Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of the interactions of RGL1; a negative regulator of gibberellin signalling

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Biochemistry

Massey University, Palmerston North New Zealand.

> David John Sheerin 2010

Abstract

The gibberellins are a family of phytohormones that promote many aspects of plant development. Central to the function of gibberellins are the DELLA regulatory proteins. The DELLA proteins actively repress cell differentiation and elongation, but are degraded upon perception of gibberellin, thus relieving repression of gibberellin responses. The GID1-family gibberellin receptors and DELLA-specific F-box proteins are essential for the gibberellin-induced degradation of the DELLA proteins. Importantly, the direct interaction between gibberellin-bound GID1-family gibberellin receptors and the N-terminal domain of DELLA proteins is a prerequisite for proteasomal degradation through recruitment of the F-box proteins. To increase understanding of gibberellin signalling, I have characterised a gibberellin-dependent GID1-DELLA-F-box protein signalling switch in Arabidopsis thaliana. First, I have characterised a suite of anti-DELLA antibodies for detection of four endogenous A. thaliana DELLA proteins, GIBBERELLIC ACID-INSENSITIVE (GAI), REPRESSOR OF GA1-3 (RGA), RGA-LIKE-1 (RGL1), and RGA-LIKE-2 (RGL2). Using these monoclonal antibodies against the conserved motifs of DELLA proteins, I showed that residues Asp/Glu/Leu/Leu within the signature DELLA motif are not essential for interaction of RGL1 with GID1A. Further, in vitro interaction assays allowed modelling a two-step conformational change within the N-terminal domain of RGL1 upon interaction with gibberellin-bound GID1A. Together with interaction assays in yeast two- and three-hybrid systems, these experiments provided three clues to the mechanism of GID1A-RGL1-SLY1 gibberellin signalling switch: i) N- to C- interdomain interactions of RGL1 regulate its accessibility to SLY1; ii) the N-terminal domain of RGL1 undergoes conformational rearrangement upon interaction with gibberellin-GID1A; iii) the conformational changes of the N-terminal domain of RGL1 primes the C-terminal domain for the recruitment of SLY1. I have also isolated two novel RGL1-interacting proteins, the myrosinase THIOGLUCOSIDE GLUCOHYDROLASE-2 (TGG2) and GERMIN-LIKE-PROTEIN-1 (GLP1), through affinity-purification from nuclear extract and mass spectrometry fingerprinting. Neither protein has yet been implicated in gibberellin signalling. Therefore, the identification of these novel components may help resolve several uncharacterised aspects of gibberellin signalling.

ii

Acknowledgments

I would like to thank my supervisors, Dr Jasna Rakonjac, Dr William Jones, and Dr Toshi Foster for their advice and guidance. I would also like to thank the other members of both the Helipad lab and the Plant and Food Research Immunology group for their helpful support.

I am grateful to Julian Spagnuolo who assisted in the optimisation of quenching conditions used for deuterium exchange mass spectrometry. I also thank members of Prof. Nicholas Harberd's research group at the John Innes Centre for supplying *A. thaliana* plant material and reagents for the determination of monoclonal antibody specificity.

This project was supported by grants from the Foundation for Research Science and Technology (No. C06X0207) and the Agricultural and Marketing Research and Development Trust (No. 20585).

Table of contents

Abstract	ii
Acknowledgements	iii
List of figures	vii
List of tables	ix
Abbreviations	Х
Chapter 1. Introduction	1
1.1 DELLA proteins	2
1.2 Structure and function of the DELLA proteins	6
1.3 Transcriptional regulation mediated by DELLA proteins	8
1.4 A signal transduction pathway for gibberellin perception	12
1.4.1 Production of bioactive gibberellins	13
1.4.2 Perception of bioactive gibberellins	15
1.4.3 Nuclear localised gibberellin receptors	17
1.4.4 Gibberellin-induced DELLA protein degradation	22
1.5 Additional gibberellin signalling components	26
1.6 Phytohormone cross-signalling	28
1.7 An integrated model for gibberellin signalling	30
1.8 Statement of problem and significance	32
1.9 Hypothesis	33
Chapter 2. Material and methodology	34
2.1 Materials and reagents	34
2.2 General methodology	35
2.2.1 Molecular biology	35
2.2.2 Protein electrophoresis	36
2.2.3 Western blotting	36
2.3 Escherichia coli strains and growth conditions	37
2.4 Saccharomyces cerevisiae strains and culture conditions	37
2.5 Arabidopsis thaliana lines and growth conditions	38
2.6 Total Arabidopsis thaliana protein extraction	38

