Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Relative Age dating of the Wahianoa Moraines, Mount Ruapehu, New Zealand.

Erin Nolan

Thesis submitted in partial fulfilment of the degree of Master of Science in Quaternary Science, at Massey University, Palmerston North, New Zealand.

January 2008

Abstract

This study attempts to determine a relative age of the Wahianoa moraines, Mt Ruapehu using three relative age dating techniques: Lichenometry, Schmidt hammer and Boulder roundness. There were three study areas used, termed the Wahianoa 'A', 'B' and 'C' moraines. Upon determining a relative age for these moraines, their timing of their formation was placed within New Zealand's glacial timescale. This is the first study of its kind conducted on Mt Ruapehu and has left the door open for more research in this field.

The species of lichens measured on the Wahianoa moraines were *Rhizocarpon* subgenus, which the largest diameters were measured using callipers. A total of 606 lichens were measured in the Wahianoa Valley and were processed using the growth curve and size frequency methods. A lichenometric growth curve was constructed from lichens growing in the Ohakune cemetery. The dates derived from both methods placed the formation of the Wahianoa moraines during the Little Ice Age.

An L-type Schmidt hammer was used on the boulders in the Wahianoa Valley. A total of 280 measurements were taken off the boulders on the Wahianoa moraines. The results of this method, when compared to Winkler's (2005) study in the South Island placed the formation of the Wahianoa moraines pre-Little Ice Age. Although no definitive ages could be derived from this comparison due to differences in lithology between the two studies, it provided an idea as to where the formation of these moraines could belong.

This is the first time that the Boulder roundness method has been used in New Zealand, having only been developed by Kirkbride (2005). This method was used to determine which of the ridges in the Wahianoa Valley were older. It was found that the Wahianoa 'A' moraines were the oldest in the valley followed by Wahianoa 'B' and 'C' respectively.

A climate reconstruction was also conducted for the Wahianoa Valley to see what conditions may have been in existence during the formation of the Wahianoa moraines. The paleo-ELA for the Wahianoa Glacier was estimated using the Accumulation-Area Ratio (AAR), Terminus to Headwall Ratio (THAR), Maximum Elevation of the Lateral

Moraines (MELM) and Extrapolation methods. The current ELA was estimated using the AAR, THAR and Extrapolation methods. The difference between these estimates was used to determine what temperature decrease would have caused the formation of the Wahianoa moraines. The average paleo-ELA was found to be c. 1715m, while the current ELA was found to be 2475m which lead to a 4.5°C decrease. This temperature decrease correlates well with that of the Last Glacial Maximum.

This study found significant differences in relative age of the Wahianoa moraines. There are a number of factors that can affect the growth of lichens such as micro-environmental conditions and the fact that a growth curve was constructed off site. Factors such as petrography can affect the Schmidt hammer results and the Boulder roundness measurements. In addition, precipitation can affect the ELA values which can then cause the wrong placement within a glacial event. Further research lies in the use of the Schmidt hammer on a known age surface such as the Mangatepopo moraines which will aide in a better correlation of relative age. Also, further research using climate reconstructions on Mt Ruapehu and the effect of precipitation will also aide in a better correlation with a glacial event.

Acknowledgements

The completion of this project would not have been possible without the help and encouragement from a large number of people whom I would like to acknowledge:

- I am grateful for Dr Martin Brook's support and feedback both in the office and in the field.
- Special thanks to Victoria University for the loan of their Schmidt hammer.
- Special thanks to Dr Stefan Winkler's advice and help for this project
- Thanks to Dr Andrew Mackintosh for providing ELA values for the Mangatepopo moraine
- Winstone Pulp International for their use of the forestry tracks so I could gain access to the Wahianoa Valley
- Scott and Dara Graham, Alpine Motel Backpackers, for allowing me to arrange accommodation around Mt Ruapehu's temperamental weather
- Huge thanks to Alastair Clement, John Appleby and Clare Robertson for their assistance with the table of contents, list of figures and tables and for checking my references.
- Huge thanks to John Appleby and Clare Robertson for their assistance in the field and helping me complete my fieldwork
- Support and feedback from number of colleagues in the Geography department, in particular Dr Ian Fuller and Olive Harris
- Special thanks to Stephanie Mandolla for making the summer months fun as we scrambled around Mt Ruapehu trying to complete our field work.
- Finally to my family for their support and encouragement, could not have finished it without you. An extra special thanks to my Dad for using his spare time to proof read this thesis.

