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Abstract 

Forestry plays an important role in New Zealand’s economy as its third largest export 

earner. To achieve New Zealand Wood Council’s export target of $12 billion by 2022 in 

forest and improve the current situation that is the reduction of wood harvesting area, 

the unit value and volume of lumber must be increased. 

Pruning is essential and critical for obtaining high-quality timber during plantation 

growing. Powerful tools and robotic systems have great potential for sustainable forest 

management. Up to now, only a few tree-pruning robotic systems are available on the 

market. Unlike normal robotic manipulators or mobile robots, tree pruning robot has its 

unique requirements and features. The challenges include climbing pattern control, 

anti-free falling, and jamming on the tree trunk etc. Through the research on the 

available pole and tree climbing robots, this thesis presents a novel mechanism of tree 

climbing robotic system that could serve as a climbing platform for applications in the 

forest industry like tree pruning, inspection etc. that requires the installation of powerful 

or heavy tools. The unique features of this robotic system include the passive and active 

anti-falling mechanisms that prevent the robot falling to the ground under either static 

or dynamic situations, the capability to vertically or spirally climb up a tree trunk and the 

flexibility to suit different sizes of tree trunk. Furthermore, for the convenience of tree 

pruning and the fulfilment of robot anti-jamming feature, the robot platform while the 

robot climbs up should move up without tilting. An intelligent platform balance control 

system with real-time sensing integration was developed to overcome the climbing 

tilting problem. The thesis also presents the detail kinematic and dynamic study, 

simulation, testing and analysis. 

A physical testing model of this proposed robotic system was built and tested on a 

cylindrical rod. The mass of the prototype model is 6.8 Kg and can take 2.1 Kg load 

moving at the speed of 42 mm/s. The trunk diameter that the robot can climb up ranges 

from 120 to 160 mm. The experiment results have good matches with the simulations 

and analysis.   
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This research established a basis for developing wheel-driven tree or pole climbing 

robots. The design and simulation method, robotic leg mechanism and the control 

methodologies could be easily applied for other wheeled tree/pole climbing robots. This 

research has produced 6 publications, two ASME journal papers and 4 IEEE international 

conference papers that are available on IEEE Xplore. The published content ranges from 

robotic mechanism design, signal processing, platform balance control, and robot 

climbing behavior optimization. This research also brought interesting topics for further 

research such as the integration with artificial intelligent module and mobile robot for 

remote tree/forest inspection after pruning or for pest control.  
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Chapter 1 Introduction 

1.1 Background 

The timber industry is a significant contributor to New Zealand economy. According to 

a report from New Zealand Plantation Forest Industry, the total New Zealand forest 

product exports up to $4.8 billion for 2015 and accounts for 1.6% of the country’s GDP 

[1]. Although harvesting has increased significantly over the last five years, it is still hard 

to meet the growing overseas demand, especially the demand from China [2]- [4]. To 

achieve New Zealand Wood Council’s export target of $12 billion by 2022 and cope with 

the forestry workforce shortage and aging, both the unit value and volume of timber 

must be increased. 

Pruning is an essential method to help obtain high-quality timber during plantation 

growing because the pruned lumber could produce beautiful surface without gnarl and 

has homogeneous quality with well-formed annual growth ring [5]. Additionally, in 

terms of wood quantity, under the same growth conditions, the well-pruned tree 

produces 2.3 m3 of wood while the unpruned tree only produces 1.61 m3 of wood [4]. 

Furthermore, high quality pruned stands, well located to the market can sell for as much 

as $50,000 per hectare net to the owner, while unpruned stands may net less than 

$10,000 particularly if logging and cartage cost is high [4]. Currently, almost all the 

timber pruning work is conducted by lumberjacks. The worker climbs up the tall trunk 

to cut off branches and gnarl with axe or chainsaw. This kind of timber pruning method 

is not only high labor intensity and costly, but also dangerous and low efficient. 

Moreover, the future shortage of forestry workforce to prune trees will certainly 

exacerbate this situation [4]. 

A solution to ease such a situation is powerful pruning tools and automatic systems. 

Nowadays, the fast development in robotics and automation has brought significant 

changes to many industries and benefit to the society [6] - [9]. However, the applications 

in the forestry industry have been left behind, especially in automatic tree pruning, 

inspection and harvest. Research work in tree pruning/inspection robot is still in the 

early stage which means this field worth intensive study.  
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This research proposed a novel wheel-driven robotic system that has potential to be 

used as a platform for tree pruning/inspection and developed a tree climbing 

mechanism for tree pruning. The unique features of this novel system include the 

passive and active anti-falling mechanisms which prevent the robot from falling to the 

ground under either static or dynamic situations, the capability to vertically or spirally 

climb up a tree trunk, the flexibility to suit different trunk sizes, lightweight and anti-

jamming during the climbing process. The 3D CAD model of the proposed tree pruning 

robotic mechanism was first created using SolidWorks and then modified according to 

the model obtained from the 3D printer. Following were the static and dynamic climbing 

analysis. Robot climbing simulation was carried out in MATLAB SimMechanics based on 

the SolidWorks model. Meanwhile, the robot hardware and control system were 

designed for the platform anti-tilting control to prevent jamming on the tree trunk. A 

testing prototype was built to justify and evaluate the system design, control methods, 

and robot climbing behavior. The tests made on the testing prototype match with the 

simulation and the analysis.  

1.2 Research Topic 

The aim of this research is to make a study on climbing robotic systems including the 

climbing mechanism design, kinematics behavior simulation, pruning robot hardware 

design and control system development for the applications in the forest industry. The 

main objectives are: 

1. Systematically study mechanical systems suitable for tree climbing robot and identify 

the key features, functions, and movements for tree climbing robot. 

2. Analyzing the kinematic and dynamic characteristics of typical climbing mechanisms 

and establish a base for climbing robot design evaluation. 

3. Study tree climbing and pruning process then develop the control methodologies. 

4. Propose and design a tree climbing robotic system with anti-falling, anti-jamming, 

low climbing slippage, suitable to a certain range of trunk diameter and lightweight 

characters.    

5. Build a physical testing system to demonstrate the features and functionalities of the 

proposed tree climbing robotic system and evaluate the control strategy. 
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6. Produce quality academic outcomes that are of value for further research in robot 

design for the forestry industry especially for tree pruning/inspection.  

1.3 Scope of Research 

Based on the research topic and the consideration of Ph.D. project time frame, the scope 

of this research mainly focuses on the following aspects: 

• Climbing method study and analysis: simple mechanism and high climbing speed 

• Anti-falling mechanism design 

• Tree pruning robot kinematics study and simulation: feasibility and robustness 

• Tree pruning robot mechanism optimization 

• Robot hardware and software design 

• Tree pruning robot tilting measurement and control for anti-jamming during the 

climbing procedure 

• Tree pruning robot wheel slip control 

• Build a physical testing prototype to verify and optimize the algorithms and 

control methodologies  

1.4 Organization of Dissertation 

This dissertation contains nine chapters and five appendices. The development of tree 

climbing mechanism, robot mechanical system, control and communication system. 

Robot hardware and software design are also presented in detail in the main chapters. 

The appendices include supporting information such as the robot mechanical drawing, 

hardware and software drawing, some of the develop code and simulation results. 

Chapter 1 provides the background to the research along with the aims, objectives, and 

scope of the research. 

Chapter 2 is a review of tree or pole climbing robots’ mechanical systems and 

illustrations of their advantages and disadvantages. 
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Chapter 3 explores different design aspects and identify the essential features and 

functions for tree pruning robot. 

Chapter 4 discusses the design and optimization of climbing mechanical systems of tree 

pruning robot according to kinematic study and simulation to fulfill the key features and 

functions of pruning robot. 

Chapter 5 focuses on robot control system design including the hardware and software 

design. 

Chapter 6 is primarily concerned with the robot platform tilting measurement methods 

in static and dynamic situations. 

Chapter 7 provides details on the robot tilting control using fuzzy logic. 

Chapter 8 discusses the robot longitudinal wheel slip control based on dynamic neural 

networks during the climbing process. 

Chapter 9 is the discussions, the contributions of this research and the 

recommendations for future improvements. 

Appendix A contains some of the programming codes of the climbing robot. 

Appendix B presents the MATLAB SimMechanics simulations. 

Appendix C contains some mechanical drawings of this climbing robot. 

Appendix D presents some hardware design of the proposed robot. 

Appendix E is the robot 3D CAD Model in SolidWorks. 
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Chapter 2 Literature Review 

An extensive research was conducted to locate as much information as possible on robot 

design that could climb trees, poles and other surfaces. The following sections contain a 

review of these robot designs. Each design of the climbing robotic systems was analyzed 

and evaluated based on the climbing mechanism, types of climbing surface, moving 

speed and climbing reliability. Also, some commonly used robot climbing control 

methodologies like fuzzy logic and neural networks are also discussed in this chapter. 

2.1 Currently Available Tree or Pole Climbing Robots  

2.1.1 RiSE 

The RiSE project was funded by the U.S. Defence Advanced Research Project Agency 

(DARPA) for the purpose of surveillance, retrieval, and inspection. Boston Dynamics Inc., 

in collaboration with several universities, has at this point created three versions of the 

RiSE robot which can climb straight up trees and wooden poles [10]. 

 

Figure 2.1 RiSE V1 

RiSE V1 was first announced in 2005 [11]. Each of its six legs is actuated by two electric 

motors, giving each leg two degrees of freedom. The robot was tested mainly on 

carpeted walls to analyze and enhance its climbing ability. This robot maintains stability 

while climbing by using a tripod gait, meaning that at least three legs are in contact with 

the climbing surface at any given time. The robot maintains that grip by using a tail, 
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which is attached to the rear of the chassis and able to push the robot. Fig. 2.1 shows 

how the tail works by pushing towards the climbing surface, which allows the front of 

the robot to remain contact with the tree. 

 

Figure 2.2 RiSE V2 

RiSE V2 was the second generation which was very similar in structure to the original 

version [12]. It uses the same six-legged configuration and each leg is powered by two 

actuators. It reuses the tripod gait for climbing, in which three legs always maintain 

contact with the surface. This robot also has several end effector modules, which allow 

it to climb a variety of surfaces including outdoor walls and trees, as shown in Figure 2.2. 

The gripping method for this robot takes advantage of a novel inspired gripper which 

includes spines made from modified medical needles installed at the end of each leg. 

These micro-spines covered feet can penetrate the climbing surface with minimal 

damage. With two degrees of actuated freedom on each leg, RiSE V2 can determine and 

utilize the best direction in which to apply force through the spiny feet for maximum 

gripping.  

 

Figure 2.3 RiSE V3 
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RiSE V3 has some major changes from the previous versions [13]. This robot employs a 

Quadrupedal configuration, which means it only has four legs instead of the original six. 

Different brushless DC motors are used in this version to increase power. Coupled with 

a dramatically different leg mechanism and unique gaited behavior, this robot can climb 

up the telephone pole with a speed of 210 mm/s. The chassis offers another degree of 

freedom over the old design. A pivoting joint in the backbone of the robot allows it to 

adjust its upper body toward or away from the climbing surface. This gives it even more 

ability to adjust to the optimal gripping position during climbing as shown in Figure 2.3. 

Although the robot has a high climbing speed, the mechanism is not flexible and robust 

enough to do tree pruning work due to its complex mechanism. 

2.1.2 WOODY 

The WOODY project began in 2004 in the Sugano Lab at Waseda University in Japan, and 

since then there have been three generations of prototypes [14]. Unlike the RiSE project, 

the only desired application for WOODY is in forest preservation. If installing an electric 

saw on the top of the robot, it has the potential to do some tree pruning work.  

 

Figure 2.4 WOODY 

WOODY is a manually controlled robot. It can hang on a tree trunk by wrapping its two 

arms around the tree trunk which is illustrated in Figure 2.4. The robot climbs vertically 

by extending and contracting its body using threaded rod mechanism and at the same 

time releases and encloses its upper and lower arms alternatively. The tree side of the 

arm has wheels mounted to it which allow for rotational motion. Though this robot can 

do some tree pruning work, the heavyweight (13.8 Kg) and wheel rotational slippery 

issue are the main drawbacks of this robot. Moreover, because the size of the robot has 
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to be proportional to the circumference of the tree trunk, this feature greatly limits the 

application of this robot. 

2.1.3 TREPA 

The TREPA robot was developed at Miguel Hernandez University in 2006. This robot uses 

a Gough-Stewart platform with 6-DOF as the parallel climbing platform. It consists of 

two hexagonal rings that are linked with six linear actuators through universal and 

spherical joints at each end [15-16]. 

 

Figure 2.5 TREPA 

The climbing procedure of TREPA can be generalized as a repeated four-step which is 

illustrated in Figure 2.6. First, the bottom hexagonal ring grips the tree and the top 

hexagonal ring releases its grippers. The linear actuators then extend to move the top 

ring to an upper position. Next, the top ring uses its grippers to grasp the tree trunk and 

the lower ring releases its grippers. Finally, the linear actuators contract to raise the 

lower ring to a higher position and grip the tree. This process is repeated to make the 

robot climb the trunk. One potential task of the robot is tree pruning, but the robot’s 

heavyweight (D350-31Kg) and low climbing speed (5.5 mm/s) are concerns for such 

work. 

 

Figure 2.6 Four-step Climbing Process 
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2.1.4 Treebot 

T. L. Lam and Y. S. Xu developed a tree climbing robot inspired by the inchworm [17-

19]. This robot aims to assist or replace humans in tree-related tasks. For instance, it is 

able to do tree inspection tasks by climbing from tree trunk to branches with the 

gripper. 

  

Figure 2.7 Treebot 

It can be seen in Figure 2.7 Treebot is composed of three main assemblies: the controller 

and battery, the two grippers and the continuum body. The front and rear grippers offer 

the whole holding forces for the robot to strongly adhere on the tree trunk during the 

climbing process. The continuum body of Treebot can extend up ten times longer than 

its contracted length and has three degrees of freedom. It uses three mechanical springs 

connected in parallel, separated by 120 degrees as a rack, and combines a pinion gear 

attached to a DC motor to provide bendable movement. 

Treebot climbs up the tree in an inchworm style motion. First, the robot anchors its rear 

gripper to the tree and extends its front gripper up the tree. Then the front gripper is 

engaged, and the rear gripper released. The continuum body contracts and raises the 

rear gripper to a higher position before it is reengaged with the tree. Once this process 

is complete it begins again and continues to move up the tree. 
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Figure 2.8 Treebot Continuum Body 

Even though Treebot can afford a payload (1.75 Kg) nearly three times of its own weight, 

it seems the robot is not ideal to do tree pruning tasks due to its low climbing speed 

(12.2 mm/s) and unique mechanical structure. 

2.1.5 Slider-Crank based Pole Climbing Robot 

This robot was made by S.C. Lau in University Sains Malaysia in 2013 [20]. It consists of 

2 main modules, which are climbing module and gripping modules. The climbing module 

utilizes the slider-crank mechanism for the ascending and descending motion. A DC 

motor is connected to the crank in order to produce rotation. When the crank rotates, 

the rotational motion is converted into linear motion and the input torque of the DC 

motor is used to overcome the friction between the slider and the end bar. One gripper 

is attached to the end bar and another is fixed at the end of the slider. 

  

Figure 2.9 Climbing Module and Gripping Module 

The gripping module consists of 2 servo motors which attached on a frame. The PVC 

slice is attached to an aluminum bar which is connected to the horn of servo motors as 

shown in Figure 2.9. If the 2 servo motors rotate in clockwise direction, the gripper will 
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grasp the pole tightly. Otherwise, the gripper will release. To increase the friction 

between the gripper and pole, rubber is attached to the PVC slice. The average climbing 

speed of this robot is 3.7 mm/s.  Obviously, such a low climbing speed is not suitable for 

tree pruning robot. 

2.1.6 Snake Robot 

Carnegie Mellon University developed a modular hyper-redundant robot that mimics 

the motion of a snake. Using universal joints with 3-DOF, the robot is able to move in 

many different ways including rolling, wiggling, and sidewinding depending on the 

terrain being encountered [21]. Not only can this robot move on the land, it can also 

climb up a tree.  

 

Figure 2.10 Snake Robot 

The robot wraps around the tree and applies inward pressure while rolling its body to 

generate vertical motion up the tree. This climbing method is effective in certain 

situations but also has some inherent limitations. The main drawback of this robot is 

that the robot body has to be long enough to wrap around the tree trunk. It is not 

possible to do the tree pruning work.  

2.1.7 Biped Wall-Climbing Robot 

The biped wall-climbing robot is designed by Yisheng Guan et al. [22] to perform some 

high-rise tasks such as cleaning, painting, inspection and maintenance on walls of large 

buildings or other structures require robot with climbing and manipulating skills. The 

climbing pattern of this robot is inspired by the climbing motion of inchworms. 
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Figure 2.11 Biped Wall-Climbing Robot 

From Figure 2.11, built with a modular approach, the robot consists of five joint modules 

connected in series and two suction modules mounted at the two ends. The advantage 

of this robot is that it has higher maneuverability than tree or pole climbing robot since 

it has more degree of freedoms. The weight of this robot is 16.1 Kg and it can climb up 

a flat wall at the speed of 36.7 mm/s with the payload of 1.5 Kg. However, this robot is 

not suitable for tree pruning task since it utilizes a vacuum system as the holding 

approach which cannot work efficiently on curved surfaces. 

2.1.8 3D Climber 

3D Climber was designed by M. Tavakoli et al. [23-24] in the University of Coimbra for 

developing a climbing robot with the capability of manipulating over 3D human-made 

structures. 

 

Figure 2.12 3DCLIMBER 

It can be seen from Figure 2.12 that 3DCLIMBER consists of a 4-DOF serial climbing 

mechanism and two grippers. Unlike other developed pole climbing robots, it can 

overcome bends, T-junctions, flanges, and sharp changes on the pole’s diameter. The 

weight of 3DCLIMBER is 42 Kg and climbing speed is 16.7 mm/s. Though this robot has 
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climbing maneuverability, it is not suitable for tree pruning work due to its heavy weight 

and low climbing speed. 

2.1.9 UT-PCR 

M. N. Ahmadabadi et al. [25-27] developed a non-holonomic wheel-based pole climbing 

robot to climb up a lamppost and clean the bulb. This robot employs six 1-DOF un-

actuated arms with ordinary 1-DOF wheels at their tips to grasp and climb the cylindrical 

or near cylindrical poles. Three lower wheels are active with the upper ones being 

utilized to increase the robot stability. It uses the preloaded springs to produce large 

enough normal components to bring the lower wheels in good contact with the surface 

of the pole so that the wheels do not slip. This method uses a spring mechanism to 

generate non-automatically adjustable holding force. In addition, employing 1-DOF 

wheels prevents the robot from climbing the pole in a spiral pattern for the convenience 

of tree pruning. 

 

Figure 2.13 Pole Climbing Robot UT-PCR 

2.1.10 Kawasaki’s Pruning Robot 

A tree-pruning robot prototype was developed at the Kawasaki & Mouri Lab of Gifu 

University in Japan [5] [28-30]. This prototype can climb up cylindrical objects such as 

trees or poles. It has four wheels in contact with the trunk during climbing. Two of the 

wheels are located below the robot’s center of gravity and adjacent to each other. The 

other two are installed above the robot’s center of gravity. The mechanical structure of 

this robot is shown in Figure 2.14. 
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Figure 2.14 Kawasaki’s Tree Pruning Robot 

The biggest advantage of this robot is that there is no energy consumption when the 

robot keeps still on the trunk. It utilizes the friction forces generated by placing the mass 

center of the robot on one side of the tree to achieve this goal. The average climbing 

speed of this robot is 20 mm/s. Though the new version of this robot can climb a 

cylindrical trunk to do pruning work, the wheel slippery and flexibility to cope with 

different trunk diameters still need to be improved. 

2.1.11 Seirei Industry’s Automatic Pruning Machine 

Seirei Industry’s Co.’s AB232R Automatic Pruning Machine is the only available 

commercial tree climbing robot [31]. Because its wheels are mounted at fixed angles, 

the robot can only climb up a tree in a fixed spiral pattern.  

 

Figure 2.15 Seirei Industry’s Automatic Pruning Machine 

This robot generates its gripping force on the tree from preloaded springs. This type of 

robot gripping approach restricts the domain of tree diameters that the robot can climb. 

Moreover, due to its heavy weight (32.8kg), this robot is not used widely. 



29 

 

2.1.12 Pobot 

J.C. Fauroux et al. developed a rolling self-locking robot in 2009 [32]. This robot is 

capable to climb up a cylindrical-conic pole to do the surveillance and inspection tasks. 

The mechanical structure of Pobot is illustrated in Figure 2.16.  

 

Figure 2.16 Pobot 

Pobot has the similar feature as Kawasaki’s robot design, which can maintain itself at a 

given height on the pole without energy consumption. In order to realize this feature, 

one necessary condition is that the center of mass of Pobot is sufficiently shifted laterally 

respect to the contact points between the wheel and the pole, depending on the friction 

conditions. Another feature for Pobot is that it can avoid obstacles on the pole by 

horizontal rolling. 

Pobot uses six preloaded strings to produce the holding forces, but this force cannot be 

adjusted when the robot climbs. Therefore, in order to climb up the pole successfully, 

sometimes the holding force can reach to 300N and could even create grooves on the 

wood surface. The average climbing speed of Pobot is around 30 mm/s. The low climbing 

speed, complex mechanism, heavyweight (10.5 Kg) and un-adjustable holding force are 

the main disadvantages of the Pobot. 

2.2 Tree Climbing Robot Control Methodologies 

During robot climbing process, due to the complicated surface conditions, it is inevitable 

that the robot platform suffers tilting. To tackle this issue, many approaches have been 

proposed and studied in both robotics and automotive fields. These methods are based 

on different techniques and technologies, e.g., torque control, dynamic-model-based or 



30 

 

vision-based control, and fuzzy logic. Each method is best suitable for its own specific 

system due to the characteristic of the system and the sensors used. 

Another critical problem for wheel driven climbing robot is the wheel slip. When the 

wheel slip is not in its optimally stable zone, for tree climbing robots, the desired tire-

trunk longitudinal force cannot be achieved, which not only causes distance error but 

also increases overall energy consumption. As a result, it directly affected the climbing 

performance. There are numerous research approaches in wheel slip control field. 

However most of them are in the automotive industry, only a handful of approaches 

could be found in research in forestry applications especially tree climbing robot 

development.  

For the convenience to closely link with the control methodologies proposed in this 

research, the detail information on control methodologies in literature and approaches 

are respectively presented in chapter 7 and chapter 8.   

2.3 Conclusions of Literature Study 

The literature review on existing climbing robots reveals that there are only a few 

prototypes of climbing robotic systems available. In terms of timber pruning robot, the 

research and development work in literature is even less. The main reason for this status 

quo is that, due to the gravitational pull and the unsmooth and irregular shape of the 

tree surface, it is quite difficult to design a climbing mechanism to climb up a tree fast 

and stable to do the pruning work.  

Thus, the robotic climbing mechanism design for tree or pole requires extensive and in-

depth study. Chapter 3 summarizes the key features and functions that a tree pruning 

robot should have and illustrates a novel robotic tree climbing mechanism for tree 

pruning in detail. 
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Chapter 3 Features and Functions of Tree Pruning Robot 

In terms of robot application field, climbing robot is one significant branch. However, 

the research and development of climbing robots is relatively more complicated and 

difficult comparison to other robot application areas [5]. Comparing with other robots, 

for tree pruning robots, the robots need to carry the power tools and execute the 

pruning task. At the same time, it must have the climbing capability. To realise such 

functions, the robot platform must keep it horizontal under unexpected dynamic 

situation that may cause by wheel slippage, trunk surface condition. During the last two 

decades, most of the research in the area of climbing robots focused on wall climbing 

robots (WCRs) and in-pipe robots and only limited number of pole climbing robots (PCRs) 

were designed and developed. Generally, the design and implementation of PCRs face 

more problems than those of WCRs and in-pipe robots. For instance, most WCRs [22] 

[33-35] could use vacuum grippers or suction cups to climb up the flat wall. However, 

such climbing mechanism employed on poles or tree trunks is not a desirable choice 

because the vacuum system cannot work efficiently on curved surfaces. 

The research and study for tree climbing robots is even less as the climbing environment 

is more complicated such as the unsmooth surface and irregular shape of the tree trunk. 

Therefore, designing a safe, fast and stable tree climbing mechanism is a challenging 

topic that hinges on anti-falling, trunk jamming and robot platform tilting control.  

3.1 Comparison and Analysis of Different Types of Tree or Pole Climbing Robots 

A comparison of previously discussed robots in terms of climbing speed, weight, 

climbing surface, advantages and disadvantages is shown in Table 3.1. 

Table 3.1 Comparison of different tree or pole climbing robots 

Robot Climbing style Pruning 
Speed 

(mm/s) 

Weight 

(Kg) 

Climbing 

Surface 
advantages disadvantages 

RiSE V3 Step-by-step No 210 5.4 
Straight 

trunk 

Fast 

locomotion 

Not stable, 

complex 

WOODY Step-by-step Yes 19.4 13.8 
Straight 

trunk 
Stable grip 

Limited gripping 

range, 

heavyweight 
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TREPA Step-by-step Yes 5.5 31 

Slightly 

curved 

trunk 

High 

maneuverabili

ty 

Heavyweight, 

low climbing 

speed 

Treebot Step-by-step No 12.2 0.65 

Curved 

trunk and 

branches 

Large payload 
Non-robust 

mechanism 

Slider-

crank 
Step-by-step No 3.7 _ 

Straight 

pole 

Simple 

mechanism 

Low climbing 

speed 

Snake 

robot 
Continuous No _ _ 

Ground, 

straight 

pole and 

trunk 

Adaptive to 

different 

terrains 

Complex, 

multiple 

actuators 

Biped WCR Step-by-step No 36.7 16.1 Flat surface 

High 

maneuverabili

ty 

Complex, heavy 

weight 

3D Climber Step-by-step No 16.7 42 

Curved 

pipes and T 

type pipes 

High 

maneuverabili

ty 

Complex, 

heavyweight 

UT-PCR Continuous No _ _ 
Straight 

pole 

Simple 

mechanism 

Low 

maneuverability 

Kawasaki Continuous Yes 40 15 

Straight 

trunk and 

pole 

Self-locking Wheel slippery 

Seirei Continuous Yes _ 32.8 
Straight 

trunk 

Commercial 

tree pruning 

machine 

Heavyweight, 

wheel slippery 

Pobot Continuous No 30 10.5 
Straight 

pole 
Self-locking 

Complex, 

heavyweight 

Table 3.1 reveals that the available robotic climbing mechanisms can be classified into 

two types: continuous climbing and step-by-step climbing. Continuous climbing means 

the robot climbs a tree trunk continuously such as the wheel-driven mechanism while 

the step-by-step climbing indicates the robot climbs a tree trunk in an extend-contract 

way. Continuous climbing robots usually take advantages of a simple structure and are 

faster than step-by-step based robots, but the step-by-step climbing mechanism has 

higher stability and flexibility. Wheel mechanism is the most typical style of continuous 

climbing. The advantages and disadvantages of these two climbing styles are shown in 

Table 3.2. 
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Table 3.2 Advantages and disadvantages between continuous and step-by-step climbing method 

Climbing style Advantages Disadvantages 

Continuous climbing 

• High climbing speed 

• Simplicity mechanism 

 

• Wheel slippery 

• Low maneuverability from 

trunk to branch 

Step-by-step climbing • Robust and high stability 

• High flexibility 

• Low climbing speed 

• Complex mechanism 

 

Taking the advantages and disadvantages of these two climbing mechanisms into 

consideration, the continuous climbing method is more suitable for tree pruning robot 

as high climbing speed is preferred.  

3.2 Requirements for Tree Pruning Robot Design 

From the literature review on the existing climbing mechanism and robot structure 

analysis, the basic requirements for tree pruning robot design become clear. This 

research aims to develop a novel tree climbing robotic system that is able to be a base 

for tree pruning power tools, climb vertically or in a spiral pattern, be used on a range 

of trees with a certain range of diameters, climb in different speed and never fall freely 

to the ground. While the tree grows the diameter is increased.  It is hard to use one 

robot with a fixed size to suit a whole range of trees with different diameters.  For this 

research, the aim focuses on the pruning of the 3 to 5 years young pine trees. The 

diameters are mainly in the range of 120 to 160 mm.  Based on such desired 

functionalities and requirements, the novel tree climbing robotic mechanism must have 

the following features.  

