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Abstract

This thesis looks at issues in Industrial Experimental Design and Quality Control.
The first part is a review of Parameter Design and its evolution into methods of
modelling the mean and variance as one system.

The second part introduces the concepts of observable and unobservable factors
as an extension to the ideas of controllable and uncontrollable factors of Parameter
Design. Methods will be devised to show how to choose the best settings of the
controllable factors and how to move to those settings once chosen. In the last sec-
tion estimates for tracking the unobservable uncontrollable factors will be devised.
These will be examined to see whether they can be used to improve the monitoring

of the system via control charts.
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Chapter 1
Review

This thesis comes in two parts. The first part is a review of Parameter Design
and its evolution into the joint modelling of the mean and variance. The second

part extends some of the ideas of Parameter Design for use in Quality Control.

1.1 Parameter Design

At the end of the Second World War much of the infrastructure in Japan had
been damaged or destroyed. Importance was placed in restoring and repairing the
damaged infrastructure as quickly as possible. Dr Genichi Taguchi was employed
to get the telephone system up and running again and his methods started their
evolution during this period.

Once the infrastructure was put into place the Japanese realised that the way to
rebuild the prosperity of their country was to do so through manufacturing.
Producing products of high quality became an important issue for two reasons.
The first was to change the poor reputation that Japanese products had before
the Second World War and the second was to minimise the wastage of imported
raw materials. In this climate many ideas were conceived and continue to be
conceived as a means of improving quality. Dr Taguchi’s methods were
transferred into this environment and evolved. His ideas were influenced by his
background in Engincering and Communications Theory and so they were easily
passed on to other practising industrial engineers as they were written in
engineering “language”. Dr Taguchi’s methods gave improvements which could

be readily seen and this enhanced their appeal. For both of these reasons his
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ideas became well known although not universally accepted in Japan.

Japan’s success in the manufacturing fields came under scrutiny as other countries
endeavoured to find the reasons for their success and to copy them. In the 1980’s
Dr Taguchi’s methods were introduced to the United States of America. Since
then there have been varied responses to his techniques although the underlying

ideas that gave rise to Paremeter Design were seen as an important breakthrough.

1.2 The Design of a Product or Process

Dr Taguchi divides the design of a product or process into three groups, system
design, parameter design and tolerance design.

System design is when ideas and methods about a product or process are
thought up and implemented to the stage of a working prototype. This stage
involves utilising the latest technology. Quality variables are determined.
Proposed tolerances are found for them as well as parameters that are thought to
affect them.

Parameter design is a pre-production quality control method. At this stage
optimal values for the parameters are found through experimentation so that the
quality variable is in some way optimised.

The last step is Tolerance design. Tolerances are set at the system design stage
and if after the paraineter design stage these tolerances are not met then action
has to be taken in order to conform to these tolerances. This may involve using
higher quality components or reworking inferior products. Choosing the best
option involves calculating a loss function. This function is intended to represent
the gain the customer gets and the loss the manufacturer has under a specific
option. The options that gives the least loss is considered the best option.
System and Tolerance Design are very much the preserve of engineers however

Parameter Design blends itself into the wider topics in Industrial Statistics.

1.3 Parameter Design Methodology

Parameter Design utilises Experimental Design and extends some of the
terminology. In this new setting the parameters are split into two groups of

factors, uncontrollable (noise) factors and controllable factors. Controllable
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factors are those that can be controlled or that the manufacturer chooses to
control during production i.e. on-line. The uncontrollable factors are ones that
the manufacturer can’t control or chooses not to control during production.
These uncontrollable factors could include humidity in the workplace, the quality
of products used or the way the customers treat the product.

A factor can only belong to one of these factor sets at any one time. However
sometimes the choice of which set the factor can fall into lies with the
experimenters. For example humidity can be controlled during production but at
great cost and so the economic choice may be to deem it to be uncontrollable.
The experimentation in Parameter Design is done off-line and all the factors,
controllable and uncontrollable are set at fixed levels. The uncontrollable factors
arc used directly or simulated and are varied with the controllable factors, using a
designed experiment, and the results are noted. From this data the controllable

factors are subdivided into four groups. They are

Controllable Factors

Figure 1.1: Interpretation of Factors.

Group 1. Controllable factors that effect only the mean level of the process

or product variable.

Group 2. Controllable factors that effect only the variance of the process or

product variable

e Group 3. Controllable factors that effect both the mean and variance.

Group 4. Controllable factors that effect neither the mean nor the variance.

Group 2 and 3 members are called dispersion effects or variance control factors

and group 1 and 3 members are called mecan effects ortarget control factors.
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1.4 The Method

The experimental designs that Dr. Taguchi advocates are orthogonal arrays
which are mostly fractionated factorial designs of which a large subset are the
ones described by Plackett and Burman[30] in 1946. These are resolution three
desigis which allow only the main effects to be estiinated. One design is used for
the controllable factors and is called the inner array. Another design is used for
the uncontrollable factors and called the outer array. They are crossed so that for
each setting of the controllable factors a complete replicate of the outer array is
run. For each distinct run of the controllable factors the response mean and

variance are calculated.

1.4.1 An Example

This example is taken from Engel’s[13] paper on modeling variation. This
experiment looks at the percentage shrinkage in an injection moulding process.
The factors are set at two levels and are defined in Table 1.1. There are seven

controllable factors and three uncontrollable factors.

Table 1.1: Factors in the Experiment.

Controllable Factors Uncontrollable Factors

A: cycle time M: percentage regrind
B: mould temperature  N: moisture content

C: cavity thickness O: ambient temperature
D: holding pressure

E: injection speed

G: holding time

H

: gate size

The design for the controllable factors is a F25* and is shown in Table 1.2. The
design for the uncontrollable factors is a F23~" and is shown in Table 1.3. The
first design contains eight trials and the latter four and so after crossing, the

entire experiment will contain 32.
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Cell Controllable Factors
A B C D E G H

1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 1 1 1 1

3 -1 1 1 -1 -1 1 1 Cell Uncontrollable Factors
4 -1 1 1 1 1 -1 -1 M N @

5 1 -1 1 -1 1 -1 1 1 -1 -1 -1

6 1 -1 1 1 -1 1 -1 2 -1 1 1

7 !1 1 -1 -1 1 1 -1 3 1 —i 1

8 1 1 -1 1 -1 -1 1 4 1 1 -1

Table 1.2: The Inner Array. Table 1.3: The Outer Array.

The data is collected and listed as in Table 1.4.

Table 1.4: The Complete Array.

OuterArray
M -1 -1 1 |
N -1 1 -1 1
o -1 1 1 -1

i A B C D E G H Yii Y2 ¥3,i Yai Vi Si

1 -1 -1 -1 -1 -1 -1 -1 27 20 2.3 2.3 2.225 0.10
2 -1 -1 -1 1 1 1 1 03 25 27 0.3 145 1.33
3 -1 1 1 -1 -1 1 1 0.5 3.1 04 28 1.7 1.45
4 -1 1 1 1 1 -1 -1 20 1.9 1.8 2.0 1.925 0.10
) 1 -1 1 -1 1 -1 1 3.0 3.1 3.0 3.0 3.025 0.05
6 1 -1 1 1 -1 1 -1 200 4.2 1.0 34 2.6 1.37
7 1 1 -1 -1 l 1 -1 4.0 1.9 4.6 2.2 3.176 1.33
8 1 1 -1 1 -1 -1 1 20 1.9 19 1.8 1.90 0.08

InnerArray

If we consider (A, B, C, D, E, G, H, M, N, @) to be a run in the experiment then
the run ( -1, -1, -1, -1, -1, -1, -1, -1,-1, -1 ) generated the value 2.2% and ( -1, -1,
-1, -1, -1, -1, -1, -1, 1, 1 ) generated 2.1% for the percentage of shrinkage, etc.
Suppose that our target value is 1.5% then we could say that trial two has
produced the closest mean value to the target and we could set the process going

with the controllable factors at the levels of this trial. On the other hand we
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could look at the run with the smallest sample variance, which is trial five, work
out those controllable factors that only effect the mean and use them to bring the
process mean to its target value. The latter case is preferable (although not
necessarily optimal) since the process will be on target and the deviations from

this target value will be small.

1.5 The Analysis

Dr. Taguchi advocates this method of analysis. To work out those controllable
factors that affect the mean value an ANOVA is done using the design matrix for
the controllable factors and the mean values ( ¥; ) for each run of the inner array
as the response. To work out which controllable factors affect the variance of the
process an ANOVA is done using the design matrix for the controllable factors
and the transformed response data. The transformation that is used is called the
Signal to Noise ratio ( SN ratio ). It has units of decibels.

The transformation depends on the intent of the experiment and engineering
knowledge of the system. The three most imporant cases are when the process
has a target to conform to, as in the previous example, when the process variable
is to be maximised, or when the process variable is to be minimised. Note that 2

th

refers to the "* distinct trial of the controllable factors.

e The first case is called “nominal is best” and the sn-ratio is

2

SNyg = 10 log;of S ) (1.1)

bl -

e The second case is called “higher is better” and the sn-ratio is

1 n 1
SNug = —1010810(52—2) (1.2)

i=1Ji

e The last case is called “lower is better” and the sn-ratio is

] (I
SN = —””“gm(; >y (1.3)
i=1

1.5.1 Example Continued

In order to demonstrate some of the above results I will return to the example

started in section 1.4.1. In this example the percentage shrinkage of an article
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from an injection moulding process has to conform to a certain target. There are
eight means for the response variable and seven factors so an analysis of variance
cannot be done as there are no degrees of freedom for the estimation of the error
variance. A QQPlot of the coefficients of the factors found by least squares is
shown in Figure 1.2a). It shows that factors A and H are factors that affect the
mean level of the process since they do not lie on the line of the insignificant

effects.

QQplot Of Coefficients QQplot Of Coefficients

0.4

Value of Coefficient

Value of Cosfficient
<08
|

=1 = B e T = = T T I ) T
-1.0 05 0.0 05 10 -1.0 0.5 00 05 1.0
Quantiles of Standard Normal Quantiles of Standard Normal

KEY: X represents the coefficient of the Factor X.

Figure 1.2: QQPlot of coefficients for a) the analysis of the means and b) the

analysis of the signal to noise ratio.

Using equation 1.1 eight values for the sn-ratio were calculated. These act as the
response. Since there are also seven factors an analysis of variance cannot be
done as there are no degrees of freedom for estimation of the error variance. A
QQPIlot of the coeflicients found by least squares shown in Figure 1.2b) shows
that factor G is the only factor that affects the variance of the process.

[n doing an analysis of variance procedure or a QQPlot we assume that the

response variable is distributed normally which in turn means that the error
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distribution has a zero mean and constant variance. Constant variance is not
necessarily true in some cases. Engel gave an analysis that doesn’t rely on the
distribution of the response variables. He plotted the averages of each factor for
cach level. These plots are shown in Figures 1.3a) and 1.3b). Using subjective
judgement, factors A, D and H are mean control factors and possibly E. In the

latter Factor G is the noise control factor.

a) b)
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KEY: X1 represents the mean for the lower level for factor X. X2 represents the

upper level.

Figure 1.3: Plot of means for each level of the factors a) for the analysis of the

mean shrinkage and b) for the analysis of the signal to noise ratio.

From Engel’s results we would use Factor G to minimise the variance of the
process (i.e. set G at it’s low level) and use factors A, D and H to set the process

to the target shrinkage level, setting all the others at any level.

1.5.2 Confirmation Trials

The final step is to do a confirmation check. This involves using the derived
settings to do further runs to check that these new responses match the expected

responses from the model.
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1.5.3 Rationale Behind The Experimental Designs

The Inner and Outer arrays are both level 3 Designs. In these designs the main
effects are aliased with the two factor interactions (and higher interactions) but
not amongst themselves. Crossing the inner and outer arrays allows for the
estimation of the ControlxNoise (C' x N) interactions. However the C x C and
N x N interactions are confounded. The approach that advocates [25] of Dr.
Taguchi’s method of Parameter Design use, is to choose the quality variable and
the SN ratio so that the C x C are absent or small. However this requires
engineering knowledge of the system which may not always be the case. The
confirmation trials allow for the checking of large C x C interactions. If these
interactions are present then Dr Taguchi advocates that a new SN ratio or a new
quality response should be chosen and the process iterated.

The advocates of Dr. Taguchi’s method of Parameter Design say that by choosing
the SN ratio and quality variable so that there are no C' x C interactions means
that

e the number of runs required to esimate the parameters is reduced

e large factor sets can be split up into smaller sets allowing different teains to
simultaneously do experimentation. This shortens research and

development time.

e the optimumn settings in the lab will translate into the factory and the field.
If there are strong C x C interactions then there are likely to be
interactions between the control variables and the unobserved factor of
‘place’. If this is so then the optimun found in the lab won’t translate into

the field or factory.

1.6 Critism of the Method

There are two major criticisms of the Taguchi method of Parameter Design. The
first is with the SN ratio and the second is with the concept of interactions.

The SN ratio is a measure used to find the controllable factors that effect the
variance of a process i.e. the Variance Control Factors. However Box (7] showed
that the SN-ratio may not always pick up the variance control factors. For

example - after experimentation the responses generated by each distinct run of
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the controllable factors are condensed into a single value, the SN ratio, which is
analysed by ANOVA or some related technique.
In the constructed example below consider this F2? factorial design with factors

C and D that has been replicated four times and outlined in Table 1.5

Table 1.5: Design and Results for Constructed Example.

trial SN
no | C D ¥1 Yo Y3 Ya 5% Ratio
1 -1 -1 20 20 20 20 0 26.0206
2 1 -1]15.4246 35.4246 15.4246 35.4246 | 133.3333 26.0206
g8 |[=1 1 20 20 20 20 0 26.0206
4 1 1154246 35.4246 15.4246 35.4246 | 133.4333 26.0206

and represented graphically in Figure 1.4. Suppose we want to maximise the
, target value then we would use equation 1.2 of Section 1.5 to get the SN ratios

outlined in Table 1.5 .

Responses for Two Experimental Conditions

ol & )
j=8
2]
'}
o~
Al A2 A3 A4
< —— ———
o~
wn | 81 a3
LT Y T T T
1 4
run number

ICEY: The Points A represent the four responses found from trial 1 ( or
equivalently trial 3 ). The Points B represent the four responses found from trial

2 ( or equivalently trial 4 ).
Figure 1.4: The Responses for Four Replicates of a F22 Experiment.

Doing an ANOVA on the SN ratios would give the result that none of the factors
are variance control factors for the process as the SN ratios are all equal.
However, from observation, at the low level of C, the variances are both zero
while at the high level the variances are both 133.3333. This tells us that C is a

factor that influences the variance of the process. In the graph it is clear that the
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variance of runs A and B are very different. The analysis that Taguchi advises
has failed to pick this up.

Box [7] also showed that there were problems with SN, g (see equation 1.3). This
is used to find the controllable factors that affect the variance of the process and

is made up of
mn
2
-
=1

and this follows the formula

ny :ngg+(n— 1)s?. (1.4)

i=1
This means location effects are being confounded with dispersion effects i.e. if
factor A is only a significant location effect it may be found to be a significant
dispersion effect when using SNy g.
These designs, the inner and outer arrays, are both highly fractionated which
means only main effects can be modelled. If there are any interactions amongst
the factors in each group their effect is going to be incorporated into the aliased
main effects. By crossing the inner and outer arrays together this new design
allows the Noisex Control interactions to be estimmated. The Noisex Noise
interactions are of no importance to making the process insensitive to noise. This
leaves the CxC interactions. Taguchi advocated that only the responses that
cause the control factors to be additive in the range of interest should be studied.
He advocated that engineers should use their knowledege of the proccess in order
to choose the right quality response to use. However there is no guarantee that
there is such a quality response or if there is one that it is known. A chosen
quality response may be assumed to be linear but may not be linear in practice
and then the method will fail.
Depending on the intent of the experiment and the interpretation of the
experimenter a factor could be uncontrollable or controllable. To assume that this
factor will interact with the control factors when it is a noise factor and not
interact with any control factors when it is one itself is not sound. Jerome Sacks

and William Welch[25] are quoted as saying

Taguchi’s main motivation for ignoring interactions between control
factors appears to be economy of experimental effort rather than any

assurance it is safe to do so.
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Even when ignoring the CxC interactions the experiment can be quite large.
Suppose there are M control factors and and N noise factors then an experiment
will consist of at least MxN trials. For even moderate M and N this is a large
number of experiments.

Dr Taguchi says [25] that

.the objective of parameter design is very different from a pure
scientific study. The goal in parameter design is not to characterize
the system but to achieve robust function. Pure science strives to
discover the causal relationships and to understand the mechanics of
how things happen. Engineering, however, strives to to acheive the
result needed to satisfy the customer. Moreover, cost and time are
very important issues for engineers. Science is to explain nature while

enginecring is to utilize nature.

This is understandable if the product is only going to be made for a short time.
However if the production run is going to be long then an iterative method of
experimentation is best. This is where the results of the last experiment are used
to point towards new areas of investigation and experimentation. The best
decisions are made in the presence of maximum information combined with
engineering experience.

There are also some minor quibbles regarding some of the dangers in some of the
analyses that were not acknowledged in outlining the method. They are
associated with the anlysis of experimental design in general and are worth
recording because of their wider use and mis-use.

In highly fractionated designs there are often not enough degrees of freedom to
estimate the variance of the error. Taguchi advocated pooling the smallest effects
for use as the error variance. This often leads to non-significant effects being
labelled significant. Taguchi explained that including non-significant effects into
the solution does not affect the result, i.e. a non-significant effect at a high or low
level will give the same estimated value for the response. However Box[25] argued
that it is necessary to know which factors are truly significant and those which
arc not as this will give a clearer understanding of the system and will provide
avenues of exploration for the next stage of experimentation.

In an experiment the concept of randomisation has to be adhered to. Problems

arise when the experiment is run, unintentionally, as a split plot design. This
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occurs when for each distinct run of the controllable factors all the different runs
of the uncontrollable factors are done (or vice versa). In such cases the reasoning
behind this has been economic in that it is often cheaper to change the settings of
the uncontrollable factors than the controllable factors or vice versa but not both
sets together. The correct way to do the experiment is to list the MxN runs and
then choose the ordering by randomly picking runs from this list. Of course the
original experiment could be re-analysed taking into account the split-plot effect.
The reasoning behind the SN ratios is also different from the way statisticians are
taught. Parameter design puts forward a transformation before the data is
collected and a confirmation trial is done to see if the model fits. Statisticians
work in the opposite direction. They collect the data but let the data show what,
if any, transformation need be done.

The first method is a cookbook approach. At each step there is an appropriate
action that does not rely on an statistical experience e.g. viewing residual plots to
check for outliers. This recipe style of presentation is easy to follow and so many
experiments were done. In a lot of cases this did lead to improvements, however
when things went wrong the ‘cook’ could be left not knowing what went wrong

nor what to do next.

1.7 A Simpler View

The method of Parameter Design proposed by Dr. Taguchi, under some
conditions, is more complicated than is needed. Rather than crossing arrays and
using SN-ratios a classical experimental design can be run. In Parameter Design
the way that controllable factors act on the quality variable have been given
names i.e. mean control factors, variance control factors. By observing the way
the controllable factors interact with the uncontrollable factors it can be seen
that there is a direct connection between the Parameter Design terminology and
classical Experimental Design terminology.

Consider the simplest experiment - two factors one a controllable factor A and
the other an uncontrollable factor B. In the usual way of Parameter Design the
experiment is done off-line and factors A and B are set at fixed levels. From the
resulting experiment we can see how these factors interact. Consider these

interaction graphs
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In Figure 1.5 there is no interaction between A and B. The variance of Y, the
quality variable, at the low level of A is the same as at the high level of A. The
mean of Y at the low level of A is the same as at the high level of A. By
connecting the low levels of B with a line and the high levels of B with a line we
can see that the mean and variance of Y would not be predicted to change at
points between the low and high level of A. Therefore A, by definition, would be
neither a mean nor a variance control factor i.e. adjusting A doesn’t affect the
mean or the variance of Y. In classical experimental design we would say factor A

does not have a main effect or an interaction with 3.

Interaction
Between A and B

B high

B low

low high
A

Figure 1.5: No Interaction Between A and B

In Figure 1.6 there is an increase in Y between the high and low levels of A. The
variance of Y at the low level of A is the same as at the high level of A. However
the mean of Y at the low level of A is less than at the high level of A. Connecting
the levels of B, as before, we can see that at points between the high and low

levels of A there is a change in mean of Y but no change in variance. Therefore A
would be a mean but not a variance control factor i.e. adjusting A affects the

mean of Y but not the variance of Y. In classical Experimental Design we would

say A has a main effect but that it has no interaction with B.

interaction
Between A and B

Figure 1.6: No interaction Between A and B

In Figure 1.7 there is an interaction between A and B. The variance of Y at the

low level of A is less than at the high level of A. However the mean of Y at the
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low level of A is the same as at the high level of A. Connecting the levels of B, as
before, we can see that at points between the high and low levels of A there is no
change in mean but there is a change in variance. Therefore A would be a
variance control factor but not a mean control factor i.e. adjusting A would affect
the variance of the responce but not the mean. In classical Experimental Design

we would say that A had no main effect but has an interaction with B.

interaction
Between A and B

/ -

y

Xam

low high

Figure 1.7: An Interaction Between A and B

In Figure 1.8 there is also an interaction between A and B. The variance of Y at
the low level of A is less than that at the high level of A. The mean of Y at the
low level of A is the less than at the high level of A. Connecting the levels of B,
as before, we can see that at points between the levels of A there is a change in
mean and a change in variance. Therefore A would be a mean and variance
control factor i.e. adjusting A would affect the mean and variance of Y. In
classical Experimental Design we would say that A has both a main effect and an

interaction with B.
Interaction
Between A and B
B high

e T

low high
A

Figure 1.8: An Interaction Between A and B

To determine those factors that are mean and/or variance control factors all that
is neccessary is to have an experimental design that allows for main eftects and
interactions between control and noise factors. The inner and outer arrays of
Parameter Design allow for this as do many classical experimental designs. The

latter are usually smaller and also allow for interactions and higher order
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relations between control factors and between noise factors. The Split Plot and
Response Surface methods outlined in the next section use this rationale.
However for testing procedures it introduces the assumption of a constant error
variance which may not always be seen in practice.

Most of the current research has focused more closely on the idea of modelling
the mean and variance in terms of the control factors alone. The noise factors
may be introduced into the experimental design but it is not an absolute
requirement. This is handy when the experimenter

1) does not know all or many of the possible noise factors or

2) what levels the noise factors should be set at if they are known.

This joint modelling of the mean and variance requires more lattitude in the
specification of their distributions. The methods seen in the next chapters allow

for this requirement.

1.8 The Positive Aspects of Parameter Design

According to Pignatiello and Ramberg[32] the main triumph of of Dr Taguchi’s
method of parameter design is that is has been actively promoted. Although Box
(25] showed that some of Dr Taguchi’s ideas had been avaliable in the West

1) the othogonal arrays were very similar to the fractionated factorials of Placket
and Burman[30] and been
2) that the idea of uncontrollable variables had also,conceptualised by
Michgels[22] '. However this knowledge had never been put together to give a
method of quality control for use in the workplace.

People at AT&T, Ford, ITT and Xerox and The American Supplier Institute
have put some effort into promoting Dr Taguchi’s method in the United States of
America, the latter supplying articles for manufacturing magazines such as
Process Engineering[17], Engineering[2] and Metallurgia[3]. These ideas also have
been spread through seminars and courses. This has had two impacts. A wider
range of people, managers as well as engineers, have been introduced to quality
engineering and using statistical techniques to make improvements in quality. It

has also increased the awareness of the variances role in quality improvements.

In his paper Michuels talked about the importance of knowing about the interactions between
the product and the evironment (ie Control x Noise Interactions) so that the quality of the
product would be competitive in all environments.
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The publicity has led to experiments being done and improvements in quality
have been scen as a result. However these improvements have not always been
optimal.

Unfortunately some of the teaching in these seminars and courses has been poor.
Teachers have given incorrect information or omitted to outline the appropriate
assumptions behind the method. This has led to opposition and in some cases
very strong opposition to the ‘Taguchi Method’. A polarisation occurred as
groups formed into those that believed the Taguchi method of Parameter Design
was the be-all and end-all in quality improvement and another group that have
been highly critical and in some cases antagonistic. Bob Pease writing in
Electronic Design [27] [29] had a very negative opinion of the Taguchi Methods
partly due to being introduced to it in a condescending manner and with

unrealistic examples. For example during the seminar Mr Pease noted that

[t looked to me as if somebody were laying down some funny data to
make it easy for us to analyze. That made me very suspicious, so I

was on my toes looking for any other suspicious statements.

The lecturer then belittled the operator of the machines - ‘Joe
thought he knew how to run the machines better then anybody else,
but the Taguchi method found an optimum operatng point that Joe
never thought of ...” . Again I was suspicious, because that might be
true, but maybe Joe knows something that the computers don’t. For
example, it’s easy to prove, by math or computer, that in many cases
you get the best acceleration and performance from a car if you slip

the clutch a lot. All very true until the clutch burns out.’

[n the follow-up article Mr Pease described an example taken from Dr Taguchi’s
Introduction to Off-line Quality Control [36] and showed that it had been
presented poorly and was wrong.

The comments Bob Pease made generated much feedback[28] from both the
supporters and opponents of the ‘Taguchi Method’.

However there were a some academics and practitioners who realised that the
concept of modelling both the mean and variance and the ideas of off-line quality
control were important developments in quality improvement. They set out to

build on and improve Dr. Taguchi’s methods.
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1.9 Alternatives

Several methods have been devised to improve upon Dr. Taguchi’s method of
Parameter Design. Six approaches taken by various authors will be outlined
here. The methods are the work of the acknowledged authors, The examples are

my own.

1.9.1 Union-Intersection Method

This method devised by Ghosh and Duh[16] aims to produce a set of runs that
produce the least variance in a response variable. For each controllable factor a
sample variance is produced for the high and low levels of that factor. An F test
is done to see whether the variances at each level are significantly different. If a
variance is significantly different at one of its levels then the level giving least
variance is preferred. If there is no significant difference then no particular level is
preferred.

FFor an interaction between two factors this method looks at whether the variance
of the factors is better when they are both at either high or low levels compared
to when they are at different levels. An F test is done to make the comparison.
When there is no significant difference no level is preferable. If there is a
significant difference between the two factors set at different levels, compared to
when they are set at the same levels, then the individual variances, at all four
factor levels, are compared. Multiple rules are given for which setting or settings
are preferred.

When all these preferences or decisions from the test have been compiled they are
sorted into sets of statements that agree and statements that disagree. These are
recombined by rules based on unions and intersections to give a set of runs with
minimal variance.

The method makes the assumption that any point in the experimental region will

be unbiased to the target value.

Definitions

The level combinations of control factors or a run is denoted by

t; = (tins---stiy,..., tim), where t; ; is the level of the control factor f on the gth

run, t;;=0,1, f =1,...,mand i =1,...,n ie. there are m factors and n runs.
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th row is t;. For the "

The design matrix, D, contains the n runs of which the ¢
run there are r replicates denoted (y;1,...,¥:,). The model assumed for the data
is the general linear model with an error structure given by a diagonal matrix not
necessarily ¥=0?I. The parameter o? is the i* diagonal element of ¥ and is

called the dispersion of run i.

Example

Consider this experiment where there are m = 2 factors, f and g and n = 4 runs

with design matrix

= O = &
—_— = O O

Where the first column represents the levels of factors f and the second column
the levels of factor g. The second run is ty = (1,0) with f at its high level and g

at its low level.

For factors f and g, f,ge {1,...,m},f#g

iy =

1,u

1 if the level of f in the i run is u
0 otherwise

e { 1 if the levels of f and g in the 7* run are u and v

0 otherwise

Example Continued

So (5{,0 =1 as f is set at level 0 on the first run and 6§y = 0 as on the fourth run
g is not set at 0. 6{:3’1 =0 as f and ¢ are not set at 0 and 1 respectively in the

first run.

Now define

n

> 0ty = ny(u)

1=
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and

Z 61y = 1pg(u,v)

i=1
so that ns(u) is just the number of times that factor f is set at level u in the

design matrix. and ny4(u,v) is just the number of times that factors f and g are

set at levels v and v in the design matrix,

ns(w)of(u) =Y 6/ .07 (1.5)
i=1

nfg(uvafguv Zéwv (1.6)

and U}(u) and aig(u, v) are the average variances for the specified factor at the
specified levels.

The dispersion main effects of factor f for f = 1...,m is defined as

o}(1)
7%(0)

f:

This has an inverse denoted by

_ 50
a5 (1)

The dispersion interaction effect for factors f and g, f,g=1,...,m,f # g is

D;! (1.8)

defined as

ztlz=0 nfsg (u7 u)o ( / zu—O nf.g(u u)

(1.9)
11;=0 zb:o,u;&v nyq(u,v) j,g( ,v)/ Zu=o zv:ﬂ.u;év nye(u,v)

Df,g =

In practice S? is substituted for ¢? in equations 1.5 and 1.6 to provide Sf(u)
and S},g(u,v). These are used to get Df,g and D; from equations 1.9 and 1.7.
The critical values, A, for Dy and Df'l are I statistics. S? has r — 1 degrees of
freedom. The numerator of D is made up from a of the S?’s where a = n;(1) so
the degrees of freedom in the numerator is a x (r — 1). The denominator of D/ is
made up from b of the S2’s where b = n;(0) so the degrees of freedom in the

denomiantor is b x (r — 1). So define for [),
1
A(j) = F(l-a),ax(r—l),bx(r—1)

and similarly for D;l,

2
A(f) = Fi—a),bx(r=1),ax(r=1)-
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By similar arguments define for D,
A(l) — F
L9 = Y (1-a)ex(r=1),dx(r-1)
. . -1
and for Dy,
2
A.(fy; . F(l—a),dx(r—l),cx(r—l)

where ¢ =nyg(0,0) + nsg(l,1) and d = ny,4(0,1) 4+ n4,4(1,0).

Method

A run, ¢;, is a 1 x m vector each place corresponding to either the high or low
level of one of the m factors. A set of decisions is made about the value of each
the places, i.e. a 0 or a 1, corresponding to the low or high level. The decisions

may be ambiguous.

The decisions made on the dispersion main effects.

o If Bf > 1 and Df > A(fl) then the place in the run vector corresponding to
the factor f is 0.

o If [);‘ > 1 and D, > A(fz) then the place in the run vector corresponding to
the factor f is 1.

e In all other cases there is no decision.
The decisions made on the dispersion interactions.
o If D;y>1and Dy, > A(f?] then we consider Min[ S7,(0,0),57,(1,1) ].

— If Min[ S7,(0,0), 57 ,(1,1) ] > Min[ 57,(0,1), 57,(1,0) ] then the
places corresponding to f and g are not equal otherwise
— If Min[ S%,(0,0), S},(1,1) ] < Min[ 5§7,(0, 1), 57,4(1,0) ]
+ if Min[ 57 ,(0,0), S7,(1,1) | = S7,(0,0) then there are two
decisions
1. places f and g are not equal and
2. places f and g both equal 0.
+ If Min[ S7,(0,0),57,(1,1) | = S7,(1, 1) instead then
1. places f and g are not equal and

2. places f and g both equal 1.
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o If D}; > 1 and Df,g > A(f?; then we consider Min| Sig(O, 1), Sig(l,()) ].

— If Min[ S3,(0,1), 57 ,(1,0) | > Min[ 57,(0,0), S7,(1,1) | then the
places corresponding to f and g are equal otherwise
— If Min[ §%,(0,1),5%,(1,0) ] < Min[ 574(0,0), 57 4(1,1) ]
« if Min[ S5 ,(0,1), 57,(1,0) | = S%,(0,1) then there are two
decisions
1. places f and g are equal and
2. place f equals 0 and place g equals 1.
* If Min[ S7,(0,1),5%,(1,0) ] = S7,(1,0) instead then
1. places f and g are equal and

2. place f equals 1 and g equals 0.
e [n all other cases there is no decision.

Combining Decisions

After working out the possible values for each position in the run vector there
may be some ambiguities. Two groups of sets are defined. The first are sets of
disagreements which contain all the ambiguities and the second is the set of
agreements. The group of disagreements are put into sets so that a statement in a
set only disagrees with the members in its set and not with a member in another
set of disagreements i.e. two set of disagreements do not disagree with each other.

For example we might have this group of disagreements
e place 1 does not equal place 2,
e place 1 equal 0,
e place 2 equals 0,

e place 3 does not equal place 4,

place 3 equal 0 and

place 4 equals 0
then we would get two sets of disagreements namely

e G,={ place 1 does not equal place 2, place 1 equals 0, place 2 equals 0} and
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e Gy={place 3 does not equal place 4, place 3 equals 0, place 4 equals 0}.

i.e. sets G; and G, do not disagree.

For all the maximal subsets of the disagreements we find the sets that are in
agreement. For G; the subsets would be [{place 1 does not equal place 2, place 1
equals 0}, {place 1 does not equal place 2, place 2 equals 0},{place 1 equals 0,
place 2 equals 0}]. Finally each subset from each subset of maximal
disagreements and the agreement set is intersected to give a sequence of runs that
have minimal variance. For example if an agreement set was Gz= {place 5 equals

0} then G; gives subsets

e (0,1,x,x,x), (1,0,x,x,x), (0,0,x,x,x)
and G, gives

e (x,%,0,1,x), (x,x,1,0,x), (x,x,0,0,x)
and Gy

o (X,X,X,X,0)

where the x’s represent either a 1 or a 0.

Taking the intersection of all these sets gives this set of runs

{(0,1,0,1,0) (0,1,1,0,0) (0,1,0,0,0)
(1,0,0,1,0) (1,0,1,0,0) (1,0,0,0,0)
(0,0,0,1,0) (0,0,1,0,0) (0,0,0,0,0) }

Example

This section gives an example of the previous method at work. A F 28~ design
was used to construct an experiment. The data was normally distributed with
factors A and C being dispersion effects. The overall mean was 125. There were
no mean effects and this complies with the condition that any design point in the

experimental region is unbiased for the target value of 125. The variances were

A C Variance

- -1 4
=1 11
-1 1 12

1 1 33
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Six replicates were taken at each design point. The data is outlined in Table 1.6.

Note the data has been rounded to 1 decimal place and the low level is denoted

by 0 and the high level by 1.

i DesignArray Data 52

Il 000O0O0O0O0OTO O 125.3 125.6 1223 124.3 1276 123.1 3.60
2 1 0001110 127.5 123.4 118.8 122.1 1273 115.9 21.22
3 01 001101 122.4 125.6 127.5 126.6 128.0 129.8 6.43
4 11000011 124.9 127.8 118.6 128.0 122.5 130.8 19.39
) 00101011 126.6 126.8 119.5 1176 131.2 121.8 26.53
6 1 01 00101 128.9 125.5 117.5 128.1 119.0 120.8 23.37
7 01100110 127.5 129.5 126.0 123.6 124.9 122.1 7.21
8 11101000 124.0 1274 129.1 125.2 116.5 1179 250.87
9 0001 0111 122.6 126.8 123.3 122.8 129.7 1229 8.62
10 1 0011001 121.2 127.7 124.1 1284 124.3 125.6 6.98
11 01011010 125.2 125.6 121.8 1234 1226 1214 3.13
12 11010100 124.7 1276 133.3 1245 119.1 123.0 22.72
3 00111100 1280 1281 1253 121.6 117.8 1202  18.41
14 1 0110010 116.5 132.5 129.5 124.4 1203 1189 39.86
15 01 110001 129.4 132.6 122.3 126.7 128.0 128.8 11.68
16 11111111 120.8 127.5 124.8 124.2 128.2 118.6 14.04

Table 1.6: The Design Array and Data.

The Dy estimates are in Table 1.7. and the D, estimates are in Table 1.8.
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Factor f I?J.r or Dy

A 1 D = 2.03
B 2 Dy =1.35
C 3 Dy =1.81
D 4 D;! =1.07
E 5 D! =1.11
F 6 Dg' =1.12
G 7 D =1.18
H 8 Dg! =1.21

Table 1.7: D, and D,‘l Estimates.