Table of Contents

Abstract	II
Acknowledgements	IV
List of Figures	XI
List of Tables	XVI

Chapter 1: Introduction

1.1 Introduction	1
1.2 Mt Ruapehu	1
1.2.1 Mt Ruapehu's glaciers	2
1.2.2 Wahianoa Glacier	6
1.2.2.1 Study Site	6
1.3 Relative Age Dating	7
1.4 Reconstructions of paleo-Equilibrium Line Altitudes (ELA)	8
1.5 Thesis Structure	9

Chapter 2: Literature Review

2.1 New Zealand Climate during the Quaternary	
2.1.1 The Pleistocene excluding the Otira Glaciation (2.6my-70ka BP)	11
2.1.2 Otira Glaciation excluding the Last Glacial Maximum (70ka-25ka)	15
2.1.2.1 Early Otiran Glacial Advances (MIS 4)	16
2.1.2.2 Mid Otiran Glacial Advances (MIS 3)	16
2.1.2.3 MIS 3/2 transition	16
2.1.3 Last Glacial Maximum (LGM) (MIS 2)	17
2.1.3.1 The South Island	17
2.1.3.2 The North Island	
2.1.4 Last Glacial Interglacial Transition (LGIT) (20 to 10ka)	
2.1.4.1 Younger Dryas (YD)	
2.1.4.2 Antarctic Cold Reversal (ACR)	
2.1.5 The Holocene	
2.1.5.1 The Little Ice Age	
2.1.6 Driver of Late Quaternary glaciations	
2.2. Mt Ruapehu	
2.2.1 Volcanic History	
2.2.2 Tephrochronology of eruptive sequences	
2.2.2.1 Quaternary Eruptive Activity	
2.2.2.2 Historical eruptive activity	
2.2.2.3 Glacier-Volcanic interactions	
2.2.3 Evidence for Glacial History of Mt Ruapehu	
2.2.3.1 Introduction	30
2.2.3.2 Glacial retreat during 19 th /20 th century	
2.3 Relative Age dating of glacier extents	33

2.3.1 Lichenometry	
2.3.1.1 Lichen parameter to be measured	
2.3.1.2 Largest lichen maximum diameters	
2.3.1.3 Maximum Diameters of all lichens	
2.3.1.4 Size Frequency	
2.3.1.5 Percent Cover	
2.3.2 Schmidt Hammer	39
2.3.3 Boulder Roundness	41
2.4 Climate reconstruction	44
2.4.1 Area-Accumulation Ratio (AAR)	44
2.4.2 Area-Altitude Balance Ratios (AABR)	46
2.4.3 Maximum Elevation of Lateral moraines (MELM)	46
2.4.4 Terminus to Headwall Altitude Ratio (THAR)	47
2.5 Aims and objectives	

Chapter 3: Methodology

49
54
54
54
55
55
56
56
57
58

Chapter 4: Results - Lichenometry

4.2 Lichenometric results for the Wahianoa Valley604.2.1 General Trend604.2.2 Spatial Variability614.3 Growth Curve644.3.1 Introduction644.3.2 Construction of the growth curve644.3.3. Application of growth curve to the Wahianoa moraines664.4 Size-Frequency684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.1 Introduction	60
4.2.1 General Trend.604.2.2 Spatial Variability61 4.3 Growth Curve 644.3.1 Introduction644.3.2 Construction of the growth curve.644.3.3. Application of growth curve to the Wahianoa moraines.66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.2 Lichenometric results for the Wahianoa Valley	60
4.2.2 Spatial Variability61 4.3 Growth Curve 644.3.1 Introduction644.3.2 Construction of the growth curve644.3.3. Application of growth curve to the Wahianoa moraines66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.2.1 General Trend.	60
4.3 Growth Curve 644.3.1 Introduction644.3.2 Construction of the growth curve644.3.3. Application of growth curve to the Wahianoa moraines66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.2.2 Spatial Variability	61
4.3.1 Introduction644.3.2 Construction of the growth curve644.3.3. Application of growth curve to the Wahianoa moraines66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.3 Growth Curve	64
4.3.2 Construction of the growth curve.644.3.3. Application of growth curve to the Wahianoa moraines.66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.3.1 Introduction	64
4.3.3. Application of growth curve to the Wahianoa moraines.66 4.4 Size-Frequency 684.4.1 Wahianoa 'A'684.4.1.1 Size-frequency histogram68	4.3.2 Construction of the growth curve	64
4.4 Size-Frequency 68 4.4.1 Wahianoa 'A' 68 4.4.1.1 Size-frequency histogram 68	4.3.3. Application of growth curve to the Wahianoa moraines.	66
4.4.1 Wahianoa 'A' 68 4.4.1.1 Size-frequency histogram 68	4.4 Size-Frequency	68
4.4.1.1 Size-frequency histogram	4.4.1 Wahianoa 'A'	68
	4.4.1.1 Size-frequency histogram	