• Ability to carry a payload 

• Climb in different patterns 

• Cope with certain range size of tree trunk 

• Able to climb tree trunk with a relatively high speed and the speed is adjustable 

• Anti-falling for static and dynamic 

• Lightweight as to facilitate transportation 

The overall mechanical design of the tree pruning robot and its optimization are 

discussed in the next chapter. 
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Chapter 4 Mechanical Design and Optimization of Tree Pruning 

Robot 

Design is the process by which the needs of the customer or the marketplace are 

transformed into a product satisfying these needs. Figure 4.1 displays general systematic 

approaches of the design process and Figure 4.2 shows the approach used in the design 

process of tree pruning robot. All 3D models demonstrated in this thesis were modelled 

in SolidWorks. 

 

Figure 4.1 Systematic approaches of design process 

 

Figure 4.2 Systematic approach utilized in the design process of tree pruning robot 
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In this chapter the conceptual design is firstly presented. Following is its static analysis 

in three-dimensional space. Then the conceptual model is simulated in MATLAB 

SimMechanics1. Based on the outcomes of the simulations, the conceptual model is 

redesigned and optimized. After that the static and kinematic analysis of the optimized 

model is presented in detail and verified in SimMechanics. Finally, a comparison of the 

conceptual and optimized model is conducted.   

4.1 Conceptual Design of Tree Pruning Robot 

4.1.1 Mechanical Construction of Tree Pruning Robot Conceptual Design 

Base on the analysis of existing tree or pole robotic climbing mechanisms and the basic 

requirements for tree pruning robot, a conceptual design was proposed as shown in 

Figure 4.3. In order to simplify the mechanical design and obtain relatively high climbing 

speed, the wheel-driven climbing method was adopted.  

Platform

Step Motor

Servo Motor
DC Motor Wheel

Linkage 

Open and Close Joint Locker

Platform Diameter

 

Figure 4.3 Mechanical Construction of conceptual tree pruning robot design 

 

                                                           
1 “SimMechanics 2 User’s Guide,” MathWorks Inc, http://www.mathworks.com.au/products/simmechanics/. 

http://www.mathworks.com.au/products/simmechanics/
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Platform

Step Motor

Wheel

 

Figure 4.4 Top view of tree pruning robot conceptual design 

This conceptual model consists of two parts: the platform and three legs. The design 

consideration is that, in the future, the chainsaw and control system could be easily 

installed on the platform. The platform plays a carrier role which also connects the robot 

driving system with the chainsaw execution system in the process of tree pruning. The 

platform is constructed by two parts. The two parts are joined through an open-close 

joint. Once the robot is set up on the tree trunk, the platform is closed and locked by a 

locker as shown in Figure 4.3. Under the platform, there are three legs evenly distributed 

around the platform and these legs support the entire robot. The robot legs are also the 

tree pruning robot’s driving mechanism which is composed of five major units: stepper, 

servo motor, DC motor, linkage and wheel unit.  

Two step-motors are installed on two legs of the robot under the platform as shown in 

Figure 4.3.  These two step motors together with the two nut and screw units are the 

major mechanism to adjust the diameter constructed by the robot wheels to suit a 

certain range of different sizes of tree trunk.  The robot leg without installing step motor 

is a fixed leg with a wheel against the tree trunk.      

The function of the three servo motors is to change the robot climbing morphology. 

Except for vertical climb, the robot can also use these three servo motors to climb the 

trunk spirally at different spiral angles. The three DC motors provide the power to drive 

the robot up and down along the tree trunk.  
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4.1.2 Static Analysis of Conceptual Model in Three-dimensional Space 

Because there are only two step motors installed under the platform, this uneven mass 

distribution leads to the robot center of mass not coinciding with the center of the 

platform. Thus, under static conditions, the conceptual model has the capability to hang 

itself on the trunk without consuming any energy and prevent free fall to the ground. 

The two step-motors can also do fine adjustment to tune the distance between the trunk 

center and the center of the robot wheel, which controls the normal forces applied on 

the three robot wheels. When the stepper motor moves towards to the trunk, the tire 

contact area with the trunk and the corresponding normal force increase. As a result, 

the normal forces provide the frictional force by multiplying the friction coefficient, 

which overcomes the robot gravity force and other resistance to make the robot 

climbing up. 
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Figure 4.5 Lateral view of conceptual model force analysis 
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Figure 4.6 Top view of conceptual model force analysis 
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Figure 4.5 and Figure 4.6 illustrate the lateral and top view of the conceptual model force 

analysis. They represent the situation when the robot is in static status and the platform 

keeps still on the trunk by gravity force without consuming energy. Then the equilibrium 

status of the forces applied on the robot meet the following conditions based on the 

fundamental principle of mechanics (assuming three wheels distributed evenly around 

the trunk). 

                 𝐹1𝜇1 + 𝐹2𝜇2 + 𝐹3𝜇3 = 𝐺                             (4.1) 

                           
1

2
𝐹1 +

1

2
𝐹2 = 𝐹3                                   (4.2) 

Where 𝐹1, 𝐹2 and 𝐹3 are normal forces applied on the three wheels at the contact points 

between the wheels and the tree trunk, 𝜇1, 𝜇2  and 𝜇3  are the friction coefficients, 𝐺 

represents the gravity force of the robot. 

Assuming that when the robot keeps still on the trunk, as wheel 1 and 2 each has a step 

motor on the robot leg, it makes the gravity center of the robot has an offset from the 

trunk center as shown in Figure 4.6. Under equilibrium condition, assuming wheel 1 and 

2 stay at the same level which is lower than the position of wheel 3. And the equilibrium 

of the moment at the upper wheel (wheel 3) contact point gives:  

𝐺 (𝑤 +
𝑑

2
) =

1

2
𝐹1ℎ +

1

2
𝐹2ℎ + 𝐹1𝜇1𝐿 + 𝐹2𝜇2𝐿       (4.3) 

Where 𝑑 is the diameter of the trunk, 𝐿 is the horizontal distance from the contact point 

between wheel 3 and the trunk to the line defined by the similar contact points of wheel 

1 and 2, ℎ is the vertical distance between wheel 3 and wheel 1, 2. 𝑤 is the robot gravity 

force offset from the center of the platform as shown in Figure 4.6. 

For tree climbing, assuming that the working condition for three wheels is similar which 
means 𝜇1 = 𝜇2 = 𝜇3 = 𝜇, according to Eqn. (4.1) - (4.3),  

                          
1 1 3

2 4 4
L d d d= + =                        (4.4) 

                    3

(2 w d)

3 3

G G
F

d 

+
= =                          (4.5) 
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                            𝜇 =
ℎ

3𝑤+1.5𝑑−2𝐿
                                      (4.6) 

This indicates that to keep the robot still on the trunk by using the frictional force 

(increasing friction coefficient) without consuming the robot power, a larger value of h is 

more desirable. 

4.1.3 Simulation of Conceptual Design Model 

The mechanical system of the conceptual model is designed in SolidWorks 2015. Every 

part is assigned with its material property and geometric dimensions. Some of the part 

and assembly property information is summarized in table 4.1. 

Table 4.1 Specifications of tree pruning robot conceptual design 

Parameters Values 

Platform Parts Mass Density 2700 kg/m3 

Wheel Mass Density 1246.5 kg/m3 

Robot Mass 8760.81 g 

Volume 2013051.28 cubic mm3 

Surface area 431292.27 mm2 

Center of mass [X Y Z] = [3.81 6.60 -36.01] mm 

Table 4.1 shows that the mass of the pruning robot is 8.76 Kg. That means its gravity force 

is 85.94 N (the acceleration of gravity takes 9.81N/kg). Therefore, in the climbing process, 

in order to prevent the robot from falling down, the total tractive force offered by the 

three wheels of the robot has to be greater than the robot gravity force. In the vertical 

climbing situation, the tractive force is the sum of the frictional forces applied to the 

wheels. Under the ideal circumstance, assuming that the frictional force is uniformly 

distributed on the three wheels. For the conceptual model, the value of the friction force 

on each wheel should be 28.65 N.  

The dynamic simulation and analysis of the tree pruning robot conceptual model are 

conducted using MATLAB SimMechanics. Figure 4.7 shows the four views of the pruning 

robot in SimMechanics. 
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Figure 4.7 Four views of tree pruning robot conceptual design in Simmechanics 

 In order to make the simulation more realistic, the frictional force is set as simple 

Gaussian noise so that the wheel slippage can be considered as disturbance. The frictional 

force parameters are shown in Table 4.2.  

Table 4.2 Parameters of frictional force 

Parameters Values 

Frequency 25 Hz 

Mean 28.66 N 

Standard Deviation 0.2 
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Figure 4.8 Conceptual model vertical climbing velocity 
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Figure 4.9 Conceptual model vertical climbing acceleration 

 

Distance

(m)

Time(Sec)

 

Figure 4.10 Conceptual model vertical climbing distance 

At simulation time 0, three frictional forces were applied on three wheels respectively. 

Figure 4.8, 4.9 and 4.10 are the outcome of the simulation of the conceptual model’s 

vertical climbing velocity, acceleration and distance according to the artificial frictional 

forces. It can be seen that the velocity and distance are increasing over time. This is 

because the total average frictional force is slightly larger than the robot gravity force. 

During the simulation process, the maximum of the velocity is 0.2795 m/s and the 

relative distance is 3.1383 m. The average velocity of the pruning robot is 0.126 m/s in 

25 seconds. 

Though this conceptual design has some tree pruning robot required features like anti-

falling, cope with a certain range of trunk sizes and climbing in different patterns, it also 

has some drawbacks. For instance, the mechanical design of robot leg is not robust 

enough to support the whole robot when climbing up the trunk. It is more vulnerable to 

suffer wheel slippage which greatly impacts on the robot climbing performance. Another 

issue is the point-to-point connection method between the servo motor and DC motor. 



42 

 

The servo motor can easily get stuck when the normal force is large, or the robot suffers 

disturbances. Furthermore, aiming to design a lightweight tree pruning robot, the robot 

weight can be reduced by reconstructing the robot platform frame.  

4.2 Tree Pruning Robot Design Model Optimization 

4.2.1 Anti-falling Mechanism Optimization 

In reality, for any tree climbing robots, the most important feature is the robot never falls 

to the ground in any situation: not only during the climbing process, but also in the 

extreme conditions such as robot power cut off, wheel malfunction, etc. Based on such 

considerations, a conceptual model was proposed (Figure 4.3), which uses two steppers 

and screw-nut units to fulfill this active anti-falling function.  

The working principle is that, during the robot climbing process, when the travel nut 

moves towards the tree trunk, the friction forces between the wheel tread and the tree 

trunk increases. The adjustable friction forces guarantee the robot not falling. However, 

there are several shortages applying two-stepper systems. Firstly, the two-stepper 

climbing method increases the total weight of the robot comparing to one stepper 

system. Furthermore, the two-stepper climbing approach requires not only the 

synchronization of the two steppers which means complicated control and more MCU 

computational resource occupation but also more battery power consumption.  

Therefore, to improve this situation, one-stepper climbing strategy is considered. In this 

approach, only one robot leg is equipped with step motor system which could make 

adjustment on the robot wheel. The other two wheels are stationary.   
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Figure 4.11 Improvement of tree pruning robot mechanical design 

Figure 4.11 illustrates the improvement of the climbing robot mechanical design. R, R1 

and R2 stand for different radii of tree trunk while the dash circles represent the different 

sizes of tree trunk. In conceptual design, two-step motors together with the two nut and 

screw units adjust the diameter of the circle constructed by robot wheels to suit a range 

of trunk sizes while this is simplified by one stepper in the optimized mechanical design. 

The stepper’s screw-nut unit is shown in figure 4.12. During the robot climbing process, 

the stepper adjusts the normal forces between the robot wheels and the tree trunk 

through the screw and nut mechanism. The other two legs are fixed legs with the wheel 

against the tree trunk without installing step motors.  

Nut and Screw Unit

Stepper

Bush Bearing

Nut and Screw Unit

Stepper

Bush Bearing

 

Figure 4.12 Stepper and Nut-Screw Unit 

4.2.2 Servomotor Module Optimization 

To perform the tree pruning work, each robot wheel is installed a servomotor module. 

The robot uses these modules to change the climbing morphology. Except for vertical 

climbing, the robot can also climb the trunk in a spiral pattern by turning the wheels at 

given angles. However, during the spiral or vertical climbing process, sometimes the 



44 

 

servomotor gets stuck due to the high normal force and other disturbing forces between 

the wheels and the trunk in the conceptual design.  

To solve this issue, one servomotor module and one bearing support mechanism are 

designed which is illustrated in Figure 4.13. This servomotor module consists of three 

parts: rotary plate, support plate and lock plate. When the servo motor rotates, the rotary 

plate connected with servomotor shaft drives the wheel to rotate. During the servo 

motor rotate process, the normal force is absorbed by the support plate and the 

servomotor holding bracket. Hence, the servomotor only needs to overcome the friction 

force between the rotate plate and support plate to swing. The friction force is relatively 

small compared to the normal force since the contact area between rotary plate and 

support plate is small and well lubricated. 

The bearing support mechanism consists of one ball bearing, bearing shaft, bearing 

linkage and guide rail. Its function is to overcome the robot wheel module gravity force 

and other disturbing forces that affect the servomotor module and stepper’s nut and 

screw unit. This guarantees the lead screw efficiency and control accuracy of the step 

motor. 

Rotate Plate Support Plate Lock Plate

Servomotor 

Holding Bracket

Bearing Support Mechanism

Servomotor

Rotate Plate Support Plate Lock Plate

Servomotor 

Holding Bracket

Bearing Support Mechanism
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Figure 4.13 Servo Motor Module and Bearing Support Mechanism 

4.3 Optimized Tree Pruning Robot Model 

The modified climbing robot design is displayed in Figure 4.14 and one of the robot legs 

is illustrated in Figure 4.15. It only relies on one stepper system to adjust robot holding 

force and suit different tree diameters. Three servomotor modules are installed to 

change the robot climbing morphology. The three geared DC motors provide the power 

to drive the robot up and down along the tree trunk. Each of the geared motors has an 
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encoder to control the climbing speed. To increase the robot wheel friction force, the 

improved robot uses 120×60 mm size rubber tire to replace the original 56×25 mm tire.  

To achieve the lightweight feature without sacrificing the strength of the robot 

mechanical construction, the platform is also redesigned by cutting off the unnecessary 

materials on the top plate. The mass of the improved robot model in SolidWorks is now 

around 6.42 Kg while the conceptual model was 8.76 Kg.  
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Figure 4.14 Mechanical Construction of the Optimized Tree Pruning Robot Design 
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Figure 4.15 Climbing Robot Leg Module 

4.3.1 Optimized Tree Pruning Robot Static Analysis in Three-dimensional Space  

Because the purposely installed one step motor under the platform, the uneven mass 

distribution leads to the robot center of mass not coincides with the center of the 

platform. Thus, under static situations, the platform tilts from the horizontal position. 

This feature makes the climbing robot has the potential to hang itself on the tree trunk 

without consuming any power and prevent free falling to the ground when power is cut 

off. This means the optimized model also has the passive anti-falling feature. 
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The step motor can also do fine adjustment to tune the distance between the tree trunk 

and the tread of the robot wheel, which controls the values of the normal forces applied 

on the three robot wheels. When the stepper motor moves closer to the tree trunk, the 

tire contact area with the trunk and the corresponding normal force increases. When the 

frictional forces obtained by multiplying the normal forces and the friction coefficient 

overcome the robot gravity force, the robot starts to climb up.  
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Figure 4.16 Lateral View of Climbing Robot Force and Moment Illustration 
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Figure 4.17 Top View of Climbing Robot Force and Moment Illustration 

Figure 4.16 and Figure 4.17 illustrate the lateral and top view of the forces and moments 

applied on the optimized robot when it is in static status and the platform is hung on the 

trunk by gravity force without consuming power. Then the equilibrium status of the 
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forces applied to the robot meet the following conditions based on the fundamental 

principle of mechanics. 

∑ 𝐹𝐻 = 𝐹⃗1𝑐𝑜𝑠60° + 𝐹⃗2𝑐𝑜𝑠60° + 𝐹⃗3 = 0                  (4.7) 

∑ 𝐹𝑉 = 𝐹⃗1𝜇1 + 𝐹⃗2𝜇2 + 𝐹⃗3𝜇3 = 𝑚𝑔         (4.8) 

Where 𝐹⃗1, 𝐹⃗2and 𝐹⃗3 are normal forces applied on the three wheels at the contact points 

between the wheels and the tree trunk, 𝜇1, 𝜇2and 𝜇3 are the static friction coefficients, 

𝐹𝐻 and 𝐹𝑉  are the resultant horizontal and vertical forces, 𝑚 represents the mass of the 

robot. 

When the robot hangs on the tree trunk, as wheel 3 has a step motor on the robot leg, it 

makes the gravity center of the robot has an offset from the trunk center (tilting) as 

shown in Figure 4.16. Under the equilibrium condition, wheel 1 and 2 stay at the same 

level which is higher than the position of wheel 3. And the equilibrium of the moment at 

the lower wheel (wheel 3) contact point (in the case of the wheel not rolling) gives:  

𝐹1
⃗⃗ ⃗⃗ 𝑐𝑜𝑠60°ℎ + 𝐹2

⃗⃗ ⃗⃗ 𝑐𝑜𝑠60°ℎ − 𝐹1
⃗⃗ ⃗⃗ 𝜇1

3

2
𝑅 − 𝐹2

⃗⃗ ⃗⃗ 𝜇2
3

2
𝑅 + 𝑚𝑔𝑑 = 0        (4.9) 

Where 𝑑 is the length from the surface of the trunk to the center of mass of the robot, R 

is the radius of the trunk, h is the vertical distance between the upper and lower wheels. 

For tree climbing, the working condition between the tree trunk and the three robot 

wheels is almost similar. Therefore, assuming that 𝜇1 = 𝜇2 = 𝜇3 = 𝜇, according to Eqn. 

(8),  

(𝐹1 + 𝐹2 + 𝐹3)μ = mg                            (4.10) 

From Eqn. (7), 

1

2
𝐹1 +

1

2
𝐹2 = 𝐹3 or  𝐹1 + 𝐹2 = 2𝐹3       (4.11) 

From Eqn. (4.10) and (4.11),  

𝐹3 =
𝑚𝑔

3𝜇
                (4.12) 
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From the moment equation, 

(𝐹1cos60° + 𝐹2𝑐𝑜𝑠60°)h − (𝐹1 + 𝐹2)
3

2
𝑅𝜇 + 𝑚𝑔𝑑 = 0         (4.13) 

From Eqn. (4.11), (4.12) and (4.13),  

𝐹3ℎ − 3𝑅𝜇𝐹3 + 𝑚𝑔𝑑 = 0         (4.14) 

∴  μ =
ℎ

3(𝑅−𝑑)
          (4.15) 

This means the static friction coefficient can be represented as a function of robot mass 

center location and the vertical distance between the upper and lower wheels. In this 

case, to stay on the tree trunk by robot’s own weight without consuming any power, the 

larger distance between upper and lower wheels is more desirable. 

However, for wheel climbing mechanism, there is another issue. When the robot is tilted 

on the tree trunk, if the wheels can still roll because of the gravity force, then the robot 

will fall to the ground. How to stop the wheel rolling must be considered. Taking the lower 

wheel in Figure 4.16 as an example to illustrate this problem, the force and moment 

analysis is shown in Figure 4.18. Due to the robot gravity G, static frictional force 𝐹𝑓 and 

normal force F, the wheel contact surface was changed. That means the normal pressure 

in the upper half of the contact patch (shaded area) is higher than that in the lower half. 

Therefore, the resultant force of the pressure distribution is offset towards the upper of 

the contact patch. The offset force produces the rolling moment M that gives the robot 

a rolling downtrend.      

M = G ∙ 𝑟𝑠 + 𝐹 ∙ 𝜆           (4.16) 

𝑟0 is the wheel free radius (60 mm) while 𝑟𝑠 is the static radius of the robot wheel under 

loaded condition, the detail of wheel radius will be discussed in the next section; 𝐹𝑓 is the 

static friction force; N is the applied horizontal force; 𝜆 is the vertical offset distance of 

the resultant normal force F due to the tire deformation.  
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Figure 4.18 Static Rolling Moment Analysis 

To offset this rolling moment, the three servo motors turn the three DC motors certain 

degrees to stop the wheel rolling. The exact servomotor rotating angles depends on the 

size of the tree trunk, robot wheel dimension, condition of trunk condition, etc. While in 

extreme situation, the servomotor can turn the DC motor together with the wheel 90 

degrees, which means the axis of the trunk is parallel to the axis of the wheel as shown 

in figure 4.19.  
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Figure 4.19 Anti-wheel-rolling Approach 

4.3.2 Optimized Tree Pruning Robot Dynamic Analysis of Vertical Climbing 

For vertical climbing, before the robot begins to climb up, the three servomotors first 

turn the three wheels’ axes horizontal to allow the robot to climb the tree vertically. 

Assuming the stepper shaft is at a proper position, which means no adjustment is needed 

and the normal forces are big enough to drive the robot up, also assuming the friction 

coefficient is the same for the three wheels during the climbing process, then the three 

DC motors that driving the three wheels need to overcome the rolling resistance, robot 

gravity, acceleration resistance, etc. 
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1) Rolling Resistance 

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting 

the motion when a body roll on a surface. In this case, the rolling resistance is mainly 

caused by the hysteresis losses. Another cause of rolling resistance lies in the slippage 

between the wheel and the surface, which dissipates energy2. 

Figure 4.20 is a simplified wheel tire model.  Considering an elastic wheel which is 

composed of many spring-damper units. When the wheel tries to rotate on the tree 

surface, the frictional force 𝐹𝑓  and resultant normal force 𝐹  will occur on the contact 

patch (slash area in Fig. 4.20). Additionally, the tire deforms since the stiffness of the 

trunk is much larger than the tire. When the tire enters the contact patch, the spring-

damper unit is initially compressed and then released. This compress and release process 

dissipate internal energy in the way of frictional heat and is defined as hysteresis losses. 
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Figure 4.20 Simplified Climbing Robot Wheel Tire Model 

Figure 4.21 illustrates the hysteresis losses. Curve A refers to the compress process while 

curve B is the release process. The area between the curve A and B is the hysteresis losses 

[36][37]. 

                                                           
2 “Rolling Resistance,” Wikipedia, last modified December 15, 2016.  https://en.wikipedia.org/wiki/Rolling_resistance. 

https://en.wikipedia.org/wiki/Rolling_resistance
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Figure 4.21 Climbing Robot Wheel Rolling Resistance: Hysteresis Losses 

 

2) Rolling Radius 

There are three types of wheel radii: free radius 𝑟0, static radius 𝑟𝑠 and rolling radius 𝑟𝑟. 

The radius, when the robot wheel is under unloaded condition, is the free radius 𝑟0. In 

static condition, when the robot wheel deforms under loaded situation, the radius is 

called static radius 𝑟𝑠. Obviously, the value of the static radius 𝑟𝑠 depends on the static 

load. In kinematic situation, the ratio of the robot wheel displacement velocity 𝑣 and 

wheel rotational velocity ω is called rolling radius 𝑟𝑟 [37].  

𝑟𝑟 =
𝑣

𝜔
=

𝑣×∆𝑡

𝜔×∆𝑡
=

𝑠

2×𝜋×𝑛ω
                   (4.17) 

Where 𝑛ω  and 𝑠  are the robot wheel rotational cycles and the distance in time ∆𝑡 

respectively. 

There is another method to calculate the wheel rolling radius 𝑟𝑟. Assuming the wheel 

rotates angle ∆φ and moves distance ∆x, then the rolling radius 𝑟𝑟 can be obtained from 

Figure 4.22. 
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Figure 4.22 Climbing Robot Wheel Rolling Radius 

𝑟0𝑠𝑖𝑛∆𝜑 = ∆𝑥         (4.18) 

𝑟0cos∆φ = 𝑟𝑠          (4.19) 

Comparing the elastic wheel with the rigid wheel in the above figure, it can get: 

∆x = 𝑟𝑟∆𝜑                (4.20) 

𝑟𝑟 =
𝑟0𝑠𝑖𝑛∆𝜑

∆𝜑
              (4.21) 

When ∆φ → 0, then 𝑟𝑟 = 𝑟0. If ∆φ is small enough, the sine function can be expanded 

using series. 

𝑟𝑟 =
𝑟0(∆𝜑−

1

6
∆𝜑3)

∆𝜑
= 𝑟0(1 −

1

6
∆𝜑2)            (4.22) 

For cosine function Eqn. (4.19), expanded in series: 

𝑟𝑠 = 𝑟0 (1 −
1

2
∆𝜑2) or ∆𝜑2 = 2(1 −

𝑟𝑠

𝑟0
) (4.23) 

From Eqn. (4.22) and (4.23), it can get [38]: 

𝑟𝑟 =
2

3
𝑟0 +

1

3
𝑟𝑠            (4.24) 
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Figure 4.23 Free Rolling at Horizontal Trunk 

In Figure 4.23, suppose a robot wheel is free rolling on a horizontal surface, from the 

moment equilibrium, it can get: 

𝐹𝑟𝑟𝑟 = 𝐹𝜆                    (4.25) 

From the Eqn. (4.25), the rolling resistance 𝐹𝑟 is proportional to the wheel normal force 

F. 

Therefore, when the robot stays on the tree trunk the robot wheel radius uses 𝑟𝑠 while it 

uses the 𝑟𝑟 for the kinematic analysis during the climbing process.   

3) Robot Gravity Force 

Robot mass is a critical factor in climbing robot design as it directly affects the value of 

the robot gravity force. Under different situation, this gravity force can accelerate or 

decelerate the robot speed and the mechanical behavior of the mechanism. The total 

mass of the presented tree climbing robot is approximately 6.42 Kg in CAD design, while 

the actual total robot mass is 6.8 Kg (about 66.7 Newton) because of the contribution 

from PCB boards and other electrical components. 

4) Acceleration Resistance 

At the beginning of the tree climbing from a static condition, the three DC motors need 

to overcome the inertia force caused by the robot mass during the accelerated 

movement. As shown in Figure 4.24, the inertia force is deemed the acceleration 

resistance 𝐹𝑗. 
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𝐹𝑗 = 𝑚
𝑑𝑣

𝑑𝑡
                    (4.26) 

The inertia torque 𝑇𝑗 caused by the acceleration resistance is: 

𝑇𝑗 = 𝐼𝛼 = 𝐹𝑗𝑟𝑟                (4.27) 

Where 𝐼 is the wheel rotational inertia; 𝛼 is the wheel angular acceleration and 𝑟𝑟 is the 

wheel rolling radius. 

As the robot climbs up, the DC motor’s torque should overcome the rolling resistance, 

robot gravity and acceleration resistance.  

 

𝐹𝑀 = 𝐹𝑟 + 𝐺 + 𝐹𝑗                                                              (4.28) 

T𝑀 = 𝑇𝑟 + 𝑇𝐺 + 𝑇𝑗 = 𝐹 ∙ λ + G ∙ 𝑟𝑟 + 𝐹𝑗 ∙ 𝑟𝑟                                     (4.29) 

𝐹𝑀 and T𝑀 are the force and torque required from the DC motor respectively. 𝑇𝑟 is the 

rolling resistance torque;  𝑇𝐺  is the robot gravity torque; 𝐹𝑟  is rolling resistance; 𝐺  is 

robot gravity force and λ is vertical offset distance of the resultant normal force 𝐹 due 

to the tire deformation. 

λ  N
F

r0

rr

Ϝf

G

λ  N
F

r0

rr

Ϝf

G

Wheel

Trunk

T
M

Fj

λ  N
F

r0

rr

Ϝf

G

Wheel

Trunk

T
M

Fj

 

Figure 4.24 Force and Torque Analysis on one robot leg 

As the tree trunk is not smooth so the friction coefficient in fact varies and the wheel may 

be slipped. The climbing speed of each robot leg cannot always be kept the same. As a 

result, the platform is constantly tilted in different directions. The stepper therefore must 

be engaged to adjust the normal forces on the three wheels to keep the platform 
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horizontal. The platform tiling control and robot wheel slippage control will be illustrated 

in the robot control section. 