The larger value is reported for each factor pairing.

Factors f ¢ [)f,g or D/_; Factors f ¢ Df,g or b,‘;
AB 1 2 Di3=116 CE 3 5 D3y;=116
A 18 Dil=uwm WP B Og=170
AD 1 4 D[j=103 CG 3 7 D;;=103
AE 15 Dg=161 CH 3 8 Djd=105
AF 16 Dij=105 DE 4 5 Dii=170
AG 17 D7=108 DF 4 6 D=116
AH 18 Dij=170 DG 4 7 Dii=1.07
BC 23 Dyjj=161 DH 4 8 Dii=161
BD 2 4 Dy;=105 EF 5 6 Dsg=108
BE 2 8 Dyiilgr BG@ 5 ¢ Bl hos
BF 26 D3j{=103 EH 5 8 D;j3=103
BG 27 Dyj;1=170 FG 6 § B =161
BH 2 8 Dy;s=108 FH 6 8 Dji=107
CD 3 4 D3yy=108 GG 7 8 Dig=116

Table 1.8: D;, and D,‘; Estimates.

The larger value is reported for each factor pairing.

Let « be the level of significance for the testing and take a = 0.05. Since this
design is balanced with 16 design points and six replicates at each design point
then all the critical values are A = F(gg5 49,40)=1.69. From Table 1.7 D\=2.83 is

greater than one and greater than A so the decision is “place one equals 0”.
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D3;=1.81 so “place three is a 0”. No other decisions can be made from this table.
From Table 1.8 ﬁfé = 152"; = D;é = D;; = 1.70 which is just greater than A.
All of these interactions are aliases of each other so that explains why their
estimates are equal and their S?(u,v) values are all the same. The S?(u,v)’s are

in in Table 1.9.

Sz(u,v)‘v:(] v=1
u=0 | 808 13.31
u=1 |2742 15.95

Table 1.9: The S?%(u,v) values for factors A and H, B and G, C and F and D and
E.

Min[ 5% ,(0,0), 5% ,(1,1) | = 5%,(0,0) = 8.08 and
Min[ S7,(0,1), 5% ,(1,0) ] = 57,(0,1) = 13.31. The former is smaller so the

decisions are

“place 1 equals place 87, “place 2 equals place 77,

“place 3 equals place 6”, “place 4 equals place 5.

The set of agreements is

{(place 1=0, place 3=0,
place 1=place 8, place 3=place 6)}
={(0,X,0,X,X,0,X,0)}

where X can equal 0 or 1.
The set of disagreements is {(place 2=place 7),(place 4=place 5)} . These are
split into sets in which only those within each set disagree with each other.
G1={(place 2 = place 7)}={(X,0,X,X,X,X,0,X),(X,1,X,X,X,X,1,X)}
and
G2={(place 4 = place 5)}={(X,X,X,0,0,X,X,X),(X,X,X,1,1,X,X,X)}
The maximal subsets of G1 are {(X,0,X,X,X,0,X)} and {(X,1,X,X,X,X,1,X)} and
for G2 {(X,X,X,0,0,X,X,X)} and {(X,X,X,1,1,X,X,X)}.
Finally each set in the maximal disagreement sets is intersected with the

agreement set. For example

(0, X,0,X,.X,0,X,0)n (X, 0, X, X, X,0, X) N (X, X, X,0,0, X, X, X)
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=(0,0,0,0,0,0,0,0)

The complete set of runs is
{(0,0,0,0,0,0,0,0), (0,0,0,1,1,0,0,0),(0,1,0,0,0,0,0, 1), (0,1,0,1,1,0,0, 1) }

Since the factors A (place 1), C (place 3), F (place 6), and H (place 8) are fixed,
in this case at zero, this suggests that they are variance factors that affect the
variance of the process. From the construction of the data it is known that only
A and C are factors that affect the variance of the process. However for a=0.0495
the correct decisions are made. This method requires sensitivity analysis on the
value of a as the outcomes can change as a changes.

If the response is squared then the response is no longer Normally distributed.
The method gives {(0,0,0,0,0,0,0,0)} as the outcome. This signifies that all the

factors are variance control factors which is not the case.

Comments

This method allows for the implicit introduction of the noise factors.

The assumption that each point in the design space is unbiased to the Target
value is taprestrictive. It may be possible to manipulate this through the use of
mean control factors that are not variance control factors. However the point of
this method is to identify the factors that are variance control factors; having this
knowledge prior to the experiment begs the question of why the experiment
should be done at all.

The notation for this method is very unwieldy which can be offputting although
it represents very simple concepts. The method taken to get to a solution feels
foreign in this area of Quality Control e.g. taking unions and intersections of sets.
[t is not easy to relate what is happening in the method back to the system under
study.

The method is not robust to non-Normal distributions however the use of the F
test can be justified by the Central Limit Theorem as long as the experiment has
a reasonably large number of design points and/or replicates. For few replicates
the estimates of o2 will not be good.

The choice of « has also to be carefully considered as a large number of

hypothesis tests are done. The outcomes can vary depending on the choice of «
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therefore sensitivity analysis should be done to see how the solution set of runs
changes as a changes.

Careful consideration of alias effects has to be taken after the decisions have been
made as these can affect the outcome of the places in the run vector. If there are
no subjective reasons why one interaction or effect in an alias string is preferred
then taking into account all possible aliased effects as being possible effects will
make the solution set large.

The output allows for multiple solutions but gives no hints as to which one of
those is preferred. If there are a large number of runs in the optimal set, it is not
easy to work out what the nature of the effects are. This makes it difficult to

decide what direction to take for further investigation.

1.9.2 Transformations and a Data Analytic Approach

One of the problems of the Taguchi technique for Parameter Design was that the
s/n ratios can be affected by large mean effects. One example of this is when the
mean is proportional to the variance. Box [7] proposed a method which is based
on transforming the data to remove the relationship between the mean and
variance.

After performing an experiment the relationship between the mean and variance
should be analysed and once the relationship had been discovered the original
data should be transformed to remove it. An ANOVA is then done on the means
of the transformed data to work out the factors that can be used to adjust the
level of a process to a target. Similarly an ANOVA is done on the log standard
deviations of the transformed data to work out those factors that affect the
variance of the process so they can be used to minimise the variance.

Box proposed the Box-Cox transformations as the a set of appropriate

transformations to use. They are defined as

zr—
3 — Tl‘ A#0
Inz A=0

and are continuous in A for x>0.
The transformations are used to achieve two characteristics - parsimony, where
the model is as uncomplicated as possible and separation, where the variance and

mean are not related to each other.
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Box showed how a lambda plot could be used to find the correct transformation
and Nair and Pregibon also gave some further graphical methods for analysing

the data both in [7]. This is a combination of both their methods.

e Start with a box plot for each experimental run. Some pattern in the data
may give an indication of which factors affect the mean and the variance.
Also any outliers can be observed. Outliers are a problem since they inflate
the variance. Careful consideration has to be given as to whether it is
random chance that has caused them to appear, some kind of error or a

true reflection of the system.

e Another exploratory tool is a Mean-Variance plot. The mean and variance
of each experimental run are plotted against each other on log scales. This
will show up any relationship of the type 2 o< u®. A least squares slope is
drawn. No dependence is observed if the data appears to be random and

the slope of the line appears to be insignificant.

e Lambda plots for both the mean effects and the log standard deviation
cffects are drawn. This plots the t-value of an cffect against the value of
lambda that has been used to transform the data. The points for each factor
are joined and the value of A where the absolute value of the derivative of
the slope for each factor is the smallest is considered. Hopefully the values
found for A will be very similar for those factors deemed significant.

To acheive parsimony, A is observed at the place on the plot where there is
the least complication, where as many of the points lie as close to t=0 as
possible. The points that are significantly different from 0 are the ones that
will be included in the model.

The t-values for the mean effects can be worked out from the within-run
sums-of-squares. The way I preferred to do this however, was to fit the
model to all the data, instead of just the experimental means, by computer,
which still gives the correct values for the effects of the means and the
t-values for the effects as well. The value for the variance of the log

. . . P I
standard deviation effects are found by using oieg s = D

e Once a value for lambda has been decided upon, QQPlots for the mean and

log standard deviation effects are drawn. The slope of the line through the
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non-significant factors in both graphs are recorded as a measure of the error

varialce.

e Finally a cross plot is drawn of the mean effects, x, versus the log standard
deviation effects, y, and filter lines, are drawn in. The filter lines are drawn
in at x= +20; and y= +204 where o, is the slope of the line through the
non-significant mean effects and o4 is the slope of the line through the
non-significant log standard deviation effects. Where the factors fall in this
graph gives an indication of what type of factor it is. There are four zones

in the graph;
— zone 1. The centre box of the cross arms is where all the
non-significant factors lie.

— zone 2. The horizontal cross arms, outside the center box, are where

the significant mean effects lie.

— zone 3. The vertical cross arms, outside the center hox, are where the

significant log standard deviation effects lie.

— zone 4. The areas outside the crossarms are where both significant

mean and log standard effects lie.

This is displayed in Figure 1.9.

Figure 1.9: The Special Areas of a Cross Plot

Example

This Section gives an example of this method at work. A F 257" design was used

to construct an experiment. The data was normally distributed with factor A and
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D being mean effects and factors A and C being variance effects. The overall

mean was 125, factor A=10 and D = 15. The variances were

A  C Variance

S| 4
1 -1 1
-1 1 12
\ 1 33

where the £1’s indicate the level of the factors. Six replicates were taken at each

design point. The resulting data was divided by ten and squared to give the

working data outlined in Table 1.10. Note the data has been truncated to

integers.

Table 1.10: F28~* Design plus the Response Data

A B C D E F G H w v vYs Y Y Vs
-1 -1 -1 -1 -1 -1 -1 -1 100 101 94 98 105 96
1 -1 -1 -1 1 1 1 —1 150 140 129 137 149 123
-1 1 -1 -1 1 1 -1 1 94 101 105 103 106 109
1 1 -1 -1 -1 -1 1 1 143 150 129 151 138 158
-1 -1 1 -1 1 -1 1 1 103 103 &8 8 112 93
1 -1 1 -1 -1 1 -1 1 153 145 126 151 129 134
-1 1 1 -1 -1 1 1 —1 105 109 102 97 99 94
1 1 1 -1 1 -1 —1 —1 141 149 153 144 124 127
-1 -1 -1 1 -1 1 1 1 162 173 164 163 181 163
1 -1 -1 1 1 -1 -1 1 213 233 222 235 222 226
-1 1 -1 1 1 -1 1 -1 169 170 160 164 162 159
1 1 -1 1 -1 1 -1 -1 224 232 250 223 207 218
-1 -1 1 1 1 1 -1 -1 176 177 169 160 150 156
1 -1 1 1 -1 -1 1 —1 200 248 238 223 211 206
-1 1 1 1 -1 -1 -1 1 180 189 161 173 176 178
1 1 1 1 1 1 1 1 212 232 224 222 234 206

The generators for this design are I=ABCE, [=ABDF, [=ACDG and [=BCDH.

They are all four characters long confirming that this is a resolution 4 design.

The aliases are listed below. The number associated with them will be used in

the plots to follow;
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1. AF, BD, CH, EG
2. 'AH, BG, DB, GP
3. AC, DG, HF, BE
4. AB, DF, CE, HG
5. AD, EH, CG, BF
6. AE, BC, FG, DH

7. AG, BD, EG, CH.

Boxplots of Each Experimental Run
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Figure 1.10: a) Boxplot and b) Mean-Variance Plot of the Response Data

In Figure 1.10 a) the boxplot of the data is shown. After observing the design

matrix as well it is apparent that factors A and D are mean control factors i.e.

first group of boxplots are centred about a different value than the second group

and alternating boxplots are centred about different values. Although there

appears to be differences in the variances for the runs there does not seem to be
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any pattern to it. The Figure 1.10 b) gives an indication that the mean and
variance are interlinked, therefore a Taguchi type analysis of this data may not
give the correct sets of control factors. The value of the slope is ﬁl = 1.64 has
p-value=0.0237 indicating that the dependence between the mean and variance is

significant. The relationship is log s? = 1.64logZ — 3.89 or s oc Z'64

a) b)

t-values of Mean Effects versus Lambda t-values of Log S.D. Effects versus Lambda
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Figure 1.11: Lambda Plots of a) Mean Effects and b) Log S.D. Effects after trans-

formation

The lambda plot of the mean effects is shown in Figure 1.11 a). What we are
looking for in this plot is a value for lambda where the plot is simplest and the
change in slope of the significant factors is smallest in absolute value. Lines have
been drawn at ¢t = +2 to give an indication of the non-significant factors. The
lines labelled A and D have smallest gradient in absolute value at approximately
A € [0,1]. Line 5 is the AD interaction (although without prior knowledge it
could also be the aliases of AD i.e. EH=CG=DBF). It passes through zero at

A = (.95. Since a model with no interactions is simpler than a model with

interactions this value would give the model the characteristic of parsimony.
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The lambda plot of the log s.d. effects is shown in Figure 1.11 b). In this plot the

only significant effects are A and D although C may also be. If we look at

parsimony then two possible values for lambda are A = —1 where the t-value for

factor A is zero or A = 0.5 where the t-value for factor D is zero. The gradients of

all slopes are unchanging. In this plot there are two possible choices for lambda

but only one that agrees with that from the first plot therefore we would choose

0.5 for the value for \.
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Figure 1.12: a) Boxplot and b) Mean-Variance Plot of the Transformed Response

Data

The data has been transformed by a Box-Cox transformation with A = 0.5 and

the boxplot in Figure 1.12 a) does not appear to add much information to that

which is already known. The Mean-Variance plot (Figure 1.12 b) shows a more

random scattering of the data and although there is a non-zero slope it is

non-significant with a p-value of 0.3436. This confirms that we have found a

suitable metric in which to analyse the dispersion effects without the mean effects

clouding the issue.
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QQ-Plot of Mean Effects QQ-Piot of Log S.D. Effects

3.0
[s)
0.2
i
>

25

20

Eftects
1
Log s.d EHects

0.5

bl =T

0.0

1 M"TT'F

___—‘__

—_—

1
0 1

Normal Quantiles

Normal Quantiles

Figure 1.13: QQPlots of a) Mean Effects and b) Log S.D. Effects after transforma-

tion

The QQPlot of the mean effects (Figure 1.13 a) with a least squares line through

the estimated non-significant effects shows clearly that factors A and D are

significant mean effects. The QQPlot of the log standard deviation effects (figure

1.13 b) with a least squares line also through the estimated non-significant effects

shows that factors A and C are significant dispersion effects.
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Cross Plot Of Mean Effects Versus Log S.D. Effects
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Figure 1.14: Cross Plot of Transformed Data

The final figure is the crossplot (Figure 1.14). Ouly the factors A, C, D and
interaction 2 (the AH=BG=DE=CF interaction) lie outside zone 1. Interaction
2, since it lies in zone 3, affects the variance of the process. In the QQPlot
interaction 2 had a large effect but was consistent with being on the line of
insignificant effects therefore interaction 2 will be presumed to fall (just) outside
zone 1 by chance alone. Factor C is in zone 3 indicating it is a variance control
factor. Factor D is in zone 2 indicating it is a mean control factor and factor A is
in zone 4 indicating it is both a mean and variance control factor. Reading off the
axes or doing an ANOVA gives the value of the effects. Noting that y is the
response variable, the model for this data is therefore

_ y0.5__1
05 7

fy = 22.91 +1.90A + 3.03D

*

and
log(sy+) =0.33+0.214 + 0.18C.

Since all the coefficients in the variance model are positive the variance will be
least when factors A and C are set at their low levels. A is fixed in the mean

model by the minimisation of the variance model and the level of the process can
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be changed through factor D. It may be that manipulating factor D will not bring
the process to the level required and A may have to be changed to achieve that

level with some increase in variance.

Comments

This method allows for the uncontrollable factors to be implicity set.

The positive feature of this method is the use it makes of graphical methods. The
graphs allow for a good understanding of the modelling proceses involved and the
relationships between the factors.

Instances occur when a single transformation will not bring about the properties
of parsimony and separation. Removing the ralationship between the mean and
variance when modelling the variance is preferable i.e. separation. The model
also assumes that the transformation will cause the response variable to be
normally distributed. This may not happen either. Of course if the amount of
data is large the Central Limit Theorem will hold and the effects will be
Normally Distributed and the QQPlot becomes valid.

With fractionated designs of resolution three discerning between a main effect or
its aliased interaction is impossible, and using lambda plots to get a parsimonious
model maybe very diflicult. With very few factors, especially if many are
significant, it may be impossible to judge from the Lambda Plot what the correct
transformation could be.

From experience,estimation of the variances requires many more replicates for
each design point when compared with the mean estimates. This means this

method can be quite expensive because of the size required to get good estimates.

1.9.3 Response Surface Methods

Myers et al[24] used the ideas of RSM to simultaneously give a surface for the
expected response and variance of the response. The first surface is used to find
values of the factors that either achieve a target, a minimum or maximuimn
depending on the intent of the experiment. The second surface is used to find
values of the factors that gl've minimum variance. On many occasions these two
sets of values may not coincide and a subjective analysis of which objective is the

more important will have to be done.
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The Method

In this method there are two sets of factors, control factors and uncontrollable
(noise) factors. The noise factors produce the heterogeneous variance in the
process while the control factors do not.

A RSM design is used where the control factors, z;, j =1, ..., p, and noise factors,
2k, k =1, ..., q, are treated identically. The i** run is made up of z;, vy Bl

zi, ---2iq, Yi where y; is the response.

The model that is fitted is
Yi = Po+ g’ (i) B + 20 + g' (i) Az; + ;.

where 3 and 9§ are vectors of cocflicients. g’(x;) is a row from the matrix of
independent variables, X, with the first number removed. This number would be
a onc which is used in the estimation of Fy but here Jy is estimated separately. A
is a matrix of interaction parameters between the z; and zx. The z; and z; are
chosen at fixed levels.

Although the z;’s have been taken to be fixed in the first surface they are in fact
random variables and this is exploited in finding the variance response surface.

The process variance is

var( y(z) ) = var([6' + g'(z)A]z + €)
= [8 + g'(z)A)V[6' + ¢'(z)A] + o2

where V is the variance-covariance matrix of z. V is not estimated in the
experiment and so it must be estimated or guessed from other data.
The z;’s are centered around zero and hence their expectation is zero. The

estimated response surface for the mean is therefore
j(x) =B+ ¢'(=)B
and the variance response surface is
var(j(z)) = [’ + g'()A]V[8 + g’ (@) A) +6?.

This model assumes that there are no interactions between the z.’s.
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Example

A RSM experiment was run with the design, a F2* with four center points, and
data given in Table 1.11. There were two control factors and two noise factors

labeled x|, %9, z; and 2z, respectively.

Design Data

Ty Ty 21 2 Yy
0O 0 0 0 97.70483
0O 0 0 O 96.47317
0O 0 0 0 100.72425
0O 0 0 0 101.17510

-1 -1 -1 -1 95.22444

104.42875

-1 -1 1 -1 87.67168

-1 -1 1 1 95.66690

-1 1 -1 -1 99.87573

-1 1 -1 1 95.88072

=i I N =N 89.58390

—1 1 1 1 80.90409
bh —s b -4 75.24423
1 -1 -1 1 82.74909
1 -1 1 -1 93.53634
I =1 1 | 101.74036
1 1 -1 -1 118.17977
1 1 -1 1 115.46116
l 1 1 -1 136.44676
1 1 1 1 129.08517

I
o

!
o

I
o
—

Table 1.11: RSM Design and Data.

The estimated parameters for the model are given in Table 1.12.
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coef  std.err t.stat  p.value
Intercept 99.8878 0.3850 259.4163 0.0000
] 6.4504 0.4305 14.9836  0.0000
T 8.0722 0.4305 18.7509 0.0000
] 1.7245 0.4305 4.0057  0.0031
29 0.6346  0.4305 1.4741 0.1746
T\T 10.1656 0.4305 23.6137 0.0000
T2 6.9223 0.4305 16.0799 0.0000
T2y 0.0690 0.4305 0.1603  0.8762
T22) —0.8966 0.4305 —2.0828 0.0670
T2y —3.4790 0.4305 —8.0813 0.0000
2122 —0.6149 0.4305 —1.4283 0.1870
Table 1.12: Table of Coefficients for RSM Design.

The terms z3, 2122, 222, and z;29 were found not to be significant at the 5% level

and were discarded from the model. An ANOVA was done with the remaining

terms and is presented in Table 1.13. The variance of the center points was used

for the pure error mean square and the residual error was used for the total error

to work out the lack of fit. At the 5% there was no evidence of lack of fit as

Pr(F)=0.29.
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Analysis of Variance Table

Df Sumof Sq Mean Sq F Value Pr(F)

T 1 665.73 665.73 166.05 0.00
T 1 1042.57  1042.57 260.05 0.00
2) 1 47.58 47.58 11.87 0.00
1 1653.44  1653.44 412.42 0.00
1 766.70 766.70 191.24 0.00
T2y 1 193.65 193.65 48.30 0.00

Residuals 13 5212 4.01

I,T;

T2

Df Sumof Sq Mean Sq F Value Pr(F)

Lack of Fit 10 36.35 3.64 0.69 0.29
Pure Error 3 15.76 95:25
Total Error 13 52.12 4.01

Table 1.13: ANOVA for RSM Design.

The model was taken as

¥ =99.9 + 6.5z, + 8.1z + 1.7z, + 10.22 25 + 6.92,2, — 3.522.

in terms of the notation this is

I 6.5
Bo = 99.9, g(x) = T , B=] 81 |,
T1Zo 10.2
17 6.9 0
z=<ZI)’ 8:( ‘ ), ﬁ-: 0 -3.5 3
29 0
0 0
at = 5.8.

The response surface for the mean is

jz) = Po+g'(x)B
= 99.9+4+ 6.5z, + 8.1z9 + 10.2z, 2,

and for the variance response surface

ar(j(z) = [§ + g (z)A]V[& + ¢'(z)A] + &7

(1.10)
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= (17, U) + (.’L'I,IEQ,.’L'I.’L'Q) 0 -3.5 V x

6.9 0
(L7,0) 4+ (z1,Z9,z122) | O —=3.5 + 5.25
0 0

= [(1.7,0) + (6.9z1, —3.5z5)] V [(1.7,0) + (6.91,, —=3.5T5)])’ + 5.3

At this point either the variance-covariance matrix of z has to be guessed or

estimated by sampling. Suppose that V' has been estimated as

2 0
V=
0 4
This gives for var( g(z) )

2 0 1.7 + 6.9z,
(1.7 4+ 6.9z, —3.523) +5.25
0 4 —3.5T9

Il

var( §(z) )

Il

= 18.1 +47.8z; + 47.97% 4+ 193.723

From equations 1.10 and 1.11 the surfaces for the mean and variance surfaces

can be drawn. The response surface for the mean is in Figure 1.15.

2(1.7 4 6.92,)% + 4(—3.522)% + 5.3 (1.11)
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a) b)
Mean Response Surface Mean Response Surface
\\fo
= s )
B
°
RS 05 e
C3
3 e
b
410 05 00 05 10
x1

Figure 1.15: a) Contour Plot and b) Perspective Plot of the Mean Response Surface.

The response surface for the variance is in Figure 1.16.

a) b)
Variance Response Surface Variance Response Surface
oo\ \
0
o

180 - 100 180,

40 -05 00 05 10
x1

Figure 1.16: a) Contour Plot and b) Perspective Plot of the Variance Response
Surface.

Using equation (1.11) the point of minimum variance is , = —1.7/6.9 = —0.25
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and 2o = 0 and the variance at that point is 5.3. At that point on the mean
response surface the value for the mean is 98.3 found using equation (1.10).
Suppose that the target value was y = 100 then we need to operate the process at

x, and z9 such that
100 =99.9 + 6.57; + 8.1z9 + 10.27, 7, (1.12)
and
var( §(z) ) = 2(1.7 + 6.92,)% + 4(-3.51,)% + 5.3 (1.13)

is a minimum. Solving equation (1.12) for z, and substituting this in equation
(1.13) and solving numerically for z;, then z,, gives £,=-0.15, £,=0.16 with the

variance at this point being 7.5. This is shown graphically in Figure 1.17.

Plot Of Mean and Variance
Response Surfaces

2 oo -- \ \2;3(
i"'i_;l @
o :
0.
on target
N¥S{  Minvar
0 !
OI_ fll 1
\ : /-'
= . j
=2 100 19@450{0(!

T

40 05 00 08 10
x1

Figure 1.17: Joint Contour Plot of the Mean Response Surface and Variance Re-

sponse Surface.

A balance has to be made between minimising the variance and keeping the mean

on target. Only one of these may be achieved at the expense of the other.

Comments

The uncontrollable factors are explicitly set in the experimental designs for this

method.
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The major criticism of this method is that interactions between the z;’s are not

catered for. A preferable model would be
yi = Po+ g'(®:)B + 26 + g'(xi)Azi + 2{ X zi + €.

where T is a matrix of interaction parameters between z; and z¢. The reason for
leaving that term out is that the variance of y; for this model is extremely hard to
find as it involves higher moments of the z’s. In a very special case if Y is a
projection matrix and 2z is a standard normal vector then 2/ Yz is distributed as
X,Q, where p is the rank of Y. Y is unlikely to be a projection matrix.

The other criticism of this method is that the noise and control variables have
constraints on their behaviour i.e. noise variables produce the heterogeneous
variance while the control variables do not. Sometimes the choice of what is an
uncontrollable variable and what is not is dependent on the beliefs of the
experimenter therefore having the distinction between the two is not practicable.
This method was extended further by Engel and Heule [14] to include the case
when there is a non-constant variance of the residuals by using generalised linear

models.

1.9.4 Split-Plot Methods.

Box and Jones [8] proposed the use of split plot experimental designs as an
alternative method to Dr. Taguchi’s method of Parameter Design. One of the
main criticisms of Taguchi’s method of Parameter Design is that the designs can
become large when the inner and outer arrays are crossed. This means that the
amount of experimental work is large which increases the complexity and cost.
Split plot designs offer a way of arranging the sequence of runs in more
convenient manner so that there is less experimental work. This arrangement of
runs may reduce the complexity or the cost or both. In some cases the physical
constraints within the system under study may mean that split plot designs may
be the only design possible.

The idea of having uncontrollable and controllable factors in split plot designs to
improve quality is not a recent development. An example of testing four washing
products in four washing machines with the noise factors of temperature and

water was reported by Michae§22] in 1964.
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Method

The extension from the classical use of split plot designs to the use of split plot
designs for the analysis of mean and dispersion effects is not large. Here the
uncontrollable factors are put in the whole plots and the controllable factors are
put in the split plots.

Box and Jones (8] proposed that there be n levels of the controllable factors,
Cy,...,Cq,...,Cy, applied to the split plots, m levels of the uncontrollable factors,
R, U8, 5
Tly ..., Tk, -..7y with the whole plots in [ randomized blocks.

. Unn, applied to the wihalg plots and that there be [ replicates,

The model for the arrangement is

Yijk = b+ 7, + UJ' + Nk + C; + (UC),J + €ijik

th

where y; ;¢ is the k" replicate of the i* level of the Controllable factor C and the

7™ level of the Uncontrollable factor U, ¢ is the overall mean, r is the random
cffect of the k" replicate with 7 being distributed as N(0,0?), U; is the fixed

th

effect of the j* level of factor U, C; is the fixed effect of the " level of factor C,

(UC);; is the interaction of the " level of factor U with the j% level of factor C,
1k is the whole plot error and 7);,is distributed as N(0,02). The subplot error,
€ijk, 1s distributed as N(0, 02). The ;% are independent.

The ANOVA table is in Table 1.14 wheyg Uj, C; and [jbij are estimates of U;, C;

and UCj respectively.
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Source d.f. Sum of Squares Expected Mean Square (MSE)
Whole Plot
Reps(R) -1 mno? + o + no?,
m A2 T!y{ m 2 2 2
U m— 1 nl;Uj m—lZU + 0 +noj,
RxU (l—=1)(m—-1) o +nol
(Error 1)
Split Plot
n K l n
C n—1 ImY " C? Lml ZC’Z+U
i=1 -
n -m l m
UxC (n=1)(m-1) 133 (UC)% ZZ (UC);; + o2
== (n—1)(m—1) s
Error 2 ({ = Dm(n-1) o2

Table 1.14: ANOVA Table for Split Plot Design.

The test for the U factors is M’—W-—— against Fy_q m—1,(m-1)¢-1)- The test for the

MSEgy
C factors is %K—Q against Fl_a,n_l,(n_l)m(l_l). The test for the U x C

. . MSEuxc .
mteractions is MSEgs 3 agamst Fl_a,(n_l)(m_l),(n_l)m(,_1).

When there is no replication [ — 1=0 so there is no degrees of freedom to estimate
02+ nol. By the same reasoning o2 is unable to be estimated as well. In this
case two QQPlots can be drawn. One for the whole plot effects and one for the
split plot effects. From these the significant effects can be found. If the design for
the whole plot or split plot are factorial designs then the higher order interactions
can be deemed insignificant and their sums of squares pooled to give an estimate
of the errors in the plot or subplot. However this can lead to biased results.

If a U x C interaction is significant it means that the control factor is a dispersion
cffect. Any control factors that have significant main or interaction effects with

other control factors are mean control factors.

Example

In this contrived example the amount of wear on anodes is to be analysed. There

are three controllable factors

1. shape of the anode; regular and rounded,
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2. tar content; usual and extra, and
3. coke content; usual and extra.
There are also three uncontrollable factors which are
1. voltage; usual and extra,
2. computer controller; new or old and

3. temperature; high and low.

The data was collected by the way of a split plot design with a pot being a
wholeplot and an anode being a subplot. The uncontrollable factors were
arranged in a F2? design with 8 pots being necessary. The controllable factors
were also arranged in a F2? design and 8 anodes in a pot were needed. The data
and design matrix is in appendix H. This was used to get the effects by least
squares.

The whole plot had 3 factors and 23 = 8 treatments so three main effects, three
two-way interactions and a three-way interaction are able to be found. This adds
up to seven effects. Looking at the ANOVA table there are only
m—1=8—1=7 degrees of freedom associated with the whole plot therefore no
degrees of freedom are available to estimate the error for the whole plot. The
whole plot effects were plotted on a QQPlot and the significant effects were the
main effect of temp and the volt x temp interaction. See Figure 1.18a).

In the split plot there were three main effects and three two-way interactions
associated with the controllable factors and nine two way interactions between
the controllable and uncontrollable factors. Further higher order interactions were
deemed insignificant and were pooled to give an estimate of the error variance.
As pooling can give biased estimates a QQPlot was made of the split plot effects.

The significant effects were associated with coke, tar x temp and shape. See
Figure 1.18b).
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a) b)
QQPIlot of Whole Plot Effects QQPIlot of Split Plot Effects
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Figure 1.18: QQPlot of a) Whole Plot Effects and b) Split Plot Effects
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The ctfects used for the QQPlot are in Table 1.15

(Intercept)
Whole Plot Effects
volt

cont

temp

volt : cont

volt : temp

cont : temp

volt : cont : temp
Split Plot Effects
shape

tar

coke

shape : tar
shape : coke
shape : volt
shape : cont
shape : temp

tar : coke

tar : volt

tar : cont

tar : temp

coke : volt

coke : cont

coke : temp

—0.024435292

—0.056244830
—0.028085566
6.887370120
0.235066655
7.638473966
0.122329345
—0.078367673

—5.170959307
0.120246167
10.035556172

—0.005011248
0.159066978
0.066287725
0.004941601

—0.057336007

—0.099856759
0.017619564
0.226506112
4.908526862
0.178741544

—0.034751595

—0.248175007

Table 1.15: The Effects for the Split Plot Example

The ANOVA table is listed in Table 1.16 and this confirms the significant effects
found by the QQPlot at the 5% level.
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Table 1.16: Analysis of Variance Table

WholePlot
U
temp

volt : temp

volt

cont

volt : cont

cont : temp

volt : cont : temp

whole plot error

SplitPlot
C
shape

coke

tar

shape : tar
shape : coke
tar : coke
CxU

tar : temp

shape : volt
shape : cont
shape : temnp

tar : volt

tar : cont

coke : volt

coke : cont

coke : temp

split plot error
(based on higher

order interactions)

S = = = =

— = e b e et e et

Df Sumof Sq

3035.90
3734.16

0.20
0.05
3.54
0.96
0.39

1711.28
6445.59

0.93
0.00
1.62
0.64

1541.99

0.28
0.00
0.21
0.02
3.28
2.04
0.08
3.94
56.43

Mean Sq

1711.28
6445.59

0.93
0.00
1.62
0.64

1541.99

0.28
0.00
0.21
0.02
3.28
2.04
0.08
3.94
1.38

F Value

1243.36
4683.16

0.67
0.00
1.18
0.46

1120.36

0.20
0.00
0.15
0.01
2.39
1.49
0.06
2.86

Pr(F)

0.000000
0.000000

0.416973
0.972906
0.284393
0.499741

0.000000

0.653634
0.973282
0.697836
0.904951
0.130134
0.229864
0.813856

0.09817
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The model found is

wear|U,C = 10.04 x coke — 5.17 x shape + 6.88 x temp
+7.64 x volt x temp + 4.91 x tar x temp

The controllable factors shape and coke enter into the equation only in a linear
manner so they are mean control factors. The controllable factor tar enters into
the equation only as an interaction with the uncontrollable factor temp and so
tar is a dispersion control factor. To make wear robust to the uncontrollable
factors then the variance of the mean response of tar at one level over both the
levels of temp should be compared with the other level of tar. The interaction
graph for these two factors is in Figure 1.19. From the interaction graph it can
be seen the required behaviour occurrs when when tar = —1. However it may

also be worthwhile doing further experimentation with lower values of tar.

Interaction Plot of Tar and Temp

.

[=]

Wear
0

P R S\ DRSamear |

-10 -05 00 0.5 1.0
Tar

Figure 1.19: Interaction Plot of Tar and Temp

Suppose that the factors were quantitative and that controllable factors are
required to be set to give a target value of wear = 5. In order to do this some
distribution assumptions need to be made about the uncontrollable factors. If we
assume that the uncontrollable factors are independent and have expectation zero

then
E(wear|UC) = 10.04 x coke — 5.17 x shape (1.14)

SO

5 = 10.04 x coke — 5.17 x shape
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A contour plot of equation 1.14 was drawn and is in Figure 1.20. Hunting out the
wear = 5 contour gives some ideas about the levels of coke and shape that will

give the target value. Solving for coke gives
coke = .50 + .51 x shape

a) b)
Contour Plot of Coke and Shape

<
=

3-D Plot of Coke and Shape versus Wear

‘ 15
40 05 00 05 1.0
shape

-1.0 -0.5

Figure 1.20: a) Contour Plot and b) Perspective Plot.

In the perspective plot the line coke = 0.51 x shape + 0.50 has been added.

To set the process on target of five values for coke and shape conforming to
coke = .51 x shape + 0.50 are chosen for shape € [—1, 1] and coke € [0, 1].
Amongst this subset some value of shape and coke may be more economical and
the process would be run at these values.

In fact shape is qualitative and not a quantatative factor and can only be set at
the values 1. Setting shape at —1 requires coke = —0.01. Setting shape = 1

requires that coke = 1.01 which is just outside the experimental region.

Comments

This method requires that the uncontrollable factors are explicitly set in the
experimental design, that there is normality of errors or that a transformation of

the response will give normality of errors.
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Box and Jones[8] showed that the precision of the estimates derived from the
whole plots have the lower precision than those derived from split plots. The
precision of the estimates for a completely randomised design and a randomised
block design fall between the two. The precision in the estimates for the
uncontrollable factors i.c. the noise factors, is not critical as their parameter
values are of no consequence, it is their interaction with the split plot factors i.e.
control factors, that is of greater importance. The latter have the greater
precision as they are estimated in the split plot. However due to physical
constraints it may only be possible to have noise factors appearing in the split
plot. The disadvantage of this is that the control factors that are now estimated
with the least precision and this may reduce the accuracy of the model used for
bringing the process to the target value. The important U x C interactions are
still estimated within the split plot. The ANOVA table for this design is similar

to Table 1.14 but with the U’s and C’s and their degrees of freedom interchanged.