4.4.1.2 Size-frequency curve	
4.4.2 Wahianoa 'B' moraine	
4.4.2.2 Size-frequency curve	
4.4.3 Wahianoa 'C'	
4.4.3.1 Size-frequency histogram	
4.4.3.2 Size-frequency curve	
4.5 Factors affecting lichenometric results.	
4.5.1 Factors affecting lichen growth	
4.5.1.1 Surface Stability	
4.5.1.2 Lithology	
4.5.1.3 Micro-environmental conditions	
4.5.1.4 Cooler temperatures	
4.5.1.5 Volcanic Eruptions	
4.5.2 Factors affecting the Growth Curve	
4.5.2.1 Environmental conditions	
4.5.2.2 Differing lichen species	
4.5.2.3 Lithology	
4.5.2.4 Anthropogenic influence	
4.5.2.5 Coalesced lichens	
4.6 Summary	
-	

Chapter 5: Results - Schmidt Hammer method

5.1 Introduction	
5.2 Schmidt Hammer measurements	
5.2.1 General trends	
5.2.2 Spatial variability	84
5.2.3 Individual Sampling sites	86
5.2.3.1 Wahianoa 'A'	86
5.2.3.2 Wahianoa 'B'	87
5.2.3.3 Wahianoa 'C'	88
5.2.3.4 Approximate age of the Wahianoa moraines	89
5.3 Roundness	
5.3.1 Roundness frequency	
5.3.2 Roundness versus Schmidt hammer rebound (R) values	
5.4 Factors affecting Schmidt hammer rebound (R) values and boulder	[.] roundness
5.4.1 Lithology	
5.4.2 Transport history	
5.4.3 Micro-environmental conditions	
5.4.5 Instrument and operator error	
5.5 Summary	

Chapter 6: Results - Boulder Roundness

6.1 Introduction	9	96
------------------	---	----

6.2 Boulder Roundness measurements	
6.2.1 General Trend	
6.2.2 Spatial Variation	
6.2.3 Individual Sampling areas	100
6.2.3.1 Wahianoa 'A'	100
6.2.3.2. Wahianoa 'B'	102
6.2.3.3 Wahianoa 'C'	
6.2.3.4 Statistical Analysis	105
6.3 Factors affecting Boulder Roundness values	106
6.3.1 Lithology	106
6.3.2 Transport history	107
6.3.3 Micro-environmental conditions	107
6.3.4 Frost-shattering	108
6.4 Summary	108

Chapter 7: Results - Climate Reconstruction

Chapter /: Results - Climate Reconstruction	
7.1 Introduction	109
7.2 Paleo-ELA reconstruction	109
7.2.1 Accumulation Area Ratio (AAR) method.	109
7.2.1.1. Introduction	109
7.2.1.2 Determination of the paleo-ELA	111
7.2.2 Terminus to Headwall Altitude Ratio (THAR) method	112
7.2.2.1 Introduction	112
7.2.2.2 Determination of the paleo-ELA	113
7.2.3 Maximum Elevation of Lateral Moraines (MELM)	113
7.2.3.1 Introduction	113
7.2.3.2 Determination of the paleo-ELA	114
7.2.4 Extrapolation method	115
7.2.4.1 Introduction	115
7.2.4.2 Determination of the paleo-ELA	115
7.3 Current ELA	115
7.3.1 Accumulation Area Ratio (AAR) method	116
7.3.1.1 Introduction	116
7.3.1.2 Determination of the current ELA	116
7.3.2 Terminus to Headwall Altitude Ratio (THAR) method	118
7.3.2.1 Introduction	118
7.3.2.2 Determination of the current ELA	118
7.3.3 Extrapolation Method.	118
7.3.3.1 Introduction	118
7.3.3.2 Determination of the current ELA	119
7.4 Basal Shear Stress	119
7.4.1 Introduction	119
7.4.2 Determination of the maximum Basal Shear Stress	119
7.5 Ablation Rate	120
7.5.1 Introduction	120

