993). Human Computer Interaction.

Prentice Hall

References 228

Dodds, P. (2003). ADL Background. Updated March 1.
http://www.rhassociates.com/adl background.htm as at 8/5/04.

Donovan, M. and Macklin, S. (1999): The Catalyst Project. Supporting Faculty Uses of
the Web...with the Web. CAUSE/EFFECT Journal, 22(3).

Drucker, P. (2000): Putting More Now Into The Internet. Forbes Global, 15/5/00. Online

version available at http://www.Forbes.com as at 1/5/01.

Dyer, L. (2004): Alternative Nation. Australian PC Authority. July. 80.

Education Review (2004): UK e-university’fiasco”. March 31-April 6. Reprinted in
EXMSS Off Campus. June, 2004.

Ellis, C., Gibbs, S., and Rein, G.L. (1991). Groupware: some issues and experiences.
Communications of the ACM. 34 (1). pp. 680-689.

Ellsworth, J., Barron, B. et al. (1997): The Internet 1997 Unleashed. Fourth Edition.

Sams.Net Publishing. Indianapolis.

Extramural News (2002): Wired up and ready to go. Extramural News. May. Office of

the Principal Extramural and International, Massey University. Palmerston North.

Flynn, .M. and McHoes, AM. (1997). Understanding Operating Systems. Second
Edition. PWS Publishing Company.

Fowler, HW. and Fowler F.G. (1974): The Concise Oxford Dictionary of Current
English. Fifth edition revised by E.McIntosh. Oxford.

Gehne, R., Jesshope, C.R. and Zhang, J. (2001): Technology Integrated Learning
Environment - A Web-based Distance Learning System. Proceedings of IASTED
International Conference 2001, Internet and Multimedia Systems and Applications.
Hawaii, USA. ISBN 0-88986-299-0. pp. 1-6.

Gentner D. R. and Grudin, J. (1990). Why Engineers (Sometimes) Create Bad
Interfaces. CHI'90 Proceedings. April. ACM.

Gerdt, P., Kommers, P, Suhonen,J. and Sutinen, E: (2002). StoryML. An XML
Extension for Woven Stories. Intelligent Tutoring Systems. 6" International
Conference, ITS 2002. Biarritz, France and San Sebastion, Spain. June. Proceedings.
pp. 893-902.

Gledhill, V. (1981): Discovering Computers. Science Research Associates. Sydney.

Goldberg, M. (1997): Communication and Collaboration Tools in WebCT Proceedings
of the Conference on Enabling Network-Based Learning, May 28 - 30. Espoo, Finland.

References 229

Goldman, J. E., Rawles, P. T. and Mariga, J. R. (1999): Client/Server Information
Systems. John Wiley & Sons. New York.

Gonzalez, A. J. and Dankel, D.D. (1993). The Engineering of Knowledge-Based

Systems: Theory and Practice. Prentice Hall. Englewood Cliffs. New Jersey.

Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A. and Vassileva, J.
(1998): The Intelligent Help Desk: Supporting Peer Help in a University Course. In
B.Goettl, H.Halff, C.Redfield, V.Shute (eds.) Intelligent Tutoring Systems, Proceedings
ITS'98, San Antonio, Texas, LNCS No 1452, Springer Verlag: Berlin pp.494-503.

Greer, J., McCalla, G., Vassileva, J., Deters, R., Bull, S., and Kettel, L. (2001): Lessons
Learned in Deploying a Multi-Agent Learning Support System: The |-Help Experience,
Proceedings of Al in Education AIED'2001, San Antonio, IOS Press: Amsterdam, pp.
410-421.

Hall, J. and Sery, P.G. (2000): Red Hat Linux for Dummies. |DB Books Worldwide.
Foster City.

Harmon, P. and King, D. (1985). Expert Systems. Wiley Press. New York.

Harold, E. R. and Means, W. S. (2002): XML in a Nutshell. A Desktop Reference.
O'Reilly & Associates. Sebastopol, California. 2" Edition.

Hart, J. (1997): Win32 System Programming. Addison-Wesley. Reading.

Hasegawa, S., Kashihara, A. and Toyoca, J. (2002): An e-Learning Library on the Web.
Proceedings of 2002 International Conference on Computers in Education (ICCE
2002). Auckland, Dec 3-6, IEEE Press. pp.1281-82.

Hayashi, T., Watanabe, K., Hayashida, Y., and Kodo, H. (2001): Remote Lecture
Based on Instruction with Blackboard Using High-Quality Audio-Video Stream.
Proceedings of the International Conference of Computers in Education/ SchoolNet
2001. Seoul, Korea. November 12-15. 2. pp. 910-913.

Healey D and Stevens K. (1998). Student Perceptions of Telecommunications
Technologies for Accessing Learning Opportunities in Two Northern Canadian
Schools. Journal of Distance Learning. 4(1). Distance Education Association of New

Zealand.

Heinrich E and Kemp R. (2000): A Flexible Scheme For Representing And Retrieving
Multimedia Contents In Computer-Based Educational Systems. IWALT 2000:
International Workshop of Advanced Learning Technologies. Kinshuk, Jesshope C &

Okamoto T (eds.). IEEE Computer Society. Los Alamitos.

References 230

Heinrich, E., Johnson, R, Luo, D., Maurer, H. and Sapper, M. (2001). Learner-
formulated questions in technology-supported learning applications. Proceedings of
Ed-Media 2001, Tampere, Finland. Montgomerie, C. and Viteli, J. (eds.). AACE,
Vancouver, USA. ISBN 1-880094-42-8. p 43.

Herman, M. (2004): Microsoft tackles the divide. Dominion Post, July 1.

Higgins, A. (1998): Winds of Change and Paradigm Shifts: Correspondence, Distance
and Open Learning. Journal of Distance Learning. 4(1). Distance Education

Association of New Zealand.

Hill, W. F. (1997): Learning: A Survey of Psychological Interpretations. Longman. New
York. Sixth edition.

Honeyball J. (2002a): Flights of fancy. PC Authority. 50. January.

Honeyball, J. (2002b). .Net - The Microsoft development world. Australian PC
Authority, April, 53.

Hope, W. (2002): Evidence of Unequal Access. NZ Infotech. 530.

Hoppe, U., Lingnau, A., Machado, |, Paiva, A, Prada, R. & Tewissen, F. (2000).
Supporting Collaborative Activities in Computer Integrated Classrooms — the NIMIS
Approach. Proc. of 6th International Workshop on Groupware CRIWG 2000, Madeira,
Portugal, 18 - 20 October. IEEE CS Press

Hoppe, U., Verdejo, F., and Kay, J.(eds.) (2003): Artificial Intelligence in Education:
Shaping the Future of Learning through Intelligent Technologies. 10S Press.
Amsterdam.

Hsieh, P, Halff H & Redfield C. (1999): Four Easy Pieces: Development Systems for
Knowledge-Based Generative Instruction. International Journal of Artificial Intelligence
in Education. 10.

Hurley, M. A. (1998): Features and Functions Overload. Information Management &

Computer Security, 6(4). MCB University Press.

Huynh, M. Q., and Umesh, U. N. (2003): E-Leaming As An Emerging Entrepreneurial
Enterprise In Universities And Firms. Communications of the Association for

Information Systems. 12. pp. 46-68.

IHug (2004): High Speed Satellite Internet. http://www.ihug.co.nz/ultra as at 5/11/04.

Inprise (1999a). Borland Delphi 5 Developer's Guide. Inprise Corporation, Scotts
Valley.

References 231

Inprise (1999b): Quick Start. Borland Delphi 5 for Windows 98, 95 & Windows NT.

Inprise Corporation, Scotts Valley.

Ishikawa, T., Matsuda, H, and Takase, H. (2002). Agent Supported Collaborative
Learning using Community Web Software. Proceedings of the International Conference

of Computers in Education 2002. Auckland, New Zealand. December 3-6. 1. pp. 42-43.

Ishizuka, T., Horita, T., Moriya, K., Ishihara, K., Yamada T. (2003). PDA Classroom
Drill Type Learning System with the Real-time Total Functions of Learning History.
Proceedings of the International Conference of Computers in Education 2003. Hong
Kong, China. December 2-5. pp. 570-75.

JADE. (2000): Technical Overview on JADE. Aoraki Corporation. Christchurch.

Available at http://www.discoverjade.com/jade/techover.htm as at 25/3/02.

Jesshope, C., Heinrich, E, and Kinshuk (2000). Technology Integrated Learning
Environments for Education at a Distance. Supporting the Learner through open,
flexible and distance strategies: Issues for Pacific Rim Countries, Wellington, New
Zealand:, DEANZ 2000 Conference, 26-29 April 2000, Dunedin, New Zealand. Online

publication, http://www.deanz.org.nz/conf.htm.

Jesshope, C., Shafarenko, A. and Slusanschi, H. (1998): Low-bandwidth multimedia
tools for web-based lecture publishing. IEE Engineering Science and Educational
Journal. 7(4). pp.148-54.

Jo, J. H., Moon, K-S, Jones, V and Cranitch, G. (2001): Innovations in e-Learning with
Wireless Technology and Personal Digit Assistant. Proceedings of the International
Conference of Computers in Education/ SchoolNet 2001. Seoul, Korea. November 12-
15. 1. pp. 41-46.

Jonassen, D., Mayes, J T. and Mcaleese, R. (1993): A Manifesto for a Constructivist
Approach to Technology in Higher Education. T. Duffy, D. Jonassen, & J. Lowyck
(Eds), Designing constructivist learning environments. Heidelberg, FRG: Springer-

Verlag.

Jones, D and Pritchard, A (1999). Realising the Virtual University. Educational
Technology. 39(5). September-October. New Jersey.

Jong, B.S., Lin, TW.,, Chan, T.Y., and Wu, Y.L. (2003): Using VR Technology to
support the Formation of Cooperative Learning Groups. The 3" IEEE Intemational
Conference on Advanced Learning Technologies. Athens, Greece. pp. 37-41. |IEE

Computer Society.

References 232

Kawato, T., Sasaki, H., and Takeya, M. (2003): Application of the Bootable CD-ROM
with a Linux System to the Programming Education. Proceedings of the International
Conference of Computers in Education 2003. Hong Kong, China. December 2-5 pp.
109-11.

Keall, C. (ed.) (2001): 16 Education programs. PC World Plus CD-ROM. New Zealand
PC World. August.

Kearsley, G. (2003): Explorations in Learning & Instruction: The Theory Into Practice

Database. http://itip.psychology.org/index.html as at 10/5/04.

Kinshuk, Jesshope, C and Okamoto, T (eds.). (2000): /IWALT 2000: International
Workshop on Advanced Learning Technologies. December. IEEE Computer Society.

Los Alamitos.

Kruse, K. (2002): E-Learning and the Neglect of User Interface Design. E-Leamning

Guru. http//lwww.e-learningguru.com/articles/art4 1.htm as at 12/12/04

Kubarek, D. (1999): Introducing and Supporting a Web Course Management Tool.
Syllabus magazine. June. http://www.cit.cornell.edu/atc/cst/SyllabusVWeb/syllabus.pdf
as at 13/6/04.

Larson, K., and Czerwinski, M. (1998): Web page design: implications of memory,
structure and scent for information retrieval. Proceedings of CHI'98, p25-32.

Laurillard, D. (1993): Rethinking University Teaching. Routledge. London.

Learnz2001. (2001): Overview of Learnz2001: Island Odyssey:
http://www.learnz.org.nz/2001/programme 2001.htm as at 1/5/01.

Lennox, D. (2000): Improving the Top Line Using e-Learning. WBT White Paper.
Maryland. Http://www.wbtsystems.com as at 10/5/01.

LinuxDevices (2005): Pocketable Linux server creates plug-and-go Linux desktop.
LinuxDevices.com. August 16. http://www.linuxdevices.com/news/NS8562564746.html
as at 20/08/05.

Lopez, N., Nunez, M., Rodriguez, |., and Rubio, F. (2002): Including Malicious Agents
into a Collaborative Learning Environment. Intelligent Tutoring Systems. 6"
International Conference, ITS 2002. Biarritz, France and San Sebastion, Spain. June.

Proceedings. pp. 51-60.

Luger, G.F. and Stubblefield, W.A. (1998):. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Third Edition. Addison Wesley Longman.

Harlow, England.

References 233

Macromedia (2005): Macromedia Authorware 7. Produce rich-media courseware for e-

learning. http://macromedia.com/software/authorware/ as at 21/09/05.

Marland, P. (1997). Towards More Effective Open & Distance Teaching. Kogan Page.

London.

Martin, B. and Mitrovic, A. (2003): ITS Domain Modelling: Art or Science? Artificial
Intelligence in Education. Hoppe, H.U. et al. (eds.). IOS Press. pp. 183-90.

Mazza, R. and Dimitrova, V. (2003): CourseVis: Externalising Student Information to
Facilitate Instructors in Distance Learning. Artificial Intelligence in Education. Hoppe,
H.U. et al. (eds.). IOS Press. pp. 279-86.

Massey Extramural. (2004). Massey University Extramural web site.

http://extramural.massey.ac.nz/welcome.htm as at 1/2/04.

Massey University (2000): Online Learning At Massey University. Report of the
Information Technology and Distance Education Taskforce. Massey University.
October.

Mayes, J. T. (1993). Commentary: Impact of cognitive theory on the practice of
courseware authoring. Journal of Computer Assisted Learning, 9, 222-228.
http://apu.gcal.ac.uk/clti/papers/TMPaper12.html as at 10/5/04.

Merceron, A. and Yacef, K. (2003): A Web-Based Tutoring Tool with Mining Facilities to
Improve Learning and Teaching. Artificial Intelligence in Education. Hoppe, H.U. et al.
(eds.). IOS Press. pp. 201-08.

Microsoft (1997). Encarta 97 Encyclopedia. http://www.encarta.com.

Microsoft (2005): Overview of the .NET framework. .NET Framework Developers
Guide. Ms-
help://MS .NETFrameworkSDK/cpguidenf/htmi/cpovrintroductiontonetframeworks as at
5/01/2005.

Militant (2001): “Without culture there can be no freedom”. The Militant, 65(16). April
23. New York.

Mills, S. (ed). (1997): Tuming Away From Technology. A New Vision For the 21°

Century. Sierra Club Books. San Francisco.

MIT (2005): MIT OpenCourseWare.
http://ocw.mit.edu/OcwWeb/Global/AboutOCW/about-ocw.htm as at 21/09/05.

Mitrovic, A. and Hausler, K. (2000). Porting SQL-Tutor to the Web. Proc. ITS'2000
workshop on Adaptive and Intelligent Web-based Education Systems, pp. 37-44.

References 234

Mitsuhara, H., Ochi, Y., Kanenishi, K. and Yano, Y. (2002): A Web Retrieval Support
System with a Comment Sharing Environment: Toward and Adaptive Web-based IR
System. Proceedings of 2002 International Conference on Computers in Education
(ICCE 2002). Auckland, Dec 3-6, IEEE Press. pp.1218-22.

Moran, T. P. (1981): An Applied Psychology Of The User. Computing Surveys. 13(1).
March.

Mostow, J., Roth, S., Hauptmann, A. G. and Kane, M. (1994). "A Prototype Reading
Coach that Listens", Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), American Association for Artificial Intelligence, Seattle, WA
August, 1994, pp. 785-792.

Munro, A., Johnson, M., Surmon, D. and Wogulis, J. (c.1995): Specifying Interactive
Graphical Behaviours in RIDES. A Working Paper in Progress. Behavioural
Technology Laboratories, University of Southemn California.
http://btl.usc.edu/rides/authinterf/behav.html as at 10/5/01.

Murray, T. (1998a) A Model for Distributed Curriculum on the World Wide Web?

Journal of Interactive Media in Education, 1998.

Murray, T. (1998b). Authoring Knowledge Based Tutors: Tools for Content,
Instructional Strategy, Student Model, and Interface Design. Journal of the Learning
Sciences (Special Issue on Authoring Tools for Interactive Learning Environments).
7(1). pp. 5-64.

Murray, T. (1999): Authoring Intelligent Tutoring Systems: An analysis of the state of
the art. Int. J. of Al and Education. 10 (1), pp. 98-129.

Murray, T., Condit, C. And Haugsjaa, E. (1998): MetaLinks: A Preliminary Framework
for Concept-Based Adaptive Hypermedia. Workshop proceedings for ITS-98 workshop
on WWW-Based Tutoring. San Antonio, August, 1998.

Murray, T., Condit, C., Piemonte, J., Shen, T., & Khan, S. (2000). Evaluating the Need
for Intelligence in an Adaptive Hypermedia System. /TS 2000. pp.373 -382.

Najjar, L. J. (1990). Using color effectively (IBM TR52.0018). Atlanta, GA: IBM

Corporation.

References 235

Nakabayashi, K, Maruyama, M, Koike, Y, Fukuhara, Y & Nakamura Y. (1996): An
Intelligent Tutoring System on the WWW Supporting Interactive Simulation
Environment with a Multimedia Viewer Control Mechanism. NTT Information and
Communication Systems Laboratories, Tokyo 180, Japan.

http://teis.virginia.edu/aace/conf/webnet/html!/321/321.htm

Naughton, P. and Schildt, H. (1999): Java 2: The Complete Reference. Third Edition.
Osborne/McGraw-Hill. Berkeley.

Newell, A and Simon, HA. (1972): Human Problem Solving. Prentice-Hall.

Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics.
Proceedings of ACM CHI'94. pp.52-58.

Nielsen, J. (2001). Jakob Nielsen on e-learning. Elearning Post. January 15.

http://www.elearningpost.com/features/.

Noble, D. (1997): Digital Diploma Mills Part 1. The Automation of Higher Education.
October. http://communication.ucsd.edu/dl/ as at 1/5/01.

Noble, D. (1998a). Digital Diploma Mills, Part Il: The Coming Battle over Online

Instruction. March. http://communication.ucsd.edu/dl/ as at 1/5/01.

Noble, D. (1998b): Digital Diploma Mills, Part Ill: The Bloom is off the Rose. November.
http://communication.ucsd.edu/dl/ as at 1/5/01.

Noble, D. (1999): Digital Diploma Mills Part IV Rehearsal for the Revolution. November.
http://communication.ucsd.edu/dl/ as at 1/5/01.

Norton, A.-L. (ed.) (1994): The Hutchinson Dictionary of Ideas. Helicon. Oxford.

Novak, J. D. and Gowin, D. B. (1984): Learning how to learn. Cambridge University
Press, New York 1984

Nunes, M.B., and McPherson, M. (2003): Constructivism vs. Objectivism: Where is the
difference for Designers of e-Leaming Environments? pp. 496-500. The 39 IEEE
International Conference on Advanced Learning Technologies. Athens, Greece.
IEEEComputer Society. pp. 496-500.

NZSC (2004): The Correspondence School of New Zealand web site.

http://www.correspondence.school.nz/ as at 1/2/04.

NZWireless(2004): web site http://www.nzwireless.org/ as 21/7/04.

References 236

Okazaki, Y., Feng, X. Y., Okamoto, M., and Kondo, H. (2003): Stroke Segmentation
and Symbol Identification in On-line Handwriting Mathematical Expressions for a
WWW-based Intelligent Tutoring System. Proceedings of the International Conference
of Computers in Education 2003. Hong Kong, China. December 2-5. pp. 715-18.

One News (2002): Students receive mobile phones. nzoom.com.
http://onenews.nzoom.com/news detail/0,1227,92163-1-8,00.html as at 6/4/02.

Oppermann, R., Rashev, R. and Kinshuk (1997): Adaptability and Adaptivity in
Learning Systems. Knowledge Transfer (Volume Il) (Ed. A. Behrooz), pAce, London,
pp. 173-179 (ISBN 1-900427-015-X).

Osier, D., Grobman, S. and Batson, S. (1997): Teach Yourself DELPHI 3 in 14 Days.
Sams Publishing. Indianapolis.

Paiva, A. and Machado, I. (1998): Vincent, an Autonomous Pedagogical Agent for on-
the-Job Training. Proc. 4" Intemational Conference, ITS '98. Goetll, B. Halff, H.,
Redfield, C. and Shute, V. (eds.) San Antonio, Texas. Aug 16 -19. Springer. Berlin.

Park, O., Perez, R. and Seidel, R. (1987): Intelligent CAl: Old Wine in New Bottles, or a
New Vintage. Artificial Intelligence and Instruction. Kearsley, G. (ed.). Addison-Wesley.

Reading.

Patel, A. and Kinshuk. (1997): Intelligent Tutoring Tools in a Computer-Integrated
Learning Environment for Introductory Numeric Disciplines. /nnovations in Education
and Training International. 34(3). August. Journal of Staff and Educational

Development Association. Kogan Page. London.

Patton, M. Q. (1990). Qualitative Evaluation Methods. Beverly Hills, CA.: Sage
Publications.

PBS (2004): Public Broadcasting Service Distance Learning Week-Timeline
http://www.pbs.org/als/dlweek/history/1960.htm as at 1/02/04.

Petzold, C. (1996): Programming Windows 95. Microsoft Press. Redmond.

Pinkwart, N., Hoppe, H.U., Bollen, L. and Fuhlrott, E. (2002): Group-Oriented Modelling
Tools with Heterogeneous Semantics. Intelligent Tutoring Systems. 6" International
Conference, ITS 2002. Biarritz, France and San Sebastion, Spain. June. Proceedings.
pp. 21-30.

Prebble, T. (2001a): New Zealand. Open and Distance Education In The Asia Pacific
Region. Jegede, O. and Shive, G. (eds.) pp. 381-399.

References 237

Prebble, T. (2001b): Contact Courses- Who Needs Them? Extramural News. July.

Massey University. New Zealand.
Preece, J. (1994). Human-Computer Interaction. Addison-Wesley. Wokingham.

Pressman, R (1997): Software Engineering: A Practitioner's Approach. International
Editions. McGraw-Hill. New York.

Queensland College (2002). NuMaths. Queensland College of Tertiary Studies.
http://maths.newzealand.edu as at 8/3/02.

Quinn, V. (2002): That about WAPs up 2001. Australian PC Authority, January.

Rasseneur, D., Delozanne, E., Jacoboni, P., and Grugeon, B. (2002): Learning with
Virtual Agents: Competition And Cooperation in AMICO. Intelligent Tutoring Systems.
6" International Conference, ITS 2002. Biarritz, France and San Sebastion, Spain.

June. Proceedings. pp. 61-70.

Reeves, T. C. and Harmon, S. W. (1994). Systematic Evaluation Procedures For
Interactive Multimedia For Education And Training. Multimedia Computing: preparing
for the 21 Century. (ed. Reisman, S.) Idea Group. Harrisburg.

Reeves, T.C. (1992). Effective Dimensions of Interactive Learing Systems.

Information Technology for Training and Education Conference. Brisbane

Reynolds, T. J. and Gutman, J. (1988). Laddering Theory, Method, Analysis, and
Interpretation. Journal of Advertising Research, February/March. pp.11-29.

Ritter, S. (1997): PAT Online: A Model-tracing tutor on the World-wide Web.
Proceedings of the workshop "Intelligent Educational Systems on the World Wide
Web", 8th World Conference of the AIED Society, Kobe, Japan, 18-22 August.

Ritter, S., Anderson, J., Cytrynowicz, M. and Medvedeva, O. (1998): Authoring Content
in the PAT Algebra Tutor. Journal of Interactive Media in Education. 8 Oct. 98(9). Open
University, United Kingdom.

Roseth, B. (2001): Catalyst aim: Better tools for better classrooms. University Week.

March 8. University of Washington.

SCORM (2002): Sharable Courseware Object Reference Model

http://www.rhassociates.com/scorm.htm as at 24/6/04.

Scott, C. A., Clayton, J. E., & Gibson, E. L. (1991). A Practical Guide to Knowledge
Acquisition. Reading: Addison-Wesley.

References 238

Searle, S. (2001): Digital television a possible answer to rural internet woes. Rural
News. 16/4/01. Auckland.

Seidel, R. and Chatelier, P. (eds.). (1995). Learning Without Boundaries. Plenum

Press. New York.

Shneiderman, B. (1998). Designing the User Interface. Addison-Wesley. Reading,

Massachusetts.

Sinista, K. and Manako, A. (1999). Interactive Dictionary as an Information Wish-

Maker. Educational Technology. 39(5). September-October. New Jersey.

Smulders, D. (2003). Designing for Learners, Designing for Users,
http://elearnmag.org/subpage/sub page.cfm?section=3&list item=11&page=1 as at
4/5/04.

Stern, M. K. and Woolf, B. P. (1998): Curriculum Sequencing in a Web-based Tutor.
Proc. 4" International Conference, ITS '98. San Antonio, Texas. Aug 16 - 19. Springer.

Berlin
Stirling, P. (2001): The Mouse Trap. The Listener. July 14.

Swart, B. (2001): Migrating Your Delphi 5 Projects to Kylix. Borland Software

Corporation. www.Borland.com.

Tagg, R. and Freyberg, C. (1997): Designing Distributed and Cooperative Information

Systems. International Thompson Computer Press. London.

Tanenbaum, A. S. (1996). Computer Networks. Third Edition. Prentice-Hall

International. London.
Tansey, F. (2003): The Standard Bearers Close Ranks. Syllabus Magazine. March 1.

Taylor P. (2000). Beware geeks bearing modems. The Times Higher Education
Supplement. September 1.

Tiffin, J. (2002): The HyperClass: Education in a Broadband Internet Environment.
Proceedings of the International Conference of Computers in Education, 2002.
Auckland , New Zealand. December 3-6. 1. pp. 23-29.

Tominaga, H., Hagihara, H., Matsubara,Y., Yamasaki, T., and Yano Y. (2003): Fill-in
Type Drill-based Web Leaming System for Basic IT Education. Proceedings of the
International Conference of Computers in Education 2003. Hong Kong, China.
December 2-5. pp. 764-66.

References 239

TOPNZ. (2004):The Open Polytechnic of New Zealand web site.
http://www.topnz.ac.nz/ as at 1/2/04.

Uglow, J. (2002): The Lunar Men. The Friends who made the Future. Faber and Faber.

London.

Underwood, J. D. M., and Underwood, G. (1990): Computers and Learning: Helping
Children Acquire Thinking Skills. Blackwell. Oxford.

Universal (2001): UNIVERSAL web site: http://www.ist-universal.org/sommaire.htm as
at 10/5/01.

UP (2004): University of Phoenix web site. http://onl.uophx.edu/default.aspx as at
8/5/04.

UTTC. (2004): UT TeleCampus - Overview 2004. The University of Texas System

Online www.telecampus.utsystem.edu as at 8/5/04.

Vassileva J. (2001). "Distributed and United", Invited talk at ICCE'2001, Seoul, 12-15
Nov. Available at http://julita.usask.ca’lhomepage/Agents.htm as at 19-Feb-02.

Vassileva, J. (1997): "Dynamic Course Generation on the WWW". Attificial Intelligence
in Education (du Boulay, B. and Mizoguchi, R. eds).. I0S Press.

Vizcaino, A., du Boulay, B (2002): Using a Simulated Student to Repair Difficulties in
Collaborative Learning. Proceedings of the International Conference of Computers in
Education 2002. Auckland, New Zealand. December 3-6. 1. pp. 349-353.

Watt, S. (2000): Course Web Sites. 7th February. KMi-Occasional Papers-1. Open
University. United Kingdom. http://kmi.open.ac.uk/publications/occasionalpapers.html
(as at 1/5/01)

Web-Based Education Commission. (2000). The Power of the Internet for Learning.
Report to the President and Congress of the United States. Washington D.C.

December.

Weber, G., and Brusilovsky, P. (2001): ELM-ART. An Adaptive Versatile System for

Web-based Instruction. International Journal of Artificial Intelligence in Education. 12.
Wells, N.D. (2000): Linux! I didn't know you could do that... Sybex. San Francisco.

Wenger, E. (1998) Communities of Practice: Learning, Meaning and Identity

Cambridge University Press.

Whitten, J.L., and Bentley, L.D. (1998): System Analysis and Design Methods. Irwin
McGraw-Hill. Boston. Fourth Edition.

References 240

Woolf, B. (1990). 20 Years in the Trenches: What have we Learned? Intelligent
Tutoring Systems (eds. Frasson, C & Gauthier G). Ablex. New Jersey. pp. 234-250.

Woolley, D.R. (1994). PLATO:. The emergence of on-line community. Computer-
Mediated Communication Magazine, 1(3), July 1. p.5. Available online:

http://Iwww.december.com/cmc/mag/1994/jul/plato.html.

Wright, H. (2002a): Getting up to speed. NZ Infotech. 525. Feb 18.

Wright, P., Mosser-Wooley, D. and Wooley, B. (2001). Techniques & tools for using

color in computer interface design. ACM Crossroads. On-line journal. Available:

http://www.acm.org/crossroads/xrds3-3/color.html as at 12/12/04.

Wyld, H. C. (ed.). (1932): Universal Dictionary of the English Language. The

Amalgamated Press Ltd. London.

Yellen R E. (1999): The On-Line Trainee: A Forgotten End User. Journal of End User
Computing. 11(3). July-Sept.

Yin, R K. (1984). Case Study Research: Design & Methods. First edition. London:

Sage Publications.

Appendix A 241

Appendix A

References for e-Learning Systems Reviewed

Appendix A 242

A.1: Paper References for Initial System Comparison’

Tool References

Blackboard /

Courseinfo

CALAT Nakabayashi, K, Maruyama, M, Koike, Y, Fukuhara, Y & Nakamura Y. An
Intelligent Tutoring System on the WWW Supporting Interactive Simulation
Environment with a Multimedia Viewer Control Mechanism. NTT Information
and Communication Systems Laboratories, Tokyo 180, Japan.
http://teis.virginia.edu/aace/conf/webnet/html/321/321.htm

CATALYST. Donovan, M & Macklin, S. The Catalyst Project: Supporting Faculty Uses of

the Web...with the Web. in CAUSE/EFFECT journal, Volume 22 Number 3
1999.

CILE /Byzantium
Project

Patel, A and Kinshuk. Tutoring Tools in a Computer-Integrated Learning
Environment for Numeric Disciplines. In: Innovations in Education and
Training International. Volume 34(3). August 1997. Journal of Staff and
Educational Development Association. Kogan Page. London.

CNAP

DIy

Watt, S. Course Web Sites. 7th February 2000. KMi-Occasional Papers-1.
Open University. United Kingdom.

http://kmi.open.ac.uk/publications/occasionalpapers.htmi

DCG on WWW

Vassileva J. (1997) DCG + WWW: Dynamic Courseware Generation on the
WWW, Proceedings of AIED'97, Kobe, Japan, 18-22.08.1997, IOS Press,
498-505.

Vassileva J. (1995) Dynamic Courseware Generation: at the Cross Point of
CAL, ITS and Authoring. in Proceedings International Conference on
Computers in Education, ICCE'95 , Singapore, 5-8 December 1995, 290-297.

Eon

Murray, T. (1998). Authoring Knowledge Based Tutors: Tools for Content,
Instructional Strategy, Student Model, and Interface Design. J of the Learning
Sciences (Special Issue on Authoring Tools for Interactive Learning
Environments). Vol 7, No.1, pp. 5-64.

! Compiled between May 2001 and March 2002.

Appendix A 243

GENTLE-WBT/
Hyperwave el earning
Suite

Dietinger, T, Maurer, H. GENTLE - (GEneral Networked Training and
Learning Environment). Graz University of Technology — Institute for
Information processing and Computer supported new Media, AUSTRIA. 1998

Highly Interactive

Bork, A. Tutorial Learning for the New Century .Journal of Science Education

Tutorials and Technology. March 2001, Volume 10, No 1, pp. 57-71
Bork, A. What is Needed for Effective Learning on the Internet. Educational
Technology and Society. Special Issue on Curriculum, Instruction, Learning,
and the Internet. Vol 4, No 3, 2001, pp 139 — 144,

|-HELP Greer J., McCalla G., Vassileva J., Deters R., Bull S., Kettel L. (2001)

Lessons Learned in Deploying a Multi-Agent Learning Support System: The |-
Help Experience, Proceedings of Al in Education AIED'2001, San Antonio,
|OS Press: Amsterdam, 410-421.

Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A. and
Vassileva, J. (1998) The Intelligent HelpDesk: Supporting Peer Help in a
University Course, in B.Goettl, H.Halff, C.Redfield, V.Shute (eds.) Intelligent
Tutoring Systems, Proceedings ITS'98, San Antonio, Texas, LNCS No1452,
Springer Verlag: Berlin pp.494-503.

IMT/PICAT/PIMECH

INDIE

Dobson, W.D. and Riesbeck C.K. Tools for Incremental Development of
Educational Software Interfaces. Northwestern University.
http://www.cs.nwu.edu/~wolff/chi98/chi98.html:

Dobson, D.J Authoring Tools for Investigate-and-Decide Learning
Environments. PhD thesis. Northwestern University. 1998. lllinois.

http://www.cs.nwu.edu/~wolff/thesis

Interactive

Dictionary

Sinista, K and Manako, A. Interactive Dictionary as an Information Wish-
Maker. In: Educational Technology. Volume 39(5). September-October 1999.
New Jersey.

InterBook

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998) Web-based education for
all: A tool for developing adaptive courseware. Computer Networks and ISDN
Systems (Proceedings of Seventh International World Wide Web Conference,
14-18 April 1998) 30 (1-7), 291-300.

Brusilovsky, P. and Anderson, J. (1998) ACT-R electronic bookshelf: An
adaptive system for learning cognitive psychology on the Web. Proceedings
of The 3rd World Conference of the WWW, Internet, and Intranet, WebNet'98,
Orlando, FL, November 7-12, 1998, AACE, pp. 92-97 (Top Paper Award).

Appendix A 244

LEARNZ

LISP Tutor

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995).
Cognitive tutors: Lessons learned. The Journal of Learning Sciences, 4, 167-
207.

Anderson, J R, Corbett, A T, & Patterson, E G. Student Modelling and
Tutoring Flexibility in the Lisp Tutoring System. Intelligent Tutoring Systems
(ed. Frasson C & Cauthier G). Ablex. Norwood, New Jersey. 1990.

Anderson, J.R. and Reiser, B.J. (1985). The LISP Tutor. Byte, 10, 4, 159-175.

MANIC

Stern M K & Woolf B P. Curriculum Sequencing in a Web-based Tutor. Proc.
4" International Conference, ITS '98. San Antonio, Texas. Aug 16 - 19, 1998.
Springer. Berlin.

A. Schapira, K. De Vries, C. Pedregal-Martin, "MANIC: An Open-Source
System to Create and Deliver Courses over the Internet," Proc. 2001
Symposium On Applications and the Internet (IEEE Computer Society Press)
(San Diego, Calif., USA, Jan. 2001).

MDC

Murray, Tom. A Model for Distributed Curriculum on the World Wide Web?
Draft. (For the final version see the Journal of Interactive Media in Education,
1998)

METALINKS

Murray, T., Condit, C., Piemonte, J., Shen, T., Khan, S. (2000). Evaluating the
Need for Intelligence in an Adaptive Hypermedia System. Submitted to ITS
2000.

Murray, T., Condit, C. & Haugsjaa, E. (1998). MetaLinks: A Preliminary
Framework for Concept-Based Adaptive Hypermedia. Workshop proceedings
for ITS-98 workshop on WWW-Based Tutoring. San Antonio, August, 1998.

PAT

Ritter, S, Anderson , J, Cytrynowicz, M & Medvedeva, O. Authoring Content in
the PAT Algebra Tutor. Journal of Interactive Media in Education. 8 Oct 98.
98(9). Open University, United Kingdom.

Ritter, S. PAT Online: A Model-tracing tutor on the World-wide Web.
Proceedings of the workshop “Intelligent Educational Systems on the World
Wide Web", 8th World Conference of the AIED Society, Kobe, Japan, 18-22
August 1997.

PLATO

Woolley, D.R. (1994). PLATO: The emergence of on-line community.
Computer-Mediated Communication Magazine, 1(3), 5. Available online:
http://www.december.com/cmc/mag/1994/jul/plato.html

Appendix A 245

RIDES

Monroe A, Johnson M, Pizzini P, Surmon D & Wogulis J. A Tool for Building
Simulation-Based Learning Environments. Behavioural Technology
Laboratories, University of Southern California.
http://btl.usc.edu/rides/shortPapers/bldsim.html

Monroe A, Johnson M, Pizzini P, Surmon D & Wogulis J. Specifying
Interactive Graphical Behaviours in RIDES. A Working Paper in Progress.
Behavioural Technology Laboratories, University of Southern California.
http://btl.usc.edu/rides/authinterf/behav.html

SQL-Tutor; SQLT-Web

Mitrovic, A., Hausler, K. Porting SQL-Tutor to the Web. Proc. ITS'2000
workshop on Adaptive and Intelligent Web-based Education Systems, pp. 37-
44, 2000.