1.9.5 Generalised Linear Models

The aim in parameter design is to minimise the variance of a process while
adjusting the mean of the process to some preferred level. However the mean and
variance may be related in some way depending on the nature of the data.
Generalised Liner Models gives a way of modelling this relationship between the
variance and the mean. It states that var(y;) = ¢:V (1;) when y; takes a
distribution in the Exponential Family. ¢ is called the dipersion and is that part
of the variance that does not depend on the mean of y;.

McCullagh and Nelder [21] [25] proposed setting up two GLM models with the
exploratory variables being the experimental factors. There is one model for the
mean of the process and one for the dispersion with the variance relationship
given above connecting the two models.

The definitions for this joint model is

e a set of response variables, y,, ..., y, which belong to a subfamily of the

exponential fainily,

e a set of parameters 3 and explanatory variables , X, = N
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(1]

CHAPTER 1. REVIEW

e a differentiable monotonic link function g such that g(s;) = 7; = x;8 where
i = E(yi),

e a variance function var(y;) = ¢;V (1),

e a set of generalised residuals, dy, ..., d,,

e a set of parameters v and explanatory variables ,U, = . ¥

!

u

n

a differentiable monotonic link function h such that h(¢;) = ¢; = uyy where
var(d;) = 7Vp(d).

Ug and ,X,, are a subset of the matrix of independent variables.

The extended quasi-likelihood, Q* gives a measure of how well this joint model is
performing. It is an alternative to the likelihood function when the underlying
probability function is not known and relies only on the first and second moments.

The extended quasi-deviance, EQD, is defined as

m (g n
—2Qt =) =+ log[2ré:iV (ys)] -
1=1 Qb;' =1
The V(i) that describes the data best amongst a set of possible V(i) is the one
that gives a minimum value for the EQD or a maximum for Q*.

The deviance residuals, 7p, are defined as

o = sign(y; — Ni)\/;i
Vi Y — Wi

wo V()

The deviance residuals are distributed approximately normally so the d; are

where d; =

distributed approximately ¢?x? and a Gamma distribution is used to model them.

The Method

To fit the model described above two GLM models are fitted simultaneously with
one model depending on the other. The first model, the mean model, uses the
experimental data to model the means and uses the i—"s as weights. The squared

deviance residuals derived from this model are used as the response variable in

the second, dispersion model. The fitted values from the latter model form the
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¢:’s. This interlinking of the models, i.c. the weights of the first model are found
from the second model and the response variables for the second are found from
the first, is resolved by setting 3)1— = 1 then iterating both models alternately until
the weights, and hence the EQD, converges.

For a saturated mean model the process of iteration isuineccessary as a change in
weightings does not change the values of any of the parameters in the EQD
function or any of the parameter estimates in the two models.

As in the graphical method the idea is to force the data to have a model that is
parsimonious i.c. as simple as possible, and separable where the mean and
dispersion are not related to each other. Here instead of using one transformation
to achieve both criteria, two manipulations are used. To achieve separation an
appropriate variance function is chosen which is labelled V (z). This function
ensures that the ¢;’s are independent of the mean. The mean-variance plot
described in Section 1.9.2 is used to find how the mean and variance are related
and hence choose a distribution having the appropriate mean-variance
relationship. Parsimony is achieved by choosing the right link function. The
Lambda plot in Section 1.9.2 give a useful exploratory tool for working out the
types of transformations that the link functions could take.

The four steps in the method are

e Step 1. At the first step V(j1) is found.
GLM models for the mean and dispersion model are fitted. For the
dispersion model the error distribution is taken to be Gamma with a log
link function. At this stage the exact specification of link functions is
unimportant although it should conform to the nature of the data i.e. a log
link function is inappropriate if the dataee not strictly positive. A saturated
model for the mean is fitted. For a saturated mean model, the fitted values,
fi;, remain unchanged for different V (/i) whereas the d; do not. The EQD is
a function of d;’s and @;’s and hence a function of V(jz). This means it gives
a measure of the performance of the V' (jz). The V(1) that gives the smallest

EQD value is taken to be an appropriate V(i) for the mean model.

e Step 2. In this step a parsimonious model for the dispersions is to be found.
The saturated mean model is fitted once again with the V() function
found in the last step. The squared deviance residuals are used to model

the dispersion. Different link functions for the dispersion model are tried to
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see which gives the most parsimonious model. Step-wise analysis of
deviance fitting can be used, or as likelihood functions give estimates that
are asymptotically Normally distributed, a QQPlot can be used to see with
which link function the effects are behaving Normally. However the latter
method relies on there being few significant effects.

Another option, if the appropriate link function is thought to be a power
function, is to use a lambda plot as described in Section 1.9.2. However
instead of using a least squares fit and the t-values, a GLM model is used
and t-values of the effects are plotted against A where the link function is
Power()\) = y*.

e Step 3. At this step a parsimonious model for the mean is to be found.
The mean model is fitted using several link functions and similarly to Step
2, step-wise analysis of deviance fitting or QQPlotting can be used to find

the parsimonious model. A lambda plot can also be used here.

e Step 4. At this stage the parameters of the model are to be estimated. At
the last two stages the effects that are significant have been found. We
reduce both models from being saturated to only including the
parsimonious effects. Now that the mean model is not saturated the weights
that are given to it are going to have an effect. The mean model is fitted
with weights of one, then the dispersion model is fitted using the resulting
d;’s. The fitted values give ¢, The EQD is calculated. The mean model is
fitted again with weights +- and so on till the EQD converges. The
parameters comne from the lresulting output. The EQD’s can be used to test

how well a reduced model fits the data.

e Step 5. The model is then checked for consistency. See [21] chapter 11.

An Example

Consider again the data in the example in Section 1.9.2 which is to be used as an
example for this method. The method is set out here using Splus but packages
such as Genstat and GLIM can also be used to do this method. The data is y.ex,

the data frame (experimental design) is ex.df.

e Step 1. The mean model is specified as a quasi distribution with an identity



CHAPTER 1. REVIEW 08

link. The dispersion model is specified as a Gamma distribution with a log

link.

From Section 1.9.2 the mean-variance relationship for this data was

6% o« 1'% and the square-root transformation brought parsimony. The
Splus code below uses the former information and fits a saturated model for
the mean and dispersion model, with the former having an identity link and
V() = p? and the latter having a log link and Gamma errors. The last line
gives the EQD for V(1) = p?. To find the EQD for a different V (u) the
variance must be changed in the mean model and V(y;) in the EQD

equation.

mean.model <- glm(y.ex™ ., data = ex.df, family =

quasi(link = identity, variance = "mu"2"),

start = rep(100,96), maxit = 300)
deviance.resid <- resid(mean.model) "2
dispersion.model <- glm(deviance.resid ~ ., family =

Gamma(link = log), data = ex.df, maxit = 300)

phi <-fitted(dispersion.model)
EQD <-sum(deviance.resid/phi) +

sum(log(2 * pi * phi * y.ex"2))

Several different V(u) were tried. In the Table 1.17 the relevant EQD’s are
listed.

V(n) EQD

1 673.40
i 673.30
n? 673.31
1 673.41

Table 1.17: Extended quasi deviances for different V (u).

The minimum EQD occurs when V(j:) = g2 and this is what will be used in
the following steps. Splus is restricted in this case as it only allows

V() = pi® for @« =0, 1, 2 and 3 in the GLM function. It is possible to work
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out where the minimum in the EQD occurs for values of a other than these
but other than for interest this knowledge is not much use as it can’t be

used in the modelling process.

The graph in Figure 1.21 is a plot of EQD against « and shows that for

a = 1.45 the EQD is a minimum. This compares to the value of o = 1.64

found by the mean-variance plot i.e. 62 oc '%%

EQD Versus alpha for
V(u)=u"alpha
o
I“t-'
w
o
AN
&
©
S
Qe
©
E_
[(s]
< Min at
o (1.45, 673.29)
& /

T T T T T T
-3 -2 -1 0 1 2 3
alpha

Figure 1.21: A Graph of E.Q.D. for different values of a for the variance function
V(p) = pe.

e Step 2. Now a link function for the dispersion model is to be found that will
give parsimony. The Splus code for a identity link for the dispersion model

1S

mean.model <- glm(y.ex ~ ., data = ex.df, family =
quasi(link = identity, variance = "mu"),
start = rep(100, 96), maxit = 300)
deviance.resid <- resid(mean.model) 2
dispersion.model <- glm(deviance.resid ~ ., family =
Gamma(link = identity), data = ex.df,
maxit = 300)
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QQplots for the inverse, identity square root and log link were QQplotted in

Figure 1.22 a), b) c¢) and d) respectively.
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Figure 1.22: QQplots of coefficients for a) Inverse link and b) Identity link c)
Square root link and d) Log link.

All of the plots in Figure 1.22 show that A and C are significant factors.
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Figures 1.22 a) b) and c) have the insignificant coeflicients forming a bowed
line instead of a straight line therefore the straight line of 1.22 d),

corresponding to a log link function, is preferred.

The analysis of extended quasi deviances for the comparisons between a full
model, a model with factors A and C, a model with one each of factors A
and C and the null model appear in Table 1.18. There are 96 observations
and fitting a saturated mean model reduces the degrees of freedom available
for the dispersion model to 96-15-1=80. The degrees of freedom for the null

model is 79 and for the saturated model, 64.

Table 1.18: EQD’s for the Dispersion Model.
Model EQD DOF
NULL 69536 79
A 689.51 78
C 691.164 78
A+C 68344 77
Full 67330 64

The difference in EQD’s between the full model and the A+C model is
683.44-673.30= 10.14 on 77-64=13 degrees of freedom. The reduced model
therefore fits the data almost as well as the full model. The difference
between EQD’s for the NULL and A+C model is 11.92 on two degrees of
freedom showing that the A+C model is a significant improvement on the
null model. Similarly the A+C model is better than models with either

factor by itself.

e Step 3. At this step a link function for the mean model is chosen to achieve
parsimony. The Splus code for a square root (power(0.5) 2) link for the

mean model is

mean.model <- glm(y.ex ~ ., data = ex.df, family =
quasi(link = power(0.5), variance = "constant"),

start = rep(100, 96), maxit = 300)

2Due to a bug in Splus, the start parameter is necessary when using the power function with
the variance parameter in the quasi function. The start values should be chosen carefully as
values far away from the optimuimn may lead the GLM function to find a local optimum.



CHAPTER 1.

REVIEW

62

QQplots for the inverse, identity and log link and square root are

QQplotted in Figure 1.23 a), ), ¢) and d) respectively.
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Figure 1.23: QQplots of coeflicients for a) Inverse link and b) Identity link c)

Log link and d)Square Root link.

All of the plots in Figure 1.23 show that A and D are significant factors. In
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Figure 1.23 a) and b) interaction 5, the AD=EH=CG=BF interaction also
appears to be significant. Since an interaction model is less parsimonious
than a non-interaction model these two links will be discarded. There is
little to choose between the log link and square root link of Figures 1.23 c)
and d). The lambda plot for mean effects (Figure 1.24 indicates that at

A = 0.5 the AD interaction passes through zero and the gradients of the A
and D effects are approximately zero therefore Power(0.5) is the link
function that will be used. The t-values are for the coefficients of the mean
model with variance function V(yt) = p found using the summary function
for a GLM object in Splus. Lambda is a value for the power link function

i.e. Power()\) = data®.

t-values of Mean Effects versus Lambda
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Figure 1.24: Lambda plot of the mean effects using a GLM model and vari-

ance function V (p) = p.

e Step 4.

At this stage the coefficients of the parameters are wanted. The
parsimonious models are known i.e. factors A and D for the mean model
and factors A and C for the dispersion model. Due to the non-orthogonality
of the effects in GLM models, these factors have to be fitted jointly, without

the insignificant effects, to get their parameter values. On reducing the
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mean model, the weightings, é, will change the values of the parameters
and the EQD. However, on iteration, the EQD and parameter values
quickly converge. In the previous steps this iteration was omitted since in a
saturated model for the mean the parameters remain unchanged with

changing weights.

The code to do this is listed below. It consists of commands (part 1) that
call a function (part 2). Although this may not be good programming style
Splus is very inefficient at looping so it is a lot quicker to run part 1 (once
with the weighter command and then without) and part 2 ten times than to

have a loop iterating for fifty.

— Part 1. This command is entered from the main line

weighter<-rep(1,96)
for (i in 1:5) {print(Multi.model.fitter())}

— Part 2.

Multi.model.fitter<-

function()

{

mean .model <<- glm(y.ex ~ ., data = ex.df[c(1, 4)],
family = quasi(link = power(0.5),
variance = "mu'"), start =
rep(100, 96), maxit = 300,
weights = weighter)

deviance.residuals<<- resid(mean.model) ~2/weighter

dispersion.model <<- glm(deviance.residuals ~ .,
family = Gamma(link = log), data =
ex.df[(c(1, 3)], maxit = 300)

weighter <<- fitted(dispersion.model) "-1

EQD <<- sum(deviance.residuals/fitted(dispersion.model)) +

sum(log(2 * pi * fitted(dispersion.model) * y.ex))

All the variables are global since a GLM function which is itself in a

¥
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function looks not at the function it is in but at the global frame to find out
the value of weights. Having global variables also means that the outputs

from the GLM function are accessible from the global level.

Now that the apparatus is set up to do the iteration, the EQD for the
reduced mean model can found, which takes into account the dispersion

model with only factors A and C included. The table listing these is
Table 1.19

Model EQD DOF
NULL 1003.20 92
A 972.70 91
D 866.43 91
A+D 069818 90
Full 683.44 77

Table 1.19: EQD’s for the Mean Model taking into account the Dispersion
Model.

From the EQD table the difference between the FULL model and the A+D
model is 14.74 on 13 degrees of freedom which means the A+D model is
doing a good job in modeling the data. The difference in EQD’s between
the A+D model and the NULL model is 305 on 2 degrees of freedom

showing that the former model is a vast improvement over the null model.

The sequence of code above was used to find the co-efficients for the models
with A and C as mean factors and A and D as dispersion factors. The

models are

Vit = 12464097 x A +1.49x D
logdp = —0.59+0.33 x A+0.34 x C
and Var(y:) = ¢V (i)
= exp[—0.59 + 0.33A + 0.34C] x (12.46 + 0.97A + 1.49D)?

Comments

The uncontrollable factors need not be explicitly set in the experiment.
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The method described in Section 1.9.2 uses one transformation to achieve
parsimony and separation. For some data this may not achievable in one
transformation. In this method separation and parsimony are achieved separately.
The former method relies on the transformed data being Normally distributed.
This is reasonable when there is a moderate amount of data due to the Central
Limit Theorem. In this method Normality of the data is not assumed and so it
can be applied to a much wider range of data i.e. counts and proportions.
Many of the previous methods relied on the designs being factorial designs with
factors at two levels while here factors with more levels and covariate factogcan
be used.

The method is not well documented and what has been written about the
method is at a very high level. Persons unfamilar with GLM models and
appropriate GLM packages for model fitting would find wading through the

literature very hard going.

1.9.6 Restricted Generalised Linear Models

Engel[13] proposed this method based around the ideas of GLM. The method is
more restrictive then the GLM method but has the advantage that all the
parameters can be estimated by least squares. Fitting GLM models involves

specialist software or specialist knowledge

The Model

The combined model for the mean, u and dispersion, ¢ is

E(y) = wi=zB, (1.15)
var(y;) = ¢V (1, 0), (1.16)
log(¢:;) = ziv. (1.17)

where x; and z; are subsets of the matrix of independent variables and p; is the
mean at cach distinct design point. V(u;, ) is the component of the variance
related to the mean and ¢; is the component of the variance not related to the
mean i.e. the dispersion.

This is similar to the GLM model but in this case the links are fixed. For the
mean model (equation 1.15) it is the identity link and for the variance model

(equation 1.17) it is the log link. In this model only “power of the mean”
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variances are considered i.e. V(j,0) = pf. §; is used to estimate j where ; is the
average value at each distinct design point. Similarly s? estimates var(y;).

In terms of the attributes of parsimony and separation, separation is achieved by
picking the right 1 (y1;,0) which hopefully can be modelled as yf. If it is some
other variance function then this method may give inaccurate results. PParsimony
is achieved by choosing the right link function. In this case they are pre-chosen.
If parsimony is not achieved then a transformation of the data can be done and

the method of estimation redone. In this case the V (4, ) function may change.

The Method

The estimation procedure goes like this

e Step 1. First an estimate of 6 is found by least squares and with the model.
log s? = log ¢ + 6 log §; + error.

The aim in this step is to find out what 6 is for the power of the mean model

by using the model specification var(y;) = ¢;V (i, 0) where V (p;,0) = .

e Step 2. The significant factors in the matrix of independent variables are
found by observing the parameters estimnates of v using least squares and

the model
2
log <_—:}> = X;v + error

2

where X is the matrix of independent variables. The significant factors are

renamed z;.

e Step 3. Using the appropriate significant factors for the dispersion model,
which were found in the last step, v and 6 are re-estimated via least squares
and the model

log(s?) = ziv + 0 log(7;) + error

Since a new value of # may have been found steps 2 and 3 are iterated until

a stable set of the factors are found.

e Step 4. Estimates for 3 are found using weighted least squares, with the
weights given by

T
W = ¢i;
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where

¢i = exp [2:9]

as specified in the equation (1.17) and estimated in the previous step, and

with the model

7; = XiB8 + error

and the significant factors are renamed z;.

Example

Consider again the data in the example in section 1.9.2 which is to be used as an

example for this method. The method is set out here using Splus but many

simpler statistical packages with weighted least squares will perform this method

for example minitab.

The design matrix is called ex.mat. The means are in ex.mean and the sample

variances are in ex.s2.
e STEP 1 Estimate # using the model
log s? = log ¢ + B logyj; + error.
The Splus command and output is

ls.print(1lsfit(log(ex.mean),c(log(ex.s2))))

Residual Standard Error = 0.7533, Multiple R-Square = 0.315

N = 16, F-statistic = 6.4392 on 1 and 14 df, p-value = 0.0237

coef std.err t.stat p.value
Intercept -3.8866 3.2549 -1.1941 0.2523
X1 1.6411 0.6467 2.5375 0.0237

This gives #=1.64 and log p=-3.89. Only the latter is significant at the 5%

level.

e STEP 2 The significant factors for the variance model are found using the

model

A1

log (E—;) = X;v +error.
i
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All the factors are fitted and then plotted on a QQPlot to find which are
significant. The Splus command and output follow and the QQPlot is
Figure 1.25

1s.print(lsfit(ex.mat,c(log(ex.s2/ex.mean~1.6411))))

Residual Standard Error = NA, Multiple R-Square = 1
N = 16, F-statistic = NA on 15 and O df, p-value = NA

coef std.err t.stat p.value

Intercept -3.8866 NA NA NA
X1 0.3209 NA NA NA
X2 -0.1387 NA NA NA
X3 0.3652 NA NA NA
X4 -0.2004 NA NA NA
X5 -0.0433 NA NA NA
X6 0.0569 NA NA NA
X7 0.0639 NA NA NA
X8 -0.0062 NA NA NA
X9 -0.0353 NA NA NA

X10 -0.3030 NA NA NA
X11 -0.1546 NA NA NA
X12 0.1500 NA NA NA
X13 -0.0696 NA NA NA
X14 -0.2125 NA NA NA

X15 0.0452 NA NA NA
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QQplot of Coefficients
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Figure 1.25: QQPlot of Dispersion Effects.

From Figure 1.25 factors A and C are the only significant factors.

e STEP 3

Using the smaller set. of factors, i.e. factors A and C, v and 6 are

re-estimated using

log(s?) = ziv + 0 log(y;) + error.
1s.print(1sfit(cbind(ex.mat[,c(1,3)],log(ex.mean)),c(log(ex.s2))))

Residual Standard Error = 0.5425, Multiple R-Square = 0.6955
N = 16, F-statistic = 9.1367 on 3 and 12 df, p-value = 0.002

coef std.err t.stat p.value

Intercept 0.1630 2.7695 0.0589 0.9540
X1 0.4461 0.1603 2.7827 0.0166

X2 0.3632 0.1356 2.6776 0.0201

X3 0.8351 0.5505 1.5169 0.15652

This gives 4,4 = 0.4461, ¥¢- = 0.3632 and 6 = 0.8351. Since 0 has changed
step 2 is redone to see if the set of significant factors changes. In this case

factors A and C remain the only significant factors.
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e STEP 4.

Using ¥4, ¥¢ and 6 found previously the weights are found i.e.

@ = exp[z9] = exp[Yaz1 + Fozs]

and

then the mean model
U; = X8+ error

is fitted.

phi<-exp(0.4461xex.mat[,1]+0.3632+ex.mat[,3])

weightinv<-phi*ex.mean~0.8351
1s.print(lsfit(ex.mat,c(ex.mean) ,wt=(weightinv~™-1)))

Residual Standard Error = NA, Multiple R-Square = 1
N = 16, F-statistic = NA on 15 and O df, p-value = NA

coef std.err t.stat p.value

Intercept 158.5325 NA NA NA
X1 23.8834 NA NA NA
X2 1.4862 NA NA NA
X3 -0.3669 NA NA NA
X4  37.7849 NA NA NA
X5 -1.3259 NA NA NA
X6 -0.4160 NA NA NA
X7 -1.1242 NA NA NA
X8 1.4166 NA NA NA
X9 -0.2969 NA NA NA

X10 -0.5677 NA NA NA
X11 -1.0864 NA NA NA
X12 -0.4265 NA NA NA
X13 3.6623 NA NA NA

X14 0.4870 NA NA NA
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X15 0.4555 NA NA NA

QQPlotting the parameters from the table above in Figure 1.26 shows that

factors A and D are significant mean effects.

QQplot of Coefficients
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Figure 1.26: QQPlot of Mean Effects.

The parmeters for factors A and D were re-estimated since with the

weightings they loose the property of orthogonality.
1s.print(1sfit(ex.mat[,c(1,4)],c(ex.mean),wt=(weightinv~-1)))

Residual Standard Error = 0.6933, Multiple R-Square = 0.9876
N = 16, F-statistic = 517.8323 on 2 and 13 df, p-value = 0

coef std.err t.stat p.value

Intercept 158.2268 1.4884 106.3043 0
X1 23.4768 1.4662 16.0117 0
X2 35.5061 1.2778 27.7862 0

So 34=23.48 and 3-=35.51.
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The conclusion drawn is that D is a mean effect, C is a dispersion effect, A is

both and all the other factors are neither. The model for them is

ji = 158.23 + 23.484; + 35.51D; (1.18)

log(¢;) = 0.454; + 0.36C;
var(y) = @iV (1, 0)
= exp(0.454; + 0.36C;) x (158.23 + 23.484; + 35.51D;)%%

To achieve minimum dispersion factors A and C would be set to their lowest level
and then using equation 1.18 the mean would be brought to the target value
through factor D. If the target is not met then A will need to be adjusted to

meet the target. This will increase the variance.

1.9.7 Comments

The uncontrollable factors need not be set explicitly in the experimental design.
The only major flaw in this method is that some alternative variance functions
arce not possible, for example the binomial variance function V(y;,6) = 14;(1 — 14;)
and the negative binomial variance function V(p;, 0) = ji;(1 — ;).

[t has the advantage over the generalised linear model method of the previous
section in that the required steps need a lower level of expertise and computing

power to use this method.



74

Chapter 2

Optimisation Under Changing

Conditions

One of the aims of Parameter Design is to keep the mean response on target
while simultaneously minimising the variance. The model for the mean response
and variance response is found in terms of the controllable factors. However,
when the process is running, some of the uncontrollable factors may be
observable. This additional information should enhance our choice of the levels of
the controllable factors. What I propose is to split the uncontrollable factors into
two sets, observable and unobservable factors. In the first set there may be
factors like temperature and humidity while in the second there may be
component quality which may be unmeasurable due to expense. The aim will be
to find a relationship between the controllable factors and the observable
uncontrollable factors while sitnultaneously minimising the variance of the
response and keeping the mean response on target. During the production
process whenever a particular value of an observable uncontrollable factors occurs
an appropriate value for the controllable factors can be generated, using the
relationship discovered, that meets the stated objective.

In practice the type of observable uncontrollable factors that would give the most
benefit are the ones that change smoothly over time, like temperature and
humidity, or ones that have a slower rate of influence than the production rate.
Certainly if an observable factor changes its values in wild swings it would not be
sensible making continuous invasive adjustments to the product/process. In such

cases it may be advisable to enforce some control over the factor.

1Selected sections of this chapter were published in a paper that appears in Appendix B
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2.1 A First Order Model

As an example consider the first order model below which is an extension of the
ideas of Myers et al[24]. In this case the model has been generated through
Response Surface Designs however other types of experimental designs could lead
to a model such as this.

Let Y represent the quality variable and y; a response. Let x; represent the
controllable factors, t; the observable uncontrollable factors and z; the
unobservable uncontrollable factors.

Let the model for the quality response variable, y;, be
yilTi, ti, zi = Po + i B + tiB2 + 2iBs + TiTati + z{Tow; + 2 Vst + 6 (2.1)

where the response is dependent on x;, t;, and z;.

The list below defines the sizes of the matrices and vectors.
[)‘0 1x1
B px1, Ty pxl, ¥, g xp, t; ~ Dist(0,Ay)
B2 qx1, t; gx1, Y, X, z; ~ Dist(0, Az)

Bs 7 x1, zi TX1, s rxgq, ¢; ~ Dist(0,02)

where Dist(ps, A) represents some joint distribution with g = 0 and
variance-covariance matrix A. The last requirement is that €, t and z be

independent.

2.1.1 Model One

The aim here will be to minimise variance of Y|z, t; while keeping the mean of
Y|x;, t; to target and finding a relationship between the x; and t;. The factors z;
are eliminated as the only information they provide are through their means and

variances. First the mean of Y|x;, t; will be found

Theorem 2.1

Ey (Yi|lzs, t;) = fo + =i + ;B2 + ziT1t;
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Proof

Ey(Yilei, t:) = Ez(Ey(Yiles, ti, 2i))
= EZ([}U + 13:,31 + tg,Bz + 22,83 + ccﬁElt,- + zﬁzgcc,- -+ zﬁZsti)
= O+ (Eiﬂ] + ti,@z + :cﬁth,-

and then the variance of Y|x;, ¢;.

Theorem 2.2
Vary (Y;|zi, t;) = 02 + (Bs + Zax; + at;) A2(Bs + Eaxi + st;)
Proof

V[’H‘)-’()'Hﬂli, ti) = Ez(\/ar,.-(Y,-|:1:,-, ti, Zi)) + VCLTZ(E)"(YiliL',‘, ti, Z,‘))
= 0(2 + V(l”'z(ﬁo + 1!:,31 + ts,Bz + wiElt,- + Zé(,@a + Yox; + Eati))
= 02+ (Bs + Toz; + Tati)'A2(Bs + T2x; + Tat;)

.
Now we wish to minimise Vary (Y;|x;, t;) subject to T = Ey (Y;|T;, t;) where T is

the target.

Theorem 2.3 If A, is positive definite and ¥, is of rank r then the value that

minimises

Varz(Ey (Yi|zi, ti, z:)) = 0 + (Bs + Za2z; + Tati)'Az(Bs + Tax; + Lst;)

subject to
T = Ey(Yiles, t;) = fo + ;61 + ;082 + ;X1 t;
18
xz; = (2D'B)"'(F +2E'B)D - E. (2.2)
Where
A= (ZLAX,)7 Y, assuming that A is invertible,
B = (81 + Z1ty), C = XLA2(B;5 + Xsty),

D=AB,E=AC, and F =T - [, — ti(32.
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Proof

Lagrangian minimisation will be used.

L = 024 (Bs+Zaxi+Tst;)' Az(Bs+ Zawi+ Xat;) + N1 —fo—xiB1 — ;B2 — ;X1 ts)

oL
aiB,'

A
therefore z; = (Z5A23;)7" (5(,31 + 3ht;) — BhA(8s + 23&))

= 2%LA,Tx; 4 255A50; + 255A,53t; — A (81 + Siti)

Let A = (£5A,3;)7", assuming thatA is invertible, B = (81 + £1t;) and
C = XLA,(B3 + £3t;), sox; = A(AB - C).
Let D= AB and E = AC, therefore x; = \D — E.

oL
Now = T-Bo—zi(B1 + T1t:) — 1B,

” = T—p—2(A\D"' - E')B - t;3;
therefore A\ = (2D'B)"'(F +2E'B)
where FF = T — By — tiﬁg
and ¢, = (2D'B) Y(F+2E‘B)D - E

providing A is invertible.

0°L

Also 9293 :

— 2E;A2 Ez
As long as A, is positive definite and Xz is of rank 7 then 2X5A,3; is positive

definite and so xj is the minimum critical point.

During production the values of the observable uncontrollable factors ¢; would be

used to generate the values of the controllable factors, x} using equation (2.2).

2.1.2 Model Two

The usual method of parameter design is to treat the ¢; and z; as one group and
to find a value for x; that keeps Y on target with least variance. The factors t;
and z; are eliminated as the only information they now provide is through their

means and variances. First the mean of Y|z; will be found
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Theorem 2.4
Ey(Yi|z;) = fo + xi6r
Proof

Ey(Yilz:) = Er(Ez(Ey(Yilwi, ti,2:)))
= Bo+ b1

Finding the variance of y|x; depends on the following result.

Theorem 2.5
Var(Y') = Ex(Ez(Vary (Y|X, Z))) + Ex(Varz(Ey(Y|X, Z))) + Varx (Ey (Y] X))

Proof

Now it is known that

Var(Y) = Ex(Vary(Y|X)) + Varx (Ey(Y

X))

SO

Var(Y|X) = Ez(Vary(Y|X,Z)) + Varz(Ey(Y|X, Z))

therefore
Var(Y) = Ex(Ez(Vary(Y|X,Z))+ Varz(Ey(Y|X, Z))) + Varx (Ey (Y]|X))

which gives the result.

]
Now the variance of Y|z; will be found.
Theorem 2.6
Vary(Vilws) = 0c+ (Bs + Zawe) Aa(Bs + Sas) + trace(Sy A2 Tshy)
+(B2 + Ziw:) Ar (B2 + Zixs) (2.3)

Proof

Vary(Yilz:) = Er(Ez(Vary(Yilzi ti, 2:))) + Er(Varz(Ey(Yilzs, t;, 2:)))
+Varr(Ey (Y;|xi, ti))
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Now
Er(Ez(Vary (Yi|lzs, ti, 2i))) = Er(Ez(0?)) = o?
and
Ex(Varz(Ey(Yilzi, ti, 2i)))
= ET("(L'I'z(ﬁo + w:gl + t:ﬁz + 25,33 + iEéthi + ngzici -+ sz;;t,-))
— ET((ﬁ;; + 22:1:,- + E3ti)£A2(ﬁ3 + 22:1:,- + 33 ti))
Now
tiS4 A Xst; = trace(T5AXst;t!)
therefore
ET(tiEQAgzst,) = t?'ﬂCE(E&A;E;;A])
So
Er((Bs + L2x; + st;)'A2(B3 + Taz; + Xst;))

= (B3 + X2x;)'A2(B3 + T2x;) + Ex(tiX5A225t; + 2(8s + ax;)' Tat;)

= (Bs + Toz;)' A2(B3 + Tax;) + Ep(tiZiA,Tat;)

= (B3 + X2;) A2(Bs + Tax;) + trace(T4A2Z3A,)
Finally

Varp(Ey(Y;|zi, ti)) = Var(Bo + '8 + tiB2 + i X,t;)
= Var(Bo + ziBy + ti(Bz2 + TiTi))
= (B2 +Ziz:i)'A((B2 + ZiT;)

Hence

Vary(Yilz;) = o+ Er((Bs + 2z + Tst;)'A2(Bs + Xaz; + Tsty))
+Var(By + TiB1 + tiB2 + TiTats)
= 0+ (B3 + Taxi) A2(Bs + Tax;) + trace(T5A253A,)
+(B2 + Tizi)' A1 (B2 + ZiT))

Now we wish to minimise Vary (Y;|z;) subject to T' = Ey (Y;|x;).
} tL1
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Theorem 2.7 If Ay is positive definite and X, is of rank r or if A, is positive
definite and X, 1s of rank q then the value that minimises
Vary(Yi|T:) = o+ (B3 + Zaxi)'Aa(Bs + Tax;) + trace(X5A223A,)
+(B2 + Zizi) A1 (B2 + Ziz;)

subject to
T = Ey(Yilz:) = fo + b
iS
x;" = (K'By) (T - fo+J'Br)K —J (2.4)

Where

G = (ZhA2, + A, )71, assuming that G is invertible,

H=%483+%18, K=G& and J=GH.
Proof

Using Lagrangian minimisation once more

I = :BéztzAzzzil:i + wﬁZlAIZ‘lwi -+ 2ﬂ§22w, + 2ﬂéztlw1 = /\(71 - 60 = m:ﬂl)

oL
3:1:,-

A
therefore ©; = (ZLA23; + EIAIE‘I)_'(?& — ¥L0s — £102)
Let G = (TLAX2+ 2,A;3)) ", providing G is invertible
A
H = Etzﬂa + 21,@2, SO I; = G(§B1 — H)

= 28LA. Y0z + 28 A BT + 28585 + 28,8, — ABy

Let K = G% and J=GH, so ©; =K —J
oL
a = T-0 - wéﬁl
= T -f— (AK' = J"B
so A = (K'8) YT - 6o+ J'51)
andz}* = (K'8))"' (T -6+ J'81)K —J
Also 2L
m = 22t2A222 + 221/\12‘1
Since A; and A; are Variance-Covariance matrices they are both positive

semi-definite. However, if Az is positive definite and 35 is of rank 7 then

BEAT,
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is positive definite and so
2X5A 2, + 22, A, 3
is positive definite. If, instead, A, is positive definite and ¥, is of rank ¢ then
A EY
is positive definite and so
25LAgXg + 221 A1 34

is positive definite.
Therefore if Aq is positive definite and X5 is of rank 7 or if A; is positive definite

and X, is of rank ¢ then }* is the minimimum critical point.

]
Now for some values of t;, }* may predict a value for y; that is closer to the
target then that predicted for ¢}. To compare the two predictions the statistic
E((y; — T)?) will be considered for } and x}*.
Theorem 2.8 For model one
E(yilw;, t: — T)? = Var(ylzi, t:)
Proof
Under model one T = E(y;|z}, ;) so
E(yi|lz;, t: — T)? = E(y|z}, t: — E(y|z;, t:))* = Var(y|z;, ;)
[

Theorem 2.9 For model two
E(yi|z;*, t; — T) = Var(ylz:®, t:) + (tiﬂg + :.':E”Elti]z

Proof
Under model two 7' = E(y;|z}*) and

E(yilz:') = E(yilzi*, t:) — (882 + =} ' T1ty)
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SO

E(yile;* ti — T)* = E(yilzs, ts — E(yilzi®))?
= E(ylzi*, ti — E(yilzi*, t:) + tiB2 + i ' T, t;)°
—] V(L’I‘(yil:l,‘:*,ti) + (téﬁz + J::* ‘Elti)Q.

So far two methods have been specified i.e. using € or €;* exclusively. A third
approach is to use either depending on the value of ¢;. On observing a value of ¢;
calculate E(y; — T)? for } and z}* and choose that corresponding to the least
E(y; — T)? value.

In practice the model is specified but the coefficients of the model are unknown
and these are found by experimentation. These estimated coefficients are used to
give estimates of y;, <i, E(y;) and Var(y;) denoted by 4, &, E(y;) and V/'Er(yi)

respectively.

