
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

1

Tree Pruning/Inspection Robot Climbing
Mechanism Design, Kinematics Study and

Intelligent Control

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Mechatronics

at Massey University, Manawatu Campus,

New Zealand

Pengfei Gui

2018

2

Abstract

Forestry plays an important role in New Zealand’s economy as its third largest export

earner. To achieve New Zealand Wood Council’s export target of $12 billion by 2022 in

forest and improve the current situation that is the reduction of wood harvesting area,

the unit value and volume of lumber must be increased.

Pruning is essential and critical for obtaining high-quality timber during plantation

growing. Powerful tools and robotic systems have great potential for sustainable forest

management. Up to now, only a few tree-pruning robotic systems are available on the

market. Unlike normal robotic manipulators or mobile robots, tree pruning robot has its

unique requirements and features. The challenges include climbing pattern control,

anti-free falling, and jamming on the tree trunk etc. Through the research on the

available pole and tree climbing robots, this thesis presents a novel mechanism of tree

climbing robotic system that could serve as a climbing platform for applications in the

forest industry like tree pruning, inspection etc. that requires the installation of powerful

or heavy tools. The unique features of this robotic system include the passive and active

anti-falling mechanisms that prevent the robot falling to the ground under either static

or dynamic situations, the capability to vertically or spirally climb up a tree trunk and the

flexibility to suit different sizes of tree trunk. Furthermore, for the convenience of tree

pruning and the fulfilment of robot anti-jamming feature, the robot platform while the

robot climbs up should move up without tilting. An intelligent platform balance control

system with real-time sensing integration was developed to overcome the climbing

tilting problem. The thesis also presents the detail kinematic and dynamic study,

simulation, testing and analysis.

A physical testing model of this proposed robotic system was built and tested on a

cylindrical rod. The mass of the prototype model is 6.8 Kg and can take 2.1 Kg load

moving at the speed of 42 mm/s. The trunk diameter that the robot can climb up ranges

from 120 to 160 mm. The experiment results have good matches with the simulations

and analysis.

3

This research established a basis for developing wheel-driven tree or pole climbing

robots. The design and simulation method, robotic leg mechanism and the control

methodologies could be easily applied for other wheeled tree/pole climbing robots. This

research has produced 6 publications, two ASME journal papers and 4 IEEE international

conference papers that are available on IEEE Xplore. The published content ranges from

robotic mechanism design, signal processing, platform balance control, and robot

climbing behavior optimization. This research also brought interesting topics for further

research such as the integration with artificial intelligent module and mobile robot for

remote tree/forest inspection after pruning or for pest control.

4

Acknowledgements

Many people contributed to the success of this research. Firstly, I would like to thank my

supervisors, Dr. Liqiong Tang and Prof. Subhas Mukhopadhyay, for their advice and

guidance throughout this project. I am grateful to them for giving me the opportunity to

complete this Ph.D.

I would also like to thank the SEAT workshop technicians Mr. Kerry Griffiths, Mr. Ian

Thomas, Mr. Clive Bardell, Mr. Morio Fukuoka, and Mr. Anthony Wade, for their

precious time and great assistance on the mechanical and electronics part design and

making for my projects. I have learnt a lot of electronic and mechanical skills from these

people. I really appreciate their help.

I am thankful to my parents and parents-in-law for their support. A special note of thanks

to my wife Shuti Hou for her support, patience, and encouragement throughout this

time.

5

Contents
List of Figures .. 8

List of Tables .. 11

List of Abbreviations ... 12

Chapter 1 Introduction .. 15

1.1 Background ... 15

1.2 Research Topic .. 16

1.3 Scope of Research ... 17

1.4 Organization of Dissertation ... 17

Chapter 2 Literature Review ... 19

2.1 Currently Available Tree or Pole Climbing Robots .. 19

2.1.1 RiSE ... 19

2.1.2 WOODY .. 21

2.1.3 TREPA ... 22

2.1.4 Treebot ... 23

2.1.5 Slider-Crank based Pole Climbing Robot .. 24

2.1.6 Snake Robot ... 25

2.1.7 Biped Wall-Climbing Robot .. 25

2.1.8 3D Climber .. 26

2.1.9 UT-PCR .. 27

2.1.10 Kawasaki’s Pruning Robot .. 27

2.1.11 Seirei Industry’s Automatic Pruning Machine .. 28

2.1.12 Pobot .. 29

2.2 Tree Climbing Robot Control Methodologies ... 29

2.3 Conclusions of Literature Study .. 30

Chapter 3 Features and Functions of Tree Pruning Robot .. 31

3.1 Comparison and Analysis of Different Types of Tree or Pole Climbing Robots 31

3.2 Requirements for Tree Pruning Robot Design .. 33

Chapter 4 Mechanical Design and Optimization of Tree Pruning Robot 34

4.1 Conceptual Design of Tree Pruning Robot .. 35

4.1.1 Mechanical Construction of Tree Pruning Robot Conceptual Design 35

4.1.2 Static Analysis of Conceptual Model in Three-dimensional Space 37

4.1.3 Simulation of Conceptual Design Model .. 39

4.2 Tree Pruning Robot Design Model Optimization .. 42

4.2.1 Anti-falling Mechanism Optimization .. 42

4.2.2 Servomotor Module Optimization ... 43

6

4.3 Optimized Tree Pruning Robot Model .. 44

4.3.1 Optimized Tree Pruning Robot Static Analysis in Three-dimensional Space 45

4.3.2 Optimized Tree Pruning Robot Dynamic Analysis of Vertical Climbing 49

4.3.3 Active and Passive Anti-Falling Mechanism ... 55

4.3.4 Simulation and Experiment of Optimized Tree Pruning Robot 56

Chapter 5 Tree Pruning Robot Control System Design ... 60

5.1 Tree Pruning Robot Control System Schematic Design .. 60

5.1.1 Power Module .. 62

5.1.2 MCU Module (Arduino Mega and Due) ... 64

5.1.3 Motor Driving Module ... 66

5.1.4 IMU Module ... 69

5.1.5 Communication Module .. 70

5.2 Tree Pruning Robot Control System PCB Design ... 71

5.2.1 Radiated Interference .. 71

5.2.2 Heat Dissipation ... 77

5.2.3 Transient Voltage and Current ... 78

5.3 Circuit Design Tips to Reduce EMI/EMC Problems ... 79

5.3.1 PCB Layout Design Tips .. 79

5.3.2 Power Supply Considerations .. 79

5.3.3 Component Considerations ... 80

Chapter 6 Tree Pruning Robot Tilting Measurement .. 81

6.1 Introduction of MEMS IMU ... 81

6.2 Complementary Filter ... 83

6.3 Kalman Filter ... 85

6.3.1 Accelerometer Model .. 86

6.3.2 Gyroscope Model ... 86

6.3.3 Kalman Filter for IMU Data Fusion ... 87

6.3.4 Kalman Filter Implementation on IMU Data Fusion .. 89

6.4 IMU Data Fusion Experiment Result ... 94

6.4.1 Complementary Filter Experiment Result .. 95

6.4.2 Kalman Filter Experiment Result .. 97

6.5 IMU Date Fusion Filter Selection ... 100

Chapter 7 Tree Pruning Robot Tilting Control Using Fuzzy Logic .. 101

7.1 Definition of Two Types of Tilt for Tree Pruning Robot .. 101

7.2 Tilting Fuzzy Controller .. 103

7.3 Slippage Fuzzy Control System .. 106

7

7.4 Tilting Control System Block Diagram ... 109

7.5 Simulation Results of Robot Tilting Control .. 109

7.5 Robot Tilting Control Conclusion .. 112

Chapter 8 Tree Pruning Robot Longitudinal Wheel Slip Control Using Dynamic Neural Networks

 ... 113

8.1 Introduction .. 113

8.2 Research Status of Wheel Slip Control .. 115

8.3 System Modelling and Problem Statement .. 118

8.3.1 Slip control system model .. 119

8.3.2 Control problem statement ... 126

8.4 Dynamic neural network controller design ... 129

8.5 Tree pruning robot wheel slip control experiment and result .. 130

8.6 Tree pruning robot wheel slip control conclusion .. 136

Chapter 9 Conclusions and Future Works ... 137

9.1 Works for future research ... 139

9.2 Main contributions and publications .. 140

Appendix A – Program Codes of Tree Pruning Robot ... 142

Appendix B – MATLAB SimMechanics Simulation .. 157

Appendix C – Tree Pruning Robot Mechanical Drawing ... 158

Appendix D – Tree Pruning Robot Hardware Design .. 163

Appendix E – Tree Pruning Robot 3D CAD Model in SolidWorks .. 167

Appendix F – Tree Pruning Robot Prototype .. 168

Reference .. 169

8

List of Figures

Figure 2.1 RiSE V1 .. 19

Figure 2.2 RiSE V2 .. 20

Figure 2.3 RiSE V3 .. 20

Figure 2.4 WOODY .. 21

Figure 2.5 TREPA ... 22

Figure 2.6 Four-step Climbing Process .. 22

Figure 2.7 Treebot ... 23

Figure 2.8 Treebot Continuum Body ... 24

Figure 2.9 Climbing Module and Gripping Module ... 24

Figure 2.10 Snake Robot ... 25

Figure 2.11 Biped Wall-Climbing Robot .. 26

Figure 2.12 3DCLIMBER ... 26

Figure 2.13 Pole Climbing Robot UT-PCR .. 27

Figure 2.14 Kawasaki’s Tree Pruning Robot .. 28

Figure 2.15 Seirei Industry’s Automatic Pruning Machine .. 28

Figure 2.16 Pobot .. 29

Figure 4.1 Systematic approaches of design process ... 34

Figure 4.2 Systematic approach utilized in the design process of tree pruning robot 34

Figure 4.3 Mechanical Construction of conceptual tree pruning robot design 35

Figure 4.4 Top view of tree pruning robot conceptual design .. 36

Figure 4.5 Lateral view of conceptual model force analysis ... 37

Figure 4.6 Top view of conceptual model force analysis .. 37

Figure 4.7 Four views of tree pruning robot conceptual design in Simmechanics 40

Figure 4.8 Conceptual model vertical climbing velocity ... 40

Figure 4.9 Conceptual model vertical climbing acceleration .. 41

Figure 4.10 Conceptual model vertical climbing distance .. 41

Figure 4.11 Improvement of tree pruning robot mechanical design.. 43

Figure 4.12 Stepper and Nut-Screw Unit .. 43

Figure 4.13 Servo Motor Module and Bearing Support Mechanism .. 44

Figure 4.14 Mechanical Construction of the Optimized Tree Pruning Robot Design 45

Figure 4.15 Climbing Robot Leg Module ... 45

Figure 4.16 Lateral View of Climbing Robot Force and Moment Illustration 46

Figure 4.17 Top View of Climbing Robot Force and Moment Illustration 46

Figure 4.18 Static Rolling Moment Analysis .. 49

Figure 4.19 Anti-wheel-rolling Approach .. 49

Figure 4.20 Simplified Climbing Robot Wheel Tire Model .. 50

Figure 4.21 Climbing Robot Wheel Rolling Resistance: Hysteresis Losses.................................. 51

Figure 4.22 Climbing Robot Wheel Rolling Radius .. 52

Figure 4.23 Free Rolling at Horizontal Trunk .. 53

Figure 4.24 Force and Torque Analysis on one robot leg ... 54

Figure 4.25 Passive Anti-Falling Mechanism: Lateral View and Top View 55

Figure 4.26 Anti-falling Mechanism Flowchart ... 56

Figure 4.27 Four Views of Pruning Robot in Simmechanics.. 57

Figure 4.28 DC Motor Driving Torque ... 58

Figure 4.29 Robot Climbing Velocity ... 58

9

Figure 4.30 Tree Climbing Robot Leg .. 58

Figure 4.31 Tree Climbing Robot Physical Test Model .. 59

Figure 5.1 Robot control system diagram ... 60

Figure 5.2 Power module schematic ... 62

Figure 5.3 MOSFET Slide Power Switch... 63

Figure 5.4 Current Sensor ... 63

Figure 5.5 6V DC-DC Converter ... 64

Figure 5.6 9V DC-DC Converter ... 64

Figure 5.7 Tree pruning robot schematic design of Arduino Mega 2560 and Arduino Due 65

Figure 5.8 Breakout board and schematic design of DC motor driver – VNH2SP30 66

Figure 5.9 12V brushed gear DC Motor .. 67

Figure 5.10 Servomotor and schematic .. 67

Figure 5.11 NEMA 17-size stepper motor ... 68

Figure 5.12 Breakout board and schematic design of stepper motor driver – DRV8825 68

Figure 5.13 Breakout board and schematic design of MPU-9150 .. 69

Figure 5.14 Breakout board and schematic design of wireless communication module – XBee 70

Figure 5.15 Serial communication between Arduino Mega and Arduino Due 70

Figure 5.16 Ferrite Bead Equivalent Circuit .. 73

Figure 5.17 Ferrite Bead Impedance VS. Frequency Plot .. 73

Figure 5.18 Ferrite Bead and its schematic design ... 75

Figure 5.19 Bypass Capacitors for Reducing the Motor Noise .. 77

Figure 5.20 Transient Voltage Suppressor Diode .. 78

Figure 6.1 Block diagram of complementary filter algorithm for IMU data fusion 83

Figure 6.2 Complementary filter for tilt sensing flowchart .. 85

Figure 6.3 Kalman filter implementation flowchart for IMU data fusion 94

Figure 6.4 Complementary Filter Static Test ... 96

Figure 6.5 Complementary Filter Dynamic Test: Pitch.. 96

Figure 6.6 Complementary Filter Dynamic Test: Roll.. 96

Figure 6.7 Complementary Filter Dynamic Test: Pitch and Roll.. 97

Figure 6.8 Kalman Filter Static Test ... 98

Figure 6.9 Kalman Filter Dynamic Test: Pitch .. 98

Figure 6.10 Kalman Filter Dynamic Test: Roll.. 98

Figure 6.11 Kalman Filter Dynamic Test: Pitch and Roll .. 99

Figure 7.1 Top and lateral views of tree pruning robot in static situation using passive anti-

falling mechanism ... 101

Figure 7.2 Tree pruning robot initial setting tilt .. 102

Figure 7.3 Mounting position of IMU sensor on tree pruning robot platform 104

Figure 7.4 Block diagram of tilting fuzzy control system .. 104

Figure 7.5 Membership functions of tilting fuzzy controller .. 105

Figure 7.6 Tree pruning robot stepper and screw-nut unit .. 107

Figure 7.7 Block diagram of slippage fuzzy control system .. 107

Figure 7.8 Membership functions of slippage fuzzy controller .. 108

Figure 7.9 Slippage fuzzy controller surface view in Simulink .. 108

Figure 7.10 Block diagram of robot tilting control system ... 109

Figure 7.11 Tilting fuzzy controller and slippage fuzzy controller in MATLAB Simulink 110

Figure 7.12 Slippage fuzzy control system and climbing robot in MATLAB SimMechanics 110

Figure 7.13 Tree pruning robot pitch angle comparison in MATLAB SimMechanics simulation

 ... 111

10

Figure 7.14 Tree pruning robot roll angle comparison in MATLAB SimMechanics simulation 111

Figure. 8.1 Mechanical construction of the tree pruning robot ... 114

Figure. 8.2 Climbing robot leg module and stepper screw-nut unit ... 114

Figure. 8.3 Robot dynamics during vertical climbing .. 120

Figure. 8.4 Robot wheel dynamics during vertical climbing ... 121

Figure. 8.5 Typical relation between friction coefficient and longitudinal wheel slip [109] 122

Figure. 8.6 Force analysis of stepper .. 125

Figure. 8.7 Stepper dynamic model .. 126

Figure. 8.8 Robot wheel 1 slip ... 127

Figure. 8.9 Robot wheel 2 slip ... 127

Figure. 8.10 Robot wheel 3 slip ... 128

Figure. 8.11 Robot wheel speed error between the actual value and setting value (12 RPM) 128

Figure. 8.12 Dynamic neural network control scheme of climbing robot longitudinal wheel slip

 ... 130

Figure. 8.13 NARX neural network in MATLAB ... 131

Figure. 8.14 Neural network training performance .. 131

Figure. 8.15 Neural network training regression .. 132

Figure. 8.16 Neural network training time series response .. 132

Figure. 8.17 Neural network training input-error cross correlation ... 132

Figure. 8.18 Robot wheel slip control test on a rod .. 133

Figure. 8.19 Robot wheel 1 slip after the implementation of dynamic neural network control

 ... 133

Figure. 8.20 Robot wheel 2 slip after the implementation of dynamic neural network control

 ... 134

Figure. 8.21 Robot wheel 3 slip after the implementation of dynamic neural network control

 ... 134

Figure. 8.22 Robot wheel speed error during the test (dynamic neural network control) 134

Figure. 8.23 Stepper lead screw adjustment based on dynamic neural network control 135

11

List of Tables

Table 3.1 Comparison of different tree or pole climbing robots .. 31

Table 3.2 Advantages and disadvantages between continuous and step-by-step climbing

method .. 33

Table 4.1 Specifications of tree pruning robot conceptual design ... 39

Table 4.2 Parameters of frictional force ... 40

Table 4.3 Specifications of pruning robot ... 56

Table 5.1 motor electrical noise .. 76

Table 5.2 Relationship among Copper Thickness, Track Width and Current Magnitude for PCB

design .. 77

Table 7.1. Rule table of tilting fuzzy controller ... 105

Table 8.1 Tree Pruning Robot Nomenclature ... 119

Table 8.2 Correlation between offline and online wheel slip ... 129

Table 8.3 Wheel slip outside the stable zone between robot climbing using DNNC and without

DNNC ... 135

12

List of Abbreviations

2WD: two wheel drive ... 117

ABS: anti-lock brake system .. 115

ANN: artificial neural network .. 129

ARX: autoregressive network with exogenous inputs ... 130

B: Kalman filter control matrix.. 87

b_a: accelerometer bias .. 86

b_g: gyroscope bias ... 86

CAD: computer aided design..16, 18

d: diameter of trunk .. 39

D: stepper nut translation distance .. 119

DARPA: defence advanced research project agency .. 19

DIC: direct inverse control .. 113

DNN: dynamic neural networks .. 113

DNNC: dynamic neural network control ... 135

DOF: degree of freedom ... 22

dps: degree per second ... 69

e.g.: for example ... 75

e_i: robot wheel i velocity error .. 123

E_r: stepper rotational kinetic energy .. 119

E_t: stepper translational kinetic energy .. 119

EMC: electro-magnetic compatibility ... 71

EMI: electro-megnetic interference .. 71

Eqn.: equation ... 48

ESP: electronic stability program... 115

etc.: et cetera .. 42

F_1: normal force applied on wheel 1 .. 38

F_f: frictional force .. 48

F_H: horizontal resultant force ... 47

F_M: force from DC motor .. 54

F_r: rolling resistance .. 54

f_s: stepper thread friction force coefficient .. 119

F_s: thrust from stepper lead screw ... 119

F_smax: stepper maximal thrust .. 126

F_V: vertical resultant force .. 47

Fig.: figure ... 19

G: gravity force .. 38

GDP: gross domestic product ...15, 18

GHz: gigahertz ... 74

H: Kalman filter measurement matrix .. 88

h: vertical distance between wheel 3 and wheel 1, 2 ... 39

HF: high frequency .. 79

Hz: Hertz .. 40

i.e.: id est ... 74

I: robot wheel rotational inertia ... 54

13

IC: integrated circuit .. 78

IMU: inertial measurement unit ... 61

Ipp: peak impulse current ... 78

kg/m3: Kilogram per cubic meter ... 56

Kg: Kilogram... 39

kg-cm: Kilogram per centimeter ... 58

L: horizontal distance from the contact point between wheel 3 and trunk 39

l: stepper thread lead .. 119

m/s: meter per second .. 41

m: meter.. 42

M: rolling moment .. 49

MCU: microprogrammed control unit .. 42

MEMS: micro-electromechanical-systems.. 69

MFs: fuzzy logic membership functions .. 107

MHz: megahertz .. 74

mm/s: milimeter per second ... 57

mm: milimeter .. 45

mm2: square milimeter .. 56

mm3: cubic milimeter .. 56

MPC: model predictive control ... 116

N/kg: Newton per Kilogram ... 39

N: Newton ... 39

n: stepper steps... 119

n_a: accelerometer noise .. 86

n_g: gyroscope noise ... 86

NARX: nonlinear autoregressive network with exogenous inputs .. 130

N-m: Newton per meter .. 57

PCB: printed circuit board ... 53

PCRs: pole climbing robots.. 31

Ppp: peak pulse power dissipation ... 78

PVC: polyvinyl chloride .. 25

PWM: pulse width modulation ... 66

Q_θ: accelerometer variance .. 88

R: radius of tree trunk ... 43

r_0: robot wheel free radius ... 49

r_r: robot wheel rolling radius .. 54

r_s: robot wheel static radius.. 49

RF: radio frequency ... 79

RMSE: root mean square error ... 112

rpm: revolutions per minute ... 57

SEAT: school of engineering and advanced technology ... 4

SMD: surface mounted device .. 73

T_F: robot wheel longitudinal torque ... 119

T_G: robot gravity torque ... 54

T_M: torque from DC motor ... 54

T_r: rolling resistance torque .. 54

T_s: stepper actuate torque.. 119

T_smax: stepper maximal torque ... 126

14

TVS: transient voltage suppressor .. 78

u_k: Kalman filter control input .. 87

UART: universal asynchronous receiver/transmitter .. 109

v ̇: robot acceleration .. 119

v: robot velocity .. 119

v_s: stepper nut linear velociy .. 119

Vc: clamping voltage .. 78

VR: rated standoff voltage ... 78

w: robot gravity force offset from the center of platform ... 39

WA: weight average .. 105

WCRs: wall climbing robots ... 31

x_k: system state matrix at time k .. 87

z_k: Kalman filter measured output ... 88

α: robot wheel angular acceleration ... 54

α_extra: external acceleration .. 86

δ: stepper step angle... 119

η: stepper efficiency .. 119

θ ̇: Kalman filter output angular rate .. 87

μ: friction coefficient ... 39

μF: micro farad .. 76

μm: micrometer .. 67

ω ̇: wheel angular acceleration ... 119

ω: wheel angular velocity ... 119

ω_ref: robot wheel setting angular velocity ... 123

ω_s: stepper lead screw angular velocity ... 119

15

Chapter 1 Introduction

1.1 Background

The timber industry is a significant contributor to New Zealand economy. According to

a report from New Zealand Plantation Forest Industry, the total New Zealand forest

product exports up to $4.8 billion for 2015 and accounts for 1.6% of the country’s GDP

[1]. Although harvesting has increased significantly over the last five years, it is still hard

to meet the growing overseas demand, especially the demand from China [2]- [4]. To

achieve New Zealand Wood Council’s export target of $12 billion by 2022 and cope with

the forestry workforce shortage and aging, both the unit value and volume of timber

must be increased.

Pruning is an essential method to help obtain high-quality timber during plantation

growing because the pruned lumber could produce beautiful surface without gnarl and

has homogeneous quality with well-formed annual growth ring [5]. Additionally, in

terms of wood quantity, under the same growth conditions, the well-pruned tree

produces 2.3 m3 of wood while the unpruned tree only produces 1.61 m3 of wood [4].

Furthermore, high quality pruned stands, well located to the market can sell for as much

as $50,000 per hectare net to the owner, while unpruned stands may net less than

$10,000 particularly if logging and cartage cost is high [4]. Currently, almost all the

timber pruning work is conducted by lumberjacks. The worker climbs up the tall trunk

to cut off branches and gnarl with axe or chainsaw. This kind of timber pruning method

is not only high labor intensity and costly, but also dangerous and low efficient.

Moreover, the future shortage of forestry workforce to prune trees will certainly

exacerbate this situation [4].

A solution to ease such a situation is powerful pruning tools and automatic systems.

Nowadays, the fast development in robotics and automation has brought significant

changes to many industries and benefit to the society [6] - [9]. However, the applications

in the forestry industry have been left behind, especially in automatic tree pruning,

inspection and harvest. Research work in tree pruning/inspection robot is still in the

early stage which means this field worth intensive study.

16

This research proposed a novel wheel-driven robotic system that has potential to be

used as a platform for tree pruning/inspection and developed a tree climbing

mechanism for tree pruning. The unique features of this novel system include the

passive and active anti-falling mechanisms which prevent the robot from falling to the

ground under either static or dynamic situations, the capability to vertically or spirally

climb up a tree trunk, the flexibility to suit different trunk sizes, lightweight and anti-

jamming during the climbing process. The 3D CAD model of the proposed tree pruning

robotic mechanism was first created using SolidWorks and then modified according to

the model obtained from the 3D printer. Following were the static and dynamic climbing

analysis. Robot climbing simulation was carried out in MATLAB SimMechanics based on

the SolidWorks model. Meanwhile, the robot hardware and control system were

designed for the platform anti-tilting control to prevent jamming on the tree trunk. A

testing prototype was built to justify and evaluate the system design, control methods,

and robot climbing behavior. The tests made on the testing prototype match with the

simulation and the analysis.

1.2 Research Topic

The aim of this research is to make a study on climbing robotic systems including the

climbing mechanism design, kinematics behavior simulation, pruning robot hardware

design and control system development for the applications in the forest industry. The

main objectives are:

1. Systematically study mechanical systems suitable for tree climbing robot and identify

the key features, functions, and movements for tree climbing robot.

2. Analyzing the kinematic and dynamic characteristics of typical climbing mechanisms

and establish a base for climbing robot design evaluation.

3. Study tree climbing and pruning process then develop the control methodologies.

4. Propose and design a tree climbing robotic system with anti-falling, anti-jamming,

low climbing slippage, suitable to a certain range of trunk diameter and lightweight

characters.

5. Build a physical testing system to demonstrate the features and functionalities of the

proposed tree climbing robotic system and evaluate the control strategy.

17

6. Produce quality academic outcomes that are of value for further research in robot

design for the forestry industry especially for tree pruning/inspection.

1.3 Scope of Research

Based on the research topic and the consideration of Ph.D. project time frame, the scope

of this research mainly focuses on the following aspects:

• Climbing method study and analysis: simple mechanism and high climbing speed

• Anti-falling mechanism design

• Tree pruning robot kinematics study and simulation: feasibility and robustness

• Tree pruning robot mechanism optimization

• Robot hardware and software design

• Tree pruning robot tilting measurement and control for anti-jamming during the

climbing procedure

• Tree pruning robot wheel slip control

• Build a physical testing prototype to verify and optimize the algorithms and

control methodologies

1.4 Organization of Dissertation

This dissertation contains nine chapters and five appendices. The development of tree

climbing mechanism, robot mechanical system, control and communication system.

Robot hardware and software design are also presented in detail in the main chapters.

The appendices include supporting information such as the robot mechanical drawing,

hardware and software drawing, some of the develop code and simulation results.

Chapter 1 provides the background to the research along with the aims, objectives, and

scope of the research.

Chapter 2 is a review of tree or pole climbing robots’ mechanical systems and

illustrations of their advantages and disadvantages.

18

Chapter 3 explores different design aspects and identify the essential features and

functions for tree pruning robot.

Chapter 4 discusses the design and optimization of climbing mechanical systems of tree

pruning robot according to kinematic study and simulation to fulfill the key features and

functions of pruning robot.

Chapter 5 focuses on robot control system design including the hardware and software

design.

Chapter 6 is primarily concerned with the robot platform tilting measurement methods

in static and dynamic situations.

Chapter 7 provides details on the robot tilting control using fuzzy logic.

Chapter 8 discusses the robot longitudinal wheel slip control based on dynamic neural

networks during the climbing process.

Chapter 9 is the discussions, the contributions of this research and the

recommendations for future improvements.

Appendix A contains some of the programming codes of the climbing robot.

Appendix B presents the MATLAB SimMechanics simulations.

Appendix C contains some mechanical drawings of this climbing robot.

Appendix D presents some hardware design of the proposed robot.

Appendix E is the robot 3D CAD Model in SolidWorks.

19

Chapter 2 Literature Review

An extensive research was conducted to locate as much information as possible on robot

design that could climb trees, poles and other surfaces. The following sections contain a

review of these robot designs. Each design of the climbing robotic systems was analyzed

and evaluated based on the climbing mechanism, types of climbing surface, moving

speed and climbing reliability. Also, some commonly used robot climbing control

methodologies like fuzzy logic and neural networks are also discussed in this chapter.

2.1 Currently Available Tree or Pole Climbing Robots

2.1.1 RiSE

The RiSE project was funded by the U.S. Defence Advanced Research Project Agency

(DARPA) for the purpose of surveillance, retrieval, and inspection. Boston Dynamics Inc.,

in collaboration with several universities, has at this point created three versions of the

RiSE robot which can climb straight up trees and wooden poles [10].

Figure 2.1 RiSE V1

RiSE V1 was first announced in 2005 [11]. Each of its six legs is actuated by two electric

motors, giving each leg two degrees of freedom. The robot was tested mainly on

carpeted walls to analyze and enhance its climbing ability. This robot maintains stability

while climbing by using a tripod gait, meaning that at least three legs are in contact with

the climbing surface at any given time. The robot maintains that grip by using a tail,

20

which is attached to the rear of the chassis and able to push the robot. Fig. 2.1 shows

how the tail works by pushing towards the climbing surface, which allows the front of

the robot to remain contact with the tree.

Figure 2.2 RiSE V2

RiSE V2 was the second generation which was very similar in structure to the original

version [12]. It uses the same six-legged configuration and each leg is powered by two

actuators. It reuses the tripod gait for climbing, in which three legs always maintain

contact with the surface. This robot also has several end effector modules, which allow

it to climb a variety of surfaces including outdoor walls and trees, as shown in Figure 2.2.

The gripping method for this robot takes advantage of a novel inspired gripper which

includes spines made from modified medical needles installed at the end of each leg.

These micro-spines covered feet can penetrate the climbing surface with minimal

damage. With two degrees of actuated freedom on each leg, RiSE V2 can determine and

utilize the best direction in which to apply force through the spiny feet for maximum

gripping.

Figure 2.3 RiSE V3

21

RiSE V3 has some major changes from the previous versions [13]. This robot employs a

Quadrupedal configuration, which means it only has four legs instead of the original six.

Different brushless DC motors are used in this version to increase power. Coupled with

a dramatically different leg mechanism and unique gaited behavior, this robot can climb

up the telephone pole with a speed of 210 mm/s. The chassis offers another degree of

freedom over the old design. A pivoting joint in the backbone of the robot allows it to

adjust its upper body toward or away from the climbing surface. This gives it even more

ability to adjust to the optimal gripping position during climbing as shown in Figure 2.3.

Although the robot has a high climbing speed, the mechanism is not flexible and robust

enough to do tree pruning work due to its complex mechanism.

2.1.2 WOODY

The WOODY project began in 2004 in the Sugano Lab at Waseda University in Japan, and

since then there have been three generations of prototypes [14]. Unlike the RiSE project,

the only desired application for WOODY is in forest preservation. If installing an electric

saw on the top of the robot, it has the potential to do some tree pruning work.

Figure 2.4 WOODY

WOODY is a manually controlled robot. It can hang on a tree trunk by wrapping its two

arms around the tree trunk which is illustrated in Figure 2.4. The robot climbs vertically

by extending and contracting its body using threaded rod mechanism and at the same

time releases and encloses its upper and lower arms alternatively. The tree side of the

arm has wheels mounted to it which allow for rotational motion. Though this robot can

do some tree pruning work, the heavyweight (13.8 Kg) and wheel rotational slippery

issue are the main drawbacks of this robot. Moreover, because the size of the robot has

22

to be proportional to the circumference of the tree trunk, this feature greatly limits the

application of this robot.

2.1.3 TREPA

The TREPA robot was developed at Miguel Hernandez University in 2006. This robot uses

a Gough-Stewart platform with 6-DOF as the parallel climbing platform. It consists of

two hexagonal rings that are linked with six linear actuators through universal and

spherical joints at each end [15-16].

Figure 2.5 TREPA

The climbing procedure of TREPA can be generalized as a repeated four-step which is

illustrated in Figure 2.6. First, the bottom hexagonal ring grips the tree and the top

hexagonal ring releases its grippers. The linear actuators then extend to move the top

ring to an upper position. Next, the top ring uses its grippers to grasp the tree trunk and

the lower ring releases its grippers. Finally, the linear actuators contract to raise the

lower ring to a higher position and grip the tree. This process is repeated to make the

robot climb the trunk. One potential task of the robot is tree pruning, but the robot’s

heavyweight (D350-31Kg) and low climbing speed (5.5 mm/s) are concerns for such

work.

Figure 2.6 Four-step Climbing Process

23

2.1.4 Treebot

T. L. Lam and Y. S. Xu developed a tree climbing robot inspired by the inchworm [17-

19]. This robot aims to assist or replace humans in tree-related tasks. For instance, it is

able to do tree inspection tasks by climbing from tree trunk to branches with the

gripper.

Figure 2.7 Treebot

It can be seen in Figure 2.7 Treebot is composed of three main assemblies: the controller

and battery, the two grippers and the continuum body. The front and rear grippers offer

the whole holding forces for the robot to strongly adhere on the tree trunk during the

climbing process. The continuum body of Treebot can extend up ten times longer than

its contracted length and has three degrees of freedom. It uses three mechanical springs

connected in parallel, separated by 120 degrees as a rack, and combines a pinion gear

attached to a DC motor to provide bendable movement.

Treebot climbs up the tree in an inchworm style motion. First, the robot anchors its rear

gripper to the tree and extends its front gripper up the tree. Then the front gripper is

engaged, and the rear gripper released. The continuum body contracts and raises the

rear gripper to a higher position before it is reengaged with the tree. Once this process

is complete it begins again and continues to move up the tree.

24

Figure 2.8 Treebot Continuum Body

Even though Treebot can afford a payload (1.75 Kg) nearly three times of its own weight,

it seems the robot is not ideal to do tree pruning tasks due to its low climbing speed

(12.2 mm/s) and unique mechanical structure.

2.1.5 Slider-Crank based Pole Climbing Robot

This robot was made by S.C. Lau in University Sains Malaysia in 2013 [20]. It consists of

2 main modules, which are climbing module and gripping modules. The climbing module

utilizes the slider-crank mechanism for the ascending and descending motion. A DC

motor is connected to the crank in order to produce rotation. When the crank rotates,

the rotational motion is converted into linear motion and the input torque of the DC

motor is used to overcome the friction between the slider and the end bar. One gripper

is attached to the end bar and another is fixed at the end of the slider.