Mitrovic, A, Ohlsson, S. Evaluation of a Constraint-based Tutor for a
Database Language. International Journal of Artificial Intelligence in
Education, 10, 1999. Pp 238-256.

TILE

Gehne, Regina; Jesshope, Chris; and Zhang, Jenny. Technology Integrated
Learning Environment - a Web-based Distance Learning System. Draft paper.
Massey University. 2001;

Jesshope C., Heinrich E. & Kinshuk (2000). Technology Integrated Learning
Environments for Education at a Distance. Supporting the Learner through
open, flexible and distance strategies: Issues for Pacific Rim Countries,
Wellington, New Zealand: The Distance Education Association of New
Zealand, 348ff.

TOP-CLASS

Lennox, Duncan. Improving the Top Line Using e-Learning. WBT White
Paper

UNIVERSAL

UNIVERSAL - Design and Implementation of A Highly Flexible E-Marketplace
of Learning Resources. Draft conference paper.2001;

Jerman-Blazic, B. The Usability Aspects of an Universal Brokerage and
Delivery System for the Pan-European Education. Kinshuk, Jesshope, C and
Okamoto, T (eds). IWALT 2000: International Workshop on Advanced
Learning Technologies. December 2000 |EEE Computer Society. Los
Alamitos.

VINCENT

Paiva A & Machado I. Vincent, an Autonomous Pedagogical Agent for on-the-
Job Training. Proc. 4" International Conference, ITS '98. Goetll B, Halff H,
Redfield C & Shute V (eds) San Antonio, Texas. Aug 16 -19, 1998. Springer.
Berlin. (Filed under proceedings)

Appendix A 246

WEBCT

Goldberg, M. Communication and Collaboration Tools in WebCT Proceedings
of the conference Enabling Network-Based Learning, May 28 - 30, 1997,
Espoo, Finland

Goldberg, M & Salari,S. WebCT: UBC's Web course tool. Campus Computing
and Communications, May/June 1996, University of British Columbia

WITS

Callear, David. Intelligent Tutoring Environments as Teacher Substitutes: Use
and Feasibility. Educational Technology. Volume 39(5). September-October
1999. New Jersey.

XAIDA

Wenzel, B & Dirnberger,. M Experimental Advanced Instructional
Design Advisor (Xaida) Training: A Multidimensional Approach To
Training Evaluation. Mei Technology Corporation. San Antonio,
Texas.1996. Available online at:

http://www.ijoa.org/imta96/paper80.html

Hsieh, P, Halff H & Redfield C. Four Easy Pieces: Development
Systems for Knowledge-Based Generative Instruction. International
Journal of Artificial Intelligence in Education. 999 (10).

Overviews

Adaptive and Intelligent
Technologies for Web-

based Education.

Brusilovsky, P. Adaptive and Intelligent Technologies for Web-based
Education. In: C. Rollinger and C. Peylo (eds.) Kiinstliche Intelligenz, Special
Issue on Intelligent Systems and Teleteaching, 1999, 4, 19-25.

Advanced Learning
Technologies

Kinshuk, Jesshope, C and Okamoto, T (eds). IWALT 2000: International
Workshop on Advanced Learning Technologies. December 2000 IEEE
Computer Society. Los Alamitos

Authoring Intelligent
Tutoring Systems

Murray, T. Authoring Intelligent Tutoring Systems: An analysis of the state of
the art. Draft paper. Computer Science Dept., University of Massachusetts,
Amherst, 1999.

Comparison of WebCT
and Courselnfo

Kanijilal, U. Web-based Distance Education: Considerations for Design and
Implementation. Indian Journal of Open Learning. Vol. 9(3), pp 433-440. New
Dehli.

Universities online

Jones, D and Pritchard, A. Realising the Virtual University. Educational
Technology. Volume 39(5). September-October 1999. New Jersey.

Brusilovsky, P. and Miller, P. Course Delivery Systems for the Virtual
University. In: T. Tschang and T. Della Senta (eds.): Access to Knowledge:
New Information Technologies and the Emergence of the Virtual University.
Amsterdam: Elsevier Science. 2001.

Appendix A 247

A.2: Web References for Initial System Comparison®

Tool References

BLACKBOARD / http://company.blackboard.com;

Courselnfo
http://support.blackboard.com
http://www.c2t2 .ca/landonline/shownote.asp?appRow=11
http://www.cit.cornell.edu/atc/cst
http://www.cit.cornell.edu/atc/cst/why.shtml

CALAT http://www.nttlabs.com/text only html/calat.html
http://teis.virginia.edu/aace/conf/webnet/html/321/321.htm

CATALYST. http://catalyst.washington.edu/;

http://depts.washington.edu/~uweek/archives/2001.03.MAR 08/ article7.htmi

http://www.educause.edu/ir/library/html/cem9934.html

CILE / Byzantium
Project

http:/fims-www.massey.ac.nz/%7Ekinshuk/papers/ieti97.html;

http://ifets.amd.de/periodical/vol 1 2000/patel.html;

http://www.magt.uea.ac. uk/cti/events/events past/Byzantium Workshop.html

CNAP http://www.cisco.com/warp/public/779/edu/academy

DIy http://is157332.massey.ac.nz
http://www.macromedia.com/software/authorware

DCG on WWW http://julita.usask.ca

Eon http://helios.hampshire.edu/~timCCS/papers/JLSEon/JLS96.html

GENTLE-WBT. http://wbt-2.iicm.edu/product

http.//wbt-2.iicm.edu/gentle/papers/edmedia98.pdf

http.//wbt-2.iicm.edu/gentle/Gentlelntro.htm

2 Compiled between May 2001 and March 2002.

Appendix A 248

Hyperwave elLearning
Suite

http://www.hyperwave.de/e/news events/news pr 29.html;

http://www.hyperwave.de/e/products/els.html

Highly Interactive
Tutorials

http://www1.ics.uci.edu/~bork

I-HELP

http://julita.usask.ca

IMT/PICAT/PIMECH

http://www.bpta.co.uk/

INDIE http://www.ils.nwu.edu/~riesbeck/indie;
http://www.cs.nwu.edu/~wolff/chi98/chi98.html;
http://www. cs.nwu.edu/~wolffthesis

INTERACTIVE http://www.dlab kiev.ua/hci99.htm:;

DICTIONARY http://www.dlab kiev.ua/wis m.htm

INTERBOOK http://www.contrib.andrew.cmu.edu/~plb/InterBook.html;
http://ausweb.scu.edu.au/proceedings/eklund/paper.htmil;
http://www7.scu.edu.au/programme/fullpapers/1893/com1893.htm

LISP TUTOR http://www.cs.nwu.edu/~wolff/thesis/node113.html;
http://act.psy.cmu.edu/ACT/papers/Lessons Learned.html

MANIC http://none.cs.umass.edu/manic/documents/manicdb-saint01.html
http://www-aml.cs.umass.edu/~stern/bib.html
http://www-aml.cs.umass.edu/~stern/manic.html

MDC http://helios.hampshire.edu/~timCCS/papers/DisCurdIME98/JIMEMurray.htm|

METALINKS http://helios.hampshire.edu/~timCCS/papers/ITS2000/[TS2000subMurray. html

PAT http://act.psy.cmu.edu/ACT/awpt/awpt-home.html; http://www.cyberedinc.com

PLATO http.//www.december.com/cmc/mag/1994/jul/plato.html
http://www.coe.uh.edu/courses/cuin6373/idhistory/plato.html
http://www.wired.com/news/topstories/0,1287,2614,00.html

RIDES http://btl.usc.edu/rides/documentn/refMan/index.html;

http://btl.usc.edu/rides/index.html;
http://btl.usc.edu/rides/shortPapers/bldsim.html

Appendix A 249

SQL-Tutor; SQLT-Web

http://www.cosc.canterbury.ac.nz/~tanja/sql-tut. html

TILE http://www.nzedsoft.com

TOP-CLASS http://www.wbtsystems.com
http://www.c2t2.ca/landonline/shownote.asp?appRow=13

UNIVERSAL http://www.ist-universal.org/sommaire.htm

VINCENT http://gaiva.inesc.pt/amp

WEBCT http://www.webct.com;
http://www.c2t2.ca/landonline/shownote.asp?appRow=10 ;
http://www.marshall.edu/it/cit/webct/compare/whyusewebct. html
http://www.webct.ulpgc.es/papers/enable/paper.html
http://www.cc.ubc.ca/ccandc/may-june96/webct.htmi

WITS http://www.sis.port.ac. uk/conference/abstracts/94/dcallear.html

XAIDA http://www.accd.edu/accd/workdev/ondemand.htm

http://www.accd.edu/accd/workdev/download.htm

http://www.ijoa.org/imta96/paper80.html

Comparisons /

Overviews

Brusilovsky, Peter.
Adaptive and Intelligent
Technologies for Web-
based Education.

http://www.contrib.andrew.cmu.edu/~plb/papers/Kl-review.html

Comparison of WebCT
and Courselnfo

http://software2.bu.edu/webcentral/research/courseware

Landon, Bruce. Online
educational delivery
applications: a web tool
for comparative

analysis.

http.//www.c2t2.ca/landonline/index.html

Appendix A 250

Marshall University:
Comparison of Online
Course Delivery
Software Products

http://www.marshall.edul/it/cit/webct/compare

Murray, Tom.
Authoring Intelligent
Tutoring Systems: An
analysis of the state of
the art.

http://helios.hampshire.edu/~timCCS/papers/ATSummary/AuthTools.html

Prestamo, Anne.
Putting your course
online: A Comparison
of Courseware Options

http://www.library.okstate.edu/dept/dls/prestamo/nom

Universities online

http://www.terra.com/specials/universities/index.htm

Appendix B 251

Appendix B

Conceptual view of learning elements and study

modes

Appendix B

252

Key ldeas

Study Guide

Student Notes

Lecture Slides

Course Explorer

Lecture Presentation

Help

Interactive Tutorial

Administration Guide

Task Workspace

Main Menu

Task Specification

Every mode

Web Explorer

Library Explorer

Messages

Single mode

Learning elements

Change topic

Get learning tool

Set learning level

Help

Exit

- Main Menu

Appendix B

253

Key Ideas/ Learning
Goals

Student Notes

Lecture Slides

Help

Menu

Lecture
Presentation

Learning by lecture

Key Ideas/ Learning
Goals

Student Notes

Interactive
Tutorial

Help

Menu

Learning by tutorial

Appendix B

254

Help
Key Ideas/ Learning
Goals
Menu
Study Guide
Student Notes
Learning by textbook
Help
Key Ideas/ Learning
Goals
Menu
Task Workspace
Task

Student Notes

Specification

Learning by doing

Appendix B

266

Help
Key Ildeas/ Learning .
Goals Library Explorer
Menu
Course
Student Notes Web Explorer Explorer
Learning by exploration
Help
Key Ideas/ Learning
Goals
Menu
Messages
Task

Student Notes

Specification

Learning by collaboration

Appendix B 256

Appendix C 257

Appendix C

User Interfaces to Internet-based systems

Appendix C 258

Standard web browser

l Presentation | Presentation]

HTML HTML
HTTP ! FTP | Telet ' JPEG | MPEG1

Internet HTML interpreter

< >

Operating System

Based on Tanenbaum. 1996, p.709
i) Page
Page Server Page Server Compiler Database
Static Presentation Dynamic Presentation

Standard web browser. Must be written for each platform. Presents static or dynamic web pages.
Interactive functionality via CGl interface with application at server end. “"Conceptually, a browser consists
of a set of clients, a set of interpreters, and a controller that manages them” (Comer, 1999, p.427)

Java-based web browser

LPresemahon [Presentation
)
HTML HTML H } ‘

HTTP ! FTP | Telnet | JPEG | MPEG!
applet | applet E applet ‘ applet applet

|)
11— - R L | S— —

Internet Java interpreter (JVM)

-2 =

Operating System

CCll page
Page Server Page Server 9 Database|
Compiler
Static Presentation Dynamic Presentation

Java-based web browser. Multi-platform. “At startup, the browser is effectively an empty Java virtual
machine...By loading HTML and HTTP applets, it becomes able to read standard Web pages. However,
as new protocols and decoders are required, their classes are loaded dynamically, possibly over the
network from sites specified in Web pages” (Tanenbaum, 1996, p.708)

Appendix C 259

Web browser with external helper

1 Presentation

1 Presentation

HTML HTML
=l Web browser
viewer
Internet
Operating System
Get Page
Page Server Page Server 9 Database
Compiler

Static Presentation Dynamic Presentation

Helper application. Platform-specific. Standard browser passes new

formats to external
presentation programs installed on machine (Ellsworth et al, 1997, p.663).

Web browser with plug-in

e
I Presentation J [Presen(anon?

HTML

HTML

Plug-in

Web browser
Internet

<

Operating System

CGt
Page Server Page Server Page

Compiler Database

Static Presentation Dynamic Presentation

Plug-in. Must be written for each platform. Standard browser “plugs-in” extram modules for presenting new

formats within browser. Plug-ins are downloaded from server as needed and are installed on machine and
interface directly with operating system (Dewire, 1998, p.124).

Appendix C 260

Web browser enhanced with ActiveX

Presentation

Page
Compiler

ActiveX + ActiveX
HTML
Web browser

Internet

< >

Windows
Operating System

Active Page
Program
Server

Aclive Presentation

ActiveX. Windows-specific. Multi-application. In contrast to Java applets, ActiveX controls directly interface
with operating system enabling tasks like printing. (Goldman et al, 199, pp. 337-38). “Think of Active X
controls as self-installing plug-ins for Windows-based systems” (Dewire, 1998, pp. 206-09).

Java-enabled web browser

Presentation i
} Java applet
Page !
Comprier
JVM
Java + !
HTML Web browser Looooooooooo]

Interet

< >

Operating System

Active Page
Program
Server

(based upon Goldman et al, 1999, p.338)

Active Presentation

Java applets. Multi-platform. Application-specific. “Each applet is embedded within a web page but, unlike
ActiveX controls, can't access local files. Applets are not persistent - the applet is downloaded each time
the Web pageis... A JavaBean is analogous to an ActiveX control” (Dewire, 1998, pp.210-11).

Appendix D 263

Appendix D

Learning Shell Requirements Specifications

Appendix D 264

D1: Distance learner scenarios

1 Initialisation Scenario

1.1 Background

Mary is a young woman who has left a responsible job in town to live on a large sheep and cattle station
near Pongaroa, where her partner has been hired as a shepherd. Unable to find ful-time employment in
the surrounding district, Mary decides to study for a business degree through Massey University's

extramural programme.

Massey offers Mary the options of studying via traditional paper-based course material or via their new
computer based distance learning system. The minimum requirements for the computer-based option is

= a personal computer with a CD-ROM drive, a modem and a printer, running Windows 98, including
Internet Explorer,

= an Internet connection; and
= aDVD or VHS player linked to a TV set.
Students enrolling for the course are also required to submit a passport photo and a short biography

Mary, whose previous computer experience has been limited to some word processing, data entry and
email correspondence in her last job, decides to purchase a computer and nominates the on-line option.
She buys a second-hand computer off a neighbour. It is a PC about three years old running Windows 98.
The neighbour deletes his personal files from "My Documents", but otherwise leaves things untouched.
He warns her that, while he can send and receive short email messages with little problem, he often has to
wait a long time, and even loses his connection, when sending or receiving emails with large attachments,
or when trying to download materials off the Internet. He has heard that this is because of hot-wires

running along farmers boundary fences close to the phone cable.

1.2 Installation

Shortly, Mary receives her course material in the mail from Massey. It consists of a course booklet, a CD-
ROM and a video tape. She will also be required to obtain the prescribed text book for the course, which is

available through Massey.

1.2.1 Booklet

The course booklet contains
* Anintroduction tothe Virtual Learning Machine, outlining its various functions and features
= System requirements and installation instructions

= A hard-copy version of the course administration and study guide

Appendix D 265

1.2.2 CD-ROM

The CD-ROM contains files from which Mary can install the system software, the system file structure and
course learning materials and resources.

1.2.3 Video

The video tape/disk steps through the installation process including

= Installing the system from the CD-ROM

= Optimising hardware and operating system settings for the Learning Computer

= Personalising the Learning Computer for a particular learner

1.2.4 Installing the Learning Computer

Mary places the video in her player and starts the machine. The video begins with an overview of the
Learning Computer, demonstrating its various functions and features. Mary can refer to this again later if
she so wishes. She then follows step-by-step the instructions for installing the system, including:

= Activating the executable on the CD-ROM which creates the Learning Computer file structure and
decompresses and loads the learning resources into the correct locations

= Activating the set-up program on the CD-ROM which installs the Learning Computer software into the
Learning Computer file structure

1.2.5 Optimising Windows

Next, Mary follows step-by-step the instructions for optimising hardware and operating system settings
through the Control Panel, including:

= Setting up a user profile with the name that she will use when logging onto the Learning Computer

= Setting up an internet connection for this user profile which will start up automatically whenever

required.

* Adjusting her monitor settings for optimal viewing of the Learning Computer

1.2.6 Personalising the Learning Computer

After rebooting her PC, Mary logs in to Windows using her learner profile, and double-clicks the Learning
Computer icon to enter the learning system for the first time. The Windows desktop is replaced by the
Learning Computer desktop. Mary is now presented with a login screen which welcomes her to
Communication 101 and prompts her to enter a username and password. She enters the name and
password created in her Windows profile, confirms her password by typing it again in a second box, and
clicks the OK button (or hits enter).

Mary is now presented with a screen which requests additional information needed to personalise the
Learning Computer to suit her preferences, including the drives that she will use to update course material,
backup course material, and run lectures, presenting default settings that will work for the most common
situation. The training video guides Mary through the process and she chooses her CD-ROM (D) drive for
each task.

Appendix D 266

1.2.7 Starting the course

Mary clicks OK and she is presented with the Desktop Help screen providing an overview of the Learning
Computer. After reading the overview Mary closes the screen revealing the Course Explorer component
which displays

= The coursetitle

= The course outline (sections and subsections (topics)) in the form of an expandable tree. Each node
has a red, amber or green status icon representing not attempted, attempted, or completed
respectively

= A boxdisplaying the currently selected section and topic, its title and its status
= Alist box displaying the modes of study available for that particular topic
= A Learning Computer Help icon

The Course Explorer is initialised to the start of the course. All nodes are set to the default status (not
attempted). The Desktop also displays the course title; the current section, topic and topic title; and the
default study mode (Text Book).

Mary clicks on the Help icon. A page opens outlining the features of the Course Explorer.

After perusing the features of the Course Explorer, Mary exits the Help and clicks the OK button on the
Course Explorer. The Explorer component closes and the components of the Text Book Mode open in
Section 1, Topic 1.

<End of initialisation scenario>

2 Start-up Scenario

2.1 Logon

Mary starts up her PC, logs on to Windows using her learner profile, and double-clicks the Learning
Computer icon to enter the learning system. The Windows desktop is replaced by the Learning Computer
desktop. Mary is now presented with a login screen which welcomes her to Communication 101, displays
her username and prompts her to enter her password. She enters her password and clicks the OK button
(or hits enter).

Mary has mistyped her password. A message notifies her of this and she is given the option of selecting
CANCEL and quitting the Learning Computer, or OK, after which she can re-enter her password. Mary
selects OK, enters her password correctly, and a screen appears offering Mary a number of options. She
clicks on the Help icon and a page is displayed that explains each of these options thus:

= Return to previous topic The course will open in the study mode and topic that you were in when you

last used the system

= Select new topic The Course Explorer will open from where you may choose to explore any available
topic and study mode

Appendix D 267

= Update course material. You should select this option if you wish to update your course resources.

You will be presented with the options of updating from a CD-ROM that has been mailed to you, or
directly from the University via the Internet

= Restore from backup You should select this option if your course materials have become corrupted.

You will be presented with the options of updating your course material from a CD-ROM that has been
mailed to you, or directly from the University via the Internet

= Update system settings Select this option if you wish to change your personalised system settings,

such as the drives you use for updating, backing up or accessing course materials.
= Exit Exit the course.

Mary selects "Update Course Material". She is asked to nominate whether she will update from a disk or
from the Internet. Mary chooses the update form disk option and she is asked to place the disk in the D
drive. She does so clicks OK and she returns to the user options screen. (If she had chosen the update
from the Internet option , she would only have to click OK and wait for the Learning Computer to connect
to the course repository and download any updates to her machine. If no updates are available the system
will notify Mary of this.)

If Mary had chosen the "Restore from backup" option a similar process would be followed.

Now Mary chooses the "Update System Settings" option. A screen opens presenting Mary with her
current personalised system settings and options for changing them. She opts to change her backup drive
to the floppy drive (A), clicks OK and is returned to the User Options screen again. This time she hits
ENTER and the course opens at Section 1, Topic 2 in Text Book Mode, which is where Mary was working
when she last exited the course.

<End of start-up scenario>

3 Exiting the Course Scenario

Mary has done enough for tonight. She right-clicks the Learning Computer desktop and a menu pops up,
She selects the exit option. She is asked to confirm that she wishes to exit the system now and is given
the options of YES or NO. She selects YES and is prompted whether she wishes to backup her work, with
the same options. Again she selects YES, and she is asked whether she will backup to a disk or to the
Repository. She selects the Repository. The system automatically attempts a modem connection to the
University.

Shortly a message appears advising Mary that the connection has failed and the backup was not able to
be completed. Mary selects the backup to disk option and she is prompted to place a disk in the A drive.
Mary complies, the system saves any notes and other items edited by Mary to the floppy disk , the
Learning Computer closes and she is returned to the Windows desktop.

Alternatively, Mary simply switches off her machine, and goes off to watch television.

<End of exit course scenario>

Appendix D 268

4 Exploring the course Scenario

While working in Text Book Mode Mary right clicks the desktop and a menu pops up. She selects the
EXPLORER option and the Course Explorer object opens displaying:

= Communication 101

= The course outline in the form of an expandable tree. Communication 101 has an amber icon next to
it indicating the course has been previously attempted.

= Section 1: Modern Poets; Topic 2: Pete Brown; Status: Attempted.
= Alist of study options: Text Book, Lectures, Exploration, Group Work.
= AVLM Helpicon.

Mary clicks on Communication 101 in the contents tree and the section titles appear below it. Modern
Poets has an amber icon by it. All the others have red icons indicating that they have not yet been
attempted. She now clicks on Modern Poets and section one's subtopics now appear. Bob Dylan has a
green icon beside it indicating that Topic 1 has been successfully completed. Pete Brown has an amber
one.

Mary decides to explore the course contents. She clicks on 2. Investigative Reporters (which is then
displayed in the current topic box). And then on "2.1 John Pilger" which appears below it with a red icon.
The current topic box displays " Section 2.1; John Pilger; Not attempted.” The list of study options now
reads: Text Book, Lectures, Tutorial, Exploration, Group Work, Do It Yourself.

4.1 Lecture Mode

Mary decides to explore the various study options. She double clicks Lectures. An image of the course
lecturer appears and a window displaying his/her lecture notes in the form of slides (or as a Word or web
document). By clicking on the lecturer's image the lecture is loaded and a set of controls are activated.
Mary may use the controls to listen to the lecture at her leisure, and following through the notes.
(Alternatively, a video presentation may be loaded which Mary can play in conjunction with the notes.)

4.2 Tutorial

Mary selects Tutorial and then OK. A screen opens presenting excerpts and analysis of Pilger's East

Timor documentary.

4.3 Exploration
When Mary selects this learning option she is presented with two options:
= Explore the Web; or
= Explore the Library.

Mary selects "Explore the Web" and a screen opens for viewing web pages, containing a web references
list, including the additional references she located through the Help System, and a workspace for Mary to
enter notes . She chooses "John Pilger's home page" and clicks GO. Mary finds the page unhelpful so
she clicks DELETE and the link is deleted from the web references list. She also had the options of

Appendix D 269

printing the page, adding a new link, or saving her list. On exiting Mary is given the opportunity of saving
her list. Any notes she has made are appended to her Student Notes.

Mary then selects "Explore the Library" and a screen opens with a link to the Massey Library system. The
recommended reading list for this topic is displayed, along with any titles she located trough the Help
System. Mary has the options of adding or deleting titles from the book list, printing or saving it.

4.4 Do It Yourself

The current assignment is displayed, plus a space in which Mary can work on it

4.5 Group Work

Mary was assigned to a work group when she enrolled for the course. Here she can see details about
each member of her group. She can read all their contributions to the discussion on this topic, plus that of
the tutor and general points and queries made by students from other groups; and reply, forward or add
contributions of her own. She can access notes on her current assignment if he wishes to discuss these
with others in her group.

4.6 TextBook

Mary is able to browse the study guide for Section 2.1 which guides her through relevant sections of the
course text book. She also has in front of her a list of the key concepts (learning goals) for this topic.
Each of the concepts is pre-fixed by a red 'x', indicating that Mary has not yet demonstrated that she has
mastered these concepts.

5 Support Tools Scenario

With the right mouse button Mary clicks the desktop. A menu appears offering the following options:
= Topic => Next

= Topic => Previous

= Course Explorer

= Learning Support

*= Course administration

= Help

= Exit

Course Administration opens a document which provides the administrative overview of the course. Help
opens the Desktop Help page.

Mary selects the Learning Support option and she is presented with a list of all the learning components
which are available in any study mode. The include:

= Student Notes
= Key Concepts

= Self-Evaluation

Appendix D 270

Mary selects Student Notes and an editable document opens containing all the notes she has made in any
mode on the current topic. Mary then selects Self-Evaluation and she is invited to perform a short self
evaluation. This may be either:

= A multiple-choice quiz on the concepts covered in the topic; or
= A questionnaire on the concepts covered in the topic.

The results of this self evaluation is used by the system to determine what sections and topic in the course
Mary has completed, or is working on, and what concepts/learning goals she has mastered, or still needs

to work on.

<End of exploring course scenario>

6 Help System Scenario

While using the Learning Computer, Mary is able to access to kinds of help from any where in the system:
= Help with using Learning Computer components

= Help with mastering course concepts and learning goals

6.1 Component Help

Every Learning Computer component has a Learning Computer icon. By clicking on this icon, (or selecting
F1) Mary is able to open a help page specific to that component which:

= Describes the main functions and features of the component

= Provides tips on using the component including any shortcuts

6.2 ConceptHelp

A Key ldeas component may be accessed from any learning mode via the desktop menu. By double-
clicking a concept listed in this component (or selecting it and pressing F1) the Help System opens
displaying the selected concept and offering Mary several alternative queries she may select, including:

= Explain <SELECTED CONCEPT>? The system will search its database for its best explanation of the
query.

= Where do | find more on <SELECTED CONCEPT>? The system will provide its best web reference.

= Who wrote more on <SELECTED CONCEPT>? The system will provide its best book, journal or
paper reference.

Mary then selects OK and she is offered some or all of the following options as appropriate:
= OK- Mary's query has been answered to her satisfaction
= Elaborate further (find further answers)

= No - no helpful answer received (The course tutor is automatically and anonymously notified when

this option is selected so he/she may review the Help database)

Appendix D 271

= View concept map - Mary can view a map of related concepts and choose one that may help clarify
her query. The Help system will then be reinitialised to the new <SELECTED CONCEPT>.

= Ask - amessage form is opened with which Mary can send her query directly to the course tutor

= Copy - Mary may copy the Help System's responses to her query to the appropriate learning
component - the Student Notes, Web Explorer or Library Explorer. [Alternatively this could be done
automatically on ending a query.

<End of Help scenario>

Appendix D 272

D2: Use Cases

1

Startup Use Case

1.1 Brief description

This use case is initiated by the system, and provides for the student to log onto the system and begin

studying.

1.2 Flow of events for use case

1.2.1 Preconditions

The student has logged onto the computer system and opened the learning application.

1.2.2 Main Flow

1.

The system displays the user's name and requests a password (A). The password is entered. The
system validates the password (B).

User is presented with startup options of returning to previous position in course, selecting new topic
(C) , providing additional information (1), updating course material (Il), restoring course resources from
backup(lll) or exiting the system. Student selects the default option (previous position). The system
opens in the learning mode and course position that the student was in when they previously exited
the system. The Desktop displays the current course title, section, topic and study mode.

1.2.3 Subflows

Additional Information. The system requests the user provides any additional information

necessary to configure the system for that particular user. Once the information has been provided,
the system returns to (2).

Updating course material. The user is presented with the options of updating via the Internet or

updating via removable disk. Once the the update has been completed, the system returns to (2).

Restoring course resources. The user is presented with the options of restoring the resources via

the Internet or via removable disk. Once the the restoration has been completed, the system returns
to (2).

1.2.4 Alternative Flows

A

C

The user is entering the system for the first time. The system requests that the user enters a name
and password. The user enters their name and password. The system requests the user confirms
their details (B). The Select New Topic Use case is initiated and the current use case closes.

The incorrect password is entered. (1) is repeated until the correct password is entered or the student
selects close option and the system closes and the use case ends.

The student selects the new topic option. This initiates the Select New Topic use case.

<end of start-up use case>

Appendix D 273

2 Shutdown Use Case

2.1 Brief description

The system initiates this use case to complete housekeeping tasks before the user closes the system.
2.2 Flow of events for use case

2.2.1 Preconditions

The user has logged onto and begun using the system.

2.2.2 Main Flow

1. The user selects the EXIT option from the course menu.

2. The system requests that the user confirm they wishto quit the system. The user confirms.(A) If the
course resources have been modified since the last backup, the user is notified of this and asked
whether they wish to backup course material. The user confirms (1). (B).

2.2.3 Subflows

I. Backup. The user is presented with the options of backing up via the Internet or to another local drive.
The backup is completed and the system closes, ending the use case

2.2.4 Alternative Flows

A. The user cancels the shutdown and the system resumes, ending the use case.

B. The user declines to back up and the system closes, ending the use case.

<end of shutdown use case>

3 Change Mode Use Case

3.1 Brief description

This use case provides the student with the capability of changing their mode of study from anywhere
within the course.

3.2 Flow of events for use case

3.2.1 Preconditions

The student is logged onto the system. The use case begins when the Student selects a learning
resource in the Course Explorer.

Appendix D 274

3.2.2 Main Flow

1. The System Model is updated.

2. Allcomponents uniqueto the current mode are closed.

3. The appropriate resources are attached to all available components unique to the new mode.
4. Each unique component is opened.

5. The Student Model is updated.

6. The Desktop displays the new mode, section and topic.

7. The Explorer closes.

3.2.3 Subflows

3.2.4 Alternative Flows

<end of change mode use topic>

4 Change Topic Use Case

4.1 Brief description

This use case provides the capability for changing a topic within the same study mode

4.2 Flow of events for use case

4.21 Preconditions

The user has successfully logged onto the system, and has selected a new topic from within the Course
Explorer.

4.2.2 Main Flow

8. The appropriate resources are attached to all open components.
9. The Student Model is updated.

10. The Desktop displays the current mode, section and topic.

11. The Explorer closes and the use case ends.

4.2.3 Subflows

4.2.4 Alternative Flows

<End of change topic use case>

Appendix D 275

5 Next Topic Use Case

5.1 Brief description

Enables the use to move to the next topic from anywhere within the course.

5.2 Flow of events for use case

5.2.1 Preconditions

The user has selected the "Next Topic" option from within the system menu.

5.2.2 Main Flow
12. The appropriate resources are attached to all open components.
13. The Student Model is updated.

14. The Desktop displays the current mode, section and topic.

5.2.3 Subflows

5.2.4 Alternative Flows

<End of next topic use case>

6 Select New Topic Use Case

6.1 Brief description

Provides for the user to select a new topic’ from anywhere within the course.

6.2 Flow of events for use case

6.2.1 Preconditions

The user has selected the "Select New Topic" option on logging on or has selected the "Course Explorer"

option in the system menu.

6.2.2 Main Flow

1. The Course Explorer opens, displaying an outline of the course content in the form of a hierarchical
tree (Section, Topic). The current position (topic and mode) in the course is highlighted and the
learning resources available for that topic are displayed. Each tree node (Section, Topic) is colour-
coded to indicate whether the student has not commenced studying, commenced studying, or
completed a particular section or topic

2. The user selects a new topic and the learning resources available for that topic are displayed in the
Explorer.

Appendix D 276

3. The system presents the student with several options: OPEN, CANCEL, or REVISE. (A).
e |f the OPEN option is selected then (i)
e If CANCEL then the Course Explorer closes.

e If REVISE then (ii).

6.2.3 Subflows

(i) If the user has selected a learning resource then the Change Mode use case begins. Otherwise

the Change Topic use case begins. The current use case closes.

(ii) The system asks the user to confirm they wish to study in revision mode. The student confirms.
The system tree is re-initialised. All nodes display the "Not commenced studying" code. (B).

6.2.4 Alternative Flows
A The user selects a new topic and (3) recommences.

B The student cancels, and (3) recommences.

<end of select new topic use case>

Appendix D

D3: Sequence Diagrams

Al U

Startup Use Case (Main Flow) Sys Medel Stud Madel

Resource Diredt
Resource Marage

User Irterface Crtroller Sy Mok Man Sturd Mol Man
getUzerNsme()=>
getName()
<<(name)
<<(name)
<<reques passwerd(name’
enter pazsworid>>
(password)>> []
scniirmipasswerd,rame)>>
<z(confirmation)
<epresentOpticns
select Opt 1n=>
epenPravious =>
getP remass>
getCurrert>>

<<z(mode, section, topic)
<z(tmode, section, topic)
cheneModeMode) >>
[AS FOR CHANGE MODE IUZE CASE]

Start-up Use Case

Shutdown Use Case (Main Flow) Sys Mozl Stud Meclel

Fesource Diredo
{Jzer Intertace Ceritroller Syt Model Man Stud Madel Man Remuro: Marager
Ext>»
exitConfirm>>
extRejuested>=
backupNeeded?>>
backup?>>
<<tnie
<<true
<<suggestBackup
ackupConfirm>>
intiateBackup&E xit>>
Shutdown Use Case
Change Mode Use Case 3ys Model Stuc Model Resource Diractol
User Interface Cortroller Syst Moviel Mar Stud Wode| tar Resource Manager
| selectMode(Mode) »>
changeMode(Made) »>
updatetdode(Mode)>>
updateModel (Mode)>>
=<toClose (ComplList)
<< close (Comp)
<< toOpen(CompList)
getResource(Comp) >
=<Resource (file)
<<open(Comp, File)
updateModel(Mode)>>
<<ypdateDesktop(Mode) updateMode >>

saveModel >

Change Mode Use Case

Appendix D

278

Open Generic Component Use Case (Main Flow)
User Desktop Generic Component Controller

Sys Model
Syst Model Man

Stud Model
Stud Model Man

Resource Directol
Resource Manager

 selectComponent==

openGeneric(component)=>

<<showComponent(filename)

getResource(component)=»

Open Generic Component Use Case

Appendix D 279
D4: Extramural Support: Query Specification
Query Precondition User Action System Response Implementation +/-
Type
What The Extramural Selects 'Explain’ Displays an An elaboration of Locates information in
Supportscreen from a combo box explanation of the every key the database most
is displayed selected concept in | concept/learning goal relevant to the current
initialised to a a memo box, or an in any topic is stored topic.
concept selected appropriate in a database by
by the user. message if none is | section & topic. This
available. is located and
returned using an
SQL query. Provision
is made for storing
additional elaboration
on the concept in this
or othertopics, and
for adding other
concepts in addition
to the key ones.
Who The Extramural Selects ‘Who wrote | Displays a book or Book and paper
Support screen more on' from a paper reference on | references are stored
is displayed combo box. the selected in a database by
initialised to a concept in amemo | concept, section and
concept selected box, or an topic. The first of the
by the user. appropriate result set from an
message if none is SQL query by the
available. current concept,
section and topic is
returned.
Where The Extramural Selects Wheredo | | Displays a web site | Web references are

Support screen
is displayed
initialised to a
concept selected
by the user.

find more on' from

a combo box.

relevant to the
selected concept in
a memo box, or an
appropriate
message if none is

available.

storedin a database
by concept, section
and topic. The first of
the result set from an
SQL query by the
current concept,
section and topic is

returned.