120
120
120
121
121
122

Chapter 8: Discussion

8.1 Introduction	123
8.2 Comparison of the relative age dating methods	123
8.2.1 General trends	123
8.2.2 Comparing lichen results and Schmidt hammer rebound values	125
8.2.3 Comparing lichen results and Boulder roundness values	126
8.2.4 Comparing Schmidt hammer and Boulder roundness values	127
8.2.5 Summary	128
8.3 Comparison with other lichenometric research	128
8.3.1 Growth curve	129
8.3.1.1 Comparison on a regional scale	129
8.3.1.2 Comparison on a national scale	130
8.3.1.3 Comparison on an international scale	131
8.3.2 Size-frequency	133
8.3.3 Summary	134
8.4 Schmidt Hammer	135
8.4.1 Comparison of results on a national scale	135
8.4.2 Comparison on an international scale	136
8.4.3 Summary	137
8.5 Paleo-glacier Reconstruction	137
8.5.1 Summary of results	137
8.5.2 Comparison with other research	138
8.5.2.1 Regional Climatic Implications	138
8.5.2.2 New Zealand Climatic Implications	140
8.5.2.3 International Climatic Implications	143
8.5.2.4 Summary	144
8.6 Future Research opportunities	144
8.6.1 Relative Age dating	144
8.6.2 Climate Reconstruction	145

Chapter 9: Conclusions

9.1 Objectives Revisited	147
9.2 Lichenometry	147
9.2.1 Growth Curve	
9.2.2 Size-frequency.	
9.3 Schmidt Hammer	148
9.4 Boulder Roundness	149

9.5 Climatic Reconstruction 9.6 Summary	
References	151
Appendix	

List of Figures

Figure 1.1. Location of the Taupo Volcanic Zone, North Island, New Zealand2
Figure 1.2. Looking northward onto Mangaehuehu and Mangaturuturu glaciers, Mt Ruapehu
Figure 1.3. Looking south onto Crater Basin Glacier, taken in April 19094
Figure 1.4. Looking south onto Crater Basin Glacier taken in January, 19734
Figure 1.5. Looking south onto Crater Basin Glacier taken in February, 20074
Figure 1.6. Former extent of Mangaehuehu Glacier taken early 1900s, crevassing is highly evident on the surface. Girdlestone Peak can be seen to the right of the glacier
Figure 1.7. Former extent of Mangaehuehu Glacier taken during the 1970s, note the smoother surface of the glacier, indicative of surface lowering, mass loss and few, if any crevasses
Figure 1.8. Current extent of the Mangaehuehu Glacier taken in March 2006. Note that glacier has retreated past the riegel (rock ledge) and a new ridge is beginning to emerge in the top left corner
Figure 1.9. Looking westward onto Mt Ruapehu with Wahianoa Glacier situated to the right of Girdlestone peak
Figure 1.10. Wahianoa Valley situated on the southeastern slopes of Mt Ruapehu, Wahianoa Glacier is at the head of the valley, and is little more than a small niche glacier today
Figure 1.11. Annual mass balance of a glacier system, showing how the relation between accumulation and ablation controls the location of the equilibrium line altitude (ELA)
Chapter 2
Figure 2.1. Geological Timescale
Figure 2.2. Significant locations of Quaternary glacial and interglacial evidence
Figure 2.3 Marine oxygen isotope record over the last 200,000 years15

Figure 2.4. New Zealand vegetation at LGM
Figure 2.5. New Zealand at the Last Glacial Maximum (LGM)
Figure 2.6. Location and geology of the four volcanic formations identified by Hackett (1985). 1= Whakapapa Formation; 2= Mangawhero Formation; 3= Wahianoa Formation; 4=Te Herenga Formation
Figure 2.7. Stratigraphy of Tufa Trig type site (Donoghue, 1991), abbreviations described in Table 2.2, Mk stands for Makahikatoa sands
Figure 2.8. Climbers in the centre of the Crater Lake
Figure 2.9. 1995-96 eruption of Ruapehu, lahars in the foreground
Figure 2.10. Moraine ridge crests and inferred ice limit of the Ruapehu ice cap and outlet glaciers at the maximum of the last major ice advance, which may have been the late Otiran glacial age (McArthur and Shepherd, 1990). 1= Mangatoetoenui Glacier, 2= Whangaehu Glacier, 3= Crater Lake which contains Crater Basin Glacier on southern side and Tuwharetoa Glacier on northern side, 4= Wahianoa Glacier, 5= Mangaehuehu Glacier, 6= Mangaturuturu Glacier, 7= Whakapapa Glacier, 8= Summit Ice Field
Figure 2.11. Alternative ways of measuring a lichen thallus. Inscribed circles and largest diameter (hatched lines)
Figure 2.12. Growth curve of the Rhizocarpon geographicum from Vernagt glacier foreland (Beschel, 1950). Letters indicate sample sites used
Figure 2.13. Lichenometric dating curve, South Island, New Zealand
Figure 2.14. The relationship between the gradient of size-frequency distributions of Rhizocarpon and surface age on seven dated surfaces in southeast Iceland
Figure 2.15. Some factors which influence R-values results, and their interrelationships
Figure 2.16. Left: Diagrammatic illustration of the use of radius of curvature to represent edge roundness. Right: Design of a simple instrument for measuring edge-roundness of large boulders
Figure 2.17. Graphed relationship between normalised length and radius of curvature
Figure 2.18. Accumulation Area Ratio (AAR). This method is based on the ratio of the accumulation area (Sc) to the total area of the glacier, (where Sa is the ablation area). A steady state (SS) AAR of 0.65 (when mass balance = 0) is regarded as the most appropriate for majority of temperate, debris-free glaciers