Figure 2.9 Climbing Module and Gripping Module

The gripping module consists of 2 servo motors which attached on a frame. The PVC

slice is attached to an aluminum bar which is connected to the horn of servo motors as

shown in Figure 2.9. If the 2 servo motors rotate in clockwise direction, the gripper will

25

grasp the pole tightly. Otherwise, the gripper will release. To increase the friction

between the gripper and pole, rubber is attached to the PVC slice. The average climbing

speed of this robot is 3.7 mm/s. Obviously, such a low climbing speed is not suitable for

tree pruning robot.

2.1.6 Snake Robot

Carnegie Mellon University developed a modular hyper-redundant robot that mimics

the motion of a snake. Using universal joints with 3-DOF, the robot is able to move in

many different ways including rolling, wiggling, and sidewinding depending on the

terrain being encountered [21]. Not only can this robot move on the land, it can also

climb up a tree.

Figure 2.10 Snake Robot

The robot wraps around the tree and applies inward pressure while rolling its body to

generate vertical motion up the tree. This climbing method is effective in certain

situations but also has some inherent limitations. The main drawback of this robot is

that the robot body has to be long enough to wrap around the tree trunk. It is not

possible to do the tree pruning work.

2.1.7 Biped Wall-Climbing Robot

The biped wall-climbing robot is designed by Yisheng Guan et al. [22] to perform some

high-rise tasks such as cleaning, painting, inspection and maintenance on walls of large

buildings or other structures require robot with climbing and manipulating skills. The

climbing pattern of this robot is inspired by the climbing motion of inchworms.

26

Figure 2.11 Biped Wall-Climbing Robot

From Figure 2.11, built with a modular approach, the robot consists of five joint modules

connected in series and two suction modules mounted at the two ends. The advantage

of this robot is that it has higher maneuverability than tree or pole climbing robot since

it has more degree of freedoms. The weight of this robot is 16.1 Kg and it can climb up

a flat wall at the speed of 36.7 mm/s with the payload of 1.5 Kg. However, this robot is

not suitable for tree pruning task since it utilizes a vacuum system as the holding

approach which cannot work efficiently on curved surfaces.

2.1.8 3D Climber

3D Climber was designed by M. Tavakoli et al. [23-24] in the University of Coimbra for

developing a climbing robot with the capability of manipulating over 3D human-made

structures.

Figure 2.12 3DCLIMBER

It can be seen from Figure 2.12 that 3DCLIMBER consists of a 4-DOF serial climbing

mechanism and two grippers. Unlike other developed pole climbing robots, it can

overcome bends, T-junctions, flanges, and sharp changes on the pole’s diameter. The

weight of 3DCLIMBER is 42 Kg and climbing speed is 16.7 mm/s. Though this robot has

27

climbing maneuverability, it is not suitable for tree pruning work due to its heavy weight

and low climbing speed.

2.1.9 UT-PCR

M. N. Ahmadabadi et al. [25-27] developed a non-holonomic wheel-based pole climbing

robot to climb up a lamppost and clean the bulb. This robot employs six 1-DOF un-

actuated arms with ordinary 1-DOF wheels at their tips to grasp and climb the cylindrical

or near cylindrical poles. Three lower wheels are active with the upper ones being

utilized to increase the robot stability. It uses the preloaded springs to produce large

enough normal components to bring the lower wheels in good contact with the surface

of the pole so that the wheels do not slip. This method uses a spring mechanism to

generate non-automatically adjustable holding force. In addition, employing 1-DOF

wheels prevents the robot from climbing the pole in a spiral pattern for the convenience

of tree pruning.

Figure 2.13 Pole Climbing Robot UT-PCR

2.1.10 Kawasaki’s Pruning Robot

A tree-pruning robot prototype was developed at the Kawasaki & Mouri Lab of Gifu

University in Japan [5] [28-30]. This prototype can climb up cylindrical objects such as

trees or poles. It has four wheels in contact with the trunk during climbing. Two of the

wheels are located below the robot’s center of gravity and adjacent to each other. The

other two are installed above the robot’s center of gravity. The mechanical structure of

this robot is shown in Figure 2.14.

28

Figure 2.14 Kawasaki’s Tree Pruning Robot

The biggest advantage of this robot is that there is no energy consumption when the

robot keeps still on the trunk. It utilizes the friction forces generated by placing the mass

center of the robot on one side of the tree to achieve this goal. The average climbing

speed of this robot is 20 mm/s. Though the new version of this robot can climb a

cylindrical trunk to do pruning work, the wheel slippery and flexibility to cope with

different trunk diameters still need to be improved.

2.1.11 Seirei Industry’s Automatic Pruning Machine

Seirei Industry’s Co.’s AB232R Automatic Pruning Machine is the only available

commercial tree climbing robot [31]. Because its wheels are mounted at fixed angles,

the robot can only climb up a tree in a fixed spiral pattern.

Figure 2.15 Seirei Industry’s Automatic Pruning Machine

This robot generates its gripping force on the tree from preloaded springs. This type of

robot gripping approach restricts the domain of tree diameters that the robot can climb.

Moreover, due to its heavy weight (32.8kg), this robot is not used widely.

29

2.1.12 Pobot

J.C. Fauroux et al. developed a rolling self-locking robot in 2009 [32]. This robot is

capable to climb up a cylindrical-conic pole to do the surveillance and inspection tasks.

The mechanical structure of Pobot is illustrated in Figure 2.16.

Figure 2.16 Pobot

Pobot has the similar feature as Kawasaki’s robot design, which can maintain itself at a

given height on the pole without energy consumption. In order to realize this feature,

one necessary condition is that the center of mass of Pobot is sufficiently shifted laterally

respect to the contact points between the wheel and the pole, depending on the friction

conditions. Another feature for Pobot is that it can avoid obstacles on the pole by

horizontal rolling.

Pobot uses six preloaded strings to produce the holding forces, but this force cannot be

adjusted when the robot climbs. Therefore, in order to climb up the pole successfully,

sometimes the holding force can reach to 300N and could even create grooves on the

wood surface. The average climbing speed of Pobot is around 30 mm/s. The low climbing

speed, complex mechanism, heavyweight (10.5 Kg) and un-adjustable holding force are

the main disadvantages of the Pobot.

2.2 Tree Climbing Robot Control Methodologies

During robot climbing process, due to the complicated surface conditions, it is inevitable

that the robot platform suffers tilting. To tackle this issue, many approaches have been

proposed and studied in both robotics and automotive fields. These methods are based

on different techniques and technologies, e.g., torque control, dynamic-model-based or

30

vision-based control, and fuzzy logic. Each method is best suitable for its own specific

system due to the characteristic of the system and the sensors used.

Another critical problem for wheel driven climbing robot is the wheel slip. When the

wheel slip is not in its optimally stable zone, for tree climbing robots, the desired tire-

trunk longitudinal force cannot be achieved, which not only causes distance error but

also increases overall energy consumption. As a result, it directly affected the climbing

performance. There are numerous research approaches in wheel slip control field.

However most of them are in the automotive industry, only a handful of approaches

could be found in research in forestry applications especially tree climbing robot

development.

For the convenience to closely link with the control methodologies proposed in this

research, the detail information on control methodologies in literature and approaches

are respectively presented in chapter 7 and chapter 8.

2.3 Conclusions of Literature Study

The literature review on existing climbing robots reveals that there are only a few

prototypes of climbing robotic systems available. In terms of timber pruning robot, the

research and development work in literature is even less. The main reason for this status

quo is that, due to the gravitational pull and the unsmooth and irregular shape of the

tree surface, it is quite difficult to design a climbing mechanism to climb up a tree fast

and stable to do the pruning work.

Thus, the robotic climbing mechanism design for tree or pole requires extensive and in-

depth study. Chapter 3 summarizes the key features and functions that a tree pruning

robot should have and illustrates a novel robotic tree climbing mechanism for tree

pruning in detail.

31

Chapter 3 Features and Functions of Tree Pruning Robot

In terms of robot application field, climbing robot is one significant branch. However,

the research and development of climbing robots is relatively more complicated and

difficult comparison to other robot application areas [5]. Comparing with other robots,

for tree pruning robots, the robots need to carry the power tools and execute the

pruning task. At the same time, it must have the climbing capability. To realise such

functions, the robot platform must keep it horizontal under unexpected dynamic

situation that may cause by wheel slippage, trunk surface condition. During the last two

decades, most of the research in the area of climbing robots focused on wall climbing

robots (WCRs) and in-pipe robots and only limited number of pole climbing robots (PCRs)

were designed and developed. Generally, the design and implementation of PCRs face

more problems than those of WCRs and in-pipe robots. For instance, most WCRs [22]

[33-35] could use vacuum grippers or suction cups to climb up the flat wall. However,

such climbing mechanism employed on poles or tree trunks is not a desirable choice

because the vacuum system cannot work efficiently on curved surfaces.

The research and study for tree climbing robots is even less as the climbing environment

is more complicated such as the unsmooth surface and irregular shape of the tree trunk.

Therefore, designing a safe, fast and stable tree climbing mechanism is a challenging

topic that hinges on anti-falling, trunk jamming and robot platform tilting control.

3.1 Comparison and Analysis of Different Types of Tree or Pole Climbing Robots

A comparison of previously discussed robots in terms of climbing speed, weight,

climbing surface, advantages and disadvantages is shown in Table 3.1.

Table 3.1 Comparison of different tree or pole climbing robots

Robot Climbing style Pruning
Speed

(mm/s)

Weight

(Kg)

Climbing

Surface
advantages disadvantages

RiSE V3 Step-by-step No 210 5.4
Straight

trunk

Fast

locomotion

Not stable,

complex

WOODY Step-by-step Yes 19.4 13.8
Straight

trunk
Stable grip

Limited gripping

range,

heavyweight

32

TREPA Step-by-step Yes 5.5 31

Slightly

curved

trunk

High

maneuverabili

ty

Heavyweight,

low climbing

speed

Treebot Step-by-step No 12.2 0.65

Curved

trunk and

branches

Large payload
Non-robust

mechanism

Slider-

crank
Step-by-step No 3.7 _

Straight

pole

Simple

mechanism

Low climbing

speed

Snake

robot
Continuous No _ _

Ground,

straight

pole and

trunk

Adaptive to

different

terrains

Complex,

multiple

actuators

Biped WCR Step-by-step No 36.7 16.1 Flat surface

High

maneuverabili

ty

Complex, heavy

weight

3D Climber Step-by-step No 16.7 42

Curved

pipes and T

type pipes

High

maneuverabili

ty

Complex,

heavyweight

UT-PCR Continuous No _ _
Straight

pole

Simple

mechanism

Low

maneuverability

Kawasaki Continuous Yes 40 15

Straight

trunk and

pole

Self-locking Wheel slippery

Seirei Continuous Yes _ 32.8
Straight

trunk

Commercial

tree pruning

machine

Heavyweight,

wheel slippery

Pobot Continuous No 30 10.5
Straight

pole
Self-locking

Complex,

heavyweight

Table 3.1 reveals that the available robotic climbing mechanisms can be classified into

two types: continuous climbing and step-by-step climbing. Continuous climbing means

the robot climbs a tree trunk continuously such as the wheel-driven mechanism while

the step-by-step climbing indicates the robot climbs a tree trunk in an extend-contract

way. Continuous climbing robots usually take advantages of a simple structure and are

faster than step-by-step based robots, but the step-by-step climbing mechanism has

higher stability and flexibility. Wheel mechanism is the most typical style of continuous

climbing. The advantages and disadvantages of these two climbing styles are shown in

Table 3.2.

33

Table 3.2 Advantages and disadvantages between continuous and step-by-step climbing method

Climbing style Advantages Disadvantages

Continuous climbing

• High climbing speed

• Simplicity mechanism

• Wheel slippery

• Low maneuverability from

trunk to branch

Step-by-step climbing • Robust and high stability

• High flexibility

• Low climbing speed

• Complex mechanism

Taking the advantages and disadvantages of these two climbing mechanisms into

consideration, the continuous climbing method is more suitable for tree pruning robot

as high climbing speed is preferred.

3.2 Requirements for Tree Pruning Robot Design

From the literature review on the existing climbing mechanism and robot structure

analysis, the basic requirements for tree pruning robot design become clear. This

research aims to develop a novel tree climbing robotic system that is able to be a base

for tree pruning power tools, climb vertically or in a spiral pattern, be used on a range

of trees with a certain range of diameters, climb in different speed and never fall freely

to the ground. While the tree grows the diameter is increased. It is hard to use one

robot with a fixed size to suit a whole range of trees with different diameters. For this

research, the aim focuses on the pruning of the 3 to 5 years young pine trees. The

diameters are mainly in the range of 120 to 160 mm. Based on such desired

functionalities and requirements, the novel tree climbing robotic mechanism must have

the following features.

• Ability to carry a payload

• Climb in different patterns

• Cope with certain range size of tree trunk

• Able to climb tree trunk with a relatively high speed and the speed is adjustable

• Anti-falling for static and dynamic

• Lightweight as to facilitate transportation

The overall mechanical design of the tree pruning robot and its optimization are

discussed in the next chapter.

34

Chapter 4 Mechanical Design and Optimization of Tree Pruning

Robot

Design is the process by which the needs of the customer or the marketplace are

transformed into a product satisfying these needs. Figure 4.1 displays general systematic

approaches of the design process and Figure 4.2 shows the approach used in the design

process of tree pruning robot. All 3D models demonstrated in this thesis were modelled

in SolidWorks.

Figure 4.1 Systematic approaches of design process

Figure 4.2 Systematic approach utilized in the design process of tree pruning robot

1.
Brainstorm

2.

Research

3.

Develop
Ideas

4.

Choose
Idea

5.

Design

6.

Test and
Evaluate

7.

Feedback

8.
Optimization

35

In this chapter the conceptual design is firstly presented. Following is its static analysis

in three-dimensional space. Then the conceptual model is simulated in MATLAB

SimMechanics1. Based on the outcomes of the simulations, the conceptual model is

redesigned and optimized. After that the static and kinematic analysis of the optimized

model is presented in detail and verified in SimMechanics. Finally, a comparison of the

conceptual and optimized model is conducted.

4.1 Conceptual Design of Tree Pruning Robot

4.1.1 Mechanical Construction of Tree Pruning Robot Conceptual Design

Base on the analysis of existing tree or pole robotic climbing mechanisms and the basic

requirements for tree pruning robot, a conceptual design was proposed as shown in

Figure 4.3. In order to simplify the mechanical design and obtain relatively high climbing

speed, the wheel-driven climbing method was adopted.

Platform

Step Motor

Servo Motor
DC Motor Wheel

Linkage

Open and Close Joint Locker

Platform Diameter

Figure 4.3 Mechanical Construction of conceptual tree pruning robot design

1 “SimMechanics 2 User’s Guide,” MathWorks Inc, http://www.mathworks.com.au/products/simmechanics/.

http://www.mathworks.com.au/products/simmechanics/

36

Platform

Step Motor

Wheel

Figure 4.4 Top view of tree pruning robot conceptual design

This conceptual model consists of two parts: the platform and three legs. The design

consideration is that, in the future, the chainsaw and control system could be easily

installed on the platform. The platform plays a carrier role which also connects the robot

driving system with the chainsaw execution system in the process of tree pruning. The

platform is constructed by two parts. The two parts are joined through an open-close

joint. Once the robot is set up on the tree trunk, the platform is closed and locked by a

locker as shown in Figure 4.3. Under the platform, there are three legs evenly distributed

around the platform and these legs support the entire robot. The robot legs are also the

tree pruning robot’s driving mechanism which is composed of five major units: stepper,

servo motor, DC motor, linkage and wheel unit.

Two step-motors are installed on two legs of the robot under the platform as shown in

Figure 4.3. These two step motors together with the two nut and screw units are the

major mechanism to adjust the diameter constructed by the robot wheels to suit a

certain range of different sizes of tree trunk. The robot leg without installing step motor

is a fixed leg with a wheel against the tree trunk.

The function of the three servo motors is to change the robot climbing morphology.

Except for vertical climb, the robot can also use these three servo motors to climb the

trunk spirally at different spiral angles. The three DC motors provide the power to drive

the robot up and down along the tree trunk.

37

4.1.2 Static Analysis of Conceptual Model in Three-dimensional Space

Because there are only two step motors installed under the platform, this uneven mass

distribution leads to the robot center of mass not coinciding with the center of the

platform. Thus, under static conditions, the conceptual model has the capability to hang

itself on the trunk without consuming any energy and prevent free fall to the ground.

The two step-motors can also do fine adjustment to tune the distance between the trunk

center and the center of the robot wheel, which controls the normal forces applied on

the three robot wheels. When the stepper motor moves towards to the trunk, the tire

contact area with the trunk and the corresponding normal force increase. As a result,

the normal forces provide the frictional force by multiplying the friction coefficient,

which overcomes the robot gravity force and other resistance to make the robot

climbing up.

G

Ϝ1

Ϝ1µ1 Ϝ2µ2

Ϝ2

Platform
Step

Motor

d

Trunk

Wheel1 Wheel2

Wheel3

h

Figure 4.5 Lateral view of conceptual model force analysis

Ϝ1 Ϝ2

Ϝ3

G

Trunk

ԝ

L

Figure 4.6 Top view of conceptual model force analysis

38

Figure 4.5 and Figure 4.6 illustrate the lateral and top view of the conceptual model force

analysis. They represent the situation when the robot is in static status and the platform

keeps still on the trunk by gravity force without consuming energy. Then the equilibrium

status of the forces applied on the robot meet the following conditions based on the

fundamental principle of mechanics (assuming three wheels distributed evenly around

the trunk).

 𝐹1𝜇1 + 𝐹2𝜇2 + 𝐹3𝜇3 = 𝐺 (4.1)

1

2
𝐹1 +

1

2
𝐹2 = 𝐹3 (4.2)

Where 𝐹1, 𝐹2 and 𝐹3 are normal forces applied on the three wheels at the contact points

between the wheels and the tree trunk, 𝜇1, 𝜇2 and 𝜇3 are the friction coefficients, 𝐺

represents the gravity force of the robot.

Assuming that when the robot keeps still on the trunk, as wheel 1 and 2 each has a step

motor on the robot leg, it makes the gravity center of the robot has an offset from the

trunk center as shown in Figure 4.6. Under equilibrium condition, assuming wheel 1 and

2 stay at the same level which is lower than the position of wheel 3. And the equilibrium

of the moment at the upper wheel (wheel 3) contact point gives:

𝐺 (𝑤 +
𝑑

2
) =

1

2
𝐹1ℎ +

1

2
𝐹2ℎ + 𝐹1𝜇1𝐿 + 𝐹2𝜇2𝐿 (4.3)

Where 𝑑 is the diameter of the trunk, 𝐿 is the horizontal distance from the contact point

between wheel 3 and the trunk to the line defined by the similar contact points of wheel

1 and 2, ℎ is the vertical distance between wheel 3 and wheel 1, 2. 𝑤 is the robot gravity

force offset from the center of the platform as shown in Figure 4.6.

For tree climbing, assuming that the working condition for three wheels is similar which
means 𝜇1 = 𝜇2 = 𝜇3 = 𝜇, according to Eqn. (4.1) - (4.3),

1 1 3

2 4 4
L d d d= + = (4.4)

 3

(2 w d)

3 3

G G
F

d 

+
= = (4.5)

39

 𝜇 =
ℎ

3𝑤+1.5𝑑−2𝐿
 (4.6)

This indicates that to keep the robot still on the trunk by using the frictional force

(increasing friction coefficient) without consuming the robot power, a larger value of h is

more desirable.

4.1.3 Simulation of Conceptual Design Model

The mechanical system of the conceptual model is designed in SolidWorks 2015. Every

part is assigned with its material property and geometric dimensions. Some of the part

and assembly property information is summarized in table 4.1.

Table 4.1 Specifications of tree pruning robot conceptual design

Parameters Values

Platform Parts Mass Density 2700 kg/m3

Wheel Mass Density 1246.5 kg/m3

Robot Mass 8760.81 g

Volume 2013051.28 cubic mm3

Surface area 431292.27 mm2

Center of mass [X Y Z] = [3.81 6.60 -36.01] mm

Table 4.1 shows that the mass of the pruning robot is 8.76 Kg. That means its gravity force

is 85.94 N (the acceleration of gravity takes 9.81N/kg). Therefore, in the climbing process,

in order to prevent the robot from falling down, the total tractive force offered by the

three wheels of the robot has to be greater than the robot gravity force. In the vertical

climbing situation, the tractive force is the sum of the frictional forces applied to the

wheels. Under the ideal circumstance, assuming that the frictional force is uniformly

distributed on the three wheels. For the conceptual model, the value of the friction force

on each wheel should be 28.65 N.

The dynamic simulation and analysis of the tree pruning robot conceptual model are

conducted using MATLAB SimMechanics. Figure 4.7 shows the four views of the pruning

robot in SimMechanics.

40

Figure 4.7 Four views of tree pruning robot conceptual design in Simmechanics

 In order to make the simulation more realistic, the frictional force is set as simple

Gaussian noise so that the wheel slippage can be considered as disturbance. The frictional

force parameters are shown in Table 4.2.

Table 4.2 Parameters of frictional force

Parameters Values

Frequency 25 Hz

Mean 28.66 N

Standard Deviation 0.2

Velocity

(m/s)

Time(Sec)

Figure 4.8 Conceptual model vertical climbing velocity

41

Acceleration

(m/s
2
)

Time(Sec)

Figure 4.9 Conceptual model vertical climbing acceleration

Distance

(m)

Time(Sec)

Figure 4.10 Conceptual model vertical climbing distance

At simulation time 0, three frictional forces were applied on three wheels respectively.

Figure 4.8, 4.9 and 4.10 are the outcome of the simulation of the conceptual model’s

vertical climbing velocity, acceleration and distance according to the artificial frictional

forces. It can be seen that the velocity and distance are increasing over time. This is

because the total average frictional force is slightly larger than the robot gravity force.

During the simulation process, the maximum of the velocity is 0.2795 m/s and the

relative distance is 3.1383 m. The average velocity of the pruning robot is 0.126 m/s in

25 seconds.

Though this conceptual design has some tree pruning robot required features like anti-

falling, cope with a certain range of trunk sizes and climbing in different patterns, it also

has some drawbacks. For instance, the mechanical design of robot leg is not robust

enough to support the whole robot when climbing up the trunk. It is more vulnerable to

suffer wheel slippage which greatly impacts on the robot climbing performance. Another

issue is the point-to-point connection method between the servo motor and DC motor.

42

The servo motor can easily get stuck when the normal force is large, or the robot suffers

disturbances. Furthermore, aiming to design a lightweight tree pruning robot, the robot

weight can be reduced by reconstructing the robot platform frame.

4.2 Tree Pruning Robot Design Model Optimization

4.2.1 Anti-falling Mechanism Optimization

In reality, for any tree climbing robots, the most important feature is the robot never falls

to the ground in any situation: not only during the climbing process, but also in the

extreme conditions such as robot power cut off, wheel malfunction, etc. Based on such

considerations, a conceptual model was proposed (Figure 4.3), which uses two steppers

and screw-nut units to fulfill this active anti-falling function.

The working principle is that, during the robot climbing process, when the travel nut

moves towards the tree trunk, the friction forces between the wheel tread and the tree

trunk increases. The adjustable friction forces guarantee the robot not falling. However,

there are several shortages applying two-stepper systems. Firstly, the two-stepper

climbing method increases the total weight of the robot comparing to one stepper

system. Furthermore, the two-stepper climbing approach requires not only the

synchronization of the two steppers which means complicated control and more MCU

computational resource occupation but also more battery power consumption.

Therefore, to improve this situation, one-stepper climbing strategy is considered. In this

approach, only one robot leg is equipped with step motor system which could make

adjustment on the robot wheel. The other two wheels are stationary.

43

Wheel1 with Stepper:

Adjustable

Wheel2 with Stepper:

Adjustable

Wheel3 Without

Stepper: Fixed
R

R1

R2

Wheel1 with Stepper:

Adjustable

Wheel2 with Stepper:

Adjustable

Wheel3 Without

Stepper: Fixed
R

R1

R2

Wheel1 Without

Stepper: Fixed

Wheel3 Without

Stepper: Fixed

Wheel2 with Stepper:

Adjustable
R

R1

R2

Wheel1 Without

Stepper: Fixed

Wheel3 Without

Stepper: Fixed

Wheel2 with Stepper:

Adjustable
R

R1

R2

Conceptual Design Improved Design

Figure 4.11 Improvement of tree pruning robot mechanical design

Figure 4.11 illustrates the improvement of the climbing robot mechanical design. R, R1

and R2 stand for different radii of tree trunk while the dash circles represent the different

sizes of tree trunk. In conceptual design, two-step motors together with the two nut and

screw units adjust the diameter of the circle constructed by robot wheels to suit a range

of trunk sizes while this is simplified by one stepper in the optimized mechanical design.

The stepper’s screw-nut unit is shown in figure 4.12. During the robot climbing process,

the stepper adjusts the normal forces between the robot wheels and the tree trunk

through the screw and nut mechanism. The other two legs are fixed legs with the wheel

against the tree trunk without installing step motors.

Nut and Screw Unit

Stepper

Bush Bearing

Nut and Screw Unit

Stepper

Bush Bearing

Figure 4.12 Stepper and Nut-Screw Unit

4.2.2 Servomotor Module Optimization

To perform the tree pruning work, each robot wheel is installed a servomotor module.

The robot uses these modules to change the climbing morphology. Except for vertical

climbing, the robot can also climb the trunk in a spiral pattern by turning the wheels at

given angles. However, during the spiral or vertical climbing process, sometimes the

44

servomotor gets stuck due to the high normal force and other disturbing forces between

the wheels and the trunk in the conceptual design.

To solve this issue, one servomotor module and one bearing support mechanism are

designed which is illustrated in Figure 4.13. This servomotor module consists of three

parts: rotary plate, support plate and lock plate. When the servo motor rotates, the rotary

plate connected with servomotor shaft drives the wheel to rotate. During the servo

motor rotate process, the normal force is absorbed by the support plate and the

servomotor holding bracket. Hence, the servomotor only needs to overcome the friction

force between the rotate plate and support plate to swing. The friction force is relatively

small compared to the normal force since the contact area between rotary plate and

support plate is small and well lubricated.

The bearing support mechanism consists of one ball bearing, bearing shaft, bearing

linkage and guide rail. Its function is to overcome the robot wheel module gravity force

and other disturbing forces that affect the servomotor module and stepper’s nut and

screw unit. This guarantees the lead screw efficiency and control accuracy of the step

motor.

Rotate Plate Support Plate Lock Plate

Servomotor

Holding Bracket

Bearing Support Mechanism

Servomotor

Rotate Plate Support Plate Lock Plate

Servomotor

Holding Bracket

Bearing Support Mechanism

Servomotor

Figure 4.13 Servo Motor Module and Bearing Support Mechanism

4.3 Optimized Tree Pruning Robot Model

The modified climbing robot design is displayed in Figure 4.14 and one of the robot legs

is illustrated in Figure 4.15. It only relies on one stepper system to adjust robot holding

force and suit different tree diameters. Three servomotor modules are installed to

change the robot climbing morphology. The three geared DC motors provide the power

to drive the robot up and down along the tree trunk. Each of the geared motors has an

45

encoder to control the climbing speed. To increase the robot wheel friction force, the

improved robot uses 120×60 mm size rubber tire to replace the original 56×25 mm tire.

To achieve the lightweight feature without sacrificing the strength of the robot

mechanical construction, the platform is also redesigned by cutting off the unnecessary

materials on the top plate. The mass of the improved robot model in SolidWorks is now

around 6.42 Kg while the conceptual model was 8.76 Kg.

Open-close Joint

Robot Platform

Robot Leg

Stepper

Open-close Joint

Robot Platform

Robot Leg

Stepper

Figure 4.14 Mechanical Construction of the Optimized Tree Pruning Robot Design

Stepper

Servomotor
DC Motor

Wheel Unit

Leadscrew and Nut

Stepper

Servomotor
DC Motor

Wheel Unit

Leadscrew and Nut

Figure 4.15 Climbing Robot Leg Module

4.3.1 Optimized Tree Pruning Robot Static Analysis in Three-dimensional Space

Because the purposely installed one step motor under the platform, the uneven mass

distribution leads to the robot center of mass not coincides with the center of the

platform. Thus, under static situations, the platform tilts from the horizontal position.

This feature makes the climbing robot has the potential to hang itself on the tree trunk

without consuming any power and prevent free falling to the ground when power is cut

off. This means the optimized model also has the passive anti-falling feature.

46

The step motor can also do fine adjustment to tune the distance between the tree trunk

and the tread of the robot wheel, which controls the values of the normal forces applied

on the three robot wheels. When the stepper motor moves closer to the tree trunk, the

tire contact area with the trunk and the corresponding normal force increases. When the

frictional forces obtained by multiplying the normal forces and the friction coefficient

overcome the robot gravity force, the robot starts to climb up.

Wheel2

Ϝ1

Ϝ1µ1
Ϝ2µ2

Platform

Step Motor

d

Trunk

Wheel1

Wheel3GG

Ϝ2 Ϝ3µ3

Ϝ3

Z

YX

Z

YX

h

Wheel2

Ϝ1

Ϝ1µ1
Ϝ2µ2

Platform

Step Motor

d

Trunk

Wheel1

Wheel3G

Ϝ2 Ϝ3µ3

Ϝ3

Z

YX

h

Figure 4.16 Lateral View of Climbing Robot Force and Moment Illustration

Wheel1

Wheel2

Wheel3
d

G

F 1

F
2

F3

R

Wheel1

Wheel2

Wheel3
d

G

F 1

F
2

F3

R

Figure 4.17 Top View of Climbing Robot Force and Moment Illustration

Figure 4.16 and Figure 4.17 illustrate the lateral and top view of the forces and moments

applied on the optimized robot when it is in static status and the platform is hung on the

trunk by gravity force without consuming power. Then the equilibrium status of the

47

forces applied to the robot meet the following conditions based on the fundamental

principle of mechanics.

∑ 𝐹𝐻 = 𝐹⃗1𝑐𝑜𝑠60° + 𝐹⃗2𝑐𝑜𝑠60° + 𝐹⃗3 = 0 (4.7)

∑ 𝐹𝑉 = 𝐹⃗1𝜇1 + 𝐹⃗2𝜇2 + 𝐹⃗3𝜇3 = 𝑚𝑔 (4.8)

Where 𝐹⃗1, 𝐹⃗2and 𝐹⃗3 are normal forces applied on the three wheels at the contact points

between the wheels and the tree trunk, 𝜇1, 𝜇2and 𝜇3 are the static friction coefficients,

𝐹𝐻 and 𝐹𝑉 are the resultant horizontal and vertical forces, 𝑚 represents the mass of the

robot.

When the robot hangs on the tree trunk, as wheel 3 has a step motor on the robot leg, it

makes the gravity center of the robot has an offset from the trunk center (tilting) as

shown in Figure 4.16. Under the equilibrium condition, wheel 1 and 2 stay at the same

level which is higher than the position of wheel 3. And the equilibrium of the moment at

the lower wheel (wheel 3) contact point (in the case of the wheel not rolling) gives:

𝐹1
⃗⃗ ⃗⃗ 𝑐𝑜𝑠60°ℎ + 𝐹2

⃗⃗ ⃗⃗ 𝑐𝑜𝑠60°ℎ − 𝐹1
⃗⃗ ⃗⃗ 𝜇1

3

2
𝑅 − 𝐹2

⃗⃗ ⃗⃗ 𝜇2
3

2
𝑅 + 𝑚𝑔𝑑 = 0 (4.9)

Where 𝑑 is the length from the surface of the trunk to the center of mass of the robot, R

is the radius of the trunk, h is the vertical distance between the upper and lower wheels.

For tree climbing, the working condition between the tree trunk and the three robot

wheels is almost similar. Therefore, assuming that 𝜇1 = 𝜇2 = 𝜇3 = 𝜇, according to Eqn.

(8),

(𝐹1 + 𝐹2 + 𝐹3)μ = mg (4.10)

From Eqn. (7),

1

2
𝐹1 +

1

2
𝐹2 = 𝐹3 or 𝐹1 + 𝐹2 = 2𝐹3 (4.11)

From Eqn. (4.10) and (4.11),

𝐹3 =
𝑚𝑔

3𝜇
 (4.12)

48

From the moment equation,

(𝐹1cos60° + 𝐹2𝑐𝑜𝑠60°)h − (𝐹1 + 𝐹2)
3

2
𝑅𝜇 + 𝑚𝑔𝑑 = 0 (4.13)

From Eqn. (4.11), (4.12) and (4.13),

𝐹3ℎ − 3𝑅𝜇𝐹3 + 𝑚𝑔𝑑 = 0 (4.14)

∴ μ =
ℎ

3(𝑅−𝑑)
 (4.15)

This means the static friction coefficient can be represented as a function of robot mass

center location and the vertical distance between the upper and lower wheels. In this

case, to stay on the tree trunk by robot’s own weight without consuming any power, the

larger distance between upper and lower wheels is more desirable.

However, for wheel climbing mechanism, there is another issue. When the robot is tilted

on the tree trunk, if the wheels can still roll because of the gravity force, then the robot

will fall to the ground. How to stop the wheel rolling must be considered. Taking the lower

wheel in Figure 4.16 as an example to illustrate this problem, the force and moment

analysis is shown in Figure 4.18. Due to the robot gravity G, static frictional force 𝐹𝑓 and

normal force F, the wheel contact surface was changed. That means the normal pressure

in the upper half of the contact patch (shaded area) is higher than that in the lower half.

Therefore, the resultant force of the pressure distribution is offset towards the upper of

the contact patch. The offset force produces the rolling moment M that gives the robot

a rolling downtrend.

M = G ∙ 𝑟𝑠 + 𝐹 ∙ 𝜆 (4.16)

𝑟0 is the wheel free radius (60 mm) while 𝑟𝑠 is the static radius of the robot wheel under

loaded condition, the detail of wheel radius will be discussed in the next section; 𝐹𝑓 is the

static friction force; N is the applied horizontal force; 𝜆 is the vertical offset distance of

the resultant normal force F due to the tire deformation.

49

λ

Ϝ
N

Ϝf

G

Wheel

Trunk

r0

rs

Rolling Trend

Contact Patch

λ

Ϝ
N

Ϝf

G

Wheel

Trunk

r0

rs

Rolling Trend

Contact Patch

Figure 4.18 Static Rolling Moment Analysis

To offset this rolling moment, the three servo motors turn the three DC motors certain

degrees to stop the wheel rolling. The exact servomotor rotating angles depends on the

size of the tree trunk, robot wheel dimension, condition of trunk condition, etc. While in

extreme situation, the servomotor can turn the DC motor together with the wheel 90

degrees, which means the axis of the trunk is parallel to the axis of the wheel as shown

in figure 4.19.