4.3.3 Active and Passive Anti-Falling Mechanism 

This novel tree climbing robot design has a special characteristic: the anti-falling 

mechanism, both active and passive. As previously discussed，the passive anti-falling 

mechanism uses only friction forces and the gravity force of the robot to maintain a hold 

on the trunk like Kawasaki’s and Faurouxs’ designs in static or sudden power cut off 

situation. The primary point of achieving this feature is to let the center of the mass of 

the robot offset from the center of the tree. The lateral and top views of passive anti-

falling mechanism are illustrated in Figure 4.25. 

 

Figure 4.25 Passive Anti-Falling Mechanism: Lateral View and Top View 

During the climbing process, due to the diverse and complicated tree surface, the robot 

may slip or fall in extreme conditions. Therefore, an active anti-falling mechanism is 

proposed to overcome this problem. As shown in Figure 4.16, when the normal forces 

increase, with the unchanging friction coefficient μ, the total friction force of the robot 

increases correspondingly. This process is executed by the stepper and screw-nut unit. If 

the stepper motor moves toward to the trunk, the normal forces on the wheel-trunk 

contact areas increase. So, as the related friction forces. With such an active anti-falling 

mechanism, it guarantees the robot can climb up the trunk safely and steadily without 

slip or falling. 

The entire implementation of the active anti-falling mechanism is illustrated by the 

following flowchart. During the climbing process, the active anti-falling mechanism plays 

the leading role while the passive anti-falling mechanism acts as a complement. If the 

robot system loses its power, the active anti-falling mechanism is mal-functional, and the 
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passive anti-falling mechanism takes over the control to hang the robot on the tree. This 

doubles the guarantee to resist robot falling. Compare to passive anti-falling mechanism, 

the main drawback of active anti-falling mechanism is that it consumes the power and 

requires a dynamic control system. 

Start

Measure acceleration

Free fall?

Step motor fastly move in

Measure height

Still descend?

Step motor slowly move in

No

Yes

Yes

Stop motor

Stop motor
No

Passive Anti-falling Mechanism

Active Anti-falling Mechanism

Robot power cut off

 

Figure 4.26 Anti-falling Mechanism Flowchart 

4.3.4 Simulation and Experiment of Optimized Tree Pruning Robot 

The assembly property information of optimized pruning robot is summarized in table 

4.3. The mass is 6.42 Kg while the conceptual model is 8.76 Kg. 

Table 4.3 Specifications of pruning robot 

Parameters Values 

Platform Parts Mass 

Density 
2700 kg/m3 

Wheel Mass Density 960 kg/m3 

Robot Mass 6419.74 g 

Volume 3079209.1 cubic mm3 

Surface area 1081348.83 mm2 
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As discussed previously, during the vertical climbing process the wheel tractive force 

overcomes the rolling resistance, robot gravity, acceleration resistance, motor bearing 

heat losses, etc. To confirm the previous analysis and the behavior of the climbing robot 

and help to select the correct motors, a dynamic simulation of the proposed robot 

climbing system was carried out. The simulation and analysis of the climbing process are 

also conducted in MATLAB SimMechanics like the conceptual model. Figure 4.27 shows 

the four views of the climbing robot in SimMechanics. 

 

Figure 4.27 Four Views of Pruning Robot in Simmechanics 

In the dynamic simulation, the inverse kinematic method was used. The wheel rotation 

angle and rotation speed were set to 4 pi rad and 12 rpm respectively. To make the 

simulation more realistic, the slippage and wheel deformation were taken into 

consideration. Figure 4.28 showcases the results of required DC motor torque which is 

around 1.15 N-m. The corresponding robot vertical climbing speed is shown in Figure 4.29. 

Due to the wheel slippage and deformation, the average robot vertical climbing speed 

is 62.9 mm/s. 
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Figure 4.28 DC Motor Driving Torque 
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Figure 4.29 Robot Climbing Velocity 

Based on the simulated DC torque and previously dynamic analysis, the DC motor 

selected in this design is a powerful 12V brushed DC motor with an integrated quadrature 

encoder which can offer maximum 16 kg-cm torque.  

The friction coefficient between rubber and wood is in the range of 0.75 to 1 [38]. Based 

on the robot gravity and previous force analysis, the type of stepper and servomotor was 

selected. The servomotor used in this design can produce 17 kg-cm torque at 6V. The 

stepper has 5 kg-cm holding torque. The dimension of the robot’s rubber wheel is 120×60 

mm. The first testing climbing robot is then built and shown in Figure 4.30 and 4.31. 

Figure 4.30 illustrates the structure of one robot leg while Figure 4.31 shows that the 

robot keeps stationary on the test rod using the passive anti-falling mechanism. The 

length of the test rod is 1 meter and the diameter is 122.5 millimeters. The total mass of 

this prototype is 6.8 kg.  

 

Figure 4.30 Tree Climbing Robot Leg 
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Figure 4.31 Tree Climbing Robot Physical Test Model 

This chapter illustrates the mechanical design and optimization of tree pruning robot 

according to the requirements and functions of tree pruning. These CAD models were 

simulated and verified in the SolidWorks and MATLAB SimMechanics. Base on the 

outcome of simulation, the robot motor types are determined. The following chapter 

will discuss the robot hardware and software design. 
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Chapter 5 Tree Pruning Robot Control System Design 

This chapter describes the tree pruning robot control methodologies and system design 

which utilized the modular design method. For the entire control system, it focuses on 

the design methodologies, intelligent control and PCB board design. The control system 

consists of hardware and software design which is illustrated in Figure 5.1. In terms of 

hardware design, it covers power module, MCU module, motor driving module, 

communication module, etc. while the software aims at the development of control 

algorithms such as filtering techniques, climbing robot tilting measurement, fuzzy 

control, and wheel slip control. The software development is specifically discussed later 

chapters with Chapter 6 focuses on filtering and tilting measurement, Chapter 7 and 8 

on fuzzy and neural network control respectively.  
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Figure 5.1 Robot control system diagram 

5.1 Tree Pruning Robot Control System Schematic Design 

The essential part of the control system is the design of tree pruning robot PCB. It plays 

a key role in the climbing robot control system since the entire system control is via the 

PCB board. Furthermore, a professional PCB layout enables the control system more 

efficient, concise and stable. While designing a professional PCB board is not an easy 

work, there are many factors and aspects needed to be taken into consideration, such 

as heat dissipation, electromagnetic noise, voltage regulation, current adjustment, etc. 
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The control system PCB acts as a bridge between the robot electronics and mechanics. 

It uses the MCU to control the robot mechanical actuators to finish certain tasks. And 

the PCB board is also a carrier for the hardware and software of the robot control system. 

In terms of hardware, the robot motor driving system, tilting measurement system, 

robot communication system and power conversion system are all designed and placed 

on the PCB board. In the design of software, the DC motor, servomotor and stepper 

control algorithm, IMU data fusion algorithm, tilting control algorithm and robot wheel 

slippage control are all applied in the MCU. Therefore, the design of tree pruning robot 

PCB is significant to the robot control system, and also to the entire robot system. 

In order to design a professional climbing robot PCB, the first thing is to design the 

schematic. PCB layout is the resulting design from taking a schematic with specific 

components and determining how they will physically be laid out on a printed circuit 

board. To produce a PCB layout, the connections of components, components sizes 

(footprints), and a myriad of other properties (such as current, frequencies, emissions, 

reflections, high voltage gaps, safety considerations, manufacturing tolerances, etc.) 

should be studied and researched in advance. Such work is mainly done in the schematic. 

It is based on the principles of the PCB design. 

A schematic shows the connection in a circuit in a way that is clear and standardized. It 

is a way of communicating to other engineers exactly what components are involved in 

a circuit as well as how they are connected. A good schematic shows component names 

and values, provide labels for sections or components to help communicate the 

intended purpose. In the climbing robot schematic design, the entire control system 

schematic can be divided into seven sections: Arduino Mega25603  Control Module, 

Arduino Due4 Module, Communication Module, DC Motor Module, Servomotor Module, 

Stepper Module, and Power Module. 

                                                           
3 Atmega2560 datasheet, https://cdn.sparkfun.com/datasheets/Components/General%20IC/2549S.pdf. 

 
4 Atmel SAM3X8E ARM Cortex-M3 datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-

M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf. 

https://cdn.sparkfun.com/datasheets/Components/General%20IC/2549S.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
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The entire climbing robot schematic and PCB are designed using Altium Designer5. It is 

an electronic design automation software package for printed circuit board, FPGA and 

embedded software design. For the climbing robot PCB design, the first thing needed to 

do is to design the schematic library and PCB library according to the electronic 

components size and footprint. 

5.1.1 Power Module 

The first part of control system schematic is power module design. In the climbing robot 

control system, there are five different voltage levels: 3.3V, 5V, 6V, 9V and 12V. The 12V 

is the battery voltage level which supplies power for the entire robot system. The 6V and 

9V voltage levels are converted from the 12V voltage level, while the 5V and 3.3V voltage 

level are from the Arduino Mega and Due board respectively. 

The 12V voltage level is used for the DC motor and stepper, while the 6V is the working 

voltage of three servo motors. The power supplied for Arduino Mega and Due boards 

are from 9V voltage level. The DC motor and stepper driver control logic voltage level, 

the encoder power and main current sensor power are all 5V, while the IMU power, the 

XBee power and logic level converter are 3.3V.  

 

Figure 5.2 Power module schematic 

                                                           
5 Altium Designer ver.13, http://www.altium.com/documentation/18.0/display/ADES/Altium+Designer+Documentation. 

http://www.altium.com/documentation/18.0/display/ADES/Altium+Designer+Documentation
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In order to hold high current for the entire robot system, the power switch6 used is a big 

MOSFET slide switch with reverse voltage protection which can supply 6A continuous 

current at 55℃, 16A continuous current at 150℃. The current sensor used is Allegro’s 

ACS711EX7 (-15.5A ~ +15.5A) which is a hall effect-based linear current sensor with 

overcurrent fault output. The step-down voltage regulators used for 6V and 9V are 

Pololu’s D24V22F68 and D24V22F99 respectively.  

The robot power switch, current sensor, step-down voltage regulators and their typical 

efficiency, dropout voltage graphs are displayed in Figure 5.3, 5.4, 5.5, and 5.6. 

 

Figure 5.3 MOSFET Slide Power Switch 

 

Figure 5.4 Current Sensor 

 

                                                           
6 Big MOSFET Slide Switch with Reverse Voltage Protection, HP, https://www.pololu.com/product/2815. 

 
7 ACS711EX Current Sensor Carrier -15.5A to +15.5A, https://www.pololu.com/product/2452. 

 
8 Pololu 6V, 2.5A Step-Down Voltage Regulator D24V22F6, https://www.pololu.com/product/2859. 

 
9 Pololu 9V, 2.3A Step-Down Voltage Regulator D24V22F9, https://www.pololu.com/product/2861. 

https://www.pololu.com/product/2815
https://www.pololu.com/product/2452
https://www.pololu.com/product/2859
https://www.pololu.com/product/2861
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Figure 5.5 6V DC-DC Converter 

 

 

Figure 5.6 9V DC-DC Converter 

The 9V DC-DC converter can still get power supply even the main power switch is turned 

off. Because the 9V voltage is used for two MCUs, the converter power supply is directly 

from the battery. That guarantees the control circuit power and actuator circuit power 

are separated so that the control system still can control the robot when the motor 

driving system power is turned off.    

5.1.2 MCU Module (Arduino Mega and Due) 

The climbing robot uses Arduino Mega 2560 and Arduino Due as the MCU. Arduino 

Mega is responsible for dealing with the control algorithm of motors (3 DC motors, 3 

Servomotors, 1 stepper), monitoring the system current and voltage, transmitting 

control system information and receiving commands from Arduino Due through serial 

ports. And the Mega also supplies 5V voltage for the robot control system.  

The Arduino Due plays a role as information processing and control algorithm operating. 

It collects the tilting information from IMU module and operates the data fusion 

algorithm to obtain the useful and precision tilting angles. Then according to these tilting 

(pitch, roll and yaw) angles and information from Mega, the Due calculates and gives 

commands to Mega to control the entire robot climbing speed and morphology. The 
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tree pruning robot tilting control algorithm and wheel slippage control algorithm are all 

executing on Arduino Due. Besides, Due can also communicate with the PC using the 

XBee module to realize remote control. The system voltage level 3.3V is from Arduino 

Due module. 

One thing that needs to be emphasized here is the voltage compatible. The voltage level 

of Arduino Mega system is 5V while the Due is 3.3V, so the logic level converter must be 

used to solve this issue.  

 

 

Figure 5.7 Tree pruning robot schematic design of Arduino Mega 2560 and Arduino Due 
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5.1.3 Motor Driving Module 

This module contains three parts: DC motor, Servomotor and Stepper. The DC motor 

driver is ST’s VNH2SP3010 motor driver IC which operates from 5.5V to 16V and can 

deliver a continuous 14A (30A peak). It works with 5V logic levels and supports ultrasonic 

(up to 20 KHz) PWM. It features current sense feedback (an analog voltage proportional 

to the motor current) along with built-in protection against reverse-voltage, over-

voltage, under-voltage, over-temperature, and over-current. This DC motor driver is a 

fully integrated H-bridge that can be used for bidirectional speed control of a single 

brushed DC motor. The breakout board and schematic of DC motor driver are shown in 

figure 5.8. 

 

 

Figure 5.8 Breakout board and schematic design of DC motor driver – VNH2SP30 

                                                           
10 VNH2SP30 Motor Driver Carrier MD01B, https://www.pololu.com/product/706. 

https://www.pololu.com/product/706
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The DC motor used in this robot is powerful 12V brushed gear motor (figure 5.9) with a 

102.083:1 metal gearbox and an integrated quadrature encoder that provides a 

resolution of 64 counts per revolution of the motor shaft, which corresponds to 6533 

counts per revolution of the gearbox’s output shaft11. 

 

Figure 5.9 12V brushed gear DC Motor 

The servo motor used in this robot is 1501MG12 from Power HD which is a metal-geared 

analog servo that delivers extra-high torque. This servo weighs 60 grams and the stall 

torque is 17 Kg-cm at 6V. The stall current is 2.5A at 6V operating voltage. The limit angle 

is 180°±10°. Its schematic is shown in figure 5.10. 

  

Figure 5.10 Servomotor and schematic 

The stepper13 used in the robot is a NEMA 17-size hybrid bipolar stepping motor (figure 

5.11) which has an integrated 18 cm threaded rod as its output shaft, turning it into a 

linear actuator capable of precision open-loop positioning. The included traveling nut 

has four mounting holes and moves 40 𝜇𝑚 per full step. Finer resolution can be achieved 

with micro-stepping. The stepper motor has a 1.8-degree step angle (200 

steps/revolution) and each phase draws 1.7A at 2.8V, allowing for a holding torque of 

3.7 Kg-cm. 

                                                           
11 100:1 Metal Gearmotor 37DX57L mm with 64 CPR Encoder, https://www.pololu.com/product/1446. 
12 Power HD High-Torque Servo 1501MG, https://www.pololu.com/product/1057. 
13 Stepper Motor with 28cm Lead Screw, https://www.pololu.com/product/2268. 

https://www.pololu.com/product/1446
https://www.pololu.com/product/1057
https://www.pololu.com/product/2268
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Figure 5.11 NEMA 17-size stepper motor 

The stepper motor driver used is TI’s DRV882514. This micro-stepping bipolar stepper 

motor driver features adjustable current limiting, over-current protection, over-

temperature protection and six micro-step resolutions. It operates from 8.2V to 45V and 

can deliver up to approximately 1.5A per phase without a heat sink or forced air flow 

(rated for up to 2.2A per coil with sufficient additional cooling). The breakout board and 

schematic design of stepper motor are illustrated in Figure 5.12. 

 

 

Figure 5.12 Breakout board and schematic design of stepper motor driver – DRV8825 

These three types of motors make up the whole climbing robot driving system. 

                                                           
14 DRV8825 Stepper Motor Driver Carrier, https://www.pololu.com/product/2133. 

https://www.pololu.com/product/2133
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5.1.4 IMU Module 

The IMU module uses MPU-915015 to acquire precision tilting angles for the tree pruning 

robot tilting control and wheel slippage control. The 9-DOF MPU-9150 is the world’s first 

9-axis motion tracking MEMS device designed for the low power, low cost, and high-

performance requirements of customer electronics equipment including smartphones, 

tablets and wearable sensors. 

The MPU-9150 breakout board provides I2C pull-up resistors so that it is easy and simple 

to communicate with Arduino Due using SCL and SDA ports. What’s more, the power of 

the MPU-9150 is supplied by Arduino Due directly since they have the same voltage level 

– 3.3V. 

 

Figure 5.13 Breakout board and schematic design of MPU-9150 

Main features of MPU-9150: 

• Tri-axis angular rate gyroscope with a sensitivity up to 131 LSB/dps and a full-

scale range of ±250, ±500, ±1000 and ±2000 dps 

• Tri-axis accelerometer with a programmable full-scale range of ±2g, ±4g, ±8g 

and ±16g 

• Tri-axis compass with a full-scale range of ±1200 uT 

• 400KHz fast mode I2C serial host interface 

• 10000g shock tolerant 

• I2C pullup resistors populated on board 

                                                           
15 “MPU-9150 Register Map and Descriptions Revision 4.0,” InvenSense Ltd. 12, 2012. http://www.invensense.com. 
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• Full chip idle mode supply current: 8 uA 

• All pins broken out to standard 0.1’’ spaced headers 

5.1.5 Communication Module 

The robot communication module consists of two parts: serial communication between 

Arduino Mega 2560 and Arduino Due; wireless communication between Arduino Due 

and PC. In terms of serial communication, the Arduino Mega can receive commands 

from Arduino Due to control the driving system and transmit robot system data to Due 

through serial communication ports. This is internal communication operated 

automatically between these two MCUs. For wireless communication, the robot 

operator can directly give commands to control the robot by PC using the XBee module16. 

On the other hand, the user can also monitor the robot climbing states and parameters 

through the PC using XBee. One thing should be noticed is the voltage compatible when 

using serial communication between Arduino Mega (5V) and Arduino Due (3.3V). Figure 

5.14 and figure 5.15 display these two communication approaches. 

 

Figure 5.14 Breakout board and schematic design of wireless communication module – XBee 

 

Figure 5.15 Serial communication between Arduino Mega and Arduino Due 

                                                           
16 XBee Zigbee RF Module-PCB Antenna, https://nicegear.nz/product/xbee-zigbee-rf-module-chip-antenna. 

https://nicegear.nz/product/xbee-zigbee-rf-module-chip-antenna
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5.2 Tree Pruning Robot Control System PCB Design 

There are some issues needed to be taken into consideration when designing the robot 

control system PCB, like radiated interference, heat dissipation, transient voltage and 

current, etc. These issues all belong to the EMI/EMC range. 

5.2.1 Radiated Interference 

In terms of radiated interference, in this tree pruning robot PCB design the buck 

converter noise and motor noise are the two main noise sources. There are many ways 

to reduce the level of radiated interference, especially during the initial design of the 

circuit board. These techniques include proper routing of tracks, proper use of ground 

planes, power supply impedance matching, and reducing logic frequency to a minimum. 

While even with the most diligent employment of good EMI/EMC circuit design practices, 

not all interference or compatibility issues can be eliminated. At this point, additional 

components can be added, allowing the circuit to comply with design and regulation 

limits for EMI/EMC [39]. 

1) Buck Converter Interference 

In the climbing robot power module, there are four step-down DC-DC converters to 

supply the 9v and 6V voltage level for MCU and servomotors respectively. These fast 

transient, compact, power management ICs offer significantly higher efficiency than 

comparable linear alternatives. Moreover, in order to allow designers to take advantage 

of smaller external inductors and ceramic capacitors, the power semiconductor 

designers have migrated to step-down converters using increasingly higher switching 

frequencies. The move to step-down converters using higher switching frequencies has 

generated another problem – input noise. If it isn’t filtered, DC-DC converter input ripple 

and noise can reach levels high enough to interfere with other devices powered from 

the same source.  

Input noise in a step-down DC-DC converter has two components. The first occurs at the 

fundamental switching frequency commonly referred to as ripple. The second noise 

component is ringing [40]. “Ringing” is a common term referring to the undesired 
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oscillation that occurs when a power semiconductor switch turns on or off in the 

presence of parasitic inductance and capacitance. Energy stored in the parasitic junction 

capacitance of the switch is released during the switching transition and rings with 

parasitic inductance coming from the stray fields of discrete power inductors and the 

wiring inductance of the PCB traces, component leads, connectors, etc. In real circuits, 

parasitic are always present, and hence all switching converters produce at least some 

ringing. This electromagnetic interference (EMI) is typically in the range of 50 to 200 

MHz, and at these frequencies PCB traces and the input and output leads act as 

unwanted antennas, resulting in both conducted and radiated noise [41]. 

To solve this issue, one effective approach is to use the ferrite beads especially when the 

impedance of the circuit board trace is insufficient as a series element for the low pass 

noise filter. Designers can increase the series impedance with a small surface mount 

ferrite bead to improve noise rejection – especially the high-frequency noise. 

2) What is ferrite bead and how to select the Proper ferrite bead 

A ferrite bead is a passive electric component that suppresses high-frequency noise in 

electronic circuits. It employs high-frequency current dissipation in a ferrite ceramic to 

build high-frequency noise suppression devices17.  

The simplest form of a ferrite bead is a conducting wire inserted through a hollow piece 

of ceramic material known as ferrite. The electromagnetic properties of ferrite allow the 

material to influence the current flowing through the conductor. The precise nature of 

this influence depends on the type of ferrite (e.g., manganese-zinc vs. nickel-zinc), and 

the properties of a particular ferrite material can be further refined via the 

manufacturing process. In many surface-mount ferrite beads, the conductor is formed 

into a coil structure, with individual windings layered between ferrite sheets. Thus, the 

electrical characteristics depend also on the details of the winding construction.  

Ferrite beads can be divided into two general categories: high-Q (resonant) beads and 

low-Q (non-resonant) beads. High-Q beads are intended for applications that require 

high levels of resonance, such as oscillators and specialized filters. In the context of 

                                                           
17 Ferrite bead, Wikipedia, https://en.wikipedia.org/wiki/Ferrite_bead. 

https://en.wikipedia.org/wiki/Ferrite_bead
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power-supply filtering, resonance needs to be minimized. Hence, in the tree pruning 

robot PCB design, the low-Q beads are used. 

In order to better understand the ferrite beads, a first-order equivalent circuit is showing 

below. 

 

Figure 5.16 Ferrite Bead Equivalent Circuit 

The inductor is placed in the center as a reminder that the predominant response of a 

ferrite bead is inductive, i.e., impedance increases with frequency. However, at some 

point (generally somewhere between 30 and 500 MHz), the parallel capacitance begins 

to dominate the inductance, and impedance then decreases with frequency. The 

relatively small parallel resistance reduces the resonance associated with the capacitor 

and inductor, such that the impedance levels off at the transition point instead of 

peaking in typical high-Q fashion. This response is evident in the following plot showing 

the measured impedance characteristics of a standard SMD ferrite bead [42]. 

 

Figure 5.17 Ferrite Bead Impedance VS. Frequency Plot 
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In figure 5.17, the black line indicates the overall impedance, which starts at Rseries, also 

known as the bead’s DC resistance. It then increases linearly during the inductive 

frequency range and levels off at 300 MHz. After that, it begins to decrease before 

leveling off at 1.1 GHz. 

The red and blue dotted lines indicate that the overall impedance is the result of two 

distinct elements, inductive reactance (XL) and frequency-dependent resistance (R). This 

brings up an important point: the equivalent circuit given above (figure 5.16) is designed 

to replicate the frequency response of the bead – it does not convey the bead’s internal 

structure. The equivalent model is helpful for understanding how a ferrite bead’s 

impedance changes with frequency and performing simulations, but primarily it is the 

ferrite material itself that determines the component’s impedance properties. This is 

important to understand because the equivalent circuit might distract you from one of 

the defining characteristics of ferrite beads: they actually dissipate high-frequency 

energy. 

The ideal inductors and capacitors do not dissipate any energy. They merely store energy, 

either in a magnetic field (inductors) or an electric field (capacitors). A resistor, on the 

other hand, takes energy out of the circuit and dissipates it as heat. Ferrite beads, unlike 

inductors, are intentionally resistive at high frequencies. This is why the above plot has 

the red dotted line labelled “R” – from about 100 MHz to 1 GHz, the bead exhibits 

significant resistive impedance, not reactive impedance. Actually, some ferrite beads 

and ferrite-core inductors are almost identical in construction, except that the ferrite 

bead uses a more “lossy” ferrite material because the manufacturer wants the bead to 

dissipate rather than store high-frequency energy. 

The key to maximizing the noise-suppression benefits of a ferrite bead is to ensure that 

the targeted noise frequencies fall within the bead’s resistive band – i.e., that portion of 

the frequency response where the resistive impedance dominates the reactive 

impedance. This is a fundamental aspect of maximizing the ferrite bead’s ability to 

suppress noise, but there are other specifications that needed to keep in mind – DC 

resistance and rated current. 



75 

 

Unlike bypass capacitors, ferrite beads are used in series with the power line, which 

means that any DC current flowing through the bead creates a voltage drop proportional 

to the DC resistance. 

A ferrite bead’s DC resistance – much less than an ohm for typical surface mount parts 

– is rarely an issue in the range of low-power ICs. However, in the case, e.g., an unusually 

high-power device could draw enough current to cause a problem. 

Rated current is not as straightforward as it seems. Indeed, if the steady state current 

through the bead is higher than the rated current, damage may occur. But there are two 

nuances that need to be aware of. First, rated current is not constant over temperature. 

Second, DC currents well below the rated maximum can degrade the bead’s 

performance because the ferrite material becomes saturated. Ferrite saturation reduces 

the bead’s peak impedance and shifts the impedance curve toward higher frequencies. 

To reduce the effects of core saturation, the bead’s rated current should be at least 50% 

higher than expected maximum current. The SMD ferrite bead (MH2029-300Y) and its 

schematic design are shown in Figure 5.18. 

 

Figure 5.18 Ferrite Bead and its schematic design 

3) Motor Electrical Noise  

One major drawback to working with motors is the large amounts of electrical noise they 

produce. This noise can interfere with sensors and can even impair the microcontroller 

by causing voltage dips on regulated power line. Large enough voltage dips can corrupt 

the data in microcontroller registers or cause the microcontroller to reset. 
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The main source of motor noise for brushed DC motor is the commutator brushes, which 

can bounce as the motor shaft rotates. This bouncing, when coupled with the inductance 

of the motor coils and motor leads, can lead to a lot of noise on the power line and can 

even induce noise in nearby lines. 

For stepper motor, the noise is mainly from the current chopping. Current chopping is 

the preferred method of driving steppers nowadays, because this method occupies less 

space, costs less and generates less heat comparing to using huge resistor. However, the 

current chopping means utilizing PWM signal to turn the H-bridge on and off 

continuously. During this process, the noise occurs. 

These motor noise (electrical noise) can be classified into two types. 

Table 5.1 motor electrical noise 

Type Unit Definition Typical Frequency 

Line Noise (conductive noise) dBuV 
Noise that travels through power 

cables and connection cables 
0.15 – 30MHz 

Radiation Noise (radio wave) dBuV/m 

Noise that is radiated from the 

source to the air and causes 

interference in TV and a radio. 

30 – 1000MHz 

There are several approaches to reduce the effects of motor noise on the robot control 

system PCB: 

• Using the bypass capacitors across power and ground of motor (figure 5.19): a 

220𝜇𝐹 capacitor and a 0.1𝜇𝐹 capacitor. The larger capacitor smooths out low-

frequency variations in the supply voltage, while the smaller capacitor more 

effectively filters out high-frequency noise on the power line. 

• Route motor and power wires away from signal lines. 

• For stepper motor, increase switching frequency and decrease stepper current. 
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Figure 5.19 Bypass Capacitors for Reducing the Motor Noise 

5.2.2 Heat Dissipation 

Another issue is thermal dissipation. Since the robot operates 3 DC motors, 3 

Servomotors and 1 stepper, the current that runs through the PCB can be up to around 

14A in the worst situation. Such a high current renders the PCB temperature rising 

sharply and even lead to the electronic components malfunctioned.  

There are several ways to cope with this problem. One is in the PCB track designing 

which means the power track should be widened. For example, the 12V track is 75 mils. 

Another way is to use more copper during the PCB manufacturing. There is a relationship 

among PCB copper thickness, current magnitude and track width which is displayed in 

table 5.2. 