2.7 Arabidopsis thaliana nuclear protein extraction	38
2.8 Preparation of Rabbit polyclonal antisera	39
2.9 Anti-DELLA monoclonal antibodies	39
2.10 Construction of recombinant plasmids	40
2.11 Yeast two- and three-hybrid interaction reporter assays	41
2.12 Recombinant protein expression and purification	42
2.13 in vitro interaction experiments	43
2.13.1 Analysis of association and dissociation kinetics	44
2.14 Deuterium exchange mass spectrometry	44
2.15 Affinity purification of RGL1-interacting proteins	45
2.16 Mass spectrometry fingerprinting	45
Chapter 3. Characterisation of antibodies against Arabidopsis thaliana	59
DELLA proteins	
3.1 Detection of endogenous <i>Arabidopsis thaliana</i> DELLA proteins	62
3.1.1 Identification of endogenous Arabidopsis thaliana	65
DELLA proteins	
3.2 Mapping of anti-DELLA antibody epitopes	75
Chapter 4. Characterisation of the interactions of RGL1	78
4.1 Characterisation of the gibberellin-dependent GID1A:RGL1 interaction	80
4.1.1 Requirement of the DELLA and TVHYNP motifs	84
4.1.2 Effects of bioactive gibberellins on interaction strength	86
4.1.3 DELLA and TVHYNP motif competition analysis	89
4.1.4 Characterisation of interaction kinetics	98
4.2 Gibberellin-dependent recruitment of SLY1 to RGL1	108
4.2.1 RGL1 inter-domain interactions	110
4.3 Prediction of the surface accessibility of Q272	116
4.3.1 Prediction of the RGL1 GRAS domain tertiary structure	118
Chapter 5. Identification of novel RGL1-interacting proteins	120
5.1 Affinity purification of RGL1-interacting proteins	121
5.2 Identification of isolated RGL1-interacting proteins	123

Chapter 6. Discussion	
6.1 Detection of endogenous Arabidopsis thaliana DELLA proteins	130
6.2 Contacts of the Asp/Glu/Leu/Leu α -helix of RGL1 are not	
essential for the GID1A/GA4:RGL1 interaction	
6.3 The N-terminal DELLA domain of RGL1 undergoes	134
conformational changes upon interaction with	
gibberellin-bound GID1A	
6.4 GID1A/GA ₄ recruits SLY1 to RGL1 through alteration of the	135
conformational state to RGL1	
6.5 Novel RGL1-interacting proteins	140
Conclusions and future directions	143
Appendix A	146
Appendix B	149
Appendix C	156
References	158