Appendix D 280
Query Precondition User Action System Response Implementation +-
Type
Why The Extramural Clicks the 'Retry’ Displays further Returns the next
Support screen button on the help information on the result in the result set
is displayed and screen. selected concept, from the previous
the user has i.e. afurther query, or if there is no

already executed
aWhat, Who or
Where query.

elaboration of the
concept, or an
additional book or
web reference, or
an appropriate
message if none is

available.

more, returns the
nextresult from an
SQL query where the
topic precedes the
current topic, or if
there is no more,
returns the next result
from an SQL query
where the topic
comes after the

current topic.

Appendix D

281

D5: Extramural Support: Dialogue Specification

User selects:

System responds:

Next button options

OK Presents user with the best result in the query | OK, NO, RETRY

(to action a new eiese

query)

OK None EXIT, MAP, COPY, NEW

(to accept result of
query)

NO The tutor is notified that the help offered on If nor more results found in
this concept was found unsatisfactory. database: ASK, EXIT, MAP,
COPY, NEW,
RETRY, ASK, EXIT, COPY,
NEW
RETRY The next best result in the query result set is If normore results found in
returned database: NO, ASK, EXIT,
MAP,COPY NEW
else: OK, NO, RETRY
ASK A new message window appears, initialised to | EXIT, MAP, COPY, NEW
the tutor.
MAP A window opens displaying a concept map ASK, EXIT, MAP, COPY, NEW
showing all related concepts in the System
Database. Any concept may be selected to
launch a new query.
COPY The results of the query, which may be EXIT, NEW
explanatory text, book references or URLs, are
copied to the appropriate component's data
files, via the controller.
NEW The Extramural Support screen is cleared and | OK, EXIT
reinitialised to the current concept
EXIT The Extramural Support window closes

282

Appendix E 283

Appendix E

Learning Shell prototyping — classes and

components’

' This appendix includes documentation from the process of prototyping the Learning Shell's
classes and components. Only the Object Hierarchy (E5) represents the final, complete, refined

design.

Appendix E 284

E1: Prototyping basic component types

Method

Description

ActiveX(OLE) 1

Use a non-visual "drag-and-drop" component to launch an
application, e.g. WORD, in background and utilise itto provide
services (e.g. printing of a learning resource) not provided by
the interface component.

ActiveX (OLE) 2

Embed a Delphi-independent control directly in the interface to
provide ready-made, customisable functionality (e.g. an HTML
browser without all the buttons and menus).

.EXE

Use a non-visual "drag-and-drop" component to launch an
application in the foreground to provide additional functionality
not directly provided by the system, e.g. a locally-installed or
CD_ROM-based tutorial or dictionary.

Custom-built web application launcher

Build a non-visual "drag-and-drop” component to launch a web-
based application in the foreground to provide additional
functionality not directly provided by the system, e.g. a web-
based tutorial or search engine.

Custom-built systems utility

Build a non-visual "drag-and-drop” component to provide
interface components with services that would otherwise require
complex direct operating system calls, e.g. file or folder

manipulation routines.

Customised Delphi control

Customise IDE-provided controls , e.g. Rich Text editor, to
provide just-enough functionality

Form inheritance

Build a generic form (e.g. HTML viewer) and install it in the
Delphi Repository as a component which can be inherited and
customised for different interface components (e.g. study guide
or lecture notes).

Frame component

Design a form layout and install it as a “drag-and-drop”
component which can be used to give different forms (screens)
the same look and feel, but different functionality (e.g. Desktop

with or without pop-up menus.)

Multi-form component

Build a form that provides the interface for functionality that is
implemented by multiple forms, which the master form creates
and destroys as required. The rest of the system has no
knowledge of these child forms.

Appendix E 285
E2: Component dependencies
Object Creates Launches Via Controller | HelpBtn
Application Desktop, database Desktop
module
Desktop Controller, StartupDesktop, v
CourseExplorer, ResourceMenu, Course
StartUpDesktop, Explorer, SystemLog
UserOptions,
ResourceMenu
SystemLog,
ExtramuralSupport,
All learning components
Controller systemModelManager, All learning
studentModelManager, components,
resourceManager, UserOptions, Desktop,
systemTreeManager, ExtramuralSupport
UpdateExtramuralSuppo | CourseExplorer
rt (viaDesktop)
StartUpDesktop UserOptions
CourseExplorer All mode-based v
learning
components
ResourceMenu All generic
learning
components
SystemLog
UserOptions Logon, Logon, Explorer, Desktop |
UpdateResources, UpdateResources
RestoreResources, RestoreResources,
BackupResources, BackupResources
Morelnfo Morelnfo
Logon Vv
UpdateResources N
RestoreResource)
s
BackupResources v
Morelnfo V
UpdateExtramural
Support
SystemModelMan | SystemModel
ager
SystemModel
ResourceManager | RootDirectory
(ResourceModel)
RootDirectory
(ResourceModel)
SystemTreeMana | SystemTree
ger
SystemTree
StudentModelMan | StudentModel

ager

Appendix E 286
Object Creates Launches Via Controller | HelpBtn
StudentModel
Tutorial WebTutor WebTutor; [locally- v
installed tutorial
executable]
Dolt WebTutor WebTutor, [locally- v
installed executable]
WebTutor V
Lecture vV
LectureNotes v
StudentNotes V
SelfAssess Quiz, questionnaire Quiz, questionnaire v
Quiz
Questionnaire
StudyGuide
Assignment
AssignmentWorkS v
pace
WebExplorer ExploreTheWeb ExploreTheWeb \
ExploreTheWeb V
LibraryExplorer ExploreTheLibrary ExploreThelLibrary v
ExploreTheLibrary v
Keyldeas ExtramuralSuppor |
t
ExtramuralSuppor | ConceptMap, ConceptMap, v
t AskForHelpMessage AskForHelpMessage
ConceptMap v
AskForHelpMessa
ge
Drawilt
Feedback
AdministrationGui
de
PracticeAssignme N,
nt
MessagelList MessageSystem, MessageSystem, vV
NewMessage, NewMessage,
ReplyMessage, ReplyMessage,
ForwardMessage, ForwardMessage,
AllNewMessages, AlINewMessages,
MessageSystem NewMessage, NewMessage,)
ReplyMessage, ReplyMessage,
ForwardMessage ForwardMessage
ForwardMessage
NewMessage

ReplyMessage

Appendix E 287
Object Creates Launches Via Controller | HelpBtn
AllNewMessages ReplyMessage, ReplyMessage, v
ForwardMessage ForwardMessage
E3: Inheritance hierarchy
Class Inherits Owned By Uses Properties Methods
from
lvimObject Interface
TvimClass TObject vlaSystemDict | Debug:boolean | SetDebugging(
ionary, Abstract)
vlaSystemUHtili
ties
TModelManager | TvimClass TheController VlaController, Create (create
vlaSystemDict asch.
h SetDebugging
ionary,
vla System Utili (i
N Controller.debu
ies
9)
TModel TvimClass AModelManager | <vlaAModelM SetDebugging
anager>, (to
vlaSystem DDict Amodelmanage
ionary, r.debug)
vlaSystem Utili
ties
TComponent TObject
TviaComponent | TComponent vlaSystemDict CreatelLearning
ionary, Component
vlaSystem Utili (abstract)
ties
TviaBaseCompo | TvlaComponent vlaSystemDict | Component:stri
nent jonary, ng
vlaSystemUtili
ties
TForm TWinControl(Tc
omponent)
TvimForm TForm vlaSystemDict | Debug:boolean | Setcolour(Abstr
ionary, act),
\{IaSystem Utili FormShow(pars
ties e caption,
FormPaint
(setcolour);
SetDebugging(
Abstract);
TSystemForm TvimForm TheController VlaController, Setcolour (to
vlaSystemDict SySISeo el
ionary,
vlaSystemUtili
ties
TComponentFor | TvimForm vlaSystemDict | HelpBtn:TButto | HelpBtnClick
m ionary, n (show help);
vlaSystemUtili
ties

Appendix E 288
Class Inherits Owned By Uses Properties Methods
from
TMainCompone | TComponentFor | TheController VlaController, SetDebug (to
ntForm m ' Controller.debu
vlaSystemDict)
ionary, 9
vlaSystem Utili
ties
TSecondaryCo TComponentFor | <AMainCompon | <vlaAMainCo Setcolour (to
mponentForm m ent> mponent> owner's);
vlaSystemDict SetDebugging
ionary, (to
vlaSystemUtili AmainCompone
ties nt.debug)
TMainLearningC | TMainCompone | TheController VlIaController Setcolour (to
omponentForm ntForm vlaSystemDict mode);
ionary, LoadResource;
vlaSystem Utili FormShow(+loa
ties dResource);
TMainSystemCo | TMainCompone | TheController VlaController, Setcolour (to
mponentForm ntForm vlaSvstemDict system colour);
aoy SetDebugging
ionary, - (to
t\(IaSystemUtlh Controller.debu
ies
9)
E4: Class Hierarchy
Class Is_a Has_a Uses Properties Methods
IvimObject Interface
TvimClass TinterfacedObj Debug:boolean SetDebugging(A
ect, lvimObject bstract)

TModelManager TvimClass TController Create (create
model);
SetDebugging
(to
Controller.debug
)

TModel TvimClass (TModelMa SetDebugging

nager)? (to

Amodelmanager
.debug)

TComponent TObject

TvlaComponent TComponent CreateLearning

Component
(abstract)

TvlaBaseCompone

nt

TvlaCompone
nt

Component:string

TForm

component)

TWinControl(T

Appendix E 289

Class Is_a Has_a Uses Properties Methods
TvimForm TForm Debug:boolean Setcolour(Abstra
ct);
FormShow(pars
e caption,
FormPaint
(setcolour);
SetDebugging(A
bstract);
TSystemForm TvimForm TController Setcolour (to
systemcolour);
TComponentForm TvimForm HelpBtn: TButton HelpBtnClick
(show help);
TMainComponentF | TComponentF TController SetDebug (to
orm orm Controller.debug
)
TSecondaryCompo | TComponentF | TMainComp Setcolour (to
nentForm orm onentForm owner's),

SetDebugging
(to
AmainCompone
nt.debug)

TMainLearningCom | TMainCompon TController Setcolour (to
ponentForm entForm mode);

LoadResource;

FormShow(+loa
dResource);

TMainSystemComp | TMainCompon TController Setcolour (to
onentForm entForm system colour),
SetDebugging
(to
Controller.debug

)

TDesktop StartUpDeskto | CourseExplo
p rer,
StartUpDesk
top,
UserOptions,
ResourceMe
nu,
SystemLog,
ExtramuralS
upport,

All learning
components

TController TvimClass TDesktop TComplList All learning
SystemMode components,
IManager, UserOptions,
StudentMod Desktop,
elManager, ExtramuralSupp
ResourceMa ort,

nager, CourseExplorer
SystemTree (viaDesktop)
Manager,
UpdateExtra
muralSuppor
t

Appendix E 290
Class Is_a Has_a Uses Properties Methods
TStartUpDesktop TvimForm TController
TCourseExplorer TMainSystem TController
ComponentFor
m
TResourceMenu TSystemForm TController
TSystemlLog TSystemForm TController
TUserOptions TMainSystem | TLogon, TController
ComponentFor | TUpdateRes
m ources,
TRestoreRe
sources,
TBackupRes
ources,
TMorelnfo
TLogon TSecondaryCo
mponentForm
TResourceTransfer | TSecondaryCo | TvlaFolderM
mponentForm | anager,
TvlaFileTran
sfer,
TnmFTP,
TimdStarter
TUpdateResources | TResourceTra
nsfer
TRestoreResource | TResourceTra
S nsfer
TBackupResources | TResourceTra
nsfer
TMorelnfo TSecondaryCo
mponentForm
TSystemModelMan | TModelManag | TSystemMo
ager er del
TSystemModel TModel
TResourceManager | TModelManag | TRootDirect
er ory
TRootDirectory TModel
(ResourceModel)
TSystemTreeMana | TModelManag | TSystemTre
ger er e
TSystemTree TModel
TStudentModelMan | TModelManag | TStudentMo
ager er del
TStudentModel TModel
TLauncher TMainLearning | TvlaTutor
ComponentFor | TMLDStarter
m
TvlaTutor TComponent
TPlayer TMainLearning

ComponentFor
m

Appendix E 291
Class Is_a Has_a Uses Properties Methods
TViewer TMainLearning
ComponentFor
m
TEditor TMainLearning
ComponentFor
m
TSelfAssess TMainLearning | TQuiz,
ComponentFor | TQuestionna
m ire
TQuiz TvimClass
TQuestionnaire TvimClass
TAssignmentWorkS | TEditor TvlaFileMan
pace ager
TWebLauncher TMainLearning | TWebResou
ComponentFor | rceBrowser
m
TWebExplorer TWeblLaunche | TExploreThe
r Web
TWebResourceBro | TSecondaryCo
wser mponentForm
TExploreTheWeb TWebResourc
eBrowser
TLibraryExplorer TWeblLaunche | TExploreThe
r Library
TExploreThelLibrary | TWebResourc
eBrowser
TKeyldeas TMainLearning Extramural
ComponentFor Support
m
TExtramuralSuppor | TMainSystem | TConceptMa
t ComponentFor | p,
m TAskForHelp
Message
TConceptMap TSecondaryCo
mponentForm
TAskForHelpMessa | TMessageEdit
ge or
TDrawlt TMainLearning
ComponentFor
m
TFeedback TMainLearning
ComponentFor
m
TMessagelList TMainLearning | TMessageSy
ComponentFor | stem,
m TNewMessa
ge,
TReplyMess
age,
TForwardMe
ssage,
TAlINewMes
sages,

Appendix E 292
Class Is_a Has_a Uses Properties Methods
TMessageSystem TSecondaryCo | TNewMessa
mponentForm | ge,
TReplyMess
age,
TForwardMe
ssage
TMessageEditor TSecondaryCo
mponentForm
TForwardMessage | TMessageEdit
or
TNewMessage TMessageEdit
or
TReplyMessage TMessageEdit
or
TAIINewMessages TSecondaryCo | TReplyMess
mponentForm | age,
TForwardMe
ssage
TvlaHelpBtn TBitBtn TComponent
Help
TvlaFolderManager | TComponent
TvlaFileManager TComponent
TComponentHelp TvimForm TvlaHelpBtn
TvlaComponent TComponent [TMainComp CreatelLearning
onentForm Component;
)|
TvlaBaseCompone | TvlaCompone Component: string;
nt nt
TvlaLauncher TviaBaseCom | TLauncher
ponent
TvlaPlayer TvlaBaseCom | TPlayer
ponent
TvlaViewer TvlaBaseCom | TViewer
ponent
TvlaEditor TvlaBaseCom | TEditor
ponent
TvlaResourceBrow | TvlaBaseCom | TWebLaunc
ser ponent her
TvimStudyGuide TvlaCompone | TViewer
nt
TvimLectureNotes TvlaCompone | TViewer
nt
TvimAdministration | TvlaCompone | TViewer
Guide nt
TvimAssignment TvlaCompone | TViewer
nt
TvimPracticeAssign | TvlaCompone | TViewer
ment nt

Appendix E 293
Class Is_a Has_a Uses Properties Methods
TvimSelfTest TvlaCompone | TSelfTest
nt
TvimDiscussion TvlaCompone | TMessageli
nt st
TvimTutorial TvlaCompone | TTutorial
nt
TvimDoltYourself TvlaCompone | TDoltYoursel
nt f
TvimWebExplorer TvlaCompone | TWebExplor
nt er
TvimLibraryExplore | TvlaCompone | TLibraryExpl
r nt orer
TvimDrawlt TvlaCompone | TDrawilt
nt
TvimFeedback TvlaCompone | TFeedback
nt
TvimKeyldeas TvlaCompone | TKeyldeas
nt
TvimLecture TvlaCompone | TPlayer
nt
TvimStudentNotes TvlaCompone | TEditor
nt
TvimAssignmentW | TvlaCompone | TAssignment
orkSpace nt WorkSpace

Appendix E 294

ES5: Delphi Object Hierarchy

; = IvimObject
{ ———— TObject —
: TlnlterfacedObject TComponent
o | — TvlaFileManager
TWinControl — TvlaFolderManager
— TController f — TvlaTutor
F
TModelManager ! °|rm A
Tv\mForm’ TvlaHelpBtn
— TSystemModelManager ’_ TStartUpDesktop — TNMFTP
- — TLMDCustomComponent
TStudentModelManager TDesktop
TMLDStarter
I TResourceManager
[— TModelForm —— TMLDMsgBoxDlg
—— TSystemTreeManager I——TResourceModel by
TMLDMessageHint
TModel —— TComponentHelp
I —— TvlaComponent
TSystemModel — TUpdateExtramuralSupport ‘
— TStudentModel TComponentForm beee D agram 3
— TSystemTree — TSystemForm TMainComponentForm
—— TComplList '
TResourceMenu ;
—— TMode +--- Diagram 2
. TSystemMessage TSecondaryComponentForm
— TQuiz |
— TSystemlLog !
—— TQuestionnaire ---- Diagram 5

Diagram 1: Delphi Class Hierarchy, Learning Shell.

Appendix E 295

\— TMainComponentFor

TMainLearningComponentFor
[~ TFeedBack
—— TPlayer
—— TKeyldeas
— TSelfAssess
— TEditor
I— TMessagelist
TAssignmentWorkSpac
— TDrawlt
—— TLauncher
i1 DViewer L TWebLauncher
':TWebExplorer
L TMainSystemComponentFor TLibraryExplore

Diagram 2: Delphi Class Hierarchy, Learning Shell. Main Fonns for Learning Components.

TvlaComponent
TvlaBaseComponent

— TvimStudyGuide —— TvimTutorial
— TvimAssignment — TvimDoltYourself

. . — TvlaPlayer
— TAdministrationGuide — TvimWebExplorer
— TvimLectureNotes — TvimLibraryExplorer — TvlaViewer
— TvimPracticeAssignment — TvimDrawlit

— TvlaEditor

— TvimSelfTest — TvimFeedBack
___ TvimDiscussion — TvimStudentNotes — TvlaResourceBrowser
— TvimKeyldeas —— TvImAssignmentWorkSpace L__ TvlaLauncher

Diagram 3: Delphi Class Hierarchy, Learning Shell. “Drag & Drop” Learning Components.

Appendix E 296

TMainSystemComponentForm

TUserOptions

TCourseExplorer

—— TExtramuralSupport
TSecondaryComponentForm
— TLogon
TResourceTransfer — TMorelnfo
TUpdateResources
TBackupResources —— TWebResourceBrowser
TExploreTheWeb
TRestoreResources
TExploreTheLibrary
TvlaMessageEditor — TMessageSystem
TNewMessage
— TAlINewMessages
TForwardMessage
TReplyMessage — TConceptMap
TAskForHelpMessage

Diagram 5: Delphi Class Hierarchy, Learning Shell. Main Forms for System Components.

Appendix F 297

Appendix F

Learning Shell — selected class interfaces and
source code

Appendix F 298

F1: Controller object — interface and selected source code’

unit viaController;

interface

uses
vlaSystemModelManager, vlaResourceManager, vlaStudentModelManager,
vlaComponentList, vlaPrintForm, vlaSelfTest, Dialogs, Messages, Controls,
vlaSystemTreeManager, classes, comctrls, Forms, vilaUserOptions, vilaDesktop,
vlaClipBoard, vlaUpdateExtramuralSupport;

type

path =record
component, filepath: string;

end;

TController = class (TObject)

private
sysModelMan: TSystemModelManager;
resMan: TResourceManager,
studModelMan: TStudentModelManager;
sysTreeMan: TSystemTreeManager,
pathTable: array[1..20] of path;
tableLength: integer;
openGenericList: TComplList;
visibleComponents: integer;
PrintForm: TPrintForm ;
UpdateExtramuralSupport: TUpdateExtramuralSupport;
Desktop: TDesktop;
changingMode: boolean;

function findForm (component: string): integer;
procedure processForm(component: string; action: char);
procedure initialisePathTable;

procedure setFilePath(component, filepath: string);

public

debug: boolean;

constructor Create(appDesktop: TDesktop);

function getCourseTitle: string;
function getTopic: integer;
function getSection: integer;
function getMode: string;

| Early versions of the Learning Shell prototype were called the Virtual Learning Machine (VLM) and Virtual
Learning Appliance (VLA). This is reflected in the naming conventions for components, files and other elements of
the Shell structure.

Appendix F 299

procedure recordTestResult(status: integer);

procedure updateSectionStatus;
function getStatus: string; //of current topic

procedure makeTreeView(treeView: TTreeView);
function getTopicTitle: string;
procedure showExplorer,;

procedure setSection (section: integer);

procedure setTopic (topic: integer);

procedure changeMode (newMode: string);

procedure changeTopic(section,topic: integer);

procedure changeTopicAndMode(section, topic: integer; mode: string);
procedure getNextTopic(var VSection, VTopic: integer);

procedure getPreviousTopic(var VSection, VTopic: integer);

function alwaysAvailable(component: string): boolean;
function modeChangeUnderway: boolean;

function ComponentsShowing: boolean;
function getColourScheme(mode: string): integer;
function includes(mode, component: string): boolean;

function getAvailableModes(section, topic: integer): TStringList;

function getFilePath(component: string): string;

function copyTo (component: string): string;

function getldeasFilepath: string;

procedure getSupportOn(concept: string);

procedure startUp;

function isStartingUp: boolean;

function getUserName: string;

function getUserPassword: string;

function confirmPassword(password: string): boolean;
procedure setNewlLogon(name, password: string),

procedure showHelp;

procedure openPrevious;
procedure openCourse;

end;

var

Appendix F 300

procedure performExitRoutine;

function getLastReceived: TDateTime;

procedure setLastReceived(lastReceived: TDateTime);
function getMsgCount: integer;

procedure setMsgCount(msgCount: integer);

function getMyGroup: integer,

procedure setMyGroup(myGroup: integer);

procedure showGenericComp(component: string);
procedure closeGenericComp(component: string);
function openinGeneric(component: string): boolean;

function getGenericList: TComplList;

function userCanEdit(component: string): boolean;
function getUserEditList: TComplList;

procedure setDrive (drive: char, BackupOrUpdate: integer);
function getDrive(BackupOrUpdate: integer): char;

function locateLibrary: string;

function getRepositoryIP: string;

procedure setUpdateFileNo(fileNo: integer);
function getUpdateFileNo: integer;

procedure UpdateExtramuralSupportFiles;

controller: TController;

implementation

uses Sysutils, vlaLecture, vlaLogon, vlaSystemDictionary,

{ TController }

vlaStartUpDesktop, vlaStudentNotes, vlaSystemUltilities,
vlaMorelnfo, LMDMSG, vlaStudyGuide, vlaHelpSystem;

constructor TController.Create(appDesktop: TDesktop);

begin

DEBUG :=false;
initialiseLog;

sysTreeMan:=T SystemTreeManager.Create(vSTUDENT);

resMan := TResourceManager.Create(vSTUDENT);
studModelMan:=TStudentModelManager.Create;

sysModelMan:= TSystemModelManager.Create(studModelMan.getMode);
openGenericList :=TComplList.Create;

UpdateExtramuralSupport := TUpdateExtramuralSupport.create(Application);
initialisePathTable;

visibleComponents:=0;

Appendix F 301

Desktop:= appDesktop;
end;

procedure TController.changeMode(newMode: string);
var
toClose, toOpen: TComplList;
begin
telilUser('Controller', 'Change mode: '+newMode, LOG_IT, false);
changingMode := true;
try

toClose :=TComplList.Create;
toOpen = TCompList.Create,
sysModelMan.updateMode(newMode, toClose, toOpen);

StudModelMan.updateModel(newMode);

Desktop.FormShow (nil);
Desktop.synchroniseMenu(newMode);

if not toClose.isEmpty then
processForm(toClose.getFirstitem,'c’)
else tellUser('Controller’, 'Nothing to close', LOG_IT, false);
while toClose.isMore do
processForm(toClose.getNextitem, 'c');

if not toOpen.isEmpty then
processForm(toOpen.getFirstitem, 's');

while toOpen.isMore do
processForm(toOpen.getNextitem, 's’);

Desktop.ExplorerClose;

finally
toOpen.Free;
toClose.Free;
changingMode:=false;
end;
end;

procedure TController.processForm(component: string; action: char);
var

i integer,
begin

end;

Appendix F 302

try
if (findForm(component)<Screen.FormCount) then
if action ='s'then begin //open component
inc(visibleComponents),
setFilePath(component, resMan.getResource(getSection, getTopic,
component, sysModelMan.userCanEdit(component),
sysModelMan.isAlwaysTheSame(component),
sysModelMan.isSectionWide(component)));
i:= findForm(component) ;
parseCaption(Screen.Formsi]);
tellUser (Screen.Forms[i]. Name,
‘Virtual File: '+getFilePath(component), debug, debug);
if (getFilePath(component)<> NO_FILE) or
(sysModelMan.isAlwaysAvailable(component)) then
if sysModelMan.DisplayAsModal(component) then begin
i:= findForm(component) ;
tellUser (Screen.Forms[i]. Name, 'Show Modal',
LOG_IT, debug);
Screen.Forms[i]. ShowModal ;
end
else begin
i-== findForm(component) ;
tellUser (Screen.Forms[i].Name, 'Show’,
LOG_IT, debug);
Screen.Formsi]. Show;
end
else
tellUser(Screen.Forms[i].Name, 'Notshown: '+NO_FILE,
LOG_IT, debug)
end
else begin
i := findForm(component),
dec(visibleComponents);
if sysModelMan.DisplayAsModal(component) then begin
tellUser (Screen.Forms(i].Name, 'Close Modal',
LOG_IT, debug);
Screen.Forms[i].ModalResult:=1 ;
end
else begin
tellUser (Screen.Forms[findForm(component)].Name, 'Hide',
LOG_IT, debug);
Screen.Forms][i].hide;
end;
end;
except
on Exception do
raise
end;

Appendix F 303

procedure TController.performExitRoutine;

begin
if LMDMessageDIg('Exit course now?',
mtConfirmation, [mbYes, mbNo], 0)=mrYes then begin
if not openGenericList.isEmpty then
Screen.Forms[findForm(openGenericList.getFirstitem)].close ;
while openGenericlist.isMore do
Screen.Forms|[findForm(openGenericList.getNextitem)].close ;
if LMDMessageDIg('Backup data before closing?’,
mtConfirmation, [mbYes, mbNo], 0) = mrYes
then UserOptions.startBackupAndTerminate
else
application. Terminate;
end;
end;

function TController.findForm (component: string): integer;

var i: integer,
begin
1:=0;
while ((i < Screen.FormCount-1)
and (component <> Screen.Forms[i].Name) do
inc(i);
Result :=1i;
end,

procedure TController.changeTopic(section, topic: integer);
var
modeComps,genComps: TComplList;
component: string;
begin
tellUser('Controller’,
'‘Change topic: '+ parseSection(section, topic), LOG_IT, false);

studModelMan.updateModel(section, topic),

genComps := sysModelMan.getGenericComponents;

if not genComps.isEmpty then begin
component := genComps.getFirstitem;
if openGenericList.contains(component) then
closeGenericComp(component);
end;
while genComps.isMore do begin
component := genComps.getNextitem;
if openGenericList.contains(component) then
closeGenericComp(component);
end,

Appendix F

modeComps:=sysModelMan.getComponents(getMode);

if not modeComps.isEmpty then
processForm(modeComps.getFirstitem, 'c’);

while modeComps.isMore do
processForm(modeComps.getNextltem, 'c’);

if not modeComps.isEmpty then
processForm(modeComps.getFirstitem, 's’);

while modeComps.isMore do
processForm(modeComps.getNextitem, 's’),

Desktop.ExplorerClose;
Desktop.FormShow(nil);

end;

procedure TController.showExplorer;
begin

Desktop.ExplorerLaunch;
end;

procedure TController.changeTopicAndMode(section, topic: integer,;
mode: string);

var
modeComps,genComps: TCompList;
component: string;

begin

genComps := sysModelMan.getGenericComponents;

if not genComps.isEmpty then begin
component := genComps.getFirstitem;
if openGenericList.contains(component) then
closeGenericComp(component);
end;
while genComps.isMore do begin
component := genComps.getNextltem;
if openGenericList.contains(component) then
closeGenericComp(component);
end;

modeComps:=sysModelMan.getComponents(getMode);

if not modeComps.isEmpty then
processForm(modeComps.getFirstitem, 'c’);

while modeComps.isMore do
processForm(modeComps.getNextltem, 'c');

studModelMan.updateModel(section, topic);
tellUser('Controller’,
'‘Change topic: '+ parseSection(section, topic), LOG_IT, false);

304

Appendix F

changeMode(mode);
end,

procedure TController.initialisePathTable;

var
allComps: TComplList;
iiinteger;
begin
allComps:= sysModelMan.getAliComponents;
i:=1;
pathTable[i].component :=allComps.getFirstitem;
while allComps.isMore do begin
inc(i);
pathTable[i] component:= allComps.getNextltem:;
end;
tableLength:=i;
end;

procedure TController.getPreviousTopic(var VSection, VTopic: integer);
begin

sysTreeMan.getPrevious Topic(VSection, VTopic),
end,

function TController.getldeasFilepath: string;

begin
Result := resMan.getResource(getSection, getTopic, vIDEAS,
sysModelMan.userCanEdit(vIDEAS),
sysModelMan. isAlways TheSame(vIDEAS),
sysModelMan.isSectionWide(vIDEAS));
end,

function TController.copyTo (component: string): string;

begin
Result:= resMan.getResource(getSection, getTopic, component,
sysModelMan userCanEdit(component),
sysModelMan.isAlwaysTheSame(component),
sysModelMan.isSectionWide(component));
end,

procedure TController.UpdateExtramuralSupportFiles;
begin

UpdateExtramuralSupport.UpdateExtramuralSupport;
end;

procedure TController.getSupportOn(concept: string);
begin
ExtramuralSupport.selectConcept(concept);
ExtramuralSupport.show;
end;

end.

305

Appendix F 306

F2: Course Explorer object — class interface and selected source
code

unit viaCourseExplorer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCitrls, FileCtrl, ImgList, ExtCtrls, Buttons, viaHelpBtn;

type
TCourseExplorer = class(TForm)
IbxResources: TListBox;

vlaHelpBtn1: TvlaHelpBtn;

procedure btCancelClick(Sender: TObject);

procedure btOKClick(Sender: TObject);

procedure vlaHelpBtn1Click(Sender: TObject),

procedure FormShow(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

procedure IbxResourcesDbIClick(Sender: TObject);

procedure TreeView1MouseDown(Sender: TObject; Button: TMouseButton,
Shift: TShiftState; X, Y: Integer);

procedure TreeView 1DbIClick(Sender: TObject);

procedure FormKeyDown(Sender: TObject; var Key: Word; Shift: TShiftState);

private
procedure selectMode;
procedure clearResources;
procedure openTopic;
function findTopic(title: string): TTreeNode;
procedure expandCurrentSection;
public
procedure getNext(currentSection, currentTopic: integer);
procedure getPrevious(currentSection, currentTopic: integer);
end,
var

CourseExplorer: TCourseExplorer,;
Implementation

uses vlaController, viaSystemDictionary, viaDesktop, vlaSystemUtilities,
LMDMSG,;
{$R *.DFM}

procedure TCourseExplorer.FormShow(Sender: TObject);

begin
tellUser(self.name, 'Show', LOG_IT, false);
IbCourseTitle.Caption:= controller.getCourseTitle;
IbSection.Caption:= intToStr(controller.getSection);
IbTopic.Caption = intToStr(controller.getTopic),
IbTopicTitle.caption:=controller.getTopicTitle;
IbStatus.Caption := controller.getStatus;

IbxResources.ltems:= controller.getAvailableModes(controller.getSection, controller.getTopic);
controller.updateSectionStatus;
controllermakeTreeView(TreeView1);

Appendix F 307

expandCurrentSection;
end,

procedure TCourseExplorer.lbxResourcesDblIClick(Sender: TObject);
begin

selectMode;
end;

procedure TCourseExplorer.selectMode;
var

irinteger,;

newSection, newTopic: integer;

oldSection, oldTopic: integer;

newMode, oldMode : string;

sameTopic, sameMode, somethingShowing: boolean;
begin

sameTopic:=false;

sameMode := false;

newSection := strTolnt(IbSection.caption);

newTopic = strTolnt (IbTopic.Caption);

oldSection := controller.getSection;

oldTopic := controller.getTopic;

oldMode = controller.getMode;

somethingShowing = controller. ComponentsShowing;

if ((newSection = oldSection) and (newTopic = oldTopic)) then sameTopic := true,

i:=0;

while ((i <= IbxResources.ltems.Count-1) and not IbxResources.Selected|i]) do
inc(i);

if i<>IbxResources.ltems.Count then
newMode:= IbxResources.Items.Strings|i]

else newMode :=oldMode;

/
f newMode =oldMode then sameMode:=true;

/
f sameTopic and sameMode and somethingShowing then
self Hide
else if sameTopic then
controller.changeMode(newMode)
else if sameMode then
controller.changeTopic(newSection, newTopic)
else
controller.changeTopicAndMode(newSection, newTopic, newMode),
end,

procedure TCourseExplorer.TreeView1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var

Anltem: TTreeNode;

str, st: string;

i integer,;

newSection, newTopic: integer;
begin

newSection:=-1;

newTopic :=-1,

if TreeView1.Selected = nil then
Exit;

Anltem = TreeView1.GetNodeAt(X, Y);
TreeView1.Selected := Anltem ;
IbTitle.caption:= Anltem.Text;

Appendix F 308

if Anltem.text = controller.getCourseTitle then begin
IbSection.caption:=";
IbTopic.caption:=";
IbTopicTitle.caption:=";
IbStatus.caption := 'Whole course'’;
clearResources;
Exit;

end,

ii=1;
str:=";
st:=IbTitle.caption,
while st[i]<>"." do begin
str:= str + sf[i];
inc(i);
end,
IbSection.caption:= str;
if str <> " then
newSection:= strTolnt(str);

stri=";
st:=IbTitle.caption;
inc(i);
while stfi] in ['0"..'9] do begin
str:= str + st{i];
inc(i);
end;
IbTopic.caption:= str;
if str<> " then
newTopic = strTolnt(str);

str:=";

st:=IbTitle.caption;

inc(i);

while i<= length(st) do begin
str:= str + st[i];
inc(i);

end,

IbTopicTitle.caption:= str;

case(Anltem.Statelndex) of

-1: IbStatus.caption:= 'Unknown",

1: IbStatus.caption := NOT_ATTEMPTED;
2: IbStatus.caption := ATTEMPTED;
<R IbStatus.caption:= COMPLETED;

end,

if newTopic >=0 then
IbxResources.ltems:= controller.getAvailableModes(newSection, newTopic)
else clearResources;
end,

procedure TCourseExplorer.getNext(currentSection, currentTopic :integer);
var

VSection, VTopic: integer;
begin

VSection:= currentSection;

VTopic:= currentTopic;

controller.getNextTopic(VSection, VTopic),

if Vsection = END_OF_COURSE then begin

showVLAMessage('End of course!");

end
else begin

controller.changeTopic(VSection, VTopic);
end;

end;

Appendix F 309

procedure TCourseExplorer.clearResources;
begin

IbxResources.ltems.Clear,;
end,

procedure TCourseExplorer.openTopic;

var
newSection, newTopic: integer,;
begin
if IbTopic.Caption <>" then begin
newSection := strTolnt(IbSection.caption);
newTopic := strTolnt (IbTopic.Caption);
controller.changeTopic(newSection, newTopic);
end
else showVLAMessage('Please select topic.'),
end,

procedure TCourseExplorer.TreeView1DblClick(Sender: TObject);
begin

openTopic;
end,

procedure TCourseExplorer. btOKClick(Sender: TObject),
begin

selectMode
end;

procedure TCourseExplorer.FormClose(Sender: TObject, var Action: TCloseAction);
begin

action:=caHide;
end,

procedure TCourseExplorer.getPrevious(currentSection, currentTopic: integer);
var
VSection, VTopic: integer;
begin
VSection:= currentSection;
VTopic:= currentTopic;
controller.getPrevious Topic(VSection, VTopic);
if VSection=START_OF_COURSE then begin
showVLAMessage('Start of course!’);
end
else
controller.changeTopic(VSection, VTopic),
end,

procedure TCourseExplorer.vilaHelpBtn1Click(Sender: TObject);
begin

vlaHelpBtn1.Execute(self);
end;

procedure TCourseExplorer.FormKeyDown(Sender: TObject; var Key: Word; Shift: TshiftState);
begin
if Key = VK_F1 then
vlaHelpBtn1.Execute (self),
end;

procedure TCourseExplorer.FormCreate(Sender: TObject);

begin
if controller.debug then
Self.FormStyle:= fsNormal
else Self.FormStyle:= fsStayOnTop;
end,

function TCourseExplorer.findTopic(title: string): TTreeNode;
var

Appendix F 310

curltem: TTreeNode;

begin
Curltem := TreeView1.ltems.GetFirstNode;
while Curltem.Text <> title do begin
Curltem := Curltem.GetNext;
end,
Result := curltem;
end;

procedure TCourseExplorer.expandCurrentSection;

var
str: string;
curTopic: TTreeNode;,

begin
TreeView1.ltems[0].Expand(false);
str:=IbSection.Caption+'.'+IbTopic. Caption+' '+IbTopicTitle.Caption;
curTopic:=findTopic(str);
curTopic.Parent.Expand(true);

end,

end.