Table 5.2 Relationship among Copper Thickness, Track Width and Current Magnitude for PCB design 

Copper Thickness/35 um Copper Thickness/50 um Copper Thickness/75 um 

Current (A) Track Thickness (mm) Current (A) Track Thickness (mm) Current (A) Track Thickness (mm) 

4.5 2.5 5.1 2.5 6 2.5 

4 2 4.3 2.5 5.1 2 

3.2 1.5 3.5 1.5 4.2 1.5 

2.7 1.2 3 1.2 3.6 1.2 

3.2 1 2.6 1 2.3 1 

2 0.8 2.4 0.8 2.8 0.8 

1.6 0.6 1.9 0.6 2.3 0.6 

1.35 0.5 1.7 0.5 2 0.5 

1.1 0.4 1.35 0.4 1.7 0.4 

0.8 0.3 1.1 0.3 1.3 0.3 

0.55 0.2 0.7 0.2 0.9 0.2 

0.2 0.15 0.5 0.15 0.7 0.15 
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5.2.3 Transient Voltage and Current 

Another issue needed to be solved is the transient voltage and current when designing 

the PCB. When the robot system power turns on, inevitably, there are some voltage and 

current pulses for the components and ICs on the circuit board. Without enough 

protection, these sensitive components or ICs will be damaged.  

One solution is to use the transient voltage suppressor diode (TVS Diode). The TVS diode 

is an electronic component used to protect sensitive electronics from voltage spikes 

induced on connected wires. It operates by shunting excess current when the induced 

voltage exceeds the avalanche breakdown potential. It is a clamping device, suppressing 

all over-voltages above its breakdown voltage. It automatically resets when the 

overvoltage goes away. 

When using TVS, the most important parameters are the rated working peak voltage or 

rated standoff voltage (VR), the peak pulse power dissipation (Ppp), peak impulse current 

(Ipp), and clamping voltage (Vc). The first step of selecting a TVS is to determine what the 

highest continuous peak operating voltage will be at the point of intended protection in 

the circuit. This highest operating voltage determines the rated standoff voltage of the 

TVS component. The clamping voltage is typically 60% higher than VR. The second thing 

is to select the peak pulse power dissipation. For board level designs, 400W to 600W at 

10/1000 µs or 300W to 500W at 8/20 µs are most often used [43]. The TVS diode 

(SMBJ15ALM) used in this robot is shown in Figure 5.20. 

 

Figure 5.20 Transient Voltage Suppressor Diode 
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5.3 Circuit Design Tips to Reduce EMI/EMC Problems 

As discussed above, there are several areas where good circuit design practices are 

critical to the reduction or elimination of EMI/EMC problems. The PCB layout is 

important – not only in the design but also the choice of components – directly affects 

the degree of EMI/EMC interference. Another area of concern is the circuit design of 

power supply. 

5.3.1 PCB Layout Design Tips 

• Avoid slit apertures in PCB layout, particularly in ground planes or near current 

paths. 

• Areas of high impedance give rise to high EMI, so use wide tracks for power lines 

on the trace sides. 

• Keep HF and RF tracks as short as possible and lay out the HF tracks first. 

• Avoid track stubs, as they cause reflections and harmonics. 

• When having separate power planes, keep them over a common ground to 

reduce system noise and power coupling. 

• If possible, make tracks run orthogonally between adjacent layers. 

• Do not loop tracks, even between layers, as this can form a receiving or radiating 

antenna. 

• Do not leave floating conductor areas, as they act as EMI radiators; if possible, 

connect them to ground plane [44]. 

5.3.2 Power Supply Considerations 

• Eliminate loops in the supply lines. 

• Decouple supply lines at local boundaries. 

• Place high-speed circuits close to power supply unit and slowest sections 

furthest away to reduce power plane transients. 

• Isolate individual systems where possible (especially analog and digital systems) 

on both power supply and signal lines. 
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5.3.3 Component Considerations 

• Locate biasing and pull down/up components close to driver/bias points. 

• Minimize output drive from clock circuits. 

• Decouple close to chip supply lines, to reduce component noise and power line 

transients. 

• Use low impedance capacitors for decoupling and bypassing (ceramic 

multilayer capacitors).  

The whole tree pruning robot PCB and schematic is displayed in Appendix D.  
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Chapter 6 Tree Pruning Robot Tilting Measurement 

The major part of a tree pruning robot is the climbing mechanism which determines 

whether the robot can climb up the trunk safely and stably. In reality, during the robot 

climbing process, each of the three DC motors may suffer slippage due to the complicated 

trunk surface. Therefore, even if the three wheels keep the same speed during the 

climbing procedure, the robot platform could dynamically tilt at a random direction. In 

extreme situation, if the wheel suffers constant slippage, the robot may fall to ground or 

get jammed on the trunk. Hence, the tree pruning robot tilting control strategy must be 

developed. 

Before the study and development of tilting control algorithm, the precision tilting angle 

of robot platform in real time should be obtained. There are some tilting sensor products 

on the market. They can offer filtered and optimized tilting angles directly, but the price 

of the sensor is very expensive (usually cost several thousands of US dollars). From 

economic considerations, in this robot design, the MEMS IMU sensor MPU-0150 is 

selected as the tilting sensor. In order to obtain the accurate tilting angles of the robot 

platform in real-time, two IMU data fusion algorithms are studied and compared. This 

chapter mainly focuses on the tilting measurement of robot platform while the tilting 

control strategy will be discussed in the next chapter. 

6.1 Introduction of MEMS IMU 

The IMU, or inertial measurement unit, is an electronic device that measures 

accelerations, rotation rates and possibly earth magnetic field with the use of tri-axis 

accelerometer, tri-axis gyroscope, and sometimes tri-axis magnetometer to determine 

an object’s attitude or orientation. Due to its unique characteristics, IMUs have long been 

the subject of extensive research in aerospace [45] and navigation [46] fields although its 

size was bulky initially. In recent years, with the advent of MEMS (Micro-Electro-

Mechanical-system) based IMU, the size of IMU is dramatically reduced to chip size along 

with the reduction in cost and power consumption [47]. Such a significant improvement 

in IMU made the research and applications of IMU quickly extended to many new areas, 

e.g., robotics and human motion analysis [48]. 
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One of the applications of MEMS IMU is tilt measurement (or orientation sensing), which 

has a significant role in the fields of consumer electronics, robotics and navigation. A 

typical example is smart phone and handheld electronics.  The control of menu options, 

image rotation or function selection all link to the tilt measurements [49]. In the robotics 

area, in terms of navigation robot, climbing robot, all-terrain robots etc., tilt sensing plays 

a key role in system balancing control. Michelle et al. in 2005 used a low-g MEMS 

accelerometer and trigonometric function relationship to measure the tilt of an object in 

a static environment. The result was simple and straightforward but noisy and nonlinear 

[49]. In 2013, Mark Pedley documented the mathematics of orientation using a MEMS 

three-axis accelerometer and also made an analysis on the regions of instability (gimbal 

lock) [50]. As the data from the accelerometer is in general very noisy and susceptible to 

external acceleration interference, when it is used to measure the gravitational 

acceleration, they still could not obtain accurate result in the vibrating environment (e.g. 

car or plane). Hence tilt measurement only using accelerometer is not effective enough 

though the accelerometer data is stable without drift in long term. A gyroscope offers 

angular velocities around the three axes and the signals are not susceptible to external 

forces comparing to accelerometers. Therefore, a tri-axis gyroscope and a tri-axis 

accelerometer (mutually orthogonal) based MEMS IMU seems to be a complete solution 

for tilt sensing. However, the gyroscope also has its own disadvantages that the data 

measured tends to drift because of the integration over time. In short, we can only trust 

the data from the gyroscope on a short term. Taking the advantages and disadvantages 

of gyroscopes and accelerometers into consideration, the IMU data fusion is essential for 

tilt sensing.  

In terms of IMU data fusion algorithm, the complementary filter [51]- [57] and Kalman 

filter [58]- [63] are the most widely used algorithms. They have their unique advantages 

and disadvantages [64]. Kalman filter is an iterative filter, which is efficient but high 

computational complexity and burden. The complementary filter is relatively easy and 

computational light to implement, which makes it preferred for embedded systems. This 

chapter presents a research of IMU data fusion for tilt sensing based on a 6 DOF IMU. 

The results and the comparison of the two IMU data fusion algorithms applied for 
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different scenarios are achieved through the applications of complementary filter and 

Kalman filter.  

6.2 Complementary Filter 

A complementary filter was proposed by Shane Colton [65]. For tilt sensing, the filter 

performs low-pass filtering on a low-frequency tilt estimation and the data is from the 

accelerometer while the high-pass filtering on a biased high-frequency tilt estimation is 

handled by directly integrating with the gyroscope output. The fusion of the two 

estimations gives an all-pass estimation of the orientation [51]. Obviously, the 

complementary filter takes the advantage of both accelerometer and gyroscope. On the 

short term, it uses the data from the gyroscope and the data is precise and not 

susceptible to external forces; on the long term, it relies on the data from the 

accelerometer to prevent data drift. The principle of the complementary filter is 

illustrated in figure 6.1.  
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Figure 6.1 Block diagram of complementary filter algorithm for IMU data fusion 

The goal of the low-pass filter is to only let through long-term changes, filtering out short-

term fluctuations. One way to do this is to force the changes to build up little by little in 

subsequent times through the program loop. For example, if the angle starts at zero and 

the accelerometer reading suddenly jumps to 10 degrees and stays at that level, the angle 

estimate will smoothly rise to 10 degrees without spikes. The time it takes to reach the 

full value depends on both the filter parameters and the sample rate of the code loop 

(𝑑𝑡). The high-pass filter almost does the opposite: it allows short-duration signals to pass 
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through while filtering out signals that are steady over time. This character is essential to 

cancel out the gyroscope drift in order to get an accurate estimate angle.  

The mathematical model of the complementary filter can be represented as follows. 

( ) ( )* 1 *Angle Angle GyroData dt AccData=  + + −    (6.1) 

“α” is the filter coefficient, “Angle” means the tilt angle (pitch and roll), “GyroData” and 

“AccData” represent the output of the gyroscope and accelerometer from the IMU 

respectively. Before applying the formula to calculate the angle, the data from the gyro 

and accelerometer must be zeroed and scaled.  

                                   
dt




=
 +

                                   (6.2)                                     

“𝜏” means the time constant of a filter. For a low-pass filter, the signals that are much 

longer than the time constant pass through the filter unaltered while the signals shorter 

than the time constant are filtered out. The opposite is true for a high-pass filter. “𝑑𝑡” is 

the sample period. For every time step, the gyroscope data is first integrated with the 

current angle and then combined with the low-pass data from the accelerometer. The 

filter coefficients (α and 1- α) have to add up to one, so that the output is an accurate, 

linear estimate in units that make sense [65]. 

The data processing procedure of the complementary filter in the IMU data fusion for tilt 

sensing is shown in Figure 6.2.  
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Figure 6.2 Complementary filter for tilt sensing flowchart 

The complementary filter applied in the process of IMU data fusion has to be contained 

in an infinite loop.  The pitch and roll angles are updated in every iteration with the new 

gyroscope values by means of integration over time. The filter then checks whether the 

magnitude of the force measured by the accelerometer has a reasonable value that could 

be the real g-force vector. If the value is too small or too big, it is not taken into account 

as a disturbance. Afterwards, it updates the pitch and roll angles with the gyroscope data 

by taking α of the current value and adding 1- α of the angle calculated by the 

accelerometer. This ensures the measurement is smooth, accurate and without drift. 

The complementary filter is effective and has low computation burden in terms of IMU 

data fusion, but it is not easy to tune the filter coefficient which heavily relies on personal 

experience. 

6.3 Kalman Filter 

Since Kalman filter was first published by R.E. Kalman in 1960, due to its advances in 

digital computing, the Kalman filter has been the subject of extensive research and 

applications, particularly in the area of autonomous vehicles, navigation, robotic 

systems, and human motion control [66].  



86 

 

The Kalman filter, also known as linear quadratic estimation, is an iterative algorithm 

which relies on a series of measurements observed over time. Noises in measurement 

data contribute to the error. In the IMU data fusion process, the Kalman filter takes the 

noises into account via covariance matrices and updates the matrices at each time 

interval. It estimates the state of system based on the current and previous states, which 

tends to be more precise than the measurement alone. The key of Kalman filter based 6-

DOF IMU data fusion algorithm is to find the weighted average (Kalman gain K), with 

more weight being given to the estimation with higher certainty. Such a process based 

on the accelerometer model and gyroscope model. 

6.3.1 Accelerometer Model 

An accelerometer measures all forces that are working on the object, which includes 

instantaneous linear acceleration as well as the gravitational acceleration plus some 

added bias and noise [47]. The accelerometer model can be represented as, 

                        Acc extra a ag b n =  − + +           (6.3) 

Where, 𝛼𝑒𝑥𝑡𝑟𝑎  , 𝑔, 𝑏𝑎 , and 𝑛𝑎 means external acceleration, gravitational acceleration, 

accelerometer bias and noise respectively.  

6.3.2 Gyroscope Model 

A gyroscope is used to measure the angular velocity around three mutually 

perpendicular axes. It is not easy to be affected by external interference, but it suffers 

from drift in long term.  

                      gyro g gb n = + +                            (6.4) 

Here, 𝑏𝑔 and 𝑛𝑔 are the gyroscope bias and noise. 

The Kalman filter operates by producing a statistically optimal estimation of the system 

state based upon the measurements. It needs to know the noise of the input to the filter 

called the measurement noise and the noise of the system itself called the process noise. 
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To make things easier, assume the noises are Gaussian distributed and have a 

mathematical expectation of zero. 

6.3.3 Kalman Filter for IMU Data Fusion 

Equation (6.5) and (6.6) are the standard Kalman filter formulas.                         

1k k k kx Fx Bu w−= + +                 (6.5) 

k k kz Hx v= +                                (6.6) 

𝑥𝑘 is the system state matrix at time k, which is given by: 

k

b
k

x



•

 
=  
  

                                     (6.7) 

The outputs of the filter are the angle 𝜃 and the bias 𝜃𝑏̇ based upon the measurements 

from the accelerometer and gyroscope. The bias is the amount that the gyroscope has 

drifted. F is the state transition matrix which is applied to the previous state 𝑥𝑘−1. In this 

case, 𝐹 is defined as:  

1

0 1

t
F

− 
=  
 

                              (6.8) 

𝑢𝑘  is the control input. In this case it is the gyroscope measurement in degrees per 

second at time 𝑘, which is also called the angular rate 𝜃̇. Then the state equation could 

be rewritten as: 

1 kk k kx Fx B w
•

−= + +                        (6.9) 

𝐵 is called the control matrix, which is defined as: 

0

t
B

 
=  
 

                                  (6.10) 
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This obtains the angle 𝜃  when multiplying the rate 𝜃̇  by the time ∆𝑡. Since the bias 

cannot be calculated directly based on the angular velocity the bottom of the matrix is 

set to zero. 

In Eqn. (6.5) and (6.6), the variables 𝑤𝑘 and 𝑣𝑘represent the process and measurement 

noises respectively. They are assumed to be independent of each other and with normal 

probability distributions (Gaussian white noise) [66].  

𝑤𝑘 = 𝑁(0, 𝑄𝑘)                            (6.11) 

𝑣𝑘 = 𝑁(0, 𝑅)                                (6.12) 

𝑄𝑘 is the process noise covariance matrix which represents the state estimation of the 

accelerometer and bias. If consider the estimate of the bias and the accelerometer to 

be independent, then 𝑄𝑘 is equal to the variance of the estimation of the accelerometer 

and bias. 

0

0
b

k

Q
Q t

Q






•

 
=  
  

                         (6.13) 

The 𝑄𝑘 covariance matrix depends on the current time 𝑘, so the accelerometer variance 

𝑄𝜃  and the variance of the bias 𝑄𝜃𝑏̇
 are multiplied by time∆𝑡. As the time goes, the 

process noise becomes larger since the last update of the state. The larger value set, the 

more noise in the estimation of the state. So, if the estimated angle starts to drift, the 

value of 𝑄𝜃𝑏̇
 should be increased. If the estimated angle tends to lag, the value of 𝑄𝜃 

should be decreased to make it more responsive. 

In equation (6.6), 𝑧𝑘 is the measured output. 𝐻 is the measurement matrix and is used 

to map the true state space into the observed space. The true state cannot be observed 

since the measurement is just from the accelerometer. 𝐻 is given by: 

                                 1 0H =                              (6.14) 

The measurement noise covariance 𝑅 is not a matrix. It is equal to the variance of the 

measurement noise since the covariance of the same variable is equal to its variance.  
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                     ( )varT

k k kR E v v v = =                   (6.15) 

Assume that the measurement noise is the same and does not depend on the time 𝑘: 

                               ( ) ( )var varkv v=                         (6.16) 

If the measurement noise variance 𝑣𝑎𝑟(𝑣) is set too high, the filter responds slowly as 

it trusts new measurements less. On the contrast, if the value is set too small the filter 

overshoots and is noisy since it trusts the accelerometer measurement too much.  

Therefore, the Kalman filter can be rewritten as: 

      

( )

1

1
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k k
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k k
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•
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   −    
   = + +            

 
 = +
 
 

   (6.17) 

6.3.4 Kalman Filter Implementation on IMU Data Fusion  

The implementation of Kalman filter includes two steps: predict process and update 

process.  

1) Predict Process 

In predict process, the filter first estimates the current state and the error covariance 

matrix at time k. Equation (6.18) is for the estimation of the current state based on the 

previous state and the gyroscope measurement. 

| 1 1| 1k k k k kx F x B
  •

− − −= +                          (6.18) 

 Here, 𝑥̂𝑘−1|𝑘−1  is the previous estimated state based on the previous state and the 

estimation of the states before. 𝑥̂𝑘|𝑘−1 is priori state which is the estimation of the state 

matrix at the current time k based on the previous state of the system. 𝑥̂𝑘|𝑘 is posteriori 

state which represents the estimation of the state at time k given observations up to 

and including at time k. The next step for the filter is to estimate the priori error 
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covariance matrix 𝑃𝑘|𝑘−1 based on the previous error covariance matrix 𝑃𝑘−1|𝑘−1, which 

is defined as: 

| 1 1| 1

T

k k k k kP FP F Q− − −= +                            (6.19) 

The matrix 𝑃𝑘|𝑘−1is used to estimate how much trust can be put on the current values 

of the estimated state. The smaller the values are, the more trust on the current 

estimated state. Therefore, for the 6-DOF IMU case discussed, the error covariance 

matrix P is a 2 x 2 matrix: 

00 01

10 11

P P
P

P P

 
=  
 

                                   (6.20) 

2) Update Process 

In the update process, the filter first computes the difference between the 

measurement 𝑧𝑘 and the priori state 𝑥̂𝑘|𝑘−1.   

| 1k kk ky z H x


−= −                                 (6.21) 

Then the filter calculates the innovation covariance: 

| 1

T

k k kS HP H R−= +                               (6.22) 

Eqn. (6.22) predicts how much we trust the measurement based on the priori error 

covariance matrix 𝑃𝑘|𝑘−1 and the measurement covariance matrix 𝑅. The next step is to 

calculate the Kalman gain. The Kalman gain indicates how much we trust the innovation 

and is defined as: 

1

| 1

T

k k k kK P H S −

−=                               (6.23) 

For the 6-DOF IMU case, the Kalman gain is a 2 x 1 matrix: 

0

1

K
K

K

 
=  
 

                                      (6.24) 
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Updating the posteriori estimate of the current state gives: 

| | 1k k k k k kx x K y
 

−= +                                (6.25) 

Finally update the posteriori error covariance matrix: 

( )| | 1k k k k kP I K H P −= −                             (6.26) 

The Kalman filter algorithm in terms of IMU data fusion could be summarized as 7 steps: 

Eqn. (6.18), (6.19), (6.21), (6.22), (6.23), (6.25) and (6.26). 

➢ Step 1 - Predict 
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➢ Step 2 - Predict 
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➢  Step 3 - update 
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The program flowchart of the Kalman filter in the IMU data fusion in tilt sensing is shown 

in figure 6.3. After several debugging, the following variances work perfectly for our 

MEMS IMU board (MPU-9150). 

• 𝑄𝜃(𝑄_𝑎𝑛𝑔𝑙𝑒) = 0.001 

• 𝑄𝜃𝑏̇
(𝑄_𝑔𝑦𝑟𝑜𝑏𝑖𝑎𝑠) = 0.003 

• 𝑅 = 0.03 
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Start

Set Looptime dt;

Q_angle  =  0.001;Q_gyrobias = 0.003;

R = 0.03;P_00 = P_01 = P_10 = P_11 = 0;

Predict: step 1

angle += rate * dt;

rate = newRate – bias;

Predict: step 2

Estimate the priori error 

covariance matrix P_k|k-1

Update: step 3

y = newAngle - angle

Update: step 4

S = P_00 + R

Update: step 5

Calculate Kalman gain

K_0 = P_00 / S;

K_1 = P_10 / S;

Update: step 6

Update the posteriori 

estimate of the current state.

angle += K_0 * y;

bias += K_1 * y;

Update: step 7

Update the posteriori error 

covariance matrix P_k|k

 

Figure 6.3 Kalman filter implementation flowchart for IMU data fusion 

6.4 IMU Data Fusion Experiment Result 

To investigate the behavior of Complementary filter and Kalman filter in IMU data fusion, 

MATLAB and Microcontroller based hardware were employed. The experiment is to 

evaluate the two algorithms and to find out the best suit coefficients for the two filters. 
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Arduino Uno (ATMEGA 328p)18 is used as the MCU to acquire the 6-DOF IMU data and 

run the algorithms. The IMU used in the experiment is the InvenSense’s MPU-9150, 

which offers 9-DOF (3-axis MEMS gyroscope, 3-axis MEMS accelerometer and 3-axis 

MEMS magnetometer). Only 6-DOF (gyroscope and accelerometer) is used in the 

experiment since 6-DOF data is sufficient for tilting sensing. After the raw data is 

processed by Arduino board, MATLAB drew the filtering data and compared with the 

unfiltered data obtained from the accelerometer. The angles obtained from the 

accelerometer for pitch and roll are: 

     
( )

( )

tan 2 ,

tan 2 ,

z x

z y

AccPitch a AccData AccData

AccRoll a AccData AccData

=

=
      (6.34) 

Here, 𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎand 𝐴𝑐𝑐𝑅𝑜𝑙𝑙 represent pitch and roll angle which are calculated from 

accelerometer data using anti-trigonometric function respectively. 𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑥 , 

𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑦and 𝐴𝑐𝑐𝐷𝑎𝑡𝑎𝑧 are gravitational acceleration components projected on three 

mutually perpendicular axes.  

6.4.1 Complementary Filter Experiment Result 

In the complementary filter experiment, the time constant “𝜏” and program loop-time 

is set at 0.75 and 0.03 (s) respectively. Then the complementary filter coefficient is 

calculated and α = 0.96. In the experiment, the output angles of the complementary 

filter are compared with angle 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙. The experiment consisted of static 

and dynamic test. The dynamic test can be divided into three cases: single rotation 

around x-axis (roll), single rotation around y-axis (pitch) and rotation around x-axis and 

y-axis simultaneously (pitch and roll). 

Figure 6.4 shows the static experiment result. It is obvious that the angle 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 

𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙 (𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ and 𝐴𝑐𝑐𝑅𝑜𝑙𝑙) derived from accelerometer contain a lot of noises and 

disturbances. It is hard to use such angle signal in tilting orientation system as it is 

                                                           
18  ATmega328/P datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-

ATmega328-328P_Datasheet.pdf. 

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
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vibratory and noisy. However, the filtered angles (𝐶𝐹𝑃𝑖𝑡𝑐ℎand 𝐶𝐹𝑅𝑜𝑙𝑙) through the 

complementary filter are much more stable and with less sparks and drift.  
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Figure 6.4 Complementary Filter Static Test 
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Figure 6.5 Complementary Filter Dynamic Test: Pitch 
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Figure 6.6 Complementary Filter Dynamic Test: Roll 
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Figure 6.7 Complementary Filter Dynamic Test: Pitch and Roll 

Figure 6.5 to Figure 6.7 show the outputs of the dynamic test of the complementary 

filter on IMU data fusion. Figure 6.5 and Figure 6.6 are the outcomes of the IMU rotates 

only around y-axis or x-axis. Figure 6.7 is the result that IMU rotates around x and y-axis 

simultaneously. Obviously, the filtered signal can nicely track the change trend of the 

signal derived from the accelerometer. Moreover, the signal filtered by complementary 

filter is smooth with less vibration, even some artificial shaking purposely added on the 

IMU board. When the IMU rotates around one single axis, there is almost no vibration 

on the other axis. This means there is no signal coupling happening on both axes (pitch 

and roll). Therefore, the complementary filter is efficient and reliable in IMU data fusion 

once the filter coefficient is fine tuned. 

6.4.2 Kalman Filter Experiment Result 

In the Kalman Filter IMU data fusion experiment, the filter parameters 𝑄𝜃 (Q_angle), 

𝑄𝜃𝑏̇
 (Q_gyrobias) and 𝑅 are set at 0.001, 0.003 and 0.03 respectively. And the program 

loop-time is set to 0.033s. These parameters are chosen after many trials. The same as 

in the complementary filter experiment, the 𝜃𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ  and 𝜃𝐴𝑐𝑐𝑅𝑜𝑙𝑙  ( 𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ  and 

𝐴𝑐𝑐𝑅𝑜𝑙𝑙 ) are used as the references to determine the effectiveness of the Kalman 

algorithm. The experiment also included static and dynamic tests. Figure 6.8 is the 

output of the static test while Figures 6.9 to Figure 6.11 present the dynamic results. 

Figure 6.8 shows that, in the static test, the signal filtered by Kalman filter is more stable 

than that derived from the accelerometer. However, the filtered roll signal is smoother 

than the filtered pitch signal.  
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Figure 6.8 Kalman Filter Static Test 

Figure 6.8 shows that, in the static test, the signal filtered by Kalman filter is more stable 

than that derived from the accelerometer. However, the filtered roll signal is smoother 

than the filtered pitch signal.  
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Figure 6.9 Kalman Filter Dynamic Test: Pitch 
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Figure 6.10 Kalman Filter Dynamic Test: Roll 
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Figure 6.11 Kalman Filter Dynamic Test: Pitch and Roll 

Figure 6.9, 6.10 and 6.11 are the outcomes of the Kalman filter dynamic test. Figure 6.9 

and 6.10 show the IMU board rotates only around one axis while Figure 6.11 displays the 

IMU board rotates simultaneously around two axes in different directions. In Figure 6.9 

and 6.10, the filtered signals were also able to nicely and smoothly follow the AccPitch 

and AccRoll signal even adding some artificial vibrations. And there was almost no signal 

coupling phenomenon. However, the result of “𝑘𝑎𝑙𝑅𝑜𝑙𝑙” was better than the “𝑘𝑎𝑙𝑃𝑖𝑡𝑐ℎ”. 

There were small overshoot and lagging in the filtered pitch signal. This may be caused 

by the IMU PCB board manufacturing design fault. When rotating around two axes 

simultaneously, the Kalman filter also gives smooth and fairly accurate tracking signal.  

Theoretically, the Kalman filter should have been more accurate than the complementary 

filter as it is a more complex and considerate algorithm that operates by producing a 

statistically optimal estimation of the system state based upon the measurements. It is 

an iterative process which always tries to find the statistically optimal value. However, 

the Kalman filter discussed in this case has three parameters that need to be tuned. This 

heavily increases the difficulty of the Kalman filter to achieve a more accurate result. In 

addition, the effectiveness of a Kalman filter demands computational complexity which 

requires a more powerful microcontroller. In the experiments presented, the program 

loop-time is set to 0.033s, which is the highest sample rate the Arduino ATMEGA 328p 

can handle. If the sample rate could be improved, the Kalman filter should get a better 

result. 
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6.5 IMU Date Fusion Filter Selection 

 Two IMU data fusion algorithms for tilt sensing are presented and analyzed. It is difficult 

to get an accurate tilt orientation only using accelerometer data because the signal 

derived from the inverse trigonometric function is sensitive to variation. Therefore, it 

contains vibration and cannot be used for precise tilt measurement. Gyroscope data is 

used to offset the disadvantage of data from accelerometer. However, gyroscope data 

suffers from drift on a long term. Hence filter algorithms are needed to solve such 

problems.  