Figure 2.19. Maximum Elevation of Lateral Moraine (MELM)	.46
--	-----

Chapter 3

Figure 3.1. Yellow-green Rhizocarpon subgenus 4
Figure 3.2. Sampling areas in the Wahianoa Valley. Dashed line is the round the mountai track and signifies the maximum extent of the study site for this thesis
Figure 3.3. Measurement of lichen using callipers
Figure 3.4. Location of Ohakune cemetery 52
Figure 3.5. Measurements taken using L-type Schmidt hammer
Figure 3.6. Roundness images and classes
Figure 3.7. Measurement of a sample using boulder roundness instrument
Figure 3.8. Map of New Zealand showing the northward vectors from Cobb Valley and M Ella to Mt Ruapehu 59

Figure 4.1. Lichenometric results for the Wahianoa Valley. Numbers indicate the average of the five largest lichens in each sample site
Figure 4.2. Box and Whisker plot for the average of the five largest lichens calculated for the Wahianoa Valley
Figure 4.3. Range of the five largest lichens for each the sample sites in the Wahianoa Valley
Figure 4.4. Graph of lichenometric results from Ohakune cemetery
Figure 4.5. Lichenometric growth curve for Ohakune cemetery
Figure 4.6. Size-frequency histogram for the Wahianoa 'A' moraines
Figure 4.7. Lichenometric size-frequency curve for the Wahianoa 'A' moraines
Figure 4.8. Histogram of the size-frequency for the Wahianoa 'B' moraine71

Figure 4.9. Size-frequency curve for the Wahianoa 'B' moraine
Figure 4.10. Histogram of the size-frequency for the Wahianoa 'C' moraines73
Figure 4.11. Size-frequency curve for the Wahianoa 'C' moraines74
Figure 4.12. Lichen, approximately 80mm, located on the eastern slope of the true left Wahianoa 'A' moraine facing and near the junction with Wahianoa 'B' moraine
Figure 4.13. <i>Rhizocarpon</i> subgenus located on the southern face of the Wahianoa 'A' true left moraine. Note the lichen's lack of circular shape

Chapter 5

Figure 5.1. Schmidt hammer measurements for the Wahianoa Valley	.84
Figure 5.2. Box plots of the range of R values measured at each sample site on Wahianoa 'A', 'B' and 'C' moraines	the .85
Figure 5.3. Size-frequency histogram of R values versus the size-frequency (%) for Wahianoa 'A' moraines	the .86
Figure 5.4. Size frequency histogram for R values of the Wahianoa 'B' moraine	.87
Figure 5.5. Histogram of the Wahianoa 'C' rebound (R) values	.88
Figure 5.6. Histogram of the frequency of the roundness categories	90
Figure 5.7. Mean Roundness versus Mean R value of each site	.92

Figure 6.1. Boulder roundness measurements for the Wahianoa Valley. Numbers indicate the average radius of curvature for each sample site
Figure 6.2. Box and Whisker plot of the Boulder roundness measurements of the Wahianoa Valley
Figure 6.3. Box plots of the range of radii of curvature of each sample site in the Wahianoa Valley
Figure 6.4. Histogram of adjusted length versus frequency of the Wahianoa 'A' boulder roundness measurements
Figure 6.5. Interfacet angle versus measured length for the Wahianoa 'A' moraines