2.2 Simulation Example
To illustrate these procedures let the underlying model be

yilei, ti, zi = 100+ 5z + Tag — 4ty + 3ty — 521 — 629 — dxyt) — 322ty + 621
—?':1:-3_:52 = 71?]32 -+ 8t12:1 — 8t222 +€ (25)

Where € is distributed as Normal(p = 0,02 = 10) and with a target of 100. The
first step in parameter design is to do an experiment with all the factors at fixed

levels. This was done with a 2! factorial design and the results are in Table 2.1.
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Factors Response

1 T2 by ta 21 z9
-1 -1 -1 -1 -1 =1 91.5311
1 -1 -1 -1 -1 1 110.09547
-1 1 = -1 -1 1 120.90064
1 1 -1 -1 -1 -1 133.24822
-1 -1 i1 -1 N 1 99.8026
1 —al 1 -1 =1 -1 71.35239
-1 1 1 -1 -1 =1 101.25509
1 1 1 -1 =1 1 78.83396
-1 -1 -1 1 =1 1 106.93987
1 -1 -1 I i -1 134.56421
=f] 1 -1 1 -1 -1 138.35204
1 1 -1 i -1 1 98.02461
-1 -1 1 1 -1 -1 96.73753
1 -1 1 1 -1 1 78.68531
-1 1 1 1 -1 1 92.89983
1 1 1 1 -1 -1 125.50157
-1 -1 -1 -1 1 1 79.88534
1 -1 -1 -1 I =il 93.51969
-1 1 -1 -1 1 -1 80.66505
i 1 -1 -1 1 1 96.4498
-1 -1 1 -1 1 -1 58.77738
1 -1 1 =i 1 1 96.73602
- 1 1 -1 1 1 101.59202
1 1 -1 1 -1 126.37272
-1 -1 -1 1 1 -1 75.88907
1 -1 -1 1 1 1 87.37854
-1 1 -1 1 1 1 66.28703
1 I -1 1 1 =1 143.92734
-1 -1 1 1 1 1 93.3468
1 -1 1 1 1 =il 122.44309
-1 1 1 1 1 -1 116.39455
1 1 1 1 1 1 83.3959

Table 2.1: The experimental design and the responses for

Ty, To, l,l, t2, 2) and 2.

The model found was

~a 257! factorial design in

y = 100.06 + 4.98z, + 6.45z9 — 3.55¢, + 3.74t, — 4.862; — 6.852 — 3.57x ¢,

+6.111}121 — 6.98.’1)122 . 2.151‘2t2 — 7.361’222 + 8.24t121 - 8.58t222

The residuals were used to estimate o2 and 6% = 11.56.

The two parameter variable t; will be taken to have a 2 dimensional multivariate

Normal distribution with a mean of 0 and a Variance-Covariance matrix equal to

the identity matrix. Similarly for z;. The parameter € will have a standard

Normal distribution. Four simulations are to be done to compare four different

methods. 100,000 values will be generated for each of the z;, ¢; and € and they

will be used for each simulation.

In order to use equation (2.2) Az must be positive definite and $, must be of

rank . Now Az is the identity matrix so it is positive definite and

3ia =

6.11
=698

-7.36
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is of rank 2 and r = 2. The conditions are met.
For simulation 1.1 equation (2.2) was used to generate the &} from the ¢;. The

equations for z; and z, in terms of ¢; were generated by Maple and appear in
Table 2.2.

zl = —(—.2499999997 + 1.111111111 £/ + .1746031745 2
+.2222222226 t1% — 6031746025 {2 t1 — 2729591838 22
— 06802721120 t22 ¢1 + 1428571429 12%) /(.5555555552
+.2222222224 t1 + 2222222222 t1% — 5952380950 2
— 3333333334 (2 t1 + .2168367346 2°)

22 := (—.1899092969 t2 + 1.253968253 t1 — .3492063483 t1°
— 4285714285 t2 t1 — .02125850360 t22 — .09070294800 12 t2
+.1904761904 t2% t1 + 2000000000 1079 t2° — .1785714284) /(
5555555552 + 2222222224 t1 + 2222222222 t1?
— 5952380950 ¢2 — 3333333334 t2 t1 + .2168367346 t2?)

Table 2.2: The Maple output giving the relationship between the controllable fac-
tors, x;, and the observable uncontrollable factors, ¢;, that minimises the variance

and keeps the mean on target.

The &; and ¢; were used with the 2z; and ¢; to generate the §; using the regression
model in equation (2.5). The variance of the resulting g; was 67.72£1.10 and the
mean 100.40£0.03.

The variance of g’ can be broken into three components. That due

1) to e,

2) to the influence of the random variable z and its interaction with & and ¢, and
3) to the use of the estimmated coefficients.

The size of the latter can be estimated by generating y; with €; and z; equalling 0
and keeping &} and t; as before. The resulting variance was 1.274£0.003. This

variance would decrease with the increased accuracy of estimating the coeflicients.
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In order to use equation (2.4) A, must be positive definite and 33, must be of
rank 7 or A; must be positive definite and fll must be of rank ¢. It has been
shown previously that As is positive definite and 5:]2 is of rank r. A; is the

identity matrix so it is positive definite. Now

= —3:97 0
21 —
0 —-2.15

which is of rank 2 and ¢ = 2. So both the conditions hold.

For the second simulation, simulation 1.2, equation (2.4) was used to give
£;*=(0.0358, -0.0363) which gives, using equation (2.3), ﬁr(y) = 249.40. The
underlying model is known in this case so Var(y) can be calculated and is
Var(y) = 223.67. Using &}* and the previous t; and z;, the §* were generated
from the regression model in equation (2.5) to give a sampling variance of
223.741£1.43 and a mean of 99.971+0.05.

By accounting for the specific values of the ¢; when choosing the &; an
approximately 70% decrease in variance was achieved. Graphing the two sets of
data in histograms in Figure 2.1 illustrates the reduction in the variance of the

response g; from simulation 1.2 to simulation 1.1.
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Figure 2.1: Responses collected from simulation 1.1 and simulation 1.2. They show
how accounting for the values of the observable uncontrollable factors has reduced

the variance of the response.

It is possible to generate a Box type model [7]. In this method the uncontrollable
factors do not enter into the experiment or the modelling process explicitly.
During the experimental stage the design is replicated so that at each distinct
design point there are multiple readings. The means and variances are collected
at cach point. They are both used as responses to be explained by the
controllable factors. The 2! design was converted into a 2% design in z, and x,
with 8 replications at each design point. The mean and variance at each design

point were collected and the model found is given below.

jt = 100.06 + 4.98z; + 6.45z, — 0.76x,x,
logs = 3.04+4+0.10z, + 0.13z5 — 0.07z, 2,

Calculus shows that the values for z, and x5 that minimises log s while keeping
on a target of 100 is (-0.0026, -0.0067). The model predicts a variance at that

point of 433.87. A third simulation, simulation 1.3, using these x; and the
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previous t; and z;, gives a sampling variance of 223.49+1.42 and a mean of
99.99+0.03.

Once again accounting for the ¢; in calculating x; has given an improvement over
an accepted method.

The third approach is to calculate E(y —T)? for both &} and &}* and to use the
@; that minimises E(y — T)2. Using Maple software both expressions were derived
in terms of ¢; and ¢, and a contour plot of E(y|:1::, t; —T)%- E(y|.’n;*, t; — T)2=0
is displayed in Figure 2.2. The smaller regions denote where ;* has lower

E(y — T)? then &.

t3 s

Figure 2.2: A contour plot of E’(yﬂm{*,ti - T)2 - E‘(yi|$2, t; —T)? =0. Inside the

two smaller regions &;* gives the smaller E(y;|z;,t; — T)? value.

A further simulation, simulation 1.4, using x;* when ¢; falls in the enclosed
regions and x; otherwise, gives a mean and variance for the response as
100.18+0.03 and 65.4440.62 respectively. This approach shows little
improvement over using &} exclusively because only 8.9% of the ¢; fall in the
cnclosed region. When the probability of the ¢; falling in such regions is larger
this approach may give greater improvements.

A summary of the four simulations appears in Table 2.3.
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Simulation | Mean Standard Error | Variance Standard Error
1.1 ] 100.40 0.03 67.85 1.10
1.2 | 99.97 0.05 223.74 1.43
1.3 99.99 0.05 223.49 1.42
1.4 |100.18 0.03 65.44 0.62

Table 2.3: A summary of the simulation results.

2.3 Complications

In the typical inner/outer array, only the main effects and the interactions
between the controllable and uncontrollable factors are estimable, i.e. everything
in equation (2.1) except X3. However it maybe the case that an experiment is
designed to produce a model that contains interactions and/or quadratic terms
especially when using response surface methods. Adding terms like !Zx; to the
model gives no closed form solution for ;.

Others problems are that the x; found may not be in the experimental region or
that A and/or G is not invertible. These problems can be overcome by solving

numerically and setting appropriate upper and lower bounds on the x;.

Further Example

Engel[13] reported an experiment to improve an injection moulding process by
minimising the shrinkage of the product. The experiment consisted of seven
controllable factors and three uncontrollable factors and these appear in Table
2.4.
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Controllable Factors Uncontrollable Factors

A Cycle Time M Percentage Regrind
B Mould Temperature N Moisture Content
C Cavity Thickness O Ambient Temperature

D Holding Pressure
E Injection Speed
F Holding Time

G Gate Size

Table 2.4: The factors in the injection moulding experiment.

The experiment and the responses are in Table 2.5.

Percentage shrinkage for

Cell Controllable factors

the noise factors (M, N, Q)

ABCDEFG 0,11 (1,22 (21,2) (2,21)
¥ L D N1 11 2.2 2.1 2.3 2.3
2 1 112 2 2 2 2.5 0.3 2.7 0.3
3 01 2 21 1 2 2 0.5 3.1 0.4 2.8
4 1 2 2 2 2 1 1 2.0 1.9 1.8 2.0
5 2 1 2 1 2 1 2 3.0 3.1 3.0 3.0
6 21 2 2 1 2 1 2.1 4.2 1.0 81
7 2 211 2 2 1 4.0 1.9 4.6 2.2
8 2 2 1 2 1 1 2 2.0 1.9 1.9 1.8

Table 2.5: The design and the responses in the injection moulding experiment.

Of the noise factors, percent regrind appears to be unmeasurable while ambient

temperature is measurable. Moisture content [ will deem to be measurable since

it is a function of the ambient humidity and the amount of time the material is

exposed to the air. All the factors appear quantitative.

The experiment was re-analyzed by Steinberg and Bursztyn[35] and they stated

that perhaps two of the responses had been swapped. They were 0.3 and 2.5 in

the second row, first and second column. Assuming this to be true the

experiment will be analyzed again under the new method. For this example the

aim will he to set shrinkage to a low target rather than minimise it.



CHAPTER 2. OPTIMISATION UNDER CHANGING CONDITIONS 90

The experiment can be written in the form give

in Table 2.6.

A B C D E F G M N (o] Response
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.2
-1 -1 -1 1 1 1 1 -1 -1 -1 2.5
-1 1 1 -1 -1 1 1 -1 -1 -1 0.5
-1 1 1 1 1 -1 -1 -1 -1 -1 2
1 -1 1 -1 1 -1 1 -1 -1 -1 3
1 -1 1 -1 -1 1 1 1 1 -1 25
1 i -1 -1 1 1t -1 -1 -1 -1 4
1 1 -1 1 -1 -1 1 -1 -1 -1 2
-1 -1 -1 -1 -1 -1 -1 -1 1 1 281
-1 -1 -1 1 1 1 1 -1 1 1 0.3
-1 1 1 -1 -1 1 1 -1 1 1 3.1
-1 1 1 1 1 -1 -1 -1 1 1 1.9
1 -1 1 -1 1 -1 1 -1 1 1 3.1
1 -1 1 1 -1 1 -1 -1 1 1 4.2
1 1 -1 -1 1 1 -1 -1 1 1 1.9
1 1 -1 1 -1 -1 1 -1 1 1 1.9
-1 -1 -1 -1 -1 -1 -1 1 -1 1 2.3
-1 -1 -1 1 i 1 1 1 -1 1 2.7
-1 1 1 -1 -1 1 1 1 -1 1 0.4
-1 1 1 1 1 -1 -1 1 -1 1 1.8
1 -1 1 -1 1 -1 1 1 -1 1 3
1 -1 3 1 -1 1 -1 1 -1 1 1
1 1 -1 -1 1 1 -1 1 -1 1 4.6
1 1 -1 1 -1 -1 1 1 -1 1 1.9
-1 -1 1 -1 -1 -1 -1 1 1 -1 2.3
-1 -1 1 1 1 1 1 1 1 -1 0.3
-1 1 1 -1 -1 1 1 1 1 -1 2.8
-1 1 1 1 1 -1 -1 1 1 -1 2
1 -1 1 -1 1 -1 1 1 1 -1 3
1 -1 1 1 -1 1 -1 1 1 -1 35l
1 1 -1 -1 1 1 -1 1 1 -1 2.2
1 1 -1 1 -1 -1 1 1 1 -1 1.8

Table 2.6: The rewritten design of the injection

moulding experiment.

A half normal plot of the main effects and interactions appears in Figure 2.3.

The effects and interactions not falling on the line were deemed to be significant

and a regression equation was derived with these. Note that the controllable

factors B and F' were were found to be insignificant and so in production they

can be set to our economic advantage.
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Figure 2.3: A half-normal plot of the main effects and interactions for the injection

moulding experiment

The regression equation is

y = 2.25+0.4250A + 0.0625C — 0.2813D + 0.1438F
—0.2313G — 0.05M + 0.1063M E — 0.125MC — 0.0938M D
+0.0000N + 0.5875NC — 0.5563N E (2.6)

Therefore
E(ylA, C,D,E,G,N) =225+ 0.4250 A + 0.0625C — 0.2813D + 0.1437F

—0.2313G + 0.0000V + 0.5875NC — 0.55625NE

In order to work out the variance a couple of assumptions have to be made. I will
assume that the distributions of M, % regrind, and N, the ambient temperature
are Normal and centered about 0. Secondly I will assume that 95% of the
distribution lies between their levels i.e. they have standard deviations of %

Therefore
Var(y|A,C, D, E, G, N) = var(M)(—0.85 — 0.125C + 0.1063E — 0.0938D)? + 2

[n this case the target will be set at 1.6% shrinkage. A quadratic program was set

up using the student empl software package with ﬁr(yM, C,D,FE,G, N) as the
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objective that is to be minimised subject to E(y|A,C, D, E,G,N) = 1.6. Also
since the experiment was done in the unit hypercube all controllable factors will
be constrained to lie between £1. During production N can vary and the best
approach would be to solve the quadratic program for the particular value for N
at that time. This case will be simmulated later. Generally this is likely to be
expensive and approximations to the solution can be found. In the approximate
method the idea will be to observe the solution to the quadratic program for
different values of N and relate the solutions for the controllable factors to N by
regression equations. Technically only values of N between 1 should be
considered, however in practise values outside this range (and in this case 5 out of
100) will be seen, so IV was observed over the range £3. For each value of N a
solution from the quadratic program was found for each of the controllable

factors. These were plotted against N in Figure 2.4.

Value of the Uncontrolable Factors
0.0
1

Value ofthe Controllable Factor, N

Figure 2.4: A plot of the observable uncontrollable factor, N versus the controllable
factors, A,C, D, E,G.

From this it can be seen that factor A should be always set at —1 and G at 1.
The others change their values along smooth curves with breakpoints at -1.4425
and -0.3825. Regression equations were fitted to these smooth curves in order
that the values for factors C, D and F could be predicted given a value of N. In

this case we want these equations to be good predictors so that parsimony is not
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necessary. Terms were added to each equation until a term became insignificant
or the residual squared error reached some threshold. In this case the threshold
was le-5. This threshold couldn’t be reached in the regression for equation C' in
the range (—0.3825,3) and this equation does not predict as well as the others.

The solution is in Table 2.7.

A =-1 -3<N<3

B our choice -3<N<3
[ 19.31 + 59.20N + 83.18N? + ... + 0.015N8 -3 < N < -1.4425

C ={ —093-1.25N —0.34N2 — 0.07N3 — 0.0IN*  —1.4425< N < —0.3825
| —0.72 - 0.29N + 0.39N2 + ... + 0.0002N " -0.3825 < N <3
([ —26.28 — 78.90N — 110.85N2 + ... — 0.02N8 -3 < N < —1.4425

D ={ -1 —1.4425 < N < —0.3825
| —0.70 + 0.39N — 0.52N? + ... + 0.0003N'3 —0.3825 < N < 3
(0 —3< N < —1.4425

E ={ —1.51 —1.47N — 0.40N? — 0.09N3 — 0.01N*  —1.4425 < N < —0.3825

— —0.3825 < N <3
F our choice —-3<N<3
G =1 —-3<N<3

Table 2.7: The solution giving the relationship between the controllable factors
A B,C,D,E,F,G and the observable uncontrollable factor, N, that minimises

the variance and keeps the mean on target.

Since the underlying model is not known we cannot tell how the solution would
do. This could only be found by using the solution practically. However the two
different methods can be compared to see if there is any difference between them.
Two simulations were done with the same 100,000 random variates for each of N
and M. In the first simulation for each value of N the quadratic program was
solved to give values for the controllable factors. These were used in equation

2.6 to generate the responses g;. The variance of §, was 2.26e-12. In the second
simulation the values of the controllable factors were chosen using the solution in
Table 2.7 and these were used in equation 2.6 to generate the responses 3,. The

variance of g, was 9.97e-11. The two methods show little difference in the
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response variance. With any reasonable error variance these response variances
would be swamped and the two methods would be indistinguishable in outcome.

The responses for the second simulation were plotted against N in Figure 2.5.

1.80002

Response from the regression model
1.50008 1.5 1.80000

159954

=
o
(5]

Figure 2.5: A plot of the response to the regression equation using the solutions in
Table 2.7 for the factors and 100,000 random variates for M and N.

After N = —0.3825 the variance in the response is greater. This is due to the

poorer predictive power of the regression model for factor C in this region.

2.4 Implicit Introduction of Uncontrollable

Factors

The previous sections have dealt with the case where the uncontrollable factors
have been explicitly introduced into the experiment and this was demonstrated
by using Response Surface methods. There are methods that use the implicit

introduction of uncontrollable factors. Instead of modelling the quality response
as in the RSM method or the Split Plot method, these methods produce a joint

model for the mean and for the variance. These include

e the tranformation and data analytic approach

e generalised linear models approach
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e restricted generalised models approach

These methods can be extended very easily to include the idea of separating the
uncontrollable factors into those that can be observed and into those that are
unobservable. This extra information from the observable uncontrollable factors

can be used to our advantage.

The Design Stage

In these three methods given above the uncontrollable factors need not be
explicitly part of the experimental design. They are introduced into the
experiment by having replications at each of the design points. The assumption is
that the uncontrollable factors follow their normal pattern of behaviour. If this
assumption is likely to be invalid then these factors should be explicitly
introduced into the experiment i.e. given factor names and levels and with the
experiment designed accordingly.

In this new method the unobservable uncontrollable factors are allowed to enter
into the experiment implicitly while the observable uncontrollable factors enter

into the experiment explicitly.

The Modelling Stage

The methods listed above produce a joint model for the mean and variance based
on the controllable factors. Recall that these methods called for separation of the
mean and variance of the quality response i.e. there was no relationship between
the mean and variance. The transformation method used a transformation of the
quality response to effect this separation. The variances of this transformed data
set are used as the responses for the variance model.

For the other two methods the variance was separated into two parts V(i) and ¢.
The former being that part of the variance that was related to the mean and the
latter being that part of the variance unrelated to the mean. In these cases ¢ was
used as the response for the variance model.

In this new method, at the modelling stage, the controllable and observable
uncontrollable factors are treated similarly. A joint model for the mean and
variance is put together using the controllable and observable uncontrollable

factors.
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The final stage is to find the values of the controllable factors by minimising the
variance while keeping the mean model on target. This may be possible to solve
using Lagrangian Minimisation techniques. However it is most likely that

linear/quadratic progamming methods are needed to force any solutions for the

controllable factors to be within the region on the experimental design.

2.4.1 Example

In Section 1.9.5 the Generalised Linear Models method was demonstrated and

the following model was found. The model is

fi = 12464097 x A+1.49x D
logd = —0.59+033x A+0.34xC
and Var(y;) = &V (i)
= exp[—0.59 + 0.334 + 0.34C] x (12.46 4+ 0.97A + 1.49D)?

Suppose A was an observable uncontrollable factor and that the levels of -1 and 1
were chosen so that 95% of the values of A were known to fall between them.
Minimising the variance while keeping the mean on target of 144 or /i1 = 12

would involve minimising
—0.59 + 0.33A4 + 0.34C subject to 12 = 12.46 + 0.97A4 + 1.49D

The only solution to the latter equation is having

D= (12-12.46 — 0.974)/1.49 A= —1..1

Minimising the variance would involve setting C so that —0.59+0.334+0.34C is a
minimum. That is when C is at —1, the lowest value available to C' within the
experimental region.

If the target was 100 then

D= (10-12.64 — 0.974)/1.49 A= —1..1

However the equation for D would give values of D that were not in the range
(=1, 1] but in the range [—1, —2.3]. Since the model loses validity outside the
experimetal region it would be advisable to do more experimentation. Using
smaller levels of D, say -1 and -2.3, should be considered. Also since the variance
is decreasing as C decreases, smaller values of C' maybe worth investigating as

well. However there may be practical limitations on how low C can go.
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2.5 Allowing For Bias

The goal has been to choose values for the controllable factors x; that keep the
mean of the quality control variable, Y, on target while minimising its variance.
If the contraint of keeping the mean on target is relaxed then lower values for the
variance are possible. However it is still important to keep the mean of Y as close
to the target as possible. The Mean Square Error about the target gives an
indication of how far we expect the quality control variable to be from the target.

It is
Ey((Y|zi, t; — T)?) = Vary(yiles, ti) + (By (yilei, t:) — T)?

[t is both a function of the variance and a function of the difference between the
mean and the target.

For model one of chapter two the MSE can be represented as

Ey((Y|est: —T)%) = Vary (Yo, ts) + (Ey (V|eg, t) - T)?
= 02+ (B3 + Taz; + Tat;) A2(B3 + Loz + Tst;)
+(ﬁ0 I (B:,Bl E- téﬂz atr :cﬁ)llt,- = T)2

The following theorem finds a value for x; that minimises the MSE.

Theorem 2.10 [f
1) the inverse exists
2) A, s positive definite matriz and
3) ¥o is of rank r
then the minimimum of E((Y|zi, t; — T')?) with respect to x; is
T = —(Z5A2%2 + (81 + Euty)(B) + X))
X (254283 + A2 Z3t; + (Br + S1ti)(Bo + tiB2 — T))

Proof

Now

E((yilvi,t; = T)*) = o2 + (Bs + Tawi + T3ti)'A2(Bs + Sax; + Tst;)
+(Bo + TiBr + tiB2 + TiTat; — T)?

= 07 + (B3 + Tox; + Tst;)' Az (B3 + Tow; + Tst;)
+(Bo + Bix; + tiBa + tiXix; — T)?
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Differentiating this with respect to x; gives

OE((yi|xs, t; — T)?)
(9:13-1

= 2%LA203 +285A. 55t + 285A2 50
+2(81 + Z1t;)(Bo + Bix; +tiBy + tixix; — T)

= 2(ZTLAXz + (81 + Zity) (8L + i)z + 255A 208,
+284 A2 5t; + 2(B1 + Tati)(Bo + ;82 — T)

Solving this for z; gives

T} = —(ThA2T2 4 (81 + Titi)(B) + %))
X (A28 + LA st + (B + Zits)(Bo + tiB2 — T))

The second derivative with respect to x; is
PE((yilzi, t: — T)°)
dx;0xt

If O E(wile:i ti~1)%)
azgawz

we take that A is positive definite then

= 2(TLHA2Z, + (B1 + T ts)(BL + t:3))

is positive definite then z}** is the minimum critical point. If

LA

will be positive definite if X5, is of rank r.
Let
R = (B1 + X1ti)

and Oy-1)xp be a (p — 1) x p matrix of zeros. Combine these to give S where

RE
O(p—1)xp

RR' = (B, + Z1t;)(B% + tiX}) = S'S

a p X p matrix. Now

Since S is square and has the same rank as R' then RR! is positive semi-definite.
This means

PE((ys|zi, ti — T)?)
8:1:,8:1:2

= 2(T5A2%, + (B + 1t:) (B} + tiX)))

is positive definite.
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2L ((y;|ziti—T)?
dx;dx!

In theory if ) is positive definite then it will be non-singular

however in practice if
(B1 + 1) (1 + X))

is to ‘large’ then it will swamp
SLA; S,

Trying to find the inverse by computer will fail as the computer tries to invert
what appears to be a singular matrix.

In practice, the parameters will be replaced with their estimates.

2.5.1 Simulation Example Continued

e 23]

In this simulation &} and &;** are to going to be compared using the data from
Section 2.2. In the previous example, the conditions for &; to be the minimum of
the variance when the mean is on target, were met. If Ay is positive definite and
35 is of rank 7 then £}** is the minimum of the MSE. Now recall that A, was the

identity matrix so it is positive definite. Also

- 6.11 0
22 -
—-6.98 —-7.36

is of rank 2 and » = 2. And so the conditions are met.

Twenty-one thousand values for t; and t,, and z; and 2, were generated in sets of
1000 with the same distributions as before. Two different versions of x; were
generated, &} and €;**. The function of &; in terms of t; was given in table 2.2.

o 23]

The function of &;** in terms of t; is given in Table 2.8.

(el 22) =

24766188t —277t2—685¢t12+1445¢t1 t24489t224252t1 t22—-277t23+1e—8t12t22+2e—-8t23t1
3643— 128812 +398t2% +442t1 — 7891 t2+690t1%+1e—811°12°

—4091+6627¢1 —3300t2—1151¢12—879¢1 t2+52t22—418t12t24+460t! t22—le—8t13t2
3643— 1288124398127 444211 —T89LI t2+690t1%+1e—8L1%12°

*

Table 2.8: The equation giving the relationship between £*** and ¢; found using

maple.

These values were used to generate Y, the quality variable, according to the
underlying model given in equation 2.5.
A histogram comparing the two resulting distributions for the first 10,000 values

of Y appears in Figure 2.6.
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Histogram of Quality Variable, Y, for x*

o _—-..lII ll..--_....
B0 w0 100 Y 110 120
Histogram of Quality Variable, Y, for x***

E ._-.|II|II.--__
o @ RV L 120

* k%

Figure 2.6: Responses collected in histograms for ¥ when T=100 for = and z;

respectively.

The histogram for simulation 2.1, using &} has a bell-shape but is more spread
then simulation 2.2 which uses &;**. The histogram for simulation 2.2 does not
look bell-shaped. To the left of the target value it has the shape of a triangular
distribution peaking at the target. To the right of the target it has the shape of
an exponential distribution.

A comparison of the results for these two simulations appears in Table 2.9. The
first simulation are the results for Y when using &;. The second simulations are
the results Y when using &;**.

The means and variances were collected from each of the 21 sets of 1000
responses and were averaged to give the mean and variance reported in the table.
The standard error for each reported mean and variance was derived from the

sample variance of the 21 means and 21 variances respectively.

Simulation | Mean Standard Error | Variance Standard Error
2.1 1 100.36 0.04 66.92 1.07
2.2 | 100.05 0.03 47.46 0.86

L

Table 2.9: Responses collected in histograms for ¥ when T=100 for z; and x;

respectively.
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From the table it can be seen that the mean of Y is closer to the target when
using £;**. The mean of Y for &}** is within two standard errors of the target.

while the mean for x; is not.

2k kk

The variance of Y is much smaller using &;** compared with using &;.
The simulations were run again but with a target value of 125 rather than 100.
The versions &} and £;** were generated once again and used in the underlying

model of equation 2.5 to generate Y. A histogram of the first 10,000 }" values for

each version of x; appears in Figure 2.7.
Histogram of Quality Control Variables for x*

target

.___--lllIIIIII'llIIIII.lII _____
0 100 Y 190

Histogram of Quality Control Variables for x***
target

100 190
Y
= Rk k

Figure 2.7: Responses collected in histograms for Y when T=125 for &; and &;

400 800 1200

o

400 =00 1200

respectively.

The first histogram which records Y, generated from &}

, has a mean that is much
closer to the target value of 125 but is much more spread out. The second
histogram which records Y generated from &}** has a mean for Y which is about
10 units from the target of 125 but is much more compact about its mean then
for the first simulation.

The simulation results for twenty-one thousand values is in Table 2.10. Since £;**
gave a mean for Y that was far from the target the Mean Square Error for both

variables appears in the table as well.
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Simulation | Mean Std. Error | Variance Std Error MSE Std. Error
3.1 (128.21 0.23 872.20 19.89 | 873.52 20.76
3.2 114.69 0.08 213.37 2.10 | 309.68 3.36

Table 2.10: A summary of the simulation results of the mean, variance and
MSE(T=125) for Y.

SRk

In the general case it would seem that £;** would be recommended over &; as it
is not toofar from the target and has lower variance. However it may be needed to
get the mean closer to the target. One approach could be to try and exert some
control over ¢;.

Lin and Yu [18] gave another approach. They recommend using an adjusted
version of the Mean Square Error. They introduced two new variables, A} > 0

and Ay > 0, to give the adjusted MSE
MSE*(T) = M\Var(Y) + A (E(Y) - T)?

The values of A\; and A\, are adjusted to suit the preference of the experimenter.

When A\;=X;=1 then the adjusted MSE is equivalent to the MSE. When A\, =1
and A, tends towards infinity then minimising the adjusted MSE is equivalent to
minimising the variance of Y subject to the mean being on target.

The value that x; takes will be adjusted for the values of A\; and A,.

Theorem 2.11 [f

1) the inverse exists,

2) A, is positive definite
3) £y is of rank r and
4) A >0and Ay >0

then the minimum of
MSE*(T) = \\Var(Y) + A(E(Y) — T)?
with respect to T; s

o = —(NTUARZ, + M(B; + X)) (B + i) !
X(MZ5A203 + M\ ZoA2Z3t; + Aa(B1 + Xiati)(fo + t:B2—T))
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Proof

Now

MSE*(T) = MVar(Y) + A(E(Y) = T)?
= Mol + A\ (Bs + Zaxi + 33ti) A2(Bs + Tax; + Lat;)
+X2(0o + Bizi + tiB2 + tiTix; — T)?

Differentiating this with respect to x; gives

OE((yi|zi ti — T)?)

5 = /\1(2212A2ﬁ3 + 22;A223t1 + 22;/\222(1}1)
Ti

+2X2(B1 + Z1t3)(Bo + Bz + tiB; + tiXix; — T)
= 2(A1Z5A28 + Aa(B1 + Z1t) (B + MtiZh)) i + 20,25 A28
HIN BN, Taby + 20(81 +140)(Be + 8482 — T)

Solving this for x; gives

T = —(MZLALD; + AP + Zuty) (B +tizY)) !
X (/\1212A2ﬂ3 + /\1212A223ti + X (B1 + X1t;) (6o + té,@z -T))

The second derivative with respect to x; is

*E((yilzi, t: — T)?)

9z 0! = 2\ Z4A252 + Ao (B + Tits) (B} + £i5))"

If aﬁﬁ“fﬁ;ﬁ':{;;::_n?] is positive definite then z*** will be the minimum critical
point. If we‘take that Az is positive definite then A{Z5A,3, will be positive
definite if 35 is of rank r and A; > 0.

Let

1
R =)} (61 + X1t)

and O¢_1)xp be a (p — 1) x p matrix of zeros. Combine these to give S where

1 R!
Op—1)xp

RR = A2 (B1 + Elti)(ﬁi + tizi) =§'S

a p X p matrix.

Now
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Since S is square and has the same rank as R' then RR! is positive semi-definite.

This means
PE((yile;, t: — T)?)

(9:12,3:1:2

is positive definite.

v if CE(ilziti~1)%)
In theory if dz;0a!

practice if (A2(B; + X1t;) (B4 + tiXh)) or Ay is to ‘large’ or A; to ‘small’ then
(A2(B1 + Z1t:)(BL + tiX!)) will swamp A Z5A2%,. Trying to find the inverse by

computer will fail as the computer tries to invert what appears to it to be a

is positive definite then it will be non-singular. In

singular matrix.

2.5.2 Simulation Example Continued

o 1 1]

In this simulation different versions of &;** are to going to be compared using the
data from Section 2.2. If A, is positive definite and X5 is of rank 7 and A; and
A are both greater than zero then £;** is the minimum of the MSE. Now recall

that Ay was the identity matrix so it is positive definite. Also

- 6.11 0
22 =
( —6.98 —7.36 )

is of rank 2 and 7 = 2. And so as long as A} and A, are chosen to be both greater
then the conditions are met.

Ten thousand values for ¢, and ¢, and z; and 2, were generated in sets of 1000
with the same distribution as before. Four different versions of x; were generated.
They were £;*** with different values for A; and A,.

These values were used to generate Y, the quality variable, according to the
underlying model given in equation 2.5. The simulations were run with a target
value of 125.

A histogram of the first 10,000 Y values for &;**** with A,=1, 2, 5, and 10,

appears in Figure 2.8.
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Y values when lambda1=1. lambda2=1
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Figure 2.8: Responses collected in histograms for }* when T=125 for &;*** when

At =1and Ay =1, 2, 5 and 10 respectively.

As )\, increases the mean of Y moves closer to the target. However the variance
and Mean Square Error for Y increases.

The simulation results for ten thousand values of the quality response are in
Table 2.11. Since &;** gave a mean for Y that was different from the target the
Mean Square Error appears in the table as well. Also included in the table are

the results from simulation 3 from Table 2.10.
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Simulation | A, | Mean Std. Error | Variance Std Error | MSE Std. Error
3.2 1| 114.69 0.08 213.37 2.10 | 309.68 3.36
4.1 21118.86 0.15 316.08 3.66 | 353.74 4.64
4.2 5 1123.10 0.26 489.35 9.06 | 493.52 9.66
43| 10| 124.94 0.24 615.36 13.71 | 615.84 13.65
4.4 1 200 | 127.47 0.30 839.12 25.65 | 845.21 25.65
3.1 | NA | 128.21 0.23 872.20 19.89 | 873.52 20.76

Table 2.11: A summary of the simulation results of the mean, variance and
MSE(T=125) for Y for different values of Ay

The last line in the table is the simulation results when using &; i.c. keeping the
mean of Y on target while minimising the variance. This is equivalent to having
A = 0o. The mean of Y is not on target since &; is being used to estimate x;. In
using the estimate a degree of error has been introduced.

The first line of the table contains the results when using ;**. These are found
by minimising the MSE about 125. These results show the most bias but the
least variance and MSE. The other lines of the table are for A, = 2, 5, 10 and 200.
As A, increases then the variance and MSE of Y increases. Also the means are
increasing to the value of the mean for simulation 3.1.

Using A; and A, to adjust the Mean Square Error can be beneficial in getting the
mean of the quality control variable closer to the target but at the expense of its
variance. Choosing values of A} and )\, is a subjective decision that balances

minimising the bias and minimising the variance.

2.6 Bias and the Implicit Introduction of

Uncontrollable Factors

In the previous section models based on the quality response were used to find a
setting of the controllable factors that minimised the Mean Square Error of the
quality response about the target. Models that are based on the mean and
variance of the quality response can be used in a similar way. These models came
about from experimental designs where the uncontrollable, unobservable factors

need not be introduced into the designs explicitly.
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Example Continued

In section 1.9.5 the following model based on the mean and variance of the
quality response was found. In section 2.4.1 the target was given as T' = 144.

The model is

i = 12464097x A+1.49x D
logp = —0.59+0.33x A+0.34xC

and Var(y;)) = &V ()
= exp[—0.59 + 0.334 + 0.34C] x (12.46 + 0.97A4 + 1.49D)?

Suppose that A is an observable uncontrollable factor and that the levels of -1
and 1, used in the experiment, were chosen so that 95% of the values of A were
known to fall between them. Also take that the remaining factors, C and D, are
controllable factors. In the design their levels were 1. In consequence, when
solving for C and D, we will only consider values within the range [-1,1].

Minimising the Mean Square Error would mean minimising

MSE(T) = Vur(Y)+ (E(Y)-T)?
= exp[—0.59 + 0.334 + 0.34C] x (12.46 + 0.97A + 1.49D)*
+((12.46 + 0.97 x A + 1.49)% — 144)?