List of figures

Figure 1.1. Gibberellin signalling mutant phenotypes.	3
Figure 1.2. DELLA protein domain organisation.	7
Figure 1.3. Gibberellin biosynthetic pathway.	14
Figure 1.4. Structural basis of the DELLA-GID1A interaction.	21
Figure 1.5. Nuclear molecular switch model.	24
Figure 1.6. A model for DELLA integrated signalling.	31
Figure 3.1. Stabilisation of <i>A. thaliana</i> endogenous DELLA proteins.	64
Figure 3.2. Characterisation of the affinity-purified	66
anti-RGL1 polyclonal antibody R1PC.	
Figure 3.3. Detection of endogenous DELLA proteins in lines competent in	68
gibberellin biosynthesis.	
Figure 3.4. Characterisation of the monoclonal antibody BC9.	69
Figure 3.5. Characterisation of the monoclonal antibody AD7.	71
Figure 3.6. Characterisation of the monoclonal antibody AB8.	72
Figure 3.7. Characterisation of the monoclonal antibody BB7.	73
Figure 3.8. Partial mapping of anti-DELLA monoclonal antibody epitopes.	76
Figure 4.1. Gibberellin-dependent A. thaliana GID1A-C:DELLA	82
interactions.	
Figure 4.2. Gibberellin uptake by S. cerevisiae.	83
Figure 4.3. Characterisation of the gibberellin-dependent GID1A:RGL1	85
interaction.	
Figure 4.4. Comparison of the GA ₃ - and GA ₄ -dependent GID1A-C:RGL1	88
interaction in vitro.	
Figure 4.5. Mapping of RGL1 residues essential for interaction with GID1A.	90
Figure 4.6. GID1A-mediated competition of monoclonal antibody binding	95
to the N-terminal RGL1 DELLA domain.	
Figure 4.7. Structural prediction of the RGL1 N-terminal DELLA domain	97
when in complex with GID1A.	
Figure 4.8. Kinetic characterisation of the gibberellin-dependent	99
GID1A:RGL1 ¹⁻¹³⁷ interaction.	
Figure 4.9. Surface accessibility mapping of RGL1 ¹⁻¹³⁷ .	101

Figure 4.10. Conformational change kinetic modelling of the gibberellin-	
dependent GID1A:RGL1 ¹⁻¹³⁷ interaction.	
Figure 4.11. Characterisation of MBP-GID1A aggregation.	105
Figure 4.12. Gibberellin-dependent recruitment of SLY1 to RGL1.	109
Figure 4.13. Domain analysis of the gibberellin/GID1A-dependent	111
recruitment of SLY1 to RGL1.	
Figure 4.14. Spatial domain separation affects on gibberellin/GID1A-	114
dependent recruitment of SLY1 to RGL1.	
Figure 4.15. Conservation of the VHIID motif and downstream Q272	117
amongst A. thaliana GRAS proteins.	
Figure 4.16. Prediction of the RGL1 GRAS domain tertiary structure.	119
Figure 5.1. Affinity purification of RGL1 N-terminal domain interacting	122
proteins.	
Figure 5.2. Alignment of closely related GLP protein sequences.	128
Figure 5.3. Evaluating an in vivo GLP1:RGL1 interaction.	129
Figure 6.1. Proposed model of gibberellin-dependent recruitment of SLY1 to	138
RGL1.	
Figure A.1. Immobilised RGL1 N-terminal domain binding capacity.	146
Figure A.2. Gibberellin saturation of GID1A.	147
Figure A.3. Gibberellin-dependent binding of RGL1 ¹⁻¹³⁷ to	148

immobilised GID1A.

List of tables

Table 2.1 Escherichia coli strains	47
Table 2.2 Saccharomyces cerevisiae strains	48
Table 2.3 Arabidopsis thaliana lines	53
Table 2.4 Plasmids	54
Table 2.5 Oligonucleotides	56
Table 3.1 Antibody specificity for recombinant A. thaliana DELLA proteins	61
Table 3.2 Antibody specificity for endogenous A. thaliana DELLA proteins	74
Table 4.1 Two-state conformational change model	107
Table 5.1 Mass spectrometry analysis of RGL1 interacting protein p24	125
Table 5.2 Mass spectrometry analysis of RGL1 interacting protein p64	126