Wheel

F

Ϝf

G

N

Trunk

rs r0

Wheel

F

Ϝf

G

N

Trunk

rs r0

Figure 4.19 Anti-wheel-rolling Approach

4.3.2 Optimized Tree Pruning Robot Dynamic Analysis of Vertical Climbing

For vertical climbing, before the robot begins to climb up, the three servomotors first

turn the three wheels’ axes horizontal to allow the robot to climb the tree vertically.

Assuming the stepper shaft is at a proper position, which means no adjustment is needed

and the normal forces are big enough to drive the robot up, also assuming the friction

coefficient is the same for the three wheels during the climbing process, then the three

DC motors that driving the three wheels need to overcome the rolling resistance, robot

gravity, acceleration resistance, etc.

50

1) Rolling Resistance

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting

the motion when a body roll on a surface. In this case, the rolling resistance is mainly

caused by the hysteresis losses. Another cause of rolling resistance lies in the slippage

between the wheel and the surface, which dissipates energy2.

Figure 4.20 is a simplified wheel tire model. Considering an elastic wheel which is

composed of many spring-damper units. When the wheel tries to rotate on the tree

surface, the frictional force 𝐹𝑓 and resultant normal force 𝐹 will occur on the contact

patch (slash area in Fig. 4.20). Additionally, the tire deforms since the stiffness of the

trunk is much larger than the tire. When the tire enters the contact patch, the spring-

damper unit is initially compressed and then released. This compress and release process

dissipate internal energy in the way of frictional heat and is defined as hysteresis losses.

λ

ω

N
F

Ϝf

G

Wheel

Trunk

Spring-damper Unit

rr

r0

λ

ω

N
F

Ϝf

G

Wheel

Trunk

Spring-damper Unit

rr

r0

Figure 4.20 Simplified Climbing Robot Wheel Tire Model

Figure 4.21 illustrates the hysteresis losses. Curve A refers to the compress process while

curve B is the release process. The area between the curve A and B is the hysteresis losses

[36][37].

2 “Rolling Resistance,” Wikipedia, last modified December 15, 2016. https://en.wikipedia.org/wiki/Rolling_resistance.

https://en.wikipedia.org/wiki/Rolling_resistance

51

Tire deformation

Unit: mm

Normal force

Unit: Newton

A

B

Tire deformation

Unit: mm

Normal force

Unit: Newton

A

B

Figure 4.21 Climbing Robot Wheel Rolling Resistance: Hysteresis Losses

2) Rolling Radius

There are three types of wheel radii: free radius 𝑟0, static radius 𝑟𝑠 and rolling radius 𝑟𝑟.

The radius, when the robot wheel is under unloaded condition, is the free radius 𝑟0. In

static condition, when the robot wheel deforms under loaded situation, the radius is

called static radius 𝑟𝑠. Obviously, the value of the static radius 𝑟𝑠 depends on the static

load. In kinematic situation, the ratio of the robot wheel displacement velocity 𝑣 and

wheel rotational velocity ω is called rolling radius 𝑟𝑟 [37].

𝑟𝑟 =
𝑣

𝜔
=

𝑣×∆𝑡

𝜔×∆𝑡
=

𝑠

2×𝜋×𝑛ω
 (4.17)

Where 𝑛ω and 𝑠 are the robot wheel rotational cycles and the distance in time ∆𝑡

respectively.

There is another method to calculate the wheel rolling radius 𝑟𝑟. Assuming the wheel

rotates angle ∆φ and moves distance ∆x, then the rolling radius 𝑟𝑟 can be obtained from

Figure 4.22.

52

ω

r0 rs
Δφ

Δx

ω

rr

Δφ

Δx

Elastic wheel Rigid wheel

Rigid surface

ω

r0 rs
Δφ

Δx

ω

rr

Δφ

Δx

Elastic wheel Rigid wheel

Rigid surface

Figure 4.22 Climbing Robot Wheel Rolling Radius

𝑟0𝑠𝑖𝑛∆𝜑 = ∆𝑥 (4.18)

𝑟0cos∆φ = 𝑟𝑠 (4.19)

Comparing the elastic wheel with the rigid wheel in the above figure, it can get:

∆x = 𝑟𝑟∆𝜑 (4.20)

𝑟𝑟 =
𝑟0𝑠𝑖𝑛∆𝜑

∆𝜑
 (4.21)

When ∆φ → 0, then 𝑟𝑟 = 𝑟0. If ∆φ is small enough, the sine function can be expanded

using series.

𝑟𝑟 =
𝑟0(∆𝜑−

1

6
∆𝜑3)

∆𝜑
= 𝑟0(1 −

1

6
∆𝜑2) (4.22)

For cosine function Eqn. (4.19), expanded in series:

𝑟𝑠 = 𝑟0 (1 −
1

2
∆𝜑2) or ∆𝜑2 = 2(1 −

𝑟𝑠

𝑟0
) (4.23)

From Eqn. (4.22) and (4.23), it can get [38]:

𝑟𝑟 =
2

3
𝑟0 +

1

3
𝑟𝑠 (4.24)

53

λ

N

F

Ϝr

Wheel

Trunk

r0

rr

ω

λ

N

F

Ϝr

Wheel

Trunk

r0

rr

ω

Figure 4.23 Free Rolling at Horizontal Trunk

In Figure 4.23, suppose a robot wheel is free rolling on a horizontal surface, from the

moment equilibrium, it can get:

𝐹𝑟𝑟𝑟 = 𝐹𝜆 (4.25)

From the Eqn. (4.25), the rolling resistance 𝐹𝑟 is proportional to the wheel normal force

F.

Therefore, when the robot stays on the tree trunk the robot wheel radius uses 𝑟𝑠 while it

uses the 𝑟𝑟 for the kinematic analysis during the climbing process.

3) Robot Gravity Force

Robot mass is a critical factor in climbing robot design as it directly affects the value of

the robot gravity force. Under different situation, this gravity force can accelerate or

decelerate the robot speed and the mechanical behavior of the mechanism. The total

mass of the presented tree climbing robot is approximately 6.42 Kg in CAD design, while

the actual total robot mass is 6.8 Kg (about 66.7 Newton) because of the contribution

from PCB boards and other electrical components.

4) Acceleration Resistance

At the beginning of the tree climbing from a static condition, the three DC motors need

to overcome the inertia force caused by the robot mass during the accelerated

movement. As shown in Figure 4.24, the inertia force is deemed the acceleration

resistance 𝐹𝑗.

54

𝐹𝑗 = 𝑚
𝑑𝑣

𝑑𝑡
 (4.26)

The inertia torque 𝑇𝑗 caused by the acceleration resistance is:

𝑇𝑗 = 𝐼𝛼 = 𝐹𝑗𝑟𝑟 (4.27)

Where 𝐼 is the wheel rotational inertia; 𝛼 is the wheel angular acceleration and 𝑟𝑟 is the

wheel rolling radius.

As the robot climbs up, the DC motor’s torque should overcome the rolling resistance,

robot gravity and acceleration resistance.

𝐹𝑀 = 𝐹𝑟 + 𝐺 + 𝐹𝑗 (4.28)

T𝑀 = 𝑇𝑟 + 𝑇𝐺 + 𝑇𝑗 = 𝐹 ∙ λ + G ∙ 𝑟𝑟 + 𝐹𝑗 ∙ 𝑟𝑟 (4.29)

𝐹𝑀 and T𝑀 are the force and torque required from the DC motor respectively. 𝑇𝑟 is the

rolling resistance torque; 𝑇𝐺 is the robot gravity torque; 𝐹𝑟 is rolling resistance; 𝐺 is

robot gravity force and λ is vertical offset distance of the resultant normal force 𝐹 due

to the tire deformation.

λ N
F

r0

rr

Ϝf

G

λ N
F

r0

rr

Ϝf

G

Wheel

Trunk

T
M

Fj

λ N
F

r0

rr

Ϝf

G

Wheel

Trunk

T
M

Fj

Figure 4.24 Force and Torque Analysis on one robot leg

As the tree trunk is not smooth so the friction coefficient in fact varies and the wheel may

be slipped. The climbing speed of each robot leg cannot always be kept the same. As a

result, the platform is constantly tilted in different directions. The stepper therefore must

be engaged to adjust the normal forces on the three wheels to keep the platform

55

horizontal. The platform tiling control and robot wheel slippage control will be illustrated

in the robot control section.

4.3.3 Active and Passive Anti-Falling Mechanism

This novel tree climbing robot design has a special characteristic: the anti-falling

mechanism, both active and passive. As previously discussed，the passive anti-falling

mechanism uses only friction forces and the gravity force of the robot to maintain a hold

on the trunk like Kawasaki’s and Faurouxs’ designs in static or sudden power cut off

situation. The primary point of achieving this feature is to let the center of the mass of

the robot offset from the center of the tree. The lateral and top views of passive anti-

falling mechanism are illustrated in Figure 4.25.

Figure 4.25 Passive Anti-Falling Mechanism: Lateral View and Top View

During the climbing process, due to the diverse and complicated tree surface, the robot

may slip or fall in extreme conditions. Therefore, an active anti-falling mechanism is

proposed to overcome this problem. As shown in Figure 4.16, when the normal forces

increase, with the unchanging friction coefficient μ, the total friction force of the robot

increases correspondingly. This process is executed by the stepper and screw-nut unit. If

the stepper motor moves toward to the trunk, the normal forces on the wheel-trunk

contact areas increase. So, as the related friction forces. With such an active anti-falling

mechanism, it guarantees the robot can climb up the trunk safely and steadily without

slip or falling.

The entire implementation of the active anti-falling mechanism is illustrated by the

following flowchart. During the climbing process, the active anti-falling mechanism plays

the leading role while the passive anti-falling mechanism acts as a complement. If the

robot system loses its power, the active anti-falling mechanism is mal-functional, and the

56

passive anti-falling mechanism takes over the control to hang the robot on the tree. This

doubles the guarantee to resist robot falling. Compare to passive anti-falling mechanism,

the main drawback of active anti-falling mechanism is that it consumes the power and

requires a dynamic control system.

Start

Measure acceleration

Free fall?

Step motor fastly move in

Measure height

Still descend?

Step motor slowly move in

No

Yes

Yes

Stop motor

Stop motor
No

Passive Anti-falling Mechanism

Active Anti-falling Mechanism

Robot power cut off

Figure 4.26 Anti-falling Mechanism Flowchart

4.3.4 Simulation and Experiment of Optimized Tree Pruning Robot

The assembly property information of optimized pruning robot is summarized in table

4.3. The mass is 6.42 Kg while the conceptual model is 8.76 Kg.

Table 4.3 Specifications of pruning robot

Parameters Values

Platform Parts Mass

Density
2700 kg/m3

Wheel Mass Density 960 kg/m3

Robot Mass 6419.74 g

Volume 3079209.1 cubic mm3

Surface area 1081348.83 mm2

57

As discussed previously, during the vertical climbing process the wheel tractive force

overcomes the rolling resistance, robot gravity, acceleration resistance, motor bearing

heat losses, etc. To confirm the previous analysis and the behavior of the climbing robot

and help to select the correct motors, a dynamic simulation of the proposed robot

climbing system was carried out. The simulation and analysis of the climbing process are

also conducted in MATLAB SimMechanics like the conceptual model. Figure 4.27 shows

the four views of the climbing robot in SimMechanics.

Figure 4.27 Four Views of Pruning Robot in Simmechanics

In the dynamic simulation, the inverse kinematic method was used. The wheel rotation

angle and rotation speed were set to 4 pi rad and 12 rpm respectively. To make the

simulation more realistic, the slippage and wheel deformation were taken into

consideration. Figure 4.28 showcases the results of required DC motor torque which is

around 1.15 N-m. The corresponding robot vertical climbing speed is shown in Figure 4.29.

Due to the wheel slippage and deformation, the average robot vertical climbing speed

is 62.9 mm/s.

Time (sec)

D
ri

v
in

g
 T

o
rq

u
e

(N
-m

)

Time (sec)

D
ri

v
in

g
 T

o
rq

u
e

(N
-m

)

58

Figure 4.28 DC Motor Driving Torque

Time (sec)

R
o

b
o

t
C

li
m

b
in

g
 V

el
o

ci
ty

 (
m

m
/s

)

Time (sec)

R
o

b
o

t
C

li
m

b
in

g
 V

el
o

ci
ty

 (
m

m
/s

)

Figure 4.29 Robot Climbing Velocity

Based on the simulated DC torque and previously dynamic analysis, the DC motor

selected in this design is a powerful 12V brushed DC motor with an integrated quadrature

encoder which can offer maximum 16 kg-cm torque.

The friction coefficient between rubber and wood is in the range of 0.75 to 1 [38]. Based

on the robot gravity and previous force analysis, the type of stepper and servomotor was

selected. The servomotor used in this design can produce 17 kg-cm torque at 6V. The

stepper has 5 kg-cm holding torque. The dimension of the robot’s rubber wheel is 120×60

mm. The first testing climbing robot is then built and shown in Figure 4.30 and 4.31.

Figure 4.30 illustrates the structure of one robot leg while Figure 4.31 shows that the

robot keeps stationary on the test rod using the passive anti-falling mechanism. The

length of the test rod is 1 meter and the diameter is 122.5 millimeters. The total mass of

this prototype is 6.8 kg.

Figure 4.30 Tree Climbing Robot Leg

59

Figure 4.31 Tree Climbing Robot Physical Test Model

This chapter illustrates the mechanical design and optimization of tree pruning robot

according to the requirements and functions of tree pruning. These CAD models were

simulated and verified in the SolidWorks and MATLAB SimMechanics. Base on the

outcome of simulation, the robot motor types are determined. The following chapter

will discuss the robot hardware and software design.

60

Chapter 5 Tree Pruning Robot Control System Design

This chapter describes the tree pruning robot control methodologies and system design

which utilized the modular design method. For the entire control system, it focuses on

the design methodologies, intelligent control and PCB board design. The control system

consists of hardware and software design which is illustrated in Figure 5.1. In terms of

hardware design, it covers power module, MCU module, motor driving module,

communication module, etc. while the software aims at the development of control

algorithms such as filtering techniques, climbing robot tilting measurement, fuzzy

control, and wheel slip control. The software development is specifically discussed later

chapters with Chapter 6 focuses on filtering and tilting measurement, Chapter 7 and 8

on fuzzy and neural network control respectively.

Arduino Mega

& Due

Climbing

Robot

Tilting Fuzzy Control

Wheel Slip Control Using

Dynamic Neural Networks

Complementary

Filter

Power Module

MCU Module

Motor Driving

Module

Communication

Module

H
a
rd

w
a
re

S
o

fe
w

a
re

M
P

U
-9

1
5

0

Figure 5.1 Robot control system diagram

5.1 Tree Pruning Robot Control System Schematic Design

The essential part of the control system is the design of tree pruning robot PCB. It plays

a key role in the climbing robot control system since the entire system control is via the

PCB board. Furthermore, a professional PCB layout enables the control system more

efficient, concise and stable. While designing a professional PCB board is not an easy

work, there are many factors and aspects needed to be taken into consideration, such

as heat dissipation, electromagnetic noise, voltage regulation, current adjustment, etc.

61

The control system PCB acts as a bridge between the robot electronics and mechanics.

It uses the MCU to control the robot mechanical actuators to finish certain tasks. And

the PCB board is also a carrier for the hardware and software of the robot control system.

In terms of hardware, the robot motor driving system, tilting measurement system,

robot communication system and power conversion system are all designed and placed

on the PCB board. In the design of software, the DC motor, servomotor and stepper

control algorithm, IMU data fusion algorithm, tilting control algorithm and robot wheel

slippage control are all applied in the MCU. Therefore, the design of tree pruning robot

PCB is significant to the robot control system, and also to the entire robot system.

In order to design a professional climbing robot PCB, the first thing is to design the

schematic. PCB layout is the resulting design from taking a schematic with specific

components and determining how they will physically be laid out on a printed circuit

board. To produce a PCB layout, the connections of components, components sizes

(footprints), and a myriad of other properties (such as current, frequencies, emissions,

reflections, high voltage gaps, safety considerations, manufacturing tolerances, etc.)

should be studied and researched in advance. Such work is mainly done in the schematic.

It is based on the principles of the PCB design.

A schematic shows the connection in a circuit in a way that is clear and standardized. It

is a way of communicating to other engineers exactly what components are involved in

a circuit as well as how they are connected. A good schematic shows component names

and values, provide labels for sections or components to help communicate the

intended purpose. In the climbing robot schematic design, the entire control system

schematic can be divided into seven sections: Arduino Mega25603 Control Module,

Arduino Due4 Module, Communication Module, DC Motor Module, Servomotor Module,

Stepper Module, and Power Module.

3 Atmega2560 datasheet, https://cdn.sparkfun.com/datasheets/Components/General%20IC/2549S.pdf.

4 Atmel SAM3X8E ARM Cortex-M3 datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-

M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf.

https://cdn.sparkfun.com/datasheets/Components/General%20IC/2549S.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf

62

The entire climbing robot schematic and PCB are designed using Altium Designer5. It is

an electronic design automation software package for printed circuit board, FPGA and

embedded software design. For the climbing robot PCB design, the first thing needed to

do is to design the schematic library and PCB library according to the electronic

components size and footprint.

5.1.1 Power Module

The first part of control system schematic is power module design. In the climbing robot

control system, there are five different voltage levels: 3.3V, 5V, 6V, 9V and 12V. The 12V

is the battery voltage level which supplies power for the entire robot system. The 6V and

9V voltage levels are converted from the 12V voltage level, while the 5V and 3.3V voltage

level are from the Arduino Mega and Due board respectively.

The 12V voltage level is used for the DC motor and stepper, while the 6V is the working

voltage of three servo motors. The power supplied for Arduino Mega and Due boards

are from 9V voltage level. The DC motor and stepper driver control logic voltage level,

the encoder power and main current sensor power are all 5V, while the IMU power, the

XBee power and logic level converter are 3.3V.

Figure 5.2 Power module schematic

5 Altium Designer ver.13, http://www.altium.com/documentation/18.0/display/ADES/Altium+Designer+Documentation.

http://www.altium.com/documentation/18.0/display/ADES/Altium+Designer+Documentation

63

In order to hold high current for the entire robot system, the power switch6 used is a big

MOSFET slide switch with reverse voltage protection which can supply 6A continuous

current at 55℃, 16A continuous current at 150℃. The current sensor used is Allegro’s

ACS711EX7 (-15.5A ~ +15.5A) which is a hall effect-based linear current sensor with

overcurrent fault output. The step-down voltage regulators used for 6V and 9V are

Pololu’s D24V22F68 and D24V22F99 respectively.

The robot power switch, current sensor, step-down voltage regulators and their typical

efficiency, dropout voltage graphs are displayed in Figure 5.3, 5.4, 5.5, and 5.6.

Figure 5.3 MOSFET Slide Power Switch

Figure 5.4 Current Sensor

6 Big MOSFET Slide Switch with Reverse Voltage Protection, HP, https://www.pololu.com/product/2815.

7 ACS711EX Current Sensor Carrier -15.5A to +15.5A, https://www.pololu.com/product/2452.

8 Pololu 6V, 2.5A Step-Down Voltage Regulator D24V22F6, https://www.pololu.com/product/2859.

9 Pololu 9V, 2.3A Step-Down Voltage Regulator D24V22F9, https://www.pololu.com/product/2861.

https://www.pololu.com/product/2815
https://www.pololu.com/product/2452
https://www.pololu.com/product/2859
https://www.pololu.com/product/2861

64

Figure 5.5 6V DC-DC Converter

Figure 5.6 9V DC-DC Converter

The 9V DC-DC converter can still get power supply even the main power switch is turned

off. Because the 9V voltage is used for two MCUs, the converter power supply is directly

from the battery. That guarantees the control circuit power and actuator circuit power

are separated so that the control system still can control the robot when the motor

driving system power is turned off.

5.1.2 MCU Module (Arduino Mega and Due)

The climbing robot uses Arduino Mega 2560 and Arduino Due as the MCU. Arduino

Mega is responsible for dealing with the control algorithm of motors (3 DC motors, 3

Servomotors, 1 stepper), monitoring the system current and voltage, transmitting

control system information and receiving commands from Arduino Due through serial

ports. And the Mega also supplies 5V voltage for the robot control system.

The Arduino Due plays a role as information processing and control algorithm operating.

It collects the tilting information from IMU module and operates the data fusion

algorithm to obtain the useful and precision tilting angles. Then according to these tilting

(pitch, roll and yaw) angles and information from Mega, the Due calculates and gives

commands to Mega to control the entire robot climbing speed and morphology. The

65

tree pruning robot tilting control algorithm and wheel slippage control algorithm are all

executing on Arduino Due. Besides, Due can also communicate with the PC using the

XBee module to realize remote control. The system voltage level 3.3V is from Arduino

Due module.

One thing that needs to be emphasized here is the voltage compatible. The voltage level

of Arduino Mega system is 5V while the Due is 3.3V, so the logic level converter must be

used to solve this issue.

Figure 5.7 Tree pruning robot schematic design of Arduino Mega 2560 and Arduino Due

66

5.1.3 Motor Driving Module

This module contains three parts: DC motor, Servomotor and Stepper. The DC motor

driver is ST’s VNH2SP3010 motor driver IC which operates from 5.5V to 16V and can

deliver a continuous 14A (30A peak). It works with 5V logic levels and supports ultrasonic

(up to 20 KHz) PWM. It features current sense feedback (an analog voltage proportional

to the motor current) along with built-in protection against reverse-voltage, over-

voltage, under-voltage, over-temperature, and over-current. This DC motor driver is a

fully integrated H-bridge that can be used for bidirectional speed control of a single

brushed DC motor. The breakout board and schematic of DC motor driver are shown in

figure 5.8.

Figure 5.8 Breakout board and schematic design of DC motor driver – VNH2SP30

10 VNH2SP30 Motor Driver Carrier MD01B, https://www.pololu.com/product/706.

https://www.pololu.com/product/706

67

The DC motor used in this robot is powerful 12V brushed gear motor (figure 5.9) with a

102.083:1 metal gearbox and an integrated quadrature encoder that provides a

resolution of 64 counts per revolution of the motor shaft, which corresponds to 6533

counts per revolution of the gearbox’s output shaft11.

Figure 5.9 12V brushed gear DC Motor

The servo motor used in this robot is 1501MG12 from Power HD which is a metal-geared

analog servo that delivers extra-high torque. This servo weighs 60 grams and the stall

torque is 17 Kg-cm at 6V. The stall current is 2.5A at 6V operating voltage. The limit angle

is 180°±10°. Its schematic is shown in figure 5.10.

Figure 5.10 Servomotor and schematic

The stepper13 used in the robot is a NEMA 17-size hybrid bipolar stepping motor (figure

5.11) which has an integrated 18 cm threaded rod as its output shaft, turning it into a

linear actuator capable of precision open-loop positioning. The included traveling nut

has four mounting holes and moves 40 𝜇𝑚 per full step. Finer resolution can be achieved

with micro-stepping. The stepper motor has a 1.8-degree step angle (200

steps/revolution) and each phase draws 1.7A at 2.8V, allowing for a holding torque of

3.7 Kg-cm.

11 100:1 Metal Gearmotor 37DX57L mm with 64 CPR Encoder, https://www.pololu.com/product/1446.
12 Power HD High-Torque Servo 1501MG, https://www.pololu.com/product/1057.
13 Stepper Motor with 28cm Lead Screw, https://www.pololu.com/product/2268.

https://www.pololu.com/product/1446
https://www.pololu.com/product/1057
https://www.pololu.com/product/2268

68

Figure 5.11 NEMA 17-size stepper motor

The stepper motor driver used is TI’s DRV882514. This micro-stepping bipolar stepper

motor driver features adjustable current limiting, over-current protection, over-

temperature protection and six micro-step resolutions. It operates from 8.2V to 45V and

can deliver up to approximately 1.5A per phase without a heat sink or forced air flow

(rated for up to 2.2A per coil with sufficient additional cooling). The breakout board and

schematic design of stepper motor are illustrated in Figure 5.12.

Figure 5.12 Breakout board and schematic design of stepper motor driver – DRV8825

These three types of motors make up the whole climbing robot driving system.

14 DRV8825 Stepper Motor Driver Carrier, https://www.pololu.com/product/2133.

https://www.pololu.com/product/2133

69

5.1.4 IMU Module

The IMU module uses MPU-915015 to acquire precision tilting angles for the tree pruning

robot tilting control and wheel slippage control. The 9-DOF MPU-9150 is the world’s first

9-axis motion tracking MEMS device designed for the low power, low cost, and high-

performance requirements of customer electronics equipment including smartphones,

tablets and wearable sensors.

The MPU-9150 breakout board provides I2C pull-up resistors so that it is easy and simple

to communicate with Arduino Due using SCL and SDA ports. What’s more, the power of

the MPU-9150 is supplied by Arduino Due directly since they have the same voltage level

– 3.3V.

Figure 5.13 Breakout board and schematic design of MPU-9150

Main features of MPU-9150:

• Tri-axis angular rate gyroscope with a sensitivity up to 131 LSB/dps and a full-

scale range of ±250, ±500, ±1000 and ±2000 dps

• Tri-axis accelerometer with a programmable full-scale range of ±2g, ±4g, ±8g

and ±16g

• Tri-axis compass with a full-scale range of ±1200 uT

• 400KHz fast mode I2C serial host interface

• 10000g shock tolerant

• I2C pullup resistors populated on board

15 “MPU-9150 Register Map and Descriptions Revision 4.0,” InvenSense Ltd. 12, 2012. http://www.invensense.com.

70

• Full chip idle mode supply current: 8 uA

• All pins broken out to standard 0.1’’ spaced headers

5.1.5 Communication Module

The robot communication module consists of two parts: serial communication between

Arduino Mega 2560 and Arduino Due; wireless communication between Arduino Due

and PC. In terms of serial communication, the Arduino Mega can receive commands

from Arduino Due to control the driving system and transmit robot system data to Due

through serial communication ports. This is internal communication operated

automatically between these two MCUs. For wireless communication, the robot

operator can directly give commands to control the robot by PC using the XBee module16.

On the other hand, the user can also monitor the robot climbing states and parameters

through the PC using XBee. One thing should be noticed is the voltage compatible when

using serial communication between Arduino Mega (5V) and Arduino Due (3.3V). Figure

5.14 and figure 5.15 display these two communication approaches.

Figure 5.14 Breakout board and schematic design of wireless communication module – XBee

Figure 5.15 Serial communication between Arduino Mega and Arduino Due

16 XBee Zigbee RF Module-PCB Antenna, https://nicegear.nz/product/xbee-zigbee-rf-module-chip-antenna.

https://nicegear.nz/product/xbee-zigbee-rf-module-chip-antenna

71

5.2 Tree Pruning Robot Control System PCB Design

There are some issues needed to be taken into consideration when designing the robot

control system PCB, like radiated interference, heat dissipation, transient voltage and

current, etc. These issues all belong to the EMI/EMC range.

5.2.1 Radiated Interference

In terms of radiated interference, in this tree pruning robot PCB design the buck

converter noise and motor noise are the two main noise sources. There are many ways

to reduce the level of radiated interference, especially during the initial design of the

circuit board. These techniques include proper routing of tracks, proper use of ground

planes, power supply impedance matching, and reducing logic frequency to a minimum.

While even with the most diligent employment of good EMI/EMC circuit design practices,

not all interference or compatibility issues can be eliminated. At this point, additional

components can be added, allowing the circuit to comply with design and regulation

limits for EMI/EMC [39].

1) Buck Converter Interference

In the climbing robot power module, there are four step-down DC-DC converters to

supply the 9v and 6V voltage level for MCU and servomotors respectively. These fast

transient, compact, power management ICs offer significantly higher efficiency than

comparable linear alternatives. Moreover, in order to allow designers to take advantage

of smaller external inductors and ceramic capacitors, the power semiconductor

designers have migrated to step-down converters using increasingly higher switching

frequencies. The move to step-down converters using higher switching frequencies has

generated another problem – input noise. If it isn’t filtered, DC-DC converter input ripple

and noise can reach levels high enough to interfere with other devices powered from

the same source.

Input noise in a step-down DC-DC converter has two components. The first occurs at the

fundamental switching frequency commonly referred to as ripple. The second noise

component is ringing [40]. “Ringing” is a common term referring to the undesired

72

oscillation that occurs when a power semiconductor switch turns on or off in the

presence of parasitic inductance and capacitance. Energy stored in the parasitic junction

capacitance of the switch is released during the switching transition and rings with

parasitic inductance coming from the stray fields of discrete power inductors and the

wiring inductance of the PCB traces, component leads, connectors, etc. In real circuits,

parasitic are always present, and hence all switching converters produce at least some

ringing. This electromagnetic interference (EMI) is typically in the range of 50 to 200

MHz, and at these frequencies PCB traces and the input and output leads act as

unwanted antennas, resulting in both conducted and radiated noise [41].

To solve this issue, one effective approach is to use the ferrite beads especially when the

impedance of the circuit board trace is insufficient as a series element for the low pass

noise filter. Designers can increase the series impedance with a small surface mount

ferrite bead to improve noise rejection – especially the high-frequency noise.

2) What is ferrite bead and how to select the Proper ferrite bead

A ferrite bead is a passive electric component that suppresses high-frequency noise in

electronic circuits. It employs high-frequency current dissipation in a ferrite ceramic to

build high-frequency noise suppression devices17.

The simplest form of a ferrite bead is a conducting wire inserted through a hollow piece

of ceramic material known as ferrite. The electromagnetic properties of ferrite allow the

material to influence the current flowing through the conductor. The precise nature of

this influence depends on the type of ferrite (e.g., manganese-zinc vs. nickel-zinc), and

the properties of a particular ferrite material can be further refined via the

manufacturing process. In many surface-mount ferrite beads, the conductor is formed

into a coil structure, with individual windings layered between ferrite sheets. Thus, the

electrical characteristics depend also on the details of the winding construction.

Ferrite beads can be divided into two general categories: high-Q (resonant) beads and

low-Q (non-resonant) beads. High-Q beads are intended for applications that require

high levels of resonance, such as oscillators and specialized filters. In the context of

17 Ferrite bead, Wikipedia, https://en.wikipedia.org/wiki/Ferrite_bead.

https://en.wikipedia.org/wiki/Ferrite_bead

73

power-supply filtering, resonance needs to be minimized. Hence, in the tree pruning

robot PCB design, the low-Q beads are used.

In order to better understand the ferrite beads, a first-order equivalent circuit is showing

below.

Figure 5.16 Ferrite Bead Equivalent Circuit

The inductor is placed in the center as a reminder that the predominant response of a

ferrite bead is inductive, i.e., impedance increases with frequency. However, at some

point (generally somewhere between 30 and 500 MHz), the parallel capacitance begins

to dominate the inductance, and impedance then decreases with frequency. The

relatively small parallel resistance reduces the resonance associated with the capacitor

and inductor, such that the impedance levels off at the transition point instead of

peaking in typical high-Q fashion. This response is evident in the following plot showing

the measured impedance characteristics of a standard SMD ferrite bead [42].

Figure 5.17 Ferrite Bead Impedance VS. Frequency Plot

74

In figure 5.17, the black line indicates the overall impedance, which starts at Rseries, also

known as the bead’s DC resistance. It then increases linearly during the inductive

frequency range and levels off at 300 MHz. After that, it begins to decrease before

leveling off at 1.1 GHz.

The red and blue dotted lines indicate that the overall impedance is the result of two

distinct elements, inductive reactance (XL) and frequency-dependent resistance (R). This

brings up an important point: the equivalent circuit given above (figure 5.16) is designed

to replicate the frequency response of the bead – it does not convey the bead’s internal

structure. The equivalent model is helpful for understanding how a ferrite bead’s

impedance changes with frequency and performing simulations, but primarily it is the

ferrite material itself that determines the component’s impedance properties. This is

important to understand because the equivalent circuit might distract you from one of

the defining characteristics of ferrite beads: they actually dissipate high-frequency

energy.

The ideal inductors and capacitors do not dissipate any energy. They merely store energy,

either in a magnetic field (inductors) or an electric field (capacitors). A resistor, on the

other hand, takes energy out of the circuit and dissipates it as heat. Ferrite beads, unlike

inductors, are intentionally resistive at high frequencies. This is why the above plot has

the red dotted line labelled “R” – from about 100 MHz to 1 GHz, the bead exhibits

significant resistive impedance, not reactive impedance. Actually, some ferrite beads

and ferrite-core inductors are almost identical in construction, except that the ferrite

bead uses a more “lossy” ferrite material because the manufacturer wants the bead to

dissipate rather than store high-frequency energy.

The key to maximizing the noise-suppression benefits of a ferrite bead is to ensure that

the targeted noise frequencies fall within the bead’s resistive band – i.e., that portion of

the frequency response where the resistive impedance dominates the reactive

impedance. This is a fundamental aspect of maximizing the ferrite bead’s ability to

suppress noise, but there are other specifications that needed to keep in mind – DC

resistance and rated current.

75

Unlike bypass capacitors, ferrite beads are used in series with the power line, which

means that any DC current flowing through the bead creates a voltage drop proportional

to the DC resistance.

A ferrite bead’s DC resistance – much less than an ohm for typical surface mount parts

– is rarely an issue in the range of low-power ICs. However, in the case, e.g., an unusually

high-power device could draw enough current to cause a problem.

Rated current is not as straightforward as it seems. Indeed, if the steady state current

through the bead is higher than the rated current, damage may occur. But there are two

nuances that need to be aware of. First, rated current is not constant over temperature.

Second, DC currents well below the rated maximum can degrade the bead’s

performance because the ferrite material becomes saturated. Ferrite saturation reduces

the bead’s peak impedance and shifts the impedance curve toward higher frequencies.

To reduce the effects of core saturation, the bead’s rated current should be at least 50%

higher than expected maximum current. The SMD ferrite bead (MH2029-300Y) and its

schematic design are shown in Figure 5.18.

Figure 5.18 Ferrite Bead and its schematic design

3) Motor Electrical Noise

One major drawback to working with motors is the large amounts of electrical noise they

produce. This noise can interfere with sensors and can even impair the microcontroller

by causing voltage dips on regulated power line. Large enough voltage dips can corrupt

the data in microcontroller registers or cause the microcontroller to reset.

76

The main source of motor noise for brushed DC motor is the commutator brushes, which

can bounce as the motor shaft rotates. This bouncing, when coupled with the inductance

of the motor coils and motor leads, can lead to a lot of noise on the power line and can

even induce noise in nearby lines.