For various values of A, the Mean Square Error was minimised and solutions for
C and D were found subject to the constraint that C and D were bounded by

+1. The solutions are plotted against A in Figure 2.9.
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Solutions for Minimising the MSE(T)

s

i
/

Y

Figure 2.9: The Solution for C and D for Different Values of A.

The solutions observed for C, for values of A bewteen -1 and 1, is -1. The
solutions for D change depending on the values of A.

If the appropriate software were available then this minimisation problem could
be solved every time a new value of A is observed. Alternatively, regression
cquations can be used as approximations to the solutions for C and D.

The best fit for C' is -1. Fitting a line, using the observed solutions for D as the

response and A as the independent variable gives
D = -0.3087 — 0.6510A

with R? = 1. Therefore with a change in A the settings for D could be chosen
using that equation.

For this example, the values of D and C, given a value of A, always have the
response mean on target. However if the mean was biased for the target then
using the adjusted Mean Square Error, as described in the previous section, could

be used to move the mean closer to the target.

2.7 A Note on Notation

In this chapter three functions have been used in order to find optimal values of
the controllable factors. These functions were the Mean Square Error, the

adjusted Mean Square Error and the Lagrange function. In the next chaper these
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functions will be used again. However there will be no need to differentiate
between them and they will all be referred to as variance or adjusted variance

functions and labelled L(x).

This notation excludes the parameters ¢;. It will be taken that these values have

heen observed and enter into the function L(x) as constants.
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Chapter 3
Making Optimal Changes

Observing a change in an observable uncontrollable factor means making a change
in the controllable factors in order that some function of the quality variable may
be optimised. The hest way to change the controllable factors would be to do so

instantaneously however there are many practical reasons why this is not possible.

3.1 Non-Instantaneous Adjustment

In this case all the controls can be adjusted at once but in a non-instantancous
manner. Suppose that the p controllable factors have been set at xqg after
observing the g observable, uncontrollable factors, tg, at some point prior. At
time 79 = 0 a new value of the observable uncontrollable factors, ¢, is observed.
This requires an adjustment of the controllable factors from xg to &, over some
period of time 7, — 75 > 0.

The way x; is chosen is dependent on the method but usually involves the
minimisation of some funtion, L(x), of the mean and variance of Y, the quality
response, as seen in the previous chapter.

There are an infinite number of paths between g and x; when there is more
than one controllable factor. Ideally the best path would be one that minimises
the integral of L(x) taken over the path. In a loose sense this is to minimise the
total variance. This lends itself to the methods involved with Calculus  of
Variations which will be discussed later.

The most obvious path is a straight line between g and o, and this will be

referred to as the straight line solution.
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Another way to construct a path is to use a greedy algorithm. In general a greedy
algorithm chooses the best option at that particular instant. In this case it would
involve heading in the direction that brings about the greatest decrease in L(x).
From calculus this direction is given by —g—i’, evaluated at x.

At time, 7 = 0 then © = x, the starting point. After some small unit of time we
would like  to have moved in the direction of steepest descent or, in other words,
we want the way « changes over time to be equal to —g—; Expressing this

mathematically it gives

L
i __oL o)
Unfortunately a greedy algorithmm doesn’t guarantee an optimal path. However a
nice property of the problem is that the greedy algorithm will always construct a
path to get to a (local) minimum when that minimum is a critical point. The

path that is constructed by this method will be referred to as the greedy path.

3.1.1 Explicit Introduction of Unolservable Uncontrollable

Factors

As an example consider model 1 the last chapter. It gives
L(z) = 02+ (B3 + X2z +X3t)' Az (B3 + X2+ X3t) + AT — fo— ' B — ' B —x' T t)

and that

aL
% = 22‘21\222:3 + 22;1\263 + 223A223t = /\(61 + Etlt)

or in terms of the previous notation

L
sl =2A"'2+2C -2)\B
oz

And z* is the solution when g—; = 0 and a minimum when A is positive definite.

To make the notation simpler this will be written as

oL
S _Mz-N
dz i

where
M=-2A1 and N = -2C +2)\B
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Therefore the path from x¢ to £, = x* is the solution of

d—szm+N
dr

And the solution to this differential equation, a linear system with constant

coefficients, is given by

z(7) =exp(MT)xo + /OTGXP(M(T —38))Nds 7>0 [10]

Numerical Example

From the numerical example given in the last chapter the underlying model was
ylic, t,z = 100+ Sry + Txg — 4t + 3ty — 52 — 622 = ‘lLL'ltl — 3oty + 0z,
— T2y — Tx129 + 8t 2) — 8tgzy + €

= 100+ ( x, m2)<‘:>+(t, t2)<_34>+(zl Z'z)(: )
e (3 5)(0) (5 %) ()
(3 5)(0)

Suppose that a new observation of ' = (1, — 1) is observed and that a path from

S

xzy = (1, 1) to «* is required. Using Maple the differential equation to be solved is

1
: = Mxz+ N

dr
B —-170 -98 ) N —8.1665
-98 —-98 To 26.3353
which has as its solution

x(1) = exp(MT)zo+ /OT exp(M (7 — s))N ds
[(-170 —98) }(1)
= exp T
-98 —98 1

T —170 —98 ~8.1665
+ [ exp (1 —3s) ds
Jo —-98 -98 26.3353
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The solution was found using Maple and the output given is where

Th = (T(0,1), T(0.2)) and the path is ' = (px, py).

1 9v109 L —
PT = T0n; exp(—1347 — 10V1097) — T "pgr exp(—1347 + 10V/1097)

9v/109 1
+x0,1) :/41: : exp(—1347 — 10V1097) + To.1)5 exp(—1347 + 10v1097)
545
4910 49v/109
—T(0,2) —9—[9 exp(—1347 + 10V 1097) + z(g 2 S exp(—1347 — 10v'1097)

1090

+.5080034728 exp(—29.59693497) — .02881203407 exp(—238.40306517)

—.4791914387
and
49109 49/109 =
Py = —zq) V109 exp(—1347 + 10V 1097) + x(0,1) ——~— exp(—1347 — 10V/1097)
11090 71090
1 9v 109
T2 exp(—1347 — 10V1097) + 20,2 EI0 exp(—1347 + 10v1097)
9109 1 _
~T2)—r exp(—1347 — 10V 1097) + z(0,2) 5 exp(—1347 + 10v/1097)
—.02011052490 exp(—238.4030651¢q) — .7278086190exp(—29.59693497)
+.7479191439
forT >0

When zot = (1,1) the particular solution is

pr = 0.3662598616 exp(—29.5969349 1) + 1.649747084 exp(—238.4030651 7)
—0.4791914387

py = 0.7768156235 exp(—29.5969349 1) — 0.5247347674 exp(—238.4030651 )
+0.727808619

for 7 > 0.

[t is worth noting that the constants at the end of each equation match



CHAPTER 3. MAKING OPTIMAL CHANGES

114

z*t = (—0.4791914387,0.727808619). That is, as 7 tends towards infinity, the

curve tends towards x*.

The straight line solution is

For this example

!
T,

T =xo+ (T — )T

T=0..1

(1,1)" + ((—0.4791914387, 0.727808619)" — (1,1))7
(1,1)* = (1.48,0.27)'7 7 =0...1 (2dpl)

Figure 3.1 compares the directions of two paths over the surface of L.

Alternative Paths after Observing A Change From x0 to x*
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Figure 3.1: A comparison of the directions of the greedy and straight paths

In Figure 3.2 ecach path has its value of L plotted against the distance travelled

along the path. The direct path to &*, covers the least distance however the

greedy path has a smaller value of L for most of its travelling distance.
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The Value of L versus Distance Travelled for each Path

200
1

150
1

Value of L
100
1

Straight Path

-

0.0 0.5 1.0 15

Distance travelled along path

Figure 3.2: A comparison of the value of L for the two paths

In this example the parameters from the underlying model were used. In practise
these parameters would be estimated and used in the equations.

The problem of finding an optimal solution will be further broken down into two
cases. When there are two controllable variables and when there are more then

two.

3.1.2 The Two Variable Case

Suppose L(x) can be constructed through some means and is a polynomial of
order two with two controllable factors with a minimum at some point. Let this

polynomial be
Ly(zy,23) = byz? + byzy + b33 + byy + bsz 129 + by

This function is more complex than neccessary for further work and will he

transformed to a simpler form. By setting

w = x) cos(f) + z2sin(H)
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and
uy = —x, sin(f) + z, cos(0)
and choosing 6 to be
by — b3
bs

then the tranformation has rotated L,(z,,z,) by 6 in the z,z, plane.

0 = cot(20) =

In the new co-ordinate system the polynomial no longer has a cross-product term

and is

Lo(uy, up) = u;yu.f + agu; + a3u§ + aqus + ag
where

@, = by(cos(0))? + bs cos(#)sin(#) + bz(sin(6))?
az = b, (sin(8))? — b sin(#) cos(8) + bz(cos(#))?

ag = by cos(6) + by sin(0);
a, 1= —by sin() + b, cos(6);
a7 ‘= b',',

Furthermore by completing the square for u; and uy the new version of L, is
La(u1, uz) = ay(u+(az/(2a1)))*+as(uz+(as/(2a3)))* —ay (az2/ (2a1))* —as(as/(2a3))* +az
which can be succinctly written as

L3(vy,v3) = rnn? 4 ugvg + ag

In further work it will be sufficient to work with this reduced form.

3.1.3 Line Integrals

So far two possible paths have been contemplated, a straight path or a greedy
path. The better path to take will be the one that has smaller area under L(x)
along that path. This can be calculated by constructing a line integral for L(x)
along each path.

The line integral for L(z) is defined to be [ L(x) ds where C is the path and s is

an infinitely small vector on C'.
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3.1.4 Line Integrals For the Greedy and Linear Paths

L in the reduced form is L(z,y) = a =2 + b y? + ¢. The requirement is to travel on
a path that lies between (zo,yo) and (0,0), the minimum of L(z,y). It will be
assumed that L(z,y) > 0. If it is not then the smallest constant neccessary to
make it so will be added.

The obvious path is the straight line between these two points which can be
algebraically represented by y = yot and = zot for t = 1...0. Alternatively this

path can be represented as
T = zgexp(—et) and y = yoexp(—et) t =0..00 e >0
An alternative path is the greedy path which can be represented by
y = yoexp(—0bt) and z = zgexp(—at) t =0..00, b,a >0

This was found using the differential equation in the previous section. Without
loss of generality let b > a. If it is not then it just requires an interchange of the
labels between y and z.
This integral represents the line integral for L(z,y) = a 22 +0 y* + c.
ty ; i
(az® + by? + ¢) (& + §) /2 dt]
to

In the following section the line integral for the straight path will be found.

Case 1: The Linear Case

The functions of z and y, for the linear case, can be represented as
& = zpexp(—et) and y = ypexp(—et) t =0..00 e> 0

so that the line integral for this system is

FPligear = /‘:h(n::fr2 + by? + ¢) (a2 + 9°)'/? |dt|
= Am az?(z? + %)\ |dt| + I/:o by? (a2 + 9°)'/? |dt|
+(.'f000(:i:2 + %)/ |dt|
= /:0 axy exp(—2et)(e*z2 exp(—2et) + e’y? {‘X[J("‘Z(’i))% |dt|

00 r
+/ by2 exp(—2et) (e exp(—2et) + ey? oxp(—Qei))% |dt|
0
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+(:/ (222 exp(—2et) + e’y? exp(—2et))? |dt|

J0

. w . .
= a:zf)/ (222 exp(—6et) + e*y? exp(—6et))? |dt|
70

+by§/ (e*z2 exp(—Get) + e*y; exp(—Get))% |dt|
0

+c/ (222 exp(—2et) + e?y? exp(—Zet))% |dt|
J0

Now make these substitutions

so that

or

and

so that

or

1

= ¢’z exp(—6et) + ey exp(—6et)

du = —Ge(e’z] exp(—6et) + e’y exp(—6et)) dt

—d
du= —6eu dt or G—u = dtandso |dt| = —

||

eu Geu

v = e’xf exp(—2et) + e*yi exp(—2et)

dv = —2e(erd exp(—2et) + eyg exp(—2et)) dt

The integral becomes

0 5

. w2
”'J'U Fop—
r'zzrg+rr2y2 Geu

0 V2
o s
e?zl+e?yl 2(’?!

—dv lv
dv=—2ev dt or —— = dt and so |dt| = |(_1
2ev 2ev
dal+od [0 gy
aw| + byy 222 2 yoﬁ au
|dv|
—du) + b 2/ —du
) Yo e?zd+e2y? Geu ( )

0
{L:i'_.'é / —_ (
?2Ig+02 Geu

v 2
_|_
z:rn+9 y‘* 2(’“

5 ]!,

axy + byg + 3¢
3e

azj + byg + 3¢
3

.2
]H"

(—dv)

[— ?L%L 25 4e2y2 22[ 2v? ]

2.2 4 ;2.2
(r.’ Tp+e yn)

(;lrg +

0

,zrz_“.zyo
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Going back one step in the evaluation of the integral allows for the construction
of upper and lower bounds for I’l};,e.-. This is not directly useful here but will be

more relevant later. At one step back

PIlinear = al‘é * gzg == (62‘7“% + 62y(Q))
Let e = b then
aty + byg + 3c

3b'
(—zzé + gijé e ((121‘[2) + 1)21/3)
since a < b

(023 + 0%y5)

v

alternatively let e = a then
az? + byd + 3c

Plinear = 3. ((122;(2) +a2y§)
2 2
< ary + byg + 3¢ (agwg N bgyg)
3a

since a <)

This gives the inequality

az? + by + 3c 2 4+ bya + 3
: 3'1;0 ((12:1:(2) + be(Q)) < Plgcar € %o +3glj0 3 (az:vg + ()21/8)

Case 2: The Greedy Case

A closed form solution for the line integral for the greedy path could not be found
by the author and an upper and lower bound will be constructed.
The greedy path can be represented by y = yy exp(—0t) and = = 2y exp(—at) for

t = 0..00 with 0 < a,b and by convention a < b so that

2% = 22 exp(—2at) and y* = yj exp(—20t)
and
= —azoexp(—at) and y = — bygexp(—bt)

and

i% = a®z) exp(—2at) and § = b%yZ exp(—20t)

The path integral is

b : g
/ (az? + by® + ¢)(2? + §°)"/?|dt|

lo
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= /Uoo azj exp(—2at) (a%% exp(—2at) + V?y3 exp(—2bt))% |dt|
+/0°oby§ exp(—20t) (aQa:[z, exp(—2at) + b%ys exp(—2bt ) |cdt|
+(:/000 (ang exp(—2at) + bys exp(—20t) > |dt]

= /Uoo an (azmg exp(—6at) + b%yg exp(—20t — 4at) ) ||
+ /Uoo bys (aQ:cg exp(—2at — 4bt) + by exp(—6bt ) |cdt]

+c / (agxg exp(—2at) + b%y; oxp(—2bt)) : |cdt]
/0

Now when there are two constants such that 0 < d < e it follows that
exp(—dt) > exp(—et) for t > 0.

First, by replacing the a’s with 0’s we have a lower bound for 17/ ,.ceqy-
_ T a2 X0 o 3
Plyeay = @x; (a zgexp(—6at) + bygexp(—20t 4at)) |elt]
A 0
S 2,2
+/ by§ (aQ:cg exp(—2at — 40t) + byq exp(—60t > ||
0

00 P 1
+c/ (a%% exp(—2at) + b%y; exp(—QI)t)) 2 |dt]
0

v

aa;g/o (a%% exp(—60t) + b%ys exp(—6bt ) |lt|
+by§/ (a2x3 exp(—6bt) + b?ys exp(—th))i |t
0
+c/ (an[?, exp(—20t) + b2ys exp(— 2()#) |dt]|
0

Now make these substitutions

u = a’z3 exp(—6bt) + b*yg exp(—6bt)

so that
du = —6b(a*xk exp(—6bt) + b%ygexp(—6bt)) dt
or
du= —6bu dt or ;:: = dt or |dt] = l(;i%
and
v = a*zf exp(—2bt) + b*yg exp(—20t)
so that

dv = —2b(a*x? exp(—20t) + b*y2 exp(—2bt)) dt
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or

—dv _ |dv]
dv==2bv dt o o= = dt and so |dt| = T

which gives

1 1
g 0 uz 0 U2
2 2
= az du| + b / — | |du
0/(;2I%+h2y0 (Gbu> I I Yo a2z3+bzyg (6[)u> | l
0 3
$Hc / 2 |dv|
Ja2zd+b2yl 20v
9 [0 w"? B - w2 (=ddu)
= az —du) + / —ddu
g /a212+(,2y2 6b ( Yo a2z2+b2y2 60

x2+b? y2

9 12
= ax, + byg
Gbu , _
a 21.'{2] +b%yd

0
—‘2::%
+rr[ by ] (—dv)

“2_]72 _I_b'zy‘z

1 D
—2uz
6bu

2.2 1 1242
a*zg5+byg

1
= 3E(rul,+by[,+3()(u x2 + bPyd)

Secondly, by replacing the b’s with a’s we have a upper bound for P/g.ceay
3 b2y2 exp(—20t — dat))? |d
Blmrmn = / ax? (a 23 exp(—6at) + b*y3 exp(—2bt at)) |dlt|
JO - ' , ,
+ / bys (a 22 exp(—2at — 4bt) + b?y5 exp(—6bt) ) |lt]|
Jo

o0 , 1
+¢ / (aQwé exp(—2at) + b*y? exp(—?bt)) 2 |dt]
70

IN

00 1
al'f,/ (aZLg exp(—6at) + b*y? exp(—Gat)) g |dt|
0
Lo [ @ b 2.2
+byo (a zgexp(—06at) + b"y5 exp(—6 ) |dt|
= .
+(:/ ((12:1;(2J exp(—2at) + b%y2 exp(—2at )2 |dt]
0
Now make these substitutions
u = a’x? exp(—6at) + b*yg exp(—6at)

so that

du = —6a(a’z) exp(—6at) + b’yZ exp(—6at)) dt
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or

—d d
du= —Gau dt or —= = dt or |dt| = |du]
Gau Gau
and
v = a’z? exp(—2at) + b*y3 exp(—2at)
so that
dv = —2a(a’xl exp(—20t) + bys exp(—20bt)) dt
or J J
dv = —2av dt or —— = dt and so |dt] = |dv]
av 2av

which gives

1
o P u? g 12 u?
= (m:f,/ — | |du| + byé/ |du|
a?z2+b2y2 \ Bau a2z2+b2y2 \ Gau
1
0 215
vz
c [ |dv]
a2z 462y \ 2av
1 1
0 -3 0 -7
u”?2 , u 2
= a:t:g[ (—du) +by§/ (—du)
a?zl+h?y? Ga a2z +b2yl 6a

0 V-3
+c/ - (—dv)
a’zd+byl 2a

2ut ]’
—2u?
= a:r?,[ ] + by

10
—2uz? Lo
] 6 ¢

a?zl+b2y?

a2zl +b2yl a?zi+b2y?

1
= 5;1—( 'J;g + byg + 3c)(a23;3 + b2y§)

Putting this together gives

axrs + by? + 3c
30

2 2
axg + bys + 3¢
(%8 + 0°08) < Plyeea, < SO0 (%] + 674)

Unfortunately both Plgeeqy and Pljineq, conform to the same bounds so it is not
possible to tell from this which one has the lower integral and hence which path is

the better path to take.

3.1.5 Numerical Comparisons

Since the line intergral for the greedy system with two variables has been found
impossible to integrate by the author, numerical rather then analytic solutions

will have to be compared.
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Maple was used to integrate the line integrals for these numerical examples. The
first example has L(z,y) = 222 + 3y? with (7,2) as the inital position. The first

path in the example is the straight line path.

> x0:=7;
x0 := 7
> y0:=2;
y0 = 2
> a:=2;
a =2
> b:=3;
b :=3
> f:=(a*x"2+bxy~2)*(doty~2+dotx~2) " (1/2);
2 2 2 202
ff := (2 xx + 3 yy ) (dotxx + dotyy )
> y:=y0xt;
y=2t
> doty:=diff(y,t);
doty := 2
> x:=x0%*t;
x (=7t
> dotx:=diff(x,t);
dotx :=7

> intl:=evalf(int(f,t=0..1));
intl := 266.9373626

The path integral for the straight line case evaluates to 266.94 (2 dpl). The

second path is the greedy path.

> ff:=(a*xxx"2+b*xyy~2)*(dotxx~2+dotyy~2) "(1/2);
2 2 2 242
fif 22 (20 +18 7y ) (dotxx « Hotyy )
> yy:=yO*xexp(-bxt);
yy = 2 exp(- 3 t)
> dotyy:=diff(yy,t);
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dotyy : & .expi(-! B it)
> xx:=x0*exp(-axt);
xx := 7 exp(- 2 t)

> dotxx:=diff(xx,t);

dotxx := - 14 exp(- 2 t)
> int2:=evalf(int(ff,t=0..infinity));
int2 := 266.366500

The path integral for the greedy path evaluates to 266.37 (2dpl). The greedy
path produces the smaller path integral and is the preferred path.
The second example has L(z,y) = 222 + 3y? + 25 with (7,2) as the inital position.

The first path in the example is the straight line path.

> x0:=7;
x0 := 7
> y0:=2;
yoO := 2
> a:=2;
a =2
> b:=3;
b =3
> f:=(a*x"2+b*xy~2+25)*(doty~2+dotx"2) " (1/2);
2 2 2 2 1/2
f:=(2x + 3y + 25 (doty + dotx )
> y:=y0xt;
¥ = 2%
> doty:=diff(y,t);
doty := 2
> x:=x0%t;
x &=t
> dotx:=diff(x,t);
dotx :=7

> intl:=evalf(int(f,t=0..1));
intl := 448.9401098

The path integral for the straight line case evaluates to 448.94 (2 dpl). Evaluating

the line integral for the greedy path gives
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> ff:=(a*xxx"2+bxyy~2+25)*(dotxx"~2+dotyy~2)"(1/2);
2 2 2 2 1i/2
ff := (2 xx + 3 yy + 25) (dotxx + dotyy )
> yy:=yO*xexp (-b*t) ;

yy = 2 exp(- 3 t)
> dotyy:=diff(yy,t);
dotyy := - 6 exp(- 3 t)
> xx:=x0*exp(-a*t);
xx := 7 exp(- 2 t)
> dotxx:=diff (xx,t);
dotxx := - 14 exp(- 2 t)
> int2:=evalf(int(ff,t=0..infinity));
int2 := 449.17177

The line integral for the greedy path evaluates to 449.17 (2dpl). The greedy path
produces the larger line integral and the straight path is preferred. These two
examples show that the preferred path may change from case to case.
The difference in these two examples has been the addition of a constant terin to
L i.e. in the first example L(x,y) = 2z? + 3y? while in the second example
L(z,y) = 22? + 3y? + 25. By re-arranging the path integral

Pl = /ll(azl:2 +0y? + ¢)(a® + )| dt|

to

t) ty 5
= /(a:1:2+by2)(i‘2+y2)1/2|dt|+cf (& + 9%)"/?|dt|
L

to o

[t can be seen that the second integral on the second line is the definition of path
length. With a value of ¢ > 0, minimising the path integral involves, in part,

minimising the path length.

3.2 On Finding A Minimal Path With Calculus

of Variations

Our interest is in finding a path C with fixed endpoints on a function L that
minimises [ L ds. From the theory on Calculus of Variations[37] there is a result

which states that
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A necessary condition for n twice-differentiable functions x(t), z2(t), ..., ,(t) to

extremize an integral
!2 - . .
I = SO %1, T3, voos Ty Bis By vy i) (E
ty

is that the vector function [z(t), zo(t), ..., z,(t)] be a solution of the n

sumaultaneous Fuler-Lagrange equations

of d (0f ‘
g T = LB
(:):I"i dt (8(&,‘ ) 0 2 150y T

Consider the two dimensional case where L = L(z,y). The path intgral which is

t-
/ L s = f " Lz, y)/a? + 32 |dt|
[ t1

Let f(t,z,y,2,y) = L(z,y)/Z%Z + 3% and let t; < ¢ty then

to be minimised is

tz
fL d.s:/ & 3.y o
C Ly

and this integral is in the form of I in the theorem.

Now of  oL(zy)
of _ oY) e
0or Oz il
and
O — Liw,y)i(a+ )}
ot
and
d (0f\  d(L(z,y)) .. .5 .2 -1 DR, g8
(%) = oDy oyt o Ll +
(& + i) (& + ) 77)

dy
+1L(z, y)[EE + 92) 77 — (EE + g9)(@% + §°) 72

So the first Euler-Lagrange equation becomes

L(x ; 1 T T 2 >
O] (32 4 gyt _ QLY oy oyt OO0 50 ) oy
ox Oz

Y
~L(x,y)E* +9°)7F + Liz,y)a(ad + )& +5°) 7]

0 =

o)

[SIH
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Jr dzx dy
—L(z, y)“-(g'c? + 72) 4oL (5, )i(ﬁ; + 93j)
L T :
. gy (1 +2&%9* + gt — it — @Yy ) - yiaLé;’y)i(:ifz +4°)
—L(z,y) (L’E + i - x—xyy)
N OL L y aLL.'L,y) s rme) .9
- fj}l (‘L ) ay ‘1’("1' +y )

~ L, y) (&5 - 43)

OL(z,y) . 9L(z,y)
Y ox oy

) (& + ) - s i - a9
or

0 = 3

By symmetry, the Euler-Lagrange equation for y is

o _ (,0Uwy) _ 9L,y)
o\ oy 4 ox

) (& +62) - Lz, y) (i — 3)
0 = &

The twice differentiable functions z(¢),y(¢) that minimizes the integral [ L ds

must satisfy these Euler-Lagrange equations.

There are three interesting aspects that come out of these equations.

1) The solutions y = 0 and = 0 can be dis-regarded as they are not twice

differentiable functions.

2) The first equation

<3L(l ,Y) IOL(w,y)
L T Oy

) (€2 +9%) - Liz,y) (& — &) = 0
is lincarly dependent on its counterpart

(r?L(l y) L OL(z,y)
! dy —Y dx

) (# +3%) - L(z,y) (3 — i)

which means that any solution may not be unique.

3) In the first set of brackets there is this equation

jJOL(m, Y) B .OL(z,y)
Jy S
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It is worth noting that this will equal zero when z(t) and y(t) are the greedy
solutions. For the two variable case, the equation 3.1 has to be solved to get the
greedy solution. They are
OL(z,y) .
ay 7
and
OL(z,y)
ox

Putting these into the equation above gives

L OL(z,y) .OL(z,y)
! Jy 4 ox
= —IY+yz

= ()

Also
it — yz
equals 0 when z(t) and y(¢) are the straight line solutions. That is if = ¢t + ¢y
and y = c3t + ¢4 then the second derivatives with respect to t are both zero.
For the case L(z,y) = ax? + by? + c there is a set of trivial solutions when a = 0.

They are that x = xot and y = yot for ¢t = 1...0. It is easy to show this with Maple.

Theorem 3.1 The functions x = xyt and y = yot for t = 1...0 are solutions to

the Euler-Lagrange equations when L(x,y) = az? + ay® + c.

Proof The Euler-Lagrange equations are

JOL(y)  OL(
Jy y

= 3")) (82 + ) - Lix,y) (5 - g) = 0

Suppose that L(z,y) = ax? + by? + c¢. The mathematical package Maple will be

used to do the calculations for each part of the left hand side of the equation.

> y:=y0*t;
y :=y0t
> x:=x0xt;
x = x0 ¢t
> dotx:=diff(x,t);
dotx := xO0

> dotdotx:=diff(dotx,t);



CHAPTER 3. MAKING OPTIMAL CHANGES 129

dotdotx := 0
> doty:=diff(y,t);

doty := yO
> dotdoty:=diff (doty,t);
dotdoty := 0O
> L:=a*xx"2+b*y~2+c;
2 2 2 B

L:=ax0 t +by0 t +c¢
> dldy:=2%bx*y;

dldy := 2 b y0 t
> dldx:=2%a*x;

dldx :

2ax0t

These values were fed into the Euler-Lagrange equations (cl1+c¢11).

\2

cl:=expand((dotx*dldy-doty*dldx)*(dotx"2+doty~2)):
> cl:=combine(cl,power):

> cl1:=expand((-L)*(dotx*dotdoty-doty*dotdotx)) :

> cll:=combine(cl1,power):

> c13:=cll+cl:

factor(c13);

A\

2 2
-2x0 y0t (xO0 +y0) (-b + a)

¢13 is the factored Euler-Lagrange equation. Providing 23 > 0 and y3 > 0 then
this equation will equal zero when b = a. This proves that © = x¢t and y = yyt for

t = 1...0 are solutions for the case when L(z,y) = az? + ay® + c.

However apart from this special case there are no obvious solution. The author
tried many functions for x(t) and y(t) to solve the Euler-Lagrange equations with
no success. A majority of these trial functions were mixtures of the greedy and
straight line solution.

The Euler-Lagrange equations can be separated into two parts i.e.

OL(z,y)  .OL(x,y)\ (2, -2
(l dy ¥ ox ('L + y)
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and

L(z,y) (§= — yi)
The rationale for trying greedy and straight line combinations was that the first
part equal zero when x(t) and y(¢) are the greedy solution. While the second part
equals zero when x(t) and y(t) are the straight line solution. The hope was that

by choosing the right mix the Euler-Lagrange equation would equal zero.
[

There is a second result from the theory of Calculus of Variations(37] that states -

If f does not involve | explicitly then the first integral of the system is

e Ol
;118@ Ji ==

Recollecting that f = L(x,y)v/2% + 2 and observing that it doesn’t involve ¢

means that this theorem applies. Now

of _ 3 s (22 (2\— %
55 = Lla,y)2(@® +77)
and 3
W o Loy + )7
Y

so the first integral is

ko= &L(x,y)i(i* +§°) 71 + gLz, 9)y(a® + 5277 — Lz, y)\/i2 + 2
= L(z,y)#(i* +§%)72 + 5Lz, y) (@ + §°) 77 — L(z,y) /a2 + §?

L(z, y)(z* + y*
_ L= y)(E* +9%) e e

(42 + )7
= 0

The result collapses into k = 0 which is of no help in finding y(t) and «x(t). It is

included here only for completeness.

3.2.1 Placing Restrictions on the Solution

During personal communications with Professor Gracme Wake of Auckland
University he suggested taking a more restrictive relationship between @ and y

namely that y = y(r) i.e. that y is a function of z. Setting z = t gives

t=land =0
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dydx dy

de dt ~ dz

. d%y d (d?f) d (d?}) dy' dy'dz d*y
j=—= Ll §-. 4. P W

y =
and

T d2  dt \dt)  dt \dz)  dt  dxdt  da?
Taking either of the two Euler-Lagrange equations, since they are dependent, and

substituting the above results into it gives

= —

dy 55) (12 + yz) = Lz,y) (42 - 92)

oL dyéL dy g L dYy

2 .
which when solving for ¥ gives
dx

oy (E-23) (1+(2))

di? L(z,y)

(.OL 0L

The restriction that y = y(x) means that for every value of x there can be only
one value for y. It can’t be guaranteed that the function of L given will have an
optimal solution in this form.

Any second order polynomial in two variables with a minimum can be
represented in the reduced form L(x,y) = a12? + azy? + ag. It has the properties
that it is symmetric about the x and y axes and has a minimum at (0,0).
Consider any path from |zg| and |yo[, to the minimum at (0,0). Suppose that an
optimal path was constructed by some means and it crosses either or both of the
x-axes and y-axes. Since the path starts in the positive-positive quadrant and the
function is symmetric about the axes then, at the point of crossing, the path can
be reflected back into the positive-positive quadrant of z and y while still
remaining an optimal path. This means that the optimal path can be constructed
to always remain in its quadrant of origin.

Now, since there is symmetry, only positive values of 2y and yo need be
considered when constructing the optimal path. For if an optimal path from any
other signed combination of zg and yo needed to be constructed, then it need only
be constrcuted from |zy| and |yo| and reflected in the appropriate axes.

The last thing that will be assumed is that with this L, the optimal path
generated can be represented as a function, y(x). The justification for this will be

based on the two sub-optimal solutions found. The straight line path gets to the
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minimum by taking the path of shortest distance. The greedy path gets to the
minimum by taking the path that always gives the lowest value of L at the next
instance. This path isn’t restricted by path length and can be as long as it likes.
The optimal solution balances both these two objectives. It wants to minimise
the heights of L and take the shortest path. This means it is unlikely to be as
curvaceous as the greedy path and will tend to the straight path as ag gets very
large. Therefore we would expect the optimal path to lie between the greedy path
and the straight line path.

Now the straight line path is both a non-decreasing and a non-increasing function.
When a; < a3 then the greedy path is an increasing function when going from
(0,0) to (|zol, |yo|)- If the optimal path lies between these two paths then it seems
likely that the optimal path is either an increasing or non-decreasing funtion.
When a3 < a; then the greedy path is a decreasing function when going from
(0,0) to (|zol, |yol). If the optimal path lies between these two paths then it seems
likely that the optimal path is also a decreasing or non-increasing funtion.

In both cases the optimal path seems likely to be a non-decreasing or
non-increasing function i.e. a function. This mean placing the restriction of only
looking for solutions that have y as a function of x scems reasonable.

The problem is now to solve this differential equation

ey (5 - &%) (1 + (3”)2>

dz? L(z,y)

with the conditions that y(z¢) = yo and y(z;) = y1. One last condition will be
that yo is not equal to y;. This type of problem is called a Boundary Value
problem.

For the case L(z,y) = a,2% + a3y? + ag the Boundary Value problem is to solve

d*y _ (2a3y — 2013y’ (1 + (y)?)
7 a,z? + azy? + ag

with y(0) = 0 and y(zo) = yo and yo > 0.

3.2.2 The Finite Difference Algorithm
The generic Boundary Value problem can be written as

"

y'=f(z,y,¥), a<z<b yle)=a, yb) = F, «anotcqual to B
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The finite difference algorithm[11] for non-linear functions of y” solves this
problem providing f satisifies the following conditions

1) f and the partial derivatives of f, = —L and f, = —L arc all continuous on
D= {(z,y,¥")]a<z<b ~00<y<o00,—-00<y < oo}

2) fy(z,y,y") >0 > 0o0n D for some § > 0

3) constants k& and [ exist, with

k= 77m$(z,y,y’)eu|fy($7 vy, 1= 77La$(:l:,y,y')€D|fy’ (x,9.9)|

However if some of these conditions are not met then starting with a good
approximation and/or reducing the step size can be considered.

The value of f(x,y,y') is

(3 — g2t (1+ (%))

L(z,y)

fle,y,y) =

which for L(x,y) = a,2% + azy? + ag is

(2a3y — 2a12y') (1 + (v')?)
a12? + agy® + ag

f(x,y,y) =

Now

o 12 o y? — (2azy — 2a,xy")2a3;
fo(@,9,y) = (1 + ('y’)z) ( az(a17* + azy® + ag) — (2a3y — 2a,2y’) Ua!;‘)

((I[LI.'2 -+ a3y2 —+ (1(;)2
and

2y'(2a3y — 2a1zy') — (1 + (¥')?)2a,x
az? + azy? + ag

fy'(:r’ Y, y,) =

The intention is to reach the minimum at (0,0). When ag = 0 the point (0, 0)
means that f(z,y,v'), fy(z,y,y) and fy(z,y,y’) are not bounded in any way.

The necessary conditions won’t hold.
Also

2 g2 3y - (2 — 2ayxvy") 205
fu(e9.9) = (1+(}))( az(a z® + azy*® + ag) — (2a3y — 2a,2y’) {:35;)

(a17% + azy® + ag)?

is required to be greater then zero. With z = 0, ag = 0 then

' I 2&2?)‘2 T 4a?y2
folwy,y) = (1+(')°) (W =—(1+(¥)") ,_ <0

and the condition doesn’t hold.
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This means that the algorithim may not always find the optimal path. From
observation, the algorithmn fails as the guess for y’' becomes very large and this is
most apparent when «; is much larger then az or vice versa. From observation the
algorithm is much more sensitive to the former case than to the latter. The
standard starting approximation is the straight line. Finding a better starting
approximation may aid in resolving this problem.