 The Kalman Filter is one of the most widely used methods for tracking and estimation 

due to its optimality, tractability and robustness. It is an iterative algorithm which 

operates by producing a statistically optimal estimation of the system state based upon 

the measurements. However, under certain circumstances, it is difficult to apply due to 

its associated computation burden and relatively complicated theory. Moreover, for 

multiple state-variable situations, there are more filter parameters to be tuned. For such 

situations, complementary filter is ideal as it requires less computation and only one 

filter coefficient to be tuned, which greatly reduces the workload.  

Therefore, the complementary filter is finally chosen as the IMU data fusion algorithm 

to acquire the smooth and accurate tilting results either in the static or dynamic 

situation. It showed less sensitive to variations and no signal coupling phenomenon. 

Given a fine-tuned filter coefficient, the result of complementary filter can be more 

stable and accurate than that of Kalman filter. After the selection of IMU data fusion 

filter, the issue of robot tilting measurement in real-time is solved. The tree pruning 

robot tilting control strategy will be discussed in the next chapter. 
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Chapter 7 Tree Pruning Robot Tilting Control Using Fuzzy Logic 

This chapter presents an intelligent control strategy for this wheel-driven tree pruning 

robot tilting control during climbing procedure. There are two types of tilting scenarios 

needed to be considered, initial setting tilt and dynamic tilt. To compensate the initial 

installation tilt, a tiling fuzzy controller is specifically designed to adjust the robot 

platform to the horizontal position before climbing up. For robot dynamic tilt, which is 

mainly caused by wheel slippage during the climbing, a slippage fuzzy control system is 

developed through the control of stepper and DC motor via the IMU. These fuzzy 

controllers were designed in MATLAB Simulink and simulated in MATLAB SimMechanics. 

The simulations verify the feasibility of the robot tilting control algorithm and the 

effectiveness of the fuzzy controllers.  

7.1 Definition of Two Types of Tilt for Tree Pruning Robot 

The major part of a tree pruning robot is the climbing mechanism which determines 

whether the robot can climb up the trunk safely and stably. During the entire climbing 

process, no matter in the vertical or spiral pattern, an important issue that must be taken 

into consideration is to prevent the tilting of the robot platform. This is to guarantee the 

pruning tools installed on the platform can be kept in the desired orientation. In extreme 

situation, large tilting angle during climbing could cause the robot jammed on the trunk. 

Therefore, the tree pruning robot tilting control strategy must be developed. 

 

Figure 7.1 Top and lateral views of tree pruning robot in static situation using passive anti-falling 

mechanism 
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From the study and analysis of experimental results in robot climbing, there are two 

types of tilt required to balance: initial setting tilt and dynamic tilt. The initial setting tilt 

is caused by the passive anti-falling mechanism [67] because of the center of the gravity 

offsetting. The robot remains stationary at a certain tilting angle on the trunk utilizing 

its own weight without energy consumption (Fig. 7.2). This preset tilting angle is named 

as the initial setting tilt and illustrated in figure 2. During the climbing process, each of 

the three DC motors may suffer slippage due to the complicated trunk surface. 

Therefore, even if the three wheels keep the same speed during climbing procedure, the 

robot platform could dynamically tilt at a random direction. In an extreme situation, if 

the wheel suffers constant slippage, the robot may fall to ground or get jammed on the 

trunk. This is defined as the dynamic tilting.  

Initial Setting Tilt 

Horizontal Line 

Initial Setting Tilt 

Horizontal Line 

Initial Setting Tilt 

Horizontal Line 

 

Figure 7.2 Tree pruning robot initial setting tilt 

No matter which tilting case, to keep the robot platform horizontal, the control of the 

tilting angle of the platform is needed in real time. A MEMS based IMU module (MPU-

9150) is installed on the platform which can offer pitch, roll and yaw angle through the 

onboard accelerometer and gyroscope. In order to obtain the reliable and accurate 

tilting angle, an IMU data fusion algorithm based on complementary filter [68] is 

adopted and illustrated in detail in the last chapter.  

The pruning robot tilting control strategy can be divided into two parts. When the robot 

starts to climb up from the stationary status, the initial setting tilt control is employed 

to first make the robot platform horizontal. Once the platform tilting angle is in the pre-

defined horizontal range, the dynamic tilt control is engaged to handle the fine tilting 

tuning while climbing.  
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The study and analysis of robot climbing tests reveal that the dynamic tilt is caused 

mainly by robot wheel slippage. Therefore, dynamic tilt could be fulfilled by wheel 

slippage control. In terms of wheel slippage control, many approaches have been 

proposed and studied in both robotics and automotive fields. These methods are based 

on different techniques and technologies, e.g., torque control, dynamic-model-based or 

vision-based control, and fuzzy logic [69] - [72]. Of course, each method is best suitable 

for its own specific system due to the characteristic of the system and required sensors 

[69]. 

Fuzzy logic theory is a powerful soft computing technique to control complex and non-

linear systems based on human expert knowledge [73]. Compared to conventional 

control method, the biggest advantage of fuzzy control is that it can solve a complicated 

control problem without requiring the system’s mathematic model. For this climbing 

robot, fuzzy logic control is adopted for robot platform tilting control.  The tilting fuzzy 

controller is designed to handle the initial setting tilt while the slippage fuzzy controller 

is for the dynamic tilt.  

7.2 Tilting Fuzzy Controller 

The tilting fuzzy controller is designed to eliminate the initial setting tilt. According to 

passive anti-falling mechanism, robot mechanical structure and the IMU sensor 

mounting position, in this design the pitch angle of IMU sensor is aligned with the axis 

of lowest robot leg which is illustrated in Fig. 7.3. Under this circumstance, to balance 

the robot from stationary tilting condition, the robot only needs to control the robot 

platform’s pitch angle. Therefore, the inputs of the tilting fuzzy controller are pitch error 

and change of pitch error of robot platform from horizon position while the output is 

the lowest DC motor speed. 
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Figure 7.3 Mounting position of IMU sensor on tree pruning robot platform 

A typical fuzzy controller consists of four parts: fuzzification interface, rule-base, 

inference mechanism and de-fuzzification interface [74]. In this tilting controller design, 

a Mamdani implication method is used [75] and the block diagram of this tilting fuzzy 

control system is shown in Fig. 7.4. The essential equation of Mamdani approach using 

fuzzy logic control is shown in Eqn. (7.1). 

𝜇𝑦(𝑘) = max [𝑚𝑖𝑛 {𝜇𝑢(𝑘), 𝜇𝑟 (𝑒𝑝(𝑘), 𝑒𝑟(𝑘))}]           (7.1) 
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Figure 7.4 Block diagram of tilting fuzzy control system 

To minimize the MCU computation cost, three fuzzy subsets are assigned for each input 

e𝑝(𝑡) (𝑝𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟) and 𝑑𝑒𝑝(𝑡) 𝑡⁄  (𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟): 𝑁 - negative; 𝑍 - zero; 𝑃 - 

positive. This produced 9 rules for adjusting the lowest DC motor speed to keep the 

robot platform horizontal from initial tilting condition. The fuzzy controller output is 

classified as five membership functions: 𝑉𝑆 – very slow; 𝑆 – slow; 𝑁𝑜𝑟𝑚𝑎𝑙 – 12 rpm; 𝐹 

– fast; 𝑉𝐹 – very fast. In this design, membership functions of inputs are selected as 
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triangular and trapezoid functions while the output MFs are defined as triangular 

functions which are displayed in Figure. 7.5. 
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Figure 7.5 Membership functions of tilting fuzzy controller 

The two inputs’ universe of discourses are [-30, 30] and [-10, 10] while the universe of 

discourse of output is [6, 18]. The control rule base contains the following rules 𝑅𝑖𝑗: 

           IF (𝑒𝑝 is 𝐴𝑖) 𝐴𝑁𝐷 (𝑑𝑒𝑝(𝑡)/𝑡 𝑖𝑠 𝐵𝑗) 𝑇𝐻𝐸𝑁 (𝑈 𝑖𝑠 𝐶𝑘)       (7.2) 

For 𝑖, 𝑗, and 𝑘  = 1…5. 𝐴𝑖 , 𝐵𝑗  and 𝐶𝑘  are fuzzy subsets defined by their corresponding 

membership functions. Table 7.1 represents the fuzzy rules of this tilting fuzzy controller. 

Table 7.1. Rule table of tilting fuzzy controller 

U(t) 
ep(t) 

 N  Z P  

dep(t)/t 

 N  PB  PS NS  

 Z  PB  Z NB 

 P  PS  NS NB  

Centroid de-fuzzification is used to solve the simulation cases. However, for real 

implementation the weight average (WA) method is adopted to reduce the 
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computational complexity. The equation of de-fuzzification used WA is shown in Eqn. 

(7.3), where  𝑏𝑖 denotes the center of the membership function of the consequent of 

rule (𝑖),  𝑢𝑐𝑟𝑖𝑠𝑝 represents the conclusions of the fuzzy controller that are represented 

with the implied fuzzy sets and 𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)
 means the certainty of premise rule (𝑖) [74]. 

               𝑢𝑐𝑟𝑖𝑠𝑝 =
∑ 𝑏𝑖𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)𝑖

∑ 𝜇𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑖)𝑖
                               (7.3) 

7.3 Slippage Fuzzy Control System 

A typical problem of a wheel type tree climbing robot is the wheel slippage. During robot 

climbing, even if the three DC motors’ rotation speeds are the same, once one of the 

wheels suffers slippage, the robot platform begins to tilt. 

The slippage not only causes the whole robot climbing speed error and distance error, 

but also increases the overall energy consumption and decreases robot locomotion 

performance (dynamic tilt) [69]. In this tree pruning robot design, wheel slippage is the 

primary reason for robot dynamic tilt. To tackle this issue without extra sensors or high 

MCU computation load, the slippage fuzzy control system composed of one stepper unit 

and one IMU sensor has been developed based on experimental data collected from 

three DC motor encoders.  

The stepper and screw-nut unit play an essential role in wheel slippage control. When 

the nut of the screw-nut unit moves towards the trunk, the three wheels’ normal forces 

increase. If the friction coefficient is constant, the total friction forces between the robot 

wheels and the tree trunk increase correspondingly. Therefore, the wheel slippage 

control can be fulfilled by adjusting the step motor to control the nut position. The 

structure of the stepper and screw-nut unit is displayed in Fig. 7.6. 

As illustrated in chapter 4, to guarantee the lead screw efficiency and control accuracy 

of the stepper unit, a bearing support mechanism is adopted. It aims to overcome and 

eliminate the robot wheel module gravity force and other disturbing forces applied on 

the robot wheel that affect the servomotor module and stepper’s nut and screw unit. 
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StepperScrew-Nut UnitBearing Unit StepperScrew-Nut UnitBearing Unit

 

Figure 7.6 Tree pruning robot stepper and screw-nut unit 

According to the Robot climbing experimental data, a slippage fuzzy control system is 

developed. The inputs are the two errors of platform pitch and roll angles referencing 

to the horizontal position while outputs are the steps of the sept motor and the 

rotational speeds of the three DC motors. The block diagram of slippage fuzzy control 

system is shown in Figure. 7.7. 
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 Figure 7.7 Block diagram of slippage fuzzy control system 

The membership function of this slippage fuzzy control system is illustrated in Figure 7.8. 

Each input and output is classified as five MFs and their membership function types are 

considered as triangular ones. The universe of discourse of input is [-5, 5], for stepper 

outputs, they are [-100, 100] and [4, 20] for three DC motors. 
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Figure 7.8 Membership functions of slippage fuzzy controller 

The surface view of the slippage fuzzy controller in Simulink is shown in Figure 7.9. It 

illustrates the relationship between the controller’s two inputs and four outputs. 

 

Figure 7.9 Slippage fuzzy controller surface view in Simulink 
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7.4 Tilting Control System Block Diagram 

The overall tree pruning robot tilting control system block diagram is illustrated in Figure. 

7.10. In this control flow chart, microcontroller Arduino Due plays a host computer role. 

It employs a complementary filter to obtain the stable and accurate tilting data by 

distilling and fusing the raw pitch and roll data from IMU. The tilting fuzzy control and 

slippage fuzzy control are also operated on this MCU. Except Arduino Due, one Arduino 

Mega is employed as the slave computer to actuate the robot driving systems and return 

feedbacks according to the commands from Arduino Due. The communication between 

Arduino Due and Mega relies on the serial communication (UART). 
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Figure 7.10 Block diagram of robot tilting control system 

7.5 Simulation Results of Robot Tilting Control 

The two fuzzy controllers are designed in MATLAB Simulink, which is shown in Figure. 

7.11. To verify the effectiveness of the tilting fuzzy control system, it is imported into 

the MATLAB SimMechanics and simulated with the robot model using robot physical 

climbing data. The block diagram of slippage fuzzy control system with climbing robot in 

MATLAB SimMechanics is displayed in Figure. 7.12. 
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Figure 7.11 Tilting fuzzy controller and slippage fuzzy controller in MATLAB Simulink 

 

Figure 7.12 Slippage fuzzy control system and climbing robot in MATLAB SimMechanics 
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The simulation results of slippage fuzzy control system are displayed in Figure. 7.13 and 

7.14, which illustrate the tilting differences of robot in pitch and roll angles during robot 

climbing procedure. The orange-color line represents the robot system using slippage 

fuzzy controller while the blue line without fuzzy system.   

 

Figure 7.13 Tree pruning robot pitch angle comparison in MATLAB SimMechanics simulation 

 

Figure 7.14 Tree pruning robot roll angle comparison in MATLAB SimMechanics simulation 

As shown in Figure. 7.13 and 7.14, during robot climbing process, without slippage fuzzy 

control, the robot suffers tilting issue (blue line). There is a drift from the horizontal 

position. However, when the robot employs the slippage fuzzy control, the situation is 

significantly improved (orange line).  
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The robot utilizes the slippage fuzzy control method to adjust the three DC motors and 

the stepper according to the tilting angle obtained from the physical climbing data. After 

2 seconds, the pitch and roll angle of climbing robot is fluctuating at a small amplitude 

around zero degree which means the robot climbs up horizontally. RMSE is used as the 

performance index. With a RMSE value of 1.046 for pitch angle and 2.317 for roll angle. 

7.5 Robot Tilting Control Conclusion 

Two fuzzy controllers are designed to solve the tilting problem of wheel-driven tree 

climbing robot. The tilting fuzzy controller is used to tackle the initial presetting tilt while 

the slippage fuzzy control system is developed to control and eliminate the dynamic tilt 

during robot climbing process. Both fuzzy controllers are developed in MATLAB Simulink 

and verified with the robot model in MATLAB SimMechanics. The simulation results 

confirm that the slippage fuzzy control system is feasible and effective to solve the robot 

climbing tilting problem. 

However, this research still remains work for further study. For example, the specific 

implementation of these two tilting fuzzy controllers in tree climbing robot control 

system which requires the fine tuning of fuzzy controller coefficients according to 

different climbing environment and climbing morphologies. 
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Chapter 8 Tree Pruning Robot Longitudinal Wheel Slip Control 

Using Dynamic Neural Networks 

The control of wheel slip is a challenging problem due to the complex and nonlinear 

dynamics of tire-surface interaction. When the wheel slip is not limited in its optimally 

stable zone, for wheel-driven tree climbing robots, the desired tire-trunk longitudinal 

force cannot be achieved, which not only causes distance error, but also increases 

overall energy consumption and decreases the climbing performance. In this research, 

a new approach based on dynamic neural networks (DNN) and direct inverse control 

(DIC) were employed for improving the tree climbing robot longitudinal wheel slip 

control. This control strategy is fulfilled based on the dynamic adjustment of the 

stepper’s lead screw thrust (or steps) according to the wheel slip stable zone constraints. 

Robot wheel slip is obtained using online wheel slip estimation method which is derived 

from wheel speed errors and verified through offline wheel slip estimation. The dynamic 

neural network has been used for modelling of a nonlinear relationship between the 

tree climbing robot’ stepper lead screw thrust and the longitudinal wheel slip during the 

vertical climbing procedure. It provided preconditions for control of the stepper lead 

screw thrust based on the wheel slip change. 

8.1 Introduction 

The physically manufactured tree pruning robot testing prototype is previously 

illustrated in chapter 4. Its mechanical construct is depicted in Figure. 8.1. To obtain high 

climbing speeds, wheel mechanism is adopted. The robot driving system has three legs 

evenly distributed under the platform. These legs consist of the driving mechanism 

which supports the entire pruning robot. Each leg is composed of four major parts: servo 

motor, DC motor, linkage, and wheel unit. In addition to these parts, one leg is equipped 

with a stepper and a screw-nut unit as shown in Figure. 8.2. 
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Figure. 8.1 Mechanical construction of the tree pruning robot 
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Figure. 8.2 Climbing robot leg module and stepper screw-nut unit 

This step motor together with the screw-nut unit is the primary mechanism that adjusts 

the diameter of the circle constructed by the three robot wheels to suit different trunk 

sizes. In this design, according to the dimension of the screw-nut unit and robot tire 

sidewall (120×60mm), the trunk diameter that the robot can climb up ranges from 120 

to 160 mm [76]. Furthermore, during the climbing process, the stepper can adjust the 

normal forces between the robot wheels and the tree trunk through the screw-nut 

mechanism. This holding force adjustment plays a key role in the robot wheel slippage 

control. The other two legs are fixed legs with a wheel against the tree trunk without 

installing step motors. 
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From the robot physical climbing tests on a rod, it is found that for 10 seconds, the actual 

climbing distance is about 42 cm which is smaller than the target 75.36 cm (12 rpm) 

mainly due to robot wheel slippage [76]. Wheel slip is a typical problem for wheeled tree 

or pole climbing robots in the estimation of climbing distance. During the robot climbing 

process, when the applied DC motor tractive force exceeds the level of maximum 

longitudinal tire adhesion available at the tire-trunk surface, the wheel slip occurs. The 

slippage not only enlarges the distance error, but also increases the overall energy 

consumption and decreases the climbing performance of the robot. Owing to the 

complicated trunk surface condition, three robot wheels have different friction 

coefficients. Therefore, during the climbing process, if the robot holding force is constant, 

the three longitudinal wheel forces are dynamic changing. In the extreme situation, if 

the robot wheel suffered serious slippage, it may have the chance to fall to the ground.  

Therefore, to ease this situation and guarantee the robot climbing up the trunk quickly 

and stably, the wheel longitudinal slip should be regulated at its optimum value in order 

to generate the maximum longitudinal adhesion. In this chapter, an approach based on 

dynamic neural networks has been employed for improving the tree climbing robot 

longitudinal wheel slip control. This control strategy is fulfilled based on the dynamic 

adjustment of the stepper’s lead screw thrust and three DC motors’ velocity errors 

according to the wheel slip stable zone constraints and robot platform tilting angles. 

Robot wheel slip is estimated from the experimental test data and difference of three 

wheels’ angular velocities during climbing. A nonlinear relationship between the tree 

climbing robot’s stepper lead screw thrust and the longitudinal wheel slip during the 

vertical climbing procedure was modelled which provides preconditions for control of 

the stepper steps based on the wheel slip change. The proposed controller can also 

dynamically adjust the tractions of three wheels according to the wheel slip and finally 

improve robot climbing performance. 

8.2 Research Status of Wheel Slip Control 

In the last ten years, wheel slip control has been studied extensively. Numerous 

approaches have been proposed, not only within the robotics community, but also more 

in the automotive industry. For instance, the active safety systems like ABS, ESP in 
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passenger cars have been broadly studied and applied. Many advanced wheel slip 

control technologies are also proposed and developed.  

A. Harifi et al [77] present a sliding mode controller for wheel slip control based on a 

two-axle vehicle model. Important considered parameters for vehicle dynamic include 

two separated brake torques for front and rear wheels as well as longitudinal weight 

transfer caused by the acceleration and deceleration. Integral switching surface was 

utilized to reduce the chattering effects. Simulation results show the success of integral 

switching surface in elimination of chattering side effects and by high performance of 

the controller. 

Velimir Ćirović and co-workers [78-79] proposed an approach based on dynamic neural 

networks to improve the vehicle longitudinal wheel slip control. This approach is based 

on dynamic adaptation of the brake actuation pressure, during a braking cycle, according 

to the identified maximum adhesion coefficient between the wheel and road. The brake 

actuated pressure was adjusted on the level which provides the optimal longitudinal 

wheel slip versus the brake actuated pressure selected by a driver, the current vehicle 

speed, load conditions, the brake interface temperature and the current value of the 

wheel slip. A nonlinear functional relationship between the brake pressure and wheel 

slip was modelled to offer preconditions for the wheel slip control. 

Lei Yuan et al [80] describes a new slip control system for electric vehicles equipped with 

four in-wheel motors, based on nonlinear model predictive control (nonlinear MPC) 

scheme. To ensure vehicle safety, wheel slip stable zone is considered as time-domain 

constraints of the nonlinear MPC. Besides, the motor output torque is limited by the 

motor maximum torque which varies with motor angular velocity and battery voltage, 

so the motor maximum output torque limitation is considered as system time-varying 

constraints. The effectiveness of the proposed controller is verified in the off-line con-

simulation environment of AMESim and Simulink, and a rapid control prototyping 

platform based on FPGA and dSPACE is completed to evaluate the real-time functionality 

and computational performance of the nonlinear MPC controller. 
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P. K. Pranav et al [81] designed a microcontroller based automatic wheel slip control 

system for a 2WD tractor to replace the inefficient draft control system. The new system 

measures wheel slip under field conditions and generates commands for depth 

adjustment if the wheel slip falls outside the desired range. Wheel slip was calculated 

using the actual and theoretical speeds of tractor obtained by measuring the rotational 

speed of front and rear wheels, respectively. The performance data indicated a 

significant reduction in fuel consumption per hectare and gain in tractive efficiency with 

slip control system versus the existing draft control system. 

In robotic areas, especially for the wheel mobile robots, wheel slip control is also studied 

extensively. Daisuke Chugo et al [82] developed a holonomic mobile system which is 

capable of running over the step. In order to realize the high mobile performance during 

step climbing, a new plural wheel control method based on wheel slip estimation is 

proposed to reduce wheel slippage for maximizing wheel traction. The key idea is the 

estimation of wheel slippage comparing with the loads and rotation velocities of all 

actuated wheels and using this result for wheel control of the vehicle for reducing wheel 

slippage. The controller can adjust control tractions of plural wheels when the wheel 

begins to slip and improve the mobile performance of the vehicle. 

W. Chonnaparamutt and H. Kawasaki [30] developed a slippage control system based on 

experimental data collected from encoders and a motion capture system to cope with 

wheel slip without spending extra sensors or high processing load. The slippage control 

system composed of two fuzzy modules, namely the trajectory estimator and velocity 

controller. The control system applied the cross-coupling control technique by employing 

the estimated velocity from the estimator as a part of an input for the velocity controller 

of four wheels. In this way, a simple yet effective slippage control system was designed. 

P. Lamon et al [83] presented a quasi-static modelling of a six-wheeled robot with a 

passive suspension mechanism to select the optimal torques considering the system 

constraints: maximal and minimal torques, positive normal forces. The aim of this 

research is to limit wheel slip and to improve climbing capabilities. The proposed 

modelling and optimization were applied on a Shrimp rover. 
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Besides, there are many others’ wheel slip control techniques and approaches available 

in different application areas [84-89]. These proposed wheel slip methods are based on 

several techniques, e.g. torque control, vision-based or dynamic-model-based control, 

sliding mode control, fuzzy logic and neural networks. These approaches give impressive 

results for regulating or moderating the wheel slippage. However, most methods are 

suitable for each specific system owing to the characteristic of the system and required 

sensors. For this three-wheeled tree climbing robot wheel slip control, taking the 

available MCU computation resources and affordable sensors into consideration, the 

neural network is adopted as wheel slip control method. Moreover, the control of wheel 

slip during climbing process is a challenging task due to nonlinear dynamics between the 

robot longitudinal climbing force and the steps of stepper, followed by uncertainty and 

dynamic varying of the trunk parameters such as the friction coefficient and trunk 

diameter. In this occasion, neural network is more suitable and competent for such a 

complicated task.  

8.3 System Modelling and Problem Statement 

In order to design a slip control law for wheeled tree climbing robot, a nonlinear slip 

control system model based on robot climbing dynamics is developed in this section, 

which mainly consists of robot climbing dynamics, tyres, wheel motors and stepper. 

Basically, a comprehensive tree climbing robot model that includes all relevant 

characteristics of the robot (both longitudinal and lateral dynamics) should be 

considered together. However, this paper only focuses on the influence of slip control 

system on the robot’s longitudinal (or vertical) dynamic performance, and in order to 

deal with the slip control issue easily, the assumptions and neglections are made to study 

the robot dynamics in longitudinal direction alone, including: weight transfer and lateral 

wheel slip are not considered. The symbols in modelling procedure and the related 

physical meanings are listed in Table 8.1. 
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Table 8.1   Tree Pruning Robot Nomenclature 

Symbol Description 

𝑀 Robot mass 

𝑣, 𝑣̇, 𝜔, 𝜔̇ Robot velocity, robot acceleration, wheel angular velocity, wheel angular 

acceleration  

𝐹𝑥 , 𝐹𝑥1, 𝐹𝑥2, 𝐹𝑥3 Robot wheel longitudinal force 

𝐺 Robot gravity force 

𝐹𝑟𝑜𝑙𝑙  Wheel rolling resistance 

𝐽𝑖 Moment of inertia of robot wheel 

𝑇𝑚𝑖, 𝑇𝑀 Tractive torque of robot wheel motor 

𝑅 

𝑇𝑟𝑖, 𝑇𝑟 

𝑇𝐺  

            𝑇𝐹 

            𝐹𝑠 

𝜇 

𝑁 

𝐹𝑙𝑒𝑎𝑑 

            𝑓𝑠 

𝑁𝑠 

𝑑 

             𝑙 

            𝑇𝑠 

            𝑣𝑠 

            𝜔𝑠 

            𝜂 

            𝐸𝑟  

            𝐸𝑡  

            𝐷 

𝜃 

            𝛿 

            𝑛 

Wheel rolling radius 

Wheel rolling resistance torque 

Robot gravity torque 

Robot wheel longitudinal torque 

Thrust from stepper lead screw 

Trunk friction coefficient 

Wheel resultant normal force 

Lead screw actuate force 

Stepper thread friction force coefficient 

Stepper thread normal force 

Stepper thread diameter 

Stepper thread lead 

Stepper actuate torque 

Stepper nut linear velocity 

Stepper lead screw angular velocity 

Stepper efficiency 

Stepper rotational kinetic energy 

Stepper translational kinetic energy 

Stepper nut translation distance 

Stepper lead screw rotation angle 

Stepper step angle 

Stepper steps 

8.3.1 Slip control system model 

1. Robot dynamic model 
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Since this research mainly focuses on the influence of slip control on the robot’s 

longitudinal dynamic performance, the robot dynamics model adopted here mainly 

contains the robot longitudinal motion and the rotational movement of the three wheels. 

According to Newton’s law, the motion equations of the robot are shown as follows. 

a) ROBOT LONGITUDINAL MOVEMENT 

𝑀𝑣̇ = 𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥3 − 𝐺 − 𝐹𝑟𝑜𝑙𝑙    (8.1) 

As shown in Fig. 8.3, 𝐹𝑥1, 𝐹𝑥2, 𝐹𝑥3 are the tyre longitudinal forces of the three wheels. 
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Figure. 8.3 Robot dynamics during vertical climbing 

 According to the mechanical construction of tree climbing robot in Fig. 8.1, to illustrate 

the dynamic model more easily and clearly, the wheel connected with a stepper unit is 

selected as the tire dynamic model which is displayed in Fig. 8.4. 

b) THREE WHEEL’S ROTATION MOVEMENT 

𝐽𝑖𝜔̇𝑖 = 𝑇𝑚𝑖 − 𝐹𝑥𝑖𝑅 − 𝑇𝑟𝑖 ;     𝑖 = 1, 2, 3   (8.2) 
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Where R is rolling radius of the wheel, 𝑇𝑚𝑖 is wheel i's motor output torque, 𝑇𝑟𝑖 is wheel 

i's rolling resistance torque.  
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Figure. 8.4 Robot wheel dynamics during vertical climbing 

2. Wheel motor modelling 

𝑇𝑀 = 𝑇𝐹 + 𝑇𝐺 + 𝑇𝑟   (8.3) 

𝑇𝑀 is the whole robot wheel torque required for three DC motors during climbing. To 

enable the robot climbing the trunk, the three-wheel tractive torques need to overcome 

the robot gravity, tire longitudinal force and wheel rolling resistance. During the climbing 

process, assuming the wheel rolling resistance and gravity force are constant and other 

disturbances are neglected. When the wheel motor tractive torque exceeds the wheel 

longitudinal force, wheel slip occurs. In fact, the robot wheel slip is inevitable since the 

three wheels’ longitudinal forces are dynamically fluctuating in the climbing procedure. 