For stepper motor, the noise is mainly from the current chopping. Current chopping is

the preferred method of driving steppers nowadays, because this method occupies less

space, costs less and generates less heat comparing to using huge resistor. However, the

current chopping means utilizing PWM signal to turn the H-bridge on and off

continuously. During this process, the noise occurs.

These motor noise (electrical noise) can be classified into two types.

Table 5.1 motor electrical noise

Type Unit Definition Typical Frequency

Line Noise (conductive noise) dBuV
Noise that travels through power

cables and connection cables
0.15 – 30MHz

Radiation Noise (radio wave) dBuV/m

Noise that is radiated from the

source to the air and causes

interference in TV and a radio.

30 – 1000MHz

There are several approaches to reduce the effects of motor noise on the robot control

system PCB:

• Using the bypass capacitors across power and ground of motor (figure 5.19): a

220𝜇𝐹 capacitor and a 0.1𝜇𝐹 capacitor. The larger capacitor smooths out low-

frequency variations in the supply voltage, while the smaller capacitor more

effectively filters out high-frequency noise on the power line.

• Route motor and power wires away from signal lines.

• For stepper motor, increase switching frequency and decrease stepper current.

77

Figure 5.19 Bypass Capacitors for Reducing the Motor Noise

5.2.2 Heat Dissipation

Another issue is thermal dissipation. Since the robot operates 3 DC motors, 3

Servomotors and 1 stepper, the current that runs through the PCB can be up to around

14A in the worst situation. Such a high current renders the PCB temperature rising

sharply and even lead to the electronic components malfunctioned.

There are several ways to cope with this problem. One is in the PCB track designing

which means the power track should be widened. For example, the 12V track is 75 mils.

Another way is to use more copper during the PCB manufacturing. There is a relationship

among PCB copper thickness, current magnitude and track width which is displayed in

table 5.2.

Table 5.2 Relationship among Copper Thickness, Track Width and Current Magnitude for PCB design

Copper Thickness/35 um Copper Thickness/50 um Copper Thickness/75 um

Current (A) Track Thickness (mm) Current (A) Track Thickness (mm) Current (A) Track Thickness (mm)

4.5 2.5 5.1 2.5 6 2.5

4 2 4.3 2.5 5.1 2

3.2 1.5 3.5 1.5 4.2 1.5

2.7 1.2 3 1.2 3.6 1.2

3.2 1 2.6 1 2.3 1

2 0.8 2.4 0.8 2.8 0.8

1.6 0.6 1.9 0.6 2.3 0.6

1.35 0.5 1.7 0.5 2 0.5

1.1 0.4 1.35 0.4 1.7 0.4

0.8 0.3 1.1 0.3 1.3 0.3

0.55 0.2 0.7 0.2 0.9 0.2

0.2 0.15 0.5 0.15 0.7 0.15

78

5.2.3 Transient Voltage and Current

Another issue needed to be solved is the transient voltage and current when designing

the PCB. When the robot system power turns on, inevitably, there are some voltage and

current pulses for the components and ICs on the circuit board. Without enough

protection, these sensitive components or ICs will be damaged.

One solution is to use the transient voltage suppressor diode (TVS Diode). The TVS diode

is an electronic component used to protect sensitive electronics from voltage spikes

induced on connected wires. It operates by shunting excess current when the induced

voltage exceeds the avalanche breakdown potential. It is a clamping device, suppressing

all over-voltages above its breakdown voltage. It automatically resets when the

overvoltage goes away.

When using TVS, the most important parameters are the rated working peak voltage or

rated standoff voltage (VR), the peak pulse power dissipation (Ppp), peak impulse current

(Ipp), and clamping voltage (Vc). The first step of selecting a TVS is to determine what the

highest continuous peak operating voltage will be at the point of intended protection in

the circuit. This highest operating voltage determines the rated standoff voltage of the

TVS component. The clamping voltage is typically 60% higher than VR. The second thing

is to select the peak pulse power dissipation. For board level designs, 400W to 600W at

10/1000 µs or 300W to 500W at 8/20 µs are most often used [43]. The TVS diode

(SMBJ15ALM) used in this robot is shown in Figure 5.20.

Figure 5.20 Transient Voltage Suppressor Diode

79

5.3 Circuit Design Tips to Reduce EMI/EMC Problems

As discussed above, there are several areas where good circuit design practices are

critical to the reduction or elimination of EMI/EMC problems. The PCB layout is

important – not only in the design but also the choice of components – directly affects

the degree of EMI/EMC interference. Another area of concern is the circuit design of

power supply.

5.3.1 PCB Layout Design Tips

• Avoid slit apertures in PCB layout, particularly in ground planes or near current

paths.

• Areas of high impedance give rise to high EMI, so use wide tracks for power lines

on the trace sides.

• Keep HF and RF tracks as short as possible and lay out the HF tracks first.

• Avoid track stubs, as they cause reflections and harmonics.

• When having separate power planes, keep them over a common ground to

reduce system noise and power coupling.

• If possible, make tracks run orthogonally between adjacent layers.

• Do not loop tracks, even between layers, as this can form a receiving or radiating

antenna.

• Do not leave floating conductor areas, as they act as EMI radiators; if possible,

connect them to ground plane [44].

5.3.2 Power Supply Considerations

• Eliminate loops in the supply lines.

• Decouple supply lines at local boundaries.

• Place high-speed circuits close to power supply unit and slowest sections

furthest away to reduce power plane transients.

• Isolate individual systems where possible (especially analog and digital systems)

on both power supply and signal lines.

80

5.3.3 Component Considerations

• Locate biasing and pull down/up components close to driver/bias points.

• Minimize output drive from clock circuits.

• Decouple close to chip supply lines, to reduce component noise and power line

transients.

• Use low impedance capacitors for decoupling and bypassing (ceramic

multilayer capacitors).

The whole tree pruning robot PCB and schematic is displayed in Appendix D.

81

Chapter 6 Tree Pruning Robot Tilting Measurement

The major part of a tree pruning robot is the climbing mechanism which determines

whether the robot can climb up the trunk safely and stably. In reality, during the robot

climbing process, each of the three DC motors may suffer slippage due to the complicated

trunk surface. Therefore, even if the three wheels keep the same speed during the

climbing procedure, the robot platform could dynamically tilt at a random direction. In

extreme situation, if the wheel suffers constant slippage, the robot may fall to ground or

get jammed on the trunk. Hence, the tree pruning robot tilting control strategy must be

developed.

Before the study and development of tilting control algorithm, the precision tilting angle

of robot platform in real time should be obtained. There are some tilting sensor products

on the market. They can offer filtered and optimized tilting angles directly, but the price

of the sensor is very expensive (usually cost several thousands of US dollars). From

economic considerations, in this robot design, the MEMS IMU sensor MPU-0150 is

selected as the tilting sensor. In order to obtain the accurate tilting angles of the robot

platform in real-time, two IMU data fusion algorithms are studied and compared. This

chapter mainly focuses on the tilting measurement of robot platform while the tilting

control strategy will be discussed in the next chapter.

6.1 Introduction of MEMS IMU

The IMU, or inertial measurement unit, is an electronic device that measures

accelerations, rotation rates and possibly earth magnetic field with the use of tri-axis

accelerometer, tri-axis gyroscope, and sometimes tri-axis magnetometer to determine

an object’s attitude or orientation. Due to its unique characteristics, IMUs have long been

the subject of extensive research in aerospace [45] and navigation [46] fields although its

size was bulky initially. In recent years, with the advent of MEMS (Micro-Electro-

Mechanical-system) based IMU, the size of IMU is dramatically reduced to chip size along

with the reduction in cost and power consumption [47]. Such a significant improvement

in IMU made the research and applications of IMU quickly extended to many new areas,

e.g., robotics and human motion analysis [48].

82

One of the applications of MEMS IMU is tilt measurement (or orientation sensing), which

has a significant role in the fields of consumer electronics, robotics and navigation. A

typical example is smart phone and handheld electronics. The control of menu options,

image rotation or function selection all link to the tilt measurements [49]. In the robotics

area, in terms of navigation robot, climbing robot, all-terrain robots etc., tilt sensing plays

a key role in system balancing control. Michelle et al. in 2005 used a low-g MEMS

accelerometer and trigonometric function relationship to measure the tilt of an object in

a static environment. The result was simple and straightforward but noisy and nonlinear

[49]. In 2013, Mark Pedley documented the mathematics of orientation using a MEMS

three-axis accelerometer and also made an analysis on the regions of instability (gimbal

lock) [50]. As the data from the accelerometer is in general very noisy and susceptible to

external acceleration interference, when it is used to measure the gravitational

acceleration, they still could not obtain accurate result in the vibrating environment (e.g.

car or plane). Hence tilt measurement only using accelerometer is not effective enough

though the accelerometer data is stable without drift in long term. A gyroscope offers

angular velocities around the three axes and the signals are not susceptible to external

forces comparing to accelerometers. Therefore, a tri-axis gyroscope and a tri-axis

accelerometer (mutually orthogonal) based MEMS IMU seems to be a complete solution

for tilt sensing. However, the gyroscope also has its own disadvantages that the data

measured tends to drift because of the integration over time. In short, we can only trust

the data from the gyroscope on a short term. Taking the advantages and disadvantages

of gyroscopes and accelerometers into consideration, the IMU data fusion is essential for

tilt sensing.

In terms of IMU data fusion algorithm, the complementary filter [51]- [57] and Kalman

filter [58]- [63] are the most widely used algorithms. They have their unique advantages

and disadvantages [64]. Kalman filter is an iterative filter, which is efficient but high

computational complexity and burden. The complementary filter is relatively easy and

computational light to implement, which makes it preferred for embedded systems. This

chapter presents a research of IMU data fusion for tilt sensing based on a 6 DOF IMU.

The results and the comparison of the two IMU data fusion algorithms applied for

83

different scenarios are achieved through the applications of complementary filter and

Kalman filter.

6.2 Complementary Filter

A complementary filter was proposed by Shane Colton [65]. For tilt sensing, the filter

performs low-pass filtering on a low-frequency tilt estimation and the data is from the

accelerometer while the high-pass filtering on a biased high-frequency tilt estimation is

handled by directly integrating with the gyroscope output. The fusion of the two

estimations gives an all-pass estimation of the orientation [51]. Obviously, the

complementary filter takes the advantage of both accelerometer and gyroscope. On the

short term, it uses the data from the gyroscope and the data is precise and not

susceptible to external forces; on the long term, it relies on the data from the

accelerometer to prevent data drift. The principle of the complementary filter is

illustrated in figure 6.1.

Accelerometer

Data

Gyroscope Data

Angle

Angular

Velocity

Low-Pass Filter

Numeric

Integration
High-Pass Filter

Σ

Figure 6.1 Block diagram of complementary filter algorithm for IMU data fusion

The goal of the low-pass filter is to only let through long-term changes, filtering out short-

term fluctuations. One way to do this is to force the changes to build up little by little in

subsequent times through the program loop. For example, if the angle starts at zero and

the accelerometer reading suddenly jumps to 10 degrees and stays at that level, the angle

estimate will smoothly rise to 10 degrees without spikes. The time it takes to reach the

full value depends on both the filter parameters and the sample rate of the code loop

(𝑑𝑡). The high-pass filter almost does the opposite: it allows short-duration signals to pass

84

through while filtering out signals that are steady over time. This character is essential to

cancel out the gyroscope drift in order to get an accurate estimate angle.

The mathematical model of the complementary filter can be represented as follows.

() ()* 1 *Angle Angle GyroData dt AccData=  + + −  (6.1)

“α” is the filter coefficient, “Angle” means the tilt angle (pitch and roll), “GyroData” and

“AccData” represent the output of the gyroscope and accelerometer from the IMU

respectively. Before applying the formula to calculate the angle, the data from the gyro

and accelerometer must be zeroed and scaled.

dt




=
 +

 (6.2)

“𝜏” means the time constant of a filter. For a low-pass filter, the signals that are much

longer than the time constant pass through the filter unaltered while the signals shorter

than the time constant are filtered out. The opposite is true for a high-pass filter. “𝑑𝑡” is

the sample period. For every time step, the gyroscope data is first integrated with the

current angle and then combined with the low-pass data from the accelerometer. The

filter coefficients (α and 1- α) have to add up to one, so that the output is an accurate,

linear estimate in units that make sense [65].

The data processing procedure of the complementary filter in the IMU data fusion for tilt

sensing is shown in Figure 6.2.

85

Start

Set Sample Rate

Angle = Angle +

GyroData * dt

AccData in the proper

magnitude?

No

Angle = α * Angle + (1 - α) * AccData

Yes

Figure 6.2 Complementary filter for tilt sensing flowchart

The complementary filter applied in the process of IMU data fusion has to be contained

in an infinite loop. The pitch and roll angles are updated in every iteration with the new

gyroscope values by means of integration over time. The filter then checks whether the

magnitude of the force measured by the accelerometer has a reasonable value that could

be the real g-force vector. If the value is too small or too big, it is not taken into account

as a disturbance. Afterwards, it updates the pitch and roll angles with the gyroscope data

by taking α of the current value and adding 1- α of the angle calculated by the

accelerometer. This ensures the measurement is smooth, accurate and without drift.

The complementary filter is effective and has low computation burden in terms of IMU

data fusion, but it is not easy to tune the filter coefficient which heavily relies on personal

experience.

6.3 Kalman Filter

Since Kalman filter was first published by R.E. Kalman in 1960, due to its advances in

digital computing, the Kalman filter has been the subject of extensive research and

applications, particularly in the area of autonomous vehicles, navigation, robotic

systems, and human motion control [66].

86

The Kalman filter, also known as linear quadratic estimation, is an iterative algorithm

which relies on a series of measurements observed over time. Noises in measurement

data contribute to the error. In the IMU data fusion process, the Kalman filter takes the

noises into account via covariance matrices and updates the matrices at each time

interval. It estimates the state of system based on the current and previous states, which

tends to be more precise than the measurement alone. The key of Kalman filter based 6-

DOF IMU data fusion algorithm is to find the weighted average (Kalman gain K), with

more weight being given to the estimation with higher certainty. Such a process based

on the accelerometer model and gyroscope model.

6.3.1 Accelerometer Model

An accelerometer measures all forces that are working on the object, which includes

instantaneous linear acceleration as well as the gravitational acceleration plus some

added bias and noise [47]. The accelerometer model can be represented as,

 Acc extra a ag b n =  − + + (6.3)

Where, 𝛼𝑒𝑥𝑡𝑟𝑎 , 𝑔, 𝑏𝑎 , and 𝑛𝑎 means external acceleration, gravitational acceleration,

accelerometer bias and noise respectively.

6.3.2 Gyroscope Model

A gyroscope is used to measure the angular velocity around three mutually

perpendicular axes. It is not easy to be affected by external interference, but it suffers

from drift in long term.

 gyro g gb n = + + (6.4)

Here, 𝑏𝑔 and 𝑛𝑔 are the gyroscope bias and noise.

The Kalman filter operates by producing a statistically optimal estimation of the system

state based upon the measurements. It needs to know the noise of the input to the filter

called the measurement noise and the noise of the system itself called the process noise.

87

To make things easier, assume the noises are Gaussian distributed and have a

mathematical expectation of zero.

6.3.3 Kalman Filter for IMU Data Fusion

Equation (6.5) and (6.6) are the standard Kalman filter formulas.

1k k k kx Fx Bu w−= + + (6.5)

k k kz Hx v= + (6.6)

𝑥𝑘 is the system state matrix at time k, which is given by:

k

b
k

x



•

 
=  
  

 (6.7)

The outputs of the filter are the angle 𝜃 and the bias 𝜃𝑏̇ based upon the measurements

from the accelerometer and gyroscope. The bias is the amount that the gyroscope has

drifted. F is the state transition matrix which is applied to the previous state 𝑥𝑘−1. In this

case, 𝐹 is defined as:

1

0 1

t
F

− 
=  
 

 (6.8)

𝑢𝑘 is the control input. In this case it is the gyroscope measurement in degrees per

second at time 𝑘, which is also called the angular rate 𝜃̇. Then the state equation could

be rewritten as:

1 kk k kx Fx B w
•

−= + + (6.9)

𝐵 is called the control matrix, which is defined as:

0

t
B

 
=  
 

 (6.10)

88

This obtains the angle 𝜃 when multiplying the rate 𝜃̇ by the time ∆𝑡. Since the bias

cannot be calculated directly based on the angular velocity the bottom of the matrix is

set to zero.

In Eqn. (6.5) and (6.6), the variables 𝑤𝑘 and 𝑣𝑘represent the process and measurement

noises respectively. They are assumed to be independent of each other and with normal

probability distributions (Gaussian white noise) [66].

𝑤𝑘 = 𝑁(0, 𝑄𝑘) (6.11)

𝑣𝑘 = 𝑁(0, 𝑅) (6.12)

𝑄𝑘 is the process noise covariance matrix which represents the state estimation of the

accelerometer and bias. If consider the estimate of the bias and the accelerometer to

be independent, then 𝑄𝑘 is equal to the variance of the estimation of the accelerometer

and bias.

0

0
b

k

Q
Q t

Q






•

 
=  
  

 (6.13)

The 𝑄𝑘 covariance matrix depends on the current time 𝑘, so the accelerometer variance

𝑄𝜃 and the variance of the bias 𝑄𝜃𝑏̇
 are multiplied by time∆𝑡. As the time goes, the

process noise becomes larger since the last update of the state. The larger value set, the

more noise in the estimation of the state. So, if the estimated angle starts to drift, the

value of 𝑄𝜃𝑏̇
 should be increased. If the estimated angle tends to lag, the value of 𝑄𝜃

should be decreased to make it more responsive.

In equation (6.6), 𝑧𝑘 is the measured output. 𝐻 is the measurement matrix and is used

to map the true state space into the observed space. The true state cannot be observed

since the measurement is just from the accelerometer. 𝐻 is given by:

  1 0H = (6.14)

The measurement noise covariance 𝑅 is not a matrix. It is equal to the variance of the

measurement noise since the covariance of the same variable is equal to its variance.

89

 ()varT

k k kR E v v v = =  (6.15)

Assume that the measurement noise is the same and does not depend on the time 𝑘:

 () ()var varkv v= (6.16)

If the measurement noise variance 𝑣𝑎𝑟(𝑣) is set too high, the filter responds slowly as

it trusts new measurements less. On the contrast, if the value is set too small the filter

overshoots and is noisy since it trusts the accelerometer measurement too much.

Therefore, the Kalman filter can be rewritten as:

()

1

1

0 1 0

1 0

k k

b b
k k

k k

b
k

t t
w

z v

 


 





•

• •

−

•

   −    
   = + +            

 
 = +
 
 

 (6.17)

6.3.4 Kalman Filter Implementation on IMU Data Fusion

The implementation of Kalman filter includes two steps: predict process and update

process.

1) Predict Process

In predict process, the filter first estimates the current state and the error covariance

matrix at time k. Equation (6.18) is for the estimation of the current state based on the

previous state and the gyroscope measurement.

| 1 1| 1k k k k kx F x B
  •

− − −= + (6.18)

 Here, 𝑥̂𝑘−1|𝑘−1 is the previous estimated state based on the previous state and the

estimation of the states before. 𝑥̂𝑘|𝑘−1 is priori state which is the estimation of the state

matrix at the current time k based on the previous state of the system. 𝑥̂𝑘|𝑘 is posteriori

state which represents the estimation of the state at time k given observations up to

and including at time k. The next step for the filter is to estimate the priori error

90

covariance matrix 𝑃𝑘|𝑘−1 based on the previous error covariance matrix 𝑃𝑘−1|𝑘−1, which

is defined as:

| 1 1| 1

T

k k k k kP FP F Q− − −= + (6.19)

The matrix 𝑃𝑘|𝑘−1is used to estimate how much trust can be put on the current values

of the estimated state. The smaller the values are, the more trust on the current

estimated state. Therefore, for the 6-DOF IMU case discussed, the error covariance

matrix P is a 2 x 2 matrix:

00 01

10 11

P P
P

P P

 
=  
 

 (6.20)

2) Update Process

In the update process, the filter first computes the difference between the

measurement 𝑧𝑘 and the priori state 𝑥̂𝑘|𝑘−1.

| 1k kk ky z H x


−= − (6.21)

Then the filter calculates the innovation covariance:

| 1

T

k k kS HP H R−= + (6.22)

Eqn. (6.22) predicts how much we trust the measurement based on the priori error

covariance matrix 𝑃𝑘|𝑘−1 and the measurement covariance matrix 𝑅. The next step is to

calculate the Kalman gain. The Kalman gain indicates how much we trust the innovation

and is defined as:

1

| 1

T

k k k kK P H S −

−= (6.23)

For the 6-DOF IMU case, the Kalman gain is a 2 x 1 matrix:

0

1

K
K

K

 
=  
 

 (6.24)

91

Updating the posteriori estimate of the current state gives:

| | 1k k k k k kx x K y
 

−= + (6.25)

Finally update the posteriori error covariance matrix:

()| | 1k k k k kP I K H P −= − (6.26)

The Kalman filter algorithm in terms of IMU data fusion could be summarized as 7 steps:

Eqn. (6.18), (6.19), (6.21), (6.22), (6.23), (6.25) and (6.26).

➢ Step 1 - Predict

| 1 1| 1

| 1 1| 1

1| 1

1

0 1 0

0

()

k k k k k

k

b bk k k k

b
k

b k k

b

b

x F x B

t t

t t

t



 


 

 




  



  •

− − −

•

• •

− − −

•

•

•

− −

• •

•

= +

   −    
   = +            

 
−    = +     

 

 
+  − =

 
 

(6.27)

➢ Step 2 - Predict

()

| 1 1| 1

00 01 00 01

10 11 10 11| 1 1| 1

00 10 01 11 01 11

10 11 11 1| 1

00 11

1 1 0

0 1 1

0

0

0

0

b

b

T

k k k k k

k k k k

k k

P FP F Q

P P P Pt

P P P P t

Q
t

Q

P tP t P tP P tP

P tP P

Q
t

Q

P t tP









•

•

− − −

− − −

− −

= +

−      
=      

−      

 
 + 
 
 

−  −  −  −  
=  

−  

 
 + 
 
 

+  
=

()01 10 01 11

10 11 11
b

P P Q P tP

P tP P Q t




•

− − + −  
 

−  +  
 

(6.28)

92

➢ Step 3 - update

 ()

| 1

| 1

| 1

1 0

k kk k

k

b k k

k k k

y z H x

z

z









−

•

−

−

= −

 
 = −
 
 

= −

 (6.29)

➢ Step 4 - update

()

()

| 1

00 01

10 11 | 1

00 | 1

1
1 0

0

var

T

k k k

k k

k k

S HP H R

P P
R

P P

P v

−

−

−

= +

   
= +   

  

= +

 (6.30)

➢ Step 5 - update

1

| 1

00 010 1

10 111 | 1

00

10 | 1

1

0

T

k k k k

k

k k k

k k

k

K P H S

P PK
S

P PK

P

P

S

−

−

−

−

−

=

    
=     

    

 
 
 

=

 (6.31)

➢ Step 6 - update

| | 1

0

1
| | 1

0

1
| 1

k k k k k k

k

kb bk k k k

kb k k

x x K y

K
y

K

K y

K y

 

 





 

−

• •

−

•

−

= +

     
   = +          

   
 = +      

 (6.32)

➢ Step 7 - update

()

()

| | 1

00 01 00 010

10 11 10 111| | 1

00 01 0 00 0 01

10 11 1 00 1 01| 1

1 0
1 0

0 1

k k k k k

k k k k

k k

P I K H P

P P P PK

P P P PK

P P K P K P

P P K P K P

−

−

−

= −

      
= −      

       

   
= −   
   

(6.33)

93

The program flowchart of the Kalman filter in the IMU data fusion in tilt sensing is shown

in figure 6.3. After several debugging, the following variances work perfectly for our

MEMS IMU board (MPU-9150).

• 𝑄𝜃(𝑄_𝑎𝑛𝑔𝑙𝑒) = 0.001

• 𝑄𝜃𝑏̇
(𝑄_𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠) = 0.003

• 𝑅 = 0.03

94

Start

Set Looptime dt;

Q_angle = 0.001;Q_gyrobias = 0.003;

R = 0.03;P_00 = P_01 = P_10 = P_11 = 0;

Predict: step 1

angle += rate * dt;

rate = newRate – bias;

Predict: step 2

Estimate the priori error

covariance matrix P_k|k-1

Update: step 3

y = newAngle - angle

Update: step 4

S = P_00 + R

Update: step 5

Calculate Kalman gain

K_0 = P_00 / S;

K_1 = P_10 / S;

Update: step 6

Update the posteriori

estimate of the current state.

angle += K_0 * y;

bias += K_1 * y;

Update: step 7

Update the posteriori error

covariance matrix P_k|k

Figure 6.3 Kalman filter implementation flowchart for IMU data fusion

6.4 IMU Data Fusion Experiment Result

To investigate the behavior of Complementary filter and Kalman filter in IMU data fusion,

MATLAB and Microcontroller based hardware were employed. The experiment is to

evaluate the two algorithms and to find out the best suit coefficients for the two filters.

95

Arduino Uno (ATMEGA 328p)18 is used as the MCU to acquire the 6-DOF IMU data and

run the algorithms. The IMU used in the experiment is the InvenSense’s MPU-9150,

which offers 9-DOF (3-axis MEMS gyroscope, 3-axis MEMS accelerometer and 3-axis

MEMS magnetometer). Only 6-DOF (gyroscope and accelerometer) is used in the

experiment since 6-DOF data is sufficient for tilting sensing. After the raw data is

processed by Arduino board, MATLAB drew the filtering data and compared with the

unfiltered data obtained from the accelerometer. The angles obtained from the

accelerometer for pitch and roll are:

()

()

tan 2 ,

tan 2 ,

z x

z y

AccPitch a AccData AccData

AccRoll a AccData AccData

=

=
 (6.34)

Here, 𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎand 𝐴𝑐𝑐𝑅𝑜𝑙𝑙 represent pitch and roll angle which are calculated from

accelerometer data using anti-trigonometric function respectively. 𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑥 ,

𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑦and 𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑧 are gravitational acceleration components projected on three

mutually perpendicular axes.

6.4.1 Complementary Filter Experiment Result

In the complementary filter experiment, the time constant “𝜏” and program loop-time

is set at 0.75 and 0.03 (s) respectively. Then the complementary filter coefficient is

calculated and α = 0.96. In the experiment, the output angles of the complementary

filter are compared with angle 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙. The experiment consisted of static

and dynamic test. The dynamic test can be divided into three cases: single rotation

around x-axis (roll), single rotation around y-axis (pitch) and rotation around x-axis and

y-axis simultaneously (pitch and roll).

Figure 6.4 shows the static experiment result. It is obvious that the angle 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and

𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙 (𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 𝐴𝑐𝑐𝑅𝑜𝑙𝑙) derived from accelerometer contain a lot of noises and

disturbances. It is hard to use such angle signal in tilting orientation system as it is

18 ATmega328/P datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-

ATmega328-328P_Datasheet.pdf.

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf

96

vibratory and noisy. However, the filtered angles (𝐶𝐹𝑃𝑖𝑡𝑐ℎand 𝐶𝐹𝑅𝑜𝑙𝑙) through the

complementary filter are much more stable and with less sparks and drift.

0 50 100 150 200 250 300
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time

P
it

ch
 a

n
d

 R
o

ll
 A

n
g

le
 (

d
eg

re
es

)

Complementary Filter Static Test: Filter Coefficient = 0.96

AccPitch
CFPitch
AccRoll
CFRoll

\

Figure 6.4 Complementary Filter Static Test

0 100 200 300 400 500 600 700 800 900 1000
-30

-20

-10

0

10

20

30

40

Time

P
it

ch
 A

n
g

le
 (

d
eg

re
es

)

Complementary Filter Dynamic Test: Single Rotation Around Y-Axis

AccPitch

CFPitch

AccRoll

CFRoll

Figure 6.5 Complementary Filter Dynamic Test: Pitch

0 100 200 300 400 500 600 700 800 900 1000
-40

-30

-20

-10

0

10

20

30

40

50

Time

R
o
ll

 A
n

g
le

 (
d

eg
re

es
)

Complementary Filter Dynamic Test: Single Rotation Around X-Axis

AccPitch

CFPitch

AccRoll

CFRoll

Figure 6.6 Complementary Filter Dynamic Test: Roll

97

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

25

Time

P
it

c
h

 a
n

d
 R

o
ll

 A
n

g
le

 (
d

e
g

r
e
e
s)

Complementary Filter Dynamic Test: Rotation Around X-Axis and Y-Axis

AccPitch
CFPitch
AccRoll
CFRoll

Figure 6.7 Complementary Filter Dynamic Test: Pitch and Roll

Figure 6.5 to Figure 6.7 show the outputs of the dynamic test of the complementary

filter on IMU data fusion. Figure 6.5 and Figure 6.6 are the outcomes of the IMU rotates

only around y-axis or x-axis. Figure 6.7 is the result that IMU rotates around x and y-axis

simultaneously. Obviously, the filtered signal can nicely track the change trend of the

signal derived from the accelerometer. Moreover, the signal filtered by complementary

filter is smooth with less vibration, even some artificial shaking purposely added on the

IMU board. When the IMU rotates around one single axis, there is almost no vibration

on the other axis. This means there is no signal coupling happening on both axes (pitch

and roll). Therefore, the complementary filter is efficient and reliable in IMU data fusion

once the filter coefficient is fine tuned.

6.4.2 Kalman Filter Experiment Result

In the Kalman Filter IMU data fusion experiment, the filter parameters 𝑄𝜃 (Q_angle),

𝑄𝜃𝑏̇
 (Q_gyrobias) and 𝑅 are set at 0.001, 0.003 and 0.03 respectively. And the program

loop-time is set to 0.033s. These parameters are chosen after many trials. The same as

in the complementary filter experiment, the 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙 (𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and

𝐴𝑐𝑐𝑅𝑜𝑙𝑙) are used as the references to determine the effectiveness of the Kalman

algorithm. The experiment also included static and dynamic tests. Figure 6.8 is the

output of the static test while Figures 6.9 to Figure 6.11 present the dynamic results.

Figure 6.8 shows that, in the static test, the signal filtered by Kalman filter is more stable

than that derived from the accelerometer. However, the filtered roll signal is smoother

than the filtered pitch signal.

98

0 50 100 150 200 250 300
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time

P
ti

ch
 a

n
d

 R
o

ll
 A

n
g

le
 (

d
eg

re
es

)

Kalman Filter Static Test

AccPitch

kalPitch

AccRoll

kalRoll

Figure 6.8 Kalman Filter Static Test

Figure 6.8 shows that, in the static test, the signal filtered by Kalman filter is more stable

than that derived from the accelerometer. However, the filtered roll signal is smoother

than the filtered pitch signal.

0 100 200 300 400 500 600 700 800 900 1000
-40

-30

-20

-10

0

10

20

30

Time

P
it

c
h

 A
n

g
le

 (
d

e
g

r
e
e
s)

Kalman Filter Dynamic Test: Pitch

AccPitch

kalPitch

AccRoll

kalRoll

Figure 6.9 Kalman Filter Dynamic Test: Pitch

0 100 200 300 400 500 600 700 800 900 1000
-40

-30

-20

-10

0

10

20

30

40

Time

R
o

ll
 A

n
g

le
 (

d
eg

re
es

)

Kalman Filter Dynamic Test: Roll

AccPitch

kalPitch

AccRoll

kalRoll

Figure 6.10 Kalman Filter Dynamic Test: Roll

99

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

Time

P
it

ch
 a

n
d

 R
o

ll
 A

n
g

le
 (

d
eg

re
es

)

Kalman Filter Dynamic Test: Pitch and Roll

AccPitch

kalPitch

AccRoll

kalRoll

Figure 6.11 Kalman Filter Dynamic Test: Pitch and Roll

Figure 6.9, 6.10 and 6.11 are the outcomes of the Kalman filter dynamic test. Figure 6.9

and 6.10 show the IMU board rotates only around one axis while Figure 6.11 displays the

IMU board rotates simultaneously around two axes in different directions. In Figure 6.9

and 6.10, the filtered signals were also able to nicely and smoothly follow the AccPitch

and AccRoll signal even adding some artificial vibrations. And there was almost no signal

coupling phenomenon. However, the result of “𝑘𝑎𝑙𝑅𝑜𝑙𝑙” was better than the “𝑘𝑎𝑙𝑃𝑖𝑡𝑐ℎ”.

There were small overshoot and lagging in the filtered pitch signal. This may be caused

by the IMU PCB board manufacturing design fault. When rotating around two axes

simultaneously, the Kalman filter also gives smooth and fairly accurate tracking signal.

Theoretically, the Kalman filter should have been more accurate than the complementary

filter as it is a more complex and considerate algorithm that operates by producing a

statistically optimal estimation of the system state based upon the measurements. It is

an iterative process which always tries to find the statistically optimal value. However,

the Kalman filter discussed in this case has three parameters that need to be tuned. This

heavily increases the difficulty of the Kalman filter to achieve a more accurate result. In

addition, the effectiveness of a Kalman filter demands computational complexity which

requires a more powerful microcontroller. In the experiments presented, the program

loop-time is set to 0.033s, which is the highest sample rate the Arduino ATMEGA 328p

can handle. If the sample rate could be improved, the Kalman filter should get a better

result.

100

6.5 IMU Date Fusion Filter Selection

 Two IMU data fusion algorithms for tilt sensing are presented and analyzed. It is difficult

to get an accurate tilt orientation only using accelerometer data because the signal

derived from the inverse trigonometric function is sensitive to variation. Therefore, it

contains vibration and cannot be used for precise tilt measurement. Gyroscope data is

used to offset the disadvantage of data from accelerometer. However, gyroscope data

suffers from drift on a long term. Hence filter algorithms are needed to solve such

problems.

 The Kalman Filter is one of the most widely used methods for tracking and estimation

due to its optimality, tractability and robustness. It is an iterative algorithm which

operates by producing a statistically optimal estimation of the system state based upon

the measurements. However, under certain circumstances, it is difficult to apply due to

its associated computation burden and relatively complicated theory. Moreover, for

multiple state-variable situations, there are more filter parameters to be tuned. For such

situations, complementary filter is ideal as it requires less computation and only one

filter coefficient to be tuned, which greatly reduces the workload.

Therefore, the complementary filter is finally chosen as the IMU data fusion algorithm

to acquire the smooth and accurate tilting results either in the static or dynamic

situation. It showed less sensitive to variations and no signal coupling phenomenon.

Given a fine-tuned filter coefficient, the result of complementary filter can be more

stable and accurate than that of Kalman filter. After the selection of IMU data fusion

filter, the issue of robot tilting measurement in real-time is solved. The tree pruning

robot tilting control strategy will be discussed in the next chapter.