Appendix F 31

F3: System Dictionary — constants

unit viaSystembDictionary;

interface
const

ROOTPATH = 'c:\Program Files\VLM\',

RESOURCE_DIR = ROOTPATH+ 'Resources\’;
PR_RESOURCE_DIR = RESOURCE_DIR + 'Print_Resources\’,
LECTURE_DIR = RESOURCE_DIR+ 'Lecture\;
IMAGE_DIR = LECTURE_DIR;// ROOTPATH+ 'Lecture\’;
SYSTEM_DIR = ROOTPATH + 'System\’,
SYSTEM_MODELS_DIR = SYSTEM_DIR + 'Models\’,
UPDATE_DIR = 'Update\’,

UPDATES_TEMP ="'C:\VLM’;

UPDATES_ARCHIVE = 'UpdatesArchive’
BACKUP_RESOURCE_DIR ='Backup\Resources\',
BACKUP_PR_RESOURCE_DIR = BACKUP_RESOURCE_DIR +'Print_Resources\’,
IMPORT_DIR = 'C:\\WINDOWS\Desktop\Imports\';
EXPORT_DIR = 'C:\WINDOWS\Desktop\Exports\'
TUTORIAL_DIR = RESOURCE_DIR+ Tutorial\’;
DB_UPDATES = SYSTEM_DIR + 'DB_Updates\’
SYSTEM_LOG_DIR = SYSTEM_DIR + 'Log\;

TEMP_DIR = SYSTEM_DIR + 'Temp\;

HELP_DIR = SYSTEM_DIR + 'Help\';

HELP_UPDATES= ROOTPATH+ 'HelpUpdates',
HELP_UPDATE_DIR = ROOTPATH+ 'HelpUpdates\',

VISITED = 'visited.txt";

DEFAULT_NAME ='STUDENTNAME",
vBACKUP = 1;

vUPDATE = 2;

vLECTURE = 3;

NO_DEFAULTS = -1;

vPR_RESOURCE = 1:
VRESOURCE =2;

Appendix F

NO_FILE ='No Resource Available',
SUCCESS = 'Resources successfully transferred.";
SUFFIXES = 'suffixes.txt",

type

QuType = (qHow, qWhat, qWhere, gqWho, qWhy);

const

HP_ENDINGS = 'endings.txt';
MAX_CONCEPTS =10;
MAX_THEMES = 10;

HEAD = 16;
SUBHEAD = 14;
NORMAL = 12;

ALL_QUESTIONS =10;
SELECTIONS =6;
OPTIONS =4;
REPEATS = 4;

type

const

TQuizResult=record

concept: string;

count: integer,;

responses: array [1..REPEATS] of integer;
end;

TQuizResults = array [1..SELECTIONS] of TQuizResult;

TQuestionnaireResult= record

concept: string;

count: integer;

responses: array [1..REPEATS] of integer,
end,

TQuestionnaireResults = array [1.. MAX_CONCEPTS] of TQuestionnaireResuilt;

DEFAULT_IMAGE = 'bmpLecture.bmp’;

312

Appendix F

VLINKS = 'WebExplorer,
vBOOKS = 'LibraryExplorer’;
vNOTES = 'StudentNotes';
VIDEAS = 'Keyldeas"

MAX_MODES = 10;
MAX_COMP = 20:
htGENERIC = 220 ;

vtHandWriting ='Connecticut’;

vRED = 1;

vAMBER = 2;

vGREEN=3;

MAX_TOPICS = 12;
MAX_SECTIONS = 12;
END_OF_COURSE = -1;
START_OF_COURSE = -2;
NONE_FOUND = -3;
NOT_ATTEMPTED ='Not attempted';
ATTEMPTED = 'Attempted’;
COMPLETED = 'Completed';
vSTUDENT =1,

vTEACHER =2;

AUTHOR_DIR ="'C:\VLM_Repository\Teachers\’,
AU_WORK_DIR = AUTHOR_DIR + 'Working_Files\’;
AU_DATABASE_DIR = AUTHOR_DIR + 'Database\’,
AU_DB_UPDATES = AUTHOR_DIR +'Updates\;
AU_SYSTEM_DIR = AUTHOR_DIR + 'System\",
AU_MODELS_DIR = AU_SYSTEM_DIR + 'Models\",
AU_SYSTEM_LOG_DIR = AU_SYSTEM_DIR +'Log\’,
AU_TEMP_DIR = AU_SYSTEM_DIR + 'Temp\

BASIC = 'basicmodel.txt’;

OUTLINE ="initialoutline.txt',

REPOSITORY_DIR ='C:\VLM_Repository\Repository\';
COURSE_OUTLINE = 'contents.txt';
AU_RESOURCE_DIR = REPOSITORY_DIR+ 'VLM\Resources\',

AU_PR_RESOURCE_DIR = AU_RESOURCE_DIR + 'Print_Resources\"

AU_LECTURE_DIR = AU_RESOURCE_DIR+Lecture’;
AU_TUTORIAL_DIR = AU_RESOURCE_DIR+Tutorial\;
AU_ARCHIVE_DIR = REPOSITORY_DIR +Archive\;
AU_ARCHIVE = REPOSITORY_DIR +'Archive’
AU_CD_UPDATE_ONLY_DIR = REPOSITORY_DIR+ 'CD_Only\"
IMAGE_SELECTED =1;

33

Appendix F

NO_IMAGE = 2;

RP_MESSAGE_DIR = REPOSITORY_DIR + 'MessageQueue\',
RP_DATABASE_DIR = REPOSITORY_DIR +'Database\’;
RP_TEMP_DIR = REPOSITORY_DIR +Temp\’
STUDENT_DIR = 'C:\VLM_Repository\Students\' ;
RP_SYSTEM_DIR = REPOSITORY_DIR +'System\',
RP_SYSTEM_LOG_DIR = RP_SYSTEM_DIR + 'Log\'
RP_HELP_FILE = REPOSITORY_DIR + 'Help.txt',
RP_UPDATE_DIR = REPOSITORY_DIR + 'VLM\}
RP_HELP_UPDATE_DIR = RP_UPDATE_DIR +'HelpUpdates\',

RP_UPDATED_TABLES_LIST = RP_SYSTEM_DIR +'updatedtables.txt',

tsLAST_RCVD = 1 :
tsMSG_LST =2
tsTEST = 3;

ANSWER ='answer.txt’;
MESSAGE_LIST ='messages.ixt';
REPOSITORY = 'System’;
TUTOR = "Tutor",
DEFAULT_GROUP = 0;

implementation

end.

314

Appendix F 315

F4: System Utilities — class interface
unit via System Utilities;

interface
uses vlaSystemMessage, Forms, Windows;

function max (x,y: double): double;

procedure DisableSystemButtons;
procedure EnableSystemButtons;

const
LOG_IT =true;
TELL_IT = true;
procedure initialiseLog;
procedure closelog;
procedure tellUser(component, msg: string; debug: boolean); overload;
procedure tellUser(component, msg: string; loglt, telllt: boolean); overload;
procedure tellUser(component, msg: string; loglt, telllt, isTeacher: boolean); overload;
procedure showVLAMessage (msg: string); overload,
procedure showVLAMessage (component, msg: string); overload,

procedure parseCaption(viaForm: TForm);
function parseLabel(caption: string): string;

function getSuffix(filename: string): string;
function parseSection(section, topic: integer): string;
function stripBrackets(str: string): string;

function getFileNumber(filename: string): integer;

function isValid(sectionOrTopic: string): boolean;

implementation

uses Dialogs, viaSystemDictionary, SysUltils, viaController;

end.

Appendix F 316

F5: Resource Model Manager — interface and selected source code

unit vlaResourceManager;

interface
uses vlaResources, classes, vlaComponentList;

type
TResourceManager = class
private
RootDirectory: TRootDirectory; //the Resources model
userType: integer;

public
constructor Create(studentOrTeacher:integer);
function getResource(section, topic: integer; component: string;

canEdit, alwaysTheSame, sectionWide:boolean): string;
function getResourceList(section,topic:integer): TStringList;overload;
function getResourcelist(section : integer;
sectionWideList: TCompList): TStringList; overload;

function getComponent(filename:string):string;
function getFileCode(section, topic: integer; component: string): string;
function alwaysAvailable(component:string): boolean;

end;

implementation
uses sysutils, vlaSystemDictionary, vliaController;
{ TResourceManager }

()

function TResourceManager.getResource (section, topic: integer; component: string;
canEdit, alwaysTheSame, sectionWide:boolean): string;

var
str:string;
begin
str:= RootDirectory.getFile(section, topic, component, false,
canEdit,always TheSame, sectionWide);
if NO_FILE = strthen
Result:= str
else
if userType = vSTUDENT then
Result:= RESOURCE_DIR + str
else Result :=AU_RESOURCE_DIR + str;
end;

end.

Appendix F

F6: Student Model Manager — class interface

unit vlaStudentModelManager;

interface
uses vilaStudentModel;
type

logon = record

name, password:string;

end;

TStudentModelManager = class

private

public

procedur

end,

implementation

studentModel: TStudentModel;

constructor Create;

procedure updateModel (mode:string); overload,
procedure updateModel(section, topic:integer); overload;

procedure updateModel(section, topic:integer; mode:string); overload;

function getMode: string; //current study mode
function getSection:integer; //current section
procedure setSection(section:integer);

function getTopic: integer; //current topic
procedure setTopic(topic:integer);

procedure setLogon(name, password:string);
function getStudName:string;

function getStudPassword:string;

function confirmPassword(password:string):boolean;

e setDrive (drive:char;BackupOrUpdate:integer);
function getDrive(BackupOrUpdate:integer):char;
procedure setUpdateFileNo(fileNo:integer);
function getUpdateFileNo:integer;

function getLastReceived: TDateTime;

procedure setLastReceived(lastReceived: TDateTime);
function getMyGroup:integer,

procedure setMyGroup(myGroup: integer);

function getMsgCount: integer;

procedure setMsgCount(msgCount: integer);

uses SysUtils, vlaSystemDictionary;

{ TStudentModelManager }

()

end.

317

Appendix F 318

F7: System Model Manager — class interface and selected code

unit viaSystemModelManager;

interface
uses vlaComponentList, viaSystemModel, dialogs, classes, Messages;

Type
TSystemModelManager = class
private
sysModel: TSystemModel,
startingUp: boolean;
public

constructor Create(initialMode: string);

procedure updateMode(newMode: string;
toCloselList, toOpenList: TCompList);

function userCanEdit(component: string): boolean;
function getUserEditList: TComplList;

function isAlwaysAvailable(component: string): boolean;
function isAlwaysTheSame(component: string): boolean;

function isSectionWide(component: string): boolean;

function getSectionWideList: TComplList,
function getLibraryURL: string;

function getServerlP: string;
function displayAsModal(component: string): boolean;

function getAvailableModeList(resourcelList: TStringList): TStringList;
function getComponents(mode: string): TComplList;
function getGenericComponents:TComplList;
function getAllComponents:TComplList;
function includes(mode, component:string):boolean;
function getColourScheme(mode:string):integer;
end,
implementation

{ TSystemModelManager }

uses vlaSystemUstilities;

Appendix F 319

{}
procedure TSystemModelManager.updateMode(newMode: string; toCloseList, toOpenList: TComplList);
var

item: string;
list: TCompList;
begin
if not sysModel. openComponents.isEmpty then
begin
item := sysModel.openComponents.getFirstitem;
if not sysModel.contains(newMode,item) then
begin
toCloseList.insertComponent(item);
end;
while sysModel.openComponents.isMore do
begin
item = sysModel.openComponents.getNextltem;
if not sysModel.contains(newMode,item) then
begin
toCloseListinsertComponent(item);
end
end
end
else tellUser('System Model Manager’,
‘Nothing in Open Components list', LOG_IT false);
if not toCloseList.isEmpty then
sysModel.openComponents.deleteComponent(toCloseList.getFirstitem),
while toCloseList.isMore do
sysModel.openComponents.deleteComponent(toCloseList.getNextitem);
list := sysModel.getCompList(newMode);
item:= list.getFirstitem;
toO penList.insertComponent(item);
if startingUp then
sysModel.openComponents.insertComponent(item);
while list.isMore do
begin
item:= list.getNextltem;
toOpenList.insertComponent(item);
if startingUp then
sysModel.openComponents.insertComponent(item);
end;
if startingUp then
startingUp:=false;
end;

end.

Appendix F 320

F8: System Tree Manager — class interface

unit viaSystemTreeManager;

interface

uses comctrls, vlaSystemTree;

type

TSystemTreeManager = class(TObject)

private

public

end;

implementation

sysTree: TSystemTree;

constructor Create(studentOrTeacher: integer);
function getCourseTitle: string;

procedure createTreeView(treeView: TTreeView);

procedure updateSectionStatus;

procedure getNextTopic(var VSection, VTopic: integer);

procedure getPreviousTopic(var VSection, VTopic: integer);

function getStatusString(section, topic: integer): string;

procedure setStatus(section, topic, status: integer);

function getClosestNext(var VSection, VTopic: integer; mode: string): integer;

function getClosestPrevious(var VSection, VTopic: integer; mode: string): integer;

procedure getClosest(var VSection, VTopic: integer; mode: string);
function getTopicTitle(section, topic: integer): string;

uses vlaController, viaSystemDictionary, Classes;

{ TSystemTreeManager }
{..}

end.

Appendix F 321

F9: Sample reference model implementation — System Tree

unit viaSystemTree;

interface
uses comctrls, vlaSystemDictionary;

type
TTopicNode= record
title: string;
status: integer;
end,
TSectionNode = record
title: string;
status: integer,;
topics: array [1..MAX_TOPICS] of TTopicNode;
topicCount: integer;
end,
TSystemTree = class(TObject)
private
title:string;
sections: array [1..MAX_SECTIONS] of TSectionNode;
sectionCount: integer;
status: integer,
SYSTEM_TREE_DIR: string;

public

constructor Create (studentOrTeacher: integer);
function getCourseTitle: string;
procedure nextTopic (var section, topic: integer);
procedure previousTopic (var section, topic: integer);
function getSectionTitle(section: integer): string;
function getTopicTitle(section, topic: integer): string;
function getStatus(section, topic: integer): integer;
procedure setStatus(section, topic, status: integer);
procedure createTreeView(TreeView: TTreeView);
procedure saveTree,
procedure updateSectionStatus;
procedure updateStatus;

end,

implementation
uses sysutils, Dialogs, LMDMSG, vlaSystemUltilities;

{ TSystemTree }

constructor TSystemTree.Create(studentOrTeacher: integer);
var
infile: text;
i, integer,
line: string ;
begin
if studentOrTeacher = vSTUDENT then
SYSTEM_TREE_DIR := SYSTEM_MODELS_DIR
else SYSTEM_TREE_DIR := AU_MODELS_DIR;
sectionCount:= 0;
fori:= 1to MAX_SECTIONS do
sections]i].topicCount :=0;
try
AssignFile(infile, SYSTEM_TREE_DIR + 'contents.txt');
Reset (infile);
readIn(infile,title);
readin(infile,status);
readIn(infile, line);

end;

end,

=1

Appendix F 322

while not eof(infile) do begin

inc(sectionCount);
readIn(infile,sectionsi].title);
readIn(infile, sections|i].status);

=1,
readin(infile,line);
repeat
inc(sections(i].topicCount);
sectionsli].topics[j] title :=line;
readin(infile, sectionsi].topics(j].status);
readIn(infile,line);
inc(j);
until ((line="SECTION') or(eof(infile)));
inc(i);
end,
close(infile);
except

if studentOrTeacher = vSTUDENT then

else

tellUser('System Tree', 'Read error. Could not create!', true, true)

tellUser('System Tree', 'Read error. Could not create!’, true, true, true);

procedure TSystemTree.createTreeView(TreeView:TTreeView);

var

begin

end,

i,j: integer;
MyTreeNode1, MyTreeNode2: TTreeNode;
/litems: TTreeNodes;

with TreeView.items do

begin

end;

Clear;

MyTreeNode1 = Add(nil, title);
MyTreeNode1.Statelndex:= status;

for i:=1 to sectionCount do begin

end,

{add section to course}
MyTreeNode1:=TreeView.items[0];
MyTreeNode2:=AddChild(MyTreeNode1,intToStr(i)+'. '+sections]i].title);
MyTreeNode2.Statelndex:=sections]i].status;
{Add topics to section}
for j:= 1 to sectionsi].topicCount do begin
MyTreeNode1 := AddChild(MyTreeNode2,intToStr(i)+
""+intToStr(j)+' ' +sections]i].topics[j] title);
My TreeNode1.Statelndex:=sections[i].topics[j].status;
end

procedure TSystemTree.nextTopic(var section, topic: integer);

begin

if topic< sections[section].topicCount

then inc(topic)

Appendix F 323

else if section < sectionCount

then begin
inc(section);
topic:= 1,
end

else section:= END_OF_COURSE;
end;

procedure TSystemTree previousTopic(var section, topic: integer);

begin
if topic >1
then dec(topic)
else if section >1
then begin
dec(section);
topic:= sections[section].topicCount;
end
else section:= START_OF_COURSE;
end;

procedure TSystemTree.saveTree;

var
outfile:text;
i, j integer,
begin
try
AssignFile(outfile, SYSTEM_TREE_DIR + ‘contents.txt’);
Rewrite (outfile);
writeln(outfile title);
writeln(outfile, status);
for i:=1 to sectionCount do begin
writeln(outfile, 'SECTION');// insert SECTION marker
writeln(outfile,sections(i].title);
writeln(outfile, sectionsi].status);
for j:= 1 to sections]i].topicCount do begin
writeln(outfile,sectionsli].topics[j] title);
writeln(outfile, sections(i].topics[j].status);
end
end;
close(outfile);
except
LMDMessageDIg('Write error!', mtConfirmation, [mbYes], 0);
end,
end;

procedure TSystemTree.setStatus(section, topic, status: integer);
begin

sections[section].topics[topic]. Status:= status;
end,

procedure TSystemTree.updateSectionStatus;
var
i,j, sumStatus:integer;
begin
for i= 1 to sectionCount do begin
sumStatus :=0;
for j:=1 to sections(i].topicCount do
sumStatus ;= sumStatus+sectionsi].topics[j].status;
if (sumStatus*10)/sections]i].topicCount = vVRED*10
then sections]i].status:=vRED
else if (sumStatus*10)/sections[i].topicCount = vVGREEN*10
then sections[i].status:= vVGREEN
else sections[i].status:= VAMBER;

Appendix F

end,
end;

procedure TSystemTree.updateStatus;
var

i), sumStatus:integer,;
begin

sumStatus :=0;

fori:= 1 to sectionCount do begin

sum Status := sumStatus+sectionsi].status;

if (sumStatus*10)/sectionCount = vVRED*10
then status:=vRED

else if (sumStatus*10)/sectionCount = vVGREEN*10
then status:= vVGREEN
else status:= VAMBER,

end,

end;

end.

324

Appendix F

F10: Sample learning component implementation

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, viaHelpBtn, ComCitrls;

type
TComponentForm = class(TForm)
vlaHelpBtn1: TvlaHelpBtn;
StatusBar1: TStatusBar;
procedure vlaHelpBtn1Click(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormCreate(Sender: TObject);
private
resourcePath: string;
public
debug:boolean;
procedure DisplayHint(Sender:TObject);
end;

var
ComponentForm: TComponentForm,;

implementation
uses vlaController, vilaSystemUltilities, viaSystemDictionary;,

{$R *.DFM}

procedure TComponentForm.viaHelpBtn1Click(Sender: TObject);
begin

vlaHelpBtn1.Execute(self);
end;

procedure TComponentForm.FormPaint(Sender: TObject);

begin
if controller.openinGeneric(self.name) then
color := controller.getColourScheme(mdGENERIC)
else Color:= controller.getColourScheme(controller.getMode);
end,

procedure TComponentForm.FormShow(Sender: TObject);

var
output : textFile;
filepath: string;
Save_Cursor:TCursor;
begin

Save_Cursor := Screen.Cursor,
Screen.Cursor := crHourglass;

filepath := controller.getFilePath(self.name);

825

Appendix F 326

try try

AssignFile(output, filepath);

reset(output);

readin(output,resourcePath);

tellUser(self.name,'Resource: '+ resourcePath, controller.debug, true);
except

tellUser(self.name, 'Could not load resource’, controller.debug, true);

end,
finally
closeFile(output);
Screen.Cursor = Save_Cursor;
end,

end,

procedure TComponentForm.FormCreate(Sender: TObject);

begin
if controller.debug then
Self.FormStyle:= fsNormal
else SelfFormStyle:= fsStayOnTop;
Application.OnHint := DisplayHint;
end;

procedure TComponentForm.DisplayHint(Sender: TObject);
begin

StatusBar1.SimpleText := GetLongHint(Application.Hint);
end;

end. //

Appendix F 327

F11: Extramural Support — class interface and selected source code

unit viaHelpSystem;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Db, DBCtrls, StdCtrls, DBTables, Buttons, ComCtrls, vlaSystemDictionary,
vlaSystemUtilities, viaAskForHelp, viaHelpBtn;

const
OK ="0OK"
NOK='NOK"
type
TUserStat = record
concept: string;
quType: string;
rsOK, rsNo, rsRetry, rsAsk, rsGiveUp: integer;
end;

TExtramuralSupport = class(TForm)
edConcept: TEdit;
dsQuType: TDataSource;
dsElaborate: TDataSource;
gbUserResponse: TGroupBox;

dsMsg: TDataSource;
dsQuNextBefore: TDataSource;
dsQuNextAhead: TDataSource;
cbConcept: TDBLookupComboBox;
dsConcept: TDataSource;
cbQuType: TDBLookupComboBox;
meElaboration: TMemo;

meLinks: TMemo;

meBooks: TMemo;

meClipbrd: TMemo;

reClipbrd: TRichEdit;

meMsg: TMemo;

procedure FormShow(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormPaint(Sender: TObject);

procedure FormKeyDown(Sender: TObject; var Key: Word; Shift: TShiftState);

procedure btOKClick(Sender: TObject);
procedure btNoClick(Sender: TObject);
procedure btRetryClick(Sender: TObject);
procedure btAskClick(Sender: TObject);
procedure btExitClick(Sender: TObject);
procedure btMapClick(Sender: TObject);
procedure btNewClick(Sender: TObject);
procedure btCopyClick(Sender: TObject);

procedure edConceptClick(Sender: TObject);
procedure edConceptExit(Sender: TObject);

procedure vlaHelpBtn1Click(Sender: TObject);

private
qu_Type: QuType;
userStat: TUserStat;
userResponse: char;

Appendix F 328

underway, waiting : boolean;

checkAhead, checkPrevious: integer;

anotherQuestion, noMoreResults: boolean;

tOK, tNO, tRETRY, tASK, tEXIT, tNEW, tCOPY, tMAP: boolean;
fOK, fNO, fRETRY, fASK, fEXIT, fNEW, fCOPY, fMAP: boolean;
checkThemePrevious, checkThemeAhead: integer;
firstResponse, lastResponse: string;

responseCount: integer;

copyNotesPath, copyBooksPath, copyLinksPath: string;
AskForHelp: TAskForHelp;

procedure HelpUser;

procedure prepareHelp;

procedure parseUserInput;

procedure executeAsSQL;

procedure rankResults;

procedure presentBestResultToUser;

procedure waitForUserResponse;

procedure doHousekeeping;

procedure resetUserResponse(bOK, bNo, bRetry, bAsk, bExit, bMap, bCopy, bNew: boolean);
procedure actionUserResponse;

procedure updateStatisticsDB;
procedure initialiseUserStat(selectedConcept, selectedQueryType: string);
procedure updateUserStat(bOK, bNo, bRetry, bAsk, bGiveup: boolean);
procedure presentNextBestResult;
procedure TryHelpingUserAgain;
procedure askTutor;
procedure notifyTutor;
function getSystemMsgCount: integer;
procedure setSystemMsgCount(msgCount: integer);
function getNextClosestBefore(var concept: string; var section, topic: integer): string;
function getNextClosestAhead(var concept: string; var section, topic: integer): string;
function getNextClosestThemeBefore(var concept: string; var section, topic: integer): string;
function getNextClosestThemeAhead(var concept: string; var section, topic: integer): string;
procedure copyToNotes;
procedure setupConceptList;
procedure setupQuTypelist;
procedure initialiseBtnValues;
procedure displayResult(elaboration, concept: string; section, topic: integer;
isFirst: boolean);
procedure initialiseHelpScreen;
procedure initialiseResultLists;
procedure recordUserResponse(OKorNOK: string);
procedure copyToLinks;
procedure copyToBooks;
public
debug: boolean;
procedure DisplayHint(Sender: TObject);
function getUsername: string;
function getSection: integer;
function getTopic: integer;
function getMyGroup: integer;
function getMsgCount: integer;
procedure setMsgCount(msgCount:integer);
procedure selectAnotherConcept(concept:string);
procedure selectConcept(concept: string);
end;

var
ExtramuralSupport: TExtramuralSupport;

implementation
uses vlaMsgData, vlaConceptMap, vlaController;

{$R * DFM}

Appendix F 329

procedure TExtramuralSupport.FormCreate(Sender: TObject),

begin

debug:= false;

if controller.debug then

Self.Form Style:= fsNormal

else Self.FormStyle:= fsStayOnTop;

Application.OnHint := DisplayHint;

initialiseBtnValues;

color:= controller.getColourScheme(mdSYSTEM);
end;

procedure TExtramuralSupport.selectConcept(concept: string);

begin
with edConcept do begin
ReadOnly:=false;
Text:= concept;
ReadOnly:=true;
end;
tellUser(self.name, '‘Concept = '+ concept, LOG_IT, false);
end;

procedure TExtramuralSupport. Form Show(Sender: TObject);

begin
tellUser(self.name, 'Show' , LOG_IT, false);
parseCaption(self);
copyNotesPath:= controller.copyTo(vNOTES);
copyBookspath:= controller.copyTo (vBOOKS);
copyLinksPath:= controller.copy To(VLINKS);
tellUser(self.name, copyNotesPath + ', '+copyBooksPath + ', "+copyLinksPath, LOG_IT, false);
setupQuTypelList;
initialiseHelpScreen;
initialiseResultLists;

end;

procedure TExtramuralSupport.setupConceptList;

begin
with dmMsgData.quConcept do begin
close;
Params([0].value:= getSection;,
params[1].value:= getTopic;
open,
end,
with cbConcept do begin
ListSource:= dsConcept;
KeyField := 'Concept’,
ListField:= '‘Concept’;
enabled:= true,
KeyValue:= edConcept. Text;
enabled:= false;
end;
end,

procedure TExtramuralSupport.setupQuTypelist;

begin
cbQuType.Enabled := true;
cbQuType.KeyValue:= 'qWhat';
cbQuType.DropDown;

end;

procedure TExtramuralSupport.initialiseBtnValues;
begin

tOK:=true;

tNO :=true;

Appendix F

fNEW:= false;
end;

procedure TExtramuralSupport.initialiseResultLists;

begin
with meElaboration do begin
Clear;
modified := false;
end,
with MeLinks do begin
Clear;
modified := false;
visible :=false;
end,
with meBooks do begin
Clear,
modified ;= false;
visible :=false;
end;
end,

procedure TExtramuralSupport.initialiseHelpScreen;

begin
underway:= false;
cbQuType.SetFocus;
cbQuType.DropDown;
resetUserResponse(tOK, false, false, false, tEXIT, false, false, false);
btOK hint:="Submit the question’;
end;

procedure TExtramuralSupport.edConceptExit(Sender: TObject);
begin

cbQuType.SetFocus;

edConcept.Enabled:=false;

resetUserResponse(tOK, false false, false, tEXIT false, false, false);

end;

procedure TExtramuralSupport.btOKClick(Sender: TObject);
begin
if not underway then
HelpUser
else begin
userResponse:='0O";
actionUserResponse;
end
end,

procedure TExtramuralSupport.btNoClick(Sender: TObject);
begin

userResponse:= 'N';

actionUserResponse;
end;

procedure TExtramuralSupport.btExitClick(Sender: TObject);
begin

close;
end;

procedure TExtramuralSupport.FormClose(Sender: TObject; var Action: TCloseAction);

begin
if underway then begin
userResponse:= ‘X',
actionUserResponse;

330

end;

Appendix F 331

procedure TExtramuralSupport.actionUserResponse;

var

begin

btn: string ;

waiting :=false;
inc(responseCount);
meMsg.Clear;

case userResponse of

‘A’ begin
btn:='Ask’;
recordUserResponse(NOK);
askTutor,;
resetUserResponse(fOK, fNO, fRETRY, fASK, tEXIT, tMAP, tCOPY, tNEW),
end;

'‘C" begin
btn:='Copy’,
if meLinks.Modified then
copyTolinks;
if meBooks.Modified then
copyToBooks;
if meElaboration.modified then
copyToNotes;
initialiseResultLists;
resetUserResponse(fOK, fNO, fRETRY, fASK, tEXIT, fMAP, fCOPY, tNEW);

dec(responseCount);
end;
‘M" begin
btn:="'Map',

ConceptMap := TConceptMap.create(Application);
with ConceptMap do begin
setConcept(edConcept. Text);
showModal;
if modalResult<> 5 then
resetUserResponse(fOK, fNO, fRETRY, tASK, tEXIT, tMAP,
tCOPY, tNEW);

end,
end;
‘N begin
btn:='No";
notifyTutor;

if noMoreResults then

resetUserResponse(fOK, fNO, fRETRY, tASK, tEXIT, tMAP, tCOPY, tNEW)
else

resetUserResponse(fOK, fNO, tRETRY, tASK, tEXIT, tMAP, tCOPY, tNEW):
recordUserResponse(NOK);

end;

'O" begin
btn:='OK";
resetUserResponse(fOK, fNO, fRETRY, fASK, tEXIT, tMAP, tCOPY, tNEW);
recordUserResponse(OK);

end;

'R begin
btn:='RETRY",
recordUserResponse(NOK);
TryHelpingUserAgain;

if noMoreResults then
resetUserResponse(fNO,tNO, fRETRY, tASK, tEXIT, tMAP, tCOPY, tNEW)

Appendix F 332

else
resetUserResponse(tOK, tNO, tRETRY, fASK, fEXIT, fMAP, fCOPY, fNEW);
end,
‘W' begin
btn:= 'New";

cbQuType.Enabled:=true;

anotherQuestion:= true;

initialiseHelpScreen;

cbQuType.SetFocus;

cbQuType.DropDown;
end,

‘X' begin
btn:= "Exit’;
dec(ResponseCount);
updateStatisticsDB;
doHousekeeping;
end,
end,
tellUser(self.name, 'User action: '+ btn, LOG_IT , false);
end,

procedure TExtramuralSupport.resetUserResponse(bOK, bNo, bRetry, bAsk, bExit, bMap,
bCopy, bNew: boolean);
begin
btOK.enabled := bOK;

btNew.Enabled:= bNew,
end,

procedure TExtramuralSupport.HelpUser;

begin
prepareHelp;
parseUserinput;
executeAsSQL;
presentBestResultToUser,
waitForUserResponse;
end,

procedure TExtramuralSupport.TryHelpingUserAgain;
begin
presentNextBestResult;
waitForUserResponse;
end;

procedure TExtramuralSupport.prepareHelp;
begin
underway:=true;
noMoreResults:= false;
firstResponse:=";
lastResponse:=";
responseCount:=0;
if not anotherQuestion then
meElaboration.Clear;
anotherQuestion := false;
initialiseUserStat(edConcept. Text,cbQuType. Text);
cbQuType Enabled:=false;
checkPrevious:=0;
checkAhead:=0;

btOK.Hint:= 'Accept the answer’
end;

Appendix F 333

procedure TExtramuralSupport.parseUserinput;

var
qtp :string;
begin
qtp:= cbQuType.KeyValue;
if gtp = 'gHow' then qu_Type:= qHow
else if gtp = '‘qWhat' then qu_Type:= qWhat
else if gtp ='qWhere' then qu_Type:= qWhere
else if gtp ='qWho' then qu_Type:= qWho
else qu_Type:= qWhy;,
tellUser(self.name, qtp, LOG_IT, false);
end;

procedure TExtramuralSupport.executeAsSQL;

begin
with dsElaborate do begin
DataSet.Close;
case (qu_Type) of
gWhat: begin
end;
gWhere: begin
end;
gWho: begin
end;
end;
Dataset.open;
end;
end;

DataSet:= dmMsgData.quWhat;
dmMsgData.quWhat.Params[0].Value:= edConcept. Text;
dmMsgData.quWhat.Params[1].Value:= getSection;
dmMsgData.quWhat.Params[2].Value:= getTopic;

DataSet:= dmMsgData.quWhere;

dmMsgData.quWhere .Params[0]. Value:= edConcept. Text;
dmMsgData.quWhere.Params[1].Value:= getSection;
dmMsgData.quWhere.Params[2].Value:= getTopic;

DataSet:= dmMsgData.quWho;
dmMsgData.quWho.Params[0].Value:= edConcept.Text;
dmMsgData.quWho.Params[1].Value:= getSection;
dmMsgData.quWho.Params[2].Value:= getTopic;

procedure TExtramuralSupport.presentBestResultToUser;

displayResult(quResult, edConcept.text,getSection,getTopic, true)

var
quResult:string;
begin
with dsElaborate.DataSet do begin
First,
quResult:= Fields[0].AsString;
end;
end;

procedure TExtramuralSupport.presentNextBestResult;

var
concept, ElabText: string;
sec, top: integer,;
isCncpt: boolean ;

begin

concept:= edConcept. Text;
sec:= getSection;
top := getTopic;

Appendix F 334

with dsElaborate.DataSet do begin
Next:
if not eof then begin
ElabText:= Fields[0].AsString;
displayResult(ElabText, concept, sec, top, true);
Exit;
end,
end ;

ElabText:= getNextClosestBefore(concept, sec, top);

if ElabText = " then
ElabText := getNextClosestAhead(concept, sec, top),
if not noMoreResults then
displayResult(ElabText concept, sec, top, false);
end,

procedure TExtramuralSupport.displayResult(elaboration, concept: string; section, topic: integer;
isFirst :boolean) ;

var
header: string;
begin
meElaboration.lines.append(”);
if elaboration <> " then begin
meElaboration.modified := true;
meElaboration.lines.append(" + concept+"; Section '+ intToStr(section)+ '.'+intToStr(topic));
meElaboration.lines.Append(elaboration);
if qu_type = qWhere then begin
meLinks.modified := true;
meLinks.Lines.Append(elaboration)// for saving as links
end
else if qu_type = qWho then begin
eBooks.modified := true;
meBooks.Lines.Append(elaboration)// for saving as books
end;
end
else begin
if isFirst then begin
meMsg.lines.Append('- NO USEFUL ANSWER FOUND IN SECTION "+
intTo(section)+".'+intToStr(topic));
meMsg.lines.Append(- SELECT "RETRY" FOR A BROADER SEARCH."),
end
else begin
noMoreResults:=true;
meMsg.lines.Append(- NO FURTHER USEFUL ANSWERS FOUND");
meMsg.lines.Append('- FOR FURTHER HELP SELECT A RELATED CONCEPT
FROM THE CONCEPT MAP');
meMsg.lines. Append(- OR TRY ASKING THE TUTOR.";
end,
end;
end,

function TExtramuralSupport.getNextClosestBefore(var concept: string; var section, topic: integer): string;
begin
inc(checkPrevious);
Result:=";
case (qu_Type) of
gWhat: with dmMsgData.quWhatBefore do begin
if checkPrevious = 1 then begin
close;
Params(0].Value:= concept;
Params[1].Value:= section;
Params[2].Value:= topic;
Params[3].Value:= section;