Recall that for L(z,y) = a,2? + a3y? + ag the optimal path will be able to be at
its longest and most curvawous when ag = 0 and will progressively get shorter as
ag increases. As ag gets very large the optimal solution will tend towards the
solution of shortest line length i.e. the straight line. Therefore it is reasonable to
assumne any optimal solution will be bounded by the optimal solution when

ag = 0 and the straight line. The aim will be to find a good approximation for y

when ag = 0.

3.2.3 Finding an Approximaion

The greedy path will be used as a starting function. Recall that for this greedy

systemn

xr = xgexp(—at) and y = ygexp(—ast)
By eliminating ¢ this system can be written as

Y=o <—> o= 0...z¢
Ty

% will always be positive as z and o will always have the same sign i.e. the path
always stays in the same quadrant. Now any optimal path can be found by
looking at the path from |zo| and |yy| and doing the appropriate reflections in the
axes. So take zy and yo to be positive.
Taking logs of y gives

a x

log(y) = log(y) + — log (—)
ay Zo

An assumption was made that a good approximation will have a similar form i.c.

log(y) = log(yo) — glog(zo) + glog ()

and the intention will be to find g¢.
The finite difference algorithm was solved for 4 values of a3, a;, xg and yy in the

ranges
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1) 1 < a3 < 10,

2) 1 <a; < ag,

3) 1 <xy <10 and

4) 1 < yy < 10 respectively.

These ranges were chosen since the finite difference algorithm was observed to
work for these values.

The finite difference algorithm returns a set of values for x and a set of values for
y. The point (z;,y;) from these sets will represent a point on the optimal path.
Logs were taken of x and y. Fitting a lincar model to the logged data gave
reasonably good fits with all 72’s being at least 0.95. The variable of interest, g, is
the linear coefficient in this regression. This data is given in appendix E.

The ¢'s were then used as a new response variable with z¢, yo, ¢; and y3 as the
exploratory variables and were contained in the respective columns of the matrix

object pathdetail in Splus. After much trial and error the function for g was

)
g:= 016868 log (“—3> — 0.0360 <l()g (“—‘>>

@y @y

found to be

i.e.

u<-log(pathdetaill,4]/pathdetaill,3])
1s.print(1sfit(cbind(u,u~2),log(pathdetaill(,6])))

Residual Standard Error = 0.0119, Multiple R-Square = 0.9993
N = 240, F-statistic = 166846 on 2 and 237 df, p-value = 0

coef std.err t.stat p.value

Intercept -0.0004 0.0011 -0.3643 0.7159
u 0.6867 0.0035 197.9522 0.0000
-0.0359 0.0016 -22.0478 0.0000

and has 2 = 0.9993. Therefore when a, < a3 a good approximating function is

2\ exp(0.6867 log($2)-0.0359(log(52))?)
aj a)
Yy=1Y ( ) T =008,

E
In Figure 3.3 the estimates of g are plotted against g and a (0, 1) line has been
plotted. The estimate works well for low values of ¢ but falls off as g increases.

However this scemns highly reasonable for use as a starting solution.
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g versus the estimate ofg

g hat

oo 02 0« 08 OB 1D 12 1w

oo 02 0e 08 08 10 g 12 14

Figure 3.3: The graph of the g’s versus the estimates of g

With this refinement the finite difference algorithm is complete and is in
appendix E. This function is called opt finddif f.f. In the same appendix is a
function called transformout. f that takes a polynomial of order 2 and
manipulates it into the reduced form. When a; > a3 this function also
interchanges x with y, and a and b with alpha and beta, and then calls the finite
difference algorithm, opt finddif f.f, to find the solution. This latter refinement is
to take care of the cases when y’ gets very large which is a by-product when

a; >> az. The algorithm can fail under this extreme condition.

After a great deal of use the algorithm, transformout.f , has not failed when
attempting to produce a path to the minimum of L when L has been put into the
reduced form. [t has also been observed to converge to a solution more quickly

than when starting from the straight line solution.

3.2.4 Paths to Non-Minimal Points

The paths that have been considered so far have always ended at the minimumon
L. This requirement was neccessary in order to derive the greedy path. However
it is not a requirement for the construction of a straight line path.

[t is also not a requirement for the construction of the optimal path through the
numerical method above. An optimal path can be constructed to go to another
point besides the minimum. This is particularly useful when there are constraints
on the values that the variables can take. For example the variables may be
constrained to only take values that were in the space of the original experimental

design while the minimum may lie outside this region.



CHAPTER 3. MAKING OPTIMAL CHANGES 137

However in justifying that the optimal path could be expressed as a function
y(z), the properties of the greedy path were used. This justification cannot be
used when an end point is not a minimum. It is easy to find end points, that are
not minimums, for which an optimal path is not able to be represented as a
function y(z). In most cases there is a way of getting around this restriction.
Consider that we are interested in only the first quadrant. If the path cannot be
expressed as a function y(z), then by reflecting the surfaces in the line y = z and
re-labelling y and z the optimal solution may now have the required form. The
only remaining problem is that in the new L(z, y) = a 2% + a3y? + ag this property
may hold a; > az. When a, is much greater than az the algorithm may fail.

The function opt finddif f.f, of the previous section used an approximating
function to get a good first approximation for the path to the minimum. This was
based on the greedy solution. Since the path of interest doesn’t go to the
minimum the greedy approximating function is of no use. A straight line as a first
approximation will be used. The function, foptfinddif f.f, that generates a
solution to this boundary value problem is in appendix G. There is also a
function called transformoutnomin. f that takes a general polynomial of order 2
and puts it in reduced form and then calls foptfinddif f.f. 1t doesn’t
automatically swap axes as trans formout. f did. This is because there arc now
two ways that the algorithmm may fail

1) if ay >> a3 or azg >>> q;

2) the optimal solution may have y’ — oo on some point on its path

By manipulating the axes manually a solution can be found if one or both of these
issues proves to be a problem. Finally the algorithm may fail even with careful

manipulation of axes. In that case the best answer is to use a straight line.

Example

1) Consider two different L(z,y) namely L, = 522 + y? and L, = 2% + 5y? with
the starting point being (3,1) and going to (1,1). By using foptfinddif f.f the

optimal paths can be displayed and are in Figure 3.4.
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Optimal Paths for each L(x,y)

L(xy)=x"2+5y*2

04 05 08 07 08 00

Figure 3.4: The optimal paths for L(z,y) = 52% + y? and L(z,y) = 22 + 5y? from
(B2 0" (LY.

2) Consider L = 52:2 + y? with the starting point being (3,3) and going to (4,1)

The Splus function call is
gi<-foptfinddiff.f(3,4,3,1,40,0.000001,100,5,0,1,0,0,0)

For this situation the algorithm fails. This can be seen in Figure 3.5 where the
path being gencrated flips from below the stright line solution to above it. If the
algorithm were to continue the paths being generated would continue to flip back
and forth without finding a solution. The optimal path has y' = oo at some point

on the path and the algorithimn fails to deal with this.

Algorithm Failure

25 30 35 40

20

30 32 a4 36 38 40

Figure 3.5: The optimal path on L = 5z? + y? from (3,3) to (4,1).

The solution is to interchange z with y and « and b with a and f i.e. the problem
becomes L = z? + 5y? with the starting point being (3,3) and going to (1,4). The

Splus function call is
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g6<-foptfinddiff.f(3,1,3,4,40,0.000001,100,1,0,5,0,0,0)

and the paths being generated by the algorithm is in Figure 3.6.

Optimal Path for the Reflected

: %Q_\

L T Y.}

H 30 EH 2

Figure 3.6: The generation of paths that converge to the optimal path on L =
x2 + 5y2 from (3,3) to (1,4).

Taking the output from the algorithm and re-labelling the output i.c. interchange

x with y again, gives the optimal solution for the original problem. The path is

plotted in Figure 3.7 and it easily observed that y cannot be represented as a

function of .

3.3

Optimal Path for the Original
Problem

30

25

20

15

/

30 32 34 36 s 0
X

Figure 3.7: The optimal path on L = 5z? + y2 from (3,3) to (4,1)

Optimal Paths with More than Two

Variables

So far the number of controllable factors has been restricted to two. In this

section p controllable factors will be considered. Let @ represent the p
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controllable factors and let L(x) be the (adjusted) variance of & which is a
polynomial of order 2. The requirement is to find a path from xy to the minimum
of L(x), *, that minimises the path integral of L(x).

The Euler-Lagrange equations can be derived for this system but solutions to
these equations were no more obvious to the author than for the 2 dimensional
case. The numerical solutions found in the previous section depended on there
being only 2 variables in the Euler-Lagrange equations and so that method of
solution is not avaliable here.

This leaves three appropriate solutions. The first is to choose a straight line
solution i.e. * = Ty + (¢* — €)1, 0 < 7 < L. This has the benefit of simplicity.
The second solution is to compare the line integrals of the straight line path and
the greedy path and choose the path with the smaller line integral.

The third solution, if the appropriate software is available, is to consider mixtures
of the greedy and straight line solution. The justification for this is based on how
the two different solutions come about. The straight line solution is the path of
shortest length but doesn’t take into consideration the height of L(x) along its
path.

The greedy path doesn’t consider path length but aims solely for the maximum
decrease in L(x) at all times.

The optimal solution, which minimises the path integral, looks at minimising the
path length and also having low values of L(x) on the path. This suggests that a
mixture of the greedy and straight line solution may make a good approximation
to the optimal path.

At point T there arc two extreme directions that the path can take for a mixture
solution. One direction is the path of steepest descent and the other is the
direction straight to the minimum. If we take a units of the first direction and

| — « units of the second solution we have that

dz JdL .
E——aa—er(l—a)(:c — )
With L(zx), a polynomial of order 2, it gives that % = Mz + N so
dz JdL .
= —(la—w+(1—(x)(:c — )

= —a(Mz+ N)+(1-q)(z" - x)
= (-(1=a)I —aM)z + ((1 — a)z* — aN)
= Max + N,
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The solution for this differential equation is
(1) = exp(MaT)Xo +] exp(Mq(75))Ng ds 7 > 0[10]
0

and this will be the approximating function for the optimal solution. It is worth
noting that the approximate function does not satisfy the Euler-Lagrange
equations and as such cannot be the optimal solution.

The functions found in this solution are similar in nature to the greedy path i.e. a
linecar combination of exponentials. An attempt was made by the authour to find
closed form solutions for the line integral for a path made of these functions.

However no closed form solutions could be found.

Example

In this example L(x) will be dependent on two variables so that the results can
be compared with previous methods.

Let L(zy,x3) = 22 + 22 — 2125 with the 2§ = (1,2) and =*' = (0,0). The Maple
program in appendix D was used to generate the mixture path which is

3 1
xy = —exp(—7) — —exp(—2ta—7) T>0
2 2
and
1 3
Ty = iexp(—ZTa —-7) + 50:{[)(—7) T>0
Now that the path has been found the value for o will be found that minimises
the path integral. This was done in Splus and the code is in appendix D. The
value found for e was @ = 0.50966 (5 dpl) which gives the approximate solution,
written here to 5 decimal places, as
3 1 .
o = Eexp(—T) — 58}{[)(—2.019307') T>0
and

1 8
Ty = §exp(—2.019357) + 50){[)(—7) T>0

and the line integral evaluates to 2.15364105 (8 dpl).

However setting o = 0 instead gives the straight line path which is
Ty =exp(—-7) 7>0

and

Ty =2exp(—7) 7>0
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which has a line integral of 2.24 (2 dpl).

Setting @ = 1 instead gives the greedy path which is
3

1
r) = §exp(—T) - Eexp(—BT) T>0

and

1 3
Ty =5 exp(=37) + > exp(—=71) T>0

with a line integral of 2.18 (2 dpl).

The optimal path was generated by the finite difference algorithim and consisted
of 1002 points. A Riemann sum approximation to the line integral for this path
was calulated with 1001 sub-intervals. This evaluated to 2.15364101 (8 dpl) which
is less than the path integral for the greedy case.

The numerical approximation of the line integral for the optimal case is only very
slightly less then the numerical approximation of the line integral for the mixture
case.

Figure 3.8 compares the three paths: straight, greedy and mixture. The optimal

path is not distinguishable from the mixture path at this resolution.

The Three Paths

20

'S

y Straight Path

10

Greedy Path

0s

1]

o0 0.2 04 06 08 1.0

Figure 3.8: A comparison of the three paths: straight, greedy and mixture.

3.4 Moving One Factor at a Time

In this situation the goal is to move from an initial setting, g, of the controllable
factors, to a final setting, x,, during some time period 7 > 0. An added
imposition is that the controllable factors can only be moved one factor at a time.
In a practical situation this is equivalent to moving the controls by hand when

the controls are not within arms length of each other.
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This change from xo to &; will be called a transition. Let L(x) represent a
function of the controllable variables and be a variance or adjusted variance
function. Each factor change will have an associated path and a corresponding
line integral for that path on L(z). For p controllable factors there will be p paths
and so p line integrals for each transition. The transition that has the smallest

value i.e. the smallest sum of line integrals, will be the preferred transition.

3.4.1 Two Factor Case

Let L(x) be a polynomial function of order two, with two controllable factors

which can be represented as
L(z,y) = az’ + bz + ey’ +dy + exy + f

Let {= (g, h) and zi= (¢,j). Moving one factor at a time means that there are
two paths in each transition from xg to ;. There are also two different

transitions avaliable. This is demonstrated in Figure 3.9.

Transitions for Two Controllable Factors
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Figure 3.9: A comparison of the two possible transitions and the two paths that

make up each transition.

The first transition from @y to @, is to move factor 1, x, first, from a value of ¢ to
i, and then factor 2, y, from a value of h to j. This can be represented by

(g, h) = (2, h) — (4,7).

The second transition from xy to T, is to move factor 2, y, first, from a value of h

to j, and then factor 1, x, from a value of g to 7. This can be represented by

(g, h) = (g,3) = (i, )
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Evaluating the First Transition

The first transition consists of two paths and there is a line integral for cach path.
The first path is for when factor 1, z, changes from ¢ to z with factor 2, y,

remaining constant at h. The line integral is
9
Toy = / az’ + bz + cy? + dy + exy + f |dz|
13
If 1 < g then

A
T('t‘;) = / ar® +bx + ch? + dh + ezh + f dz

S

s b . g
= [gm" + 53:2 + chz + dhz + %/w;2 + fz

12

a e b ) ) ) e ; p .
= g(.o3 ~- i) + 5(92 — %) +ch®(g — 1) +dh(g —9) + 511(.(1Z —i*) + f(g —1)

if i > ¢ then
9 .
T(f,x) = /l ar’ +bx +ch? +dh +ezh + f (—dz)

= / ar’ +bx + ch®> + dh+exh + f dz
9

. [ ; ; e i
%;1:“ + 5:1:2 + ch?z + dhz + 5/&‘2 + fx

9

)

= 2 P - g%+ g(iz — g% +ch®(i — g) + dh(i — g) + gh(i2 -9+ f(i—g)

The second path is when y changes from h to j with = remaining constant at its

new value 7. The line integral is
h > g
T2 =/_ az’ + bz + cy” + dy + exy + f |dy|
j
If j < h then
=t h 2
1(1'2) = /] ai’ +bi + cy? +dy+eiy+ f dy

h
- _ @ ; d e .
= [azzy + biy + gy" + §y2 + §y22 + fy
J

| | { | . |
= ai®(h - j) +bi(h — j) + g(h?' — )+ %(13 — 4+ gz(/ﬁ )+ f(h-j)



CHAPTER 3. MAKING OPTIMAL CHANGES 145

If 7 > h then

h
Th, = / ai® + bi +cy® + dy + ety + [ (—dy)
i
J

c d e 5.
— [aizy + biy + gys + Eyz + Eyzz + fy

NI T

= az‘?(j—h)+bz:(j—/z,)+§(j3—h3)+ (j2—1L2)+gi(j2—h?)+f(_;‘—h)

The combined line integrals for this transition is T(f 5yt T(i1 2)-

Evaluating the Second Transition

The second transition also consists of two paths and a line integral for each path.
The first path is when y changes from h to j with z remaining constant at g. The

line integral is
I'h. 9
Tow = | aa® +be + ey’ +dy + exy + [ |dy|
L)
If j < I then

h
T(;l) = / a92+()y+cy2+dy+egy+f dy
J

h
@ d e .
= lag?y + bgy + -:,;y‘"‘ - 51/2 + §y29 + fy

[NCN IS

= ag’(h—3) + by(h = ) + S(h* = 3°) + S (0" = %) + Sg(h* = %) + f (k= 5)

If 7 > h then

h [
Toy = / ag® +bg + cy® + dy + egy + f (—dy)
J

j
= fja92+by+0y2+dy+egy+fdy
L
2 c3, dy €, y
= |ag®y+bgy+ v’ + -y" + zy°g+ fy
3 2 2 X

s ? : - y 3 y
= ag’(j — h) + bg(i = ) + 5 = 1) + 3G = 1) + 590° = h2) + S — 1)
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The second path is for when z changes from ¢ to ¢ with y remaining constant at

its new value of j. The line integral is
9
Tio = / az® + bz + cy® + dy + exy + f |dz|
1
If ¢ > ¢ then

9
7'(;'2) = / az’ + bz +cj* +dj +exj + f dz
1
9

a b . ) e .
51:3 + 5:1:2 + cy2a; + djz + 5]1‘2 + fx

i
a

= PP bl P+ el - )+ dilg— i)+ S0 - B+ Slg— )

If ¢ <1 then

9
T3 = / az® + br + cj? + dj + exj + f (—dx)

= /a;r2+b:1:+cj2+dj+c.rj+f(la:
9
‘s

b . > '
= |=2®+ -2? + cj2:13 + djz + E_y:zz + fx
3 2 ? .

) b . 3, i Y. e . .
(- %) + 5(22 — g% + i - g) +di(i —g) + 5](12 9%+ f(i—g)

w| e

The combined line integrals for this transition is Tél) i T(:;Q)

Comparing Paths

There are four cases corresponding to the values of g, I, 7 and j.
Case Ly g->-t=and h > 7.

The first transition will be preferred if T(T'l) + T(T'z) < T(;l + T(“;z
+
0 > Ti,+ T(T,?) )

b
= %(93 - %)+ 5(!]2 — %) +ch?(g — i) + dh(g — i) +

+ai*(h — j) + bi(h — j) +

/1(92 - )+ f(g—1)

(1 — 7% + ;i(h — 3+ Zi(h® = 3% + f(h =)

oo

(¢

o

w
N

~(ag? (= ) + by(h — ) + S0 = %)+ S0 = 1) + 5902 = %)+ f(h = )

w

(56~ )+ ol )+ ey~ i)+ dilg — )+ 56— ) + g = 1)

= —1/2(=g+3)(—h+ j)(ej — 2jc+ 2ia — ei + 20 — 2d + eh — 2ch + 2ga — eg)
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so the first transition will be preferred when
0 < (e —2jc+ 2ia —ei + 2b — 2d + eh — 2ch + 2ga — ey)

or

(Qa—e)(i+g)+2b> (2c—e)(h+ j) +2d

else the second transition is preferred.
Case 2: g >t and 3 > h.
The first transition will be preferred if T(J[‘l) + T, < To T(“;’Q) or

= = +
0o > T(Tl +T(l,2 T(2[ T('Z?)
= 1/2(=g+ ) (=h+ j)(ej +2jc + 2ia + ei + 20 + 2d + eh + 2ch + 2ga + eg)

so the first transition will be preferred when
0<ej+2jc+ 2ta+et+ 20+ 2d + eh + 2ch + 2ga + ey

or

—(2a+e)(it+g) —20 < (2c+e)(h+j) +2d

clse the second transition is preferred.

Case 3: g < tand h > j.
The first transition will be preferred if T/ + T3, 2) < Toy+ (2.2) OF

0 > Tan+Tia —Ton — Tap
= —1/2(—g +i)(=h+j)(ej + 2jc+ 2ia + ei + 20 + 2d + eh + 2ch + 2ga + eg)

so the first transition will be preferred when
0>ej+2jc+ 2ia+et+ 20+ 2d+ eh + 2ch + 2ga + eqg

or

—(2a+e)(i+g9)—20> (2c+e)(h+7j)+2d

else the second transition is preferred.
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Case 4 g <iand h < j.

The first transition will be preferred if T ) + T(; 5) < T3 ) + 15, or

0 > Ty + T —Tay —Tag
= 1/2(=g+1)(=h+j)(ej —2jc+ 2ia —ei + 2b — 2d + eh — 2ch + 2ga — eg)
so the first transition will be preferred when
0>ej)—2jc+2ia—ei+2b—2d+eh—2ch+2ga—eyg
or
(2a —e)(g+1) +2b< (2c—e)(h+ j) +2d

else the second transition is preferred.

Example

Let L(x,y) = 10 + 3z + 4y + 5z% + 4zy + 3y? and let the transition be hetween

zy = (3,6) and x4 = (0,0). This means
t=w®, 0.=8, &=3, d=4 e=4, [ =105 §=3;Tw=064=0,y5 =0
Now ¢ > i and h > j so it is Case 1.
(2e—e)(g+i)+20=(2x5-4)34+0)+2x 3 =24

and
(2c—e)(h+j)+2d= (2 Xx3—4)(6+0)+2x4=20

Since 24 > 20 then (2a —e)(g +¢) + 20 > (2¢ — e)(h + 7) + 2d and the first
transition is preferred i.c. moving factor 1, z, from 3 to 0 and then factor 2, y,
from 6 to 0.

If 2§ = (3,8) then (2a — e)(g + i) + 20 = (2¢ — e)(h + J) + 2d = 24 and cither
transition is preferred.

If f =(3,9) then 24 = (2a —e)(g + 1) + 2b < (2c — e)(h + j) + 2d = 26 and the

second transition is preferred.

3.4.2 Two or More Factors Case

If the number of controllable factors is p > 2 than there are p! possible transitions.
For each transition there are p line integrals to be evaluated. As p gets large this

is a problem most suited to be solved by computer rather than by hand.
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Let L(x) be a polynomial function of order 2 with p controllable factors which
can be represented as
Liz)=A+x'B+2'Cz

Where C is a symmetric matrix. Let &g be the initial postion and x; be the final
postion. The algorithm whichtochange. f, in appendix I, takes this data and
returns the transition with the smallest value. If there is more than 1 transition
that has the smallest value then all the transitions with that smallest value will

be returned.

Example

Using the data in the previous example gives

A+z'B+z'Cz

(1))

and zf = (3,6) and 2§ = (0,0). Considering both transitions and using the

L(x)

algorithm whichtochange.f gives that the first transition is best with the sum of
path integrals for each transition being 940.5 and 976.5 respectively.

When x§ = (3,8) then cither transition is preferred with the sum of path
integrals for both transitions being 1624.5.

When o = (3,9) then the second transition is preferred with the sum of path

integrals for each transition being 2068.5 and 2041.5 respectively.

3.5 Moving Two Factors at a Time

In this situation the goal is to move from an initial setting, xq, of the controllable
factors, to a final setting, «y, during some time period 7 > 0. An added
imposition will be that the controllable factors can only be moved two factors at
a time. In a practical situation moving two factors at a time is equivalent to
moving the controls when the operator can use both hands.

With an even number of factors then all the moves can be two factor moves. With
an odd number of factors there will be a single factor move. This single factor

move can occur at any stage, before, after or between any of the two factor moves.
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This change from xg to , will be called a transition and consist of the two factor
and possible one factor moves. Let L(x) represent a function of the controllable
variables and be a variance or adjusted variance function. Each two factor or
single factor change will have an associated path and a corresponding line integral
for that path on L(x). The transition that has the smallest value i.e. the smallest
sum of line integrals for the factor changes, will be the preferred transition.

With p controllable factors there will be 1, unique transitions. If p is even then
there are n, = fé— transitions. For the case when p is odd the number of
transitions is more complex to work out. If the single factor move is always last
then there will be 2—%%_ transitions. However the single factor transition can be
first, last or between any pair of factors and there are w

amongst the pairs. This gives n, = “’%;;]_J—T transitions in total.
2

ways of arranging that

There are an infinite number of paths that can be taken between two points in
two dimensions. However straight line paths will be the only paths considered for
these two factor changes. The cost in time of getting accurate values for the line
integrals for the optimal paths, as considered in the last section, would swamp
any benefit in using them i.e. while waiting for the best transition to be
calculated the controllable factors remain at a non-optimal setting.

Once the minimal transition is found then the choice of paths i.e. straight, greedy

or optimal, can be chosen according to which is the most practical.

3.5.1 Two or More Factors Case

Let L(x) be a polynomial function of order 2 with p controllable factors which
can be represented as
Liz)=A+z'B+z'Cz

Where C is a symmetric matrix. Let &y be the initial postion and x; be the final
postion. There are two cases to consider, when the number of factors is even and
when the number of factors is odd. The former case is very much simpler and the
algorithm that finds the minimal transition is whichtwotochangeeven. f and is in
Appendix J.

The latter case, when there is an odd number of factors means that single factor

moves need to be considered. This is computationally much harder. The

algorithm for this is also in Appendix J and is called whichtwotochangeodd. f
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In both algorithims, if there is more than one minimal transition, then all those

minimal transitions are reported.

Example

1) For this first case there will be an even number of factors. Consider this value
of L(x)

L(zy, %o, 23,T4) = T2 + 223 + 323 + 4a?
with ¢} = (5,5,5,9) and =} = (-1,-1,-1,-1).

This gives

0\ 1 000

0 01 2 @ m
4=(0 B= . @e=

0 0030

0 L0 0 0 4

From observation the minimal transition would be to move factors 3 and 4 first,
then factors 1 and 2.

The matrix, paths, of possible transitions is listed below. Each row represents a
transition. The fifth row represents the transition, move factors 2 and 4 first and

then factors 1 and 3.

3
2
.
1
1
1

=R W e LN
[ S O VSN

1
1
1
2
2
3

With p = 4 factors there are n, = fé = 6 transitions. They are all accounted for
in paths.

Running whichtwotochangeeven.f gives this output

1 2104.34978081116
2 1900.70302782944
3 1697.05627484771
4 1697.05627484771
5 1493.40952186599
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6 1289.76276888426
$paths:
(1] 6

$min.path.length:
(,1]
(1,] 1289.763

The output says that row 6 of the paths matrix gives the minimal transition.
This is move factors 3 and 4 first then factors 1 and 2. This transition has value
1289.76.

2) In this case there are an odd number of factors. Consider this value of L(x)
L(z1; T3, T3, Ta, Tp) = 25 4 2:1:% -4 3;:.':;' 4 zl:r.‘f -+ 53:§

with z§ = (5,5,5,5,5) and €} = (-1, -1,-1,-1,-1).

This gives

' §0) 1 000 0)
0 0 000
A=0B=]0]. C=100300
0 00040

\ 0 0000 5)

From observation the minimal transition would be to move factors 4 and 5 first,
then factors 2 and 3 then factor 1.

The matrix paths, in this case, represents all the possible transitions where the
last factor is the factor that moves singly. During computation the other possible
single factor moves will be considered. For example, the first row of paths
represents the transition, move factors 1 and 2, then factors 3 and 4 and finally
factor 5. During computation the transition that has factor 5 first, and the
transition that has factor 5 move occurring between the two factor moves will also
be evaluated. Putting paths in this ‘short-hand’ notation is to ease computation
and to reduce paths size. Here the matrix paths has been formatted over two

columns.
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Column 1 Column 2
I 2 8 4 5 2 4w 1 8B
= 28 & 5 4 24153
1 2 4 5 3 2 4 3 o5 1
" 3 2 4 8§ 2B 1 By
1 3 2 5 4 2 01 43
1 3 4 5 2 2] o8 3 &= 1
N 428 5 34125
I 4 2 & 3 3415 2
1 4 3 5 2 34 2 51
1 52 3 4 351 2 4
1 52 4 3 ST T
1 563 4 2 31 150 20 B ]
231 N5 4 51 23
2315 4 gl 1 & 2
2 3 4 5 1 4} % 20 8

As p = 5 the number of transitions with the single factor movement happening
last is <2+ = 30 and these are all listed in paths. To represent all the possile
V) )
transitions would require a matrix of length % = 90 rather than 30.
2

The truncated output from whichtwotochangeodd. f using the data above is

Singleton first 3899.20259455355
Singleton before pair 2 4485.43635946218
Singleton last 4495.67012437081

Singleton first 3695.55584157183
Singleton before pair 2 4137.78960648045
Singleton last 4292.02337138908

w N NN R, R e

Singleton firs .
...last 2707.58441227157

30 Singleton first 4127.55584157182
30 Singleton before pair 2 3035.20259455355
30 Singleton last 2518.84934753528
$paths:

(,1] [,2]
(1,] 30 3
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$min.path.length:
(,1]
[1,] 2518.849

The program concludes that the thirtieth path gives that smallest transition
value and that the single factor move should come before the third pair. Since
there are only two pairs this means the single factor move comes last. This
transition is move factors 4 and 5 first, then move factors 2 and 3 and finally

move factor 1. This transition has a value of 2518.849.



Chapter 4

On-Line Quality Control

During production the value of the quality control variable, Y, is often recorded
on quality control charts. The most basic chart, the X-chart, consists of two lines
about sy at a distance of +£30y-. Any point that lies outside these lines is suspect
and is either deemed indicative of a process out of control or an observation that
has happened purely by chance. Rules of thumb, based on observed sequences of
these suspect points, are used to make a decision on the stability of the process.
However the quality variable is just a reflection of the error variable. Whenever
the former is out of control then it is the error variable that is out of control.
When there are more sources of randomness than the error distribution alone i.ec.
the uncontrollable variables, observing the quality control variable is not going to
be a reliable measure of whether any of the random variables are out of control.
For example say that Y = Z + € where Z and ¢ are independent and bivariate
standard Normal. This means that Y has a N(0,2) distribution and would have
control limits set at £30y = +6. After some time this set of Y values may be

observed

Run YA € N
1 3.6884570 0.8666916 4.5551486
2 -6.6419924  0.3272760 -6.3147164
3 -3.6477334 -0.8147046 -4.4624380
4 3.5191568  0.1508901  3.6700469

Now Y is observed to be outside of the control limits at at run 2. If this were the
only such occurrence for some considerable time then it would most likely be

deemed to have happened by chance alone. However it appears that Z may have
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had a change in distribution (specifically a change in variance) and is outside the
130, limits for all of these runs. If this information about Z had been avaliable
then it would have aided in realising that the system was now out of control.
After more runs the out of control behaviour would most likely be spotted.
However there would be no indication as to which of the variables, Z or € was the
one causing the out of control behaviour. When there are many variables
contributing to the variance, quickly identifying which variable is causing the out
of control behaviour will aid in getting the system back under control more
quickly.

The problem is that the unobservable, uncontrollable variables, as their name

suggests, are unobservable so the best that can be done is to estimate them.

4.1 The Distributions of Z and ¢ Given Y

Suppose that we have the following information. The unobservable uncontrollable
variables, Z, are distributed N,(0,, A2) where 0, is a matrix of size r x 1 of

zeros. For simplicity Ao will be written as A and has elements

. of for #.=9
Ali,j] = Ch
pijoi0; 1F# ]

The pure random error, €, is distributed as N(0,0?). Now let € and Z be

independent and have a joint distribution

Z 0, A 0,
()= (%) (e %))
Let the quality variable, Y, be related to Z and € by the equation
Y=A+Z'B +e¢
Thus for example, for model 1 in chapter 2, we have that
A=By+z'By + '8 + ' T;t

and
B =3 + Xz + X3t

An estimate of Z and e will be found by considering the distributions of Z|}" and

€]Y". Finding the distribution of Z;|}¥" will be done in three steps
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1) the joint distribution of Z and Y}  will be found,
2) the marginal distribution of Z; and Y will be found
and finally

3) the conditional distribution of Z;|Y =y will be found.

Theorem 4.1 The joint distribution of Z and Y is

Z 0, A AB
- b Nr+] ) 7
} A B'A B'AB + Uf
Proof

A transformation will be used to get the joint distribution of ¥ — A and Z from

the joint distribution of Z and e.
There is a result which says that if V' is N,(p, X) and W = CV where C is a

matrix of constants with dimensions n x n and rank=n then W is

C33]
Z Ve @ Z
y-4/) \ Bt 1 €

N, (Cu,CTC").
Now

I, O,
Bl

C contains I,. which is » x r so it has rank of at least r. Let the i elemient of B

The transformation matrix is C = ( ) andis (r+1) x (rr+1).

be b; of which there are r such eclements. Perform these row operations on the last

row i.e. row (r + 1) that contains B"

1

row (r+1) = row (r+l)—b—x7'0w1
I

row (r+1) = row (r+1)— o X row 7
1

row (r+1) = row (7'+1)—5—><7‘0w T

Now the row reduced version of C, Creduced, 1 an identity matrix of size r + 1

and so has rank(Cregucea) = 7 + 1 and thus C is of full rank.
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Z .
The mean of is
Y- A

and the variance is

t
CxCl — I. 0. A O, I, 0,
B 1 0L o} Bt 1
A 0, I B
B'A o o 1

- A AB
~ \ B'A B'AB + o2

hence
Z " 0, A AB
y-4a) "\\o /) \ BIA BAB+?

Now

VA ZzZ 0,

= +

Y Y - A A

SO

VA 0, A AB
Y "'\ 4 ]’\ B'A B'AB + 02
Theorem 4.2 The marginal distribution of Z; and Y is

Z ~ N, b of :t'l:l.j#i Bjpojo; + Bjo?
r A )"\ T4z Bipoioi + Bio? B'AB + o?

Proof

There is a result that says if V' is NV,(p,¥) and C is a ¢ x p matrix of constants
with rank(C')=¢(< p) then if W = CV then W is Nq(Cu,CEC’).BH

Let C; be a 2 x (r + 1) matrix where

1 j=Lk=4k#r+1
Cilif= {1 §=2k=%+1

0 otherwise
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VA
The C; matrix has rank 2 and picks the ** and ( + 1)"* rows of ( . ) to give

the marginal distribution of Z; and Y i.c.

afZY_f0 -~ 010..00 z\ [z
% 3 0 .. 000 .. 01 Yy ] \Y

The mean of Z; and Y is

Bge 10 1 10 5 @ 8 0, 0
Cip = =
0 s 0 0 0 4w U 3 A A

and the variance is

oxct — [0 =010 . 00 A AB 1
ol 0 00 0 o @ 1 B'A B'AB +0? 0

0
\0 1)
[0 0
0
[ poior...at...poio, T, s Bipojoi + Bio}
B'A B'AB + o2 0
00
\0 1/
_ @ Y12 PBjojo; + Bio?
z;:l‘j;éi /)BjO’iCTj it B,‘U;z B'AB + 0'3

to give the distribution as required.

Theorem 4.3 The conditional distribuiton of Z;|Y =y s

(y — A), 67 - (Xj=1jz: Bipojoi + Bio?)?
l B'AB + o2

B'AB + o2

myzyNN(
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Proof
Vi

Vi2)
and V(z) is a (p — ¢) x 1 matrix and is distributed as

Nofp=| *0 ) 5= Y X2
r - ) -
K(2) Lz Xz2)

then the conditional distribution of V(y) given V(3) = v is

There is a result which says that if V = ( > where V(1) is a ¢ x 1 matrix

No() + Za2S@ 2 @ — b@) San — S S@eSen) T383

The distribution of Z; and Y is

VA ~ N, 0 af }l:l'j?fi Bjpo;o; + Bio?
) o A Y i=1,j#i Bipojoi + Bio? B'AB + o?

Putting p1) =0, p2) = A, L) = 0?, Yaz2) =X =
i1 jzi Binojoi + Bio? and £(32) = B'AB + o? gives the mean of Z;|Y = y as

1,z Bipojoi + Bio}
B'AB + o?

By + Ba,2)E G20~ pa) =0+ (y — A)

and the variance of Z;|Y = y as

(X5-1,jzi Bipojoi + Bia})?
B'AB + o

L - 2(1.2}2('21.2)}::(2-1) =0} -

to give the distribution as required.