Figure 6.6. Histogram of the Boulder roundness measurements for the Wahianoa 'B' moraine
Figure 6.7. Interfacet angle versus measured length of the Wahianoa 'B' Boulder roundness measurements
Figure 6.8. Histogram of the Wahianoa 'C' Boulder roundness measurements104
Figure 6.9. Interfacet angle versus measured length of the Wahianoa 'C' Boulder roundness measurements

Chapter 7

 Figure 7.1. Reconstructed Wahianoa glacier outline with estimated paleo-ELA values labelled.
 110

 Figure 7.2. Cumulative area-altitude graph for the reconstructed outline of the Wahianoa Glacier. An AAR of 0.65 yields a paleo-ELA of 1750m (dashed line). Error lines ± 0.05 are also shown (solid lines).
 112

 Figure 7.3. Approximate location of the maximum elevation of the Wahianoa moraines.
 114

 Figure 7.4. Current outline of the Wahianoa Glacier with estimated current ELAs labelled.
 116

 Figure 7.5. Cumulative area-altitude graph for the current outline of the Wahianoa Glacier.
 116

Chapter 8

Figure 8.4. Comparison between Boulder roundness and Schmidt hammer results......128

List of Tables

Chapter 2

Table 2.1. Preferred classification of the International Commission of Stratigraphy (2004). Source: Bowen and Gibbard, (2007)		
Table 2.2. Preferred classification: the base of the Pleistocene (Early Pleistocene subseries) coincides with the Gauss-Matuyama polarity reversal; that of the Middle Pleistocene coincides with the Matuyama- Brunhes polarity reversal; and the base of the Late Pleistocene coincides with that of the Eemian stage. Source: Bowen and Gibbard, (2007)		
Table 2.3. Correlation of New Zealand Pleistocene glacial advances and interglacials.(Pillans, 1994; Palmer and Pillans, 1996; Newnham <i>et al</i> , 1999; Suggate and Waight, 1999and Salinger, 2001)		
Table 2.4. Tephrachronology of the southeastern sector of the Mt Ruapehu ring plain27		
Table 2.5. Elevations and recession of glacier snouts between 1962 and 1988		
Table 2.6. Properties and uses of the different versions of the Schmidt Hammer (Goudie, 2006)		
Table 2.7. Practical Points that need to be observed when using the Schmidt Hammer(Day, 1980; McCarroll, 1989a)		
Table 2.8. Sampling criteria for the selection of boulders. (Kirkbride, 2005)		
Chapter 3		

Table 3.1.	Assigned	values for each	h roundness category	55	,
------------	----------	-----------------	----------------------	----	---

Table 4.1. Averages and range for lichenometric measurements in the Wahianoa valley63	3
Table 4.2. Lichenometric results from Ohakune cemetery, bold values indicate their use in the growth curve	5
Table 4.3. Lichenometric results for the Wahianoa valley	5
Table 4.4. Calculated ages of the moraines present in the Wahianoa valley	;
Table 4.5. Lichenometric results for the three sites shown in Figure 4.1	9

Table 4.6.	Summary of ages for the Wahianoa Valley	.80
Table 4.7.	Summary of T-test values for the Wahianoa Valley	80

Chapter 5

Table 5.1.	Overall Schmidt Hammer measurements for the Wahianoa valley	;7
Table 5.2. the Wahian	Comparison between selected R values for the Mueller Glacier catchment at the Valley	nd 39
Table 5.3.	Ttest values for the Wahianoa Valley	0
Table 5.4. Valley	Frequency (%) values for the roundness measurements for the Wahian	oa 91

Chapter 6

Table 6.1.Wahianoa	Descriptive statistics of the Bould Valley	ler roundness measur	ements from the100
Table 6.2.	Boulder roundness measurements from	the Wahianoa Valley	
Table 6.3.	T-test values for the Boulder roundness	measurements	106

Chapter 7

Table 7.1.reconstructed	Area calculations for each region between successive contour lines on ed glacial outline
Table 7.2.	Results from the THAR method used on the Wahianoa Glacier reconstruction. 113
Table 7.3. Wahianoa (Resultant values (m ²) for areas between successive contour lines for current Glacier in Figure 7.4
Table 7.4.	Results from the THAR method118
Table 7.5.	Lapse rate calculations for the Wahianoa Glacier ELA depressions121

Chapter 8

 Table 8.2.
 Comparison between lichenometric results from the Wahianoa Valley and selected Norwegian Little Ice Age results.

 132