Appendix F 335

open;
if not eof then begin
First;
concept:= Fields[0]. AsString;
section:= Fields[1].AsInteger;
topic := Fields[2].AsInteger;
Result := Fields[3].AsString;
end;
end
else begin
Next;
if not Eof then begin
concept:= Fields[0].AsString;
section:= Fields[1].AsInteger;
topic = Fields[2].AsInteger;
Result := Fields[3]. AsString;
end;
end;

end;

gWhere: with dmMsgData.quWhereBefore do begin
if checkPrevious = 1 then begin

close;

Params[0].Value:= concept;
Params[1].Value:= section;
Params[2].Value:= topic;
Params([3].Value:= section;

open;
if not eof then begin
First;
concept:= Fields[0]. AsString;
section:= Fields[1].AsInteger;
topic := Fields[2].AsInteger;
Result := Fields[3]. AsString;
end;
end
else begin
Next;
if not Eof then begin
concept:= Fields[0].AsString;
section:= Fields[1].AsInteger;
topic := Fields[2] AsInteger;
Result := Fields[3].AsString;
end;
end;

end;

gWho: with dmMsgData.quWhoBefore do begin
if checkPrevious =1 then begin

close;

Params[0].Value:= concept;
Params[1].Value:= section;
Params[2].Value:= topic;
Params[3]. Value:= section;

open;
if not eof then begin
First:
concept: = Fields[0]. AsString;
section:= Fields[1].AsInteger;
topic := Fields[2].AsInteger;
Result := Fields[5].AsString +', '+ Fields[4].AsString
+, '+ Fields[6]. AsString +', '+ Fields[3].AsString;
end;
end
else begin
Next,

if not eof then begin
concept:= Fields[0]. AsString;
section:= Fields[1].AsInteger;

Appendix F 336

topic := Fields[2].AsInteger;
Result := Fields[5].AsString +', '+ Fields[4].AsString
+', '+ Fields[6] AsString +', '+ Fields[3].AsString;
end;
end;
end,
end;
end,

function TExtramuralSupport.getNextClosestAhead(var concept: string; var section, topic: integer): string;
begin

end;

procedure TExtramuralSupport.waitForUserResponse;

begin
waiting :=true;
resetUserResponse(tOK, tNO, tRETRY, fASK, fEXIT, fMAP, fCOPY, fNEW);
btOK.Hint:="'Accept the answer" ;

end;

procedure TExtramuralSupport.doHousekeeping;
begin

underway:= false;

waiting := false;
end,

procedure TExtramuralSupport.recordUserResponse(OKorNOK: string);

begin
if responseCount = 1 then begin
firstResponse:= OKorNOK;
lastResponse := firstResponse;
end
else
lastResponse := OKorNOK;
end,

procedure TExtramuralSupport.updateStatisticsDB;

var
thisMoment: TDateTime;
begin
thisMoment:= Now;
with dmMsgData.tbUserStats do begin
AppendRecord([thisMoment, edConcepttext, getSection, getTopic,
FirstResponse, LastResponse, ResponseCount])) ;
end;
end;

procedure TExtramuralSupport.initialiseUserStat(selectedConcept, selectedQueryType: string);
begin

userStat.concept: = selectedConcept;

userStat.quType:= selectedQueryType;

userStat.rsOK:= 0;

userStat.rsNo := 0;

userStat.rsRetry:= 0;

userStat.rsAsk:= 0;

userStat.rsGiveUp :=0;
end;

procedure TExtramuralSupport.updateUserStat(bOK, bNo, bRetry, bAsk, bGiveup: Boolean),

begin

end,

Appendix F 387

if bOK then
inc(userStat.rsOK);

if bNo then
inc(userStat.rsNo);

if bReTry then
inc(userStat.rsRetry);

if bAsk then
inc(userStat.rsAsk);

if bGiveup then
inc(userStat.rsGiveUp);

procedure TExtramuralSupport.askTutor;

begin

end;

AskForHelp:= TAskForHelp.Create(self);
AskForHelp.edHeader. Text:= 'Section '+ intToStr(getSection)+"’

+intToStr(getTopic)+ ' "+ edConcept. Text +". Please help me on this.';
AskForHelp.ShowModal;

procedure TExtramuralSupport.notify Tutor,;

var

begin

end,

headerText: string;
msgCount: integer ;

try
dsMsg.DataSet.Last;
msgCount:= ExtramuralSupport.getMsgCount +1;
ExtramuralSupport.setMsgCount(msgCount);
headerText:='Section '+ intToStr(getSection)+'’
+intToStr(getTopic)+ " '+cbQuType.Text+' "'+ edConcept. Text +".
+'System response was rejected.’;

dsMsg.DataSet. AppendRecord([msgCount, controller.getUsername, TUTOR , “, 0, getSection,

getTopic, 'Q', Now, ", ", ", headerText, meElaboration.text]);
ModalResult:=1;
tellUser(self.name, 'Notify Tutor system message saved.', LOG_IT, false);
except
tellUser(self.name, 'Error saving system message.', LOG_]IT, false);
ModalResult:=2;
end

procedure TExtramuralSupport.copyToNotes;

begin

end,

end.

with meElaboration do begin
ReadOnly:= false;
SelectAll;
CutToClipboard;
ReadOnly:= true;

end;

with reClipbrd do begin
Clear;
Lines.LoadFromFile(copyNotesPath);
PasteFromClipboard,
Lines.SaveToFile(copyNotesPath);

end;

Appendix F 338

F12: Concept Map — class interface and selected source code

unit vlaConceptMap;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, vlaSystemDictionary,
vlaSystemUltilities, Imdmsg, Buttons, vlaHelpBtn ;

const
TPOS = 50;
MPOS = 200;
BPOS = 350;
LPOS = 100;
LTPOS =200,
CON_OFF = 150;
THM_OFF = 200;
X_OFF = 20;
Y_OFF = 20;
type
TConceptMap =class(TForm)
IbVisited: TListBox;
viaHelpBtn1: TvlaHelpBtn;
procedure FormCreate(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
procedure FormPaint(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure vlaHelpBtn1Click(Sender: TObject);
private
debug: boolean;
concept: string;
ctConcept, ctTheme: integer;
Concepts : array [1..MAX_CONCEPTS] of TLabel;
Themes : array [1..MAX_THEMES] of TLabel,
Connected :array [1..MAX_CONCEPTS, 1..MAX_THEMES] of boolean;

procedure initialiseTables;
procedure populateTables;

function insertConcept(concept: string). integer;
function insertTheme(theme: string): integer;
function conceptPos(concept: string): integer;
function themePos(theme: string): integer;
procedure showConnections;

function isAbove(lab:TLabel): boolean;
procedure highlightSelectedConcept(labl: TLabel),
procedure highlightVisitedConcepts;

function SelectedConcept(X, Y: integer): TLabel;
procedure setSelectArea(X, Y: integer; var XMin, XMax, YMin, YMax: integer);

procedure populateVisitedList;
function notVisitedBefore(concept: string): boolean;
procedure updateVisitedList(concept: string);

Appendix F

procedure saveVisitedList;

public
procedure setConcept(concept: string);
end;
var
ConceptMap: TConceptMap;
implementation

uses vlaMsgData, vlaHelpSystem;
{$R *.DFM}

procedure TConceptMap.FormCreate(Sender: TObject);
var

i integer,
begin
debug:= true;
fori:=1to MAX_CONCEPTS do begin
concepts[i] := TLabel.Create(self);
concepts[i].Font. Style:= [J;
end;
fori = 1to MAX_THEMES do begin
themesi] := TLabel.Create(self);
themes]i].Font.Style := [J;
themesi].Font.Color := cINavy;
end;
end;

procedure TConceptMap.setConcept(concept: string);
begin

self.concept:=concept;
end;

procedure TConceptMap.FormShow(Sender: TObject),
begin
tellUser(self.name, 'Show', LOG _IT, false);
initialiseTables;
populateTables;
populateVisitedList;
end,

procedure TConceptMap.initialise Tables;

var
i, j rinteger,;
begin
ctConcept:=0;
ctTheme:= 0;
fori:=1to MAX_CONCEPTS do
forj:=1to MAX_THEMES do
Connected]i,j] := false;
end;

procedure TConceptMap.populateTables;
var
i,] integer;
begin
with dmMsgData.quConnected do begin

close;
Params[0].Value:= concept;
open;

339

end;
end,

Appendix F

if not eof then begin
First;
i:=insertConcept(Fields[0] AsString);
j:=insertTheme(Fields[1].AsString);
Connected]i, j] := true;
Next;

end;

while not eof do begin
i:= insertConcept(Fields[0].AsString);
j:=insertTheme(Fields[1].AsString);
Connected]i, j] := true;
Next;

end;

procedure TConceptMap.populateVisitedList;

begin
try
except
end;
end,

IbVisited.Items.LoadFromFile(SYSTEM_MODELS_DIR + VISITED);

tellUser(self.name, 'Could not load VISITED file', LOG_IT, debug);

procedure TConceptMap.FormPaint(Sender: TObject);

begin

showConnections;
highlightVisitedConcepts;

end,

function TConceptMap.insertConcept(concept: string): integer;

begin

Result:= conceptPos(concept);
if Result > ctConcept then begin

end,
end,

inc(ctConcept);

with concepts[ctConcept] do begin

parent:= self;
Caption:= concept;
if (ctConcept mod 2) = 1 then begin

if ((ctConcept div2) mod 2) = 1 then

top :=TPOS
else top :=TPOS - 25;
if ctConcept =1 then

Left:= LPOS
else Left := concepts[ctConcept-2].Left + CON_OFF;
end
else begin
if (ctConcept div2) mod 2)=0 then
top :=BPOS
else top :=BPOS + 25;
Left:= concepts[ctConcept-1].Left ;
end,

visible := true;
end ;
Result:= ctConcept;

function TConceptMap.conceptPos(concept: string): integer,

340

Appendix F 341

var
i integer;
begin
=1,
while ((i<= ctConcept) and (concept <> concepts]i].Caption)) do
inc(i);
Result:=1i;
end;

function TConceptMap.insertTheme(theme: string): integer;

begin
Result:= themePos(theme);
if Result > ctTheme then begin
inc(ctTheme);
with themes[ctTheme] do begin
parent.= self;
Caption:= theme;
top :=MPQS;
if ctTheme = 1 then
Left:= LTPOS
else Left := themes[ctTheme-1].Left + THM_OFF;
visible := true;
end ;
Result:= ctTheme;
end,
end;

function TConceptMap.themePos(theme: string): integer;

var
i integer;
begin
=1,
while ((| <= ctTheme) and (theme <> themes]i]. Caption)) do
inc(i),
Result:=1i;
end;

procedure TConceptMap.showConnections;

var
i, j: integer;
begin
fori:= 1 to ctConcept do
for ;=1 to ctTheme do
if connected(i,j] then begin
with self.Canvas do begin
if isAbove(concepts[i]) then begin
MoveTo(concepts[i].Left+X_OFF, concepts|i]. Top+Y_OFF);
LineTo(themes][j].left+ X_OFF, themes[j].Top);
end
else begin
MoveTo(concepts[i].Left+X_OFF, concepts[i]. Top);
LineTo(themes[j].left+X_OFF, themes[j]. Top+Y_OFF);
end,
end;
end;
end;

function TConceptMap.isAbove(lab: TLabel): boolean;
begin

Result :=lab.Top < MPOS; //= TPOS;
end;

procedure TConceptMap.highlightSelectedConcept(labl: TLabel);
begin

Appendix F 342

highlightVisitedConcepts;

with labl do begin
Font.color := clRed;
Font.Style:= [fsBold]
end;
end;

procedure TConceptMap.highlightVisitedConcepts;

var
i integer;
begin
for i :=1 to ctConcept do
with concepts[ildo begin
if notVisitedBefore(caption) then
Font.Color:= clBlack
else Font.Color:= clRed;
if conceptsl[i].Font. Style= [fsBold]
then conceptsli].Font.Style = [fsltalic];
end ;
end,

procedure TConceptMap.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
var
lab: Tlabel;
begin
lab:= SelectedConcept(X, Y);
if lab <> nil then begin
highlightSelectedConcept(lab);
if LMDMessageDIg('Search for help on "'+ lab.Caption +"?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes
then begin
ExtramuralSupport.selectAnotherConcept(lab.caption);
updateVisitedList(lab.caption);
modalResult:= 5;

"

end
else
highlightVisitedConcepts;
end,
end;

function TConceptMap.SelectedConcept(X, Y: integer): TLabel;
var
i integer;
XMin, XMax, YMin, YMax: integer,
begin
setSelectArea(X, Y, XMin, XMax, YMin, YMax);
i=1;
while ((i <= ctConcept) and not ((concepts|i].Left > Xmin) and (concepts|i].Left <Xmax)
and (concepts]i]. Top>YMin) and (concepts[i]. Top < YMax))) do

inc(i);
if i > ctConcept then
Result:= nil

else Result:= concepts]i];
end,

Appendix F 343

procedure TConceptMap.setSelectArea(X, Y: integer; var XMin,XMax,YMin, YMax:integer);
begin

Xmin ;= X - (X_OFF *2);

XMax := X + (X_OFF);

YMin :=Y - Y_OFF;

YMax :=Y + Y_OFF;
end;

procedure TConceptMap.FormClose(Sender: TObject; var Action: TCloseAction);
begin

saveVisitedList;

Action:=caFree;
end;

procedure TConceptMap.updateVisitedList(concept: string);
begin
if notVisitedBefore(concept) then
IbVisited.ltems.Append(concept);
end,

function TConceptMap.notVisitedBefore(concept: string): boolean;
begin

Result := (IbVisited.Items.IndexOf(concept) = -1);
end,

procedure TConceptMap.saveVisitedList;

begin
try
IbVisited.ltems.SaveToFile(SYSTEM_MODELS DIR + VISITED);
except
tellUser(self.name,'Could not save VISITED file', LOG)_IT, debug);
end,
end;

end.

F13: System Models — Models directory and selected model files

Appendix F

344

| File Edit View Go Favorites Help

|

i 1KE Text Document 0%-Oct-03 12:30
y alele bt 1KE Text Document 10-Oct-03 12:38
alwaysthesame 1KB TextDocument 14-Jul-03 14:46
clipleoard fxt 1KE TesxtDocument 25-May-03 18:28
codesiat 1KB Text Document 08-Oct0312:31
colours fxt 1KE TextDocument 29-5ep-0314:28
components 1KE TewxtDocument 03-Oct-03 12:32
contents 1KE TextDocurnent 01-Dec-03 15:36
contentsBefault b 1KE TextDocument 26-5ep-0314:30
endings b 1KE Text Docurnent 03-0ct-0312:19
gencomp bd 1KE TextDocument 09-0ct-03 12:31
rmodaldisplay.td 1KE Text Document 09-Oct-03 12:31
sectionwide bt 1KE Text Document 24-Jun-03 15:43
studrodel td 1KE TextDocument 01-Dec-03 15:36
studmodelDefault t: 1KE Text Document 02-0ct-03 15:39
suffixes td 1KE TextDocument 13-Jun-03 18:07
sysmodeltd 1KE Text Document 03-Oct-03 12:32
systemsettings 1KE Text Document 10-0ct-03 1306
systemsettingsDefault txt 1KE Text Document 10-0ct-03 10:1
useredittxt 1KE Text Document Zb-Jun-0317:47
visited wt 1KE TextDocurment 10-Oct-03 13:06
=) visitedD efault bt 1KE TextDocument 10-Oct-03 12:42
22 object(s) 13.95KB | 2} My Computer

' . S TRy = ey '
e e D T R X
| Back ~ Fowed ~ Up | Cut Copy Peste | Undo ‘ Delete

| Address [c:\Program Files\viM\SystemiModels Fl
Name l Size] Type I Modified I

Z

Appendix F 345

P studmodel - Notepad
Fie Edit Fermat View Help

“ provides persistent storage of dajga held by Student mModel
STUDEMTHAME =

=fulal

FASSWORD=

hiob

UFDATE DRIVE=

L

BAaZKUF DRIVE=

D

LEZTURE DRIVE=

iz

CURFRENT MODE=
Fractice

CURRENT SECZTIOMN=

il

CURRENT TORIZC=

2

LEARMIMG LEVEL=

1

LAST MESSAGE REZEIVED=

VD OD0O0OE+ 0000
GROURP MLUMEEFR=

4

MESSAGE COUMT=

11

UFDATE FILEMUMEER=

0

B suffixes - Notepad
Fi= Edt Format ‘Yiew Help

Studenthotes
rrf

webExplarer

TxT
Libraryesplorer
Txt

Appendix F 346

P sysmodel - Notepad

Fil= Edt Format View Help

¥ stores System Model of study modes
* and their learning comphnents
MODE

AllModes
StudentMotes
Selfassess

keyIdeas
administrationsuide
MODE

Texteook

StudyGuide

keyldeas

MODE

Lectures

Lecturea
LecturepMores

MODE

Tutorial

Tutorial

MODE

ExE1DratiDn
webhExplorer
LibraryExplorer
MODE

Sroupwork
MessagelList

MODE

Assigrment
Assignment
AssignmentworkSpace
Feedhack

MODE

Fractice
Fracticeassigrnment
ODoItT

< >

B useredit - Notepad
F-0 Edit Format Wiew Help

I used by System Model to build 1ist of components
* for which the user can create and edit resource files
student Mot es

webExplorer
LibratyExplorer

Appendix F 347

P codes - Notepad

File Edit
¥ used by resources Model to build table of Tearning
% components and their matching file naming codes

=g

studycuide

Format View Help

(=]
ZOoursegEx [:I-] arar
3]

udentMot es

Lnow

—
—+
b
(¥4}
L
I
L
L

=
m =DM mm et
(8] (& —

—+ —+ hrad

sy [

= =

14l 14l

=

)

—+

m

L

44— —T
-

torial

py

a .hlll‘
Assigrmentworkspace
WeE

wehExplarer

Th

LibraryExplaorer

kA

Feyldeas

mi

My 0L

dr [

Orawlt

fta

Feedhack

ad
ﬁdminiztratiDnGuide
[(]

0oIt

pr
Fracticeassigrnment

P allmodes - Notepad
File Edt Format VYiew Help

* ysed by System Model to provide Tist of components A~
* which can be accessed from amy study modeg

selfassess

KeyIdeas
administrationGuide

Appendix F 348

B components - Notepad

File Edit Format View Help

¥ provides Tist of a1l dnstalled learning components
¥ available to system
StudyGuide
StudentMotes
selfassess

Lecture

LecturaNotes

Tutorial

MessagelList
Assigrment
Assignmentworkspace
webhExplorer
LibraryExplorer
KeyIdeas

My GrOUp

ODrawlt

Feadback
administrationcuide
eIt
Practiceassignment

P colours - Notepad

File Edt Format View Help

¥ stores the colour associated with a particular study mode A
§O0B0B080
Al TModes
§OOB3AFGF
SysTem

§004 08080
TextBook
§O0SBILFF
Lectures
§O00BSTRA
Tutorial
$00665C4S
Exploration
§OOSTFFFF
Az grment
§OOBOFFRO
Practice
§O0SFBEFF
Groupwork

Appendix F 349

P contents - Notepad

File Edt Format View Help

W stores course tabhle of contents PN
* pumber dndicates completion status of each node

153,353 Human-Computer Interaction

rJ

SEZTION

HZI Fundamentals

2

Cesigning for Usability
ila
mModelling The User Interface

3

The user: Cognitive Issues
mModelling The Interaction

a

SECTION

analysis and Conceptual pesign
Ik

Design Issues
Life-oycle; Reqguirements analysis
Task description: Scenario-hased modelling

Task analysis, HTA

'.—-

Lo-fi and Hi-fi Frototyping FPowerPoint

',_4

Conceptual Design: Review

SECTION))
Physical Design and Implementation

MEW TORPICL
< >

File Edt Format View Help

¥ records ewvery node that the user has visited PN
¥ within the Concept Map

Conceptual models

metaphor

P systemsettings - Notepad
File Edt Format View Help

http://1ibrary.ma
192.168.0.1

Appendix F 350

Appendix G 351

Appendix G

Learning Shell — screen shots’

' The screens illustrated here are in addition to those included in Chapter 7 (Figures 7.2 — 7.13).

Appendix G 352

it s

-
I v

CiRectore from biack : m

User Options — incorrect password & update system settings

Appendix G 353

%g' MasseyUniversity
~ -

159.3563 Human-Computer Interaction . ’
Topic 1.02 Tutorial Mode

'Web Tutor 5] x]

Interactive Heuristic Evaluation Toolkit

A ‘heunstic' s 3 guideline which i1s used when conducting 3 usability evaluation (or 'heurnistic evaluation')

This interactive toolkit enables you to do either of the following
3y view a hst of the suggested heunstics for a particular type of electronic device, or
b) select your own heuristics for 3 type of device and then compare your selections against 3 ist of suggested heurnistics

Please follow the thres stemps below:

1 Select 3 type of dexice for which to study evaluation heurnistics (roll aver the options with the mouse to see a description)

Cevice type c t (o Interactive toys, eg. Barney

Actimate and Aibc dog
C M . (el + + - Nen-stardard interaction
€L May resgond to audio, light
and touch. Gives audic and
¢ Pocket P Is ' s ol S

2 If yau nmed to consider any specific typs of user er specific application area, please select the apprepnate options below

Users: All peopie v Application All types a

3. Either ® |00k

aunstics for this device, or

for this device

TOPIC 1.0Z

Tutorial mode

Appendix G 354

Massey ,.

Te Kunenga k Purehuroa

&xtramural

Web Explore

159.353 Human-Computer Interaction)
Topic 1.02 Exploration Mode

Interaction Design: Chapter 2 R

http / fwww id-book com/chapter htm & ﬁ
[TE3 4567 8910 1RIBMKIL dex

Understanding and Conceptualizing Interaction

Chapter Introduction | Web Resources | &ssignment Comments | Teaching Materials

Imagine you have been asked to design an application t olet pesple organize, store,
and retrieve their email in a fast, efficient and enjoyable way, What would you do? How
Chapters would you start? Would you begin by sketching out how the interface might look, work

out how the system architecture will se structured, or even just start coding?
Case Studies Alternatively, would you start by asking users about their current expenences of saving

T emall, look at existing email tools and, based on thus, begin thinking about why, what,
Interactivities and how you were going to design the application?
Students' corner

Interaction designers would begin by doing the latter. It is important to realize that
having a clear undersranding of what, why, and how you are going to design
something, before writing any code, can save enormous amaunts of time and effort.
later on in the design process. Il thought out ideas, incompatible and unusable designs
can be ironed out while it is relatively easy and painless to do. Once ideas are
committed to code (which typically takes considerable effort, tme, and money), they
become much harder to throw away -and much more painful. Such preliminary thinking
through of 1deas about user needs (User needs here are the range of possible
requirements, including user wants and expenences) and what kinds of designs might
be appropriate is, however, a skill that needs to be learned. It is not something that
Buy the Book... can e done overnight through following a checklist, but requires practice in learning to
identify, understand, and examine the issues-just like learning to write an essay or to
About the Book srogram. In this chapter we describe what is involved. In particular, we focus on what it
takes to understand and conceptualize interaction. The main ams of this chapter are to:

Explain what is meant by the problem space.

Explain how to conceptualize interaction.

®escribe what a conceptual model is and explairi the different kinds.

Discuss the pros and cons of using interface metaphors as conceptual models.
Bebate the pros and cons of using realism versus abstraction at the interface.

Type or paste your notes here

Appendix G 355

159.353 Human-Computer Interaction

(E xtranural)
Assignment 1:

Conceptual Design & Early Prototyping

%
HE SR My B/Z E £ & =

he of papers ar the corumencernent of each
ubject areas A maamum <f five paperz 13
TWSTITUTE OF INFOEMATION SCTENCES & TECHINOLOGY pon, the Unwversity plans to mstall an on-lme
and early protetyping of a graphucal nser
students are computer bterate

Cover Sheet

Fring exercise
1§9.353 ! [
Human-Computer Interaction fus imz'i')':f_m o.,txm“ HP en:el hfs sm\;lem
(Extramuraly et Setars L b ens ||
L‘ - -
s .

159.353 Human-Computer Interaction .
Topic 1.04 Assignment Mode

Unive

Te Kunenga k& P, —
B 159.353 Human-Computer Interaction
Grade ~=r (Extrammal)
B+
i Assignment 1: ‘.
OIMNENS Assignment Work Space -
A g‘:rl:‘\j eftort ;I E v P P, VA < 3 o = % " 3 5 = N |
Have @ anather look atthe gusstion of HS Y@ My BZ EZ = T € ¢ |
incorporating metapher inte the design ef the = ‘
ceta heln shape the user's concemtual ASSiﬂllﬂl?llt 1: ;] |
| of thz system . s .
’ ¢ Conceptual Design & Early Prototyping
Chnis
Due: 28 Aprl 2003
B
a
c STUDENT NAME: ... Bob........oooooiiiiiiiiiiiiininn e
1
s
1
I
L& | =]
—_ —_
|
159.353 H Com e st ety
: uman-Com-

Topic 1.04 Assignment Mode

Assignment mode — before and after assignment feedback received

Appendix G 356

é Do Preece Activity 2.1

Section 1.2 Practice Assighment

WAF-enabled mobile phones have not been entwely successful Ths exercise asks you to consder the
asswnptions which preceded thew mwoduction

ls. Try atleast some

é Do Preece Activity 2.9

You should be fambar with at least one web
employed in browser design

CEEFFRCEEEEET

Interaction paradigrns (patterns) have exsted for user interfaces throughout the history of the
digtal computer, for example hypertext (the basis of the Web nterface) The WIMP ‘desktop'
mterface cited in Section 2.5 has domimated over recent years The paradignss discussed are
largely experunental One of the driving forces behund the search for new paradigms 1s the
mcreasing expectaton onthe part of users thatthey should not have to be constrained to siting
front of a desktop computer n order to nteract with information. Some of the early attempts to

realise thus have hewever beenfarfromusable, e g W AF-enabled mebile phones as ameans of
accessing the Internet (see Activity 2.1)

159.353 Human-Compute
Topic 1.02

Interaction paradigms (patterns) have e:asted for user interfaces throughout the history of the
digital computer, for example hypertext (the basis of the Web interface) The WIMP 'desktor’
interface cited 1in Section 2.5 has dorminated over recent years The paradgms discussed are
largely expenimental One of the dniving forces betund the search for new paradigms is the
increasing expectahon on the pa t of users that they should not have to be constramned to sithng in

tront of 2 desktop computer in order to nteract with mformation. Some of the early attempts to <Ib
v . A o o N A4 g 3 A # o

R N G G o R e Lo o e o e p vy |

Practice Assignment mode — showing use of Student Notes

Appendix H 357

Appendix H

Communications Management

Appendix H 358

H1: FTP Server — Screen shots

Zidle - WAR-FTPD 1.65 - [0]x]
Properties View Help

[Z 1z2]2] ols] @l%]elo| = 8]

I Lo.. | Name l State] ‘

[~ Denyall logins (exceptfor administrator)
‘ | ¥ No anonymous logins

| | Max Users]50 Anon. L i
; |

‘ | IP number and port
| 19216801 [

Messages from the users =

L E

[L 2004 12 15 17:24] 00001 Bob cntr User from 192.168.0.1 logged out il
[F 2004 121517:24] 00001 Bob data C:\VLM_Repository\Students\Bob\MessageBox\messages t« File sent successfully. Size: 593 bytes

[F 200412 1517:24] 00001 Bob data C:\VLM_Repository\Students\Bob\MessageBox\messages.txt Sending.

[F 2004 12 15 17:24] 00001 Bob data C:\VLM_Repository\Repssitory\MessageQueue\72539.t¢ Received file successfully. Size: 6407 byte:J

< J 2j
mma ONLINE ~ [tof32767sockets [Dof50(16381) Users Ofiexfers R

Main screen after Bob logged out.

Appendix H 359
Group maintenance - Student E3
Group l Security| History File Access l Greeting | Banned Files | Access Listl
= -Files oK I
i | el V Read [
[~ Disable (deny login) | & wiite : Apply I
ftp 'CAVLM_Repositon/AReposito | ¥ Delete |
— VL - AR Alpdates il {
Tutor R S e T U= I7 Execute % ﬂl
Directories -
v List (dir)
[© Create
[° Remove
Special Reports
™ DENY
™ Root Dir Access
Add Delete L Lons Root/Home Il
Add | Copy l ¥ Mapping ‘
| Repository ; [|
J Delete | Alias)) ! ¥ Recursive | Access |
User maintenance - Bob | X
User l Security | History FileAccess |Persona| | Greeting | Banned Files | Access List|

¥ Disable (deny login)

|-ﬁ nonymous

Browser
Chris
JohnSmith
Mike
rsjohnso
Fussell

Copy J

Delete ‘

Path

default permissions

C:\VLM Repositon/ Students\Bob

Add Delete

¥ Read
3 |

~ Write Apply

v Delete

 Execute ‘ Cance! |
— Directories =
| List(dir) 3

v Create ;

~ Remove ;

Special | ~Reports

™ DENY 1 |
| ‘)

 Root Dir Access Ii

H

2 ome‘ ‘ Root/Home |I

¥ Mapping | \l

¥ Recursive } | Access |1

FTP Server. Defining Bob’s access permissions as student

Appendix H 360

H2: Repository Manager — Screen shots

Repository M

Message Database

[[Entered ______|F From
) ~0313.47 Bob
10-01-03 21 30 31 Mike
15-Dec-04 16 5438 Bob
15-Dec-0416 5658 Bob
15-Dec-04165817 Bob
15-Dec-04170952 Bob
y 15-Dec-04171121 Bob
Stop Server 81070010321 27 40
S| 07-Oct-0321 28 49
Hide Server 07-Oct-03 21 29 47
= 07-Oct-03 21 30 31
09-Qct-0316:01 35
09-0ct-03 16.01 35

TTITZITZIZITOOIOQOO0O0

Settings

View of Repository message database.

Appendix H 361

T i

1172443 Ceelered

18 4524 serverleg_15_12_04ta alresdy esists

18 45 24 Serverintiahsed. Monttor nferval = 15 seconds
18 45 24 Serverlaunched

{18 4713 26 records transterredto connection file
18 4713 2 records trensterred to link file
18 47 13 12 records transterredto reference file
184713 15 records transterredto what file

|18 4713 Help Datsbase files successtully crested

="' Help Screen
Sefings I Messages | 2ip Resources ! Help Updates I FTP Server [

Help for zimping reseurce updates

1 Hf there 1s no VLM folder then there are no n2w resource updates fla
message has seen receivedthstHelp has been updated. then click “Update
Help Files "

2 Check the contents ot the "VLM\Resources" tolder It there are large
Lecture or Tutonal resources then move them to the CO_Only folder

3 2ipthe ViMtalderinto "VAM zip"

Stop Server i
g t 4 Convertinto an * exe” tile with & detsull unzipping path of "C A" snd move it

to Ulpdates Archrse' tolder

Hide Server

5 Rename it "Resources_<NentasalableNo> eve"

6 Deletethe VLM tolder

Accessing Help to zip resources.