101

Chapter 7 Tree Pruning Robot Tilting Control Using Fuzzy Logic

This chapter presents an intelligent control strategy for this wheel-driven tree pruning

robot tilting control during climbing procedure. There are two types of tilting scenarios

needed to be considered, initial setting tilt and dynamic tilt. To compensate the initial

installation tilt, a tiling fuzzy controller is specifically designed to adjust the robot

platform to the horizontal position before climbing up. For robot dynamic tilt, which is

mainly caused by wheel slippage during the climbing, a slippage fuzzy control system is

developed through the control of stepper and DC motor via the IMU. These fuzzy

controllers were designed in MATLAB Simulink and simulated in MATLAB SimMechanics.

The simulations verify the feasibility of the robot tilting control algorithm and the

effectiveness of the fuzzy controllers.

7.1 Definition of Two Types of Tilt for Tree Pruning Robot

The major part of a tree pruning robot is the climbing mechanism which determines

whether the robot can climb up the trunk safely and stably. During the entire climbing

process, no matter in the vertical or spiral pattern, an important issue that must be taken

into consideration is to prevent the tilting of the robot platform. This is to guarantee the

pruning tools installed on the platform can be kept in the desired orientation. In extreme

situation, large tilting angle during climbing could cause the robot jammed on the trunk.

Therefore, the tree pruning robot tilting control strategy must be developed.

Figure 7.1 Top and lateral views of tree pruning robot in static situation using passive anti-falling

mechanism

102

From the study and analysis of experimental results in robot climbing, there are two

types of tilt required to balance: initial setting tilt and dynamic tilt. The initial setting tilt

is caused by the passive anti-falling mechanism [67] because of the center of the gravity

offsetting. The robot remains stationary at a certain tilting angle on the trunk utilizing

its own weight without energy consumption (Fig. 7.2). This preset tilting angle is named

as the initial setting tilt and illustrated in figure 2. During the climbing process, each of

the three DC motors may suffer slippage due to the complicated trunk surface.

Therefore, even if the three wheels keep the same speed during climbing procedure, the

robot platform could dynamically tilt at a random direction. In an extreme situation, if

the wheel suffers constant slippage, the robot may fall to ground or get jammed on the

trunk. This is defined as the dynamic tilting.

Initial Setting Tilt

Horizontal Line

Initial Setting Tilt

Horizontal Line

Initial Setting Tilt

Horizontal Line

Figure 7.2 Tree pruning robot initial setting tilt

No matter which tilting case, to keep the robot platform horizontal, the control of the

tilting angle of the platform is needed in real time. A MEMS based IMU module (MPU-

9150) is installed on the platform which can offer pitch, roll and yaw angle through the

onboard accelerometer and gyroscope. In order to obtain the reliable and accurate

tilting angle, an IMU data fusion algorithm based on complementary filter [68] is

adopted and illustrated in detail in the last chapter.

The pruning robot tilting control strategy can be divided into two parts. When the robot

starts to climb up from the stationary status, the initial setting tilt control is employed

to first make the robot platform horizontal. Once the platform tilting angle is in the pre-

defined horizontal range, the dynamic tilt control is engaged to handle the fine tilting

tuning while climbing.

103

The study and analysis of robot climbing tests reveal that the dynamic tilt is caused

mainly by robot wheel slippage. Therefore, dynamic tilt could be fulfilled by wheel

slippage control. In terms of wheel slippage control, many approaches have been

proposed and studied in both robotics and automotive fields. These methods are based

on different techniques and technologies, e.g., torque control, dynamic-model-based or

vision-based control, and fuzzy logic [69] - [72]. Of course, each method is best suitable

for its own specific system due to the characteristic of the system and required sensors

[69].

Fuzzy logic theory is a powerful soft computing technique to control complex and non-

linear systems based on human expert knowledge [73]. Compared to conventional

control method, the biggest advantage of fuzzy control is that it can solve a complicated

control problem without requiring the system’s mathematic model. For this climbing

robot, fuzzy logic control is adopted for robot platform tilting control. The tilting fuzzy

controller is designed to handle the initial setting tilt while the slippage fuzzy controller

is for the dynamic tilt.

7.2 Tilting Fuzzy Controller

The tilting fuzzy controller is designed to eliminate the initial setting tilt. According to

passive anti-falling mechanism, robot mechanical structure and the IMU sensor

mounting position, in this design the pitch angle of IMU sensor is aligned with the axis

of lowest robot leg which is illustrated in Fig. 7.3. Under this circumstance, to balance

the robot from stationary tilting condition, the robot only needs to control the robot

platform’s pitch angle. Therefore, the inputs of the tilting fuzzy controller are pitch error

and change of pitch error of robot platform from horizon position while the output is

the lowest DC motor speed.

104

R+

P+

DC1

DC2

DC3

MPU9150

R+

P+

DC1

DC2

DC3

MPU9150

Figure 7.3 Mounting position of IMU sensor on tree pruning robot platform

A typical fuzzy controller consists of four parts: fuzzification interface, rule-base,

inference mechanism and de-fuzzification interface [74]. In this tilting controller design,

a Mamdani implication method is used [75] and the block diagram of this tilting fuzzy

control system is shown in Fig. 7.4. The essential equation of Mamdani approach using

fuzzy logic control is shown in Eqn. (7.1).

𝜇𝑦(𝑘) = max [𝑚𝑖𝑛 {𝜇𝑢(𝑘), 𝜇𝑟 (𝑒𝑝(𝑘), 𝑒𝑟(𝑘))}] (7.1)

DC Motor

Driving System

F
u
zzifica

tio
n

Inference

mechanism

D
efu

zzific
atio

n

Rule-base

U(t)

Tilting Fuzzy Controller

Reference

Angle

IMU Sensor

-

+ ep(t)

dep(t)/t

d/dt

DC Motor

Driving System

F
u
zzifica

tio
n

Inference

mechanism

D
efu

zzific
atio

n

Rule-base

U(t)

Tilting Fuzzy Controller

Reference

Angle

IMU Sensor

-

+ ep(t)

dep(t)/t

d/dt

Figure 7.4 Block diagram of tilting fuzzy control system

To minimize the MCU computation cost, three fuzzy subsets are assigned for each input

e𝑝(𝑡) (𝑝𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟) and 𝑑𝑒𝑝(𝑡) 𝑡⁄ (𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟): 𝑁 - negative; 𝑍 - zero; 𝑃 -

positive. This produced 9 rules for adjusting the lowest DC motor speed to keep the

robot platform horizontal from initial tilting condition. The fuzzy controller output is

classified as five membership functions: 𝑉𝑆 – very slow; 𝑆 – slow; 𝑁𝑜𝑟𝑚𝑎𝑙 – 12 rpm; 𝐹

– fast; 𝑉𝐹 – very fast. In this design, membership functions of inputs are selected as

105

triangular and trapezoid functions while the output MFs are defined as triangular

functions which are displayed in Figure. 7.5.

VS S Normal F VF

12 14 1810

DC1, (rpm)

0

1

6 8 16

VS S Normal F VF

12 14 1810

DC1, (rpm)

0

1

6 8 16

0 2 10-2-10

N Z P

dep(t)/t, (deg/s)

0

1

-6 60 2 10-2-10

N Z P

dep(t)/t, (deg/s)

0

1

-6 6

N Z P

0 2010-30

ep(t), (deg)

0

1

-10-20 30

N Z P

0 2010-30

ep(t), (deg)

0

1

-10-20 30

VS S Normal F VF

12 14 1810

DC1, (rpm)

0

1

6 8 16

0 2 10-2-10

N Z P

dep(t)/t, (deg/s)

0

1

-6 6

N Z P

0 2010-30

ep(t), (deg)

0

1

-10-20 30

Figure 7.5 Membership functions of tilting fuzzy controller

The two inputs’ universe of discourses are [-30, 30] and [-10, 10] while the universe of

discourse of output is [6, 18]. The control rule base contains the following rules 𝑅𝑖𝑗:

 IF (𝑒𝑝 is 𝐴𝑖) 𝐴𝑁𝐷 (𝑑𝑒𝑝(𝑡)/𝑡 𝑖𝑠 𝐵𝑗) 𝑇𝐻𝐸𝑁 (𝑈 𝑖𝑠 𝐶𝑘) (7.2)

For 𝑖, 𝑗, and 𝑘 = 1…5. 𝐴𝑖 , 𝐵𝑗 and 𝐶𝑘 are fuzzy subsets defined by their corresponding

membership functions. Table 7.1 represents the fuzzy rules of this tilting fuzzy controller.

Table 7.1. Rule table of tilting fuzzy controller

U(t)
ep(t)

 N Z P

dep(t)/t

 N PB PS NS

 Z PB Z NB

 P PS NS NB

Centroid de-fuzzification is used to solve the simulation cases. However, for real

implementation the weight average (WA) method is adopted to reduce the

106

computational complexity. The equation of de-fuzzification used WA is shown in Eqn.

(7.3), where 𝑏𝑖 denotes the center of the membership function of the consequent of

rule (𝑖), 𝑢𝑐𝑟𝑖𝑠𝑝 represents the conclusions of the fuzzy controller that are represented

with the implied fuzzy sets and 𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)
 means the certainty of premise rule (𝑖) [74].

 𝑢𝑐𝑟𝑖𝑠𝑝 =
∑ 𝑏𝑖𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)𝑖

∑ 𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)𝑖
 (7.3)

7.3 Slippage Fuzzy Control System

A typical problem of a wheel type tree climbing robot is the wheel slippage. During robot

climbing, even if the three DC motors’ rotation speeds are the same, once one of the

wheels suffers slippage, the robot platform begins to tilt.

The slippage not only causes the whole robot climbing speed error and distance error,

but also increases the overall energy consumption and decreases robot locomotion

performance (dynamic tilt) [69]. In this tree pruning robot design, wheel slippage is the

primary reason for robot dynamic tilt. To tackle this issue without extra sensors or high

MCU computation load, the slippage fuzzy control system composed of one stepper unit

and one IMU sensor has been developed based on experimental data collected from

three DC motor encoders.

The stepper and screw-nut unit play an essential role in wheel slippage control. When

the nut of the screw-nut unit moves towards the trunk, the three wheels’ normal forces

increase. If the friction coefficient is constant, the total friction forces between the robot

wheels and the tree trunk increase correspondingly. Therefore, the wheel slippage

control can be fulfilled by adjusting the step motor to control the nut position. The

structure of the stepper and screw-nut unit is displayed in Fig. 7.6.

As illustrated in chapter 4, to guarantee the lead screw efficiency and control accuracy

of the stepper unit, a bearing support mechanism is adopted. It aims to overcome and

eliminate the robot wheel module gravity force and other disturbing forces applied on

the robot wheel that affect the servomotor module and stepper’s nut and screw unit.

107

StepperScrew-Nut UnitBearing Unit StepperScrew-Nut UnitBearing Unit

Figure 7.6 Tree pruning robot stepper and screw-nut unit

According to the Robot climbing experimental data, a slippage fuzzy control system is

developed. The inputs are the two errors of platform pitch and roll angles referencing

to the horizontal position while outputs are the steps of the sept motor and the

rotational speeds of the three DC motors. The block diagram of slippage fuzzy control

system is shown in Figure. 7.7.

Stepper Unit and

Three DC Motors

F
u

zzifica
tio

n

Inference

mechanism

D
efu

zzific
atio

n

Rule-base

U(t)

Slippage Fuzzy Controller

Reference

Angle

IMU Sensor

-

+ ep(t)

er(t)

Stepper Unit and

Three DC Motors

F
u

zzifica
tio

n

Inference

mechanism

D
efu

zzific
atio

n

Rule-base

U(t)

Slippage Fuzzy Controller

Reference

Angle

IMU Sensor

-

+ ep(t)

er(t)

 Figure 7.7 Block diagram of slippage fuzzy control system

The membership function of this slippage fuzzy control system is illustrated in Figure 7.8.

Each input and output is classified as five MFs and their membership function types are

considered as triangular ones. The universe of discourse of input is [-5, 5], for stepper

outputs, they are [-100, 100] and [4, 20] for three DC motors.

108

0 2.5 5-5 -2.5

VS S Normal F VF

12 16 204

DC1, DC2,

DC3, (rpm)

0

1

8

VS S Normal F VF

12 16 204

DC1, DC2,

DC3, (rpm)

0

1

8

NB NS Z PS PB

0 50 100-100

stepper, (steps)

0

1

-50

NB NS Z PS PB

0 50 100-100

stepper, (steps)

0

1

-50

NB NS Z PS PB

ep(t), er(t) (deg)

0

1
NB NS Z PS PB

ep(t), er(t) (deg)

0

1

0 2.5 5-5 -2.5

VS S Normal F VF

12 16 204

DC1, DC2,

DC3, (rpm)

0

1

8

NB NS Z PS PB

0 50 100-100

stepper, (steps)

0

1

-50

NB NS Z PS PB

ep(t), er(t) (deg)

0

1

Figure 7.8 Membership functions of slippage fuzzy controller

The surface view of the slippage fuzzy controller in Simulink is shown in Figure 7.9. It

illustrates the relationship between the controller’s two inputs and four outputs.

Figure 7.9 Slippage fuzzy controller surface view in Simulink

109

7.4 Tilting Control System Block Diagram

The overall tree pruning robot tilting control system block diagram is illustrated in Figure.

7.10. In this control flow chart, microcontroller Arduino Due plays a host computer role.

It employs a complementary filter to obtain the stable and accurate tilting data by

distilling and fusing the raw pitch and roll data from IMU. The tilting fuzzy control and

slippage fuzzy control are also operated on this MCU. Except Arduino Due, one Arduino

Mega is employed as the slave computer to actuate the robot driving systems and return

feedbacks according to the commands from Arduino Due. The communication between

Arduino Due and Mega relies on the serial communication (UART).

Arduino Mega

Arduino Due

MPU-9150

DC Motor

Servo Motor

Stepper

R
o

b
o

t D
riv

in
g
 S

y
ste

m

IMU

Tilting Fuzzy Control

Slippage Fuzzy Control

Complementary

Filter

HOST

UART

SLAVE

Arduino Mega

Arduino Due

MPU-9150

DC Motor

Servo Motor

Stepper

R
o

b
o

t D
riv

in
g
 S

y
ste

m

IMU

Tilting Fuzzy Control

Slippage Fuzzy Control

Complementary

Filter

HOST

UART

SLAVE

Figure 7.10 Block diagram of robot tilting control system

7.5 Simulation Results of Robot Tilting Control

The two fuzzy controllers are designed in MATLAB Simulink, which is shown in Figure.

7.11. To verify the effectiveness of the tilting fuzzy control system, it is imported into

the MATLAB SimMechanics and simulated with the robot model using robot physical

climbing data. The block diagram of slippage fuzzy control system with climbing robot in

MATLAB SimMechanics is displayed in Figure. 7.12.

110

Figure 7.11 Tilting fuzzy controller and slippage fuzzy controller in MATLAB Simulink

Figure 7.12 Slippage fuzzy control system and climbing robot in MATLAB SimMechanics

111

The simulation results of slippage fuzzy control system are displayed in Figure. 7.13 and

7.14, which illustrate the tilting differences of robot in pitch and roll angles during robot

climbing procedure. The orange-color line represents the robot system using slippage

fuzzy controller while the blue line without fuzzy system.

Figure 7.13 Tree pruning robot pitch angle comparison in MATLAB SimMechanics simulation

Figure 7.14 Tree pruning robot roll angle comparison in MATLAB SimMechanics simulation

As shown in Figure. 7.13 and 7.14, during robot climbing process, without slippage fuzzy

control, the robot suffers tilting issue (blue line). There is a drift from the horizontal

position. However, when the robot employs the slippage fuzzy control, the situation is

significantly improved (orange line).

112

The robot utilizes the slippage fuzzy control method to adjust the three DC motors and

the stepper according to the tilting angle obtained from the physical climbing data. After

2 seconds, the pitch and roll angle of climbing robot is fluctuating at a small amplitude

around zero degree which means the robot climbs up horizontally. RMSE is used as the

performance index. With a RMSE value of 1.046 for pitch angle and 2.317 for roll angle.

7.5 Robot Tilting Control Conclusion

Two fuzzy controllers are designed to solve the tilting problem of wheel-driven tree

climbing robot. The tilting fuzzy controller is used to tackle the initial presetting tilt while

the slippage fuzzy control system is developed to control and eliminate the dynamic tilt

during robot climbing process. Both fuzzy controllers are developed in MATLAB Simulink

and verified with the robot model in MATLAB SimMechanics. The simulation results

confirm that the slippage fuzzy control system is feasible and effective to solve the robot

climbing tilting problem.

However, this research still remains work for further study. For example, the specific

implementation of these two tilting fuzzy controllers in tree climbing robot control

system which requires the fine tuning of fuzzy controller coefficients according to

different climbing environment and climbing morphologies.

113

Chapter 8 Tree Pruning Robot Longitudinal Wheel Slip Control

Using Dynamic Neural Networks

The control of wheel slip is a challenging problem due to the complex and nonlinear

dynamics of tire-surface interaction. When the wheel slip is not limited in its optimally

stable zone, for wheel-driven tree climbing robots, the desired tire-trunk longitudinal

force cannot be achieved, which not only causes distance error, but also increases

overall energy consumption and decreases the climbing performance. In this research,

a new approach based on dynamic neural networks (DNN) and direct inverse control

(DIC) were employed for improving the tree climbing robot longitudinal wheel slip

control. This control strategy is fulfilled based on the dynamic adjustment of the

stepper’s lead screw thrust (or steps) according to the wheel slip stable zone constraints.

Robot wheel slip is obtained using online wheel slip estimation method which is derived

from wheel speed errors and verified through offline wheel slip estimation. The dynamic

neural network has been used for modelling of a nonlinear relationship between the

tree climbing robot’ stepper lead screw thrust and the longitudinal wheel slip during the

vertical climbing procedure. It provided preconditions for control of the stepper lead

screw thrust based on the wheel slip change.

8.1 Introduction

The physically manufactured tree pruning robot testing prototype is previously

illustrated in chapter 4. Its mechanical construct is depicted in Figure. 8.1. To obtain high

climbing speeds, wheel mechanism is adopted. The robot driving system has three legs

evenly distributed under the platform. These legs consist of the driving mechanism

which supports the entire pruning robot. Each leg is composed of four major parts: servo

motor, DC motor, linkage, and wheel unit. In addition to these parts, one leg is equipped

with a stepper and a screw-nut unit as shown in Figure. 8.2.

114

Open-close Joint

Robot Leg

Stepper

Robot Platform

Figure. 8.1 Mechanical construction of the tree pruning robot

Stepper

Bearing Unit

DC Motor Servomotor

Wheel Unit

Screw-Nut Unit

Stepper

Bush Bearing

Bearing Unit

Figure. 8.2 Climbing robot leg module and stepper screw-nut unit

This step motor together with the screw-nut unit is the primary mechanism that adjusts

the diameter of the circle constructed by the three robot wheels to suit different trunk

sizes. In this design, according to the dimension of the screw-nut unit and robot tire

sidewall (120×60mm), the trunk diameter that the robot can climb up ranges from 120

to 160 mm [76]. Furthermore, during the climbing process, the stepper can adjust the

normal forces between the robot wheels and the tree trunk through the screw-nut

mechanism. This holding force adjustment plays a key role in the robot wheel slippage

control. The other two legs are fixed legs with a wheel against the tree trunk without

installing step motors.

115

From the robot physical climbing tests on a rod, it is found that for 10 seconds, the actual

climbing distance is about 42 cm which is smaller than the target 75.36 cm (12 rpm)

mainly due to robot wheel slippage [76]. Wheel slip is a typical problem for wheeled tree

or pole climbing robots in the estimation of climbing distance. During the robot climbing

process, when the applied DC motor tractive force exceeds the level of maximum

longitudinal tire adhesion available at the tire-trunk surface, the wheel slip occurs. The

slippage not only enlarges the distance error, but also increases the overall energy

consumption and decreases the climbing performance of the robot. Owing to the

complicated trunk surface condition, three robot wheels have different friction

coefficients. Therefore, during the climbing process, if the robot holding force is constant,

the three longitudinal wheel forces are dynamic changing. In the extreme situation, if

the robot wheel suffered serious slippage, it may have the chance to fall to the ground.

Therefore, to ease this situation and guarantee the robot climbing up the trunk quickly

and stably, the wheel longitudinal slip should be regulated at its optimum value in order

to generate the maximum longitudinal adhesion. In this chapter, an approach based on

dynamic neural networks has been employed for improving the tree climbing robot

longitudinal wheel slip control. This control strategy is fulfilled based on the dynamic

adjustment of the stepper’s lead screw thrust and three DC motors’ velocity errors

according to the wheel slip stable zone constraints and robot platform tilting angles.

Robot wheel slip is estimated from the experimental test data and difference of three

wheels’ angular velocities during climbing. A nonlinear relationship between the tree

climbing robot’s stepper lead screw thrust and the longitudinal wheel slip during the

vertical climbing procedure was modelled which provides preconditions for control of

the stepper steps based on the wheel slip change. The proposed controller can also

dynamically adjust the tractions of three wheels according to the wheel slip and finally

improve robot climbing performance.

8.2 Research Status of Wheel Slip Control

In the last ten years, wheel slip control has been studied extensively. Numerous

approaches have been proposed, not only within the robotics community, but also more

in the automotive industry. For instance, the active safety systems like ABS, ESP in

116

passenger cars have been broadly studied and applied. Many advanced wheel slip

control technologies are also proposed and developed.

A. Harifi et al [77] present a sliding mode controller for wheel slip control based on a

two-axle vehicle model. Important considered parameters for vehicle dynamic include

two separated brake torques for front and rear wheels as well as longitudinal weight

transfer caused by the acceleration and deceleration. Integral switching surface was

utilized to reduce the chattering effects. Simulation results show the success of integral

switching surface in elimination of chattering side effects and by high performance of

the controller.

Velimir Ćirović and co-workers [78-79] proposed an approach based on dynamic neural

networks to improve the vehicle longitudinal wheel slip control. This approach is based

on dynamic adaptation of the brake actuation pressure, during a braking cycle, according

to the identified maximum adhesion coefficient between the wheel and road. The brake

actuated pressure was adjusted on the level which provides the optimal longitudinal

wheel slip versus the brake actuated pressure selected by a driver, the current vehicle

speed, load conditions, the brake interface temperature and the current value of the

wheel slip. A nonlinear functional relationship between the brake pressure and wheel

slip was modelled to offer preconditions for the wheel slip control.

Lei Yuan et al [80] describes a new slip control system for electric vehicles equipped with

four in-wheel motors, based on nonlinear model predictive control (nonlinear MPC)

scheme. To ensure vehicle safety, wheel slip stable zone is considered as time-domain

constraints of the nonlinear MPC. Besides, the motor output torque is limited by the

motor maximum torque which varies with motor angular velocity and battery voltage,

so the motor maximum output torque limitation is considered as system time-varying

constraints. The effectiveness of the proposed controller is verified in the off-line con-

simulation environment of AMESim and Simulink, and a rapid control prototyping

platform based on FPGA and dSPACE is completed to evaluate the real-time functionality

and computational performance of the nonlinear MPC controller.

117

P. K. Pranav et al [81] designed a microcontroller based automatic wheel slip control

system for a 2WD tractor to replace the inefficient draft control system. The new system

measures wheel slip under field conditions and generates commands for depth

adjustment if the wheel slip falls outside the desired range. Wheel slip was calculated

using the actual and theoretical speeds of tractor obtained by measuring the rotational

speed of front and rear wheels, respectively. The performance data indicated a

significant reduction in fuel consumption per hectare and gain in tractive efficiency with

slip control system versus the existing draft control system.

In robotic areas, especially for the wheel mobile robots, wheel slip control is also studied

extensively. Daisuke Chugo et al [82] developed a holonomic mobile system which is

capable of running over the step. In order to realize the high mobile performance during

step climbing, a new plural wheel control method based on wheel slip estimation is

proposed to reduce wheel slippage for maximizing wheel traction. The key idea is the

estimation of wheel slippage comparing with the loads and rotation velocities of all

actuated wheels and using this result for wheel control of the vehicle for reducing wheel

slippage. The controller can adjust control tractions of plural wheels when the wheel

begins to slip and improve the mobile performance of the vehicle.

W. Chonnaparamutt and H. Kawasaki [30] developed a slippage control system based on

experimental data collected from encoders and a motion capture system to cope with

wheel slip without spending extra sensors or high processing load. The slippage control

system composed of two fuzzy modules, namely the trajectory estimator and velocity

controller. The control system applied the cross-coupling control technique by employing

the estimated velocity from the estimator as a part of an input for the velocity controller

of four wheels. In this way, a simple yet effective slippage control system was designed.

P. Lamon et al [83] presented a quasi-static modelling of a six-wheeled robot with a

passive suspension mechanism to select the optimal torques considering the system

constraints: maximal and minimal torques, positive normal forces. The aim of this

research is to limit wheel slip and to improve climbing capabilities. The proposed

modelling and optimization were applied on a Shrimp rover.

118

Besides, there are many others’ wheel slip control techniques and approaches available

in different application areas [84-89]. These proposed wheel slip methods are based on

several techniques, e.g. torque control, vision-based or dynamic-model-based control,

sliding mode control, fuzzy logic and neural networks. These approaches give impressive

results for regulating or moderating the wheel slippage. However, most methods are

suitable for each specific system owing to the characteristic of the system and required

sensors. For this three-wheeled tree climbing robot wheel slip control, taking the

available MCU computation resources and affordable sensors into consideration, the

neural network is adopted as wheel slip control method. Moreover, the control of wheel

slip during climbing process is a challenging task due to nonlinear dynamics between the

robot longitudinal climbing force and the steps of stepper, followed by uncertainty and

dynamic varying of the trunk parameters such as the friction coefficient and trunk

diameter. In this occasion, neural network is more suitable and competent for such a

complicated task.

8.3 System Modelling and Problem Statement

In order to design a slip control law for wheeled tree climbing robot, a nonlinear slip

control system model based on robot climbing dynamics is developed in this section,

which mainly consists of robot climbing dynamics, tyres, wheel motors and stepper.

Basically, a comprehensive tree climbing robot model that includes all relevant

characteristics of the robot (both longitudinal and lateral dynamics) should be

considered together. However, this paper only focuses on the influence of slip control

system on the robot’s longitudinal (or vertical) dynamic performance, and in order to

deal with the slip control issue easily, the assumptions and neglections are made to study

the robot dynamics in longitudinal direction alone, including: weight transfer and lateral

wheel slip are not considered. The symbols in modelling procedure and the related

physical meanings are listed in Table 8.1.

119

Table 8.1 Tree Pruning Robot Nomenclature

Symbol Description

𝑀 Robot mass

𝑣, 𝑣̇, 𝜔, 𝜔̇ Robot velocity, robot acceleration, wheel angular velocity, wheel angular

acceleration

𝐹𝑥 , 𝐹𝑥1, 𝐹𝑥2, 𝐹𝑥3 Robot wheel longitudinal force

𝐺 Robot gravity force

𝐹𝑟𝑜𝑙𝑙 Wheel rolling resistance

𝐽𝑖 Moment of inertia of robot wheel

𝑇𝑚𝑖, 𝑇𝑀 Tractive torque of robot wheel motor

𝑅

𝑇𝑟𝑖, 𝑇𝑟

𝑇𝐺

 𝑇𝐹

 𝐹𝑠

𝜇

𝑁

𝐹𝑙𝑒𝑎𝑑

 𝑓𝑠

𝑁𝑠

𝑑

 𝑙

 𝑇𝑠

 𝑣𝑠

 𝜔𝑠

 𝜂

 𝐸𝑟

 𝐸𝑡

 𝐷

𝜃

 𝛿

 𝑛

Wheel rolling radius

Wheel rolling resistance torque

Robot gravity torque

Robot wheel longitudinal torque

Thrust from stepper lead screw

Trunk friction coefficient

Wheel resultant normal force

Lead screw actuate force

Stepper thread friction force coefficient

Stepper thread normal force

Stepper thread diameter

Stepper thread lead

Stepper actuate torque

Stepper nut linear velocity

Stepper lead screw angular velocity

Stepper efficiency

Stepper rotational kinetic energy

Stepper translational kinetic energy

Stepper nut translation distance

Stepper lead screw rotation angle

Stepper step angle

Stepper steps

8.3.1 Slip control system model

1. Robot dynamic model

120

Since this research mainly focuses on the influence of slip control on the robot’s

longitudinal dynamic performance, the robot dynamics model adopted here mainly

contains the robot longitudinal motion and the rotational movement of the three wheels.

According to Newton’s law, the motion equations of the robot are shown as follows.

a) ROBOT LONGITUDINAL MOVEMENT

𝑀𝑣̇ = 𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥3 − 𝐺 − 𝐹𝑟𝑜𝑙𝑙 (8.1)

As shown in Fig. 8.3, 𝐹𝑥1, 𝐹𝑥2, 𝐹𝑥3 are the tyre longitudinal forces of the three wheels.

G

Froll

Fx1

Fx2

Fx3

z

x

ν
Trunk

L
o

n
g

it
u
d

in
a
l

Figure. 8.3 Robot dynamics during vertical climbing

 According to the mechanical construction of tree climbing robot in Fig. 8.1, to illustrate

the dynamic model more easily and clearly, the wheel connected with a stepper unit is

selected as the tire dynamic model which is displayed in Fig. 8.4.

b) THREE WHEEL’S ROTATION MOVEMENT

𝐽𝑖𝜔̇𝑖 = 𝑇𝑚𝑖 − 𝐹𝑥𝑖𝑅 − 𝑇𝑟𝑖 ; 𝑖 = 1, 2, 3 (8.2)

121

Where R is rolling radius of the wheel, 𝑇𝑚𝑖 is wheel i's motor output torque, 𝑇𝑟𝑖 is wheel

i's rolling resistance torque.

Fxi

Tmi

R

ν

ω

Trunk

z

x

L
o

n
g

it
u
d

in
a
l

FsN

Figure. 8.4 Robot wheel dynamics during vertical climbing

2. Wheel motor modelling

𝑇𝑀 = 𝑇𝐹 + 𝑇𝐺 + 𝑇𝑟 (8.3)

𝑇𝑀 is the whole robot wheel torque required for three DC motors during climbing. To

enable the robot climbing the trunk, the three-wheel tractive torques need to overcome

the robot gravity, tire longitudinal force and wheel rolling resistance. During the climbing

process, assuming the wheel rolling resistance and gravity force are constant and other

disturbances are neglected. When the wheel motor tractive torque exceeds the wheel

longitudinal force, wheel slip occurs. In fact, the robot wheel slip is inevitable since the

three wheels’ longitudinal forces are dynamically fluctuating in the climbing procedure.

The reason for this phenomenon is the complex trunk surface condition. In this robot

climbing case, one effective way to deal with this problem is utilizing the dynamic

adjustment wheel normal force to compensate the longitudinal force.

3. Tyre force modelling

The longitudinal tyre force 𝐹𝑥 is often modelled by the relation:

𝐹𝑥 = 𝑓(𝜆, 𝐹𝑠) = 𝜇𝐹𝑠 (8.4)

122

That is, by a function that depends linearly on the thrust force 𝐹𝑠 from the stepper lead

screw and nonlinearly on the wheel slip:

𝜆 =
𝑅𝜔−𝑣

𝑅𝜔
 (8.5)

Differentiating Eqn. (8.5) with respect to time gives the derivative form:

𝜆̇ =
𝑅𝜔̇(1−𝜆)−𝑣̇

𝑅𝜔
 (8.6)

From the study of vehicle tyre dynamic characteristics in the automobile industry, the

typical relationships between longitudinal slip 𝜆 and the friction coefficient are

illustrated in Fig. 8.5 [90]. It demonstrated that if the longitudinal slip is small, the

relationship between the longitudinal force and slip is approximately linear. But with a

further increase of the slip, the longitudinal force reaches a maximum at the certain

value of the slip specified by tire-road adhesion and is saturated beyond that point [85].

That means as the increase of the slip, the longitudinal force decreases. In this tree

climbing case, the dynamic behavior of the robot is nonlinear due to wheel slip. The

robot wheel normal force (thrust force from stepper) as well as the trunk coefficient of

friction strongly affect the tire longitudinal force’s behavior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.80.7 0.9 1.0

Fr
ic

ti
o

n
 C

o
e

ff
ic

ie
n

t
µ

Wheel Slip λ

0.1

0.2

0.3

0

0.4

0.6

0.8

0.9

0.5

0.7

Stable
 zone

1.0
µmax

Figure. 8.5 Typical relation between friction coefficient and longitudinal wheel slip [109]

123

To climb up the trunk fast and stably, the robot three-wheel longitudinal slip should be

controlled at the optimal level within the stable zone [84]. Meanwhile, the robot wheel

can obtain the maximum longitudinal tractive force 𝐹𝑥 with this optimal wheel slip value

according to Figure. 8.5.

However, taking the investment of sensors and measurement accuracy into

consideration, for many wheeled mobile or climbing robots, it is difficult to acquire the

wheel slip directly in real time. To tackle this issue, two types of wheel slip estimation

methods are adopted in this paper: off-line and on-line wheel slip estimation. This off-

line approach utilized the experimental data from the physical robot climbing test to

estimate the robot wheel slip. This method can be adopted as a reference for the online

wheel slip estimation.

In general, when the robot climbs up the trunk, all three wheels don’t begin to slip at

the same time. If one wheel starts to slip, its rotation velocity is different from the setting

value (12 RPM). The rotation velocities of each wheel are derived from the encoder of

each DC motor. Therefore, comparing with velocity error 𝑒𝑖 of each wheel, the system

can estimate wheel slippage [82]. In this paper, this type of wheel slip estimation

method is defined as on-line wheel slip estimation since the robot can realize the wheel

slip in real time during the climbing process.

𝑒𝑖 = |𝜔𝑟𝑒𝑓 − 𝜔𝑖|, 𝑖 = 1, 2, 3 (8.7)

Where 𝜔𝑟𝑒𝑓 is robot wheel setting angular velocity (12 RPM) and 𝜔𝑖 is actual rotation

velocity.

Besides, for this tree climbing robot, the tilting angle of the robot platform (from IMU

sensor) can be used as an alternate reference for this online wheel slip estimation

method.