Abbreviations

3-AT	3-amino-1,2,4- trizol
ABA	abscisic acid
cDNA	complementary deoxyribonucleic acid
cGMP	cyclic guanosine monophosphate
Col-0	Columbia-0
CPS	ent-copalyl diphosphate synthase
CTR1	Arabidopsis thaliana CONSTITUTIVE TRIPLE RESPONSE-1
D1	Oryza sativa DWARF-1
D27	27 residue synthetic DELLA motif peptide
DMSO	dimethyl sulfoxide
DTT	1,4-dithiothreitol
EDTA	ethylene-diamine-tetra-acetic acid
EIN3	Arabidopsis thaliana ETHYLENE INSENSITIVE-3
GA ₁	gibberellin A1
GA ₃	gibberellin A3
GA ₄	gibberellin A4
GA1	Arabidopsis thaliana GA REQUIRING 1 (CPS)
GA2ox	GA2-OXIDASE
GA3ox	GA3-OXIDASE
GA20ox	GA20-OXIDASE
GAI	Arabidopsis thaliana GIBBERELLIC ACID-INSENSITIVE
GARE	gibberellic acid responsive element
LC-ESI-MS/MS	liquid chromatography electrospray ionisation quadrapole-time-
	of-flight coupled mass spectrometry
LC-MS	liquid chromatography coupled mass spectrometry
GID1	Oryza sativa GIBBERELLIN-INSENSITIVE DWARF-1
GID1A	Arabidopsis thaliana GID1-LIKE-A
GID1B	Arabidopsis thaliana GID1-LIKE-B
GID1C	Arabidopsis thaliana GID1-LIKE-C
GID2	Oryza sativa GIBBERELLIN-INSENSITIVE DWARF-2
GFP	Aequorea victoria GREEN FLUORESCENT PROTEIN

GLP1	Arabidopsis thaliana GERMIN-LIKE-PROTEIN-1
$GLP1^{\Delta SS}$	GLP1, lacking N-terminal secretion signal sequence
GST	Schistosoma japonica GLUTATHIONE S-TRANSFERASE
GUS	<i>Escherichia coli</i> β-D-GLUCURONIDASE
НА	Influenza HAEMAGGLUTININ epitope tag
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HGP	heterotrimeric G-protein
HIS3	Saccharomyces cerevisiae IMIDAZOLEGLYCEROL-
	PHOSPHATE DEHYDRASE
HSIMYB	Hordeum vulgare SPY INTERACTING MYB
HSINAC	Hordeum vulgare SPY INTERACTING NAC
IAA	indole-acetic acid
IPTG	isopropylthio-β-D-galactoside
Ler	Landsberg erecta
MBP	Escherichia coli MALTOSE BINDING PROTEIN
MBP-β-gal	MBP- fusion to β -GALACTOSIDASE- α
MG132	proteasome inhibitor Z-Leu-Leu-Leu-al
O-GlcNAc	O-linked N-acetyl glucosamine
OD _{420/600}	optical density measured at either 420 or 600 nm
ONPG	O-nitrophenyl-β-D-galactopyranoside
PAGE	poly-acrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG-4000	poly-ethylene glycol-4000
PHOR1	Solanum tuberosum PHOTOPERIOD-RESPONSIVE-1
PIF3	Arabidopsis thaliana PHYTOCHROME INTERACTING
	FACTOR-3
PIF4	Arabidopsis thaliana PHYTOCHROME INTERACTING
	FACTOR-4
PMSF	phenyl-methyl-sulfonyl-fluoride
RGA	Arabidopsis thaliana REPRESSOR OF GA1-3
RGL1	Arabidopsis thaliana RGA-LIKE-1
$RGL1^{\Delta DELLA}$	17 residue DELLA motif deletion of RGL1
$RGL1^{\Delta TVHYNP}$	18 residue TVHYNP motif deletion of RGL1

RGL1 ^{Q272R}	glutamine 272-arginine replacement of RGL1
RGL2	Arabidopsis thaliana RGA-LIKE-2
RGL3	Arabidopsis thaliana RGA-LIKE-3
SCF	SKP-CULLIN-F-BOX E3 Ubiquitin ligase complex
SDS	sodium dodecyl sulfate
SHI	Arabidopsis thaliana SHORT-INTERNODES
SLN1	Hordeum vulgare SLENDER-1
SLR1	Oryza sativa SLENDER RICE-1
SLY1	Arabidopsis thaliana SLEEPY-1
SLY1 ^{E138K}	glutamic acid 138 lysine replacement of SLY1
SPY	Arabidopsis thaliana SPINDLY
T21	21 residue synthetic TVHYNP motif peptide
TGG2	Arabidopsis thaliana THIOGLUCOSIDE
	GLUCOHYDROLASE-2
TRIS	tris (hydroxymethyl) aminomethane
Tween-20	polysorbate-20
YFP	YELLOW FLUORESCENT PROTEIN (GFP mutant)