Appendix H

362

H3: Repository Manager — interface and selected source code

unit RepositoryManager,

interface

uses

type

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, FileCtrl,
ExtCtrls, viaFileManager, Db, Imdcompo, Imdclass, Imdnwgui, ComCtrls, DBTables, ImdnonvsS,

Buttons;

TRepositoryManager = class(TForm)

Label1: TLabel,

ZipStarter: TLMDStarter;
btHelp: TBitBtn;
btUpdateHelp: TBitBtn;
btView: TButton;
procedure btLaunchClick(Sender: TObject);
procedure btExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure TimerTimer(Sender: TObject);
procedure btSettingsClick(Sender: TObject);
procedure TraylconDbIClick(Sender: TObject);
procedure btLogClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure btClearClick(Sender: TObject);
procedure btPrintClick(Sender: TObject);
procedure btSaveClick(Sender: TObject);
procedure FileManagerFailure(Sender: TObject),
procedure FileManagerSuccess(Sender: TObject);
procedure btOKClick(Sender: TObject);
procedure btMessageDBClick(Sender: TObject);
procedure btZipClick(Sender: TObject);
procedure btHelpClick(Sender: TObject);
procedure btUpdateHelpClick(Sender: TObject);
procedure btViewClick(Sender: TObject);
private

running: boolean;

autoSave: boolean;

appendLog: boolean;

isTutor: boolean;

username: string;

lastRcvdByUser: TDateTime;

groupNo: integer;

monitorinterval: integer;

procedure processMsgList (msgFile: string);

procedure updateRepository(msgsOnlyFile: string);

procedure deleteFile(fullpath: string);
procedure checkMsgQueue;

procedure updateUsersMessages;
procedure saveMsgQueryResult;
procedure cleanUpMsgQueue;

procedure setUpServer,

procedure saveThelog;

function getLogFileName: string;

function fileExists(filenm: string): boolean;
function getLastReceived: double;

function processTransHeader(var tmpfile: textfile; const tnsfile: textfile;

Appendix H 363

var transType: integer): boolean;
procedure processLastRecvdRequest;
function addTransHeader(var tnsfile: textfile; transType: integer): boolean;
procedure launchServer,
procedure appendToLog(msgText: string);
function getNextID: integer;

public
procedure resetServer(monlinterval: integer; viewQueue, viewLog, savelog: string);
procedure addTolLog(msg: string);
procedure getCurrentSettings(var monintervalAsStr: string; var viewQueue,
viewlLog, savelLog: boolean),
end,

var
RepositoryManager: TRepositoryManager;

implementation

uses vlaSystemDictionary, rpDataMod, rpServerSetup, vliaSystemUtilities,
rpMessageDataBase, rpHelpScreen, rpUpdateHelpDB;

procedure TRepositoryManager.FormCreate(Sender: TObject);

begin
flbLogDir.Directory: = RP_SYSTEM_LOG_DIR;
appendLog: = fileExists (getLogFileName),
appendTolLog(");
if appendLog then addTol og(getLogFileName +' already exists')
else begin
addTolog(getLogFileName +' created");
appendLog: =true;
end;
setupServer;
launchServer;
end;

procedure TRepositoryManager.FormShow(Sender: TObject);
begin

flbMsgQueue.Update;

self.paint;
end,

procedure TRepositoryManager.FormPaint(Sender: TObject);

begin
if meLog.Visible then
Self. WindowState: = wsMaximized
else Self WindowState: = wsNormal;
end,

procedure TRepositoryManager.btLaunchClick(Sender: TObject);
begin

launchServer;
end;

procedure TRepositoryManager.btExitClick(Sender: TObject);
begin

cleanUpMsgQueue;

application.Terminate;
end;

procedure TRepositoryManager.btSettingsClick(Sender: TObject);
begin
ServerSetup.showModal,

Appendix H 364

if ServerSetup.ModalResult = 1 then begin
setUpServer ;
self.paint;
end,
end;

procedure TRepositoryManager.TraylconDblClick(Sender: TObject),
begin

Self.Show;
end,

procedure TRepositoryManager.btLogClick(Sender: TObject);
begin

meLog.Clear;
end;

procedure TRepositoryManager.btClearClick(Sender: TObject),
begin

melog.clear
end,;

procedure TRepositoryManager.btPrintClick(Sender: TObject);
begin

rePrint.Lines.Assign (meLog.Lines);

rePrint.Print('Log Window");
end;

procedure TRepositoryManager.btSaveClick(Sender: TObjec t);
begin

melog.Lines.SaveToFile(RP_SYSTEM_LOG_DIR + getLogFileName);
end;

procedure TRepositoryManager.TimerTimer(Sender: TObject);
begin

checkMsgQueue;
end,

procedure TRepositoryManager.deleteFile(fullpath: string);

begin
addTolLog('Deleting '+fullpath +'...");
with FileManager do begin
Source : = fullpath;
Action: = vDELETE;
Execute;
end;
end;

procedure TRepositoryManager.FileManagerFailure(Sender: TObject);
begin

addToLog('Could not delete file');
end,

procedure TRepositoryManager.FileManagerSuccess(Sender: TObject),
begin

addTolog('Deleted');
end;

Appendix H 365

procedure TRepositoryManager.addToLog(msg: string);

var
currentTime: string ;

begin
DateTimeToString(currentTime,'hh mm ss', Time) ;
melog.Lines.Append(currentTime + " ' + msg);
appendTolLog(currentTime + "' + msg);

end;

procedure TRepositoryManager.appendTolog (msgText: string);
var
outfile: textfile;
filename: string;
begin
filename : = getLogFileName;
AssignFile(outfile, RP_SYSTEM_LOG_DIR + filename);
if appendLog then
Append(outfile)
else rewrite(outfile);
writeln(outfile, msgText);
closefile(outfile);
end,

function TRepositoryManager.getLogFileName: string;

var

today : string;
begin

DateTimeToString(today, 'dd mm yy', Now) ;

Result : = 'serverlog_'+ today[1]+today[2]+'_' +today[4]+today(5]+' '+ today[7]+today([8]+ "txt',
end;

procedure TRepositoryManager.saveThel og;
var
outfile: textfile;
filename: string;
i integer,;
begin
filename : = getLogFileName;
AssignFile(outfile, RP_SYSTEM_LOG_DIR + filename);
if appendLog then
Append(outfile)
else rewrite(outfile);
for i: =0 to meLog.Lines.Count-1 do
writeln(outfile, meLog.Lines][i]);
closefile(outfile);
mel.og.Clear;
end;

function TRepositoryManager fileExists(flenm: string): boolean;

var
i. integer;
begin
i =0,
while((i < flbLogDir.Iltems.count)
and (flbLogDir.Items][i] <> filenm)) do
inc(i);
Result : = i<> flbLogDir.ltems.count;
end;

SERVER SET-UP

Appendix H

procedure TRepositoryManager.setUpServer,

infile: textfile;
viewQueue, viewlLog, savelog: string;

floMsgQueue.Directory: = RP_MESSAGE_DIR;

var
begin
try
except
end;

assignFile(infile, RP_SYSTEM_DIR + 'settings.txt');

reset(infile);

readIn(infile, monitorinterval);
Timer.Interval: = monitorinterval*1000;

readin(infile, viewQueue);

if viewQueue = 'True' then begin
IbQueue.Visible : = true;
flbMsgQueue.Visible : = true;
ServerSetup.cbQueue.Checked: = true;

end

else begin
IbQueue.Visible : = false;
flbMsgQueue.Visible : = false;
ServerSetup.cbQueue.Checked: = false;

end,

readIn(infile, viewLog);

if viewLog = "True' then begin
IbLog.Visible : = true;
meLog.Visible : = true;
plLog.Visible: = true ;
ServerSetup.cbLog.Checked: =true;

end

else begin
IbLog.Visible : = false;
melog.Visible : = false;
plLog.Visible : = false;
ServerSetup.cbLog.Checked: =false;

end ;

readin(infile, savelLog);

if saveLog = 'True' then begin
btSave.Visible : = false;
self.autoSave : =true;
ServerSetup.cbSave.Checked: =true;

end
else begin
btSave.Visible : =true;
autoSave: =false;
ServerSetup.cbSave.Checked: =false;
end ;

closefile(infile);
addTolog('Server initialised. Monitor interval = '+

366

intToStr(monitorinterval) + ' seconds');

on e: exception do begin
addToLog(e.Message),

addToLog('Could not initialise server. Try resetting.");

end;

end; / end of setupServer

Appendix H 367

procedure TRepositoryManager.resetServer(moninterval: integer; viewQueue,

var

begin

end,

viewlLog, savelog: string);

outfile: textfile;

try

except

end

assignFile(outfile, RP_SYSTEM_DIR + 'settings txt');
rewrite(outfile);

writeln(outfile, moninterval);

writeln(outfile, viewQueue);

writeln(outfile, viewLog);

writeln(outfile, savelLog);

closefile(outfile);

on e: exception do begin

addTolLog(e.Message);

addTolLog('Could not reset Message Server. Contact system support.');
end,

procedure TRepositoryManager.getCurrentSettings(var monintervalAsStr: string;

var

begin

end;

var viewQueue, viewLog, savelog: boolean);

infile: textfile;
num: integer;
vwQueue, vwlLog, svLog: string;

try

except

end

assignFile(infile, RP_SYSTEM_DIR + 'settings.txt');
reset(infile);

readIn(infile, num);
monlintervalAsStr : = intToStr(num);
readIn(infile, vwQueue);
viewQueue : = vwQueue='True'";
readin(infile,vwwlLog);

viewLog : = vwLog="True’,
readIn(infile, svLog);

savelog : = svLog ='True’;
closefile(infile);

addTolLog('Could not get current settings. Contact system support.’),

ENGINE ROOM Transmission management routines

procedure TRepositoryManager.checkMsgQueue;

var

begin

files

i integer;

with flbMsgQueue do begin

Update; /Isort the message queue
ifitems.Count<>0 then begin
i =0;
while ((i<items.Count) and (items][i][1]='_")) do // remove database temp

inc(i);

Appendix H 368

if i< items.Count then
processMsgList(ltemsi]);
end;
end,
end,

/
procedure TRepositoryManager.processMsgList(msgFile: string);

var
infile, outfile: textfile;
tempfile : string;
tnsType: integer;
begin
tnsType: =0;
try
msgFile: = RP_MESSAGE_DIR+ msgFile;
assignFile(infile, msgFile);
tempfile: = REPOSITORY_DIR+ 'tempfile’,
assignFile(outfile, tempfile);
if not (processTransHeader(outfile, infile, tnsType)) then
begin
addTolLog('Header Error: Wrong Receiver');
deleteFile msgFile),
exit;
end;
1l
if tnsType =tsMSG_LST then begin
addTolog('Message update requested by '+ username);
updateRepository(tempfile);
updateUsersMessages;
end
else begin
addToLog('Last received request from '+ username);
processLastRecvdRequest;
end,
except
addToLog(‘Could not process message list from: ' + username);
end,
deleteFile(msgFile);
end,

/lupdate central message database
procedure TRepositoryManager.updateRepository(msgsOnlyFile: string);
var
infile: textfile;
line: string;
ulD: integer;
uFrom,uTo, uCopyTo: string;
uGroupNo, uSection, uTopic: integer,
uMsgType: string;
uEntered, latestEntry: TDateTime,
uKeyword1, uKeyword2, uKeyword3: string;
uHeader, uText: string;
msgCount: integer;
begin
latestEntry: =0;
msgCount: =0;
ulD: =0;
try
assignFile(infile, msgsOnlyFile),

end;

except

end ;

Appendix H 369

reset(infile);
readin(infile, line);
while ((not eof(infile)) and (line <>")) do begin
ulD : =strTolnt(line);
readIn(infile, uFrom);
readin(infile, uTo);
readin(infile, uCopyTo);
readin(infile, uGroupNo);
readin(infile, uSection);
readIn(infile, uTopic),
readIn(infile, uMsgType);
readin(infile, uEntered);
latestEntry : = max(latestEntry, uEntered);
readin(infile,uKeyword1);
readin(infile,uKeyword2);
readin(infile,uKeyword3),
readIn(infile, uHeader);
uText: =",
readIn(infile, line);
while line <> '[END]' do begin
uText: = uText+line + #10;
readin(infile, line);
end,
readin(infile, line);
dsMsg.DataSet. AppendRecord([ulD, uFrom, uTo, uCopyTo, uGroupNo,
uSection, uTopic, uMsgType, uEntered, uKeyword1, uKeyword2,
uKeyword3, uHeader, uText]);
inc(msgCount);
end,

addTolLog('Could not complete update repository from ' + username+
". From: '+uFrom +'. Message Type: '+ uMsgType + . ID: '+intToStr(ulD));

addToLog(ntToStr(msgCount) +' messages received from '+ username);
closeFile(infile);

procedure TRepositoryManager.updateUsersMessages;

begin

else

end,

if isTutor then
with DataMod.quUpdateTutorMsgs do begin

end

close;

Params[0].Value: =lastRcvdByUser;
Params[1].Value: = username;
Params[2].Value: = username;
open;

with DataMod.quUpdateMsgs do begin

end,

close;
from processTransHeader
Params([1].Value: = username;
Params|[2].Value: = username;
Params[3].Value : = groupNo;
open;

saveMsgQueryResult;

procedure TRepositoryManager.saveMsgQueryResullt;

var

outfile: textfile;
queryFile: string;
line: string;
fLine: double;

begin

end;

Appendix H

i, msgCount: integer;
query: TQuery;

if isTutor then begin

end
else begin
queryFile : =STUDENT_DIR+username+ "MessageBox\' +MESSAGE _LIST ;
query : = DataMod.quUpdateMsgs ;
end;
msgCount : =0;
try
AssignFile(outfile, queryFile);
addTransHeader(outfile, tsMSG_LST);
append(outfile);
with query do begin
while not Eof do begin
fori: =0 to FieldCount-1 d o begin
if (Fields[i].FieldName <> 'Entered')then begin
line: = Fields[i]. AsString;
writeln(outfile,line);
end
else begin
fLine: = Fields[i]. AsDateTime;
writeln(outfile, fLine);
end
end,
writeln(outfile, [END]');
inc(msgCount);
Next;
end;
end,
closefile(outfile);
addTolog(intToStr(msgCount) + messages transferred to '
+ username +' directory');
except
addTolLog('Write error: Unable to update messages for '+ username),
closefile(outfile);
end;

queryFile : =AUTHOR_DIR+"MessageBox\' +MESSAGE_LIST ;
query : = DataMod.quUpdateTutorMsgs;

procedure TRepositoryManager.cieanUpMsgQueue;

begin

end;

DataMod.quUpdateMsgs.Close; else
DataMod.quUpdate TutorMsgs.Close;
with flbMsgQueue do begin

end

update;

while((items.Count<>0) and (items[0][1]="_")) do begin
/IshowMessage('delete: '+items|[0]);
deleteFile (RP_MESSAGE_DIR+Items[0]);
update;

end,

function TRepositoryManager.getLastReceived: double;

begin

try

with DataMod.qulLastRecvd do begin
close;
Params|[0].Value: = username;
open;
if not eof then begin
First;

370

Appendix H 371

Result: = Fields[0].AsFloat;

end
else begin
Result : = 0.0;
addTolog('No stored messages for "'+ username+"");
end,
end;
except
addTolLog('Could not retrieve last received for '+ username);
Result : =-1.0;
end;

end,;

function TRepositoryManager.processTransHeader(var tmpfile: textfile;
const tnsfile: textfile; var transType: integer): boolean;

var
line: string;
fline : double;
begin
Result : = true;
reset(tnsfile);
readIn(tnsfile, line);
ifline <> REPOSITORY then
Result : =false
else begin
readIn(tnsfile, username);
readin(tnsfile, transType);
readin(tnsfile, groupNo);
if groupNo = -1 then
isTutor : = true
else isTutor : = false;
if transType <> tsLAST_RCVD then begin // else rest of transmission irrelevant
readin(tnsfile, fline);
lastRcvdByUser : = fline;
rewrite(tmpfile);
while not eof(tnsfile) do
begin
readin(tnsfile, line);
writeln(tmpfile, line);
end,
closefile(tmpfile)
end;
end;
closefile (tnsfile);
end,

procedure TRepositoryManager.processLastRecvdRequest;
var
outfile: textfile;
lastReceived: string;
begin
if isTutor then
assignfile (outfile, AUTHOR_DIR+\MessageBox\' + ANSWER)
else
assignfile (outfile, STUDENT_DIR +username+'\MessageBox\' + ANSWER);
if addTransHeader(outfile, tsLAST_RCVD) then begin
DateTimeToString(lastReceived, 'dd mm yy hh mm ss', getLastReceived);
addTolLog('Last received request processed for' +username+ ": '+ lastReceived) ;
end
else

Appendix H

addToLog('Could not process last request for '+ username);
end,

function TRepositoryManager.addTransHeader(var tnsfile: textfile; transType: integer): boolean;
begin
try
rewrite(tnsfile);
writeln (tnsfile, username);
writeIn(tnsfile, REPOSITORY),
writeln(tnsfile, transType);
writeIn(tnsfile, DEFAULT_GROUP);
writeln (tnsfile, getLastReceived);
closefile(tnsfile);
Result : =true;
except
addTolLog ('Could not add header."),
Result: = false;
end;
end;

procedure TRepositoryManager.btOKClick(Sender: TObject);
begin

self.Hide;
end;

procedure TRepositoryManager.launchServer,

begin
if not running then begin
running : = true;
Timer.Enabled: = true;
btLaunch.Caption: = 'Stop Server’;
btLaunch.Hint: = 'Halt Message Server’,
self Hide;
addTolLog(‘Server launched');
end
else begin
running : = false;
Timer.Enabled: = false;
btLaunch.Caption: = 'Launch Server’,
btLaunch.Hint: = 'Start Message Server',
addTolLog('Server halted'),
end
end,

function TRepositoryManager.getNextID: integer,
begin
with dsNextID.DataSet do begin
Close;
Open;
Last;
Result: =Fields[0]. AsInteger +1;
end,
addTolLog('Next ID: ' + intToStr(Result));

372

Appendix H 373

end;

procedure TRepositoryManager.btMessageDBClick(Sender: TObject);
begin

MessageDatabase.show;
end;

procedure TRepositoryManager.btZipClick(Sender: TObject);

begin
with ZipStarter do begin
command: = 'Winzip32.exe’;
Execute;
end;
end,

procedure TRepositoryManager.btHelpClick(Sender: TObject);
begin

HelpScreen.Show;
end;

procedure TRepositoryManager.btUpdateHelpClick(Sender: TObject);
begin

RMUpdateHelpDB.prepareHelpUpdateFolder;
end,

procedure TRepositoryManager.btViewClick(Sender: TObject);

begin
with meLog do begin
Clear;
Lines.LoadFromFile(RP_SYSTEM_LOG_DIR + getLogFileName);
end;
end,

end.

Appendix H 374

H4: Learning Shell: Update Resources - interface and selected

code

unit viaUpdateResources;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Imdcompo, Imdclass, ImdnonvS, Psock, NMFtp, ExtCtrls, Buttons,
viaHelpBtn, FileCtrl, viaFileManager, vlaFolderManager;

const
DEBUG = false ;
type
TUpdateResources = class(TForm)
LMDsStarter1: TLMDStarter;
NMFTP1: TNMFTP;
btCancel: TButton;
RadioGroup1: TRadioGroup;
btOK: TButton;
vlaHelpBtn1: TvlaHelpBtn;
FileList: TFileListBox;
FileManager: TvlaFileManager;
FolderManager: TvlaFolderManager;
Timer: TTimer;
tmWhenToClose: TTimer;
procedure btCancelClick(Sender: TObject);
procedure FormHide(Sender: TObject);
procedure btOKClick(Sender: TObject);
procedure FormShow(Sender: TObject),
procedure FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure vlaHelpBtn1Click(Sender: TObject);
procedure TimerTimer(Sender: TObject);
procedure FolderManagerFailure(Sender: TObject);
procedure FolderManagerSuccess(Sender: TObject);
procedure tmWhenToCloseTimer(Sender: TObject);
private
closeNow : boolean;
latestUpdateFile: integer,;
Save_Cursor: TCursor,
procedure updateCaption(msg: string);
procedure createUpdateDir;

procedure updateResources;

public
procedure unZipResources(dr: char);
procedure transferResources;
procedure updateFrominternet;
procedure updateFromDisk;

end,

var
UpdateResources: TUpdateResources;

Appendix H

implementation

uses LMDMSG, vlaSystemDictionary, vlaUserOptions, vlaSystemUtilities;

procedure TUpdateResources.unZipResources(dr: char);

var

begin

end;

i integer;

tellUser(self.name, 'Drive = '+ dr, debug);
with FileList do begin
Drive: =dr;
Directory: = ExtractFileDir(drive + ": '+UPDATE_DIR +'dummy.txt');
tellUser(self.name, 'Directory = '+ directory,debug);
fori: =0 to Items.Count-1 do
if getFileNumber(items(i])>UserOptions.getUpdateFileNo then begin
tellUser(self.name, 'items[i] = '+itemsJi]+ ', UpdateFileNo =

"+intToStr(UserOptions.getUpdateFileNo), debug);

LMDStarter1.Command : = Directory+'\'+itemsi];
LMDStarter1.Execute;

latestUpdateFile: = getFileNumber(items][i]) ;
end;
end ;

Timer.Enabled: =true;

procedure TUpdateResources.UpdateFromDisk;

var

begin

end;

drive: char;

Save_ Cursor : = Screen.Cursor;
drive : = UserOptions.getDrive(VUPDATE);

if LMDMessageDIg('Place disk in drive "+ drive+" and then click, "OK" ",
mtConfirmation, [mbOK, mbCancel], 0) = mrOK
then begin
Screen.Cursor : = crHourglass; // Show hourglass cursor

try

unZipResources(drive);
finally

Screen.Cursor : = Save_Cursor; // Always restore to normal
end,

tellUser(self.name, 'Resources have been updated.’, true, false);
updateCaption('Resources have been updated.');

end;

self.close;

procedure TUpdateResources.UpdateFrominternet;

var

begin

NoUpdates: boolean;
Save_Cursor: TCursor,

Save_Cursor : = Screen.Cursor,
btOK .enabled: = false;
NoUpdates: =false;

875

Appendix H

createUpdateDir,;
Screen.Cursor : = crHourglass;
try
try
with NMFTP1 do begin
Host: = UserOptions. getRepositorylP;
UserlD : = UserOptions.getUserName;
Password: = UserOptions.getUserPassword;
Connect;
ChangeDir(UPDATES_ARCHIVE),
List;
if FTPDirectoryList.name.Count =0 then
NoUpdates : =true
else
transferResources;
end;
if NoUpdates then begin
tellUser(self.name, ‘No updates available', LOG_IT, false);
updateCaption('No updates available');
end;
except
updateCaption('Connection Failed! Could not update resources.") ;
tellUser(self.name, 'Connection Failed' Could not update resources.’,

LOG_IT, true);
NoUpdates: =true;
raise,
end ;
finally
if NoUpdates then begin
Screen.Cursor : = Save_Cursor,;
closeNow: =true;
end
end;

end;

procedure TUpdateResources.transferResources;
var
i integer,
dir: TFTPDirectoryList;
fileNo: integer;
begin
tellUser(self.name, 'Transferring resources...', LOG_IT, false);
updateCaption (‘Transferring resources...');
fileNo: = UserOptions.getUpdateFileNo;
/1 for each file in remote update directory
//download to local directory
dir : = NMFTP1.FTPDirectoryList;
for i: =0 to dir.name.Count-1 do begin
if getFileNumber(dir.nameli])>fileNo then
NMFTP1.Download(dir.name(i],'c: '+ UPDATE_DIR+ dir.name[i]);
end;
unZipResources('C');
end,

procedure TUpdateResources.FormHide(Sender: TObject);

begin
UserOptions.RadioGroup1.enabled: =true;
UserOptions.RadioGroup1.ltemindex: = 0;
UserOptions.btOK.Enabled: = true;

end;

procedure TUpdateResources.btOKClick(Sender: TObject);
var

str: string;
begin

376

Appendix H 377

case RadioGroup1.ltemindex of

0: begin
str . ='Connecting to university...",
tellUser(self.name, str, LOG_IT, false);
updateCaption('Please wait. '+str);
updateFrominternet ;
end;
else begin

str: ='Updating from Disk...";
tellUser(self.name, str, LOG_IT, false);
updateCaption(str);
updateFromDisk;
end;
end;
end;

procedure TUpdateResources.FormShow(Sender: TObject);

begin
closeNow: =false;
btOK.SetFocus;
RadioGroup1.ltemIndex: =0;
end,;

procedure TUpdateResources.FormKeyDown(Sender: TObject; var Key: Word, Shift: TShiftState);
begin
if Key = VK_Return then
btOKClick(nil')
else if (Key=VK_F1) then
vlaHelpBtn1.execute (self);
end;

procedure TUpdateResources.FormClose(Sender: TObject; var Action: TCloseAction);
begin
UserOptions.RadioGroup1.enabled: =true;
UserOptions.RadioGroup1.ltemindex: = 0;
UserOptions.btOK.Enabled: = true;
Action: =caFreeg;
end,

procedure TUpdateResources.vlaHelpBtn1Click(Sender: TObject);
begin

vlaHelpBtn1.execute(self);
end;

procedure TUpdateResources.createUpdateDir;

var
str: string;
begin
Str: = 'c:\'+UPDATE_DIR + 'DUMMY.TXT}
str: = ExtractFileDir(str) ;
if not DirectoryExists(str)then
MkDir(str);
end;

procedure TUpdateResources.updateResources;
begin
tellUser(self.name, '‘Updating resource files...", LOG_IT, false);
updateCaption('‘Updating resource files...");
try
with FolderManager do begin
Source: =UPDATES_TEMP;
Destination: =ExtractFileDir(ROOTPATH + 'dummy.txt');
Action: = vVMOVE;
Execute;
end ;
finally

Appendix H

Screen.Cursor : = Save_Cursor,
closeNow: =true;
end;
end,

procedure TUpdateResources. TimerTimer(Sender: TObject);

begi
if FolderManager.dirExists(UPDATES_TEMP)
and not FolderManager.isEmptyFolder(UPDATES_TEMP)then begin
updateResources;
Timer.Enabled: =false;
end;
end,

procedure TUpdateResources.FolderManagerFailure(Sender: TObject);
begin
tellUser(self.name, 'Could not update resource files.', LOG_IT, false);
updateCaption('Could not update resource files.");
end,

procedure TUpdateResources FolderManagerSuccess(Sender: TObject),
begin
/lupdate studentModel
UserOptions.setUpdateFileNo(latestUpdateFile);
tellUser(self.name, '‘Resource files updated. '+
'File no: '+intToStr(latestUpdateFile) , LOG_IT, false);
updateCaption('Resource files updated. '+
‘File no: '+intToStr(latestUpdateFile));
end;

procedure TUpdateResources.tmWhenToCloseTimer(Sender: TObject);
begin
if closeNow then
self.close;
end,

procedure TUpdateResources.updateCaption(msg: string);
begin

self.caption: = msg;
end,

end. S

378

Appendix H 379

H5: Learning Shell: Update Extramural Support — interface and

selected code

unit vlaUpdateExtramuralSupport;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, FileCtrl, Db, vlaFolderManager, vlaFileManager, dbtables;

type
TUpdateExtramuralSupport = class(TForm)
DataSource: TDataSource;
FileListBox: TFileListBox;
FolderManager: TvlaFolderManager;
FileManager: TviaFileManager;
procedure FormCreate(Sender: TObject);
private
procedure deleteOldRecords(table: TTable);
procedure updateConnection;
procedure updateLink;
procedure updateReference;
procedure updateWhat;
procedure deleteFile(filepath: string);
procedure activateTables;
public
procedure UpdateExtramuralSupport;
end;

var
UpdateExtramuralSupport: TUpdateExtramuralSupport;

implementation

uses vlaSystemDictionary, vlaController, viaSystemUltilities, vlaMsgData;

procedure TUpdateExtramuralSupport. FormCreate(Sender: TObject);
begin

FileListBox.Directory: = HELP_UPDATES;
end;

procedure TUpdateExtramuralSupport.UpdateExtramuralSupport;
begin

if not FolderManager.isEmptyFolder(HELP_UPDATES) then begin
tellUser(self.name, 'Updating Help...", true , false);

deleteOldRecords(dmMsgData.tbConnection);
updateConnection;

Appendix H 380

deleteOldRecords(dmMsgData.tbWhere);
updatelink;

deleteOldRecords(dmMsgData.tbWho);
updateReference;

deleteOldRecords(dmMsgData tbWhat);

updateWhat ;
tellUser(self.name, 'Help updated true, false);
end
else begin
tellUser(self.name,'No help updates available.’ true false);
activateTables;
end;

end;

procedure TUpdateExtramuralSupport.deleteOldRecords(table: TTable);

begin
try
with table do begin
active: =false;
Exclusive: =true;
active: =true;
EmptyTable;
end ;
except
tellUser(self.name, 'Could not delete records from '+table.Name, true, false);
raise,
end,
end,

procedure TUpdateExtramuralSupport.updateWhat;

var
infile: textfile;
tableFile: string;
line: string;
recCount: integer,
concept: string;
section, topic: integer;
elaboration, keyldea: string;
entered: double;
begin
tableFile : =HELP_UPDATE_DIR +'What.txt';
recCount: =0,
try
assignFile(infile, tableFile);
reset(infile);
while not eof(infile) do begin
readin(infile, concept),
readIn(infile, section);
readIn(infile,topic);
elaboration: =";
readIn(infile, line);
while(line <>'True') and (line<>'False') do begin //keyldea
elaboration: = elaboration+line+ #10;
readIn(infile,line);
end,
keyldea: =line,
readIn(infile,entered);
dmMsgData.tbWhat.AppendRecord([concept, section, topic, elaboration,
keyldea, entered]);
inc(recCount);
readIn(infile);
end,
closeFile(infile)

Appendix H 381

deleteFile(tableFile);
TellUser(self.name,intToStr(recCount) +
"records transferred to What
table', true, false);
except
TellUser(self.name,'Read error: Unable to update '+
'WHAT table; record count = '+ intToStr(recCount), true,
controller.debug);
closefile(infile);
end;
end;

procedure TUpdateExtramuralSupport.deleteFile(filepath: string);

begin
with FileManager do begin
source : =filepath;
action: = vDELETE;
execute,
end;
end;

procedure TUpdateExtramuralSupport.activateTables;

begin
with dmMsgData do begin
tbConnection.Active: =true;
tbWhere.Active: =true;
tbWhat Active: =true;
tbWho.Active: =true;
end;
end,

end.

Appendix H 382

H6: Learning Shell: Messaging — interface

unit vlaMessaging;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Db, Grids, DBGrids, DBTables, StdCtrls, DBCtrls, ExtCtrls, Mask, ComCtrls,
Imdcompo, Imdclass, ImdnonvS, Psock, NMFtp, vlaFileManager, vlaForwardMessage,
vlaMessagelList, Buttons, viaHelpBtn;

const
DEBUG = true;

type
TMessageSystem = class(TForm)
dsMsg: TDataSource;

dsUpdateMsg: TDataSource;
FTP_Server: TNMFTP;
FileManager: TvlaFileManager,;

tmKeepTrying: TTimer;
tmGiveUp: TTimer,
vlaHelpBtn1: TvlaHelpBtn;
procedure btNewClick(Sender: TObject);
procedure btUpdateClick(Sender: TObject); .
procedure btCloseClick(Sender: TObject); |
procedure btReplyClick(Sender: TObject); I
procedure F TP_ServerConnectionFailed(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure StatusBarClick(Sender: TObject); |
procedure btDeleteClick(Sender: TObject);
procedure btForwardClick(Sender: TObject);
procedure btPrintClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure tmKeepTryingTimer(Sender: TObject);
procedure FileManagerFailure(Sender: TObject);
procedure FileManagerSuccess(Sender: TObject);
procedure tmGiveUpTimer(Sender: TObject);
procedure vlaHelpBtn1Click(Sender: TObject);
procedure FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);

private

sendMsgFile: string ;
lastRcvdByRepository: TDateTime;
Save_Cursor: TCursor,
MessagelList: TMessagelList;
procedure saveToSendList;
procedure updateMessages;
procedure sendNewMsgs;
procedure fetchTransmission(transName: string);
procedure openNewMessage;
function getMsgName: string;
procedure createToSendList (lastUpdate: TDateTime),
procedure requestLastRcvd;
function processTransHeader(var tmpfile: textfile; const tnsfile: textfile,

var transType: integer): boolean;
procedure addTransHeader(var tnsfile: textfile; transType: integer);

var

implementation

uses

public

end;

Appendix H

procedure SendAndWait;

procedure sendTransmission(tns: string);

procedure deleteFile(fullpath: string);

procedure WaitForReply(transType: integer);

procedure synchroniseWithRepository;

procedure clearMessageBox;

function messageBoxContains(something: string): boolean;
function processAnswer: boolean;

procedure connectToF TPServer,

procedure FetchAndFinish;

procedure setMsgList(MsgList: TMessageList);
procedure replyToMsg;

procedure tellUser(pos: integer; msg: string);
procedure clearUserMsg;

procedure forwardMsg(FMsg: TForwardMessage);
procedure printMsg;

procedure addTolLog(msg: string),

procedure connectToRepository;

procedure enableUpdates;

MessageSystem: TMessageSystem;

vlaMsgData, vlaAddMessage, vlaSystemDictionary, vlaReplyMessage,
vlaSystemUtilities;

383

Appendix H 384

Appendix | 385

Appendix |

Course authoring and management application

Appendix | 386

I1: Authoring application — screen shots

n Define Course

“ Define System

@ Communication and Help
Management

‘Q Help

D Exit Applicaﬁdn :

Authoring application initial screen.

Appendix | 387

Message List

From [To [ce [Dete [Subiect [a]
Systern Tutor 04-Mey-03 150214 Sactien 12 Explemn "query" System response i
Russell Tuter 24-Mar-)3155547 Section 12 Explain “query” System response
[Chng Mim 07-0ct-03212748 Walcerne to 169 353 E:dramursl

:Chns Fem 07-Qct-03212843 Welcome to 159 353 Eramural

| {Chris Bob 07-Oct03 212947 Welceme te 353 Extramural

| [Chns 07-Oct-03213031 Welcome to 353 Extramursl

| Chnis Bob 09-0ct021601 35 Assignment 1

> chis 8ok 12-0c-43154306 Are you readyto rumble?

<] |

Get gaing)

Reply | New | Update Delete | Foward| Print | Ciose |

I

Tutor’s message list

Frem: [Svetem

To: [Tutor

e

Date: [04-+oy-03 15 0214

Subject |Secﬂon1 2 Euplain "quer/” System iesponse was rejected

Section: 1 Topic: 3 Class List I Add To Help I EditHelp

[0 USEFIJL ANSWER FOUNE INSECTION 1 2
SELECT "RETRY" FOR A BRUADER SEARCH

w« | <« | » | » Repy | New | Updote Delete Fownd| Pt | Ciose |

Extramural Support system notification. Database may be edited

from Message List.

Appendix | 388

2 False
2 True
3 False
2 True
1 True
2 False
2 True
2 True
4 True

Conceptual frameworks
Canceptual frameworks

Canceptual framewirks
Canceptual models
Desiwn process
Design team
Interaction paradigrs
Interaction styles

ok |G| s [t || i |

Norman's model

EE ETE T ETE T BTN R

Adding to Extramural Support database.

Add References

Add references for “Towards physical design" LQ
Reference
IPreece, J(Ed) (1993): A Guide to Usability, Addison-Wesley, Reading, MA. ji‘il

Chapter. page numbers:
IChapter 2. Section 2.6

Reference

1w

Add

Finish I

Adding to Extramural Suppo;t da;tabase.

Browse messages

From: Chris

To: Eob
ce &
Date: |H
Subject N
Section: l—
.
Don'tse atra
Chis

Appendix |

Addthemes for “Conceptual frameworks”

Theme:

I

Theme

M high-level model
Infarmahion processing
mental models

| | models

Concept Map

Caonceptusl framewortks

Interaction stiles

\\\
— S
o Ty
B —~—
' nterachon pard \ / - R
l Interaction style \\-. /-‘ > ~ Pt
l Norman's mods / S
1" \\\
e
metaphor

Conceptual models

|

-

389

Tutor can view Concept Map after editing Extramural Support database.

Appendix | 390

Manage Class List

wears. | need to pass Communication 101 in order to be promoted from police
|constahle.

Class List can also be managed from Message List

Appendix | 391

. Course Structure - et e : %

| Initiahse | | : o IR
| = First Section titie S

| FirstT opic fitle Add Section| D

Add Secion|
“ - Add Topic I

Delete

!

Save

~Course

= 159.353 Human-Computerinteracton Initialise

= HCl Fundamentals i
Designing for Usability
Modelling The User Interface

. The User Cognitive Issues
i Modelling The Interaction
= Analysis & Conceptual Design
| Design Issues

Lifecyde: Requirements analysis
Task iption. Sc -based
TaskAnalysis, HTA
Lo+ and Hrfi Protetyping; PowerPoint
Conceptual Design: Review

Physical Design & Implementation

* Usercentred Design & Evaluation

% Other Issues

NEW TOPIC
- NEWTORIC
~ NEWTOPIC

Defining course table of contents (System Tree). Initialised screen

(Top). Partially defined course (Bottom).

Appendix |

Define Model

rLearningSystemModel—————

| =8 o
1 = AllModes _inteliss |
| SelfTest Delete
i | Keyldeas —l
{ = TextBook R

- StudyGuide

e s A i e S

AliModes
Assignment
Dolfyourself
Exploration
GroupWork
Lectures
TextBook
Tutorial

~Components —————————;

AdministrationGuide 4|
Assignment
AssignmentorkSpace
Dolt

Drawlt

FeedBack

Keyldeas

Lecture

LectureNotes
LibraryExplorer
Messagelist

MyGroup

SelfTest

StudentNotes

StudyGuide 3l
Tutorial

'WebExolorer =l

Add Edit

Define Modet
‘Learning SystemModel————
Intialise I
Delete I
Save I

|
|
| = Virtual Learning System
| # AlModes

#* TexiBook

% Assignment

DoltYourself

#* Exploration

* GroupWork

= Lectures

‘; " Lecture

Tutorial

Components

Modes

AlModes
Assignment
Doltyourself
Exploration
GroupWork
Lectures
TextBook
Tutorial

Assignment .[
AssignmentworkSpace
Dott

Drawit

FeedBack

Keyldeas

Lecture

LibraryExplorer

Messagel.st

MyGroup

SelfTest

StudentNotes

StudyGuide

Tutorial

'WebExplorer 1=
W o -

B I O

Add selected component to model

Defining course study modes (System Model). Initialised screen (Top).

Partially defined model (Bottom).

302

Appendix | 393

12: Add Learning Material — screen shot and class interface

Add |.earning Material

Course Structure = Author's File System
- %€ 153.353 Human-Computer Int Update IE ¢: [system] ll
- v 1 HCI Fundamentals ‘—I =cC\
v 1.1 Designing for Usat > VLM_Repository
[1.2 Modelling The User Interface] 2> Teachers
V' 1.3 The User Cognitiv - |
v 1.4Modelling The Inte O Evolustien

= ¥ 2 Analysis & Conceptual
X 21 Design Issues
X 22 Lite-cycle. Require lMlsASS'E nmentdoc
X 23 Task description. ¢ Assignment 1_2 dac
e Ton ey
X 2.5 Lo-fi and Hi-fi Protc e

s00t00cst et
X 2.6 Conceptual Design)
+ R 3 Physical Desigr & Impl [
= X4 User-centred Di2sign & {Evaluation]

« X5 Otherfssues

MyAssignment_1_2 doc

Resources

keyideas
LectureNotes Delete I
LibraryExplorer

StudyGuide Update
WekExpiorer

Leamning Components
AdministrationiGuide

AssignmantWarkSpace

unit docAddLearningMaterial;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, ComCtrls,
Buttons, Imdcompo, Imdclass, ImdnonvS, ExtCtrls, FileCtrl, viaSystemTreeManager,
vlaResourceManager, viaFileManager, viaComponentList, ImgList, vlaFolderManager;

type
TAddLearningMaterial = class(TForm)

vlaFolderManager1: TvlaFolderManager;
procedure FormShow(Sender: TObject);
procedure btHelpClick(Sender: TObject);
procedure btExitClick(Sender: TObject);
procedure TreeViewClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure IbxNodeViewClick(Sender: TObject);
procedure btAddResourceClick(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FileManagerSuccess(Sender: TObject);
procedure btDeleteClick(Sender: TObject);
procedure FileManagerFailure(Sender: TObject);
procedure btUpdateClick(Sender: TObject);
procedure btKeyldeasClick(Sender: TObject);
procedure btSelfTestClick(Sender: TObject),

Appendix | 394

procedure btUpdateStatusClick(Sender: TObject);
procedure vlaFolderManager1Failure(Sender: TObject);
procedure vlaFolderManager1Success(Sender: TObject);

private

public

end,

var

courseTree: TSystemTreeManager;
resMan:TResourceManager,

section,topic: integer;

virtualFile: string;

selectedTopic: string;

studentOnly: TCompList;

noSpecialDirComp: TCompList;

specialWriteComp: TComplList;

basicComp: TComplList;

addimage: boolean;

imageFile: string;

statusDefaultsProcessing: boolean;
resourceUpdated: boolean;

function folderSelected: integer;

procedure addFolderResource(component: string);
procedure addStartUpFile(virFile, startFile: string);
procedure createCourseTree;

function isSection(tnode: TTreeNode) :boolean;
function isTopic (tnode: TTreeNode): boolean;
function contains (tparent,tnode: TTreeNode):boolean; overload;
procedure loadComponents;

procedure parseTopic (title:string);

procedure addResource(component: string);
function getSuffix(filename: string): string;

function getComponent(lbx: TListBox): string;
procedure deleteResource;

procedure updateNodeView;

procedure loadStudentOnly;

procedure loadNoSpecialDirComp;

procedure loadSpecialWriteComp;

procedure loadBasicComp;

procedure updateTopicStatus (sect,top: integer);
procedure updateCourseTree;,

procedure addSpecialDirRes(virFile, auFile, component: string);
procedure addSpecialWriteRes (virFile, component: string);
function getStartFile(component: string):string;

procedure setimageFile(imgFile: string);

function getVirtualFile:string;

function getSelectedTopic: string;

procedure getSectionTopic(var sect, top:integer),

{copy all updates of course material to the Respository archive}
procedure updateCourseArchive;

procedure initialiseForm;

AddLearningMaterial: TAddLearningMaterial;

implementation

uses

end.

vlaSystemDictionary, auCourseModelEditor, auSelectimageDlg, auAddSelfTest,
vlaSystemUltilities, aulndexFileDlg;

Appendix J 395

Appendix J

Evaluation — handy hints, scenarios for user

testing

Appendix J 396

J1: Handy Hints sheet

Confused?