4. Stepper modelling

As previously discussed, from the robot vertical climbing tests [76], it can be found that

owing to the diverse and complicated tree surface, the robot suffers wheel slip. To solve

124

this issue and limit the slip in its optimally stable zone without extra sensors, one stepper

and lead screw-nut unit are implemented. Another function of this stepper and screw-

nut unit is to prevent the robot from falling to the ground which is defined as active anti-

falling mechanism in [76]. As shown in Fig. 8.1, when the stepper motor moves towards

the trunk, the corresponding robot wheel normal force increases. Consequently, this

influences the robot wheel longitudinal force and wheel slip. To study the nonlinear

relationship between stepper steps and wheel longitudinal force, the stepper model is

given as follows.

a) STEPPER LEAD SCREW FORCE ANALYSIS

When the stepper moves to the trunk, to illustrate the stepper model clearly and easily,

the forces act on the lead screw can be calculated by “unwrapping” one revolution of a

thread which is shown in Fig. 8.6. One edge of the thread forms the hypotenuse of a

right triangle while its base is the circumference of the thread diameter circle and the

height is the lead. 𝛼 is the lead angle of the thread. 𝐹𝑙𝑒𝑎𝑑 is the force to actuate the lead

screw while 𝑓𝑠 is the thread friction force coefficient.

∑ 𝐹𝑥 = 𝐹𝑙𝑒𝑎𝑑 − 𝑁𝑠𝑠𝑖𝑛𝛼 − 𝑓𝑠𝑁𝑠𝑐𝑜𝑠𝛼 = 0 (8.8)

∑ 𝐹𝑦 = −𝐹𝑠 − 𝑓𝑠𝑁𝑠𝑠𝑖𝑛𝛼 + 𝑁𝑠𝑐𝑜𝑠𝛼 = 0 (8.9)

According to Eqn. (8.9) and (8.10),

𝐹𝑙𝑒𝑎𝑑 =
𝐹𝑠(𝑠𝑖𝑛𝛼+𝑓𝑠𝑐𝑜𝑠𝛼)

𝑐𝑜𝑠𝛼−𝑓𝑠𝑠𝑖𝑛𝛼
 (8.10)

Dividing the numerator and denominator of Eqn. (8.10) by 𝑐𝑜𝑠𝛼 and according to

equation 𝑡𝑎𝑛𝛼 = 𝑙 𝜋𝑑⁄ , it can get:

𝐹𝑙𝑒𝑎𝑑 =
𝐹𝑠(𝑙 𝜋𝑑⁄ +𝑓𝑠)

1−(𝑓𝑠𝑙 𝜋𝑑⁄)
 (8.11)

Hence, to overcome the axially dynamical thrust 𝐹𝑠 , the correspondingly required

actuate stepper torque is:

125

𝑇𝑠 =
𝐹𝑠𝑑

2
(

𝑙+𝜋𝑓𝑠𝑑

𝜋𝑑−𝑓𝑠𝑙
) (8.12)

Fs

fsNs

Flead

Ns

X

Y

α

πd

Ɩ

Figure. 8.6 Force analysis of stepper

b) STEPPER LEAD SCREW DYNAMIC ANALYSIS

When the stepper lead screw rotates, the nut connected with robot wheel moves.

Through the screw-nut unit, the rotational motion is converted into the translational

motion which is illustrated in Fig. 8.7. During this motion conversion process, according

to conservation of energy, the rotational energy 𝐸𝑟 is converted to translational energy

𝐸𝑡 with efficient 𝜂 :

𝐸𝑟𝜂 = 𝐸𝑡 (8.13)

𝐹𝑠𝑣𝑠 = 𝑇𝑠𝜔𝑠𝜂 (8.14)

If this process happens in time 𝛥𝑡, it can get:

𝐹𝑠𝑣𝑠𝛥𝑡 = 𝑇𝑠𝜔𝑠𝜂𝛥𝑡 (8.15)

𝐹𝑠𝐷 = 𝑇𝑠𝜃𝜂 (8.16)

Since the stepper screw lead is 𝑙 (mm/rev), then 𝐿 = 𝑙
2𝜋⁄ (mm/rad). Hence, the

transform from rotation motion to linear motion, it can get:

𝐷 = 𝐿𝜃; 𝜃 = 𝑛𝛿 (8.17)

126

Where 𝐷 is stepper nut translational distance, 𝜃 is lead screw rotation angle, 𝑛 is

stepper steps and 𝛿 is stepper step angles.

𝐹𝑠𝐷 = 𝑇𝑠𝑛𝛿𝜂 (8.18)

𝐹𝑠 ≤
𝑇𝑠𝑚𝑎𝑥𝑛𝛿𝜂

𝐷
 (8.19)

νs

ωs

Nut

Stepper

Bearing unit

Figure. 8.7 Stepper dynamic model

During the lead screw rotating process, the stepper thrust 𝐹𝑠 gradually increase since

the distance between the wheel and trunk is reducing and the corresponding pressure

is increasing. According to Eqn. (8.19), the maximal thrust 𝐹𝑠𝑚𝑎𝑥that the stepper can

offer is the value when the stepper activate torque reaches its maximum 𝑇𝑠𝑚𝑎𝑥 with

step 𝑛𝑚𝑎𝑥.

Therefore, the wheel longitudinal force 𝐹𝑥 can be rewritten as:

𝐹𝑥 = 𝑓(𝜆, 𝐹𝑠) = 𝑓(𝜆, 𝑔(𝑛)) (8.20)

That means the wheel longitudinal force 𝐹𝑥 can be expressed by stepper step 𝑛 instead

of stepper thrust 𝐹𝑠.

8.3.2 Control problem statement

Based on this tree climbing robot dynamic model, the following control objectives

should be considered in the slip controller design.

127

1. To ensure the robot climb up the trunk fast and stably, according to the analysis

of wheel longitudinal force 𝐹𝑥, the wheel longitudinal slip should be controlled

at the optimal level within the stable zone based on the stepper steps.

2. Robot three wheels’ speed errors between the actual speed and setting value

should be in the desired range.

3. Under the premise of safety, using higher climbing speed with low power

consumption.

In order to fulfil these control objectives, firstly, the wheel slip is calculated using off-

line method according to the robot physical climbing data [76]. The three wheels’ slip

are shown in Fig. 8.8, Fig. 8.9 and Fig. 8.10, respectively. From time 3, the robot’s

climbing speed reaches its setting value (12 rpm). It can be seen from these three figures

the robot wheels suffer slippage (λ>0.2) during the climbing process when the stepper

step is set as 𝑛. The highest slip is around 52% which occurred on wheel 3.

Figure. 8.8 Robot wheel 1 slip

Figure. 8.9 Robot wheel 2 slip

0.00

0.20

0.40

0.60

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ

Time (sec)

Wheel 1 Slip (offline)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ

Time (sec)

Wheel 2 Slip (offline)

128

Figure. 8.10 Robot wheel 3 slip

Fig. 8.11 displays the three robot wheel speed errors between the actual wheel climbing

speed and setting value (12 RPM) during the climbing process with a constant stepper

step 𝒏. It illustrates the wheel velocity changing level owing to the wheel slip when robot

reaches its setting speed from time 3. As previously discussed, this wheel speed error

can be used as on-line wheel slip estimation. Comparing Fig.8.11 with Fig. 8.8, Fig. 8.9

and Fig. 8.10, it can be found that the online wheel slip estimation almost matches the

offline wheel slip estimation which is derived from the robot wheel velocity errors. The

correlation between the offline and online wheel slip estimation is displayed in Table 8.2

which demonstrates that the online wheel slip estimation method (wheel speed errors)

can reflect the real wheel slip in real time using the wheel speed errors during the

climbing process.

Figure. 8.11 Robot wheel speed error between the actual value and setting value (12 RPM)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Sl

ip
 λ

Time (sec)

Wheel 3 Slip (offline)

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10

W
h

ee
l S

p
ee

d
 E

rr
o

r
(R

P
M

)

Time (sec)

Wheel speed error between actual value and Setting value (12 RPM)

DC 1 RPM ERROR DC 2 RPM ERROR DC 3 RPM ERROR

129

Table 8.2 Correlation between offline and online wheel slip

 Wheel slip
𝝀𝟏VS. Wheel
speed 𝒆𝟏

Wheel slip
𝝀𝟐VS. Wheel
speed 𝒆𝟐

Wheel slip
𝝀𝟑VS. Wheel
speed 𝒆𝟑

𝑅2 0.73 0.659 0.896
RMSE 1.02 1.17 1.05

8.4 Dynamic neural network controller design

Due to the high nonlinearity and complexity between the robot wheel slip and wheel

longitudinal force (or stepper steps) during the climbing process, wheel slip control

creates a need for advanced control methods for better controlling. Hence, an intelligent

dynamic adjusting of the stepper steps VS. robot wheel slip change by dynamic neural

networks is proposed. This provided an intelligent control of stepper’s steps in terms of

providing the maximum climbing effectiveness and maintaining the robot wheel slip

within the optimal level. Dynamic neural networks have demonstrated to be an effective

method for solving complex nonlinear functions and time series issues19 [91].

The control scheme of the dynamic neural networks in the robot wheel slip control is

shown in Figure. 8.12. Considering the computational capacity of the robot MCU, the

simple supervised control and direct inverse control are implied in this wheel slip control

and combined in a feedback loop. The main components of the intelligent control

configuration are the dynamic inverse neural network model and the dynamic neural

network controller, shown in Figure. 8.12. For this research project, the dynamic

artificial neural network (ANN) controller was designed for intelligent adjusting the

stepper steps to achieve desired level of robot wheel slip. Its neural network has the

same structure as the inverse dynamic neural model which enables a transfer of the

weight matrix from the inverse dynamic ANN model to the ANN controller at every time

step. This enables the ANN controller to deal with a dynamic change of desired wheel

slip and to perform good and stable predictions. The dynamic ANN model was designed

to approximate the robot wheel slip in real time through the wheel speed errors during

robot climbing. It runs faster than the dynamic ANN controller that ensures the

19 MATLAB Version R2015b, Help: “Neural Network Time Series Prediction and Modelling”.

130

achievement of well-adjusted weight coefficients. Besides, the ANN model can also

update its own weight coefficients online using the error signal. That means if a large

disturbance or uncertainty occurs in the climbing process, the large error signal is fed

back to the ANN model to adjust its weight coefficients in order to remain the system

stable [97].

Dynamic Inverse
ANN Model Wheel Speed Errors

Dynamic ANN
Controller

-

Desired Wheel
Speed Errors

Stepper steps suggested
by ANN controller

Applied
stepper steps

Error
(update weights)

Stepper steps suggested
by ANN model

Adjusted
 weights

Figure. 8.12 Dynamic neural network control scheme of climbing robot longitudinal wheel slip

8.5 Tree pruning robot wheel slip control experiment and result

In this paper, the time series NARX (nonlinear autoregressive network with exogenous

inputs) feedback neural network [91] is chosen as the ANN controller. The NARX is a

recurrent dynamic network with feedback connections enclosing several layers of the

network. Its model is based on the linear ARX model which is commonly used in time

series modelling. The defining equation for the NARX model is:

𝒚(𝒕) = 𝒇(𝒚(𝒕 − 𝟏), 𝒚(𝒕 − 𝟐), … , 𝒚(𝒕 − 𝒏𝒚), 𝒖(𝒕 − 𝟏), 𝒖(𝒕 − 𝟐), … , 𝒖(𝒕 − 𝒏𝒖)) (8.21)

Where the next value of the dependent output signal 𝑦(𝑡) is regressed on previous

values of the output signal and previous values of an independent (exogenous) input

signal20.

In this research, the main objective was to keep the robot wheel slip at the optimal level

to obtain the maximum longitudinal wheel force according to the wheel speed error

20 MATLAB Version R2015b, Help: “Design Time Series NARX Feedback Neural Networks”.

131

during climbing. Firstly, the NARX neural network of the controller is trained using the

physical robot climbing data through MATLAB ANN tool box. The networks structure is

displayed in Fig. 8.13 which includes one input layer, one hidden layer and one output

layer. The hidden layer has ten neurons and the transfer functions are the “tansig” and

“purelin” between network layers. The Levenberg-Marquardt learning algorithm was

used in the neural networks training process.

Figure. 8.13 NARX neural network in MATLAB

The training results are shown from Figure.8.14 to 8.17, which represent the neural

network training performance, training regression, training time series response, and

training input-error cross correlation.

Figure. 8.14 Neural network training performance

132

Figure. 8.15 Neural network training regression

Figure. 8.16 Neural network training time series response

Figure. 8.17 Neural network training input-error cross correlation

133

For the design of inverse dynamic ANN model, it is based on dynamic feedforward time

delay neural network with one hidden layer containing ten neurons.

After the training, the wheel slip dynamic neural network control scheme is applied on

the physical robot climbing test on a rod which is shown in Figure. 8.18. The length of

the test rod is 1.6 m and the diameter is 122.5 mm. The total mass of the tree pruning

robot is around 6.8 Kg [95].

Figure. 8.18 Robot wheel slip control test on a rod

 After the implementation of the dynamic neural networks control scheme in the robot

physical climbing test, the robot three wheels’ slip is displayed in Figure. 8.19, 8.20 and

8.21, which is based on the experimental climbing data. Figure. 8.22 illustrates the robot

three wheels’ speed errors during the test.

Figure. 8.19 Robot wheel 1 slip after the implementation of dynamic neural network control

0
0.1
0.2
0.3
0.4
0.5
0.6

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ

Time (sec)

Wheel 1 Slip (offline)

134

Figure. 8.20 Robot wheel 2 slip after the implementation of dynamic neural network control

Figure. 8.21 Robot wheel 3 slip after the implementation of dynamic neural network control

Figure. 8.22 Robot wheel speed error during the test (dynamic neural network control)

Comparing Fig. 8.8-8.10 with Fig. 8.19-8.21, it can be seen that the robot wheel slip has

improved significantly after the implementation of the dynamic neural network control

system. The wheel slip is controlled within the stable zone (λ <0.2) during the climbing

0

0.1

0.2

0.3

0.4

0.5

0.6

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ
Time (sec)

Wheel 2 Slip (offline)

0

0.1

0.2

0.3

0.4

0.5

0.6

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ

Time (sec)

Wheel 3 Slip (offline)

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10

W
h

ee
l S

p
ee

d
 E

rr
o

r
(R

P
M

)

Time (sec)

Wheel speed error (Dynamic Neural Network Control)

DC 1 RPM ERROR DC 2 RPM ERROR DC 3 RPM ERROR

135

process. This is also can be reflected in Figure. 8.22 that illustrated the robot wheel

speed errors in the climbing test. From time 3, the robot reaches the setting speed (12

RPM) and most of the wheel errors fluctuate under the error 3. Table 8.3 shows the

percentage of robot wheel slip outside the stable zone between robot climbing using

dynamic neural network control (DNNC) and without it.

Table 8.3 Wheel slip outside the stable zone between robot climbing using DNNC and without DNNC

Percentage (%) Wheel slip 𝜆1 Wheel slip 𝜆2 Wheel slip 𝜆3

Robot climbing without DNNC 17.86 30.71 35

Robot climbing with DNNC 1.43 1.43 2.14

Figure. 8.23 Stepper lead screw adjustment based on dynamic neural network control

Figure. 8.23 shows the robot stepper steps adjustment according to the dynamic neural

network control system during the climbing process. In this test, the stepper motor has

a 1.8° step angle (200 steps/revolution) and the nut moves 8 mm per full revolution,

which allows for a linear resolution of 0.04 mm per step. To relieve the MCU

computation burden and reduce the stepper noise interference, the stepper steps in this

research are set as discrete which are 175, 180, 185, 190, 194, 197, 200, respectively.

170

175

180

185

190

195

200

205

210

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

St
ep

p
er

 S
te

p
 n

Time (sec)

Stepper lead screw adjustment

136

8.6 Tree pruning robot wheel slip control conclusion

For wheeled tree or pole climbing robot, wheel slip is an inevitable issue during the

climbing process due to the unsmooth and irregular tree or pole surface. To solve this

complex and nonlinear problem, a wheel slip control system in longitudinal direction

based on dynamic neural network is proposed in this chapter. The control strategy is

fulfilled through the dynamic adjustment of the stepper’s steps based on the

longitudinal wheel slip optimal level (λ≤0.2). The wheel speed error is used as the

estimation of wheel slip during the climbing and the input of the dynamic neural

network controller. The dynamic neural network controller is trained based on the

previous experimental climbing data and then used to predict the longitudinal wheel slip

according to the wheel speed errors during the physical climbing test. The test result

shows that the wheel slip is almost all within the stable zone which verified the

effectiveness of this dynamic neural network longitudinal wheel slip control method.

137

Chapter 9 Conclusions and Future Works

In this research, a novel three-wheeled climbing robotic system is developed, and a

testing physical model is built, which is capable of autonomously climbing tree or pole

to perform specific tasks like tree pruning. The mechanical structure of this robot is

designed in SolidWorks and simulated in MATLAB SimMechanics. The initial first

climbing robot prototype weights around 8.76 Kg which equipped with two steppers.

However, for the first model, some drawbacks needed to overcome such as heavyweight,

robustness and flexibility for various trunk diameter. To solve these issues, an optimized

climbing robot system that only relies on one stepper to achieve the anti-falling and anti-

jamming functionality was designed and built. The optimized climbing robot weights 6.8

Kg and possesses three other mechanisms: screw-nut unit, servomotor module and

bearing support mechanism. To perform the tree pruning work, each robot wheel is

installed a servomotor module. The robot uses these modules to change the climbing

morphology. Except vertical climbing, the robot can also climb the trunk in a spiral

pattern by turning the wheels at given angles. The bearing support mechanism consists

of one ball bearing, bearing shaft, bearing linkage and guild rail. Its function is to

overcome the robot wheel module gravity force and other disturbing forces that affect

the servomotor module and stepper’s screw-nut unit. This guarantees the lead screw

efficiency and control accuracy of the step motor.

The main feature of this tree climbing robot is that it implements two sets of anti-falling

strategies: passive and active anti-falling mechanisms. The passive anti-falling

mechanism uses only friction forces and robot gravity force to maintain a hold on the

tree trunk. The primary point of achieving this feature is to let the center of the mass of

the robot offset from the center of the tree. In terms of active anti-falling mechanism, it

is fulfilled through the stepper’s screw-nut unit during climbing process. When the

stepper moves towards the trunk, the normal forces on the wheel-trunk contact areas

increases. So, do the longitudinal wheel tractive forces. With such an active anti-falling

mechanism, it guarantees that the robot can climb up the trunk safely and steadily

without slip or falling. This function is elaborated in detail in chapter 8 in the form of

wheel slip control using dynamic neural networks. The types of driving mechanism of

138

this robot are determined by the outcome of the robot mechanical analysis and the

SimMechanics simulation. During the physical climbing test, the average vertical

climbing speed is around 48.02 mm/s when the DC motor rotation speed is set at 12

RPM. The trunk diameter that the robot can climb up ranges from 120 to 160 mm. the

maximum load that the robot can take is approximately 2.1 kg at the setting speed of 12

RPM for the DC motors.

During the physical climbing test, the robot suffers tilting issue. To solve this problem,

first of all, the accurate tilting angle of the robot platform in real time during the climbing

process should be obtained. In this robot design, a MEMS based IMU sensor (MPU9150)

was installed to acquire the accurate tilting information. Two IMU data fusion methods

(complementary filter and Kalman filter) were studied and compared using the robot

tilting angles. Finally, the complementary filter was chosen as the IMU data fusion

method owing to its less computation complexity and only one filter coefficient to be

tuned. In this research, there are two types of tilt required to balance: initial setting tilt

and dynamic tilt. The initial setting tilt is caused by the passive anti-falling mechanism

because of the center of the gravity offsetting. The robot remains stationary at a certain

tilting angle on the trunk utilizing its own weight without energy consumption. This pre-

set tilting angle is named as the initial setting tilt. During the climbing process, each of

the three DC motors can suffer slippage due to the complicated trunk surface. Therefore,

even if the three wheels keep the same speed during climbing procedure, the robot

platform could dynamically tilt at a random direction. To solve these two types of tilt, a

tilting fuzzy controller and one slippage fuzzy control system were designed and

implemented. When the robot employs this fuzzy control system, the pitch and roll

angles of the robot platform are limited in the desired range.

In fact, the robot wheel slip issue not only incurs robot platform tilting but also causes

some other problems like distance error, more overall energy consumption and worse

robot climbing performance. To avoid this, the wheel slip must be controlled in its

optimally stable zone during the robot climbing. However, the control of wheel slip is a

challenging problem due to the complex and nonlinear dynamics of tire-surface

interaction. In this research, a new approach based on dynamic neural networks (DNN)

139

and direct inverse control (DIC) were employed for improving the tree climbing robot

longitudinal wheel slip control. This control strategy is fulfilled based on the dynamic

adjustment of the stepper’s lead screw thrust (or steps) according to the wheel slip

stable zone constraints. Robot wheel slip is obtained using online wheel slip estimation

method which is derived from wheel speed errors and verified through offline wheel slip

estimation. The dynamic neural network has been used for modelling of a nonlinear

relationship between the tree climbing robot’ stepper lead screw thrust and the

longitudinal wheel slip during the vertical climbing procedure. It provided preconditions

for control of the stepper lead screw thrust based on the wheel slip change.

9.1 Works for future research

This tree pruning robot research still remains work for further research. These works

mainly focus on the following aspects. The first one is the robot hardware design and

configuration. For example, during the passive anti-falling test, when the robot remains

stationary on the testing rod without power consumption, sometimes the robot wheel

rolls back if the servomotor turns the wheel not at a proper angle (DC motor back drive).

To eliminate this problem, a worm-gear DC motor could be considered. Furthermore,

there are many ways to improve the robot climbing performance such as a further

reduction in the weight of the robot by using varied materials or reconstructing the

robot platform frame and adding intelligent sensing, adding tree pruning or inspection

tools on the robot platform and tested on real trees.

Another work that needs to be done in the future is the wheel slip control. For instance,

in this research, the longitudinal wheel slip controller is trained only using the specific

rod climbing data, which means it may not work well at other surface conditions like

trees. Furthermore, due to the computation capacity of the MCU, the wheel slip is

estimated using wheel speed error during the robot climbing. For more accurate wheel

slip measurement, in the future the more professional robot speed measurement

equipment is needed instead of the speed sensor. And the lateral wheel slip control of

the robot wheel during climbing will be investigated and analyzed in the future.

140

9.2 Main contributions and publications

➢ In this research, a novel tree climbing robotic system is designed and the motion

simulation has also conducted. Its kinematic characteristics have been analyzed.

The research outcomes are published in the following journals and conferences.

1. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2017, “A Novel Robotic

Tree Climbing Mechanism with Anti-Falling Functionality for Tree Pruning,”

Journal of Mechanisms and Robotics, 2018, 10(1), doi:10.1115/1.4038219,

Impact Factor: 2.371, pp: 014502-1 – 014502-8.

2. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2015, “A Novel Design of

Anti-Falling Mechanism for Tree Pruning Robot,” IEEE 10th Conference on

Industrial Electronics and Applications, 15-17 June, Auckland, New Zealand, doi:

10.1109/ICIEA.2015.7334222, pp: 812-816.

3. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2017, “Anti-falling tree

climbing mechanism optimization,” 2017 2nd Asia-Pacific Conference on

Intelligent Robot System, 16-18 June, Wuhan, China, doi:

10.1109/ACIRS.2017.7986109, pp: 284-288.

➢ During the robot climbing process, it suffers tilting. To solve this problem, firstly

the complementary filter and Kalman filter based IMU data fusion methods for

tilting measurement are studied and compared in order to obtain the accurate

robot tilting angle in real time. Then two fuzzy controllers are designed and

applied to solve the initial tilt which is caused by the passive anti-falling

mechanism and dynamic tilt.

1. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2015, “MEMS Based IMU

for Tilting Measurement: Comparison of Complementary and Kalman Filter

Based Data Fusion,” IEEE 10th Conference on Industrial Electronics and

Applications, 15-17 June, Auckland, New Zealand, doi:

10.1109/ICIEA.2015.7334442, pp: 2004-2009.

2. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2017, “Tree Pruning

Robot Tilting Control Using Fuzzy Logic,” 2017 11th International Conference on

141

Sensing Technology, 4-6 December, Sydney, Australia, doi:

10.1109/ICSensT.2017.8304509, pp: 1-5.

➢ To climb the trunk safely and stably, the robot longitudinal wheel slip is studied,

and a wheel slip controller is designed based on dynamic neural networks. This

control strategy is fulfilled based on the dynamic adjustment of the stepper’s

lead screw thrust (or steps) according to the wheel slip stable zone constraints.

1. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2018, “Wheel-Driven

Climbing Robot Longitudinal Wheel Slip Control Using Dynamic Neural

Networks,” submitted and under review, Journal of Dynamic Systems,

Measurement and Control, ASME, Impact Factor: 1.388.

142

Appendix A – Program Codes of Tree Pruning Robot

Tree Pruning Robot Tilting Fuzzy Control

Arduino Mega:

#include <Servo.h>

#include<AccelStepper.h>

/***************************Serial Communication*****************/

const char startOfNumberDelimiter = '<';

const char endOfNumberDelimiter = '>';

volatile int t = 0;

/*************************DC Motor variables definition*********/

#define U2A1 8 // U2INA motor pin

#define U2B1 9 // U2INB motor pin

#define U3A1 10 // U3INA motor pin

#define U3B1 11 // U3INB motor pin

#define U4A1 12 // U4INA motor pin

#define U4B1 13 // U4INB motor pin

#define U2PWM 5 // U2 PWM motor pin

#define U3PWM 6 // U3 PWM motor pin

#define U4PWM 7 // U4 PWM motor pin

#define U2encodA 2 //U2 encoder A pin

#define U2encodB 14 //U2 encoder B pin

#define U3encodA 3 //U3 encoder A pin

#define U3encodB 15 //U3 encoder B pin

#define U4encodA 21 //U4 encoder A pin

#define U4encodB 16 //U4 encoder B pin

/***********************Servo Motor Definition********************/

Servo servo1;

Servo servo2;

Servo servo3;

int pos1 = 90;

int pos2 = 95;

int pos3 = 105;

/***********************System Running Time Control********************/

int sys_run_timer = 0;

/***************************** Stepper Setup **********************************/

AccelStepper stepper1(1,24,25);

int stepperPin = 24;

int dirPin = 25;

boolean step_dir;

int step_count = 0;

int step_mid = 0;

/***********************power switch******************************/

//#define Vpin 0 // battery monitoring analog pin

#define U2Apin 0 // U2 motor current monitoring analog pin

#define U3Apin 1 // U3 motor current monitoring analog pin

#define U4Apin 2 // U4 motor current monitoring analog pin

#define Apin 3 // System current

#define PowerOn 22 // Power Switch On Pin, High switch on; Low switch off

#define CURRENT_LIMIT 20000 // high current warning

//#define LOW_BAT 10000 // low bat warning

/***********************PID loop Time********************/

#define LOOPTIME 60 // PID loop time

/***********************Current Filter********************/

#define NUMREADINGS 10 // samples for Amp average

long readings[NUMREADINGS];

long readings_2[NUMREADINGS];

long readings_3[NUMREADINGS];

long readings_4[NUMREADINGS];

/***********************System Loop Time********************/

unsigned long lastMilli = 0; // loop timing

unsigned long lastMilliPrint = 0; // loop timing

/***********************3 DC Motor Definition********************/

//int speed_req = 12; // speed (Set Point)

int DC1,DC2,DC3; // speed (from fuzzy control)

int speed_act2 = 0; // speed (actual value)

int speed_act3 = 0; // speed (actual value)

int speed_act4 = 0; // speed (actual value)

int PWM_val2 = 0; // (25% = 64; 50% = 127; 75% = 191; 100% = 255) Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096)

int PWM_val3 = 0; // (25% = 64; 50% = 127; 75% = 191; 100% = 255) Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096)

int PWM_val4 = 0; // (25% = 64; 50% = 127; 75% = 191; 100% = 255) Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096)

//int voltage = 0; // in mV

long current2 = 0; // in mA

volatile long count2 = 0; // rev counter

143

long current3 = 0; // in mA

volatile long count3 = 0; // rev counter

long current4 = 0; // in mA

volatile long count4 = 0; // rev counter

/***********************Whole System Current********************/

long current = 0;

/***********************PID Control papameter********************/

float Kp = .4; // PID proportional control Gain

float Kd = 1.0; // PID Derivitave control gain

/***************************** system parameter setup ***/

void setup() {

 //analogReference(EXTERNAL); // Current external ref is 3.3V

 Serial.begin(115200);

 Serial1.begin(115200);

 while(!Serial){};

 while(!Serial1){};

/***********************initialize readings to 0********************/

 for(int i=0; i<NUMREADINGS; i++) readings[i] = 0;

 for(int i=0; i<NUMREADINGS; i++) readings_2[i] = 0;

 for(int i=0; i<NUMREADINGS; i++) readings_3[i] = 0;

 for(int i=0; i<NUMREADINGS; i++) readings_4[i] = 0;

/***********************DC motor********************/

 pinMode(U2A1, OUTPUT);

 pinMode(U2B1, OUTPUT);

 pinMode(U3A1, OUTPUT);

 pinMode(U3B1, OUTPUT);

 pinMode(U4A1, OUTPUT);

 pinMode(U4B1, OUTPUT);

 pinMode(U2PWM, OUTPUT);

 pinMode(U3PWM, OUTPUT);

 pinMode(U4PWM, OUTPUT);

 pinMode(PowerOn, OUTPUT);

 pinMode(U2encodA, INPUT_PULLUP);

 pinMode(U2encodB, INPUT_PULLUP);

 pinMode(U3encodA, INPUT_PULLUP);

 pinMode(U3encodB, INPUT_PULLUP);

 pinMode(U4encodA, INPUT_PULLUP);

 pinMode(U4encodB, INPUT_PULLUP);

// digitalWrite(U2encodA, HIGH); // turn on pullup resistor

// digitalWrite(U2encodB, HIGH);

// digitalWrite(U3encodA, HIGH); // turn on pullup resistor

// digitalWrite(U3encodB, HIGH);

// digitalWrite(U4encodA, HIGH); // turn on pullup resistor

// digitalWrite(U4encodB, HIGH);

 attachInterrupt(0, rencoder2, FALLING);

 attachInterrupt(1, rencoder3, FALLING);

 attachInterrupt(2, rencoder4, FALLING);

 delay(2);

 analogWrite(U2PWM, PWM_val2);

 digitalWrite(U2A1, HIGH);

 digitalWrite(U2B1, LOW);

 analogWrite(U3PWM, PWM_val3);

 digitalWrite(U3A1, HIGH);

 digitalWrite(U3B1, LOW);

 analogWrite(U4PWM, PWM_val4);

 digitalWrite(U4A1, HIGH);

 digitalWrite(U4B1, LOW);

/***********************Servo motor********************/

 servo1.attach(44);

 delay(1);

 servo2.attach(45);

 delay(1);

 servo3.attach(46);

 delay(10);

 servo_dir_90();

 //servo1.write(pos1);

 //delay(2);

 //servo2.write(pos2);

 //delay(2);

 //servo3.write(pos3);

 //delay(2);

/***********************Serial Display********************/

 Serial.print("DC1: ");

 Serial.print(" RPM2: ");

 Serial.print(" U2PWM: ");

 Serial.print(" DC2: ");

 Serial.print(" RPM3: ");

 Serial.print(" U3PWM: ");

 Serial.print(" DC3: ");

 Serial.print(" RPM4: ");

 Serial.print(" U4PWM: ");

 Serial.print(" 2CS: ");

 Serial.print(" 3CS: ");

 Serial.print(" 4CS: ");

 Serial.print(" 3 DC current: ");

144

 Serial.println(" total current: ");

/***********************Step motor********************/

 stepper1.setMaxSpeed(2000);

 stepper1.setAcceleration(800);

 pinMode(dirPin,OUTPUT);

 pinMode(stepperPin, OUTPUT);

 stepper1.moveTo(-400);

 delay(2000);

 lastMilli = millis();

}

/********************************** main loop ***********************************/

void loop() {

 //stepper_climb_init();

 getParam(); //check keyboard

 getFuzzy(); //DC1, DC2, DC3

 DC_motor_pid(); //DC motor pid control

 printMotorInfo(); //display data

 if(sys_run_timer != 250)

 servo_dir_90();

 if(sys_run_timer == 250)

 {

 anti_falling_DC_servo_stepper();

 digitalWrite(PowerOn, LOW);

 sys_run_timer = 0;

 Serial.println("************************** System Time Run Out *************************** ");

 //Serial.println();

 }

}

void stepper_climb_init() {

 while(abs(stepper1.distanceToGo()) > 0)

 {

 stepper1.run();

 }

}

/************************ get DC1 DC2 DC3 from Arduino Due ***/

void getFuzzy() {

 if(Serial1.available())

 processInput();

 }

void processInput ()

 {

 static long receivedNumber = 0;

 static boolean negative = false;

 byte c = Serial1.read ();

 switch (c)

 {

 case endOfNumberDelimiter:

 if (negative)

 processNumber (- receivedNumber);

 else

 processNumber (receivedNumber);

 // fall through to start a new number

 case startOfNumberDelimiter:

 receivedNumber = 0;

 negative = false;

 break;

 case '0' ... '9':

 receivedNumber *= 10;

 receivedNumber += c - '0';

 break;

 case '-':

 negative = true;

 break;

145

 } // end of switch

 } // end of processInput

void processNumber (const long n)

 {

 switch(t){

case 0:

 DC1 = n;

 //Serial.print(n);

 //Serial.print('\t');

 t++;

 break;

case 1:

 DC2 = n;

 //Serial.print(n);

 //Serial.print('\t');

 t++;

 break;

case 2:

 DC3 = n;

 //Serial.println(n);

 //Serial.print('\t');

 //Serial.print('\t');

 t = 0;

 break;

/*

case 3:

 Serial.println(n);

 i = 0;

 break;

*/

}

 } // end of processNumber

/*********************************** DC motor pid control **/

void DC_motor_pid(){

 if((millis()-lastMilli) >= LOOPTIME)

 { // enter tmed loop

 getMotorData(); // calculate speed, volts and Amps

 PWM_val2 = updatePid2(PWM_val2, DC1, speed_act2); // compute PWM value

 PWM_val3 = updatePid3(PWM_val3, DC2, speed_act3); // compute PWM value

 PWM_val4 = updatePid4(PWM_val4, DC3, speed_act4); // compute PWM value

 analogWrite(U2PWM, PWM_val2); // send PWM to motor

 analogWrite(U3PWM, PWM_val3); // send PWM to motor

 analogWrite(U4PWM, PWM_val4); // send PWM to motor

 sys_run_timer = sys_run_timer + 1;

 lastMilli = millis();

 }

 }

/************************************* servo motor control ***/

void servo_dir_90() {

 servo1.write(pos1);

 servo2.write(pos2);

 servo3.write(pos3);