4.2 €Y =y

Ultimately the distribution of € given a value, y, of the quality control variable }’
will be found. This will be done in three steps

1) the joint distribution of €, a partition of Z and Y will be found,

2) the marginal distribution of € and Y will be found,

and finally

3) the conditional distribution of €|}" = y will be found.
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VA
Now Z can be partitioned into two components ( (1) ) where Z(;) = Z, and

Z(2)
2
Z = : so that the joint distribution of Z and Y can be written as
A
Z ) 0 Ay Apyzy O
Ziz) | ~ Nes Or—1 |s| Ay Aez2 0--1
¥ 0 0 0, e

B
Corresponding to the partition of Z, B can be partitioned into B = ( B(l) )
(2)

13,
where By = By and B(g) = : and A can be partitioned into

B

A A
A= (1,1) A2
A1) A

where
Ay = A
ANz = ( Ao o Ay )
Az,
A =
Ar
and
Ao ... Aoy
Az,2) = i 3
Ar,z f\r,r

Theorem 4.4 The joint distribution of Y, Z3) and € is

Y A B'AB to? B(1)A1,3) + B(3)A(3,2) ol
=@y | ~Med 01 || A@nBm +Aan B A(2,2) 0n_1
€ 0 a? of _, o?

Proof

A transformation will be used to get the joint distribution of Y — A, Z(5) and €
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from the joint distribution of Z and e.
There is a result which says that if V' is N, (¢, £) and W = CV where C is an

matrix of constants that has dimensions n x n and rank=n then W is

Na(Cn,CECY). >
Now
V-4 Bu) B ! Zm
Z(2) = Or—l Ir—l Or—l Z(2)
¢ 0 e, 1 €
So the transformation matrix is
Bu B 1
C = Or—l Ir—-l Or—l
0 0._, 1

Consider the matrix containing the last 7 rows and 7 columns of C. This matrix
is an identity matrix of size r and hence is of rank 7. Let 0; be the 2" element of

B and there are r such elements. Perform these row operations on C

1
rowl = rowl— — Xrow?2
2
1 )
rowl = rowl— — X row1
i
1
rowl = 1owl— — xXrowr
T

and finally let
rowl = rowl—row (r+1)

rowl = rowl x —

by
Now the row reduced version of C, Creguced, 1 an identity matrix of size r + 1

and so has rank(Cregucea)=7 + 1 and thus C is of full rank.

Z()
The mean of Z(2) is
Y — A
B, sz) 1 0 ]
Cp=] 0,y Iy 0r 01 | = | Ora
0 0 1 0 ]
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and the variance is

cxzcCt

t ¢ t
By By ! Ay Mg 0 Bu) By 1
= 0-— 1 '»- 1 0.y A@a) ANaay 0roa Or_y Iy 0.,
r 1 ] 0., o? 0 o _, 1

2
B()Aq, ,)+Bm/\(,l) B(1)A(1.2) + B{3,A(2.2) o2 > < B(1) 0:__1 0 )

"(: 1) A(3.2) On_1
0‘ _1 03

A Ba) +"(= 2)B(2) A(2,2) 0r—1

”c Ov-—l T

ByAa.nyBm + B(z)"(a B ‘ )
= +B)Aa.2) By + BoyAanBa to! BmhAaan +Buphaa o

hence
Y- A B'AB 0! B()A(1,2) + By A2y  °F
2(2) ~ Nega -1 . Aa,1) By + Az,2)B(a) A(2,2) 0,._,
a? 0:__1 a?
Now
Y. Y-A A
Z(2) = Z(2) + Op—1
¢ € 0
SO

Y A B'AB +o? B)Aaa) + B(g)A@aa) o
Zgz) | ~ Neps Orr || A@nBa) +A@2)B A(2,2) 0,1
€ 0 a? 0' _1 a2

Theorem 4.5 The marginal distribution of Y and € s
Y N A B'AB +0? o?
~ | ) ;
€ ’ 0 a? o?
Proof

There is a result that says if V' is N,(pe, X) and C is a ¢ x p matrix of constants
with rank(C)=¢(< p) then if W = CV then W is Nq(Cu,CEC‘).ch
Let C be a 2 x (r + 1) matrix where
1 j=Lk=1k#7r+1
C[]vkl: 1 j:27k27‘+1

0 otherwise

v Y
10 .. 00 Y
e (0 0 .. 0 1) @ (e)

So
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v
The C matrix has rank 2 and picks the 175t and (r + 1)* rows of Zy | togive
€
the marginal distribution of ¥ and e.
The mean of Y and e is
C 1 0 = 0 0O A A
“ — —
00 e @ 1 0 0
and the variance is
CAC*
I 0
_ ( 1o .0 0 ) S—_ Poran +Bghay o o
- 0 0 .. 0 1 AanBm +AanBa ’(\)(2.2) 051 :
o -1 (" 0o 0

to give the distribution as required.

Theorem 4.6 The conditional distribuiton of €|} =y is

2 2 t
SE =g (m“’ i ﬂ%%)
Proof
There is a result which says that if V' is N,(u, ) then the conditional
distribution of V(1) given V(3) = v is
No(k() + T12Z 50y (v = k2), Z(1,1) — Z1,2) B 2,2) (z,1)-
The distribution of Y and € is

¥ A B'AB +0? o}
22 N’Z ) 3 .
€ 0 o? o?

This gives p(1) =0, 2y = A, L(1,1) = af, Y,2) = X(2,1) = 03 and
2(2,2) = BtAB St 0';2.

The mean of €|} =y is

B+ 20250 (v - @) = 0+02x (B'AB+07)"'(y — A)

oi(y— A)
B'AB + o2
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The variance of €|} =y is

2,1 — E(1,2)2(_2]‘2)2(2,1) = Uf = U? X 0;2 x (B*'AB + ”;2} I
2 a;

¢ B!'AB + 0?2

0’B'AB

B!'AB + a?

= 0

which gives the distribution of €|Y = y as required.

Therefore the mean of Z;|Y" =Y can be used as an estimate of Z;. Similarly the

mean of €}” =y can be used as an estimate of e.

4.3 Highest Probability Estimates

An alternative method of predicting Z and € is by using calculus with Lagrange
multipliers. In this method the most likely values of Z and € will be found
subject to the condition that Y = A + Z!'B + ¢, the regression equation, found
through experimental design.

Recall the model that was introduced in the previous section with the relevant
information being listed below. The unobservable, uncontrollable variables, Z,
are distributed N,(0,, Az) and A will be written as A for simplicity. The pure
random error, ¢, is distributed as N((),af). Let € and Z be independent and have

joint distribution

1 t A1 ¢
fo(z;f] =dexp —= | z*A z4+ —
' 5 =

where d is a constant required to make fz(z,¢€) a probability density function.

The quality variable, Y, is related to Z and € by the equation
Y =A+2Z'B+e

Finding the most likely value of Z and e for our value of Y = y will involve

maximising fz (z,€) subject to Y = A+ Z'B + €.

Theorem 4.7 If the Variance-Covariance matriz of the joint distribution of Z

and € 1s positive definite then the values of Z and e that mazimise their joint
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distribution ,
1
fz.(z,€) =dexp|—= |2*A7 2 + E
2 o?
subject to
y=A+2'B+e¢
are B
= gaBtot? A
and
. o? 4
‘= gaB o2V A
Proof

The joint distribution of Z and e is

0'2

| e
fz.(2,€) =dexp ~3 i, (ger T S

which is to be maximised subject to the condition that
y=A+2'B+e

This is equivalent to maximising

subject to

Let
L= —toa1, 21 L y—a— 2B -
== 2 572 y z €)
Now
oL
—=-A"'2-)\B
0z

Setting this equal to zero gives

z=-)MB
Also

oL _ € _

de o2

Setting this equal to zero gives

€= —Ao*
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And

ik = y—-A—2z'B —¢

O\
= y—A+\B'A'B + Ao?

Setting this equal to zero gives

/\ = y - ".1
~ B!A'B +0?
Therefore B
: A
2= papr o2 4
and )
o
R T
¢=paBiov A

The final requirement is to check that these solutions give a maximum. The

matrix of second derivatives is

L A-1 L _ -1
020zt — A 0z0¢ — 0- o A 0r
2 2 . "
0 L_:Ol o°L _ —g~2 0:’ g2

Bedzt T Be?

This matrix is the negative inverse of the Variance-Covariance matrix of the joint
distribution of z and e. Given that the Variance-Covariance is positive definite
then its inverse is positive definite. The negative of a positive definite matrix

gives a negative definite matrix. Hence the solutions for z and e give a maximuin.

Note that these solutions match the solutions found by finding the means of the
distributions of Z|Y =y and €|} = y.
Example

Consider the regression equation
y=10+62z + 729+ ¢

with z; and 2 having a multi-variate Normal distribution, with mean zero, and
with a Variance-Covariance matrix of A. Let € have a standard Normal
distribution and be independent of 2, and 2z, and have a joint multi-variate

Normal distribution. 10,000 random multi-variate random Normal variates were
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generated for z;, z2 and € with mean zero and for several different
Variance-Covariance matrices as outlined in Table 4.1.
The specific Variance-Covariance matrices that will be of interest in this example

arc those that have this form

( Ufl 0,,05,p 0
A = O Osaf) o, 0
\ 0 0 1
(1 ¢ it 1.e. in this example
= 1 0
P Oz =0z =1
\ 0 0 1

where p is the correlation coefficient between z; and z;.
Theorem 4.7 relies on this matrix being positive definte. A matrix will be positive
definite if there is a non-singular matrix C such that A = CC". Using Maple the

following matrices were constructed to find C.

>P:=evalm(matrix(3,3,[0,1/(2°(1/2)),1/(2°(1/2))
,0,1/€27(1/2)),1/(2°(1/2)),1,0,01)) ;

[ 1/2 1/2 1]
ifo - 122 2 1/2 2 ]
[ ]
P:=[ 1/2 1/2 ]
ifo 2 2 1/2 2 ]
[ ]
i i 0 0 ]

> Ahalf:=evalm(matrix(3,3,[1,0,0,0,(1-rho) " (1/2)
,0,0,0, (1+rho) " (1/2)1));

[1 0 0 ]

[ ]

( 1/2 ]

Ahalf := [ 0 (1 - rho) 0 ]

[ ]

( wai

[0 0 (1 + rho) ]
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> C:=evalm(P&*Ahalf) ;
[ 1/2 1/2 1/ 2 1/2 ]
L0 - 142 2 (1 - rho) 1/2 2 (1 + rho) ]
[ ]

C:=1[ 1/2 1/2 1/2 1/2 ]
[ Q2% (1 - rho) 1/2 2 (1 + rho) ]
[ ]
[1 0 0 ]

> evalm(C&*transpose(C));

F 4 Bio @1

[ ]
0RhE W a]
[ ]

[ o 0o 1]

So there is a matrix C, namely C = P x Ahalf, such that A = CC"'. C will be
non-singular as long as p doesn’t equal £1. Therefore A is positive definite and
the theorem will hold for all values of p except *1.

10,000 estimates for z;, 2o and € were created using the estimators from the
Largrange method. These were compared with z;, 22 and € and an estimated
MSE for each Variance-Covariance combination and estimator was calculated.

The results are contained in Table 4.1.
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Table 4.1: This table gives the sample Mean Square Error for each estimate of z,

2o and e for different Variance-Covariance matrices of the joint distribution of z;,

2o and e.
Variance-covariance | Total Variance | Variables Estimated MSE

Matrix B'AB + o? E(predicted — actual)?

1 00 4 0.5852

010 85 29 0.4356

W 1] € 0.9891

I om6 ' 2 0.1504

0.7 1 0 148 22 0.1121

0 0 1 € 0.9925

t 075 9 21 0.9775

—0.75 1 0 22 ) 0.7288

0 0 1 € 0.9546

The figures that follow give a visual indication of how well the estimators of z and

e do for different values of the Variance-Covariance matrix.

Case 1.

The Figures 4.1, 4.2 and 4.3 give time series plots of the first 30 values of z,, 2

and e and their estimates when the Variance-Covariance matrix is

1 0.75 0
075 1 0
0 0 1

A=
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Z1 and Prediction of Z1 for p=0.75

Rteration
The z values are joined by solid lines.

The 2, values are joined by broken lines.

Figure 4.1: The graph of the value of z; and the predictions of z; when the covari-

ance (and correlation) between z; and zp is 0.75.

Z2 and Prediction of Z2 for p=0.75
1

Hteration
The 2z, values are joined by solid lines.

The 2, values are joined by broken lines.

Figure 4.2: The graph of the value of z; and the predictions of z; when the covari-

ance (and correlation) between z; and z is 0.75.
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Epsilon and Prediction of Epsilon
for p=0.75

10

Value
40 05 00 05

15

Neration

The € values are joined by solid lines.

The € values are joined by broken lines.

Figure 4.3: The graph of the value of € and the predictions of € when the covariance

(and correlation) between z; and z; is 0.75.

Clearly the estimators of z; and z, are doing a good job while the estimator of €

is doing a poor job.

Case 2.

The Figures 4.4, 4.5 and 4.6 give time series plots of the first 30 values of z;, 2,

and e and their estimates when the Variance-Covariance matrix is
1 —-0.75 0

A= =075 1 0
0 0 1
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z1 and Prediction of z1 for p=-0.75

0 10 20
Reration

The z, values are joined by solid lines.

The 2, values are joined by broken lines.

Figure 4.4: The graph of the value of z; and the predictions of z; when the covari-

ance (and correlation) between 2z, and z;, is -0.75.

22 and Prediction of 22 for p=-0.75

Value

0 20 33
Resation

The 2, values are joined by solid lines.

The 2, values are joined by broken lines.

Figure 4.5: The graph of the value of 2, and the predictions of 2, when the covari-

ance (and correlation) between z; and zy is -0.75.
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Epsilon and Prediction of Epsilon
for p=-0.75

s

Value
os 10

10 05 00

15

0 0 2 w
HReration
The € values are joined by solid lines.

The € values are joined by broken lines.

Figure 4.6: The graph of the value of € and the predictions of € when the covariance

(and correlation) between z; and 29 is -0.75.

In this case the estimators for z;, 2o and € are doing a poor job. The performance

of the estimators varies.

4.4 FEvaluating the Performance of the

Estimators

From the examples in the previous section it is obvious that the estimators 2 and
¢ vary in their ability to estimate z and e well. Therefore a measure of how well
those estimators perform would be a useful tool. A way of making a measure is to
consider the Mean Square Error between 2z and z and between € and e. Recall

that the estimators of z and € are

R AB

v BtAB+az(y_ A)
and ;

A a

‘= BaBr2? Y

Theorem 4.8 The Mean Square Error of z for z is

ABB'A

E(2-2)(2-2)Y)Y=A- BAB 1 oF
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Proof

Consider

E((2-2)(2-2)") = E((2-2)(2'-2Y)
= E(23') — E(22') — E(22") + E(22")

Evaluating each expectation separately gives

1)
AB B'A
2z') = (Y - A) (Y - A)
B(22) E(B‘AB v 4)B‘AB+UE)
AB o 3 B'A
"~ B'AB + rffb((} V) gaB + 02
- AB ; 5 B'A
~ B'AB +o? (B'AB +07) g+ o2
~ ABB'A
" B!AB +o0?
since
E((Y - A)?) = E((B'z+¢)?%
= Var(B'z) + Var(e)
since E(B'z) =0, E(¢) = 0 and Z is independant of ¢
= B'AB +0?
2)

2 " AB =
Biaw) =.E (m“‘ - A)"‘)
B AB : ;
- mﬁ’ ((B z+e€)z )
o AB t 1 o ot
= m(BE(ZZ)"‘E(fZJ)
ABB'A

B'AB + 0?
as

E(ez') = E()E(z) = 0,
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3)
. AB !
B ) = E( (““”A)m))
B'A §
__E<dy_m(B%B+oﬁ>
B'A
o t
= (E(ZZ )B+E(Zf)) m
_ ABB'A
~ B'AB +0?
4)

E(zz') =wvar(z) = A
Putting these together gives

E((2-2)(z-2)") = E((2-2)(2'-2'))
= FE(22') - E(22') — E(22") + E(22Y)

ABB'A  ABB'A  ABB'A
~ BAB+o? BAB+o! BABtoa?
_ . _ABBA
B'AB + o2

_ _ABB'A . . e wh ‘th Sth
Now A BIABo? IS @ square matrix with the ",

which is the Mean Square Error of z; for z;.

Similarly a Mean Square Error can be generated for €.

Theorem 4.9 The Mean Square Error of € is

4
2 g,

+ £ 2 — . F——
E((f f) ) O'E BtAB +0;2

Proof
Cousider

E((¢ — €)®) = E(¢%) — 2E(ée) + E(¢?)

Evaluating cach expectation separately gives

1)
I oY = A) \"
E(EZJ = F ((__B:(ﬂ B 1 )2) )

element being E((z; — 2;)?)
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1

E(ée) =

3)

Putting these together gives

E((¢ —€)?) = E(é) —2E(é) +

O
B'AB + o2
4

s 0_2 (rr

Example Continued

Using the model and data from the previous example means that the Mean

E(é%)

2 0';1 + 0,'2
BAB +02)

<~ BIAB + o2

Square Error for each estimate can be generated and compared with those found

from the simulation. This data is in Table 4.2.
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Table 4.2: This table gives the sample Mean Square Error and theoretical Mean
Square Error for each estimate of z;, z2 and € for different Variance-Covariance

matrices of the joint distribution of z;, 29 and e.

Variance-covariance | Variables | Estimated MSE | MSE
1 00 Z) 0.5852 0.5813
010 29 0.4356 0.4302
00 1 € 0.9891 0.9883

1 075 0 21 0.1504 0.1506

0.7 1 0 2y 0.1121 0.1124

0 1 € 0.9925 0.9933

1 —-0.75 0 Z) 0.9775 0.9755

-0.75 1 0 29 0.7288 0.7282
0 0 1 € 0.9546 0.96

The actual values of the Mean Square Error are very close to those found through
simulation.

The Mean Square Error for each variable, z;, 2, and ¢, depends on the
correlation, p, between z; and z;. Using the model from the example above with
different values of p enables the Mean Square Error for each estimate to be
plotted against the correlation coeffcient.

In Figure 4.7 the Mean Square Error of 2z, for z; has been plotted against the

correlation coeffcient of z; and zs.
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The Mean Square Error for the Estimate of

2 71 Versus the Correlation Coefficient
]

w3

L

m

£

w

c

o8

=
| Ry

-10 -05 00 0s 10
Corrrelation Coefficient

Figure 4.7: The graph of the Mean Square Error for 2, the estimate of 2y, versus

the Correlation Coefficient of z; and z,.

The estimate works best when the MSE is smallest. For this case this is when p
tends to 1 and is A/SE = 0.006. The MSE peaks at p = —(.857 with a value of
the MSE = 1. In comparison estimating z, with a random standard Normal
variate would give a MSE of 2.

In Figure 4.8 the Mean Square Error of 2, for 2, has been plotted against the

correlation coeffcient of z; and zy.

The Mean Square Error for the Estimate of
Z2 Versus the Corrrelation Coefficient

Mean Sguare Error

-1.0 05 00 0s 10
Corrrelation Coefficient

Figure 4.8: The graph of the Mean Square Error for 2,, the estimate of 24, versus

the Correlation Coeflicient of z; and z,.

For this case the MSE is smallest when p tends to | and is MSE = (0.006. The
MSE peaks p = —0.881 with a value of MSE = 0.755.
In Figure 4.9 the Mean Square Error of € for € has been plotted against the

correlation coeffcient of z; and zy.
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The Mean Square Error for the Estimate of

jlon Ver I
a
-
— 0
[=]
2
=
u-lh
oo
®
m
=2
o,
No
c
]
=3
-
-
1.0 05 00 0s 10

Corrrelation Coefficient

Figure 4.9: The graph of the Nean Square Error for €, the estimate of €, versus the

Correlation Coeflicient of z; and 2z

For this case MSE is smallest when p tends to -1 and is MSE = (.5. The MSE
peaks when p tends to 1 with a value of AISE = 0.994. However for p > —0.90
the MSE is greater then (.9.

These estimates vary widely in their ability to estimate 2|, z2 and € well.

4.5 Sensitivity to Changes in the Process

During on-line process control the quality control variable, Y, is recorded on an
X-Chart. Control Limits are set at yty- + 30y and any observations falling outside
these limits are investigated. There are two occasions when this can occur

1) when the observation falls outside the control limits purely by chance or

2) when there has heen a change in the system e.g. a change in process mean or
variance.

The occurance of an observation outside the control limits when it happens
purely by chance is called a false alarm. The probability of a false alarm when the
control limits are sct at yiy £+ 30y has a value of 0.0027 or 2.7 observations in
every 1000. The average run length to a false alarm, ARL-to-false-alarm, is 370
observatious.

[t is costly to have a system that generates false alarims and so it is beneficial to
have the ARL-to-falsc-alarin statistic as large as possible. When there has been a
change in the process mean or variance then it is beneficial to have this change

detected as quickly as possible. The average run length to detection,
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ARL-to-detection, counts the number of observations from a change in the
process until an out of control condition is found. The smaller the
ARL-to-detection the better.

In order that the estimates of z and e are to be useful in detecting changes in the
system they must have large values of ARL-to-false-alarm and small values of
ARL-to-detection. They must also be able to point out which particular variable

is the cause of the change.

4.5.1 Example

Consider again the example given in the previous section i.e. The regression
equation is

y=10+621+722+6

with z; and 2, having a multivarjate Normal distribution with mean zero and
variance A. Let € have a standard Normal distribution and be independant of z;
and z,. Together let all three variables have a multivariate Normal distribution.
One hundred thousand variates were generated for z;, z, and € with mean zero
and Variance-Covariance matrix

1 p 0O

p 1L 0

00 1)

w here p is the correlation between z; and z,.

Finally z|, z; and € were used to generate y which was in turn used to give the
estimates 21, 2, and €. This was repeated for different values of p.

These estimates will now be evaluated for their use on X-charts.

The control limits for each X-chart were set at three times the variables variance.
In this case all three variables had control limits at +3. Three counts were made
for each estimate. A count

1) of when the variable and it estimmate were both outside the control limits

2) of when the variable was outside the control limits and the estimate was inside
and

3) of when the variable was inside the control limits and the estimate was outside.

These counts are graphed in Figures 4.10, 4.11 and 4.12 for different values of

p, the correlation between z; and z,.
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Counts For Factor z1

30

25
-

20

10

Counts (per thousand)

oo o5
!
A
w .
\

-10 -05 0.0 05 10
Correlation between z1 and z2

A count of when
1) z; and 2, were both outside the control limits
2) z, was outside the control limits and 2, was inside and

3) z was inside the control limits and 2, was outside.

Figure 4.10: Counts of z1 and its estimate for being inside and outside the control

limits.

l)Line 2

When —1 < p < 0.25 the estimates of z; do not estimate z; as well compared to
when 0.25 < p < 1. In the former region 2, is underestimating z;. This is reflected
in line 2 where the count is of the number of times z; is outside the control limits
and 2, is inside. This count is the highest of the three counts and its value is
observed to be in the interval (2.5, 3) per 1000 variates. From the point of view of
estimation this underestimation is poor behaviour but in terms of quality control
this behaviour is welcome since it indicates a large value of ARL-to-false-alarm.
2)Line 1

For line 1, which counts when z; and 2, are both outside the control limits, the
count is remaining close to zero per 1000 variates until 0.25 < p < 1 where it
increases steadily to peak at a count of 2.2 per 1000 variates. In the region

-1 < p < 0.25 there will be a very low probability of getting a false alarm but
this will increase steadily in the region .25 < p < 1.

3)Line 3

For line 3, which counts when 2z, is within the control limits and 2, is outside the
control limits, the count is remaining close to zero per 1000 variates until

0.25 < p < 1 where it increases steadily to peak at a count of 0.4 per 1000
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variates. In the region —1 < p < (.25 there will be a very low probability of
getting a false alarm when the process is under control. In the region

0.25 < p < 1 there is a small probability of generating false alarms when the
estimate for z; is within the control limits.

The number of false alarms per 1000 variates ranges from 0 to peak at 2.6 at

p = 1. In comparison to an X-Chart of the quality control variable }" with 2.7
false alarms per 1000 variates this offers a very good to slight improvement.

The graph for z7 is in Figure 4.11. It is very similar to z;. The relatively minor
change is that 2z, is estimated comparatively better for smaller values of p i.e. for

0<p<l

Counts For Factor z2

os 10 15 20 25

Counts (per thousand)

oo

-

10 10

05 (sXe) L]
Correlation between 21 and 25
A count of when

1) 22 and 2, were both outside the control limits
2) 2z, was outside the control limits and 2, was inside and

3) zo was inside the control limits and 2, was outside.

Figure 4.11: Counts of z2 and its estimate for being inside and outside the control

limits.

A similar graph for € is in Figure 4.12.
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Counts For Factor epsilon

1.0 1% 20 25

os
L

18&3

Counts (per thousand)

0o

-1.0 05 oo o5
Correlation between z1 and z2

A count of when
1) € and € were both outside the control limits
2) € was outside the control limits and € was inside and

3) € was inside the control limits and € was outside.

Figure 4.12: Counts of epsilon and its estimate for being inside and outside the

control limits.

For € there will never be a false alarm generated. This is because the estimates
for € are comparatively poor and are severely underestimating e.

The behaviour of our estimates appears to have some useful features when the
process is under control i.e. the ARL-to-false-alarm is high. Now their behaviour
will be compared when the process is not under control.

Suppose there has been a 30,, shift in the mean of 2; i.e. the mean on 2; is now
3. That is equivalent to 1.950y shift in Y when p = 0. 5000 values were
generated for 2y, 25 and € under this new distribution and were used to generate
Y. Subsequently Y was used to generate Z;, 2, and €. An X-Chart for the first 50

values of Y when p =0 is in Figure 4.13



CHAPTER 4. ON-LINE QUALITY CONTROL 185

X chart for Y
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Figure 4.13: An X-Chart of the First 50 values of Y for p =0

The X-Chart of Y shows that there are about seven out of control points. For
this shift of 1.95ay the ARL-to-detection was found to be 6.9. In [1] the
ARL-to-detection for a 20y shift was given as 6.

In Figure 4.14 is an X-chart of z; and 2;. The whole line represents 2, and the
broken line Z,. The former has clearly had a change in mean and the
ARL-to-detection for this data is 2.01. This corresponds to the theoretical value
of 2. This is lower than the ARL-to-detection for Y so being able to observe z)
would be invaluable.

In comparison the ARL-to-detection for 2; is 238.10. This is clearly very poor.

X chart of Z1 and its Estimate

M/\Vn N

4

2

1]

2

0 20 3 40 30
Observation Number

Values of 21 and its Estimate

The whole line represents z;.

The jagged line represents 2.

Figure 4.14: An X-Chart of the First 50 values of z; for p =0

In Figure 4.15 there is an X-chart of 29 and 25. The whole line represents 2z, and
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the broken line 2,. 29 has clearly had no change in mean. The ARL-to-false-alarm
for z9 is 416.67 which is higher than the theoretical value of 370.

In comparison the ARL-to-false-alarm for 2, is 50.51. This is clearly very poor.

X chartofZ2 and its Estimate

8]

2

1

Q

2

3

R 9 » M M
Observation Number
The whole line represents z;.

Values of 22 and its Estimate

The jagged line represents z,.

Figure 4.15: An X-Chart of the First 50 values of 2, and 2, for p =0

In Figure 4.16 is an X-chart of € and é¢. The whole line represents € and the
broken line é. € has clearly has had no change in mean. The ARL-to-false-alarm
is 384.61 whic is close to the theoretical value of 370.

In comparison the ARL-to-false-alarm for € is > 5000 for this set of 5000
observations. This is because at this value of p the estimate € is severely

underestimating e.

X chart of epsilon and its Estimate

3

Values of of epsilon and its Estimate
1 -] 1 2

o

0 0 0 © =
Observation Number

The whole line represents e.

The jagged line represents €.

Figure 4.16: An X-Chart of the First 50 values of € and ¢ for p =0

X-Charts of 2}, 23 and € are giving no more information about the behaviour of
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the system than a X-Chart of Y. When the system was given a 3o;, shift in the
mean of z; then both 2; and 2z, expressed some degree of that change rather than
being solely reflected in the estimate of 2;. In fact the ARL-to-detection turned
out to be lower for Z, than ARL-to-detection for Z,. This would mean a user
could suspect that it was 2z, that had a shift in mean rather than z; i.e. an out of
control condition is more likely to be observed in z, than z;. This is the opposite
to what is wanted.

The reason that the ARL-to-false-alarm turned out to be lower for Z, than
ARL-to-detection for 2| is in the way the estimates are caclulated. Recalling that
t= BB Al
Each element of AB is less than B'AB + o2, the denominator in the estimate, so

the estimates carve up Y — A in proportion to the fraction %ﬁaﬂr.. Now the
denominator is a constant for each estimate so the part that changes from
estimate to estimate is contained in the differences between the rows of AB. In
the case in the example above Z, always takes a 7% proportion of y — A and 2,
always takes an 8% proportion. This happens whether there is a change in mean
of one of the variables or not. If the mean of one factor increases then }" — A
increases and all the factors increase in order to still carve up y — A to the same
percentage.

In this example 2, is always going to be slightly larger than 2;, because it carves
up y — A with the bigger percentage, and therefore will be more likely to fall
outside the control limits.

A similar situation occurs when a factor has had a change in variance rather than
a change in mean. Using the data from the same example again but this time
with an increase in the variance of z;. This would give an increase in the variance
of Y — A. However there would still be the same proportions of y — A attributed
to z; and 2, i.e. 7% and 8% respectively. There is no ability in these estimates to
he able to distinguish which factor out of 2, and 2, was associated with the
variance change.

For these reasons an X-Charts based on z and é cannot be recommended.

It is very unfortunate that accurate estimates of z and e can’t be found under
process shifts in mean or variances. Their ARL-to-detection statistic is lower than
for the same statistic for the variable Y~ while having the same value for
ARL-to-false-alarm.
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4.5.2 Comments

It is obviously very valuable to have some means of tracking the unobservable
uncontrollable factors and detecting when they have had a change in mean or
variance. The estimates presented here can, in some cases, provide very good
estimates of the values of the unobservable uncontrollable factors. However
comparing an X-chart of these estimates with an X-chart of the quality response
showed that the former X-chart has larger ARL-to-false-alarin values. Also, if
there is a change in the process, these estimates are unable to reflect which
factors have changed and their resulting estimation ability deteriorates. Therefore

X-charts of these estimates can’t be recommended.
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Chapter 5
Concluding Remarks

This thesis has demonstrated methods for utilising the information in the
uncontrollable factors that has not been previously recognised in Parameter
Design. These uncontrollable factors can be split into those that are not
observable and those that are. Using the information available in the observable
uncontrollable factors has allowed for choosing settings of the controllable factors
that optimises the quality variable in some way. This could be minimising the
variance while keeping the mean on target, minimising the Mean Square Error
about the target or minimising an adjusted Mean Square Error.

The uncontrollable factors change their value over time. This means moving the
controllable factors to a new setting to optimise the response. Methods were
given for making these moves in order that a function of the quality response,
taken over the complete movement, was minimised.

Finally the information that comes from observing the quality response, the
controllable factors and the observable uncontrollable factors, allows for the
estimation of the unobservable uncontrollable factors. Using these estimators as
values on an X Chart were considered. However the X chart of these estimators
was found to be less useful than an X chart of the response. The former had
larger ARL-to-false-alarm values and failed to give information about which
factors were out of control i.e. the charting of the etimators provides less

information than charting the response.
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Appendix A
Review Details

The review chapter of this thesis was originally written for my Masters thesis. It
was used as a jumping off point for the work in the Ph.D. For this publication it

has been updated and revised. The following table lists the changes made.

Section | Changes

1.1 Revision and additional material

1.2 Minor revisions and additional material
1.3 Very minor revisions

1.4 Revision and additional material

1.6 Additional material

1 New material

1.8 New material

1.9 Minor revisions
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Appendix B

A Publication From This Thesis.

This paper, based on some of the work in chapter 2, was published in the Journal

of Quality Technology, vol 28, 153-162.
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Observable Uncontrollable Factors
in Parameter Design

MEGAN PLEDGER

Massey University, Palmerston North, New Zealand

Parameter design does not take into account the common occurrence that some of the uncontrollable

factors are observable during production. The extra information any observable uncontrollable factors
provides should enhance our choice of values for the controllable factors that both keeps the mean response
on target and reduces the variance. This paper describes an approach to explicitly introduce uncontrollable

factors into a designed experiment.

Introduction

N his ideas for parameter design, Taguchi splits the
factors into two sets. One set is referred to as
the controllable factors and the other as the uncon-
trollable factors. Although several different methods
of analysis have been used, the underlying idea is to
choose levels for the controllable factors so that the
uncontrollable factors have the least influence on the
response. The mean response should also either hit
some target, be minimized, or be maximized. In this
paper the problem of hitting the target will be exam-
ined.

The different analysis methods fall into two groups
depending on the way the uncontrollable factors are
treated. Taguchi sees parameter design as a pre-
production technique where the uncontrollable fac-
tors are designed into the experiment. His method
uses inner and outer arrays and the S/N ratio. Box
and Jones (1992) advocate the use of split-plots,
while Vining and Myers (1990) and Myers, Khuri,
and Vining (1992) use response surface methods.
Box (1988), Engel (1992), and Nelder and Lee (1991)
have given different methods of analysis where the
uncontrollable factors need not explicitly enter into
the design but are accounted for in the analysis by
the replication of the design points of the controllable
factors. A summary and discussion of these methods
was given in Nair (1992).

Whatever the method of design, with the choice
depending on the situation, the appropriate model is
found in terms of the controllable factors. However,

Ms. Pledger is a doctoral student in the Statistics Depart-
ment.
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when the process is running some of the uncontrol-
lable factors may be observable. This additional in-
formation should enhance our choice of the levels of
the controllable factors. In this paper the uncontrol-
lable factors are split into two sets, observable and
unobservable. In the first set there may be factors
like temperature and humidity, while in the second
there may be component quality which may be un-
measurable due to expense. The aim is to find a rela-
tionship between the controllable factors and the ob-
servable uncontrollable factors while simultaneously
minimizing the variance of the response and keeping
the mean response on target. During the production
process, whenever a particular value of an observable
uncontrollable factor occurs, an appropriate value for
the controllable factors can be generated that meets
the stated objective.

In practice, the type of observable uncontrollable
factors that would give the most benefits are the
ones that change smoothly over time, like temper-
ature and humidity, or ones that have a slower rate
of influence than the production rate. Certainly, if
an observable factor changes value in wild swings, it
would not be sensible to make continuous invasive
adjustments to the product or process. Rather, it
would make sense to implement formal control over
such a factor.

Example

As an example consider the model below, which is
an extension of the ideas in Myers, Khuri, and Vining
(1992).

At time i, let y; represent the response, x; the
controllable factors, t; the observable uncontrollable

Journal of Quality Technology
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factors, and z; the unobservable uncontrollable fac-
tors. The aim here will be to minimize variance of
., while keeping the mean on target and finding a
relationship between x; and t,.

Let the model for the quality respouse variable, y,
he

vilxi, b 2o =00 + XiB1 + ;82 + 2.8 (1
+ XX t; + 2, Eox; + 2 Byt + ¢

where the response is dependent on x;, t,, and z;,
and Bpis1 x 1, B1ispx1,Bisqgx 1, Byisr x 1,
x,ispxl,tiisgx1l,ziisrx 1,3 ispxgq X2 is
rxp, Lz isrx q, t; ~ Dist(0,A,), z; ~ Dist(0, A,),
and ¢, ~ Dist(0,0?), where “Dist” represents some
distribution. The last requirement is that ¢, t, and z
be independent.

Now
Ey(Yx,, t;) = Ez(Ey(Yilxi, ti,2.))
= Bo + x.01 + t\By + x;Z1t,
and
Vary (Yi|x,, t,) =Ez(Vary (Yilx, ti,2,))
+Varz(Ey(Yx|Xi,tuzx))
=02 + Varz(fp + x\B) + .3,
+x; 2t + 2,(B3 + Tox, + E3t,))
=0l + (B3 + Toxi + Tat,) Az
x (B3 + Lax; + Xat;).