The reason for this phenomenon is the complex trunk surface condition. In this robot 

climbing case, one effective way to deal with this problem is utilizing the dynamic 

adjustment wheel normal force to compensate the longitudinal force. 

3. Tyre force modelling 

The longitudinal tyre force 𝐹𝑥 is often modelled by the relation: 

𝐹𝑥 = 𝑓(𝜆, 𝐹𝑠) = 𝜇𝐹𝑠   (8.4) 
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That is, by a function that depends linearly on the thrust force 𝐹𝑠 from the stepper lead 

screw and nonlinearly on the wheel slip: 

𝜆 =
𝑅𝜔−𝑣

𝑅𝜔
  (8.5) 

Differentiating Eqn. (8.5) with respect to time gives the derivative form: 

𝜆̇ =
𝑅𝜔̇(1−𝜆)−𝑣̇

𝑅𝜔
   (8.6) 

From the study of vehicle tyre dynamic characteristics in the automobile industry, the 

typical relationships between longitudinal slip 𝜆  and the friction coefficient are 

illustrated in Fig. 8.5 [90]. It demonstrated that if the longitudinal slip is small, the 

relationship between the longitudinal force and slip is approximately linear. But with a 

further increase of the slip, the longitudinal force reaches a maximum at the certain 

value of the slip specified by tire-road adhesion and is saturated beyond that point [85]. 

That means as the increase of the slip, the longitudinal force decreases. In this tree 

climbing case, the dynamic behavior of the robot is nonlinear due to wheel slip. The 

robot wheel normal force (thrust force from stepper) as well as the trunk coefficient of 

friction strongly affect the tire longitudinal force’s behavior. 
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Figure. 8.5 Typical relation between friction coefficient and longitudinal wheel slip [109] 
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To climb up the trunk fast and stably, the robot three-wheel longitudinal slip should be 

controlled at the optimal level within the stable zone [84]. Meanwhile, the robot wheel 

can obtain the maximum longitudinal tractive force 𝐹𝑥 with this optimal wheel slip value 

according to Figure. 8.5.  

However, taking the investment of sensors and measurement accuracy into 

consideration, for many wheeled mobile or climbing robots, it is difficult to acquire the 

wheel slip directly in real time. To tackle this issue, two types of wheel slip estimation 

methods are adopted in this paper: off-line and on-line wheel slip estimation. This off-

line approach utilized the experimental data from the physical robot climbing test to 

estimate the robot wheel slip. This method can be adopted as a reference for the online 

wheel slip estimation. 

In general, when the robot climbs up the trunk, all three wheels don’t begin to slip at 

the same time. If one wheel starts to slip, its rotation velocity is different from the setting 

value (12 RPM). The rotation velocities of each wheel are derived from the encoder of 

each DC motor. Therefore, comparing with velocity error 𝑒𝑖 of each wheel, the system 

can estimate wheel slippage [82]. In this paper, this type of wheel slip estimation 

method is defined as on-line wheel slip estimation since the robot can realize the wheel 

slip in real time during the climbing process. 

𝑒𝑖 = |𝜔𝑟𝑒𝑓 − 𝜔𝑖|, 𝑖 = 1, 2, 3   (8.7) 

Where 𝜔𝑟𝑒𝑓 is robot wheel setting angular velocity (12 RPM) and 𝜔𝑖 is actual rotation 

velocity.  

Besides, for this tree climbing robot, the tilting angle of the robot platform (from IMU 

sensor) can be used as an alternate reference for this online wheel slip estimation 

method.  

4. Stepper modelling 

As previously discussed, from the robot vertical climbing tests [76], it can be found that 

owing to the diverse and complicated tree surface, the robot suffers wheel slip. To solve 
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this issue and limit the slip in its optimally stable zone without extra sensors, one stepper 

and lead screw-nut unit are implemented. Another function of this stepper and screw-

nut unit is to prevent the robot from falling to the ground which is defined as active anti-

falling mechanism in [76]. As shown in Fig. 8.1, when the stepper motor moves towards 

the trunk, the corresponding robot wheel normal force increases. Consequently, this 

influences the robot wheel longitudinal force and wheel slip. To study the nonlinear 

relationship between stepper steps and wheel longitudinal force, the stepper model is 

given as follows. 

a) STEPPER LEAD SCREW FORCE ANALYSIS 

When the stepper moves to the trunk, to illustrate the stepper model clearly and easily, 

the forces act on the lead screw can be calculated by “unwrapping” one revolution of a 

thread which is shown in Fig. 8.6. One edge of the thread forms the hypotenuse of a 

right triangle while its base is the circumference of the thread diameter circle and the 

height is the lead. 𝛼 is the lead angle of the thread. 𝐹𝑙𝑒𝑎𝑑 is the force to actuate the lead 

screw while 𝑓𝑠 is the thread friction force coefficient. 

∑ 𝐹𝑥 = 𝐹𝑙𝑒𝑎𝑑 − 𝑁𝑠𝑠𝑖𝑛𝛼 − 𝑓𝑠𝑁𝑠𝑐𝑜𝑠𝛼 = 0   (8.8) 

∑ 𝐹𝑦 = −𝐹𝑠 − 𝑓𝑠𝑁𝑠𝑠𝑖𝑛𝛼 + 𝑁𝑠𝑐𝑜𝑠𝛼 = 0  (8.9) 

According to Eqn. (8.9) and (8.10),  

𝐹𝑙𝑒𝑎𝑑 =
𝐹𝑠(𝑠𝑖𝑛𝛼+𝑓𝑠𝑐𝑜𝑠𝛼)

𝑐𝑜𝑠𝛼−𝑓𝑠𝑠𝑖𝑛𝛼
   (8.10) 

Dividing the numerator and denominator of Eqn. (8.10) by 𝑐𝑜𝑠𝛼  and according to 

equation 𝑡𝑎𝑛𝛼 = 𝑙 𝜋𝑑⁄  , it can get: 

𝐹𝑙𝑒𝑎𝑑 =
𝐹𝑠(𝑙 𝜋𝑑⁄ +𝑓𝑠)

1−(𝑓𝑠𝑙 𝜋𝑑⁄ )
   (8.11) 

Hence, to overcome the axially dynamical thrust 𝐹𝑠 , the correspondingly required 

actuate stepper torque is: 
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𝑇𝑠 =
𝐹𝑠𝑑

2
(

𝑙+𝜋𝑓𝑠𝑑

𝜋𝑑−𝑓𝑠𝑙
)   (8.12) 
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Figure. 8.6 Force analysis of stepper 

b) STEPPER LEAD SCREW DYNAMIC ANALYSIS 

When the stepper lead screw rotates, the nut connected with robot wheel moves. 

Through the screw-nut unit, the rotational motion is converted into the translational 

motion which is illustrated in Fig. 8.7. During this motion conversion process, according 

to conservation of energy, the rotational energy 𝐸𝑟 is converted to translational energy 

𝐸𝑡 with efficient 𝜂 : 

𝐸𝑟𝜂 = 𝐸𝑡   (8.13) 

𝐹𝑠𝑣𝑠 = 𝑇𝑠𝜔𝑠𝜂   (8.14) 

If this process happens in time 𝛥𝑡, it can get: 

𝐹𝑠𝑣𝑠𝛥𝑡 = 𝑇𝑠𝜔𝑠𝜂𝛥𝑡   (8.15) 

𝐹𝑠𝐷 = 𝑇𝑠𝜃𝜂   (8.16) 

Since the stepper screw lead is 𝑙  (mm/rev), then 𝐿 = 𝑙
2𝜋⁄  (mm/rad). Hence, the 

transform from rotation motion to linear motion, it can get: 

𝐷 = 𝐿𝜃;  𝜃 = 𝑛𝛿    (8.17) 
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Where 𝐷  is stepper nut translational distance, 𝜃  is lead screw rotation angle, 𝑛  is 

stepper steps and 𝛿 is stepper step angles. 

𝐹𝑠𝐷 = 𝑇𝑠𝑛𝛿𝜂   (8.18) 

𝐹𝑠 ≤
𝑇𝑠𝑚𝑎𝑥𝑛𝛿𝜂

𝐷
   (8.19) 
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Figure. 8.7 Stepper dynamic model 

During the lead screw rotating process, the stepper thrust 𝐹𝑠 gradually increase since 

the distance between the wheel and trunk is reducing and the corresponding pressure 

is increasing. According to Eqn. (8.19), the maximal thrust 𝐹𝑠𝑚𝑎𝑥that the stepper can 

offer is the value when the stepper activate torque reaches its maximum 𝑇𝑠𝑚𝑎𝑥  with 

step 𝑛𝑚𝑎𝑥.  

Therefore, the wheel longitudinal force 𝐹𝑥 can be rewritten as: 

𝐹𝑥 = 𝑓(𝜆, 𝐹𝑠) = 𝑓(𝜆, 𝑔(𝑛))   (8.20) 

That means the wheel longitudinal force 𝐹𝑥 can be expressed by stepper step 𝑛 instead 

of stepper thrust 𝐹𝑠. 

8.3.2 Control problem statement 

Based on this tree climbing robot dynamic model, the following control objectives 

should be considered in the slip controller design. 
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1. To ensure the robot climb up the trunk fast and stably, according to the analysis 

of wheel longitudinal force 𝐹𝑥, the wheel longitudinal slip should be controlled 

at the optimal level within the stable zone based on the stepper steps. 

2. Robot three wheels’ speed errors between the actual speed and setting value 

should be in the desired range. 

3. Under the premise of safety, using higher climbing speed with low power 

consumption. 

In order to fulfil these control objectives, firstly, the wheel slip is calculated using off-

line method according to the robot physical climbing data [76]. The three wheels’ slip 

are shown in Fig. 8.8, Fig. 8.9 and Fig. 8.10, respectively. From time 3, the robot’s 

climbing speed reaches its setting value (12 rpm). It can be seen from these three figures 

the robot wheels suffer slippage (λ>0.2) during the climbing process when the stepper 

step is set as 𝑛. The highest slip is around 52% which occurred on wheel 3. 

 

Figure. 8.8 Robot wheel 1 slip 

 

Figure. 8.9 Robot wheel 2 slip 
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Figure. 8.10 Robot wheel 3 slip 

Fig. 8.11 displays the three robot wheel speed errors between the actual wheel climbing 

speed and setting value (12 RPM) during the climbing process with a constant stepper 

step 𝒏. It illustrates the wheel velocity changing level owing to the wheel slip when robot 

reaches its setting speed from time 3. As previously discussed, this wheel speed error 

can be used as on-line wheel slip estimation. Comparing Fig.8.11 with Fig. 8.8, Fig. 8.9 

and Fig. 8.10, it can be found that the online wheel slip estimation almost matches the 

offline wheel slip estimation which is derived from the robot wheel velocity errors. The 

correlation between the offline and online wheel slip estimation is displayed in Table 8.2 

which demonstrates that the online wheel slip estimation method (wheel speed errors) 

can reflect the real wheel slip in real time using the wheel speed errors during the 

climbing process. 

 

Figure. 8.11 Robot wheel speed error between the actual value and setting value (12 RPM) 
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Table 8.2 Correlation between offline and online wheel slip    

 Wheel slip 
𝝀𝟏VS. Wheel 
speed 𝒆𝟏 

Wheel slip 
𝝀𝟐VS. Wheel 
speed 𝒆𝟐 

Wheel slip 
𝝀𝟑VS. Wheel 
speed 𝒆𝟑 

𝑅2 0.73 0.659 0.896 
RMSE 1.02 1.17 1.05 

 

8.4 Dynamic neural network controller design 

Due to the high nonlinearity and complexity between the robot wheel slip and wheel 

longitudinal force (or stepper steps) during the climbing process, wheel slip control 

creates a need for advanced control methods for better controlling. Hence, an intelligent 

dynamic adjusting of the stepper steps VS. robot wheel slip change by dynamic neural 

networks is proposed. This provided an intelligent control of stepper’s steps in terms of 

providing the maximum climbing effectiveness and maintaining the robot wheel slip 

within the optimal level. Dynamic neural networks have demonstrated to be an effective 

method for solving complex nonlinear functions and time series issues19 [91].  

The control scheme of the dynamic neural networks in the robot wheel slip control is 

shown in Figure. 8.12. Considering the computational capacity of the robot MCU, the 

simple supervised control and direct inverse control are implied in this wheel slip control 

and combined in a feedback loop. The main components of the intelligent control 

configuration are the dynamic inverse neural network model and the dynamic neural 

network controller, shown in Figure. 8.12. For this research project, the dynamic 

artificial neural network (ANN) controller was designed for intelligent adjusting the 

stepper steps to achieve desired level of robot wheel slip. Its neural network has the 

same structure as the inverse dynamic neural model which enables a transfer of the 

weight matrix from the inverse dynamic ANN model to the ANN controller at every time 

step. This enables the ANN controller to deal with a dynamic change of desired wheel 

slip and to perform good and stable predictions. The dynamic ANN model was designed 

to approximate the robot wheel slip in real time through the wheel speed errors during 

robot climbing. It runs faster than the dynamic ANN controller that ensures the 

                                                           
19 MATLAB Version R2015b, Help: “Neural Network Time Series Prediction and Modelling”.         
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achievement of well-adjusted weight coefficients. Besides, the ANN model can also 

update its own weight coefficients online using the error signal. That means if a large 

disturbance or uncertainty occurs in the climbing process, the large error signal is fed 

back to the ANN model to adjust its weight coefficients in order to remain the system 

stable [97].  

Dynamic Inverse
ANN Model Wheel Speed Errors

Dynamic ANN 
Controller

-

Desired Wheel 
Speed Errors

Stepper steps suggested 
by ANN controller

Applied 
stepper steps

Error
(update weights)

Stepper steps suggested 
by ANN model

Adjusted
 weights

 

Figure. 8.12 Dynamic neural network control scheme of climbing robot longitudinal wheel slip              

8.5 Tree pruning robot wheel slip control experiment and result  

In this paper, the time series NARX (nonlinear autoregressive network with exogenous 

inputs) feedback neural network [91] is chosen as the ANN controller. The NARX is a 

recurrent dynamic network with feedback connections enclosing several layers of the 

network. Its model is based on the linear ARX model which is commonly used in time 

series modelling. The defining equation for the NARX model is: 

𝒚(𝒕) = 𝒇(𝒚(𝒕 − 𝟏), 𝒚(𝒕 − 𝟐), … , 𝒚(𝒕 − 𝒏𝒚), 𝒖(𝒕 − 𝟏), 𝒖(𝒕 − 𝟐), … , 𝒖(𝒕 − 𝒏𝒖))   (8.21) 

Where the next value of the dependent output signal 𝑦(𝑡) is regressed on previous 

values of the output signal and previous values of an independent (exogenous) input 

signal20. 

In this research, the main objective was to keep the robot wheel slip at the optimal level 

to obtain the maximum longitudinal wheel force according to the wheel speed error 

                                                           
20 MATLAB Version R2015b, Help: “Design Time Series NARX Feedback Neural Networks”. 
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during climbing. Firstly, the NARX neural network of the controller is trained using the 

physical robot climbing data through MATLAB ANN tool box. The networks structure is 

displayed in Fig. 8.13 which includes one input layer, one hidden layer and one output 

layer. The hidden layer has ten neurons and the transfer functions are the “tansig” and 

“purelin” between network layers. The Levenberg-Marquardt learning algorithm was 

used in the neural networks training process. 

 

Figure. 8.13 NARX neural network in MATLAB 

The training results are shown from Figure.8.14 to 8.17, which represent the neural 

network training performance, training regression, training time series response, and 

training input-error cross correlation. 

 

Figure. 8.14 Neural network training performance 
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Figure. 8.15 Neural network training regression 

 

Figure. 8.16 Neural network training time series response 

 

Figure. 8.17 Neural network training input-error cross correlation 
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For the design of inverse dynamic ANN model, it is based on dynamic feedforward time 

delay neural network with one hidden layer containing ten neurons. 

After the training, the wheel slip dynamic neural network control scheme is applied on 

the physical robot climbing test on a rod which is shown in Figure. 8.18. The length of 

the test rod is 1.6 m and the diameter is 122.5 mm. The total mass of the tree pruning 

robot is around 6.8 Kg [95]. 

 

Figure. 8.18 Robot wheel slip control test on a rod 

 After the implementation of the dynamic neural networks control scheme in the robot 

physical climbing test, the robot three wheels’ slip is displayed in Figure. 8.19, 8.20 and 

8.21, which is based on the experimental climbing data. Figure. 8.22 illustrates the robot 

three wheels’ speed errors during the test. 

 

Figure. 8.19 Robot wheel 1 slip after the implementation of dynamic neural network control 

0
0.1
0.2
0.3
0.4
0.5
0.6

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sl
ip

 λ

Time (sec)

Wheel 1 Slip (offline)



134 

 

 

Figure. 8.20 Robot wheel 2 slip after the implementation of dynamic neural network control 

 

Figure. 8.21 Robot wheel 3 slip after the implementation of dynamic neural network control 

 

Figure. 8.22 Robot wheel speed error during the test (dynamic neural network control) 

Comparing Fig. 8.8-8.10 with Fig. 8.19-8.21, it can be seen that the robot wheel slip has 

improved significantly after the implementation of the dynamic neural network control 
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process. This is also can be reflected in Figure. 8.22 that illustrated the robot wheel 

speed errors in the climbing test. From time 3, the robot reaches the setting speed (12 

RPM) and most of the wheel errors fluctuate under the error 3. Table 8.3 shows the 

percentage of robot wheel slip outside the stable zone between robot climbing using 

dynamic neural network control (DNNC) and without it. 

Table 8.3 Wheel slip outside the stable zone between robot climbing using DNNC and without DNNC    

Percentage (%) Wheel slip 𝜆1 Wheel slip 𝜆2 Wheel slip 𝜆3 

Robot climbing without DNNC 17.86 30.71 35 

Robot climbing with DNNC 1.43 1.43 2.14 

 

 

Figure. 8.23 Stepper lead screw adjustment based on dynamic neural network control 

Figure. 8.23 shows the robot stepper steps adjustment according to the dynamic neural 

network control system during the climbing process. In this test, the stepper motor has 

a 1.8° step angle (200 steps/revolution) and the nut moves 8 mm per full revolution, 

which allows for a linear resolution of 0.04 mm per step. To relieve the MCU 

computation burden and reduce the stepper noise interference, the stepper steps in this 

research are set as discrete which are 175, 180, 185, 190, 194, 197, 200, respectively.  
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8.6 Tree pruning robot wheel slip control conclusion  

For wheeled tree or pole climbing robot, wheel slip is an inevitable issue during the 

climbing process due to the unsmooth and irregular tree or pole surface. To solve this 

complex and nonlinear problem, a wheel slip control system in longitudinal direction 

based on dynamic neural network is proposed in this chapter. The control strategy is 

fulfilled through the dynamic adjustment of the stepper’s steps based on the 

longitudinal wheel slip optimal level (λ≤0.2). The wheel speed error is used as the 

estimation of wheel slip during the climbing and the input of the dynamic neural 

network controller. The dynamic neural network controller is trained based on the 

previous experimental climbing data and then used to predict the longitudinal wheel slip 

according to the wheel speed errors during the physical climbing test. The test result 

shows that the wheel slip is almost all within the stable zone which verified the 

effectiveness of this dynamic neural network longitudinal wheel slip control method. 
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Chapter 9 Conclusions and Future Works 

In this research, a novel three-wheeled climbing robotic system is developed, and a 

testing physical model is built, which is capable of autonomously climbing tree or pole 

to perform specific tasks like tree pruning. The mechanical structure of this robot is 

designed in SolidWorks and simulated in MATLAB SimMechanics. The initial first 

climbing robot prototype weights around 8.76 Kg which equipped with two steppers. 

However, for the first model, some drawbacks needed to overcome such as heavyweight, 

robustness and flexibility for various trunk diameter. To solve these issues, an optimized 

climbing robot system that only relies on one stepper to achieve the anti-falling and anti-

jamming functionality was designed and built. The optimized climbing robot weights 6.8 

Kg and possesses three other mechanisms: screw-nut unit, servomotor module and 

bearing support mechanism. To perform the tree pruning work, each robot wheel is 

installed a servomotor module. The robot uses these modules to change the climbing 

morphology. Except vertical climbing, the robot can also climb the trunk in a spiral 

pattern by turning the wheels at given angles. The bearing support mechanism consists 

of one ball bearing, bearing shaft, bearing linkage and guild rail. Its function is to 

overcome the robot wheel module gravity force and other disturbing forces that affect 

the servomotor module and stepper’s screw-nut unit. This guarantees the lead screw 

efficiency and control accuracy of the step motor. 

The main feature of this tree climbing robot is that it implements two sets of anti-falling 

strategies: passive and active anti-falling mechanisms. The passive anti-falling 

mechanism uses only friction forces and robot gravity force to maintain a hold on the 

tree trunk. The primary point of achieving this feature is to let the center of the mass of 

the robot offset from the center of the tree. In terms of active anti-falling mechanism, it 

is fulfilled through the stepper’s screw-nut unit during climbing process. When the 

stepper moves towards the trunk, the normal forces on the wheel-trunk contact areas 

increases. So, do the longitudinal wheel tractive forces. With such an active anti-falling 

mechanism, it guarantees that the robot can climb up the trunk safely and steadily 

without slip or falling. This function is elaborated in detail in chapter 8 in the form of 

wheel slip control using dynamic neural networks. The types of driving mechanism of 
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this robot are determined by the outcome of the robot mechanical analysis and the 

SimMechanics simulation. During the physical climbing test, the average vertical 

climbing speed is around 48.02 mm/s when the DC motor rotation speed is set at 12 

RPM. The trunk diameter that the robot can climb up ranges from 120 to 160 mm. the 

maximum load that the robot can take is approximately 2.1 kg at the setting speed of 12 

RPM for the DC motors. 

During the physical climbing test, the robot suffers tilting issue. To solve this problem, 

first of all, the accurate tilting angle of the robot platform in real time during the climbing 

process should be obtained. In this robot design, a MEMS based IMU sensor (MPU9150) 

was installed to acquire the accurate tilting information. Two IMU data fusion methods 

(complementary filter and Kalman filter) were studied and compared using the robot 

tilting angles. Finally, the complementary filter was chosen as the IMU data fusion 

method owing to its less computation complexity and only one filter coefficient to be 

tuned. In this research, there are two types of tilt required to balance: initial setting tilt 

and dynamic tilt. The initial setting tilt is caused by the passive anti-falling mechanism 

because of the center of the gravity offsetting. The robot remains stationary at a certain 

tilting angle on the trunk utilizing its own weight without energy consumption. This pre-

set tilting angle is named as the initial setting tilt. During the climbing process, each of 

the three DC motors can suffer slippage due to the complicated trunk surface. Therefore, 

even if the three wheels keep the same speed during climbing procedure, the robot 

platform could dynamically tilt at a random direction. To solve these two types of tilt, a 

tilting fuzzy controller and one slippage fuzzy control system were designed and 

implemented. When the robot employs this fuzzy control system, the pitch and roll 

angles of the robot platform are limited in the desired range. 

In fact, the robot wheel slip issue not only incurs robot platform tilting but also causes 

some other problems like distance error, more overall energy consumption and worse 

robot climbing performance. To avoid this, the wheel slip must be controlled in its 

optimally stable zone during the robot climbing. However, the control of wheel slip is a 

challenging problem due to the complex and nonlinear dynamics of tire-surface 

interaction. In this research, a new approach based on dynamic neural networks (DNN) 
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and direct inverse control (DIC) were employed for improving the tree climbing robot 

longitudinal wheel slip control. This control strategy is fulfilled based on the dynamic 

adjustment of the stepper’s lead screw thrust (or steps) according to the wheel slip 

stable zone constraints. Robot wheel slip is obtained using online wheel slip estimation 

method which is derived from wheel speed errors and verified through offline wheel slip 

estimation. The dynamic neural network has been used for modelling of a nonlinear 

relationship between the tree climbing robot’ stepper lead screw thrust and the 

longitudinal wheel slip during the vertical climbing procedure. It provided preconditions 

for control of the stepper lead screw thrust based on the wheel slip change. 

9.1 Works for future research 

This tree pruning robot research still remains work for further research. These works 

mainly focus on the following aspects. The first one is the robot hardware design and 

configuration. For example, during the passive anti-falling test, when the robot remains 

stationary on the testing rod without power consumption, sometimes the robot wheel 

rolls back if the servomotor turns the wheel not at a proper angle (DC motor back drive). 

To eliminate this problem, a worm-gear DC motor could be considered. Furthermore, 

there are many ways to improve the robot climbing performance such as a further 

reduction in the weight of the robot by using varied materials or reconstructing the 

robot platform frame and adding intelligent sensing, adding tree pruning or inspection 

tools on the robot platform and tested on real trees. 

Another work that needs to be done in the future is the wheel slip control. For instance, 

in this research, the longitudinal wheel slip controller is trained only using the specific 

rod climbing data, which means it may not work well at other surface conditions like 

trees. Furthermore, due to the computation capacity of the MCU, the wheel slip is 

estimated using wheel speed error during the robot climbing. For more accurate wheel 

slip measurement, in the future the more professional robot speed measurement 

equipment is needed instead of the speed sensor. And the lateral wheel slip control of 

the robot wheel during climbing will be investigated and analyzed in the future.  
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9.2 Main contributions and publications 

➢ In this research, a novel tree climbing robotic system is designed and the motion 

simulation has also conducted. Its kinematic characteristics have been analyzed. 
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mechanism and dynamic tilt. 
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for Tilting Measurement: Comparison of Complementary and Kalman Filter 

Based Data Fusion,” IEEE 10th Conference on Industrial Electronics and 
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➢ To climb the trunk safely and stably, the robot longitudinal wheel slip is studied, 

and a wheel slip controller is designed based on dynamic neural networks. This 

control strategy is fulfilled based on the dynamic adjustment of the stepper’s 

lead screw thrust (or steps) according to the wheel slip stable zone constraints. 