}

/************************** stop DC motor and rotate servo motor ***/

void anti_falling_DC_servo_stepper() {

 digitalWrite(U2A1,LOW);

 digitalWrite(U2B1,LOW);

 digitalWrite(U3A1,LOW);

 digitalWrite(U3B1,LOW);

 digitalWrite(U4A1,LOW);

 digitalWrite(U4B1,LOW);

 for(int i = 0; i < 50; i++)

 {

 servo1.write(30);

 servo2.write(170);

 servo3.write(170);

 delay(1);

 //stepper1.moveTo(-200);

 //while(stepper1.distanceToGo() != 0)

 // stepper1.run();

 }

}

/********************************** get DC motor data ***/

void getMotorData() { // calculate speed, volts and Amps

static long countAnt2 = 0; // U2 last count

static long countAnt3 = 0; // U3 last count

static long countAnt4 = 0; // U4 last count

 speed_act2 = int(((count2 - countAnt2)*(60.0*(1000.0/LOOPTIME)))/(16*102.083)); // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev

mei fei zhong zhuan de quan shu

146

 countAnt2 = count2;

 current2 = int(analogRead(U2Apin) * 4.882 / 130.00 * 1000.00); // motor current - output: 130mV per Amp

 current2 = digital_smooth_2(current2, readings_2); // remove signal noise

 speed_act3 = int(((count3 - countAnt3)*(60.0*(1000.0/LOOPTIME)))/(16*102.083)); // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev

mei fei zhong zhuan de quan shu

 countAnt3 = count3;

 current3 = int(analogRead(U3Apin) * 4.882 / 130.00 * 1000.00); // motor current - output: 130mV per Amp

 current3 = digital_smooth_3(current3, readings_3); // remove signal noise

 speed_act4 = int(((count4 - countAnt4)*(60.0*(1000.0/LOOPTIME)))/(16*102.083)); // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev

mei fei zhong zhuan de quan shu

 countAnt4 = count4;

 current4 = int(analogRead(U4Apin) * 4.882 / 130.00 * 1000.00); // motor current - output: 130mV per Amp

 current4 = digital_smooth_4(current4, readings_4); // remove signal noise

 current = int((analogRead(Apin) * 4.882 - 2500.0) / 136.0 * 1000.0);

 current = digital_smooth(current, readings);

}

/*********************************** DC motor1 pid **/

int updatePid2(int command2, int targetValue2, int currentValue2) { // compute PWM value

float pidTerm2 = 0.0; // PID correction

int error2=0;

static int last_error2=0;

 error2 = abs(targetValue2) - abs(currentValue2);

 pidTerm2 = (Kp * error2) + (Kd * (error2 - last_error2));

 last_error2 = error2;

 return constrain(command2 + int(pidTerm2), 0, 255);

}

/** DC motor2 pid ***********************************/

int updatePid3(int command3, int targetValue3, int currentValue3) { // compute PWM value

float pidTerm3 = 0.0; // PID correction

int error3=0;

static int last_error3=0;

 error3 = abs(targetValue3) - abs(currentValue3);

 pidTerm3 = (Kp * error3) + (Kd * (error3 - last_error3));

 last_error3 = error3;

 return constrain(command3 + int(pidTerm3), 0, 255);

}

/******************************** DC motor3 pid **/

int updatePid4(int command4, int targetValue4, int currentValue4) { // compute PWM value

float pidTerm4 = 0.0; // PID correction

int error4=0;

static int last_error4=0;

 error4 = abs(targetValue4) - abs(currentValue4);

 pidTerm4 = (Kp * error4) + (Kd * (error4 - last_error4));

 last_error4 = error4;

 return constrain(command4 + int(pidTerm4), 0, 255);

}

/******************************** Serial print Motor info **/

void printMotorInfo() { // display data

 if((millis()-lastMilliPrint) >= 300)

 {

 lastMilliPrint = millis();

 Serial.print(DC1); Serial.print('\t'); // Serial.print('\t');

 Serial.print(speed_act2); Serial.print('\t'); //Serial.print('\t');

 Serial.print(PWM_val2); Serial.print('\t'); //Serial.print('\t');

 Serial.print(DC2); Serial.print('\t'); // Serial.print('\t');

 Serial.print(speed_act3); Serial.print('\t'); //Serial.print('\t');

 Serial.print(PWM_val3); Serial.print('\t'); //Serial.print('\t');

 Serial.print(DC3); Serial.print('\t'); // Serial.print('\t');

 Serial.print(speed_act4); Serial.print('\t'); // Serial.print('\t');

 Serial.print(PWM_val4); Serial.print('\t'); //Serial.print('\t');

 Serial.print(current2); Serial.print('\t'); // Serial.print('\t');

 Serial.print(current3); Serial.print('\t'); // Serial.print('\t');

 Serial.print(current4); Serial.print('\t');

 Serial.print(current2 + current3 + current4); Serial.print('\t'); Serial.print('\t'); //Serial.print('\t');

 Serial.println(current);

 // Serial.print(" Stepper_Pos: "); Serial.println(step_count*0.04);

 if ((current2 + current3 + current4) > CURRENT_LIMIT)

 {

 Serial.println("********** 3 DC Motors Exceed CURRENT_LIMIT ***********");

 Serial.println();

 digitalWrite(PowerOn, LOW);

 }

 if (current > 14000)

 {

 Serial.println("********** System Current Limit *********");

 Serial.println();

 digitalWrite(PowerOn, LOW);

 }

 //if (voltage > 1000 && voltage < LOW_BAT) Serial.println("*** LOW_BAT ***");

 }

}

/************************************ interrupt 1, 2 3 **/

void rencoder2() { // pulse and direction, direct port reading to save cycles

 //if(PINJ & 0b00000010) count2 ++;

 if (digitalRead(U2encodB) == HIGH) count2++; // if(digitalRead(encodPinB1)==HIGH) count ++;

 else count2--; // if (digitalRead(encodPinB1)==LOW) count --;

147

}

void rencoder3() { // pulse and direction, direct port reading to save cycles

 //if(PINJ & 0b00000001) count3 ++;

 if (digitalRead(U3encodB) == HIGH) count3++; // if(digitalRead(encodPinB1)==HIGH) count ++;

 else count3--; // if (digitalRead(encodPinB1)==LOW) count --;

}

void rencoder4() { // pulse and direction, direct port reading to save cycles

 //if(PINH & 0b00000010) count4 ++;

 if (digitalRead(U4encodB) == HIGH) count4++; // if(digitalRead(encodPinB1)==HIGH) count ++;

 else count4--; // if (digitalRead(encodPinB1)==LOW) count --;

}

/************************** get command from serial: p+ start the motor ***********************************/

int getParam() {

char param, cmd;

 if(!Serial.available()) return 0;

 delay(2);

 param = Serial.read(); // get parameter byte

 if(!Serial.available()) return 0;

 cmd = Serial.read(); // get command byte

 Serial.flush();

 switch (param) {

 case 'v': // adjust speed

 if(cmd=='+') {

 DC1 += 5;

 DC2 += 5;

 DC3 += 5;

 if(DC1>100) DC1=100;

 else if(DC2>100) DC2=100;

 else if(DC3>100) DC3=100;

 }

 if(cmd=='-') {

 DC1 -= 5;

 DC2 -= 5;

 DC3 -= 5;

 if(DC1<0) DC1=0;

 else if (DC2<0) DC2=0;

 else if (DC3<0) DC3=0;

 }

 break;

 case 'd': // adjust direction

 if(cmd=='+'){

 digitalWrite(U2A1, HIGH);

 digitalWrite(U2B1, LOW);

 digitalWrite(U3A1, HIGH);

 digitalWrite(U3B1, LOW);

 digitalWrite(U4A1, HIGH);

 digitalWrite(U4B1, LOW);

 }

 if(cmd=='-') {

 digitalWrite(U2A1, LOW);

 digitalWrite(U2B1, HIGH);

 digitalWrite(U3A1, LOW);

 digitalWrite(U3B1, HIGH);

 digitalWrite(U4A1, LOW);

 digitalWrite(U4B1, HIGH);

 }

 break;

 case 'o': // user should type "oo"

 if(cmd == 'o')

 {

 digitalWrite(U2A1, LOW);

 digitalWrite(U2B1, LOW);

 digitalWrite(U3A1, LOW);

 digitalWrite(U3B1, LOW);

 digitalWrite(U4A1, LOW);

 digitalWrite(U4B1, LOW);

 //speed_req = 0;

 }

 break;

 case 's':

 if(cmd=='s')

 {

 digitalWrite(U2A1,HIGH);

 digitalWrite(U2B1,HIGH);

 digitalWrite(U3A1,HIGH);

 digitalWrite(U3B1,HIGH);

 digitalWrite(U4A1,HIGH);

 digitalWrite(U4B1,HIGH);

 //speed_req = 0;

 }

 break;

 case 'a':

 if(cmd == '+')

 {

 pos1 += 20;

 pos2 += 20;

 pos3 += 20;

 }

 if(cmd == '-')

148

 {

 pos1 -= 20;

 pos2 -= 20;

 pos3 -= 20;

 }

 break;

 case 'b':

 if(cmd == '+')

 {

 step_dir = true;

 step_count += 25;

 stepper1(step_dir,step_count);

 }

 if(cmd == '-')

 {

 step_dir = false;

 step_count -= 25;

 stepper1(step_dir,step_count);

 }

 break;

 case 'p':

 if(cmd == '+')

 {

 digitalWrite(PowerOn, HIGH);

 }

 if(cmd == '-')

 {

 digitalWrite(PowerOn, LOW);

 }

 break;

 default:

 Serial.println("???");

 }

}

/*************************************** current signal smooth ***/

long digital_smooth(long value, long *data_array) { // remove signal noise

static int ndx=0;

static int rcount=0;

static long total=0;

 total -= data_array[ndx];

 data_array[ndx] = value;

 total += data_array[ndx];

 ndx = (ndx+1) % NUMREADINGS;

 if(rcount < NUMREADINGS) rcount++;

 return total/rcount;

}

long digital_smooth_2(long value, long *data_array) { // remove signal noise

static int ndx_2=0;

static int rcount_2=0;

static long total_2=0;

 total_2 -= data_array[ndx_2];

 data_array[ndx_2] = value;

 total_2 += data_array[ndx_2];

 ndx_2 = (ndx_2 + 1) % NUMREADINGS;

 if(rcount_2 < NUMREADINGS) rcount_2 ++;

 return total_2 / rcount_2;

}

long digital_smooth_3(long value, long *data_array) { // remove signal noise

static int ndx_3=0;

static int rcount_3=0;

static long total_3=0;

 total_3 -= data_array[ndx_3];

 data_array[ndx_3] = value;

 total_3 += data_array[ndx_3];

 ndx_3 = (ndx_3 + 1) % NUMREADINGS;

 if(rcount_3 < NUMREADINGS) rcount_3 ++;

 return total_3 / rcount_3;

}

long digital_smooth_4(long value, long *data_array) { // remove signal noise

static int ndx_4 = 0;

static int rcount_4 = 0;

static long total_4 = 0;

 total_4 -= data_array[ndx_4];

 data_array[ndx_4] = value;

 total_4 += data_array[ndx_4];

 ndx_4 = (ndx_4 + 1) % NUMREADINGS;

 if(rcount_4 < NUMREADINGS) rcount_4 ++;

 return total_4 / rcount_4;

}

void stepper(boolean dir, int steps){

static int last_steps = 0;

digitalWrite(dirPin,dir);

delay(20);

step_mid = abs(steps - last_steps);

last_steps = steps;

for(int i = 0; i< step_mid; i++)

149

 {

 digitalWrite(stepperPin, HIGH);

 delayMicroseconds(80);

 digitalWrite(stepperPin,LOW);

 delay(2);

 }

}

Arduino Due:

#include <MultiStepper.h>
#include "fis_header.h"
#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050_9Axis_MotionApps41.h"
#include "math.h"

//**Arduino Due and Mega Serial Communication*****************************
const char startOfNumberDelimiter = '<';
const char endOfNumberDelimiter = '>';

//***************************************Fuzzy Logic(slippage control discourse -5~5; 4~20)*****************************
// Number of inputs to the fuzzy inference system
const int fis_gcI = 2;
// Number of outputs to the fuzzy inference system
const int fis_gcO = 3;
// Number of rules to the fuzzy inference system
const int fis_gcR = 25;
FIS_TYPE g_fisInput[fis_gcI];
FIS_TYPE g_fisOutput[fis_gcO];

//**Pitch and Roll Complementary Filter*****************************
//int steps = 0;
int DC1 = 12;
int DC2 = 12;
int DC3 = 12;

//***Pitch and Roll Complementary Filter*****************************
int STD_LOOP_TIME = 150;
int lastLoopTime = STD_LOOP_TIME;
int lastLoopUsefulTime = STD_LOOP_TIME;
unsigned long loopStartTime = 0;
int forceMagnitudeApprox = 0;
float sensorValue[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
float sensorZero[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
float act_Y_Angle = 0.0, act_X_Angle = 0.0;
float ACC_Y_angle = 0.0, ACC_X_angle = 0.0;
float GYRO_Y_rate = 0.0, GYRO_X_rate = 0.0;
int16_t a1, a2, a3, g1, g2, g3;
float ax, ay, az, gx, gy, gz;
float dt = 0.0;

MPU6050 mpu;

//**setup mpu9150 and serial*****************************
void setup()
{
 Wire.begin(); //I2C protocol
 // delay(1);
 Serial1.begin(115200);
 while (!Serial1) {};
 //while(!Wire.available()) {};

 //initialize MPU9150 device
 mpu.initialize();
 //verify connection
 //Serial.println(F("Testing device connections..."));
 //Serial.println(mpu.testConnection() ? F("MPU9150 connection successful!") : F("MPU9150 connection failed!"));
 //set sample rate to 8 kHz/(1+rate) shows 1 kHz, accelerometer ODR is fixed at 1 kHz
 mpu.setRate(7);
 //set bandwidth of both gyro and accelerometer to ~20Hz
 mpu.setDLPFMode(4);
 //set gyro range to 250 degrees/sec : 131 LSB/(deg/s); 0 = +/- 250 degrees/sec:131; 1 = +/- 500 degrees/sec:65.5; 2 = +/- 1000 degrees/sec:32.8;3 = +/- 2000
degrees/sec:16.4
 mpu.setFullScaleGyroRange(0);
 //set acceleromter to 2 g range : 16384 LSB/g; 0 = +/- 2g:16384 LSB/g; 1 = +/- 4g:8192 LSB/g; 2 = +/- 8g:4096 LSB/g; 3 = +/- 16g:2048 LSB/g
 mpu.setFullScaleAccelRange(0);
 //enable data ready interrupt
 mpu.setIntDataReadyEnabled(true);
 delay(1);

 //**calibrate sensor*****************************
 calibrateSensors();
 delay(2);

 loopStartTime = millis();

}

//**main loop**
void loop()
{

150

 Pitch_Roll_Complementary(); //get accurate Pitch and Roll angle from Complementary Filter
 Pitch_Roll_Fuzzy(); //according to pitch roll angle then give three DC motors speed

 serialOut_Fuzzy(); //serial output DC1, DC2, DC3

 //**loop timing control*************************************
 lastLoopUsefulTime = millis() - loopStartTime;
 if (lastLoopUsefulTime < STD_LOOP_TIME)
 delay(STD_LOOP_TIME - lastLoopUsefulTime);
 lastLoopTime = millis() - loopStartTime;
 loopStartTime = millis();

}

//**calibrate sensors**
void calibrateSensors()
{
 float v;
 for (int n = 0; n < 6; n++)
 {
 v = 0.0;
 for (int i = 0; i < 50; i++)
 v = v + readSensors(n);
 sensorZero[n] = v / 50.0;
 }
 sensorZero[2] -= 16384.0;
}

//***Get Accurate Pitch and Roll Angle********************************
void Pitch_Roll_Complementary() {

 if (mpu.getIntDataReadyStatus() == 1)
 updateSensors(); //update the ax,ay,az,gx,gy,gz
 ACC_Y_angle = getAcc_Y_Angle(); // rotate y axis
 GYRO_Y_rate = getGyro_Y_Rate();

 ACC_X_angle = getAcc_X_Angle(); // rotate x axis
 GYRO_X_rate = getGyro_X_Rate();
 dt = lastLoopTime / 1000.0;
 act_Y_Angle -= GYRO_Y_rate * dt;
 act_X_Angle += GYRO_X_rate * dt;
 // compensate for drift with accelerometer data if without extra force. sensitivity = -2g to 2g at 16Bit -> 2g = 32768, 1g =16384, 0.5g =8192.
 forceMagnitudeApprox = abs(a1) + abs(a2) + abs(a3);
 if (forceMagnitudeApprox > 8192 && forceMagnitudeApprox < 32768)
 {
 //if t = 0.75, then a = 0.75/(0.75+0.03) = 0.96; a is the complementary coefficient; sample rate is 33.33Hz
 act_Y_Angle = act_Y_Angle * 0.96 + ACC_Y_angle * 0.04;
 delay(1);
 act_X_Angle = act_X_Angle * 0.96 + ACC_X_angle * 0.04;
 }

}

//***************************************Pitch And Roll Fuzzy Logic Control*************************************
void Pitch_Roll_Fuzzy() {

 // Read Input: ep
 g_fisInput[0] = act_Y_Angle;
 // Read Input: er
 g_fisInput[1] = act_X_Angle;

 g_fisOutput[0] = 0;
 g_fisOutput[1] = 0;
 g_fisOutput[2] = 0;

 fis_evaluate();

 // Set output vlaue: step
 //steps = int(g_fisOutput[0]);
 // Set output vlaue: DC1
 DC1 = int(g_fisOutput[0]);
 // Set output vlaue: DC2
 DC2 = int(g_fisOutput[1]);
 // Set output vlaue: DC3
 DC3 = int(g_fisOutput[2]);

}

//**serial output data***************************************
void serialOut_Fuzzy()
{
 //Serial.print(int(ACC_Y_angle));
 //Serial.print("\t");
 //delay(1);
 Serial1.print(startOfNumberDelimiter);
 Serial1.print(DC1); //DC motor 1 speed
 Serial1.print(endOfNumberDelimiter);
 //Serial.print("\t");
 //delay(1);
 //Serial.print(int(ACC_X_angle));
 //Serial.print("\t");
 //delay(1);
 Serial1.print(startOfNumberDelimiter);
 Serial1.print(DC2);//DC motor 2 speed
 Serial1.print(endOfNumberDelimiter);

151

 //delay(1);
 //Serial.print("\t");
 //Serial.println(lastLoopTime);
 Serial1.print(startOfNumberDelimiter);
 Serial1.print(DC3);//DC motor 3 speed
 Serial1.print(endOfNumberDelimiter);
/* delay(2);
 Serial1.print(startOfNumberDelimiter);
 Serial1.print(lastLoopTime);
 Serial1.print(endOfNumberDelimiter);
 delay(5);
*/

}

//***
// Support functions for Fuzzy Inference System
//***
// Triangular Member Function
FIS_TYPE fis_trimf(FIS_TYPE x, FIS_TYPE* p)
{
 FIS_TYPE a = p[0], b = p[1], c = p[2];
 FIS_TYPE t1 = (x - a) / (b - a);
 FIS_TYPE t2 = (c - x) / (c - b);
 if ((a == b) && (b == c)) return (FIS_TYPE) (x == a);
 if (a == b) return (FIS_TYPE) (t2*(b <= x)*(x <= c));
 if (b == c) return (FIS_TYPE) (t1*(a <= x)*(x <= b));
 t1 = min(t1, t2);
 return (FIS_TYPE) max(t1, 0);
}

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b)
{
 return min(a, b);
}

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b)
{
 return max(a, b);
}

FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp)
{
 int i;
 FIS_TYPE ret = 0;

 if (size == 0) return ret;
 if (size == 1) return array[0];

 ret = array[0];
 for (i = 1; i < size; i++)
 {
 ret = (*pfnOp)(ret, array[i]);
 }

 return ret;
}

//***
// Data for Fuzzy Inference System
//***
// Pointers to the implementations of member functions
_FIS_MF fis_gMF[] =
{
 fis_trimf
};

// Count of member function for each Input
int fis_gIMFCount[] = { 5, 5 };

// Count of member function for each Output
int fis_gOMFCount[] = { 5, 5, 5 };

// Coefficients for the Input Member Functions
FIS_TYPE fis_gMFI0Coeff1[] = { -50, -15, -3.75 };
FIS_TYPE fis_gMFI0Coeff2[] = { -7.5, -3.75, 0 };
FIS_TYPE fis_gMFI0Coeff3[] = { -3.75, 0, 3.75 };
FIS_TYPE fis_gMFI0Coeff4[] = { 0, 3.75, 7.5 };
FIS_TYPE fis_gMFI0Coeff5[] = { 3.75, 15, 50 };
FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2, fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5 };
FIS_TYPE fis_gMFI1Coeff1[] = { -50, -15, -3.75 };
FIS_TYPE fis_gMFI1Coeff2[] = { -7.5, -3.75, 0 };
FIS_TYPE fis_gMFI1Coeff3[] = { -3.75, 0, 3.75 };
FIS_TYPE fis_gMFI1Coeff4[] = { 0, 3.75, 7.5 };
FIS_TYPE fis_gMFI1Coeff5[] = { 3.75, 15, 50 };
FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2, fis_gMFI1Coeff3, fis_gMFI1Coeff4, fis_gMFI1Coeff5 };
FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff };

// Coefficients for the Input Member Functions
FIS_TYPE fis_gMFO0Coeff1[] = { 0, 2, 9 };
FIS_TYPE fis_gMFO0Coeff2[] = { 6, 9, 12 };
FIS_TYPE fis_gMFO0Coeff3[] = { 9, 12, 15 };
FIS_TYPE fis_gMFO0Coeff4[] = { 12, 15, 18 };
FIS_TYPE fis_gMFO0Coeff5[] = { 15, 22, 24 };
FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2, fis_gMFO0Coeff3, fis_gMFO0Coeff4, fis_gMFO0Coeff5 };

152

FIS_TYPE fis_gMFO1Coeff1[] = { 0, 2, 9 };
FIS_TYPE fis_gMFO1Coeff2[] = { 6, 9, 12 };
FIS_TYPE fis_gMFO1Coeff3[] = { 9, 12, 15 };
FIS_TYPE fis_gMFO1Coeff4[] = { 12, 15, 18 };
FIS_TYPE fis_gMFO1Coeff5[] = { 15, 22, 24 };
FIS_TYPE* fis_gMFO1Coeff[] = { fis_gMFO1Coeff1, fis_gMFO1Coeff2, fis_gMFO1Coeff3, fis_gMFO1Coeff4, fis_gMFO1Coeff5 };
FIS_TYPE fis_gMFO2Coeff1[] = { 0, 2, 9 };
FIS_TYPE fis_gMFO2Coeff2[] = { 6, 9, 12 };
FIS_TYPE fis_gMFO2Coeff3[] = { 9, 12, 15 };
FIS_TYPE fis_gMFO2Coeff4[] = { 12, 15, 18 };
FIS_TYPE fis_gMFO2Coeff5[] = { 15, 22, 24 };
FIS_TYPE* fis_gMFO2Coeff[] = { fis_gMFO2Coeff1, fis_gMFO2Coeff2, fis_gMFO2Coeff3, fis_gMFO2Coeff4, fis_gMFO2Coeff5 };
FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff, fis_gMFO1Coeff, fis_gMFO2Coeff };

// Input membership function set
int fis_gMFI0[] = { 0, 0, 0, 0, 0 };
int fis_gMFI1[] = { 0, 0, 0, 0, 0 };
int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1};

// Output membership function set
int fis_gMFO0[] = { 0, 0, 0, 0, 0 };
int fis_gMFO1[] = { 0, 0, 0, 0, 0 };
int fis_gMFO2[] = { 0, 0, 0, 0, 0 };
int* fis_gMFO[] = { fis_gMFO0, fis_gMFO1, fis_gMFO2};

// Rule Weights
FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Type
int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Inputs
int fis_gRI0[] = { 1, 2 };
int fis_gRI1[] = { 1, 3 };
int fis_gRI2[] = { 1, 4 };
int fis_gRI3[] = { 2, 2 };
int fis_gRI4[] = { 2, 3 };
int fis_gRI5[] = { 2, 4 };
int fis_gRI6[] = { 3, 2 };
int fis_gRI7[] = { 3, 3 };
int fis_gRI8[] = { 3, 4 };
int fis_gRI9[] = { 4, 2 };
int fis_gRI10[] = { 4, 3 };
int fis_gRI11[] = { 4, 4 };
int fis_gRI12[] = { 5, 2 };
int fis_gRI13[] = { 5, 3 };
int fis_gRI14[] = { 5, 4 };
int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6, fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13, fis_gRI14 };

// Rule Outputs
int fis_gRO0[] = { 5, 1, 2 };
int fis_gRO1[] = { 5, 1, 1 };
int fis_gRO2[] = { 5, 2, 1 };
int fis_gRO3[] = { 5, 1, 2 };
int fis_gRO4[] = { 5, 1, 1 };
int fis_gRO5[] = { 5, 2, 1 };
int fis_gRO6[] = { 3, 1, 2 };
int fis_gRO7[] = { 3, 3, 3 };
int fis_gRO8[] = { 3, 2, 1 };
int fis_gRO9[] = { 3, 1, 2 };
int fis_gRO10[] = { 3, 4, 4 };
int fis_gRO11[] = { 3, 2, 1 };
int fis_gRO12[] = { 3, 4, 5 };
int fis_gRO13[] = { 3, 4, 4 };
int fis_gRO14[] = { 3, 5, 4 };
int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5, fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12, fis_gRO13,
fis_gRO14 };

// Input range Min
FIS_TYPE fis_gIMin[] = { -25, -25 };

// Input range Max
FIS_TYPE fis_gIMax[] = { 25, 25 };

// Output range Min
FIS_TYPE fis_gOMin[] = { 0, 0, 0 };

// Output range Max
FIS_TYPE fis_gOMax[] = { 24, 24, 24 };

//***
// Data dependent support functions for Fuzzy Inference System
//***
FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o)
{
 FIS_TYPE mfOut;
 int r;

 for (r = 0; r < fis_gcR; ++r)
 {
 int index = fis_gRO[r][o];
 if (index > 0)
 {
 index = index - 1;
 mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

153

 }
 else if (index < 0)
 {
 index = -index - 1;
 mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);
 }
 else
 {
 mfOut = 0;
 }

 fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]);
 }
 return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max);
}

FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o)
{
 FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1);
 FIS_TYPE area = 0;
 FIS_TYPE momentum = 0;
 FIS_TYPE dist, slice;
 int i;

 // calculate the area under the curve formed by the MF outputs
 for (i = 0; i < FIS_RESOLUSION; ++i){
 dist = fis_gOMin[o] + (step * i);
 slice = step * fis_MF_out(fuzzyRuleSet, dist, o);
 area += slice;
 momentum += slice*dist;
 }

 return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area));
}

//***
// Fuzzy Inference System
//***
void fis_evaluate()
{
 FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0 };
 FIS_TYPE fuzzyInput1[] = { 0, 0, 0, 0, 0 };
 FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, };
 FIS_TYPE fuzzyOutput0[] = { 0, 0, 0, 0, 0 };
 FIS_TYPE fuzzyOutput1[] = { 0, 0, 0, 0, 0 };
 FIS_TYPE fuzzyOutput2[] = { 0, 0, 0, 0, 0 };
 FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, fuzzyOutput1, fuzzyOutput2, };
 FIS_TYPE fuzzyRules[fis_gcR] = { 0 };
 FIS_TYPE fuzzyFires[fis_gcR] = { 0 };
 FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };
 FIS_TYPE sW = 0;

 // Transforming input to fuzzy Input
 int i, j, r, o;
 for (i = 0; i < fis_gcI; ++i)
 {
 for (j = 0; j < fis_gIMFCount[i]; ++j)
 {
 fuzzyInput[i][j] =
 (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]);
 }
 }

 int index = 0;
 for (r = 0; r < fis_gcR; ++r)
 {
 if (fis_gRType[r] == 1)
 {
 fuzzyFires[r] = FIS_MAX;
 for (i = 0; i < fis_gcI; ++i)
 {
 index = fis_gRI[r][i];
 if (index > 0)
 fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]);
 else if (index < 0)
 fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);
 else
 fuzzyFires[r] = fis_min(fuzzyFires[r], 1);
 }
 }
 else
 {
 fuzzyFires[r] = FIS_MIN;
 for (i = 0; i < fis_gcI; ++i)
 {
 index = fis_gRI[r][i];
 if (index > 0)
 fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]);
 else if (index < 0)
 fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);
 else
 fuzzyFires[r] = fis_max(fuzzyFires[r], 0);
 }
 }

154

 fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];
 sW += fuzzyFires[r];
 }

 if (sW == 0)
 {
 for (o = 0; o < fis_gcO; ++o)
 {
 g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);
 }
 }
 else
 {
 for (o = 0; o < fis_gcO; ++o)
 {
 g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o);
 }
 }
}

//**update sensors date***************************************
void updateSensors()
{
 float v;
 for (int n = 0; n < 6; n++)
 {
 v = 0.0;
 for (int i = 0; i < 5; i++)
 v = v + readSensors(n);
 sensorValue[n] = v / 5.0 - sensorZero[n];
 }
}

//**read sensors data***
float readSensors(int channel)
{

 if (mpu.getIntDataReadyStatus() == 1)
 {
 mpu.getAcceleration(&a1, &a2, &a3);
 ax = (float)a1;
 ay = (float)a2;
 az = (float)a3;
 mpu.getRotation(&g1, &g2, &g3);
 gx = (float)g1;
 gy = (float)g2;
 gz = (float)g3;
 }
 float mat[6] = {ax, ay, az, gx, gy, gz};
 return mat[channel];

}

//**get y axis & x axis deg/s********************************
float getGyro_Y_Rate()
{
 return sensorValue[4] / 131.0; //return gyro y
}

float getGyro_X_Rate()
{
 return sensorValue[3] / 131.0; //return gyro x
}

//**get Acc y & x axis angle********************************
float getAcc_Y_Angle()
{
 float a = 0.0;
 a = atan2(sensorValue[0], sensorValue[2]); //atan2(y,x) return quid; degree = atan2(y,x) * 180.0 / 3.14; belong to (-180, 180)
 return (a * 180.0 / 3.14);
}

float getAcc_X_Angle()
{
 float b = 0.0;
 b = atan2(sensorValue[1], sensorValue[2]);
 return (b * 180.0 / 3.14);
}

NARX Feedback Neural Network for Wheel Slip Control

function [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2)

%MYNEURALNETWORKFUNCTION neural network simulation function.

%

% Generated by Neural Network Toolbox function genFunction, 01-Mar-2018 13:23:26.

%

% [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2) takes these arguments:

% x1 = 3xTS matrix, input #1

% x2 = 1xTS matrix, input #2

155

% xi1 = 3x4 matrix, initial 4 delay states for input #1.

% xi2 = 1x4 matrix, initial 4 delay states for input #2.

% and returns:

% y1 = 1xTS matrix, output #1

% xf1 = 3x4 matrix, final 4 delay states for input #1.

% xf2 = 1x4 matrix, final 4 delay states for input #2.

% where TS is the number of timesteps.