If you become confused while using Massey Extramural, keep these options uppermost in your mind:

1.

Get help by pressing F1 or by clicking on the Tutor (Help) icon on a component, and read the tips on
using that component.

Open the Desktop Menu by right-clicking with the mouse on the desktop (background screen). This
menu provides access to many of the additional tools you need to complete a task.

Open the Course Explorer from the Desktop Menu. You can shift to any topic or any study mode in
the course by selecting it in the Explorer.

Use of the mouse

1.

Click means hold the mouse pointer over the screen object and press the left-hand button on the

mouse.

Right-click means hold the mouse pointer over the screen object and press the right-hand button on

the mouse.

Double-click means hold the mouse pointer over the screen object and press the left-hand button on

the mouse twice in quick succession.

Select text in a document by placing the mouse pointer at the beginning of the text to be selected,
hold down the left-hand button on the mouse and drag the pointer to the end of the text to be
selected. The selected text will be highlighted on the screen.

Select an item in a list by clicking anywhere on that item. The selected item will be highlighted on
the screen.

Use of keyboard shortcuts

The following key board shortcuts can be used wherever appropriate throughout the system.

1.

Help (F1). Click on a component to select it (the bar across the top turns blue). Locate the F1 key
(sometimes labelled "Help") in the top left-hand corner of the keyboard, and press it down firmly to
access the help page on the selected component.

Copy (Ctrl+C). Select the text to be copied with the mouse. Locate the CTRL key in the bottom left-
hand corner of the keyboard. While holding the CTRL key down, press the C key.

Paste (Ctrl+V). Click the position for the text to be pasted with the mouse. Locate the CTRL key in the
bottom left-hand corner of the keyboard. While holding the CTRL key down, press the V key.

Cut (Ctrl+X). Select the text to be cut with the mouse. Locate the CTRL key in the bottom left-hand
corner of the keyboard. While holding the CTRL key down, press the X key.

Appendix J 397

J2: Initialisation (Scenario 1)

{In this scenario you set up the course software for your personal use, and familiarise yourself with three of

the most important features of the system — the Course Explorer, the Desktop Menu, and the Help

system.}

1.

Click the Massey Extramural icon on the Desktop. The Windows Desktop is replaced by the Massey
Extramural Desktop. You are presented with a Logon screen which welcomes you to the 159.353

Human-Computer Interaction course, and prompts you to enter a username and password.

Enter your assigned username and password (Use your username without any capital letters as the

password).
Confirm your password by re-entering it.
Click the OK button (or hit ENTER). You are now asked to confirm your username.

Click OK. You are now presented with a screen which requests additional information the system

needs to run Massey Extramural on your machine.
Click the OK button or hit ENTER to accept the default computer settings.

Click OK again to confirm your settings. You are now presented with the Desktop Help screen

providing an overview of Massey Extramural.

Open the Course Explorer

8.

10.

11.

12.

13.

After reading the overview close it by clicking on XI. You are now presented with the Course
Explorer. The Course Explorer is set to the start of the course.

Click on the Help (Tutor) icon. A page opens outlining the features of the Course Explorer. After
reading this, click on [X] to exit Help.

Now try pressing the F1 key on the keyboard. This will also access Help. In general, you can open a
Help screen for any component by using the mouse to click the Tutor icon in the right-hand top corner
of a component or by pressing the F1 key on the keyboard

Exit Help as before by clicking on X]. The system closes most components for you when you move
around in the course. Any component that you can close yourself will have in the right-hand top
corner and possibly also a Close button

Use the mouse to explore the Course Tree. The left side of the Course Explorer displays the
contents of the course. If you click on a [+] sign to the left of a section it will expand to show its topics.
If your click on a [-] sign next to a section, its topics will be hidden. The coloured squares next to each
item in the contents indicate the status of that part of the course: RED means you have not yet
attempted it, AMBER that you have attempted but not completed it, and GREEN that you have
completed all the material within it.

Select Topic 1.3. Note how the top right-hand box changes to display information about the currently
selected topic. The bottom right-hand box changes to display the available study modes for the
selected topic.

14.

15.

Appendix J 398

Select Topic 1.1. Select TextBook Mode.

Click on the OK button. The Explorer component closes and the components of the Text Book Mode
open at Topic1.1. Note that the Desktop also displays the course title; the current section, topic and

topic title; and the current study mode.

Access the Administration Guide

16.

17.

18.

19.

20.

21.

22.

23.

Right click (i.e. use the right-hand button on the mouse) on the Desktop and a Menu of options pops-
up. This Menu provides a means of accessing general learning aids and other features available in

any study mode.
Select Learning Aids with the mouse.

Click on AdministrationGuide. A screen opens displaying the Administration Guide which provides

details of the requirements for completing the course.
Find out who the teaching staff for this paper are.
Click on the X in the top right-hand corner to close the Guide.

Open the Desktop Menu again and click on Exit. A box appears asking you to confirm that you wish

to exit the course.
Click on Yes. A box appears asking if you wish to backup your work.

Click on No to exit Massey Extramural.

<End of initialisation scenario>

Appendix J 399

J3: Start-up, browse the Study guide (Scenario 2)

(Prerequisite: Ensure the computer is connected to the university)

{In this scenario you access the Study Guide, change study modes, and familiarise yourself with two of the

tools for supporting your learning in any mode.}

Logon

1.

2.

3.

Launch Massey Extramural
Enter your username and try "1234" as password.

Enter your correct password and continue. A User Options form appears offering a number of
choices.

Browse the Study Guide

4.

10.

11.

12.

Use the Course Explorer to navigate to Section 1.2 of the Study Guide (Textbook Mode). (Click the
Help icon if you need guidance).

Open your Student Notes.

Browse the Study Guide for a few minutes. Find the paragraph on "Interaction Paradigms".
Copy the paragraph on "Interaction Paradigms" into your notes.

Close your Notes. When prompted, save your changes.

Each item in Key Ideas represents a key concept or learning goal for this topic in the course. The face
to its left indicates the status of this concept: RED, means that you have not yet demonstrated an
understanding of this concept, AMBER, means you have indicated partial understanding, and
GREEN, a good understanding.

Open Course Explorer and double-click Lectures in Study Options. You are now in Lecture Mode.
The same Key Ideas and Student Notes can also be accessed from here.

Open Key Ideas and Student Notes using the Desktop Menu.

Exit Massey Extramural. Do not backup your work.

<End of start-up and browse scenario>

Appendix J 400

J4: Work on an Assignment (Scenario 3)

(Prerequisite: Ensure the computer is connected to university)

{In this scenario, you familiarise yourself with the aspects of the system for communicating and
collaborating with others, and practise copying and pasting data between components.}

Logon
1. Launch Massey Extramural.

2. Enteryour username and password.

3. Return to where you left off in the course previously. (Click the Help icon if you need guidance).

Access and print your assignment
4. Use the Course Explorer to change to the Practice mode.

5. This is only a practice assignment. Use the Course Explorer to search the topics in Section 1 for the
Assignment study option. Open it.

6. Find the section of the Assignment requiring you to produce a PowerPoint simulation. Copy this
section to your Student Notes.

7. Inthe Assignment Work Space enter your username onthe cover sheet.

8. You will submit your assignment by mail. Print the Assignment cover sheet.

Discuss the assignment in your group

9. Change to Group Work mode. (Each student is assigned to a workgroup with whom you collaborate
on assignments and other tasks.)

10. Pressthe F1key.Readthe Help page.
11. Find out where your group leader works.

12. Update your messages. This will take a few minutes. Be sure to wait until the process is completed
before continuing.

13. View All your new messages.
14. Delete the Welcome message from Chris.

15. Reply to your group leader's query. C.C. a copy to members of your group. Send this message Later.
Close All New Messages.

16. Open Student Notes. Use the mouse to select (highlight) the section on the Power Point simulation.
Use CTRL+C to copy this section (Hold down the CTRL key and then press the C key).

17. Use CTRL+V to paste this into a new message to Chris. Ask Chris what he means by this. C.C. a
copy to all members of the class. Send this message now.

18. Exit Massey Extramural. Do not backup your work.

<End of Assignment scenario>

Appendix J 401

J5: Access a Lecture, Ask for Learning Support (Scenario 4)

(Prerequisite: Ensure the computer is connected to university)

{In this scenario, you access a video presentation, seek support in understanding one of the concepts

raided in the lecture, and then evaluate your understanding of these concepts.}

1.
2

4.

Log on to Massey Extramural

Use the Course Explorer to navigate to the lecture at Topic 1.2. (Click the Help icon or press F1 if
you need guidance).

Load and start the lecture (For this trial it is only a sample clip. In a real situation you would follow the
presentation with the help of the slides contained in Lecture Notes.)

Use Desktop Menu to open Key Ideas. This is the gateway to Extramural Support.

Getting help with Key ldeas

o) & | o

10.
11.
12.
18.
14.
15.
16.

You are confused about "metaphor”. Select this concept and open Extramural Support.
Press F1 and read the Help page.

Ask Extramural Support to explain "metaphor".

RETRY for further information.

Response is inadequate. Click NO.

ASK the tutor for more information on "metaphor".

Open the Concept Map

Select the related item "conceptual models" there.

Ask Extramural Support to explain "conceptual models".
RETRY.

Click NO .

Exit Help.

Self Assessment

17.

18.

19.
20.
21.

22.

You decide to register how well you understand Topic 1.2. Note the colour of the icons next to each
concept in Key Ideas..

Find and start the Self-Assessment questionnaire. Give a range of responses over the questions.
Rate "metaphor" and "conceptual models" as poor.

Update Key Ideas. Note the changes to the colours of the faces to the left of the concepts.
Open the Course Explorer. Note the changed colour at Topic 1.2.

Change study mode to Group Work. Update your messages. Wait until the process is complete before
continuing.

Exit Massey Extramural. Do not backup your work.

<End of Lecture and Ask for Help scenario>

Appendix J 402

J6: Monitor group discussion, get assignment feedback
(Scenario 5)

(Prerequisite: Ensure the computer is connected to university)

{In this scenario you use the internet to update your course material and messages from the university.}

1. Logon to Massey Extramural.

Update course material
2. From User Options, select the option for updating your course material and click OK.

3. Click the Help icon and read carefully the instructions for updating your course material from the
Internet.

4. When you are clear how to proceed, close Help and click OK. A screen appears from where you will

“unzip” (unload) material received from the university.
5. Click UNZIP. Wait for the unzipping process to complete.

6. Click CLOSE. Wait for the updating process to complete and return you to User Options.

Update your messages

7. Navigate to Topic 1.3 in Group Work mode

8. Update your messages. Wait for the process to complete before continuing.
9. Read all the new messages you have received.

10. Close All New Messages.

11. Find and open Assignment mode again .

12. Check your grade.

13. Exit Massey Extramural Do not backup your work.

<End of monitor scenario>

Appendix J 403

J7: Exploring a Topic (Scenario 6)

(Prerequisite: Close the connection to university, so that you can access the Internet automatically)

{In this scenario you will explore learning resources on the Internet.}

Logon

1.

2.

Log onto Massey Extramural.

Return to where you left off in the course last time.

Exploring the Internet

3.

10.

11.

12

13.

14.

15.

16.

Change to Exploration mode. You are presented with two components:
= Explore the Web; and

= Explore the Library.

Use the Desktop Menu to move to Topic 1.1

Click Explore the Web. A screen opens containing a web page viewer, a list of web page references
and a workspace for you to enter notes.

Choose the UsabilityFirst item in the list and click GO. Wait for the web page to load.

You find the page unhelpful. Click DELETE and the link is deleted from the web references list.
Close the component. Save your changes.

Use Key Ideas to search for help on "Usability adoption by industry".

Ask "Where do | find more on usability adoption by industry?" RETRY until no additional information is
available.

Click COPY and then EXIT.

Click on the Explore the Web option again. The web references list will now include the additional
references you located through Extramural Support.

Go to the Bad Designs item you located through Extramural Support. Copy a paragraph to your
notes, and then close the component.

Open your Student Notes. Your new notes have been added.

Try the Explore the Library option. This links you to the Massey University Library web site where you
may search for and borrow many books relevant to the course.

Close the component.

<End of Exploring scenario>

Appendix J 404

J8: Completing an interactive tutorial (Scenario 7)

{In this scenario you try the option of learning through an interactive tutorial.}

1.

9.

Yesterday you had difficulties with Topic 1.2, especially "metaphors" and asked for help from the
course tutor. Today you decide to look at the topic from a new angle. Use Course Explorer to
navigate to Topic 1.2 and select Tutorial.

Open Key Ideas. Select “metaphors” again and re-explore the available help. Note the update of

Extramural Support. The course tutor has responded to your request for extra help on this concept.
Click OK and then EXIT.

Launch the tutorial. Explore its features.

Close the tutorial.

Update the Self-Assessment. Rate yourself with a good understanding of all concepts. Update Key
Ideas and note the changes.

Use the Desktop Menu to move back to Topic 1.1. No tutorial is available here.

Complete the self-assessment for Topic 1.1. Check the status updates in Key Ideas and Course

Explorer.

Exit Massey Extramural. Do not backup your work.

<End of Tutorial scenario>

Appendix K 405

Appendix K

Evaluation: Information sheet, questionnaire, and
interviews

Appendix K 406

K1: Information sheet for participating volunteers

RESEARCH PROJECT ON COMPUTER-BASED

DISTANCE LEARNING

INFORMATION SHEET

What is the study about?

This experiment is investigating a potential means for delivering university-level distance education as an
alternative both to traditional paper-based correspondence courses and to computer-based systems which
require fast and reliable Internet service to work. We are testing the viability of what we call the Virtual
Learning Machine as a method for delivering computer-based courses that works as well in remote

districts as it does in the cities. This is why we are carrying out the experiment at Akitio.
Who is conducting the study?

The study is being conducted by Russell Johnson as a part of his Ph.D. research at Massey University.
The research supervisor is Associate Professor Elizabeth Kemp from the Institute of Information Sciences
and Technology, supported by Associate Professor Ray Kemp from the Institute of Information Sciences
and Technology and Mr. Peter Blakey from the College of Business, at the Turitea Campus of Massey

University in Palmerston North. (See contact details at the end of this document.)
What will participants do?

The experiment will be held at Akitio School. You will complete a short questionnaire summarising your
previous computing experience. You will then be asked to complete several tasks using the VLM program
over two sessions of up to an hour each. Following that | will conduct a short interview with you to gather

your impressions of the experience.

By agreeing to take part in this study, you will be giving permission for me to analyse your data for these

tasks as part of this PhD experiment.
How much time is involved?

| expect that participants will spend 2-4 hours on the experiment. This will involve two sessions spread out

over a week.

What will happen to the information?

Appendix K 407

The results will be anonymous, and will be used only for the purpose of this study. The results will be
published in the researcher’s PhD thesis, and in addition may be published in professional journals or
conference proceedings. A brief report of the initial results will be sent to every participant who is
interested. When the research is completed, the raw data will be held securely for a suitable time period,

and then destroyed.

Summary of your rights

While participating in this research project you have the right to:

. refuse to answer any particular question

. withdraw from the experiment at any time

. ask questions about the experiment at any time

. provide information on the understanding that your name will not be used

. receive a summary of the findings from the experiment when it is completed

If you have any questions or concerns about the experiment, or would like further information about the

experiment, please contact any of the people whose names appear below.
Contact details:

Researcher: Russell Johnson
Institute of Information Sciences and Technology

Tel: 374 3898 Email: R.S.Johnson@massey.ac.nz

Principal Supervisor:

Dr E. A .Kemp

Institute of Information Sciences and Technology
Tel: 3505799 x 2469 Email: e.kemp@massey.ac.nz

Appendix K

K2: Questionnaire for participants

Participant Profile

2. Gender (circle one): Female/ Male

3. Areyou currently studying at university or polytechnic level? (circle one) Y /N

4. If not, have you studied at university or polytechnic level? (circle one) Y/N
5. Majorsubjecto..

6. Have you ever studied by correspondence (extramurally)? (circle one) Y /N

7. Computer usage.

In what year did you first use MS Windows?

408

In a typical week, how many hours, including work and leisure use, would you spend at a

computer? 0 cssensessvsssvessmsssssme

Now please detail how many hours per week on average over the last year you have used

computers for the following tasks, by circling the appropriate number.

(Hours per week)

Write and send emails 0 1 2, 3 4
Browse the internet for news/information 0 i 2 S 4
Write letters or reports with a word processing program (e.g. 0 1 2 S 4

Word, WordPerfect, MS Works, etc.)

Keep accounts and budgets. with a spreadsheet program 0 1 2 3 4
(e.g. Excel, Lotus 123, etc.)

For your own university or polytechnic studies 0 1 2 3 4

To help others(e.g. your children) with their education 0 1 2 3 4

Other (please indicate)

.. 0 1 2 3 4

END OF QUESTIONNAIRE

5 or more

5 or more

5 or more

5 or more

5 or more

5 or more

5 or more

5 or more

Appendix K 409

K3: Outline for semi-structured interviews with each participant

(Each participant interviewed at the end of each session)

Day 1

1.

Go through each scenario (Initialise, Start-up, Assignment, & Lecture) using the written guide. Were
you able to complete? Did you have any difficulties? Where? Major/minor?

Today you carried out a number of computer tasks, including

= Set-up a complex computer program on your machine

= Searched the computer directory system to find the correct programs to run
* Opened files forthose programs

= Browsed web pages

= Created a document, edited and saved it in a word processor

= Printed a document

* Received, composed and sent messages across the internet

= Manipulated multimedia files

= Updated a database

= “Talked” with interactive software

Were you aware you were doing these things? Have you done any of these things on your own computer

before? Did you find it harder/easier with this special-purpose system?

3. What aspects of Massey Extramural did you like compared to doing things with your own computer?

4. What aspects of Massey Extramural did you not like compared to doing things with your own
computer?

5. What things would you like to see added?

6. What things would you like to see removed?

Day 2

1. Go through each scenario (Monitor, Explore, Tutorial) using the written guide. Were you able to
complete? Did you have any difficulties? Where? Major/minor?

2. Today, in addition to those you carried out yesterday, you have completed a number of new computer

tasks, including
= Transferred data files from a remote computer to your computer
= Synchronised a database on your machine with a database on a remote computer

= Searched a database for information on a particular subject

Appendix K 410

= Searched for and located a web-site on a particular subject
= Worked with an interactive software programme on a remote computer

Were you aware you were doing these things? Have you done any of these things on your own

computer before? Did you find it harder/easier with this special-purpose system?
What aspects of Massey Extramural did you like compared to doing things with your own computer?

What aspects of Massey Extramural did you not like compared to doing things with your own

computer?
What things would you like to see added?
What things would you like to see removed?

Do you feel able to use the system by yourself now?

Appendix K 411

K4: Interviews with participants

First Interview with User 1, 13/10/03

Q: What | wantto do is ask you just to go through your experience working through the scenarios. Were
you able to complete initialisation one?

A: Yes
Did you have any difficulties?
No.

Q: That was the one we went through together. The second one that we went through together was Start-
up and Browse. Did you have any difficulties with this?

A Yes
Q. Was there anything that you got caught up on?

A: No. | did make a mistake, but | was aware that | had made a mistake. It was just about how to go back
and fix my mistake. It was step 5, Open your student notes. | had skipped that and gone into the notes and
when it became time to put it into your student notes | realised that | hadn't opened it and that there was
nowhere to put it. It wasn't a problem It was just a matter of sitting and thinking where | had to go back to
and starting from there

Q. The next scenario is where you were working it through on your own. | understand we had a couple of
technical problems with the computer.. You should try to put that aside. But if it was a problem anywhere
you should mention that. Were you able to complete the assignment scenario?

A: Yes
Q: Did you have any difficulties?

A: No. And | thought there, especially when it asks you to click on Help at the start, to read about how to
go about it. Say if you go down to discuss the assignment and you go click F1 and read the Help page.
Well, there you didn't need to commit that to memory either, because | knew then that if | had problems |
could still go back to that, which | did. So | had a quick flick, then felt confident enough to go on. And then
when | did need to check some things, then F1 and it was very easy to follow and go about it, especially
like when we went into the Group work mode and then | had to find out about the lecturer. | didn't really
look athow to do that. | just knew that when | go to something | didn't know then F1 and it was there. And |
found it very easy. Quick, too. The fact that | didn't have to read all that and commit it to memory. Just,
Hey! F1 will help me when | have got a query. It was very straightforward.

...Down at Step 15. Close All New Messages. That was where it did take me a couple of "figuring it outs”
because in the other things, there is no Close in them, and you know | figured | had to go to [All] New
Messages to get that close button because the others didn't have close on them so | just whipped along
the bottom there to have alook to see where my close option was because there is no X, but there on New
Messages | saw Close,

But you would have preferred to have seen the X on that one as well?

Appendix K 412

Well. If it's not going to alter anything, | think it would be easier. Because otherwise you are opening up
new fields that maybe you don't have to open up. Like that New Messages. It says View All but then you
have to open up All New Messages

So you actually did the delete and reply from with All New Messages and then you closed that, you had to
close that to go back to the part of the course you were in...

...because then | had to go back to Student Notes and then add that message in. It took me a minute or
two to figure out how to close it. | went along each icon [button] to see what they had in them. As soon as |
saw Close | knew | was on the right track then...

And, any other difficulties. ..

That was where there was a technical difficulty [in which an image from a previous screen stayed on
screen), so | could not see what | was typing... But then, after | completed that task and did my next click, |
could see my message. So it was working behind it , | just couldn't see it. So | had to rely on the fact that it

was going in.

Yes that was unfortunate it was a question of the [memory] capacities of the computer. So then you
accessed the lecture and the learning support system?

Yes.
How did that go?

Good. Again. F1, Help page. | think by that stage | had figured out how to use this so | didn't really need
the F1. There were only three choices there anyway so it was pretty much straightforward. You've got
Retry, you've got your Ask underlined here [in the scenario]... what you needed to use. So it was quite
straightforward. | think that [scenario] 4 was easier than 3. Then, | know | wasn't supposed to, | did 5,
which was also easier than the 3. | think it got easier. Whether that was because | had figured out how to
do it | am not sure, but | found 4 and 5 easier than 3 to be quite honest..

| think that is very likely because there is a learning curve with this like with anything. But there are only a
few basic moves with this system, and once you have got those it will be interesting to see when you do
the next part tomomow, whether you fly through or what have you. Another way of looking at what we're
doing today...

You know with your ticks down there at the bottom. This is on access the lecturer, about the metaphor. Do
you remember the Retry's, the tick for the OK's, so there it could be F1 that | had to look at. It took me a
couple of seconds to figure out that | had to tick everything. So you know how when you have got, you
have to click No or something, there was one there that in particular that it wasn't showing up as an option
until | clicked on that tick box, then they all come up again. But that was again straightforward. You know
why isn't this showing up It's a process of elimination basically. If | tick that... But | was a little worried that
if | tick that box | was going to exit out of it [Extramural Support], but no | figured after | had ticked it once
that No. obviously you stay in there. And all those options come up..

What you're doing with all those buttons is that you are having a dialogue with the system - you give them
a question and they give you an answer and you give them a response and they give you another
response and that interchange is going on..

And again itis one of those things that once you have used it once, you know what that tick box is for, as
you say, it is like a sentence, it's like a full stop to me. I have finished doing that and then....

Appendix K 413

Fine. We'll come back to some of those things ... This extramural learning prototype is a simplified system
computer-wise, but it is not the same thing as a simple system because the tasks are quite complex. In
fact | will just go through a number of the things which you actually did computer-wise today. You set up a
complex computer program on your machine, you searched the computer directory system to find the
correct programs to run, you opened files for those programs so they could run; you browsed , you created
a document, you edited and saved it on a word processor, you browsed web pages, you printed a
document, you received composed and sent messages across the internet, you manipulated multimedia
files, you updated a database and you "talked" with some interactive software. My question on this is: were
you aware your were doing these things?

Some, but not all.
Like which?

Like right back at the start you were creating and. | was aware | was talking to the computer obviously
because | was getting replies and reading what it was doing. Printing a document was straightforward.
Right at the start. Yes | wouldn't have gathered that it was a complex computer program. It seemed too
easy to be doing that to be quite honest. If you told me that you wanted me to create a complex program,
then | would have panicked straightaway.

Yes, because the system is doing most of the work for you. But have you done any of these things on your
own computer before?

A little bit. But not everyday. As you say it is pretty well done for you | mean: Type in what you want and
here it all comes sort of thing. So you are not really searching the same way. For example, if | am using
Encarta or something, | don't really have to do much at all. If | want to find out about Botswana, then type it
in and bang, it all comes up. So different.

Yes the way the system is set up itis to keep uppermost what you have to do rather than how you have to
do it. So you are opening a tutorial, not a particular piece of software.. Did you find doing these things
harder or easier with this system than when you have done it before?

I'd say easier. And the fact that you have highlighted the keys that you need to use. And still, on that
keyboard | don't think that | know all the controls when it comes to using it for Microsoft or something like
that. There's so many .. hold two keys down to do this or that and that's not clearly explained. But as you
have set it out this key will do this and this key this. And its again remembering what key will do what task
but there is only three to choose from. If one doesn't work we go to the other one and pretty much
eliminate each key and one of them will get you to where you want to go. So | think easier to be quite
honest and, once you get the hang of it, very straightforward as to how to do it. As | say again to go from
activity 1 to 5, | felt a lot more confident as | went and | didn't need to use the F1 or the little lecturer to help
me so much because | could figure it out myself.

OK. So .. What do you like about this extramural system, what aspect of it, compared to doing things with

your own computer?

It is pretty much, what would you say, standardised. Because you are using the same three keys for every
area. So you go into a new area and these three keys are applicable. Whereas if you go into different
things on say your normal computer, well sometimes this for that and that is for that, and that and that.. It's
not like a standardised. ..

So it's the consistency across the whole thing...

Appendix K 414

Yes.
Was there anything else that comes to mind?

Well, I'd call it user-friendly. The instructions are pretty well.. | think the Help, the Handy Hints are great,
because it's all there for you and anything you need to do is on the Handy Hints. So | would suggest that if
| had that at home as an extramural student, well, you can't go wrong. | feel quite confident that | have got
it all, so it's like my Help Phone number. Whereas with my own computer here, | have had problems and
rung up and that was six months ago and | still haven't had a reply and now they have gone under, the PC
Company, so I'll never find out why the machine was doing these things.

What about aspects that you didn't like compare to doing things with your own computer?

Nothing really. You have got to think while you are doing it, which is not a bad thing. Whereas with
Microsoft Word it's just word, font, type.. basically. Other than that | am not using my computer in the same
way here [when working at school]. I'm not using it as a learning tool. It's more of a processing tool... It's
different for me, because | just have to make sure that the information is on that computer for the kids to
access it, and show them how to get it. Whereas here | have got to think because it is something new. But
again, once you get the hang of it, it would be straightforward.

So if I understand you, you are saying that you havent really used a computer for a task so broad..
Well one.. something different and something which | have had to think through step by step to do.

Because there are actually many tasks aren't there? From a computer point of view, it is just about
everything that you would normally do separately ...

There a couple of bits of language in the scenarios., I'll find it exactly: Find and open Assignment mode
again. Like what do you mean again. But | thought. | will go find this and | found it. But | had a quick look
back and Where's Assignment Mode, and it wasn't on here, except for when | printed that... But it actually
wasn't too hard to find. So | thought it was quite good that | could do that, from only spending half an hour

on it, now | can find most things on there.
Anything you would like to see added from that first experience? From the point of making it easier to use?

The only thing where | did panic, well not panic, | knew that | had to rethink about how to keep out of
somewhere and | knew that | had to go back but there was no way to go back except exit completely, but |
needed to go one step backwards.

in the scenario. ..

Yes. But then again. If | thought about them | think that | went into the Course Explorer and that helped me
through to where | wanted to go But a couple of times | wished there was a back key so | could just go... |

know there is one, but it didn't come up as an option..
It's not a back key in the sense that you are talking about ...

No. Just can | go back to my last move. Because you pretty much know when you have gone too far the
wrong way, but it's not until you get there that you realise that Hey. | shouldn't have gone there. But | didn't
want to exit and have to start all over again.

Yes. If you exit you will always come back exactly to where you were unless you choose notto. The way to
go back is through the Course Explorer as you discovered.

Appendix K 415

As you say it took me exactly where | wanted to go. But | was wondering there whether this is going to
remove where | am, that is, take it off the screen. With those technical things [in which previous screens
were not closed properly by the computer] | was beginning to wonder is this supposed to stay like this or is
it something | have done? | didn't realise it was technical. | thought. Am | doing this wrong? And backing
up all these screens. | did wonder because | had followed the instructions. Is it supposed to stay like this?

Anything you would like to see removed?
No.

<End of first interview with User 1>

First interview with User 3, 13/10/03

Want | want to do is go through those scenarios one by one and just get your impressions. Were you able
to complete the first scenario?

Yes. That was all pretty basic
And the second one which | had also gone through?
Yes that was fine.

So we'll go to the third one which is the Assignment one. Did you have any trouble, did you get caught up
on anything there?

Not on this one. Just waiting for it to stop fetching messages [because "fetching messages" message was
not cleared from status bar after process was completed]. No that was all pretty fine, that was all pretty
easy actually. Putting in your cc it was all in there, everything was there for you.

Did you find you needed to referto the Help at all?

Yes, | did actually. Just to get a handle around things like clicking on a person to find out where they were
from and things like that.

OK You found that one quite straightforward. And what about this fourth one?

That was good. Although | did have to go into the Help when it said to open the Concept Map. And then it
said to select the related item. And here | was clicking on the actual word and it wouldn't work. So | went to
Help and it said click to the left of it, so as soon as | did that straightaway it was fine.

And you had no other problems with it?

No

You haven't actually studied anything by computer before?
No.

If you actually sit back and look at what's covered here, ... you are doing quite a lot of things with that

computer?

Yes. Well | could see that | could use it for mine quite easily. | think. God. It would just make it a lot easier.

Appendix K 416

You actually set up the software on the machine. When you click on that explorer you are looking for a
program and a file. A lot of what you are doing is browsing web pages. You create a document, and you

were editing, saving and printing them. ..

The other good thing was when you log off, then, when you log back on again, you can go back to what
your were doing previously. There is no need to open this, open that and go around trying to find out what
you were doing before. It was all just there at the click of a button. That was really good.

You were sending , copying, and editing emails. You were manipulating multimedia, you were updating a
database and you were having a conversation so to speak with interactive software. How much did you
have a concept that you were doing these kind of things?

To start off with probably not. But because | did those first two twice, and when | went through a second
time - as you are going through it you get more familiar with it | suppose- it was easier. Just right-click and
away | go. It all became a lot easier just from doing those first two twice. The rest of it seemed to fit into
place. OK this is where | am going. From your Course Explorer you go here, you go there, and if you want
to, you can close everything down and go back to the start.

Have you done many of those things on a computer before?

Cutting and pasting, | have. But on my keyboard | have a Cut, a Copy and a Paste key you see. Sort of
some of it | have done before.,

Everything you need to study your course you are doing in a special environment. Did you like it that way?

Yes it was easier. Half the problem with doing a lot of things on a computer is that a lot of it is just
irrelevant stuff, and you get sick of waiting just to get to your original stuff. | think that is where a lot of
people think, | can't be bothered doing that anymore. They lose patience, because you have to go different
ways around to do different things. You have to close boxes down, you've got to go back to the start when
you log off, you've got to find your way back around again. Whereas this is a lot easier because you just
close everything at the same time, you don't have to worry about closing boxes here and there, and when
you log back on, it comes straight back exactly to where you started from. It was a lot easier.

What was some of the things that you didn't like about the system, that you ran up against, and wished

wasn't there?

No. It actually wasn't too bad. Another good thing that | learnt was click on your bars and it brought it [the
selected window] forward. So you could move things to the foreground or to the background as you
needed, for copying and pasting the notes, listening to the tutor and things like that. The Help buttons were
all visible, and if you didn't find them, you always had the F! button. Not that | didn't find them but the Help
screens were good. When you went into Help they were pretty self-explanatory.

And you think something along these lines could be quite useful for you own study?

Absolutely. When | do my study | get a textbook. And | get masses of photocopies of what the tutor pulled
out of the textbook basically and | have to sit down and go through all that. If you had it all up on your
computer and did it all that way. Emailing him. Or sending him a question. You know: What do | do with
this Power Point thing? That was all easy because, if | wanted to do that with my own course, | had to
close down, hook up to the Internet, bring up all that. It would take a long time, and that's when | think, |
can't be bothered doing all that. I'll just struggle through. Whereas with this one it was right there, and you
could just easily do it. Your notes were just down in the side. Push that to the back and, well I'll have that

Appendix K 417

now. And push that to the front and whack it in. It was a lot easier and more specific to me, rather than ...
to everything.

It's just purpose built. It's for the one job. It's not for everything. If | understand what you were saying
earlier, when you want to do something on your computer, there's a whole lot of things there that you don't
want to deal with..

But you still have to deal with them because they are part of the software
And so you thought this way was..

..easier. Because everything you have got in there you obviously need. At one point or another you are
going to need everything that's there. Whereas with a normal computer, and other software, there's a lot of
stuff that you just don't need. And to get around to doing the task that you want to do, it's harder to get
there because you've got obstacles in the way. Whereas with this it's just all there. With the workgroup it
came up on just that topic, things that were relevant to just that topic, rather than every single topic and
having to weave your way through it. It was just what you wanted to know, when you wanted to know it,
not like other systems...

Of course, some would see that as a downside because you can't see everything at once...

But even with that though, all you have to do is click Exit and it's gone and you can bring up your next thing
... S0 its easily interchangeable, because when you do log back on it's right there again. You don't have to
go back through and do everything again.

You obviously found a couple of things like a message that was out of date, that kept you waiting. Was
there anything else like that? Small things:?

| don't think so really. | didn't notice anything.
Anything that you thought could have been there that wasnt? Or would have helped if it was there?

Displaying the [status] messages better [on GroupWork]. That was the only thing. It was there for ages
obviously. And | was going: Oh My God. | wondered if something had happened to the connection or
something. It was still fetching messages... There can't be that many messages. ..

No. That was exactly the usability issues that | wanted you to look for. In this case it wasn't so much the
big issue. ..

Yes, | was getting annoyed because it was taking so long. And that's what often happens on the Internet. If
it takes that long | just say bugger this and just close it and leave it.

In ending, | just wanted to ask you how you found these sort of exercises as a way to learn the system?

Oh. Really good actually. You know because you are actually reading it and physically having to go and do
it. And so you can see ... It says, for example, just try the F1 button and have a look. And often | did just
have a look to see what was in there. Yes, it was easier to do it. And even though the content of the
course meant absolutely nothing to me it still didn't matter because you still got the general idea of what
you were supposed to be doing and how it was supposed to work.