1. Pengfei Gui, Liqiong Tang and Subhas Mukhopadhyay, 2018, “Wheel-Driven 

Climbing Robot Longitudinal Wheel Slip Control Using Dynamic Neural 

Networks,” submitted and under review, Journal of Dynamic Systems, 
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Appendix A – Program Codes of Tree Pruning Robot 

Tree Pruning Robot Tilting Fuzzy Control 

Arduino Mega: 

#include <Servo.h> 

#include<AccelStepper.h> 

 

 

/***************************Serial Communication*****************/ 

const char startOfNumberDelimiter = '<'; 

const char endOfNumberDelimiter   = '>'; 

volatile int t = 0; 

 

/*************************DC Motor variables definition*********/ 

 

#define U2A1            8                       // U2INA motor pin 

#define U2B1            9                       // U2INB motor pin 

#define U3A1            10                      // U3INA motor pin 

#define U3B1            11                      // U3INB motor pin 

#define U4A1            12                      // U4INA motor pin 

#define U4B1            13                      // U4INB motor pin 

#define U2PWM           5                       // U2 PWM motor pin    

#define U3PWM           6                       // U3 PWM motor pin    

#define U4PWM           7                       // U4 PWM motor pin                                

#define U2encodA      2                        //U2 encoder A pin 

#define U2encodB      14                       //U2 encoder B pin 

#define U3encodA      3                        //U3 encoder A pin 

#define U3encodB      15                       //U3 encoder B pin 

#define U4encodA      21                       //U4 encoder A pin 

#define U4encodB      16                       //U4 encoder B pin 

 

/***********************Servo Motor Definition********************/ 

Servo servo1; 

Servo servo2; 

Servo servo3; 

int pos1 = 90; 

int pos2 = 95; 

int pos3 = 105; 

 

/***********************System Running Time Control********************/ 

int sys_run_timer = 0; 

 

/***************************** Stepper Setup **********************************/ 

 

AccelStepper stepper1(1,24,25); 

int stepperPin = 24; 

int dirPin = 25; 

boolean step_dir; 

int step_count = 0; 

int step_mid = 0; 

 

/***********************power switch******************************/ 

 

//#define Vpin            0                       // battery monitoring analog pin 

#define U2Apin            0                       // U2 motor current monitoring analog pin 

#define U3Apin            1                       // U3 motor current monitoring analog pin 

#define U4Apin            2                       // U4 motor current monitoring analog pin 

#define Apin              3                       // System current 

#define PowerOn           22                      // Power Switch On Pin, High switch on; Low switch off 

#define CURRENT_LIMIT   20000                     // high current warning 

//#define LOW_BAT         10000                   // low bat warning 

 

 

/***********************PID loop Time********************/ 

#define LOOPTIME        60                     // PID loop time 

 

/***********************Current Filter********************/ 

#define NUMREADINGS     10                      // samples for Amp average 

long readings[NUMREADINGS]; 

long readings_2[NUMREADINGS]; 

long readings_3[NUMREADINGS]; 

long readings_4[NUMREADINGS]; 

 

 

/***********************System Loop Time********************/ 

unsigned long lastMilli = 0;                    // loop timing  

unsigned long lastMilliPrint = 0;               // loop timing 

 

/***********************3 DC Motor Definition********************/ 

//int speed_req = 12;                            // speed (Set Point) 

int DC1,DC2,DC3;                                 // speed (from fuzzy control) 

int speed_act2 = 0;                              // speed (actual value) 

int speed_act3 = 0;                              // speed (actual value) 

int speed_act4 = 0;                              // speed (actual value) 

int PWM_val2 = 0;                                // (25% = 64; 50% = 127; 75% = 191; 100% = 255)   Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096) 

int PWM_val3 = 0;                                // (25% = 64; 50% = 127; 75% = 191; 100% = 255)   Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096) 

int PWM_val4 = 0;                                // (25% = 64; 50% = 127; 75% = 191; 100% = 255)   Arduino Due: (25% = 1024; 50% = 2048; 75% = 3072; 100% = 4096) 

//int voltage = 0;                                // in mV 

long current2 = 0;                                // in mA 

volatile long count2 = 0;                        // rev counter 
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long current3 = 0;                                // in mA 

volatile long count3 = 0;                        // rev counter 

long current4 = 0;                                // in mA 

volatile long count4 = 0;                        // rev counter 

 

 

/***********************Whole System Current********************/ 

long current = 0; 

 

 

/***********************PID Control papameter********************/ 

float Kp =   .4;                                // PID proportional control Gain 

float Kd =  1.0;                                // PID Derivitave control gain 

 

/***************************** system parameter setup *****************************************/ 

 

void setup() { 

  //analogReference(EXTERNAL);                                                                                            // Current external ref is 3.3V 

  Serial.begin(115200); 

  Serial1.begin(115200); 

  while(!Serial){}; 

  while(!Serial1){}; 

 

   

/***********************initialize readings to 0********************/   

  for(int i=0; i<NUMREADINGS; i++)   readings[i] = 0;   

  for(int i=0; i<NUMREADINGS; i++)   readings_2[i] = 0; 

  for(int i=0; i<NUMREADINGS; i++)   readings_3[i] = 0; 

  for(int i=0; i<NUMREADINGS; i++)   readings_4[i] = 0; 

 

 

/***********************DC motor********************/   

  pinMode(U2A1, OUTPUT); 

  pinMode(U2B1, OUTPUT); 

  pinMode(U3A1, OUTPUT); 

  pinMode(U3B1, OUTPUT); 

  pinMode(U4A1, OUTPUT); 

  pinMode(U4B1, OUTPUT); 

  pinMode(U2PWM, OUTPUT); 

  pinMode(U3PWM, OUTPUT); 

  pinMode(U4PWM, OUTPUT); 

  pinMode(PowerOn, OUTPUT); 

  pinMode(U2encodA, INPUT_PULLUP);  

  pinMode(U2encodB, INPUT_PULLUP);  

  pinMode(U3encodA, INPUT_PULLUP); 

  pinMode(U3encodB, INPUT_PULLUP); 

  pinMode(U4encodA, INPUT_PULLUP); 

  pinMode(U4encodB, INPUT_PULLUP); 

//  digitalWrite(U2encodA, HIGH);                                                                                           // turn on pullup resistor 

//  digitalWrite(U2encodB, HIGH); 

//  digitalWrite(U3encodA, HIGH);                                                                                           // turn on pullup resistor 

//  digitalWrite(U3encodB, HIGH); 

//  digitalWrite(U4encodA, HIGH);                                                                                           // turn on pullup resistor 

//  digitalWrite(U4encodB, HIGH); 

  attachInterrupt(0, rencoder2, FALLING); 

  attachInterrupt(1, rencoder3, FALLING); 

  attachInterrupt(2, rencoder4, FALLING); 

  delay(2); 

 

  analogWrite(U2PWM, PWM_val2); 

  digitalWrite(U2A1, HIGH); 

  digitalWrite(U2B1, LOW); 

  analogWrite(U3PWM, PWM_val3); 

  digitalWrite(U3A1, HIGH); 

  digitalWrite(U3B1, LOW);   

  analogWrite(U4PWM, PWM_val4); 

  digitalWrite(U4A1, HIGH); 

  digitalWrite(U4B1, LOW);  

 

 

/***********************Servo motor********************/ 

  servo1.attach(44); 

  delay(1); 

  servo2.attach(45); 

  delay(1); 

  servo3.attach(46); 

  delay(10); 

 

  servo_dir_90(); 

  //servo1.write(pos1); 

  //delay(2); 

  //servo2.write(pos2); 

  //delay(2); 

  //servo3.write(pos3); 

  //delay(2); 

 

 

/***********************Serial Display********************/ 

    Serial.print("DC1: ");     

    Serial.print("  RPM2: ");                          

    Serial.print("  U2PWM: ");  

    Serial.print("  DC2: ");                         

    Serial.print("  RPM3: ");   

    Serial.print("  U3PWM: ");     

    Serial.print("  DC3: ");            

    Serial.print("  RPM4: ");                          

    Serial.print("  U4PWM: ");              

    Serial.print("  2CS: ");               

    Serial.print("  3CS: ");                

    Serial.print("  4CS: ");                 

    Serial.print("  3 DC current:  ");        
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    Serial.println("     total current:   ");      

 

     

/***********************Step motor********************/  

  stepper1.setMaxSpeed(2000); 

  stepper1.setAcceleration(800); 

  pinMode(dirPin,OUTPUT); 

  pinMode(stepperPin, OUTPUT); 

  stepper1.moveTo(-400); 

 

  delay(2000); 

 

  lastMilli = millis(); 

} 

 

 

 

/********************************** main loop ***********************************/  

 

void loop() { 

   

  //stepper_climb_init(); 

  

    getParam();                                                  //check keyboard 

 

    getFuzzy();                                                  //DC1, DC2, DC3 

 

    DC_motor_pid();                                              //DC motor pid control 

     

    printMotorInfo();                                            //display data 

 

     

 

   if(sys_run_timer != 250)   

    servo_dir_90(); 

 

 

 

    if(sys_run_timer == 250) 

    { 

       

      anti_falling_DC_servo_stepper(); 

      digitalWrite(PowerOn, LOW);  

      sys_run_timer = 0; 

      Serial.println("************************** System Time Run Out *************************** "); 

      //Serial.println(); 

     } 

 

} 

 

 

void stepper_climb_init()   { 

    

   while(abs(stepper1.distanceToGo()) > 0) 

   { 

     stepper1.run(); 

    } 

 

} 

 

 

/************************ get DC1 DC2 DC3 from Arduino Due *********************************************/  

void getFuzzy() { 

 

   

  if(Serial1.available()) 

  processInput(); 

  

 }  

 

 

void processInput () 

 { 

 static long receivedNumber = 0; 

 static boolean negative = false; 

  

 byte c = Serial1.read (); 

  

 switch (c) 

   { 

      

   case endOfNumberDelimiter:   

     if (negative)  

       processNumber (- receivedNumber);  

     else 

       processNumber (receivedNumber);  

 

   // fall through to start a new number 

   case startOfNumberDelimiter:  

     receivedNumber = 0;  

     negative = false; 

     break; 

      

   case '0' ... '9':  

     receivedNumber *= 10; 

     receivedNumber += c - '0'; 

     break; 

      

   case '-': 

     negative = true; 

     break; 
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   } // end of switch   

 }  // end of processInput 

 

 

void processNumber (const long n) 

 { 

 

  switch(t){ 

 

case 0: 

  DC1 = n; 

  //Serial.print(n); 

  //Serial.print('\t'); 

  t++; 

  break; 

 

case 1: 

  DC2 = n; 

  //Serial.print(n); 

  //Serial.print('\t'); 

  t++; 

  break; 

 

case 2: 

  DC3 = n; 

  //Serial.println(n); 

  //Serial.print('\t'); 

  //Serial.print('\t'); 

  t = 0; 

  break; 

/*   

case 3: 

  Serial.println(n); 

  i = 0; 

  break; 

*/  

} 

  

 }  // end of processNumber 

 

  

/*********************************** DC motor pid control ****************************************************/  

void DC_motor_pid(){ 

   

    if((millis()-lastMilli) >= LOOPTIME)    

  {                                                                                                                        // enter tmed loop 

    getMotorData();                                                                                                        // calculate speed, volts and Amps 

    PWM_val2 = updatePid2(PWM_val2, DC1, speed_act2);                                                                // compute PWM value 

    PWM_val3 = updatePid3(PWM_val3, DC2, speed_act3);                                                                // compute PWM value 

    PWM_val4 = updatePid4(PWM_val4, DC3, speed_act4);                                                                // compute PWM value 

    analogWrite(U2PWM, PWM_val2);                                                                                          // send PWM to motor 

    analogWrite(U3PWM, PWM_val3);                                                                                          // send PWM to motor 

    analogWrite(U4PWM, PWM_val4);                                                                                          // send PWM to motor 

    sys_run_timer = sys_run_timer + 1; 

    lastMilli = millis(); 

  } 

   

  } 

 

 

/************************************* servo motor control *********************************************/  

void servo_dir_90()   { 

 

    servo1.write(pos1); 

    servo2.write(pos2); 

    servo3.write(pos3); 

} 

 

 

/************************** stop DC motor and rotate servo motor *****************************************/  

void anti_falling_DC_servo_stepper()  { 

   

    digitalWrite(U2A1,LOW); 

    digitalWrite(U2B1,LOW); 

    digitalWrite(U3A1,LOW); 

    digitalWrite(U3B1,LOW); 

    digitalWrite(U4A1,LOW); 

    digitalWrite(U4B1,LOW); 

    for(int i = 0; i < 50; i++) 

    { 

    servo1.write(30); 

    servo2.write(170); 

    servo3.write(170); 

    delay(1); 

    //stepper1.moveTo(-200); 

    //while(stepper1.distanceToGo() != 0)  

    // stepper1.run(); 

    } 

        

} 

 

 

/********************************** get DC motor data *************************************************/  

void getMotorData()  {                                                                                                     // calculate speed, volts and Amps 

static long countAnt2 = 0;                                                                                                 // U2 last count 

static long countAnt3 = 0;                                                                                                 // U3 last count 

static long countAnt4 = 0;                                                                                                 // U4 last count 

 

  speed_act2 = int(((count2 - countAnt2)*(60.0*(1000.0/LOOPTIME)))/(16*102.083));                                          // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev   

mei fei zhong zhuan de quan shu 
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  countAnt2 = count2;                   

  current2 = int(analogRead(U2Apin) * 4.882 / 130.00 * 1000.00);                                                           // motor current - output: 130mV per Amp 

  current2 = digital_smooth_2(current2, readings_2);                                                                           // remove signal noise 

   

  speed_act3 = int(((count3 - countAnt3)*(60.0*(1000.0/LOOPTIME)))/(16*102.083));                                          // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev   

mei fei zhong zhuan de quan shu 

  countAnt3 = count3;                   

  current3 = int(analogRead(U3Apin) * 4.882 / 130.00 * 1000.00);                                                           // motor current - output: 130mV per Amp 

  current3 = digital_smooth_3(current3, readings_3);                                                                           // remove signal noise 

 

  speed_act4 = int(((count4 - countAnt4)*(60.0*(1000.0/LOOPTIME)))/(16*102.083));                                          // 16 pulses X 102 gear ratio = 1632 counts per output shaft rev   

mei fei zhong zhuan de quan shu 

  countAnt4 = count4;                   

  current4 = int(analogRead(U4Apin) * 4.882 / 130.00 * 1000.00);                                                           // motor current - output: 130mV per Amp 

  current4 = digital_smooth_4(current4, readings_4);                                                                           // remove signal noise 

 

  current = int((analogRead(Apin) * 4.882 - 2500.0) / 136.0 * 1000.0); 

  current = digital_smooth(current, readings); 

 

} 

 

 

/*********************************** DC motor1 pid ******************************************/  

int updatePid2(int command2, int targetValue2, int currentValue2)   {                                                     // compute PWM value 

float pidTerm2 = 0.0;                                                                                                     // PID correction 

int error2=0;                                   

static int last_error2=0;                              

  error2 = abs(targetValue2) - abs(currentValue2);  

  pidTerm2 = (Kp * error2) + (Kd * (error2 - last_error2));                             

  last_error2 = error2; 

  return constrain(command2 + int(pidTerm2), 0, 255); 

} 

 

 

/****************************************** DC motor2 pid ***********************************/  

int updatePid3(int command3, int targetValue3, int currentValue3)   {                                                    // compute PWM value 

float pidTerm3 = 0.0;                                                                                                    // PID correction 

int error3=0;                                   

static int last_error3=0;                              

  error3 = abs(targetValue3) - abs(currentValue3);  

  pidTerm3 = (Kp * error3) + (Kd * (error3 - last_error3));                             

  last_error3 = error3; 

  return constrain(command3 + int(pidTerm3), 0, 255); 

} 

 

 

/******************************** DC motor3 pid **********************************************/  

int updatePid4(int command4, int targetValue4, int currentValue4)   {                                                  // compute PWM value 

float pidTerm4 = 0.0;                                                                                                  // PID correction 

int error4=0;                                   

static int last_error4=0;                              

  error4 = abs(targetValue4) - abs(currentValue4);  

  pidTerm4 = (Kp * error4) + (Kd * (error4 - last_error4));                             

  last_error4 = error4; 

  return constrain(command4 + int(pidTerm4), 0, 255); 

} 

 

/******************************** Serial print Motor info ****************************************/  

void printMotorInfo()  {                                                                                              // display data 

  if((millis()-lastMilliPrint) >= 300)   

  {                      

                lastMilliPrint = millis(); 

                Serial.print(DC1);                              Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(speed_act2);                       Serial.print('\t');   //Serial.print('\t'); 

                Serial.print(PWM_val2);                         Serial.print('\t');   //Serial.print('\t'); 

                Serial.print(DC2);                              Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(speed_act3);                       Serial.print('\t');   //Serial.print('\t'); 

                Serial.print(PWM_val3);                         Serial.print('\t');   //Serial.print('\t'); 

                Serial.print(DC3);                              Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(speed_act4);                       Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(PWM_val4);                         Serial.print('\t');   //Serial.print('\t'); 

                Serial.print(current2);                         Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(current3);                         Serial.print('\t');  // Serial.print('\t'); 

                Serial.print(current4);                         Serial.print('\t'); 

                Serial.print(current2 + current3 + current4);   Serial.print('\t');     Serial.print('\t');   //Serial.print('\t'); 

                Serial.println(current); 

  //  Serial.print("   Stepper_Pos:  ");       Serial.println(step_count*0.04); 

    if ((current2 + current3 + current4) > CURRENT_LIMIT)                

    { 

      Serial.println("********** 3 DC Motors Exceed CURRENT_LIMIT ***********");   

      Serial.println(); 

      digitalWrite(PowerOn, LOW); 

    } 

    if ( current > 14000)                                                  

    {  

      Serial.println("********** System Current Limit *********"); 

      Serial.println(); 

      digitalWrite(PowerOn, LOW);     

    } 

    //if (voltage > 1000 && voltage < LOW_BAT)   Serial.println("*** LOW_BAT ***");                 

   

  } 

    

} 

 

 

/************************************ interrupt 1, 2 3 **************************************************/  

void rencoder2()  {                                                                                                 // pulse and direction, direct port reading to save cycles 

  //if(PINJ & 0b00000010)        count2 ++; 

  if (digitalRead(U2encodB) == HIGH)    count2++;                                                                   // if(digitalRead(encodPinB1)==HIGH)   count ++; 

  else                     count2--;                                                                                // if (digitalRead(encodPinB1)==LOW)   count --; 
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} 

 

 

void rencoder3()  {                                                                                                 // pulse and direction, direct port reading to save cycles 

  //if(PINJ & 0b00000001)        count3 ++; 

  if (digitalRead(U3encodB) == HIGH)    count3++;                                                                   // if(digitalRead(encodPinB1)==HIGH)   count ++; 

  else                     count3--;                                                                                // if (digitalRead(encodPinB1)==LOW)   count --; 

} 

 

 

void rencoder4()  {                                                                                                 // pulse and direction, direct port reading to save cycles 

  //if(PINH & 0b00000010)        count4 ++; 

  if (digitalRead(U4encodB) == HIGH)    count4++;                                                                   // if(digitalRead(encodPinB1)==HIGH)   count ++; 

  else                     count4--;                                                                                // if (digitalRead(encodPinB1)==LOW)   count --; 

} 

 

 

/************************** get command from serial: p+ start the motor ***********************************/  

int getParam()  { 

char param, cmd; 

  if(!Serial.available())    return 0; 

  delay(2);                   

  param = Serial.read();                                                                                           // get parameter byte 

  if(!Serial.available())    return 0; 

  cmd = Serial.read();                                                                                             // get command byte 

  Serial.flush(); 

  switch (param) { 

     

    case 'v':                                                                                                       // adjust speed 

      if(cmd=='+')  { 

        DC1 += 5; 

        DC2 += 5; 

        DC3 += 5; 

        if(DC1>100)   DC1=100; 

        else if(DC2>100) DC2=100; 

        else if(DC3>100) DC3=100; 

      } 

      if(cmd=='-')    { 

        DC1 -= 5; 

        DC2 -= 5; 

        DC3 -= 5; 

        if(DC1<0)   DC1=0; 

        else if (DC2<0) DC2=0; 

        else if (DC3<0)  DC3=0; 

      } 

      break; 

    

    case 'd':                                                                                                      // adjust direction 

      if(cmd=='+'){ 

        digitalWrite(U2A1, HIGH); 

        digitalWrite(U2B1, LOW); 

        digitalWrite(U3A1, HIGH); 

        digitalWrite(U3B1, LOW); 

        digitalWrite(U4A1, HIGH); 

        digitalWrite(U4B1, LOW);         

      } 

      if(cmd=='-')   { 

        digitalWrite(U2A1, LOW); 

        digitalWrite(U2B1, HIGH); 

        digitalWrite(U3A1, LOW); 

        digitalWrite(U3B1, HIGH); 

        digitalWrite(U4A1, LOW); 

        digitalWrite(U4B1, HIGH);         

      } 

      break; 

    

    case 'o':                                                                                                     // user should type "oo" 

      if(cmd == 'o') 

     { 

      digitalWrite(U2A1, LOW); 

      digitalWrite(U2B1, LOW); 

      digitalWrite(U3A1, LOW); 

      digitalWrite(U3B1, LOW); 

      digitalWrite(U4A1, LOW); 

      digitalWrite(U4B1, LOW); 

      //speed_req = 0; 

       

     }       

      break; 

   

    case 's': 

      if(cmd=='s') 

      { 

        digitalWrite(U2A1,HIGH); 

        digitalWrite(U2B1,HIGH); 

        digitalWrite(U3A1,HIGH); 

        digitalWrite(U3B1,HIGH); 

        digitalWrite(U4A1,HIGH); 

        digitalWrite(U4B1,HIGH);         

        //speed_req = 0; 

      } 

      break; 

 

    case 'a': 

      if(cmd == '+') 

      { 

        pos1 += 20; 

        pos2 += 20; 

        pos3 += 20; 

      } 

      if(cmd == '-') 



148 

 

      { 

        pos1 -= 20; 

        pos2 -= 20; 

        pos3 -= 20; 

      } 

      break; 

 

    case 'b': 

        if(cmd == '+') 

        { 

          step_dir = true; 

          step_count += 25; 

          stepper1(step_dir,step_count); 

          } 

         if(cmd == '-') 

         { 

          step_dir = false; 

          step_count -= 25; 

          stepper1(step_dir,step_count); 

          } 

          break; 

 

    case 'p': 

      if(cmd == '+') 

      { 

       digitalWrite(PowerOn, HIGH); 

      } 

      if(cmd == '-') 

      { 

       digitalWrite(PowerOn, LOW); 

      } 

      break;       

       

    default:  

      Serial.println("???"); 

    } 

} 

 

 

/*************************************** current signal smooth *********************************************/  

long digital_smooth(long value, long *data_array)  {                                                             // remove signal noise 

static int ndx=0;                                                          

static int rcount=0;                           

static long total=0;                           

  total -= data_array[ndx];                

  data_array[ndx] = value;                 

  total += data_array[ndx];                

  ndx = (ndx+1) % NUMREADINGS;                                 

  if(rcount < NUMREADINGS)      rcount++; 

  return total/rcount; 

} 

 

 

long digital_smooth_2(long value, long *data_array)  {                                                             // remove signal noise 

static int ndx_2=0;                                                          

static int rcount_2=0;                           

static long total_2=0;                           

  total_2 -= data_array[ndx_2];                

  data_array[ndx_2] = value;                 

  total_2 += data_array[ndx_2];                

  ndx_2 = (ndx_2 + 1) % NUMREADINGS;                                 

  if(rcount_2 < NUMREADINGS)      rcount_2 ++; 

  return total_2 / rcount_2; 

} 

 

 

long digital_smooth_3(long value, long *data_array)  {                                                             // remove signal noise 

static int ndx_3=0;                                                          

static int rcount_3=0;                           

static long total_3=0;                           

  total_3 -= data_array[ndx_3];                

  data_array[ndx_3] = value;                 

  total_3 += data_array[ndx_3];                

  ndx_3 = (ndx_3 + 1) % NUMREADINGS;                                 

  if(rcount_3 < NUMREADINGS)      rcount_3 ++; 

  return total_3 / rcount_3; 

} 

 

 

long digital_smooth_4(long value, long *data_array)  {                                                             // remove signal noise 

static int ndx_4 = 0;                                                          

static int rcount_4 = 0;                           

static long total_4 = 0;                           

  total_4 -= data_array[ndx_4];                

  data_array[ndx_4] = value;                 

  total_4 += data_array[ndx_4];                

  ndx_4 = (ndx_4 + 1) % NUMREADINGS;                                 

  if(rcount_4 < NUMREADINGS)      rcount_4 ++; 

  return total_4 / rcount_4; 

} 

 

 

void stepper(boolean dir, int steps){ 

static int last_steps = 0; 

digitalWrite(dirPin,dir); 

delay(20); 

 

step_mid = abs(steps - last_steps); 

last_steps = steps; 

 

for(int i = 0; i< step_mid; i++) 
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 { 

  digitalWrite(stepperPin, HIGH); 

  delayMicroseconds(80); 

  digitalWrite(stepperPin,LOW); 

  delay(2); 

 } 

} 

Arduino Due: 

#include <MultiStepper.h> 
#include "fis_header.h" 
#include "Wire.h" 
#include "I2Cdev.h" 
#include "MPU6050_9Axis_MotionApps41.h" 
#include "math.h" 
 
//******************************************Arduino Due and Mega Serial Communication***************************** 
const char startOfNumberDelimiter = '<'; 
const char endOfNumberDelimiter   = '>'; 
 
//***************************************Fuzzy Logic(slippage control discourse -5~5; 4~20)***************************** 
// Number of inputs to the fuzzy inference system 
const int fis_gcI = 2; 
// Number of outputs to the fuzzy inference system 
const int fis_gcO = 3; 
// Number of rules to the fuzzy inference system 
const int fis_gcR = 25; 
FIS_TYPE g_fisInput[fis_gcI]; 
FIS_TYPE g_fisOutput[fis_gcO]; 
 
//****************************************Pitch and Roll Complementary Filter***************************** 
//int steps  = 0; 
int DC1    = 12; 
int DC2    = 12; 
int DC3    = 12; 
 
//*****************************************Pitch and Roll Complementary Filter***************************** 
int   STD_LOOP_TIME            =           150; 
int   lastLoopTime             =           STD_LOOP_TIME; 
int   lastLoopUsefulTime       =           STD_LOOP_TIME; 
unsigned long loopStartTime    =           0; 
int     forceMagnitudeApprox   =           0; 
float   sensorValue[6]         = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
float   sensorZero[6]          = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
float   act_Y_Angle  = 0.0, act_X_Angle  = 0.0; 
float   ACC_Y_angle  = 0.0, ACC_X_angle  = 0.0; 
float   GYRO_Y_rate  = 0.0, GYRO_X_rate  = 0.0; 
int16_t a1, a2, a3, g1, g2, g3; 
float   ax, ay, az, gx, gy, gz; 
float   dt = 0.0; 
 
MPU6050 mpu; 
 
//**********************************************setup mpu9150 and serial***************************** 
void setup() 
{ 
  Wire.begin();                                        //I2C protocol 
 // delay(1); 
  Serial1.begin(115200); 
  while (!Serial1) {}; 
  //while(!Wire.available()) {}; 
 
  //initialize MPU9150 device 
  mpu.initialize(); 
  //verify connection 
  //Serial.println(F("Testing device connections...")); 
  //Serial.println(mpu.testConnection() ? F("MPU9150 connection successful!") : F("MPU9150 connection failed!")); 
  //set sample rate to 8 kHz/(1+rate) shows 1 kHz, accelerometer ODR is fixed at 1 kHz 
  mpu.setRate(7); 
  //set bandwidth of both gyro and accelerometer to ~20Hz 
  mpu.setDLPFMode(4); 
  //set gyro range to 250 degrees/sec : 131 LSB/(deg/s); 0 = +/- 250 degrees/sec:131; 1 = +/- 500 degrees/sec:65.5; 2 = +/- 1000 degrees/sec:32.8;3 = +/- 2000 
degrees/sec:16.4 
  mpu.setFullScaleGyroRange(0); 
  //set acceleromter to 2 g range : 16384 LSB/g; 0 = +/- 2g:16384 LSB/g; 1 = +/- 4g:8192 LSB/g; 2 = +/- 8g:4096 LSB/g; 3 = +/- 16g:2048 LSB/g 
  mpu.setFullScaleAccelRange(0); 
  //enable data ready interrupt 
  mpu.setIntDataReadyEnabled(true); 
  delay(1); 
 
  //**********************************************calibrate sensor***************************** 
  calibrateSensors(); 
  delay(2); 
 
  loopStartTime = millis(); 
 
} 
 
//**********************************************main loop********************************************** 
void loop() 
{ 
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  Pitch_Roll_Complementary();                                 //get accurate Pitch and Roll angle from Complementary Filter 
  Pitch_Roll_Fuzzy();                                         //according to pitch roll angle then give three DC motors speed 
 
  serialOut_Fuzzy();                                          //serial output DC1, DC2, DC3 
 
  //**********************************************loop timing control************************************* 
  lastLoopUsefulTime = millis() - loopStartTime; 
  if (lastLoopUsefulTime < STD_LOOP_TIME) 
    delay(STD_LOOP_TIME - lastLoopUsefulTime); 
  lastLoopTime = millis() - loopStartTime; 
  loopStartTime = millis(); 
 
} 
 
//**********************************************calibrate sensors**************************************** 
void calibrateSensors() 
{ 
  float v; 
  for (int n = 0; n < 6; n++) 
  { 
    v = 0.0; 
    for (int i = 0; i < 50; i++) 
      v = v + readSensors(n); 
    sensorZero[n] = v / 50.0; 
  } 
  sensorZero[2] -= 16384.0; 
} 
 
//*****************************************Get Accurate Pitch and Roll Angle******************************** 
void Pitch_Roll_Complementary() { 
 
  if (mpu.getIntDataReadyStatus() == 1) 
    updateSensors();                                     //update the ax,ay,az,gx,gy,gz 
  ACC_Y_angle = getAcc_Y_Angle();                      // rotate y axis 
  GYRO_Y_rate = getGyro_Y_Rate(); 
 