% ===== NEURAL NETWORK CONSTANTS =====

% Input 1

x1_step1_xoffset = [6;5;5];

x1_step1_gain = [0.111111111111111;0.142857142857143;0.133333333333333];

x1_step1_ymin = -1;

% Input 2

x2_step1_xoffset = 175;

x2_step1_gain = 0.08;

x2_step1_ymin = -1;

% Layer 1

b1 = [3.4652609932394545;-1.9348131781138858;0.88741159653409851;1.626233366133726;-0.93104937882842931;-

0.68914373554581676;0.4421368831599351;-

0.52729999460792576;0.31269982352440101;0.092148003823602137;0.21803259125411717;0.4305112235146048;-

0.59829251890806234;-0.77118122248419041;-0.52353751633725853;-1.2433039200435707;-

1.7290066069006087;1.1833894478448601;1.5982954100866376;-2.0658798298653198];

IW1_1 = [-1.1252539590255779 -0.17024785511313442 -0.60191738692960262 1.488319173654836 -0.49348121059945149 -

0.9975631552257429 0.52277416474681326 1.1334240273202902 -1.7039726624162645 -0.37696137317921019 0.56926637895958365

0.93524924858533576;0.56960444144478373 -0.32191424544290004 0.14604511936497652 0.26589160734833983 -

0.88331771655249625 0.86630244254967137 -0.074056145531645731 0.63532661545645652 0.20044059436407671

0.53888757386800923 -0.82374783516438677 0.27562667055794321;-0.98932559519559871 -0.80756570945220019

0.57371921737205511 0.19848534056452022 -0.70482065816438388 0.054006343610814807 -0.1896766364426698

0.46583857600027417 -0.18750373570355244 -0.11687264349186416 -0.55112436520161368

0.40535039391843131;0.35194269423564178 -0.97704843052782531 0.41505936821866807 -0.65375678996436926

0.88945946575277446 0.6313040007317251 -0.099296436384775866 0.47498666142232626 0.022098407922799719 -

0.30671423063572889 -0.45157706789517044 -0.0052482634053180599;0.13060659207767361 -1.033391180998666

0.25456944845315332 -0.22726743574152533 0.37099890283041359 -0.33988027542397625 0.32732418977738098 -

0.86643137604830234 0.15455814167472859 0.53838012949034453 -0.34735875563639257

0.10676696555822826;0.39774725145416273 -0.5015100378478522 -0.13068935754531358 -0.40042203710695345

0.41921469597677063 -0.15302545626059827 -0.33692863746773172 -0.33763546755312579 -0.29513585746268634

0.3227368612812439 -0.49531478808801116 -0.44150785659793068;-0.23096380917978712 -0.088112273419824513

0.35812831655728988 -0.14957525817269093 0.3401977511586366 -0.054205195240802327 -0.061340682656029294 -

0.28903662451053136 0.14838153520587569 0.60957451771640303 -0.0028863704412007661

0.08299823208798246;0.57616327521812882 0.23011658497155188 0.460291397247439 0.089087580571315328 -

0.69862835539646162 -0.10579044600983253 -0.19210709499747661 0.22639082259874144 0.41314066083165862 -

0.60536890055207149 0.41698969787439061 -0.24401511632647921;0.71448667009620503 0.16814310203969302

0.98393788604297416 -0.99361779503230685 0.032275819741424433 0.68138276516664398 -1.1049963782765375 -

0.76825506626700313 0.71572364354334472 -0.29722933200040785 -0.303010042749567

0.24519486898215367;0.047232759447995133 0.075181355004733177 0.031820952057788038 0.013995483805033862

0.017185478978475256 0.046500356393110565 -0.0045935767505659621 -0.039747812984054533 -0.029839381016155384 -

0.21354203260627633 0.11476328002599268 -0.18639200788185967;0.96108077093642519 1.4386242674343936 -

0.29311831984749315 0.2001511470543767 0.17843393832276946 0.061617938123036113 0.84887062641694355

0.33998028086923482 -0.2700584455332799 -0.42577841564347335 0.46143173298827694 -0.12627933002129849;-

0.25782860215017855 0.075777708501596902 0.036086997945202384 0.80934682486407439 -0.73759395160407337

0.59100014231087872 -0.31657060065967402 -0.035137666888678719 -0.52857704456380183 0.64088642956386743 -

0.38285958297447692 -0.064708556488764238;-0.15803890192260373 0.29466074542319654 0.21980842853059232 -

0.16048682220561905 0.055851624115891035 0.03288613686265042 -0.071169333786496883 -0.016300487355000629

0.18053597503878779 0.044767169661530271 -0.20817405922321103 -0.42494514358133667;-0.31866174857010759

0.78131634492399993 -0.37501229277834552 -0.12494655400565267 0.52473799661640619 -0.16249696095769048

0.23989527239762268 -0.4676810984009509 -0.070274941353196674 -0.11828180953436955 0.39987889679377564 -

0.10925051388411855;-0.34064827388589947 0.00086977204298363531 0.29362624828046591 -0.037881196083283393

0.24925845831729018 0.20034687299118425 -0.30304378487299977 -0.42123154082765224 -0.42950168369880859 -

0.32552850856247162 0.16327644605004923 0.41356363193760592;-0.68404031871178339 0.88066592372826169

0.56330191890574799 -0.29308055855791726 -0.18708154299881347 0.038130895170582005 -0.30326415819623065

0.0072903610412145547 -0.26220055155015953 -0.57418178494010652 -0.2580169472862649

0.24802112624075515;0.24312351532466489 -0.23853129616789037 0.47558146003008095 -0.47476817157686751

0.55526277174218519 0.43557097245924348 -0.52231523259380519 -0.10453056477869532 -0.48557872522764195

0.25383971800104743 -0.46753136610769724 0.83834276788550277;0.55018502486970589 0.055246207471839809

0.14276573414238203 0.62470106308589224 -0.22229072683116122 -0.22938227100000347 0.18479910951015155

0.011907991398727703 0.34920667958483742 0.39782302258853636 -1.2065690864943388

0.66333610119865638;0.1366939187085279 -0.50563518061004109 0.40473210625631817 -0.18497442974594855 -

0.6115104115167056 -0.2997576646057587 0.77986411659078025 0.19689743955532446 0.32312992117083728 0.48130689592213893

-0.09724615556865969 0.71117225189084388;-0.88590575182246956 -0.66317955897870817 0.21014096401482141 -

0.1014153701252976 0.020202093012584237 0.2060072445990139 -0.30917593460480425 0.46624805820548187 -

0.52683647719498039 -0.92591541780417164 -0.29582813805510072 0.74773391046639959];

IW1_2 = [0.36206006965465148 -0.46039745849517033 -0.053970837082655834 -0.138057475772494;0.60149592058326473

0.25367063523538819 0.31751540166674935 0.19081307791373969;-0.62074255087512331 0.23387476972206542 -

0.2218033495323985 0.16372480830170158;0.9660861457168417 0.42465980075402421 0.77440329532066654 -

0.13554409480065768;-0.012134915749129659 0.62214976959983948 -0.12040923295965408

0.45031919978462964;0.54275762780679226 0.68731681103479492 -0.17068837048281765 -0.57757896876495984;-

0.27406091895706214 0.22981037327552531 0.51483696492581887 -0.76081462619986318;0.49314216272432942 -

0.46743725151537996 0.79158720179556152 -0.21181488429611753;0.52989905501853318 -0.39977039427656808 -

0.31752742782605659 -0.040667777711143639;-0.63284045987071758 0.037170822107621099 0.15062197917507419

0.052655253360073345;0.5557235691715201 -0.16233576003190742 0.892155781433427

0.014144652910505508;0.031693751442002538 -0.20570663280409626 -0.04292693225286548 -

0.20885437464634965;0.19723208212280963 0.29127692315331222 0.075210816347086179 0.027378594971073505;-

0.66006118720661855 0.37563978757124572 -0.24078780125245638 0.076765751552907435;0.22896543797877045

0.077759076148801759 0.27744131142635642 -0.2759181460785109;0.58864305458826183 0.41755373695899617 -

0.27322109567800718 0.23243990251253402;-0.2274335754866289 -0.90643557522630513 0.22654769303768094

0.3282285411481265;-0.32210165414123426 -0.60948265956112191 0.56438780552610202 -

0.03115138326869113;0.24202592715058405 -0.27339608095951629 -0.23964340054535713 -0.38567678056921018;-

0.69437323750449875 0.32196149445657585 0.36230550190233762 -0.80341783543288359];

% Layer 2

b2 = -0.81502248133097099;

LW2_1 = [1.1387290544352762 0.072727552702546786 -0.097511281495121227 0.080124663546499608 0.017635965328615839 -

0.015967163044312307 -0.28943298910815979 0.10827097356678476 -0.053477362474633028 -1.1064604963888802

0.035084681353639659 -0.02739627148242069 0.60475369304155835 -0.065911066637865168 0.43873009511092798 -

0.19733932181024005 -0.21943221879840052 -0.035978454888549762 0.031317292589157289 -0.13949307091262456];

% Output 1

y1_step1_ymin = -1;

y1_step1_gain = 0.08;

156

y1_step1_xoffset = 175;

% ===== SIMULATION ========

% Dimensions

TS = size(x1,2); % timesteps

% Input 1 Delay States

xd1 = mapminmax_apply(xi1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

xd1 = [xd1 zeros(3,1)];

% Input 2 Delay States

xd2 = mapminmax_apply(xi2,x2_step1_gain,x2_step1_xoffset,x2_step1_ymin);

xd2 = [xd2 zeros(1,1)];

% Allocate Outputs

y1 = zeros(1,TS);

% Time loop

for ts=1:TS

 % Rotating delay state position

 xdts = mod(ts+3,5)+1;

 % Input 1

 xd1(:,xdts) = mapminmax_apply(x1(:,ts),x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

 % Input 2

 xd2(:,xdts) = mapminmax_apply(x2(:,ts),x2_step1_gain,x2_step1_xoffset,x2_step1_ymin);

 % Layer 1

 tapdelay1 = reshape(xd1(:,mod(xdts-[1 2 3 4]-1,5)+1),12,1);

 tapdelay2 = reshape(xd2(:,mod(xdts-[1 2 3 4]-1,5)+1),4,1);

 a1 = tansig_apply(b1 + IW1_1*tapdelay1 + IW1_2*tapdelay2);

 % Layer 2

 a2 = b2 + LW2_1*a1;

 % Output 1

 y1(:,ts) = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);

end

% Final delay states

finalxts = TS+(1: 4);

xits = finalxts(finalxts<=4);

xts = finalxts(finalxts>4)-4;

xf1 = [xi1(:,xits) x1(:,xts)];

xf2 = [xi2(:,xits) x2(:,xts)];

end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function

function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)

y = bsxfun(@minus,x,settings_xoffset);

y = bsxfun(@times,y,settings_gain);

y = bsxfun(@plus,y,settings_ymin);

end

% Sigmoid Symmetric Transfer Function

function a = tansig_apply(n)

a = 2 ./ (1 + exp(-2*n)) - 1;

end

% Map Minimum and Maximum Output Reverse-Processing Function

function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)

x = bsxfun(@minus,y,settings_ymin);

x = bsxfun(@rdivide,x,settings_gain);

x = bsxfun(@plus,x,settings_xoffset);

end

157

Appendix B – MATLAB SimMechanics Simulation

Robot Configuration in MATLAB SimMechanics:

Robot 3D View in MATLAB SimMechanics Environment:

158

Appendix C – Tree Pruning Robot Mechanical Drawing

Tree Pruning Robot

159

Tree Pruning Robot Platform

160

Stepper’s Screw-Nut Unit and Bearing Support Mechanism

161

Servomotor Module

162

Tree Pruning Robot Wheel Unit

163

Appendix D – Tree Pruning Robot Hardware Design

Tree Pruning Robot Schematic Diagram Design

164

Tree Pruning Robot PCB Design

165

166

167

Appendix E – Tree Pruning Robot 3D CAD Model in SolidWorks

168

Appendix F – Tree Pruning Robot Prototype

169

Reference
[1] Hon Jo Goodhew, 2016, "New Zealand Plantation Forest Industry: Facts and Figures 2015/2016,"

Forest Owners Association & Ministry for Primary Industries, Wellington, New Zealand.

[2] Hon Jo Goodhew, 2015, "New Zealand Plantation Forest Industry: Facts and Figures 2014," Forest
Owners Association & Ministry for Primary Industries, Wellington, New Zealand.

[3] Hon Jo Goodhew, 2014, "New Zealand Plantation Forest Industry: Facts and Figures 2012/2013,"
Forest Owners Association & Ministry for Primary Industries, Wellington, New Zealand.

[4] Hon Nathan Guy, 2013, "New Zealand Plantation Forest Industry: Facts and Figures 2011/2012,"
Forest Owners Association & Ministry for Primary Industries, Wellington, New Zealand.

[5] H. Kawasaki, S. Murakami, H. Kachi, S. Ueki, 2008, “Novel Climbing Method of Pruning Robot,”
SICE Annual Conference, Japan, August 20–22, 2008, pp. 160-163.

[6] “A Roadmap for U.S. Robotics: From Internet to Robotics,” Georgia Institute of Technology et al.,
2013 Edition, March 20, 2013.

[7] “Executive Summary: 1. World Robotics 2013 Industrial Robots 2. World Robotics 2013 Service
Robots”.

[8] “Executive Summary: 1. World Robotics 2014 Industrial Robots 2. World Robotics 2014 Service
Robots”.

[9] “Robotics 2020 Multi-Annual Roadmap: for Robotics in Europe,” Initial Release B 15/01/2014.

[10] M. J. Spenko, G. C. Haynes et al., 2008, “Biologically Inspired Climbing with a Hexapedal Robot,”
Journal of Field Robotics, 25(4-5), pp: 223-242.

[11] G. C. Haynes and A. A. Rizzi, 2006, “Gaits and Gait Transitions for legged Robots,” Proceedings of
the 2006 IEEE International Conference on Robotics and Automation, 15-19 May, Orlando, USA, pp:
1117-1122.

[12] G. C. Haynes and A. A. Rizzi, 2006, “Gait Regulation and Feedback on a Robotic Climbing Hexapod,”
Robotics: Science and Systems Ⅱ, 16-19 August, Pennsylvania, USA.

[13] G. C. Haynes, A. Khripin et al., 2009, “Rapid Pole Climbing with a Quadrupedal Robot,” IEEE
International Conference on Robotics and Automation, May 12-17, Japan, pp. 2767-2772.

[14] Sugano Laboratory, Waseda University, Japan. “Robot Assisting Forestry Work,” 2003.
http://www.sugano.mech.waseda.ac.jp/project/forest/index.html.

[15] O. Reinoso, R. Aracil, R. Saltaren, 2007, “Using parallel platforms as climbing robots,” INDUSTRIAL
ROBOTICS: Programming, Simulation and Applications, pp. 663-676.

[16] R. Saltaren, R. Aracil, O. Reinoso et al., 2005, “Climbing Parallel Robot: A computational and
Experimental Study of its Performance Around Structural Nodes,” IEEE Transactions on Robotics,
Vol. 21, No. 6, pp. 1056-1066.

[17] T. L. Lam, Y. S. Xu, 2011, “A Flexible Tree Climbing Robot: Treebot–Design and Implementation,”
IEEE International Conference on Robotics and Automation, 9-13 May, Shanghai, China, pp. 5849-
5854.

[18] T. L. Lam and Y. S. Xu, 2011, “Climbing Strategy for a Flexible Tree Climbing Robot-Treebot,” IEEE
Transactions on Robotics, Vol. 27, No. 6, pp: 1107-1117.

[19] T. L. Lam and Y. S. Xu, 2011, “Treebot: Autonomous Tree Climbing by Tactile Sensing,” IEEE
International Conference on Robotics and Automation, 9-13 May, Shanghai, China, pp: 789-794.

[20] S.C. Lau, W.A.F.W. Othman, E.A. Bakar, 2013, “Development of Slider-Crank based Pole Climbing
Robot,” IEEE International Conference on Control System, Computing and Engineering, Penang,
Malaysia, November 29 – 1 December, pp. 471-476.

[21] C. Wright, A. Johnson, A. Peck et al., 2007, “Design of a Modular Snake Robot,” Proceedings of the
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 29-Nov.2, USA, pp.
2609-2614.

[22] Yisheng Guan et al., 2013, “A Modular Biped Wall-Climbing Robot with High Mobility and
Manipulationg Function,” IEEE/ASME TRANSACTIONS ON MECHATRONICS, December 2013,
Vol.18, No. 6, pp. 1787-1798.

[23] M. Tavakoli et al, 2008, “3DCLIMBER: A climbing robot for inspection of 3D human made
structures,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France,
September 22-26, pp. 4130-4135.

[24] M. Tavakoli, L. Marques and A. T. Almeida, 2010, “3DCLIMBER: Climbing and manipulation over
3D structures,” Mechatronics, 21(2011), pp. 48-62.

[25] M. Nili Ahmadabadi et al., 2005, “Kinematics Modeling of a Wheel-Based Pole Climbing Robot (UT-
PCR),” Proceedings of the 2005 IEEE international Conference on Robotics and Automation, Spain,
April 2005, pp. 2099-2104.

[26] S. Mahdavi, E. Noohi and M. N. Ahmadabadi, 2007, “Basic movements of a nonholonomic wheel-
based pole climbing robot,” 2007 IEEE/ASME international conference on advanced intelligent
mechatronics, Switzerland, September 4-7, 2007.

[27] M. N. Ahmadabadi et al., 2010, “The Evolution of UT Pole Climbing Robots,” 2010 1st International
Conference on Applied Robotics for the Power Industry, Canada, October 5-7, 2010.

[28] W. Chonnaparamutt, H. Kawasaki, S. Ueki, et al, 2009, “Development of a Timberjack-like Pruning
Robot: Climbing Experiment and Fuzzy Velocity Control,” ICROS-SICE International Joint
Conference, Japan, August 18-21, 2009, pp. 1195-1199.

170

[29] Y. Ishigure, K. Hirai and H. Kawasaki, 2013, “A Pruning Robot with a Power-Saving Chainsaw Drive,”
Proceedings of 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu,
Japan, August 4–7, 2013, pp. 1223-1228.

[30] W. Chonnaparamutt and H. Kawwasaki, 2009, “Fuzzy Systems for Slippage Control of a Pruning
Robot,” IEEE International Conference on Fuzzy Systems, South Korea, August 20-24, 2009, pp.
1270-1275.

[31] Seirei Industry Co., http://www.seirei.com/products/fore/b232r/ab232r.html, LED Web Site.

[32] J. Fauroux and J. Morillon, 2010, “Design of a climbing robot for cylindro-conic poles based on rolling
self-locking,” Industrial Robot: An International Journal, vol. 37/3, pp. 287–292.

[33] H. Dulimarta and R.L. Tummala, 2002, “Design and control of miniature climbing robots with
nonholonomic constrains,” IEEE International Conference on Intelligent Control and Automation,
Shanghai, China, June 10-14, 2002, pp. 3267-3271.

[34] A. Nagakubo and S. Hirose, 1994, “Walking and running of the quadruped wall-climbing robot,” IEEE
International Conference on Robotics and Automation, San Diego, CA, USA, May 8-13, 1994, pp.
1005-1012.

[35] M. Rachkov, 2002, “Control of climbing robot for rough surfaces,” Proceedings of the Third
International Workshop on Robot Motion and Control, Bukowy Dworek, Poland, November 11-11,
2002, pp. 101-105.

[36] Yu Zhisheng, 2009, “Automobile Theory,” China Machine Press, China, ISBN: 9787111020769, 03-
2009.

[37] Gérard-Philippe Zéhil, Henri P. Gavin, 2013, “Three-dimensional boundary element formulation of an
incompressible viscoelastic layer of finite thickness applied to the rolling resistance of a rigid sphere,”
International Journal of Solids and Structures, Volume 50, Issue 6, 15 March 2013, pp. 833-842.

[38] Roberts, 1992, “A guide to estimating the friction of rubber,” Rubber chemistry and technology, 65.3
(1992), pp. 673-686.

[39] David B. Fancher, 1999, “ILB, ILBB, Ferrite Beads,” VISHAY Engineering Note, Document Number
34091.

[40] Charles Coles, 2007, “How to control input ripple and noise in buck converters,” EE Times-India, Feb.
2007.

[41] C. Richardson and R. Bramanpalli, 2015, “Selecting and Using Ferrite Beads for Ringing Control in
Switching Converters,” WÜRTH ELEKTRONIK APPLICATION NOTE, 15 Feb. 2015.

[42] Robert Keim, 2015, “Clean Power for Every IC, Part 3: Understanding Ferrite Beads,” Sept. 30, 2015,
https://www.allaboutcircuits.com/technical-articles/clean-power-for-every-ic-part-3-understanding-
ferrite-beads/.

[43] Kent Walters, “How to Select Transient Voltage Suppressors,” MicroNote 125, Rev. 1.0, 7/99.

[44] Steve hayes, 2017, “What’s the difference? EMC vs EMI,”

https://www.element.com/nucleus/2017/07/18/10/46/whats-the-difference-emc-vs-emi.

[45] L. Shawneh and M. A. Jarrah, 2008, “Development and calibration of low cost MEMS IMU for UAV
applications,” Proceeding of the 5th International Symposium on Mechatronics and its Applications,
Amman, Jordan, May 27-29, 2008.

[46] S. Sukkarieh, E. M. Nebot and H. F. Durrant-Whyte, 1999, “A High Integrity IMU/GPS Navigation
Loop for Autonomous Land Vehicle Applications,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 3, June 1999, pp. 572 – 578.

[47] F. Alam, Z. Z. He and H. J. Jia, 2014, “A Comparative Analysis of Orientation Estimation Filters using
MEMS based IMU,” 2nd International Conference on Research in Science, Engineering and
Technology, March 21-22, 2014 Dubai.

[48] H. Zhou and H. Hu, 2008, “Human motion tracking for rehabilitation – A Survey,” Biomedical Signal
Processing and Control, vol. 3, no. 1, pp. 1– 18.

[49] M. Clifford, L. Gomez, 2005, “Measuring Tilt with Low-g Accelerometers,” Freescale Semiconductor
Application Note, AN3107, 05, 2005.

[50] Mark Pedley, 2013, “Tilt Sensing Using a Three-Axis Accelerometer,” Freescale Semiconductor
Application Note, AN3461, 03, 2013.

[51] M. Euston, P. Coote, R. Mahony, J. Kim, T. Hamel, 2008, “A Complementary Filter for Attitude
Estimation of a Fixed-wing UAV,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, France, September 22-26, 2008.

[52] Y. F. Ren and X. Z. Ke, 2010, “Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS,”
Intelligent Information Management, Feb 2010, pp. 417–421.

[53] H. G. Min and E. T. Jeung, “Complementary Filter Design for Angle Estimation using MEMS
Accelerometer and Gyroscope,” www.academia.edu/6261055.

[54] J. F. Vasconcelos, C. Silvestre, P. Oliveira, P. Batista, B. Cardeira, 2009, “Discrete Time-Varying
Attitude Complementary Filter,” 2009 American Control Conference, June 10-12, 2009.

[55] S. P. Tseng, W. L. Li, C. Y. Sheng, J. W. Hsu, C. S. Chen, 2011, “Motion and Attitude Estimation
Using Inertial Measurements with Complementary Filter,” Proceedings of 2011 8th Asian Control
Conference, Taiwan, May 15-18, 2011.

[56] M. Filiashkin and M. Novik, 2012, “Combined Complementary Filter For Inertial Navigation System,”
2012 2nd International Conference “Methods and Systems of Navigation and Motion Control”,
October 9-12, 2012 Ukraine, pp. 59-62.

http://www.seirei.com/products/fore/b232r/ab232r
https://www.allaboutcircuits.com/technical-articles/clean-power-for-every-ic-part-3-understanding-ferrite-beads/
https://www.allaboutcircuits.com/technical-articles/clean-power-for-every-ic-part-3-understanding-ferrite-beads/
https://www.element.com/nucleus/2017/07/18/10/46/whats-the-difference-emc-vs-emi
http://www.academia.edu/6261055

171

[57] D. Cao, Q. Qu, C. T. Li and L. C. He, 2009, “Research of Attitude Estimation of UAV Based on
Information Fusion of Complementary Filter,” 2009 Fourth International Conference on Computer
Sciences and Convergence Information Technology, IEEE Computer Society, pp. 1290-1293.

[58] F. M. Mirzaei and S. I. Roumeliotis, 2008, “A Kalman Filter-Based Algorithm for IMU-Camera
Calibration: Observability Analysis and Performance Evaluation,” IEEE Transaction on Robotics,
vol.23, no. 5, October 2008.

[59] P. F. Zhang, J. Gu, E. E. Milios, P. Huynh, 2005, “Navigation with IMU/GPS/Digital Compass with
Unscented Kalman Filter,” Proceedings of the IEEE, International Conference on Mechatronics &
Automation, Canada, July 2005.

[60] F. Caron, E. Duflos, D. Pomorski, P. Vanheeghe, 2006, “GPS/IMU data fusion using multisensory
Kalman filtering: introduction of contextual aspects,” INFORMATION FUSION, 7 (2006), pp. 221–
230.

[61] H. Ferdinando, H. Khoswanto and D. Purwanto, 2012, “Embedded Kalman Filter For Inertial
Measurement Unit (IMU) on the Atmega8535,” 2012 International Symposium on Innovations in
Intelligent Systems and Applications, July 2-4.

[62] S. H. Won, W. Melek and F. Golnaraghi, 2008, “Position and Orientation Estimation Using Kalman
Filtering and Particle Filtering with One IMU and One Position Sensor,” 34th Annual Conference of
IEEE on Industrial Electronics, November 10-13, 2008.

[63] S. Sabatelli, M. Galgani, L. Fanucci and A. Rocchi, 2012, “A double stage Kalman filter for sensor
fusion and orientation tracking in 9D IMU,” Sensors Applications Symposium, February 7-9, 2012.

[64] Walter T. Higgins, 1975, “A Comparison of Complementary and Kalman Filtering,” IEEE Transaction
on Aerospace and Electronic Systems, vol. AES–11, no. 3, May 1975, pp. 321–325.

[65] Shane Colton, 2007, “The Balance Filter,” Massachusetts Institute of Technology, Tech. Rep., June
25, 2007.

[66] G. Welch and G. Bishop, 2006, “An Introduction to the Kalman Filter,” UNC-Chapel Hill, TR 95-041,
July 24, 2006.

[67] Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2015, “A novel design of anti-falling
mechanism for tree pruning robot,” 2015 IEEE 10th conference on Industrial Electronics and
Applications (ICIEA), Auckland, New Zealand, 15-17 June 2015, pp. 812-816.

[68] Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2015, “MEMS based IMU for tilting
measurement: Comparison of complementary and Kalman filter based data fusion,” 2015 IEEE 10th
conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15-17 June
2015, pp. 812-816.

[69] Winai Chonnaparamutt and Haruhisa Kawasaki, 2009, “Fuzzy Systems for Slippage Control of a
Pruning Robot,” IEEE International Conference on Fuzzy Systems, South Korea, August 20-24, 2009,
pp. 1270-1275.

[70] Pierre Lamon, Ambroise Krebs, et al., 2004, “Wheel torque control for a rough terrain rover,” IEEE
International Conference on Robotics and Automation, New Orleans, USA, April 2004, pp. 4682-4687.

[71] Chris C. Ward and Karl Iagnemma, 2008, “A Dynamic-Model-Based Wheel Slip Detector for Mobile
Robots on Outdoor Terrain,” IEEE Transactions on Robotics, Vol. 24(4), August 2008, pp. 821-831.

[72] Giulio Reina, et al., 2008, “Vision-based Estimation of Slip Angle for Mobile Robots and Planetary
Rovers,” IEEE International Conference on Robotics and Automation, Pasadena, USA, May 19-23,
2008, pp. 486-491.

[73] Mohamed S. Masmoudi, et al., 2016, “Fuzzy logic controllers design for omnidirectional mobile robot
navigation,” Applied Soft Computing, Vol. 49, December 2016, pp. 901-919.

[74] Kevin M. Passino and Stephen Yurkovich, “Fuzzy Control,” Addison Wesley Longman, Inc.,
California, USA. ISBN: 0-201-18074-X, pp. 21-94.

[75] E.H. Mamdani, 1974, “Application of fuzzy algorithms for control of simple dynamic plant,”
Proceedings of the Institution of Electrical Engineers, Control and Science, Vol. 121, No. 12,
December 1974, pp. 1585-1588.

[76] Pengfei, G., Liqiong, T., and Subhas, M., 2017, “A Novel Robotic Tree Climbing Mechanism with
Anti-Falling Functionality for Tree Pruning,” ASME Journal of Mechanisms and Robotics, 10(1), pp.
014502-1 – 014502-8.

[77] Harifi, A., Aghagolzadeh, A., Alizadeh, G., and Sadeghi, M., 2008, “Designing a sliding mode
controller for slip control of antilock brake systems,” Transportation Research Part C, 16, pp. 731-741.

[78] Velimir Ćirović, Dragan Aleksendrić, Dušan Smiljanić, 2013, “Longitudinal wheel slip control using
dynamic neural networks,” Mechatronics, 23, pp. 135-146.

[79] Velimir Ćirović, Dragan Aleksendrić, 2013, “Adaptive neuro-fuzzy wheel slip control,” Expert
Systems with Applications, 40, pp. 5197-5209.

[80] Lei Yuan, Haiyan Z., Hong Chen, and Bingtao R., 2016, “Nonlinear MPC-based slip control for electric
vehicles with vehicle safety constraints,” Mechatronics, 38, pp. 1-15.

[81] Pranav, P. K., Tewari, V. K., Pandey, K. P., and Jha, K. R., 2012, “Automatic wheel slip control system
in field operations for 2WD tractors,” Computers and Electronics in Agriculture, 84, pp. 1-6.

[82] Daisuke, C., Hajime, A., Kuniaki, K., Hayato, K., and Taketoshi, M., 2006, “Plural Wheels Control
based on Slip Estimation,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing, China, Oct. 9-15, pp. 5558- 563.

[83] Pierre, L., Ambroise, K., Michel, L., and Roland, S., 2004, “Wheel torque control for a rough terrain
rover,” IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, April 26
– May 1, pp. 4682-4687.

172

[84] William, P., Antonio, L., and Mathieu, G., 2012, “Design and experimental validation of a nonlinear
wheel slip control algorithm,” Automatica, 48, pp. 1852-1859.

[85] Hossein, M., and Mehdi, M., 2010, “A novel method for non-linear control of wheel slip in anti-lock
braking systems,” Control Engineering Practice, 18, pp. 918-926.

[86] Klaus, K., and Jörg-Michael, H., 1995, “An Embedded Fuzzy Anti-Slippage System for Heavy Duty
Off Road Vehicles,” Information Sciences, 4, pp. 1-27.

[87] Haibo, G., Kerui, X., Liang, D., Zongquan, D., Zhen, L., and Guangjun, L., 2015, “Optimized control
for longitudinal slip ratio with reduced energy consumption,” Acta Astronautica, 115, pp. 1-17.

[88] Valentin, I., Dzmitry, S., Klaus, A., Phil, B., Bernhard, K., and Josef, Z., 2015, “Wheel slip control for
all-wheel drive electric vehicle with compensation of road disturbances,” Journal of Terramechanics,
61, pp. 1-10.

[89] Giulio, R., Genya, I., Keiji, N., and Kazuya, Y., 2008, “Vision-based Estimation of Slip Angle for
Mobile Robots and Planetary Rovers,” IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, May 19-23, pp.486-491.

[90] Mingyuan, B., Long, C., Yugong, L., and Keqiang, L., 2014, “A Dynamic Model for Tire/Road Friction
Estimation under Combined Longitudinal/Lateral Slip Situation,” The Society of Automotive
Engineers’ (SAE) 2014 World Congress & Exhibition, Detroit, Michigan, USA, April 8-10.

[91] Martin T. Hagan et al, 2014, “Neural Network Design (2nd Edition),” Martin Hagan, ISBN-10: 0-
09717321-1-6, 09-2014.

	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Background
	1.2 Research Topic
	1.3 Scope of Research
	1.4 Organization of Dissertation

	Chapter 2 Literature Review
	2.1 Currently Available Tree or Pole Climbing Robots
	2.1.1 RiSE
	2.1.2 WOODY
	2.1.3 TREPA
	2.1.4 Treebot
	2.1.5 Slider-Crank based Pole Climbing Robot
	2.1.6 Snake Robot
	2.1.7 Biped Wall-Climbing Robot
	2.1.8 3D Climber
	2.1.9 UT-PCR
	2.1.10 Kawasaki’s Pruning Robot
	2.1.11 Seirei Industry’s Automatic Pruning Machine
	2.1.12 Pobot

	2.2 Tree Climbing Robot Control Methodologies
	2.3 Conclusions of Literature Study

	Chapter 3 Features and Functions of Tree Pruning Robot
	3.1 Comparison and Analysis of Different Types of Tree or Pole Climbing Robots
	3.2 Requirements for Tree Pruning Robot Design

	Chapter 4 Mechanical Design and Optimization of Tree Pruning Robot
	4.1 Conceptual Design of Tree Pruning Robot
	4.1.1 Mechanical Construction of Tree Pruning Robot Conceptual Design
	4.1.2 Static Analysis of Conceptual Model in Three-dimensional Space
	4.1.3 Simulation of Conceptual Design Model

	4.2 Tree Pruning Robot Design Model Optimization
	4.2.1 Anti-falling Mechanism Optimization
	4.2.2 Servomotor Module Optimization

	4.3 Optimized Tree Pruning Robot Model
	4.3.1 Optimized Tree Pruning Robot Static Analysis in Three-dimensional Space
	4.3.2 Optimized Tree Pruning Robot Dynamic Analysis of Vertical Climbing
	1) Rolling Resistance
	2) Rolling Radius
	3) Robot Gravity Force
	4) Acceleration Resistance
	4.3.3 Active and Passive Anti-Falling Mechanism
	4.3.4 Simulation and Experiment of Optimized Tree Pruning Robot

	Chapter 5 Tree Pruning Robot Control System Design
	5.1 Tree Pruning Robot Control System Schematic Design
	5.1.1 Power Module
	5.1.2 MCU Module (Arduino Mega and Due)
	5.1.3 Motor Driving Module
	5.1.4 IMU Module
	5.1.5 Communication Module

	5.2 Tree Pruning Robot Control System PCB Design
	5.2.1 Radiated Interference
	1) Buck Converter Interference
	2) What is ferrite bead and how to select the Proper ferrite bead
	3) Motor Electrical Noise

	5.2.2 Heat Dissipation
	5.2.3 Transient Voltage and Current

	5.3 Circuit Design Tips to Reduce EMI/EMC Problems
	5.3.1 PCB Layout Design Tips
	5.3.2 Power Supply Considerations
	5.3.3 Component Considerations

	Chapter 6 Tree Pruning Robot Tilting Measurement
	6.1 Introduction of MEMS IMU
	6.2 Complementary Filter
	6.3 Kalman Filter
	6.3.1 Accelerometer Model
	6.3.2 Gyroscope Model
	6.3.3 Kalman Filter for IMU Data Fusion
	6.3.4 Kalman Filter Implementation on IMU Data Fusion
	1) Predict Process
	2) Update Process
	 Step 1 - Predict
	 Step 2 - Predict
	 Step 3 - update
	 Step 4 - update
	 Step 5 - update
	 Step 6 - update
	 Step 7 - update

	6.4 IMU Data Fusion Experiment Result
	(6.34)
	6.4.1 Complementary Filter Experiment Result
	6.4.2 Kalman Filter Experiment Result

	6.5 IMU Date Fusion Filter Selection

	Chapter 7 Tree Pruning Robot Tilting Control Using Fuzzy Logic
	7.1 Definition of Two Types of Tilt for Tree Pruning Robot
	7.2 Tilting Fuzzy Controller
	7.3 Slippage Fuzzy Control System
	7.4 Tilting Control System Block Diagram
	7.5 Simulation Results of Robot Tilting Control
	7.5 Robot Tilting Control Conclusion

	Chapter 8 Tree Pruning Robot Longitudinal Wheel Slip Control Using Dynamic Neural Networks
	8.1 Introduction
	8.2 Research Status of Wheel Slip Control
	8.3 System Modelling and Problem Statement
	8.3.1 Slip control system model
	1. Robot dynamic model
	a) Robot longitudinal movement
	b) Three wheel’s rotation movement

	2. Wheel motor modelling
	3. Tyre force modelling
	4. Stepper modelling
	a) Stepper lead screw force analysis
	b) Stepper lead screw dynamic analysis

	8.3.2 Control problem statement

	8.4 Dynamic neural network controller design
	8.5 Tree pruning robot wheel slip control experiment and result
	8.6 Tree pruning robot wheel slip control conclusion

	Chapter 9 Conclusions and Future Works
	9.1 Works for future research
	9.2 Main contributions and publications

	Appendix A – Program Codes of Tree Pruning Robot
	Appendix B – MATLAB SimMechanics Simulation
	Appendix C – Tree Pruning Robot Mechanical Drawing
	Appendix D – Tree Pruning Robot Hardware Design
	Appendix E – Tree Pruning Robot 3D CAD Model in SolidWorks
	Appendix F – Tree Pruning Robot Prototype
	Reference
	Word 书签
	OLE_LINK34
	OLE_LINK3
	OLE_LINK14
	OLE_LINK5
	OLE_LINK2
	OLE_LINK1
	OLE_LINK6
	OLE_LINK10
	OLE_LINK9
	OLE_LINK11
	OLE_LINK12
	OLE_LINK32
	OLE_LINK33
	OLE_LINK7
	OLE_LINK15
	OLE_LINK13
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK24
	OLE_LINK25
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK29
	OLE_LINK30
	OLE_LINK31
	OLE_LINK35
	OLE_LINK36
	OLE_LINK38
	OLE_LINK39
	OLE_LINK4
	OLE_LINK8
	OLE_LINK17
	OLE_LINK16