Yes. The main test of the functionality of the system is: Can you learn with it? But we can't really test that
in an hour on the machine. So we were really trying to find out: Can you find your way about? Can you use
this system? Picture yourself. You are sitting at your place. You get a CD-ROM in the mail, a video and
something like this...

Appendix K 418

The best thing is these three things here [on the Handy Hints sheet].
..the Fl, the Menu and the Course Explorer?

You can refer to them at any time. And | am a great one for using the Help, because | think: There must be
an easier way to do this. Even just those three things there. Once you're in you can pretty much do it with
these. They were a good help.

Let me ask you one other thing. You went into the learning support system, and again the content of it is
no more meaningful than the course. What did you think of that side? Imagine you are sitting there at
home, and you are struggling with something. How did you find this integrated approach? You know, ask
your group? Ask the tutor? Linked together. Did that appeal?

Yes it did. Because the help desk | have got on my one is pretty basic and often you can't find what you
need anyway. Because if one doesn't know the wording... There's a lot of concepts that | don't understand
and so | think what the hell's that. In here it said "section one". What's "section"? so clicked on the old Help
button - oh | understand that now...

<End of first interview with User 3>

First interview with User 2, 14/10/03

The idea of the interview is that | will go through a few points and try to get a feel for how you found using
the system. And the first thing | want to do is just go through each of these little exercises/scenarios and
ask how you did. So "Initialise", were you able to complete that?

Yes.

Did you have any difficulties?

No. That was very easy, step-by-step, very basic.

OK. Any other comment on it?

No. | found it very easy.

The second one was on starting up and browsing the study guide. Were you able complete that?
Yes.

Did you get caught up anywhere?

No.

You didn't have any major problem with that, that you can recall?

No.

OK. Those two were the ones that we went through together and had a couple of goes at.

The main thing for me was remembering to right-click and bring up the menu. Once you have got that,
once you remember every time to right-click and bring up the Desktop menu then it is good.

Well, we can come back to some of those points. Now the third one was working on the assignment. Were
you able to complete it?

Appendix K 419

Yes!

Did you have a few hiccups? | know you had a technical problem with the printer [which won't work unless
sheets of paper are manually fed into it]...

It was more my reading the question, the instructions It was instruction 5 that got me. | sat on that for quite

a while.
This was the practise assignment?

To search the topics in section one, for the assignment. Where the option was to open it but | didn't know
what | was supposed to do with it. | didn't realise | was supposed to open it, check it out, and close it again.
But apart from that, the instructions are really clear, right down to the copying and pasting which | have

never, ever done in my whole life. And that was probably the easiest part of the whole thing.
Yes | think sometimes with these things, if you haven't learnt other ways of doing it then often it...
It's just so simple. | didn't realise how simple it was. ...

So that was the assignment one which was number 3, where you will also doing the communicating with
the university, or simulating that. And that went all right?

Yep. That was fine. Apart from the problem that the welcome message that | had to delete had already
been deleted [as the result of a glitch in re-setting the computer after the previous user had finished their

scenarios).

So then we had access a lecture and ask for learning support. Were you able to complete that?
Yes. | was actually. Much to my surprise..

No problems with it?

No. It was surprisingly easy. | kept waiting for a. .. | was very focussed on the instructions. Reading them
through a few times before | tried it. And every time | tried it, it worked and | thought. Mmm... This is too
easy. | can't be doing everything right... There must be something | am doing wrong. But it worked. It was
really good.

Yes. | noticed that you ripped through that one quite fast actually.
Oh. Honestly... | understood want the instructions were and so | did it.
Did you find it got easier as you went along?

Yes. Because you.. | believe | got the feel of the menu. And when it says go to the Desktop Menu to Key
Ideas, | knew.. by the time | got up to the fourth [scenario]. | knew exactly where it was. It wasn't a
problem. But the Concept Map . that got me. | sat on that for a little bit. Because | couldn't quite get ..

What it was?

Yes. And | had to keep thinking, don't try to understand it, just do. But | was trying to understand what the
Concept Map was and why it was there and why | had pulled it up. But | found it quite good actually.
Surprisingly easy. I've probably done it wrong. Surely I've done it wrong.

Well. If you completed it you haven't done it wrong. With something like the Concept Map there's an aspect
of that which requires.., if you don't understand the course and you are not actually doing it andjlooking for

help on something, then the idea of what you are doing by looking for related concepts.....

Appendix K 420

And it says, too, select the related item, "conceptual models"” and | couldn't select it and it wouldn't work.
So | went to the teacher, to the tutor [Help icon] and it said that if it is in blue you can't select it or
something like that. And | thought mmm... that's not right. But when | came back | clicked it again and |
selected it, | don't know how or why. | did something different obviously and it worked according to the
instructions. But the first time | tried it, it didn't work, and | thought: This isn't right.

If you go back and look at the Help again there is a way to select it. It's where you select. But | won't tell
you that. But you go back and look again when you have to. You have probably done a lot more with a
computer today than you have done before..

Oh absolutely..
Orthat you realise that you have done...

Ever. No | can't believe that | have copied and pasted, and sent emails. Cc'd emails, etc. | don't go down
that road because it is too hard. | have no idea that it was so easy to get something off a computer and
copy it and stick it onto something that you are going to email. It's simple. But | didn't know that before..

Well it's not always so simple..
Yes. | felt quite clever doing that.

You actually setthat program up. You ran a whole lot of different programs, you found files that would run
with those programs and attached them to it, as you select things through the explorer. You've been to
web pages. You've been word processing, printing, composing emails, manipulated multimedia files. And
you even updated a database and talked with the software when you were in the Help system. It's actually
quite a lot of things. When you were doing it though, how aware were you that you were doing those
things?

Which part?
I guess what | am asking you is how conscious were you?

Well. When | did this one here [Discuss The Assignment In Your Group in Scenario 3). When | copied and
pasted into it. | did it without realising exactly what | had done until | had done it. But when | got to this
page and | got to the extramural support, | couldn't believe that | was doing it. Like | knew | was doing it but
| thought | have got to be doing something wrong here because this is really easy. The little question thing
where you can ask a question and then ask again and things like that... Well | got the gist of that and |
thought it was pretty cool. But. | have to admit that third one | pretty much flew through that without
realising what | had done until the end. And | thought. ooh goodness me | have just done some really
major stuff that | have never done before. Soyes...

So quite a bit of this you say you have never done before?
Probably 70%. | would be your best guinea pig ever.
So I was going to ask you whether you found it harder or easier? But if you haven't done it before. ..

I have tried - copying and pasting, and things like that. And | just can't do it. And going in and out of the
little boxes and things like that. | find it extremely hard. Like | said to you before, all of a sudden the
computer goes "Whoa! That's enough. | can't handle that." And | know it's not the computer. It's me being
too busy, trying to go here and do this and do that and not closing the boxes that need to be closed and
running things on top of other things and stuff like that.

Appendix K 421

So did you find this way of managing that for you...?

Brilliant. Fantastic. | think all computers should be like this. | really did. Half the time | get frustrated when |
have to work with my computer because it is not as simple as it should be. And this is as simple as it
should be. And that's great. If | was to be studying with Massey and there was a program like that, that
would probably be one of the main reasons why | would study online. If | had to use that for my studying
that would be fantastic because it is so easy to use. As far as using the computer goes. So how much is it?
Is it for sale?

It's only a prototype at the moment ...
How long do we have to wait. What a great idea.
So what else struck you that liked about this system?

| liked how the right-click would bring up the menu. | used that more than | used the Help. Because | knew
that | could gointo that and | could go wherever | wanted and | am not going to get stuck anywhere. I'm not
going to open... apart from when | went into the library which was trying to get onto the Internet that was
off the menu. | don't know how | did that. But just being able to go into the menu like that and surf around
and see where everything is. Yep that's what | want, rather than going to Help and trying to look for
whatever key word | need. | found that real simple to use.

If this was set up for real then when you visited the library it would mean nothing because you could just
go there and then come out again. It's because with this trial we are having to have two connections, one
to my place and one to the Internet. Because what would normally happen is you would go to the library
and say that is not where | want to be, so you just go again. You don't stop the system by doing that... Did
you find anything that frustrated you?

There were a couple of questions that | thought could have been explained a little better. But that was only
"lecturers talk" instead of.. there was one that got me and | think | said to you why don't you just say "Close
it". | can't remember where it was now ... There were just a couple of things. Yes, this one here. Use the
Course Explorer to search the topics You had to pretty much read between the lines. | think that it says
just check it out, have a look at it [in the Explorer],and then move on to the next question. But apart from
that, as far as the actual program goes... No | thought it was great.

So part of the way that the scenarios were structured was that they start by telling you everything and then
the later ones are not telling you everything to see if you can bridge the gaps. You said that after you had
completed this part you felt that you understood how.. ?

Oh for sure. At the beginning, it was pretty basic really. And when you get to the end of what | have done
so farit's definitely harder. But from the beginning you are pretty much weaned into it.

So how did you find the Handy Hints?
To be honest the only ones | used were copy and paste
So you keptthese things in your mind?

Yes they were in my mind, probably after the second [scenario] | had it in my head that if | right-click the
menu is going to come up, and if | can't find anything on there then | am going to press F1 and Help will
come up. But it was for the first two scenarios that | still kept thinking what do | do what do | do and | kept
looking here [Handy Hints). But really | only used it for copy and paste ...

Appendix K 422

Which is something that you weren't previously familiar with?
Yes.
Anything else you would like to see added, notto the scenarios but to the system?

No. | don't think so. I'm really surprised at how easy it was to use for me personally, and I'm no whiz on the
computer, Sure | had instructions, But towards the end they were maybe a bit vague. But | did it. | still did
it. | completed a task which had something to do with something | had no idea about. But | followed the
instructions and it was just so basic. And even when | went into that Library where | shouldn't have been it
was very easy for me to get out and start again. | just found it so easy, whereas normally, if | was on my
computer and something like that happened, | would end up turning it off, the off button, and going back to
it another day because I'd get frustrated. Whereas with this, because | had that right-click, | could go back.
| kept going back to it. That was my safety rope the whole time.

<End of first interview with User 2>

Second interview with User 3, 14/10/03

So what you went through today- you monitored your messages,; you updated your course material, you
explored other materials, basically through the Internet; and then you accessed an online tutorial. Now
were there any of those you weren't able to complete?

No. Easy.

You didn't have any difficulties?

No. Not a one.

Did you think it was easier than yesterday?

Yes, it was a bit. Because | thought | was familiar with the layout and everything. So | knew Key Notes
were down here and when it comes up | was familiar with it so it was a lot easier.

Actually you did some quite complicated things. Have you ever updated materials on your computer like
that before?

No
You actually went to a remote computer..
No | have never done that.

And also you synchronised the data on your computer with that on another one, you searched a database
for information on a particular topic, you did a similar search for web sites, and again you worked with an
interactive program, only this time it wasnt on your machine it was on a another machine. How conscious
were you of doing these things?

Look | was just doing them. | didn't know what was involved or anything so, to me |, | had no idea of what
was going on in the background, the work that was going on just to get me to bring up my references and
everything else. The other thing was because it was so quick. The information came very quickly,
especially on the internet, to what | am used to at home, you have to wait around for the page to come up

Appendix K 423

you know - 8 items remaining - and ahhhh... and then waiting , waiting but that was very quick. Press a
button and it all came up fast.

Yes well that is part of the problem of the rural Internet isn't it? Where it's very frustrating trying to work on
it. Have you done searches on the Internet before?

Yes.
So you are used to doing that. Well this was a different kind of search in that you were doing it indirectly

Yes. When you do it at home you have to think of your own thing to type in whereas because you have a
specific topic and you went through it that way, it brought up relevant sites rather than having to muddle
through and having to type in key words and things and do it that way.

Sowasit easier doing it this way?
Oh yes. A lot easier.
But do you think those restrictions help or hinder?

Well it's hard for me to say because the course material didn't mean anything to me. But in some ways |
suppose you would think that it would be a help because it's connecting to your Massey or whatever.
They're feeding you stuff that is relevant to what you are learning. So in that way | would expect it to be
helping rather than hindering it. Because you expect them to know what you need to know.

Again | would just ask what did you like about doing it that way?

It was easy and it was fast. And that is my two main things at home. It's often quite hard to get your topic.
Especially when you search the internet, you type in say 5 key words or 3 key words and then it comes up
with 250,000 or a million possibilities and you think "Gee. | 'm not going to go through all that". So yes, it
was quick and it was easier. Because you didn't have to waste all that time in sorting through the
information that you are given as to what's relevant and what's not.

Compared to yesterday you felt more confident.

Navigated myself around it a lot easier because ' it's got only so many main components to it. So you don't
have to remember a lot of things. You've got your Explorer and there's all your things there. You've got
your tutorials and that down the side, and then you have got your list of notes and self-assessment and
that, and so it was all there- they are sort of your main ones and from that you can just branch off to what
you need, rather than having to... If it wasn't that simplified then you'd be diving around trying to find
things.

Sodo you think that you would be able to use it by yourself now?
Yes. | reckon that | could, quite easily.

Do youwantto try?

Yes.

If youwantto you can have a quick try when Mim is finished and see how it pans out. Any other comments
on it, any other questions? Plus or minuses. Anything that more you like about it or don't like about it.

No. Like yesterday. There was nothing really to criticise about it, because it was easy to use, with your
three things here. | felt confident enough to whiz around, because you've got all the help things and you
are not thinking, you know like when using your own computer "OK ['ll go for help.". And you see all these

Appendix K 424

things and you have no idea what they mean? It's all this irrelevant drivel and I'm going to go "That's just a
waste of time anyway." At least here the content is relevant to what you are doing.

Do you find, when you are using your computer at home with Windows, do you find things are more
complicated than they need to be?

Oh absolutely. Like | was trying to do something with a spreadsheet so | went through all the help options
and the index and | searched for it and nothing came up. And it knew that | could do it, that it was possible
to do it, but to actually find out how to do it was really hard. Especially when the help is designed to do

that. It was really hard to find out what your were supposed to be doing. So | justleave it.
So you think that the approach of the extramural system which is minimalist rather than...

Yes. | think that people think that with computers you have to have all the bells and whistles and make it
really complicated so that people are more impressed by it, but if its...the simpler it is, the more people are
going to use it. Because it is easy to use and you don't have to worry about all the bells and whistles and
everything else going on because it is all just there.

And you dont... If you were studying one of your courses using something like that you dont mind the
options being limited the way it is.?

No | would rather have that because sometimes you can tend to just go off, you start one train of thought
and you go off on that and two hours later you have gone way off track because there's a mountain, a
river, of information out there and so you get trapped looking at all that stuff when all you needed was the
first little bit. There is a tendency sometimes to get a bit of overkill on the information.

Well that's the story of computers... too much information..

Oh I'll get onto the Internet and start and then click onto another site and then another site and then ten

sites later you are still none the wiser.

<End of second interview with User 3>

Second interview with User 2, 14/10/03

We are looking at the second part of the scenarios. What you did was you updated your course materials ,
you went and got your emails from the university, your searched the internet for related materials, you
worked with some interactive software remotely as opposed to on your computer. Were you able to
complete them all?

Yes. | did finish eventually. But | struggled.

So you had a couple of difficulties. So let's take the scenarios one by one. The first one was update course
material?

That was fine. That took two seconds...a piece of cake
You had no problems?
No. As | was doing it | was thinking this is very easy.

So you updated your course material?

Appendix K 425

But then | got to update your messages. And | got to close all my new messages and then it had to find
and open Assignment mode again. And | didn't know where Assignment mode was and | went through... |
right-clicked to the menu. But | didn't go any further than that. | got into the Explorer and the topics but |
didn't go any further so | ended up going back to working on the assignment , [scenario] number three.
And | kept reading about using the course explorer to search the topics. | kept reading that and reading
that and then | realised that assignment mode is in there, it's under the contents and | had to go through
them all to find it and | found it, but it was..

So you got there ...

| got there after taking a deep breath and calming down. | couldn't relate the assignment mode, the
assignment thingy that | did earlier, to this part. | don't know why. | got it eventually. And once | got it | was

away.
You were shifting your mind from one place, jumping to another..

One minute I'm looking at my messages and all of a sudden I've got to go back to my assignment mode
and I'm thinking, "l can't do that. I'm in messages." And that's the thing, you can't do that generally on a
computer because you lose something or you've got to close it all down completely and put it away before
you open something else up, | find. Well, at least, that's how | do things, whereas this time | didn't have to
do that. | could to and fro and | think | struggled to adjust to that.

To understand that you could do it?
Yes.

Of course the other difficult point | this was that you were in one part of the course but it was in another.
And so you had to ...

..to look for it. And that's what | couldn't understand. Yes you're right. | was in 1.3 and assignment mode
was in 1.1 I think...

1.4..

1.4. And | couldn't... And I'm thinking | can't go into there because that's not part of what I'm doing at the
moment. And so it was just following the instructions really.

So you were able to complete it but you had to think at one point how to find that assignment mode when it
wasn't immediately there. OK. So if we now look at exploring a topic. You explored some learning
resources on the Internet. Were you able to complete this one?

Yes.
Did you have any difficulties?

Mmm... | did. #10 where it says ask "Where do | find more?". Well | just asked "explain usability?". And it
didn't work. And | thought. And | did it twice and | thought well there should be more information. | read the
instruction and | retried until there was no more information available and | thought, well there's not any
information anyway. So obviously | am doing something wrong so | went back #9 and that was when | saw
it said [on the screen]: "Where do | find more on "and so | clicked that and | was away.

So you were able to find yourway through.. ?

Yes. Once | focussed | was fine. All it was, was the fact that | didn't read the instruction, | just read, and
that's one of my traits, "ask about it ", "find out about it " so...

Appendix K 426

So you just did what you had done last time that you used the support system? When you went there the
previous time you asked a different question.

Yes. Well actually | did read the question and down on the bottom where it says ASK, | actually clicked
that. And | thought, no, because that's sending an email to the tutor and | don't want to do that. Because it
doesn't say that. So | thought, how do | ask. So | clicked on the usability adoption and | thought maybe |
am supposed to wipe it and type in: "where do | find more?". No. That doesn't work. And then | went back
again because | thought that isn't right, and that's when | saw it, right underneath “explain” [in the list],
“where do | find”. So it was just a matter of looking.

So. You didn't go to the Help?
No. With the ask where do | find?
mmm. ..

No. Because | knew that it was there on that page... But | did use the help this time around a hell of a lot
more that | have before. Because | was having...it was # 13 locate Bad Designs. Well | hadn't located it
because it wouldn't connect and | kept going to Help thinking that | had done something

Yes. There was a problem with the computer connecting to the Internet and that is why we had to restart
it...

Yes. Once you did that then | picked it up straight away.

So the difficulty you had here was that you weren't asking the right question, you were asking it to explain
and it took a bit to catch on...?

Yes | wasn't focussing. It was by no means that the instruction was vague. The instruction was there in
black and white. But it didn't, | couldn't relate that to...

No. No. That's always one of these things... So we'll look at the interactive tutorial. Did you have any
problem there?

No. | got smiling faces there.
OK. So you completed that one without..
Yes. Piece of cake.

Again if you sat back and looked there's quite a complex range of things that you were doing and one of
them was you were going to another computer across the internet and downloading files from there onto
your machine. Have you done that before?

No. No. No. No. Never, ever.

And you were synchronising data on your computer with another one which is when you were updating
your computer.... OK we wont pursue that. But some other things .. searching. You searched a database
for information on a particular subject, which was the explain, and you also searched for and located a
website on a particular subject. Have you ever done those sorts of things before. Have you searched on
the Internet?

Appendix K 427

Yes. But I've never downloaded it and sent itto my friends or anything like that, because | don't know how
to do it and also downloading is very painful out here. Do you know what | mean? | don't have the
knowledge to do it. It's too hard.

But if you are looking for something on a particular subject, you have been able to search on that sub ject
and find something?

Yes. And if I've got something | want to access I'll print it off and I've got it. I've got this thing off the
Internet. Not I've emailed that thing to you. Because it's too hard, | can't do it. | don't know how to do it. But
I've just done it ... I've got no idea how to do it but I've done it. It's just so basic. The instructions are so
basic.

So, in one sense, you weren't quite aware of what you were doing while you were doing it?

| was aware. But | find it really odd that I'm doing this and it's so easy. If you know what | mean. | just find
that really odd. Like updating your messages and things like that, and taking stuff off one computer and
putting it on this computer and then sending it off to another to me is just way over my head. But obviously
it's not over my head it's how ... if someone gives you instruction and it's easy to follow you can pretty
much do anything, can't you? You don't have to be extremely intelligent to be able to do things like this.

One of the ways that this extramural system has been designed is to try to make those processes like that
simpler. More accessible, even invisible....

So how did you find doing these things? | presume that you are saying that doing these things through the
extramural system was easier for you, or possible for you.

It was.. If | could do my study using this type of program it would be so easy. The instruction... | know that
there were things that | got confused on but overall it was very clear what | was doing to the point where |
thought: this is too clear, and too easy. | cannot surely I'm not ...

Doing these things?

--copying and pasting this and putting it on my thingy here and I'm going to email it to Joe Bloggs. So that
to me, blows me away | find it | think it's great. Very, very easy. And I'm not the most computer... | like the
computer and things but there are a lot of things | just give up. | just won't do it because | can't, | can't.
You've got to be a brain box to use it.

So part of the problem for you if you were trying to study using your computer that you would be worried
about not being able to complete things?

Yeah. Because | mean.. It's easier to do the basic stuff, do the hard yards, like go to the library and things
like that and photocopy pages out of a library book, or ...Because its just easier. But it should be easier on
a computer but | find that it is not. But if | had this sort of system it would be very easy. See what | mean?

I know exactly what you mean. Don't you wony. Travelling 70 km to the library because its easier than
finding it on the Internet...

When you were going through these exercises you mind was probably on completing rather than on....
Were there anything that you would have liked to see done better, things that you ran into. | mean putting
aside the question of this could have been explained better in the scenarios but on the system itself?

| don't think so.

Well. Let me put it around another way. What was it that you liked about it...

Appendix K 428

Like | said earlier, | thought a couple of instructions were a bit vague..

I was interested because some of them were deliberately vague to see whether you had gained enough of
an understanding of the basics of how it works that you could find your way out of the hole again?

| felt that | did. | don't know. | guess that you would know more than | would. But | felt that overall like there
were times, there were two times when | thought | can't do this. | just can't do it. And the second time was
when the computer stopped, like it crashed, or died or froze or whatever, but it wasn't my fault. And then
the other time was the assignment one. Find or open your assignment. | couldn't get my head around that .
But | think that my head was in a different framework of what was possible... But there were times that |
thought, well , the question was vague, and | thought you've said this but I'm going to try this, I'm going to
try and do something else and | did it. And | thought, "Ah yes. You do it like | have done it anyway". Once |
had done it was obvious.

So you've spent a couple of hours on it, at most,. Do you think that you would be able to find your way
around it by yourself?

| think so.

There was one thing that you said that | was interested in, the problems of the Internet out here. What do
you mean by that?

Like when you open you emails, to check your emails and it takes half an hour to receive two emails. Like
when we have this. | don't know if you have it at your house, but the phone overloads and if you are not on
the Internet it rings every now and then. So if you are online then it just disconnects. And downloading
something...

Like a web page or something?
Yeah, can take 31 hours to download. It's ridiculous but it's true. It's crazy.

I'm asking that because | believe that this is one of the problems that is least recognised in the towns, just
how difficult itis. ..

You know how your computer works at | think its 27000 ...
...kilobits per sec

Well | have seen it at 1. | know that it should be 26,000 or 24,000 and it is one, literally just one. You can
get a connection. You can dialup and get online But you can't get anything. Not even a home page. And
you're paying your $2.50 per hour for nothing.

<End of second interview with User 2>

Second interview with User 1, 14/10/03

This time you were attempting the last three of the scenarios -updating your course material and
messages, exploring some resources mainly through the Internet and the interactive tutorial? Starting with
the first one. Did you have any problem?

Just with the computer still being connected to the Internet [from the previous user] instead of the
university to start off with. Other than that, no.

Appendix K 429

You found it straightforward?

Pretty straightforward, yeah.

The second one. When you explored resources on the web? Any difficulties there?
No.

And the interactive tutorial and updating self-assessments? Any difficulties there?

The last one? No. Interesting though. | quite like the Barney and the other bits and pieces | had a look at.
Where it said to have a squizz at them.

Oh. Barney?
The interactive part. Barney and the telephone [in the tutorial scenario].

In that short time you actually do quite a few tasks, one of which is transferring data files from a remote

computer and loading them onto your computer. Have you done that with your own computer?
No.

Not consciously.

No

OK. And another thing that you did was you were synchronising the data on your machine with that on
another. Were you conscious of doing anything like that?

| haven't done anything like that at all. No.
And were you aware of what was going on?
Yes.

Now . You also, when you were accessing the extramural support you were using that in two ways. One
way you were searching for information on a particular topic. Secondly you were searching for relevant
web sites. Have you done that sort of a search for information before?

Yes.

In what way?

Was | using a computer to do it. And what was | looking for?
Yes.

Basically topics of study for school. So. Looking up relevant web sites, etc for say American Indians.
Anything related have a look at. If it's worthwhile tag it. If itisn't leave it. So basically topics that the kids
study at school.

OK. Obviously with the extramural system the search you make is more constrained because it is aimed at
particular topics and things. Did you find it easier to do it this way compared to what you have done
before? or harder?

Easier, basically. A whole lot of the time you get a whole lot of stuff. Say if I'm getting it off the Internet, |
get 300 sites of which 275 of them are useless. It's a lot slower on the internet the other way than your
way, because | have to physically open it and have a look at it to see if its relevant or not, and then go on
to the next one and it's a long process. Whereas here, it's telling you what, obviously it's trimming it down

Appendix K 430

to what's relevant and what's not. So | presume for web sites that | have been given there, that they will be
useful for what | want, not may be useful, will be useful. Even with the one that | had to delete because it
was not useful. That was obviously just for this case scenario. But for me, from what | saw there, ! would

think that it is useful, whereas go onto the Internet then....
So you think there are some advantages to using something where it is already constrained in that way.

Yes. | think so with some.. It all depends with the study. | would suggest though that if you're lining it up...
It's hard really if they're a student, like a university student, | can see if I'm reading this right, you don't want
to have it all there for them. | mean there is obviously some research involved for them. But | do think with
this extramural thing yes, if those addresses are there. | mean they still have to choose what's relevant and
what's not don't they. So if they click onto your web sites that you've got listed, then they still make the
choice whether they use that information or not.

| guess for the purposes of this, the most important thing was whether it was easy to use.
Very easy.

You also worked with an interactive program again. Well, more than one. The support system - your were
interacting through the buttons with the system. Then you went to the web site and there was interactive
software on a another computer, a tutorial. Overall, thinking about what you have done today, or since you
have been looking at it, what aspects did you like compared to doing things with your own computer?

The limited ..buttons, shall we say, that you can use. | liked that. That there were only those three buttons
to link to get round your software to the different areas. That it's very transparent that you can .., it's all very
clear what you use to do what you want it to do. There's no hidden features. Like if you talk about my own
computer there's so many hidden things that you stumble across. But here it's very straightforward. And |
think for that, if you get yourself in trouble, it's very easy to get yourself out of trouble. Whereas, sometimes
on my own computer | find you've got alt+ctrl+del. You've got to get out to start again, because you have
no idea where you have gone and what you've done and the computer won't tell you what you've done,
and the computer... Sometimes you can click on Help. Well, if you click on help on my computer, quite
often it's not the scenario where you have got yourself, if you know what | mean. It'll say dah dah dah,
when you know you haven't done that, you have done something different. Whereas here, if | click on Help
I have found every time what | need to do and its been able to solve it for me. So | think that it is really

user-friendly compared to my computer.

Clearly in part it's because it is special purpose. It's only doing one job. So you think that in the context of a
learning scenario you think this is useful?

| think especially for someone who has purchased a computer to start their study and this is the first time
they have had to come to grips with a computer as well as their new course. It's not intimidating at all. Like
someone within half an hour will have the grasp that they can't do any damage, which a lot of people |
think feel when they first get on their computer. And that it's very easy to find your way around the whole
thing with those three keys. To me that's the most appealing thing about it. Like | think that my mother
could even do it.

Is that a compliment or..?
Compliment. Once | had taught her how to turn the computer on | think she would be able to do it.

Were there things that irritated or irked you, or just bothered you a little?

Appendix K 431

No. Just that computer. Nothing about the program. Even when | had to download a paragraph of that
information into my notes. Well the first time | went to try that | hadn't gone and clicked onto one of those
topics. So all | got was the web address in my notes. So | thought, OK, | haven't gone far enough into that.
So | just clicked on something and then again, all my notes came up. And again it was one of those things
where you could very easily see OK | haven't gone far enough here. Just keep going. And you're not doing
any damage.

So when you found you were somewhere where you shouldn't be, you were confident you could find your
way out?

Yes. And to say again. If in doubt, press the help.

One of the trickiest points in these scenarios is when you are updating your messages. You are in one part
of the course and you have to go to another part to find the assignment. Did you have to think about that?

No. | did think about what's going to happen here. How's this going to go? But | thought | would do it and
watch and see what happens. But it went very easily, to go from one are to another, and very quick as
well. So that's another advantage with that, | think, Russell. It's quick.

Have you gotin mind doing something on the Internet? And it takes forever?
Well yeah | suppose...
What have you got in mind then?

I'm just thinking of computer programs in general, basically. Some, when you are jumping from one field to
another...Oh | have got to shut that down, load that up. And not with changing disks , but just in general.
But here, going from that one to the other was very quick to get from here to there. It was a matter of within
5 seconds | was gone from one to the other. There's no sitting and please wait while it does this and that. ..

From the perspective of being user-friendly, is there anything that you would like to see added?

Just from what | have seen today? | think that for me was easier today. Like #3 | found probably the most
time consuming or thinking. But again it's just... | wondered today whether | would remember, without
using my Handy Hints. | wanted to see if | could remember and | didn't have to use that guide. | looked at it
once but no | remembered everything. And | think that, no | couldn't see anything that was missing. That
message part was confusing [‘Fetching messages” message remaining in status bar], but | didn't take any
notice of it., because | knew that it was a trial and unless you had sent me any messages there wouldn't be
any anyway and again it was pretty straightforward...Wait until it has finished it's thing before you go
anywhere else. | did wonder when it said it was fetching and there were 8 new messages. These
messages were coming up, but when the cursor was ready to go, | thought no and so | carried on.

That is a real problem, only a small one, and an easily fixable one...

Some people could sit there for ages waiting for these messages to come up, because when you come to
that screen it says no messages anyway and when you update my messages, | was waiting for my
messages to wipe that no messages out.

Any other little things like that?
No. that was the only one

Did you any problem asking a different kind of question to the support system? You ask them to explain
and then you ask them where do | find?

Appendix K 432

No. That was pretty straightforward. Again | thought | sorted that out yesterday with the ticks.

You are not currently studying are you? Do you think that something like that interactive help would be

quite useful if you were?

Definitely. | would be quite keen on doing it that way. Even when | was internally a student, getting hold of
a lecturer was quite difficult, and leaving messages for them on the door, or notes and things like that was
still days... It could be two days before you got to touch base or a message was left in my pigeonhole. So
here for me, it was instant. Well if | have sent the message, to me it's going to be updated: ...well 1) | feel
that | have got in contact with the lecturer or my tutor and, 2) that | think there is a lot more assistance
there in that program than having to go and track down my lecturer and my tutor, etc. And again, with the
books and things like that. It’'s all there, at your beck and call. To me in some ways you are at an
advantage that way than if you are an internal student, because you have got limited resources on the
shelves and its first in first served whereas here | mean its all... a great big cobweb, which you can work
your way around.

So how confident are you now that you could go back and use that system by yourself?

Very. Without anything. | think that the Handy Hints would be a good thing to be distributed with it. But |
think that if you came tomorrow and asked me to try do this, | definitely, | am 90% sure | could do what you

want me to do.

How useful do you think those scenarios, or set of exercises are as a way of teaching you to learn the

system.

Good. A couple of times there | was thinking ooh... am | going to be able to do this. But no. | think reading
it. If | sat there reading it without doing it, I'd probably be panicking, but as you go through it, they build
your confidence, if anything. To me it built my confidence more and more that | can do this. They may be a
little bit too much because | found | may have jumped a couple of times, being a clever male... But | think
thatif that gives you each scenario that you may come across, then if now you can whip back here and do
this or whip back there and do that, then | think that it is really good practice. Because on those later ones
it is just assumed that you knew how to get there to do that. It wasn't telling you, it was telling you go and
get the notes in 1.1, go back to 1.1, it wasn't telling you how to do it. So it was just putting into practice

what you have already learnt.

So you think you now how a much better feel for how to use this thing than when you started?
Yes.

In terms of overall usability, 1-10. How would you rate it?

| would put it at about an 8.

Thank you.

<End of second interview with User 1>

	10001
	10002
	10003
	10004
	10005
	10006
	10007
	10008
	10009
	10010
	10011
	10012
	10013
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10042
	10043
	10044
	10045
	10046
	10047
	10048
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10102
	10103
	10104
	10105
	10106
	10107
	10108
	10109
	10110
	10111
	10112
	10113
	10114
	10115
	10116
	10117
	10118
	10119
	10120
	10121
	10122
	10123
	10124
	10125
	10126
	10127
	10128
	10129
	10130
	10131
	10132
	10133
	10134
	10135
	10136
	10137
	10138
	10139
	10140
	10141
	10142
	10143
	10144
	10145
	10146
	10147
	10148
	10149
	10150
	10151
	10152
	10153
	10154
	10155
	10156
	10157
	10158
	10159
	10160
	10161
	10162
	10163
	10164
	10165
	10166
	10167
	10168
	10169
	10170
	10171
	10172
	10173
	10174
	10175
	10176
	10177
	10178
	10179
	10180
	10181
	10182
	10183
	10184
	10185
	10186
	10187
	10188
	10189
	10190
	10191
	10192
	10193
	10194
	10195
	10196
	10197
	10198
	10199
	10200
	10201
	10202
	10203
	10204
	10205
	10206
	10207
	10208
	10209
	10210
	10211
	10212
	10213
	10214
	10215
	10216
	10217
	10218
	10219
	10220
	10221
	10222
	10223
	10224
	10225
	10226
	10227
	10228
	10229
	10230
	10231
	10232
	10233
	10234
	10235
	10236
	10237
	10238
	10239
	10240
	10241
	10242
	10243
	10244
	10245
	10246
	10247
	10248
	10249
	10250
	10251
	10252
	10253
	10254
	10255
	10256
	10257
	10258
	10259
	10260
	10261
	10262
	10263
	10264
	10265
	10266
	10267
	10268
	10269
	10270
	10271
	10272
	10273
	10274
	10275
	10276
	10277
	10278
	10279
	10280
	10281
	10282
	10283
	10284
	10285
	10286
	10287
	10288
	10289
	10290
	10291
	10292
	10293
	10294
	10295
	10296
	10297
	10298
	10299
	10300
	10301
	10302
	10303
	10304
	10305
	10306
	10307
	10308
	10309
	10310
	10311
	10312
	10313
	10314
	10315
	10316
	10317
	10318
	10319
	10320
	10321
	10322
	10323
	10324
	10325
	10326
	10327
	10328
	10329
	10330
	10331
	10332
	10333
	10334
	10335
	10336
	10337
	10338
	10339
	10340
	10341
	10342
	10343
	10344
	10345
	10346
	10347
	10348
	10349
	10350
	10351
	10352
	10353
	10354
	10355
	10356
	10357
	10358
	10359
	10360
	10361
	10362
	10363
	10364
	10365
	10366
	10367
	10368
	10369
	10370
	10371
	10372
	10373
	10374
	10375
	10376
	10377
	10378
	10379
	10380
	10381
	10382
	10383
	10384
	10385
	10386
	10387
	10388
	10389
	10390
	10391
	10392
	10393
	10394
	10395
	10396
	10397
	10398
	10399
	10400
	10401
	10402
	10403
	10404
	10405
	10406
	10407
	10408
	10409
	10410
	10411
	10412
	10413
	10414
	10415
	10416
	10417
	10418
	10419
	10420
	10421
	10422
	10423
	10424
	10425
	10426
	10427
	10428
	10429
	10430
	10431
	10432
	10433
	10434
	10435
	10436
	10437
	10438
	10439
	10440
	10441
	10442
	10443
	10444
	10445
	10446
	10447
	10448
	10449
	10450
	10451
	10452