  ACC_X_angle = getAcc_X_Angle();                      // rotate x axis 
  GYRO_X_rate = getGyro_X_Rate(); 
  dt = lastLoopTime / 1000.0; 
  act_Y_Angle -= GYRO_Y_rate * dt; 
  act_X_Angle += GYRO_X_rate * dt; 
  // compensate for drift with accelerometer data if without extra force. sensitivity = -2g to 2g at 16Bit -> 2g = 32768, 1g =16384, 0.5g =8192. 
  forceMagnitudeApprox = abs(a1) + abs(a2) + abs(a3); 
  if (forceMagnitudeApprox > 8192 && forceMagnitudeApprox < 32768) 
  { 
    //if t = 0.75, then a = 0.75/(0.75+0.03) = 0.96; a is the complementary coefficient; sample rate is 33.33Hz 
    act_Y_Angle = act_Y_Angle * 0.96 + ACC_Y_angle * 0.04; 
    delay(1); 
    act_X_Angle = act_X_Angle * 0.96 + ACC_X_angle * 0.04; 
  } 
 
} 
 
//***************************************Pitch And Roll Fuzzy Logic Control************************************* 
void Pitch_Roll_Fuzzy() { 
 
  // Read Input: ep 
  g_fisInput[0] = act_Y_Angle; 
  // Read Input: er 
  g_fisInput[1] = act_X_Angle; 
 
  g_fisOutput[0] = 0; 
  g_fisOutput[1] = 0; 
  g_fisOutput[2] = 0; 
 
  fis_evaluate(); 
 
  // Set output vlaue: step 
  //steps = int(g_fisOutput[0]); 
  // Set output vlaue: DC1 
  DC1 = int(g_fisOutput[0]); 
  // Set output vlaue: DC2 
  DC2 = int(g_fisOutput[1]); 
  // Set output vlaue: DC3 
  DC3 = int(g_fisOutput[2]); 
 
} 
 
//**********************************************serial output data*************************************** 
void serialOut_Fuzzy() 
{ 
  //Serial.print(int(ACC_Y_angle)); 
  //Serial.print("\t"); 
  //delay(1); 
  Serial1.print(startOfNumberDelimiter); 
  Serial1.print(DC1); //DC motor 1 speed 
  Serial1.print(endOfNumberDelimiter); 
  //Serial.print("\t"); 
  //delay(1); 
  //Serial.print(int(ACC_X_angle)); 
  //Serial.print("\t"); 
  //delay(1); 
  Serial1.print(startOfNumberDelimiter); 
  Serial1.print(DC2);//DC motor 2 speed 
  Serial1.print(endOfNumberDelimiter); 
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  //delay(1); 
  //Serial.print("\t"); 
  //Serial.println(lastLoopTime); 
  Serial1.print(startOfNumberDelimiter); 
  Serial1.print(DC3);//DC motor 3 speed 
  Serial1.print(endOfNumberDelimiter); 
/*  delay(2); 
  Serial1.print(startOfNumberDelimiter); 
  Serial1.print(lastLoopTime); 
  Serial1.print(endOfNumberDelimiter); 
  delay(5); 
*/ 
 
} 
 
//*********************************************************************** 
// Support functions for Fuzzy Inference System                           
//*********************************************************************** 
// Triangular Member Function 
FIS_TYPE fis_trimf(FIS_TYPE x, FIS_TYPE* p) 
{ 
    FIS_TYPE a = p[0], b = p[1], c = p[2]; 
    FIS_TYPE t1 = (x - a) / (b - a); 
    FIS_TYPE t2 = (c - x) / (c - b); 
    if ((a == b) && (b == c)) return (FIS_TYPE) (x == a); 
    if (a == b) return (FIS_TYPE) (t2*(b <= x)*(x <= c)); 
    if (b == c) return (FIS_TYPE) (t1*(a <= x)*(x <= b)); 
    t1 = min(t1, t2); 
    return (FIS_TYPE) max(t1, 0); 
} 
 
FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b) 
{ 
    return min(a, b); 
} 
 
FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b) 
{ 
    return max(a, b); 
} 
 
FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp) 
{ 
    int i; 
    FIS_TYPE ret = 0; 
 
    if (size == 0) return ret; 
    if (size == 1) return array[0]; 
 
    ret = array[0]; 
    for (i = 1; i < size; i++) 
    { 
        ret = (*pfnOp)(ret, array[i]); 
    } 
 
    return ret; 
} 
 
//*********************************************************************** 
// Data for Fuzzy Inference System                                        
//*********************************************************************** 
// Pointers to the implementations of member functions 
_FIS_MF fis_gMF[] = 
{ 
    fis_trimf 
}; 
 
// Count of member function for each Input 
int fis_gIMFCount[] = { 5, 5 }; 
 
// Count of member function for each Output  
int fis_gOMFCount[] = { 5, 5, 5 }; 
 
// Coefficients for the Input Member Functions 
FIS_TYPE fis_gMFI0Coeff1[] = { -50, -15, -3.75 }; 
FIS_TYPE fis_gMFI0Coeff2[] = { -7.5, -3.75, 0 }; 
FIS_TYPE fis_gMFI0Coeff3[] = { -3.75, 0, 3.75 }; 
FIS_TYPE fis_gMFI0Coeff4[] = { 0, 3.75, 7.5 }; 
FIS_TYPE fis_gMFI0Coeff5[] = { 3.75, 15, 50 }; 
FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2, fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5 }; 
FIS_TYPE fis_gMFI1Coeff1[] = { -50, -15, -3.75 }; 
FIS_TYPE fis_gMFI1Coeff2[] = { -7.5, -3.75, 0 }; 
FIS_TYPE fis_gMFI1Coeff3[] = { -3.75, 0, 3.75 }; 
FIS_TYPE fis_gMFI1Coeff4[] = { 0, 3.75, 7.5 }; 
FIS_TYPE fis_gMFI1Coeff5[] = { 3.75, 15, 50 }; 
FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2, fis_gMFI1Coeff3, fis_gMFI1Coeff4, fis_gMFI1Coeff5 }; 
FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff }; 
 
// Coefficients for the Input Member Functions 
FIS_TYPE fis_gMFO0Coeff1[] = { 0, 2, 9 }; 
FIS_TYPE fis_gMFO0Coeff2[] = { 6, 9, 12 }; 
FIS_TYPE fis_gMFO0Coeff3[] = { 9, 12, 15 }; 
FIS_TYPE fis_gMFO0Coeff4[] = { 12, 15, 18 }; 
FIS_TYPE fis_gMFO0Coeff5[] = { 15, 22, 24 }; 
FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2, fis_gMFO0Coeff3, fis_gMFO0Coeff4, fis_gMFO0Coeff5 }; 
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FIS_TYPE fis_gMFO1Coeff1[] = { 0, 2, 9 }; 
FIS_TYPE fis_gMFO1Coeff2[] = { 6, 9, 12 }; 
FIS_TYPE fis_gMFO1Coeff3[] = { 9, 12, 15 }; 
FIS_TYPE fis_gMFO1Coeff4[] = { 12, 15, 18 }; 
FIS_TYPE fis_gMFO1Coeff5[] = { 15, 22, 24 }; 
FIS_TYPE* fis_gMFO1Coeff[] = { fis_gMFO1Coeff1, fis_gMFO1Coeff2, fis_gMFO1Coeff3, fis_gMFO1Coeff4, fis_gMFO1Coeff5 }; 
FIS_TYPE fis_gMFO2Coeff1[] = { 0, 2, 9 }; 
FIS_TYPE fis_gMFO2Coeff2[] = { 6, 9, 12 }; 
FIS_TYPE fis_gMFO2Coeff3[] = { 9, 12, 15 }; 
FIS_TYPE fis_gMFO2Coeff4[] = { 12, 15, 18 }; 
FIS_TYPE fis_gMFO2Coeff5[] = { 15, 22, 24 }; 
FIS_TYPE* fis_gMFO2Coeff[] = { fis_gMFO2Coeff1, fis_gMFO2Coeff2, fis_gMFO2Coeff3, fis_gMFO2Coeff4, fis_gMFO2Coeff5 }; 
FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff, fis_gMFO1Coeff, fis_gMFO2Coeff }; 
 
// Input membership function set 
int fis_gMFI0[] = { 0, 0, 0, 0, 0 }; 
int fis_gMFI1[] = { 0, 0, 0, 0, 0 }; 
int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1}; 
 
// Output membership function set 
int fis_gMFO0[] = { 0, 0, 0, 0, 0 }; 
int fis_gMFO1[] = { 0, 0, 0, 0, 0 }; 
int fis_gMFO2[] = { 0, 0, 0, 0, 0 }; 
int* fis_gMFO[] = { fis_gMFO0, fis_gMFO1, fis_gMFO2}; 
 
// Rule Weights 
FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; 
 
// Rule Type 
int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; 
 
// Rule Inputs 
int fis_gRI0[] = { 1, 2 }; 
int fis_gRI1[] = { 1, 3 }; 
int fis_gRI2[] = { 1, 4 }; 
int fis_gRI3[] = { 2, 2 }; 
int fis_gRI4[] = { 2, 3 }; 
int fis_gRI5[] = { 2, 4 }; 
int fis_gRI6[] = { 3, 2 }; 
int fis_gRI7[] = { 3, 3 }; 
int fis_gRI8[] = { 3, 4 }; 
int fis_gRI9[] = { 4, 2 }; 
int fis_gRI10[] = { 4, 3 }; 
int fis_gRI11[] = { 4, 4 }; 
int fis_gRI12[] = { 5, 2 }; 
int fis_gRI13[] = { 5, 3 }; 
int fis_gRI14[] = { 5, 4 }; 
int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6, fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13, fis_gRI14 }; 
 
// Rule Outputs 
int fis_gRO0[] = { 5, 1, 2 }; 
int fis_gRO1[] = { 5, 1, 1 }; 
int fis_gRO2[] = { 5, 2, 1 }; 
int fis_gRO3[] = { 5, 1, 2 }; 
int fis_gRO4[] = { 5, 1, 1 }; 
int fis_gRO5[] = { 5, 2, 1 }; 
int fis_gRO6[] = { 3, 1, 2 }; 
int fis_gRO7[] = { 3, 3, 3 }; 
int fis_gRO8[] = { 3, 2, 1 }; 
int fis_gRO9[] = { 3, 1, 2 }; 
int fis_gRO10[] = { 3, 4, 4 }; 
int fis_gRO11[] = { 3, 2, 1 }; 
int fis_gRO12[] = { 3, 4, 5 }; 
int fis_gRO13[] = { 3, 4, 4 }; 
int fis_gRO14[] = { 3, 5, 4 }; 
int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5, fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12, fis_gRO13, 
fis_gRO14 }; 
 
// Input range Min 
FIS_TYPE fis_gIMin[] = { -25, -25 }; 
 
// Input range Max 
FIS_TYPE fis_gIMax[] = { 25, 25 }; 
 
// Output range Min 
FIS_TYPE fis_gOMin[] = { 0, 0, 0 }; 
 
// Output range Max 
FIS_TYPE fis_gOMax[] = { 24, 24, 24 }; 
 
//*********************************************************************** 
// Data dependent support functions for Fuzzy Inference System                           
//*********************************************************************** 
FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o) 
{ 
    FIS_TYPE mfOut; 
    int r; 
 
    for (r = 0; r < fis_gcR; ++r) 
    { 
        int index = fis_gRO[r][o]; 
        if (index > 0) 
        { 
            index = index - 1; 
            mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]); 
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        } 
        else if (index < 0) 
        { 
            index = -index - 1; 
            mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]); 
        } 
        else 
        { 
            mfOut = 0; 
        } 
 
        fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]); 
    } 
    return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max); 
} 
 
FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o) 
{ 
    FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1); 
    FIS_TYPE area = 0; 
    FIS_TYPE momentum = 0; 
    FIS_TYPE dist, slice; 
    int i; 
 
    // calculate the area under the curve formed by the MF outputs 
    for (i = 0; i < FIS_RESOLUSION; ++i){ 
        dist = fis_gOMin[o] + (step * i); 
        slice = step * fis_MF_out(fuzzyRuleSet, dist, o); 
        area += slice; 
        momentum += slice*dist; 
    } 
 
    return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area)); 
} 
 
//*********************************************************************** 
// Fuzzy Inference System                                                 
//*********************************************************************** 
void fis_evaluate() 
{ 
    FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0 }; 
    FIS_TYPE fuzzyInput1[] = { 0, 0, 0, 0, 0 }; 
    FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, }; 
    FIS_TYPE fuzzyOutput0[] = { 0, 0, 0, 0, 0 }; 
    FIS_TYPE fuzzyOutput1[] = { 0, 0, 0, 0, 0 }; 
    FIS_TYPE fuzzyOutput2[] = { 0, 0, 0, 0, 0 }; 
    FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, fuzzyOutput1, fuzzyOutput2, }; 
    FIS_TYPE fuzzyRules[fis_gcR] = { 0 }; 
    FIS_TYPE fuzzyFires[fis_gcR] = { 0 }; 
    FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires }; 
    FIS_TYPE sW = 0; 
 
    // Transforming input to fuzzy Input 
    int i, j, r, o; 
    for (i = 0; i < fis_gcI; ++i) 
    { 
        for (j = 0; j < fis_gIMFCount[i]; ++j) 
        { 
            fuzzyInput[i][j] = 
                (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]); 
        } 
    } 
 
    int index = 0; 
    for (r = 0; r < fis_gcR; ++r) 
    { 
        if (fis_gRType[r] == 1) 
        { 
            fuzzyFires[r] = FIS_MAX; 
            for (i = 0; i < fis_gcI; ++i) 
            { 
                index = fis_gRI[r][i]; 
                if (index > 0) 
                    fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]); 
                else if (index < 0) 
                    fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]); 
                else 
                    fuzzyFires[r] = fis_min(fuzzyFires[r], 1); 
            } 
        } 
        else 
        { 
            fuzzyFires[r] = FIS_MIN; 
            for (i = 0; i < fis_gcI; ++i) 
            { 
                index = fis_gRI[r][i]; 
                if (index > 0) 
                    fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]); 
                else if (index < 0) 
                    fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]); 
                else 
                    fuzzyFires[r] = fis_max(fuzzyFires[r], 0); 
            } 
        } 
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        fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r]; 
        sW += fuzzyFires[r]; 
    } 
 
    if (sW == 0) 
    { 
        for (o = 0; o < fis_gcO; ++o) 
        { 
            g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2); 
        } 
    } 
    else 
    { 
        for (o = 0; o < fis_gcO; ++o) 
        { 
            g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o); 
        } 
    } 
} 
 
//**********************************************update sensors date*************************************** 
void updateSensors() 
{ 
  float v; 
  for (int n = 0; n < 6; n++) 
  { 
    v = 0.0; 
    for (int i = 0; i < 5; i++) 
      v = v + readSensors(n); 
    sensorValue[n] = v / 5.0 - sensorZero[n]; 
  } 
} 
 
//**********************************************read sensors data***************************************** 
float readSensors(int channel) 
{ 
 
  if (mpu.getIntDataReadyStatus() == 1) 
  { 
    mpu.getAcceleration(&a1, &a2, &a3); 
    ax = (float)a1; 
    ay = (float)a2; 
    az = (float)a3; 
    mpu.getRotation(&g1, &g2, &g3); 
    gx = (float)g1; 
    gy = (float)g2; 
    gz = (float)g3; 
  } 
  float mat[6] = {ax, ay, az, gx, gy, gz}; 
  return mat[channel]; 
 
} 
 
//**********************************************get y axis & x axis deg/s******************************** 
float getGyro_Y_Rate() 
{ 
  return sensorValue[4] / 131.0;                           //return gyro y 
} 
 
float getGyro_X_Rate() 
{ 
  return sensorValue[3] / 131.0;                           //return gyro x 
} 
 
//**********************************************get Acc y & x axis angle******************************** 
float getAcc_Y_Angle() 
{ 
  float a = 0.0; 
  a = atan2(sensorValue[0], sensorValue[2]);                //atan2(y,x) return quid; degree = atan2(y,x) * 180.0 / 3.14; belong to (-180, 180) 
  return (a * 180.0 / 3.14); 
} 
 
 
float getAcc_X_Angle() 
{ 
  float b = 0.0; 
  b = atan2(sensorValue[1], sensorValue[2]); 
  return (b * 180.0 / 3.14); 
} 

 

NARX Feedback Neural Network for Wheel Slip Control 

function [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 01-Mar-2018 13:23:26. 

% 

% [y1,xf1,xf2] = myNeuralNetworkFunction(x1,x2,xi1,xi2) takes these arguments: 

%   x1 = 3xTS matrix, input #1 

%   x2 = 1xTS matrix, input #2 
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%   xi1 = 3x4 matrix, initial 4 delay states for input #1. 

%   xi2 = 1x4 matrix, initial 4 delay states for input #2. 

% and returns: 

%   y1 = 1xTS matrix, output #1 

%   xf1 = 3x4 matrix, final 4 delay states for input #1. 

%   xf2 = 1x4 matrix, final 4 delay states for input #2. 

% where TS is the number of timesteps. 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1_xoffset = [6;5;5]; 

x1_step1_gain = [0.111111111111111;0.142857142857143;0.133333333333333]; 

x1_step1_ymin = -1; 

  

% Input 2 

x2_step1_xoffset = 175; 

x2_step1_gain = 0.08; 

x2_step1_ymin = -1; 

  

% Layer 1 

b1 = [3.4652609932394545;-1.9348131781138858;0.88741159653409851;1.626233366133726;-0.93104937882842931;-

0.68914373554581676;0.4421368831599351;-

0.52729999460792576;0.31269982352440101;0.092148003823602137;0.21803259125411717;0.4305112235146048;-

0.59829251890806234;-0.77118122248419041;-0.52353751633725853;-1.2433039200435707;-

1.7290066069006087;1.1833894478448601;1.5982954100866376;-2.0658798298653198]; 

IW1_1 = [-1.1252539590255779 -0.17024785511313442 -0.60191738692960262 1.488319173654836 -0.49348121059945149 -

0.9975631552257429 0.52277416474681326 1.1334240273202902 -1.7039726624162645 -0.37696137317921019 0.56926637895958365 

0.93524924858533576;0.56960444144478373 -0.32191424544290004 0.14604511936497652 0.26589160734833983 -

0.88331771655249625 0.86630244254967137 -0.074056145531645731 0.63532661545645652 0.20044059436407671 

0.53888757386800923 -0.82374783516438677 0.27562667055794321;-0.98932559519559871 -0.80756570945220019 

0.57371921737205511 0.19848534056452022 -0.70482065816438388 0.054006343610814807 -0.1896766364426698 

0.46583857600027417 -0.18750373570355244 -0.11687264349186416 -0.55112436520161368 

0.40535039391843131;0.35194269423564178 -0.97704843052782531 0.41505936821866807 -0.65375678996436926 

0.88945946575277446 0.6313040007317251 -0.099296436384775866 0.47498666142232626 0.022098407922799719 -

0.30671423063572889 -0.45157706789517044 -0.0052482634053180599;0.13060659207767361 -1.033391180998666 

0.25456944845315332 -0.22726743574152533 0.37099890283041359 -0.33988027542397625 0.32732418977738098 -

0.86643137604830234 0.15455814167472859 0.53838012949034453 -0.34735875563639257 

0.10676696555822826;0.39774725145416273 -0.5015100378478522 -0.13068935754531358 -0.40042203710695345 

0.41921469597677063 -0.15302545626059827 -0.33692863746773172 -0.33763546755312579 -0.29513585746268634 

0.3227368612812439 -0.49531478808801116 -0.44150785659793068;-0.23096380917978712 -0.088112273419824513 

0.35812831655728988 -0.14957525817269093 0.3401977511586366 -0.054205195240802327 -0.061340682656029294 -

0.28903662451053136 0.14838153520587569 0.60957451771640303 -0.0028863704412007661 

0.08299823208798246;0.57616327521812882 0.23011658497155188 0.460291397247439 0.089087580571315328 -

0.69862835539646162 -0.10579044600983253 -0.19210709499747661 0.22639082259874144 0.41314066083165862 -

0.60536890055207149 0.41698969787439061 -0.24401511632647921;0.71448667009620503 0.16814310203969302 

0.98393788604297416 -0.99361779503230685 0.032275819741424433 0.68138276516664398 -1.1049963782765375 -

0.76825506626700313 0.71572364354334472 -0.29722933200040785 -0.303010042749567 

0.24519486898215367;0.047232759447995133 0.075181355004733177 0.031820952057788038 0.013995483805033862 

0.017185478978475256 0.046500356393110565 -0.0045935767505659621 -0.039747812984054533 -0.029839381016155384 -

0.21354203260627633 0.11476328002599268 -0.18639200788185967;0.96108077093642519 1.4386242674343936 -

0.29311831984749315 0.2001511470543767 0.17843393832276946 0.061617938123036113 0.84887062641694355 

0.33998028086923482 -0.2700584455332799 -0.42577841564347335 0.46143173298827694 -0.12627933002129849;-

0.25782860215017855 0.075777708501596902 0.036086997945202384 0.80934682486407439 -0.73759395160407337 

0.59100014231087872 -0.31657060065967402 -0.035137666888678719 -0.52857704456380183 0.64088642956386743 -

0.38285958297447692 -0.064708556488764238;-0.15803890192260373 0.29466074542319654 0.21980842853059232 -

0.16048682220561905 0.055851624115891035 0.03288613686265042 -0.071169333786496883 -0.016300487355000629 

0.18053597503878779 0.044767169661530271 -0.20817405922321103 -0.42494514358133667;-0.31866174857010759 

0.78131634492399993 -0.37501229277834552 -0.12494655400565267 0.52473799661640619 -0.16249696095769048 

0.23989527239762268 -0.4676810984009509 -0.070274941353196674 -0.11828180953436955 0.39987889679377564 -

0.10925051388411855;-0.34064827388589947 0.00086977204298363531 0.29362624828046591 -0.037881196083283393 

0.24925845831729018 0.20034687299118425 -0.30304378487299977 -0.42123154082765224 -0.42950168369880859 -

0.32552850856247162 0.16327644605004923 0.41356363193760592;-0.68404031871178339 0.88066592372826169 

0.56330191890574799 -0.29308055855791726 -0.18708154299881347 0.038130895170582005 -0.30326415819623065 

0.0072903610412145547 -0.26220055155015953 -0.57418178494010652 -0.2580169472862649 

0.24802112624075515;0.24312351532466489 -0.23853129616789037 0.47558146003008095 -0.47476817157686751 

0.55526277174218519 0.43557097245924348 -0.52231523259380519 -0.10453056477869532 -0.48557872522764195 

0.25383971800104743 -0.46753136610769724 0.83834276788550277;0.55018502486970589 0.055246207471839809 

0.14276573414238203 0.62470106308589224 -0.22229072683116122 -0.22938227100000347 0.18479910951015155 

0.011907991398727703 0.34920667958483742 0.39782302258853636 -1.2065690864943388 

0.66333610119865638;0.1366939187085279 -0.50563518061004109 0.40473210625631817 -0.18497442974594855 -

0.6115104115167056 -0.2997576646057587 0.77986411659078025 0.19689743955532446 0.32312992117083728 0.48130689592213893 

-0.09724615556865969 0.71117225189084388;-0.88590575182246956 -0.66317955897870817 0.21014096401482141 -

0.1014153701252976 0.020202093012584237 0.2060072445990139 -0.30917593460480425 0.46624805820548187 -

0.52683647719498039 -0.92591541780417164 -0.29582813805510072 0.74773391046639959]; 

IW1_2 = [0.36206006965465148 -0.46039745849517033 -0.053970837082655834 -0.138057475772494;0.60149592058326473 

0.25367063523538819 0.31751540166674935 0.19081307791373969;-0.62074255087512331 0.23387476972206542 -

0.2218033495323985 0.16372480830170158;0.9660861457168417 0.42465980075402421 0.77440329532066654 -

0.13554409480065768;-0.012134915749129659 0.62214976959983948 -0.12040923295965408 

0.45031919978462964;0.54275762780679226 0.68731681103479492 -0.17068837048281765 -0.57757896876495984;-

0.27406091895706214 0.22981037327552531 0.51483696492581887 -0.76081462619986318;0.49314216272432942 -

0.46743725151537996 0.79158720179556152 -0.21181488429611753;0.52989905501853318 -0.39977039427656808 -

0.31752742782605659 -0.040667777711143639;-0.63284045987071758 0.037170822107621099 0.15062197917507419 

0.052655253360073345;0.5557235691715201 -0.16233576003190742 0.892155781433427 

0.014144652910505508;0.031693751442002538 -0.20570663280409626 -0.04292693225286548 -

0.20885437464634965;0.19723208212280963 0.29127692315331222 0.075210816347086179 0.027378594971073505;-

0.66006118720661855 0.37563978757124572 -0.24078780125245638 0.076765751552907435;0.22896543797877045 

0.077759076148801759 0.27744131142635642 -0.2759181460785109;0.58864305458826183 0.41755373695899617 -

0.27322109567800718 0.23243990251253402;-0.2274335754866289 -0.90643557522630513 0.22654769303768094 

0.3282285411481265;-0.32210165414123426 -0.60948265956112191 0.56438780552610202 -

0.03115138326869113;0.24202592715058405 -0.27339608095951629 -0.23964340054535713 -0.38567678056921018;-

0.69437323750449875 0.32196149445657585 0.36230550190233762 -0.80341783543288359]; 

  

% Layer 2 

b2 = -0.81502248133097099; 

LW2_1 = [1.1387290544352762 0.072727552702546786 -0.097511281495121227 0.080124663546499608 0.017635965328615839 -

0.015967163044312307 -0.28943298910815979 0.10827097356678476 -0.053477362474633028 -1.1064604963888802 

0.035084681353639659 -0.02739627148242069 0.60475369304155835 -0.065911066637865168 0.43873009511092798 -

0.19733932181024005 -0.21943221879840052 -0.035978454888549762 0.031317292589157289 -0.13949307091262456]; 

  

% Output 1 

y1_step1_ymin = -1; 

y1_step1_gain = 0.08; 
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y1_step1_xoffset = 175; 

  

% ===== SIMULATION ======== 

  

% Dimensions 

TS = size(x1,2); % timesteps 

  

% Input 1 Delay States 

xd1 = mapminmax_apply(xi1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 

xd1 = [xd1 zeros(3,1)]; 

  

% Input 2 Delay States 

xd2 = mapminmax_apply(xi2,x2_step1_gain,x2_step1_xoffset,x2_step1_ymin); 

xd2 = [xd2 zeros(1,1)]; 

  

% Allocate Outputs 

y1 = zeros(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Rotating delay state position 

    xdts = mod(ts+3,5)+1; 

     

    % Input 1 

    xd1(:,xdts) = mapminmax_apply(x1(:,ts),x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 

     

    % Input 2 

    xd2(:,xdts) = mapminmax_apply(x2(:,ts),x2_step1_gain,x2_step1_xoffset,x2_step1_ymin); 

     

    % Layer 1 

    tapdelay1 = reshape(xd1(:,mod(xdts-[1 2 3 4]-1,5)+1),12,1); 

    tapdelay2 = reshape(xd2(:,mod(xdts-[1 2 3 4]-1,5)+1),4,1); 

    a1 = tansig_apply(b1 + IW1_1*tapdelay1 + IW1_2*tapdelay2); 

     

    % Layer 2 

    a2 = b2 + LW2_1*a1; 

     

    % Output 1 

    y1(:,ts) = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 

end 

  

% Final delay states 

finalxts = TS+(1: 4); 

xits = finalxts(finalxts<=4); 

xts = finalxts(finalxts>4)-4; 

xf1 = [xi1(:,xits) x1(:,xts)]; 

xf2 = [xi2(:,xits) x2(:,xts)]; 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 

y = bsxfun(@minus,x,settings_xoffset); 

y = bsxfun(@times,y,settings_gain); 

y = bsxfun(@plus,y,settings_ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 

x = bsxfun(@minus,y,settings_ymin); 

x = bsxfun(@rdivide,x,settings_gain); 

x = bsxfun(@plus,x,settings_xoffset); 

end 
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Appendix B – MATLAB SimMechanics Simulation 

 

Robot Configuration in MATLAB SimMechanics: 

 

Robot 3D View in MATLAB SimMechanics Environment: 
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Appendix C – Tree Pruning Robot Mechanical Drawing 
 

Tree Pruning Robot 
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Tree Pruning Robot Platform 
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Stepper’s Screw-Nut Unit and Bearing Support Mechanism 
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Servomotor Module 
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Tree Pruning Robot Wheel Unit 
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Appendix D – Tree Pruning Robot Hardware Design 

 

Tree Pruning Robot Schematic Diagram Design 
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Tree Pruning Robot PCB Design 
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Appendix E – Tree Pruning Robot 3D CAD Model in SolidWorks 
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Appendix F – Tree Pruning Robot Prototype 
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