We wish to minimize Vary (Yi]|x,,t,) subject to
T = Ey(Y,|x,,t,), where T is the target. Using La-
grangian minimization, we get

x; = (2D'B)"'(F + 2E'B)D - E (2)

where, assumning that A is invertible,

ToA %) 7!

]
—

(ﬁl its E1tt)
2A2(83 + L3t,)

([ -
> > M-
oe

C

A
B
C
D
E
F=T-0-t.3;.

(See Appendix A for details.) So during production
the values of the observable uncontrollable factors

Journal of Quality Technology

t, would be used with (2) obtain the valucs of the
controllable factors, x;.

The usual method of parameter design is to treat
t, and z; as onc group and find a value for x; that
keeps y, on target with least variance. In this case

Ey-(Yilx,) = Er(Ez(Ey (Yilxi, ti, 2,)))
=y + Xiﬂl

and

Vary (Yilx,) =L (Ez(Vary (Yilx;, ti,2,))
+ Varz(Ey (Yi|xi, t:,2:)))
+ Var;(Ey (Yilxi, ty))
=0, + (Bs + T2x:) A2(B3 + Tox,)
+ tr(Z5A2383A0)
+ (B + Tix:) A (B2 + ixi). (3)

(See the results in Appendices B and C, respectively.)

Now we wish to minimize Vary (Y;|x;) subject to
T = Ey (Y,|x.). Using Lagrangian minimization once
nore we get

x;" = (K'B) (T-Fo+IB)K-J (4
where, assuming G is invertible,

G = (2’21\222 + E|A12’1)_l
H =38 + 216,

B
K =G:2
2
J = GH.

(Sce Appendix C for details.)

Now for some values of t, x* may predict a value
for y, that is closer to the target then that predicted
for x?. To compare the two predictions the statistic
E((y, — T)?) will be cousidered.

For x?,
E(yi|x;,t:) = Bo +x;"B1 + t;B2 + x{" Tt
S0
By, - T)* = E(y - E(ylxi, t:))* = Var(ylx;], t.).
lor x;°,
E(ylx") = o + x;"" By

= E(y.|x;" t,) — (6,82 + x." 1 t,)

Vol. 28, No. 2, April 1996
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SO

E(y.-T)? = E(y. - E(yilx{"))?
= E(yx . E(y.|x“ ti) + t:ﬂ2 + x:.'zlt1)2

TR}

= Var(ylx;", t:) + (tiB2 + x}" B1t:)*.

So far two methods have been specified (i.e., us-
ing x; or x;* exclusively). A third approach is to
use either method depending on the value of t;. On
observing a value of t;, calculate E(y; — T')? for x;
and x!* and choose that corresponding to the least
E(y, — T)? value.

In practice the model is specified, but the coeffi-
cients of the model are unknown and these are found
by experimentation. These estimated coefficients are
used to give estimates of y;, x;, E(y:i), and Var(y;),
denoted by 7., X, ﬁ(y,), and \//;r(y,-), respectively.

Simulation

To illustrate these procedures let the underlying
modecl he

yi|xl,t,,z. =100 + 5z, + Tz — 4t; + 3t — 52y
— 0629 —dx it + 6112y — TT1292 — 3zots
— Trg29 + 8t127 — 8tazo + € (5)

where ¢ is distributed as Normal (. = 0, o2 = 10),
and the target is T = 100. The first step in parame-
ter design is to do an experiment with all the factors
at fixed levels. This was done with a 26~! factorial
design, and the results are given in Table 1.

The model found was

¥ =100.06 + 4.98z, + 6.4512 — 3.55¢; + 3.74t
—4.862; — 6.8529 — 3.57xty +6.11x,2,
—6.98z,29 — 2.15Tty — 7.36x227 + 8.24t2;
— 8.58t725.

2 ~21 _
¢ "% =

The residuals were used to estimate o 2
11.56. Four simulations will be used to compare
four different methods. In each simulation the same
100,000 standard normal random variates will be
used for t,, z;, and ¢;. The t; and the z; are standard

normal, and ¢ is distributed as N (g = 0,02 = 10).

For simulation 1, equation (2) was used to gener-
ate the X! from the t,. The equations for I, and Z,
in termns of t; were generated in Maple (1994) and
appear in Table 2. The X! and t; were used with
the z, to generate the y7 using the regression model

Vol. 28, No. 2, April 1996

TABLE 1. The Experimental Design and Responses for
a 26'l Factorial Design in x), x2, t1, t2, 21, and z3

FFactors
Ty, To b to z, 29 Response
-1 -1 -1-1-1 -1 91.5311
1 -1-1-1-1 1 110.09547
-1 1 -1-1-1 1 120.90064
1 1-1-1-1-1 133.24822
-1 -1 1~-1-1 1 99.8026
1 -1 1 -1-1-1 71.35239
-1 1 1-1-1-1 101.25509
1 1 1-1-1 1 78.83396
-1 -1-1 1-1 1 106.93987
1 -1 -1 1-1 -1 134.56421
-1 1 -1 1-1-1 138.35204
1 1 -1 1-1 1 98.02461
-1 -1 1 1-1-1 96.73753
1 -1 1 1-1 1 78.68531
-1 1 1 1-1 1 92.89983
1 1 1 1-1-1 125.50157
-1 -1 -1-1 1 1 79.88534
1 -1 -1-1 1-1 93.51969
-1 1 -1-1 1-1 80.66505
1 1 -1-1 1 1 96.4498
-1 -1 1-1 1-1 58.77738
1 -1, B 1L 1 96.73602
-1 1 1-1 1 1 101.59202
1 1 1-=-1 1+ 126.37272
-1 -1 -1 1 1-1 75.88907
1 -1-1 1 1 1 87.37854
-1 1-1 1 1 1 66.28703
1 1-1 1 1-1 143.92734
-1 -1 1 1 1 1 93.3468
1 -1 1 1 1-1 122.44309
-1 1 1 1 1-1 116.39455
1 1 1 1 1 1 83.3959

in equation (5). The variance of y7 was 67.72 £ 1.10
and the mean 100.40 + 0.03. The variance of g, can
be broken into three components due to: (1) €, (2)
the influence of the random variable z and its inter-
action with = and ¢, and (3) the use of the estimated
coefficients. The size of the latter can be estimated
by generating y with € and z; equal to zero while
keeping X! and t; as before. The resulting variance
was 1.37. This variance would decrease with the in-
creased accuracy of estimating the coefficients.

For the second simulation, equation (4) was used
to obtain X;* = (0.0358, —0.0363) giving Var(y) =
249.40 from equation (3). The underlying model is
known in this case, so Var(y) can be calculated, and
it is Var(y) = 223.67. Using X;* and the previous t,
and z,, the y7* were generated from the regression
model in equation (5) to give a sampling variance of
223.74 £ 1.43 with a mean of 99.97 £+ 0.05.

Journal of Quality Technology
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TABLE 2. Maple (1994) Output giving the Relationship
between the Controllable Factors and the
Observable Uncontrollable Factors

xstar := i
[(- 6.920059986 - 4.847453307t1 + 4.814515614t12
- .1496378740t2 - 2.752304982t2t1 + 2.507256324t22)
(.01532797490 + .04782552040t1 - .02734032426t2)/(
.4020299378 + .1094442124t1 + .1707409638t12
- .3189447000t2 - .1952143239t2t1 + .09853725602t22)
+ .7962406109 - 1.348573357t1]
[- (- 6.920059986 - 4.847453307t1 + 4,814515614t12
- .1496378740t2 - 2.752304982t2t1 + 2.507256324t22)
(.07415264317 + .04538610643t1 - .04581858850t2)/(
.4020299378 + .1094442124t1 + .1707409638t12
-~ .3189447000t2 - .1952143239t2t1 + .09853725602t22)
- 1.687182865 + 1.279787306t1 - 1.165842752t2)

By accounting for the specific values of the t; when
choosing the X;, an approximately 70% decrease in
variance was achieved. Histograms of the two data
sets, shown in Figure 1, illustrate the reduction in
the variance of the response y; from simulation 2 to
simulation 1.

30000

10000

o ___Illllll IIII-l___
—r .
80 100 120

Response for Simulation 1

140

30000

10000

———

60 80 100

Response for Simulation 2

T
120 140

FIGURE 1. Histograms of the Responses Collected in
Simulation 1 and Simulation 2, Showing a Reduction in

Variance by Accounting for the Observable Uncontrollable
Factors. '
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It is possible to generate a Box-type model (Box
(1988)). In this method the uncontrollable factors
do not enter into the experiment or the modeling
process explicitly. During the experimental stage the
design is replicated so that at each distinct design
point there are multiple readings. The means and
variances are collected at each point. They are both
used as responses to be explained by the controllable
factors. The 26! design was converted into a 22
design in z; and z, with 8 replications at each design
point. The mean and variance at each design point
were collected, and the model was

1 =100.06 + 4.98z; + 6.45z2 — 0.76zx, z
log(s) = 3.04 + 0.10z, + 0.13z — 0.07z; z,.

Calculus shows the values of z; and z, that mini-
mize log(s) while keeping 2 on a target of 100 are
(—0.0026, —0.0067). The model predicts a variance
at that point of 433.87. Simulation 3, using these x;
with the previous t; and z,, gives a sampling vari-
ance of 223.49 + 1.42 and a mean of 99.99 + 0.03.
Again, accounting for t; in calculating x, has given
an improvement over an accepted method.

The third approach is to calculate E‘(y —T)? for
both X; and X;* and to use the X; that minimizes
E(y - T)%. Using Maple (1994), both expressions
were derived in terms of t; and t,. A contour plot of
E(ylx:‘, t; —T)? — E‘(ylx;,t,- - T)? =0is in Figure
2. The smaller regions denote where X!* has lower
E‘(y - T)? than X;.

A fourth simulation, using x;* when t, falls in
the enclosed regions and x; otherwise, gives a inean

. N

FIGURE 2. A Contour Plot of E(y|x!*.t; — T)? —
Eyilx;.ti—T)? = 0.

Vol. 28, No. 2, April 1996
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TABLE 3. Summary of the Simulation Results

Standard Standard
Error of Error of
Simulation Mean Mean Variance Variance
1 100.40  0.03 67.85 1.10
2 99.97  0.05 223.74 1.43
3 99.99 0.05 223.49 1.42
4 100.18 0.03 65.44 0.62

and variance for the response as 100.18 + 0.03 and
65.44 +0.62, respectively. This approach shows little
improvement over using X! exclusively because only
8.9% of the t; fall in the enclosed region. When the
probability of the t, falling in such regions is larger
this approach may give greater improvements.

A summary of the four simulations appears in Ta-
ble 3.

Complications

In the typical inner/outer array, only the main ef-
fects and the interactions between the controllable
and uncontrollable factors can be estimated (i.e., ev-
erything in equation (1) except £3). However, espe-
cially when using response surface methods, it may
be the case that an experiment is designed to produce
a model containing interactions or quadratic terms or
both. Adding terms like x;¥x; to the model allows
no closed-form solution for x;.

Other problems are that the x; found may not be
in the experimental region or that A or G or both
are not invertible. These problems can be overcome
with numerical solutions and appropriate upper and
lower bounds on x;.

A Second Example

Engel (1992) reports an experiment to improve an
injection molding process by minimizing the shrink-

157

TABLE 4. The Factors in the Injection
Molding Experiment

Controllable Uncontrollable

A, Cycle Time M, Percentage Regrind
B, Mold Temperature N, Moisture Content
C, Cavity Thickness O, Ambient Temperature
D, Holding Pressure
E, Injection Speed
F, Holding Time
G, Gate Size

age of the product. The experiment consists of the
seven controllable factors and three uncontrollable
factors listed in Table 4. The experiment design and
the responses are in Table 5.

Of the noise factors, percent regrind appears to be
unmeasurable while ambient temperature is measur-
able. Moisture content is assumed to be measurable,
since it is a function of the ambient humidity and
the amount of time the material is exposed to the
air. All the factors appear quantitative.

Steinberg and Bursztyn (1994) re-analyzed this ex-
periment and suggested that perhaps two of the re-
sponses had been swapped. These were 0.3 and 2.5 in
the second row, first and second column. Assuming
the responses were swapped, the experiment will be
analyzed under the new method. For this example,
the aim will be to set shrinkage to a low target rather
than minimize it. The experiment can be written in
the form give in Table 6.

A half-normal probability plot of the main effects
and interactions appears in Figure 3. The effects and
interactions not falling on the line were deemed to
be significant, and a regression equation was derived
with these. Note that the controllable factors B and
F were found to be insignificant, so in production
they can be set to our economic advantage.

TABLE 5. The Design and Responses for the Injection Molding Experiment

Controllable Factors

Percent Shrinkage for Noise Factors M, N, O

@l A B C€C P B F G {1 (122 (12 (221
1 1 1 1 1 1 1 1 2.2 2.1 2.3 2.3
2 1 1 I 2 2 2 B 2.5 0.3 27 0.3
3 1 72 B ! 1 2 3 0.5 3.1 0.4 2.8
4 1 7 2 & B 1 1 2.0 1.9 1.8 2.0
5 2 12 1 2 12 3.0 3.1 3.0 3.0
6 2 I 2 2 1 g 2.1 4.2 1.0 3.1
7 o @ 1 1 2 Z f 4.0 1.9 4.6 2.2
8 2 B 1 2 1 1 2 2.0 1.9 1.9 1.8
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TABLE 6. The Rewritten Design for the Injection are Normal and centered about zero. Further assume
Molding Experiment that 95% of the distribution lies between their levels

Fact (i.e., they have standard deviations of %) Therefore
actors

A B CDUEVF G M N O Response

Var(y|A,C, D, E,G, N)

—1 - -Re-g-m) i - 2.2 _ P B 2
W R_p ¥ 11 1R 25 _Var,(M)( 0.05 — 0.125C + 0.1063E — 0.0938D)
-1 1 1-1-11 1-1-1-1 0.5 + 52
-1 1 1 1 1-1-1-1-1-1 2
B-I D=n D21 1 = =1 3
l1-1 1 1-1 1-1-1-1-1 2.1 In this case the target will be set at 1.6% shrinkage.
i i _i ‘i i } _% —} _{ _% ; A quadratic program was set up using Ampl (1993)
1 =y —1 0 _1 _1 0 —1 _l ¢ - with Var(y|A,C, D, E,G, N) as the objective that is
1-1-1 111 1-11 1 0.3 to be minimized, subject to E(y|A,C, D, E, G, N) =
51| N N ¢y (N O TR | A 3.1 1.6. Also, since the experiment was done in the
-1 11 1 1-1-1-1 1 1 1.9 unit hypercube, all controllable factors will be con-
=g W= T-1 O - & 1 3; strained to lie between £1. During production, fac-
} _11 _11 _i _% } :} :i { { 19 tor N can vary, and the best approach would be to
1 M= 1-1-1 M- 1 1.9 solve the quadratic program for the particular value
] =1 =1 =1 -1 -1-=1 1-1 1 2.3 of N at that time. This case will be simulated later.
af - 0 1 ¥ Wb 1 2.7 Generally this will be expensive and approximations
-1 1 1-1-1 11 1-1 1 04 to the solution can be found. In the approximate
-1 11 1 1-I-1 1-1"1 1.8 method the idea will be to observe the solution to
i :} } _11 _} _% _} { :i } :1} the quadratic program for different values of N and
1 1=1-=1 1 1-=1 1-=1 1 4.6 relate the solutions for the controllable factors to fac-
1 1-1 1-1-1 1 1-1 1 1.9 tor N by regression equations. Technically only val-
1 -1-1-1-1~-1-1 1 1-1 2.3 ues of N between *1 should be considered. However
-1-1-1 1 1 1 1 1 1-1 0.3
-1 1 1-1-1 1 1 1 1=l 2.8
-1 § B B 1-1-0 0 m-i 2 i I e
l1-1 1 -1 1-1 1 1 1-1 3 %
l1-1 1 1 -1 1-1 1 1-+-1 3.1 . cN
1 1-1-1 1 1-1 1 1-1 2.2 En
1 1-1 1-1-1 1 1 1-1 1.8 2
The regression equation is S &
¥ =2.25 + 0.4250A + 0.0625C — 0.2813D .
+ 0.1438F — 0.2313G — 0.05M + 0.1063M E£ g ° .
~ 0.125M C — 0.0938M D + 0.0000N L
+0.5875NC — 0.5563NE. (6) g- ¢
3 :
CM . - =
Therefore i oNEM® e
E(y|A,C, D, E, G, N) =2.25 + 0.4250A4 + 0.0625C b
- 0.2813D +0.1437F ‘.___.;.-f-"
— 0.2313G + 0.0000N e e e e
+ 0.5875NC — 0.55625 NE. g b L = < o
Halt-normal Quantiles
In order to work out the variance, a couple of assump- FIGURE 3. A Half-Normal Probability Plot of the Main
tions have to be made. Assume that the distributions Effects and the Interactions for the Injection Molding Ex-
of M, % regrind, and N, the ambient temperature, ?ériment,

Journal of Quality Technology Vol. 28, No. 2, April 1996
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0.5
1

Value of the Controllable Factors
0.0

05

Value of th e Uncontroflable Factor, N

FIGURE 4. A Plot of the Observable Uncontrollable Fac-

tor N versus the Controllable Factors A, C, D, E, and G.

in practice values outside this range (and in this case
5 out of 100) will be seen, so N was observed over the
range +3. For each value of N a solution from the
quadratic program was found for each of the control-
lable factors. These controllable factors were plotted
against the uncontrollable factor N in Figure 4.

From this it can be seen that factor A should be al-
ways set at —1 and factor G at 1. The others change
their values along smooth curves with breakpoints
at —1.4425 and —0.3825. Regression equations were
fitted to these smooth curves in order that the val-
ues for factors C, D, and E could be predicted given
a value of V. In this case we want these equations
to be good predictors so that parsimony is not nec-
essary. Terms were added to each equation until a
term became insignificant or the residual squared er-
ror reached some threshold. In this case the thresh-
old was 1x 1073, This threshold could not be reached
in the regression equation for —0.3825 < C < 3, and
this equation does not predict as well as the others.
The solution is in Table 7.

Since the underlying model is not known, we can-
not tell how the solution would do. This could only
be found by using the solution practically. However
the two different methods can be compared to see if
there is any difference between them. Two simula-
tions were done with the same 100,000 random wvari-
ates for cach of N and M. In the first simulation, the
quadratic program was solved for each value of N to
give values for the controllable factors. These werc
used in equation (6) to generate the responses ¥,.
The variance of ¥; was 2.26 x 10~'2. In the second
simulation, the values of the controllable factors were
chosen using the solution in Table 7, and these were
used in equation (6) to generate the responses ».
The variance of 7, was 9.97 x 10~'!. The two meth-
ods show little difference in the response variance.
With any reasonable error variance these response

TABLE 7. Solution giving the Relationship between the Controllable Factors A, B, C, D, E, F, and G, and
the Observable Uncontrollable Factor N that Minimizes the Variance and Keeps the Mean on Target.

Factor Factor Value Range of Factor N
A =-1 -3<N<3
B our choice -3<N<3
19.31 + 59.20N + 83.18N? +.-- + 0.015N8 -3 < N < -1.4425
C = { ~-0.93 - 1.25N —0.34N? —0.07N3 — 0.01N* —1.4425 < N < —-0.3825
—0.72 - 0.29N + 0.39N? + ... + 0.0002N ¢ —-0.3825 < N <3
{ ~26.28 — 78.90N — 110.85N?% + ... — 0.02N8 —2< N < -1.4425
D =4 -1 —1.4425 < N < -0.3825
~0.70 + 0.39N — 0.52N? ... + 0.0003N'3 -0.3825 < N <3
0 -2 < N < —1.4425
E = { —1.51 = 1.47N — 0.40N? —0.09N3 —0.01N* —1.4425 < N < —-0.3825
-1 —-0.3825 < N <3
F our choice -3<N<3
G =] -3<N<3

Vol. 28, No. 2, April 1996
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Aesponse from Me regress:on model

Factor N

FIGURE 5. A Plot of the Response to the Regression
Equation, using the Solutions in Table 7 for the Factors and
the 100,000 Random Variates for M and N.

variances would be swamped and the two methods
would be indistinguishable in outcome.

The respouses for the second sinulation were plot-
ted against N in Figure 5. After N = —0.3825, the
variance in the response is greater. This is due to
the poorer predictive power of the regression model
for factor C in this region.

Conclusion

Accounting for the observable uncontrollable fac-
tors in setting the values of the controllable factors
can decrease the variance of the response while keep-
ing the mean on target. The proposed approaches
compare favorably with current methods of parame-
ter design.
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Appendix A

We wish to minimize Vary(Y,|x,,t,) subject to
T = Ey(Yi|x;,t;), where T' is the target. For this

Journal of Quality Technology

we will use Lagrangian minimization with

L =X22'2A222x|‘ + 2[331\222)(,’ -+ 2X:E’2A223t,
+ AT - Bo — x;B1 — tiB2 — x;Tyt;)

O amiAsmox, + 285t + 254N Tt
i

= A(B1 + Zity)
therefore

x; =(ThA28,) 7! (%(ﬁl + Xity)
—zwﬂm+zm0.

Assuming that A is invertible, let
A= (zlezzz)_l
B= %(51 + Zati)
C = Z,A2(B;3 + Z3t,)

sox; = A(AB-C). Let D = AB, E = AC, and
x, = AD — E. Now

oL

E3Y =T - fBo — x.(B1 + E1t,) — t.53

=T — Bo — 2(AD’ — E")B — t3,.

Therefore A = (2D’'B)~}(F + 2E’'B) (where F =
T - fBo—t!02) and x; = (2D'B)~'(F + 2E'B)D — E.

Additionally

oL

*8'—x'.;' = QEaAzEQ.

As long as A, is positive definite and X, is of rank
r, then x; is the minimum critical point.

Appendix B

Theorem

Var(Y) =Ex (Ez(Vary (Y|X, Z)))
+ Ex(Varz(Ey (Y|X, 2)))
+ Varx (Ey (Y|X))

Proof

It is known that

Var(Y) = Ex(Vary(Y|X)) + Varx (Ey (Y| X))

Vol. 28, No. 2, April 1996
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= Var(Y|X) =Ex(Vary (Y|X, Z))

+ Varz(Ey(Y|X, Z))
giving the result
Var(Y) =Ex(Ez(Vary(Y|X, 2))
+ Varz(Ev(Y|X, Z)))
+ Varx (Ey (Y| X)).

Appendix C

In this case

Ey = Er(Ez(Ey (Yilxi, ti,2:))) = Bo + x;51
and

Vary (Yi|x.) =Er(Ez(Vary (Yi|x:, ti,2,))
+ Varz (Ey (Yi|xi. t,, 2;)))
+ Varr(Ey (Yilx;, t,))
=0, + Er((B3 + T2x; + T3t) Az
x (B3 + Tax; + Tat,))

+ Varr(Bo + xiB1 + t. B2 + x; X1 t;).

Firstly,
t: E;Az Eat; = tr(EgAgE;,t,-t:)

SO
Er(t/Z5A255t:) = tr(Z5A253A,).

Now

ET((ES + Yox; + Est,‘)IAg(ﬁg + ¥ox; + Zat;))

= (B3 + E2xi) A2(B3 + 2x;)
+ ET(t:EQAzzat:
+2(B3 + Eax;) Esty)

= (B3 + T2x:)'A2(B3 + L2xi)
+ ET(t:EsAQEat")

= (B3 + axi)' A2(B3 + L2x;)
+tr(T5A253A,).

And finally,

Var(Bo + xiB1 + t. B2 + x| E1t;)
= Var(fo + x\B1 + t,(B2 + T xi))
= (B2 + Z1x) A1 (B2 + T\ xi).

Vol. 28, No. 2, April 1996

Substituting,

Vary (Yi[x;) =0 + Er((B3 + Tax; + Taty) Az
x (B3 + La2x; + E3t,))
+ Var(fo + x.B1 + t.B; + x.E;t,)
=a, + (B3 + Taxi)' Ax(B3 + T2xi)
+tr(T4A255A,)
+ (B2 + T1x:) A1 (B2 + T x,)-

We wish to minimize Vary (Yi|x;), subject to T =
Ey (Yi|x;). Using Lagrangian minimization once
more

L ——-x:E’zAgng,» + x:EIAl E',x,» + 25322)(,
+25,2 '1x,» + /\(T = ﬂo = X:ﬂl)

% =2)3'2A222x,- + 22[1\12’[2(,' + 22’2[33

+2X182 — A8

and

A
xi = (Z3A2E2+ 1A, 27) 7} ('2‘31 -X58;-X,8,).

Providing G is invertible, let

G = (T)A.%2 + B1A,B) 7!
H=X8; + .8,

S0 X, = G(%ﬁl — H). Let

_ B
J=GH
and x, = AK —J. Then
oL ,
5 =T‘—ﬁ0_x.‘al
=T -fo—- (MK -J)B,
o)
A= (K'B) " NT - Bo+I'B)
and

x* = (K'B))"NT - o+ IB)K - J.

Additionally

0°L

Journal of Quality Technology
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As long as A2 and A, are both positive definite and
3, and X, are of rank r and q respectively, then x;*
is the minimum critical point.
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Appendix C

Source Files For The Quadratic

Program

The files in this section are used to solve a quadratic program using the package
Student Ampl. The Nodel and Data files described below were originally set up
by Dr Julie Faulkner, formerly of Massey University, who introduced me to the
Student Ampl package. The problem consists of minimising a variance function
subject to the mean being on target and with bounded parameters.

The files are

1) A *.mod file - a model file that sets up the structure of the problem. The
objective is a variance function which is to be minimised subject to the constraint
that the mean is on target. The number of parameters and the values of the
objective and the constraints are not specified in this file. This file remains
unchanged from problem to problem.

2) A *.dat file - a data file which sets out the number of parameters and the
values in the objective and constraints. This specific data file is for the data in
the Engel problem of Chapter 2.

3) A *.com file - a command file that instructs ampl to solve each quadratic
program for each inputted value of the observable uncontrollable factors and to
output the results. This specific file is for the Engel problem of Chapter 2.

4) A *.gen file - a generator file of Splus commands to write the *.com file above.

5) A *.aus file - an answer file of output for the Engel example of Chapter 2.
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Model File

A model file setting up the structure of the generic problem. The file is called

megan.mod

# Model file called Megan.mod

param m > O; # number of unknown variables
param n > O; # number of known parameters
param ub; # upper bound on variables and parameters
param 1lb <= ub; # lower bound on variables and parameters
set index = 1..m+n; # index-set for coefficients

set vindex 1..m; # index-set for variables

1]

set pindex m+l..m+n; # index-set for known parameters

param const; # the constant term in the constraint

param alpha{index}; # coefficients of linear terms in constraint
param beta{index,index}; # coeffs of quadratic terms in constraint
param gamma{index}; # coeffs of linear terms in objective

param delta{index,index}; # coeffs of quadratic terms in objective

var xv{vindex} >= 1b <= ub ; # the variables

param xp{pindex} >= -3.1 <= 3.1; # values of the known parameters

# the objective function
minimize cost: sum{i in index} gammal[i] *
(if i <= m then xv[i] else xplil])
+ sum{i in index, j in index} deltali,j] *
(if 1 <= m then xv[i] else xpli]) =*

(if j <= m then xv[j] else xp[jl);

# the constraint

subject to quad: sum{i in index} alphali] *
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(if i <= m then xv[i] else xp[il)

+ sum{i in index, j in index} betali,j] *

Data File

= const;

(if i <= m then xv[i] else xpl[i]) =*

(if j <= m then xv[j] else xp[jl)

The data file gives the number of parameters and the values in the objective and

the constraint.

# Data file called engelchange.dat

param
param
param
param

param

param
1

2
3
4
5
6

param beta :

D OO W NN -

1

O O O O O o
O O O O O O N

.29375

3

O O O O O o

m :=5; # number of unknown variables
n :=1; # number of known parameters
const := -.65; # the constant term in the constraint
1b := -1.; # the lower bound
ub = 1.; # the upper bound
alpha := # coeffs of linear terms in the constraint
0.4250
0.0625
-0.28125
0.14375
-0.23125
0;

# coeffs of quadratic terms in the constraint

4 5 6:=

0 0

0 0.29375

0 0

0 -0.278125
0

0

o O O O o

0

-0.278125 0;
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param gamma := # coeffs of linear terms in the objective

il @

2 0.003125

3 0.00234375

4 -0.00265625

5 0

6 0;
param delta : # coeffs of quadratic terms in the objective

1 2 3 4 5 6:

d 0 0 0 0 0 0
2 0 0.00390625 0.0029296875 -0.0033203125 0 0
3 0 0.0029296875 0.002197265625 -0.002490234375 O 0
4 0 -0.0033203125  -0.002490234375 0.002822265625 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0;

Command File

This file is run from within ampl and instructs ampl to solve the quadratic

program for each xp[6], the one observable, uncontrollable factor, from -3 to 3 in

step sizes of 0.025. This list is a very small snippet of the actual file.

reset;

model megan.mod;

data engelchange.dat;
let xpl6]:= -3;

solve;

display xv >engel.ans;

let xpl6]:= -2.975;

solve;

display xv >engel.ans;
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let xpl[6]:= -2.95;
solve;

display xv >engel.ans;

let xpl6]:= -2.925;
solve;

display xv >engel.ans;

etc...

Gen File

This file generates the file engel.com listed above. The above file is too long to be

generated ecfficiently by hand.

function()
#
cat("reset;", fill = T, file = "engel.com")
cat("model megan.mod;", fill = T, file = "engel.com", append = T)

cat ("data engelchange.dat;", fill = T, file = "engel.com",

append = T)
for(i in seq(-3, 3, by = 0.025)) {
cat("let xpl6]:= ", i, ";", fill =T, file = "engel.com",
append = T)
cat("solve;", fill = T, file = "engel.com", append = T)
cat ("display xv >engel.ans;", fill = T, file = "engel.com",
append = T)
cat(" ", fill = T, file = "engel.com", append = T)

Output File

This file is a very small snippet of the output file generated by engel.com. After

it’s stripped of extraneous characters it can be read into Splus or some other
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mathematical package for manipulation.
xv gives the values of the controllable factors that should be used for each value

of xp, the one observable, uncontrollable factor.

xv [*] :=

1 -1

2 -0.40000134951903465
8 0

4 0

5 0.0317516638867985

xv [*¥] :=

1IN

2 -0.3999689699064476
8 0

4 0

5 0.0317516638867985

xv [*] :=
1 -0.9999350776809466

2 -0.39999999467610153
3 0

4 0

5 0.0317516638867985
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Appendix D

Maple And Splus Commands

This section gives the Maple and Splus code needed to find the mixture path as
an approximation to the optimal path. The code is for a specific problem but it is

easily ainended for different data and for a larger number of variables.

Maple Commands

These are the Maple commands for generating the mixture path for

L(z1,x2) = a3 + 25 — z 12 with z§ = (1,2) and z** = (0,0).

> with(linalg):

Warning: new definition for norm
Warning: new definition for  trace
> x0:=matrix(2,1,[1,2]);

(1]
x0 := [ ]
[ 271
> M:=matrix(2,2,[2,-1,-1,2]);
[ 2 -1
M= [ ]
[ -1 2]

> N:=matrix(2,1,[-0,0]);
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[ 0]
N:=[ ]
[ 0]
> II:=matrix(2,2,[1,0,0,1]);
(1 0]
T 2= [ ]
(0o 1]
> xstar:=matrix(2,1,[0,0]);
[ 0]
xstar ;= [ ]
[ 0]
> Ma:=evalm(-a*M-(1-a)*II);
[-a-1 a ]
Ma :i= [ ]
[ 51 -a-11]
> Na:=evalm(-a*N+(1-a)*xstar);
[0]
Na := [ ]
[ 0]

> Pl:=evalm(exponential (Maxq)&*xO0) ;

[ 3/2 exp(- @ - 1/2 exp(- 2 qa-q ]
P1 := [ ]
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[ 1/2 exp(- 2 qa - q + 3/2 exp(- q ]

> P2:=evalm(exponential(Max*(q-s))&*Na);
bytes used=1000124, alloc=720764, time=2.12

(o]
B2 =10 1
(o]
> P21:=int(P2[1,1],s=0..q);
P21 := 0
> P21:=numer (P21)/denom(P21) ;
P21 := 0
> P22:=int(P2[2,1],s=0..q);
P22 := 0
> P22:=numer (P22)/denom(P22) ;
P22 := 0

> #first path
> x:=evalm(P1[1,1]+P21);

x := 3/2 exp(- @ - 1/2 exp(- 2 qa - q)

> #second path
y:=evalm(P1[2,1]+P22);

\2

y := 1/2 exp(- 2 qa - q + 3/2 exp(- q)
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> dotx:=diff(x,q);
dotx := - 3/2 exp(- @ - 1/2 (-2 a-1) exp(- 2 qa-q)
> doty:=diff(y,q);

doty := 1/2 (- 2 a - 1) exp(- 2 qa-q) - 3/2 exp(- q)

Splus Functions for Finding «

There are two functions

theint.f: which represents the integrand of the line integral. It takes inputs of ¢,
the variable of integration, and a, the trial version of c.

tominint.f: integrates the intregral whose integrand is theint. f. It takes iuputs a
as the trial version of «.

To find a the command
nlmin(tominint.f,0.7,print.level=1)

is called. This Splus function nlmin minimises the function tominint. f with

respect to @. The value 0.7 is the starting value for a.

The Function:tominint.f

>tominint.f<-
function(a)
{

integrate(theint.f, lower = 0, upper = Inf, a = a)$integral

The Function:theint.f

> theint.f

function(q, a)

{
x <- 3/2 x exp( - @ - 1/2 * exp( - q -2 *q* a)
y <- 1/2 x exp( - q - 2 x q* a) + 3/2 x exp( - q)
dotx <- -3/2 * exp( - @ - 1/2 * (-1 - 2 * a)
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* exp( - q -2 * q* a)
doty <- 1/2 * (-1 - 2 x a) * exp( -~ q -2 *q * a)
- 3/2 % exp( - q
(x"2 + y°2 - x * y) * (dotx™2 + doty~2)"(1/2)

Output

The output of the command nlmin(tominint.f,0.7,print.level=1) is given below.

nlmin(tominint.f,0.7,print.level=1)

ikt nf f reldf preldf reldx
0 1 2.159e0
1 2 2.157e0 1.068e-3 5.972e-4 3.764e-2
2 3 2.154e0 1.208e-3 1.696e-3  1.649e-1
3 4 2.154e0 1.576e-4  2.033e-4  5.440e-2
4 5 2.154e0 6.831e-6 6.393e-6  8.444e-3
5 6 2.154e0 2.797e-8 2.846e-8 5.878e-4
6 7 2.154e0 6.981e-12 6.974e-12 9.135e-6
*xxxx relative function convergence *****
function 2.153641e0 reldx 9.1346e-6
function evaluations: 7 gradient evaluations: o
preldf 6.9739e-12 npreldf 6.9739e-12
$x:

[1] 0.509677143334584576

$converged:
[ &

$conv.type:

[1] "relative function convergence"

After 6 steps nlmain finds a convergent solution for e and returns a = 0.5097 (4
dpl).
To calulate the line integral corresponding to the straight line path just requires

calling tomunint. f with a = 0.
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> tominint.f (0)
[1] 2.23606797735315776

To calulate the line integral corresponding to the greedy path just requires calling

tominant. [ with a = 1.

> tominint.f (1)

[1] 2.18111585905441568

To calulate the line integral corresponding to the mixture path integral just
requires calling tominint.f with a = 0.509677143334584576.

tominint.f(0.509677143334584576)
[1] 2.1536410551100912

For this case, the order of preference for the choice of path is (1) the mixture

path, (2) the greedy path and (3) the straight line path.
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Appendix E
Approximation Data

This data was used to create an approximate solution for the optimal path from
(o, Yo) to the minimum on the surface of L = a,2? + azy?. The data is

column 1: is the initial & position, xg

column 2: is the initial y position, yg

column 3: is the value for a,

column 4: is the value for aj

The optimal path for each g, yo, a; and az was found in terms of z and y as
output from the function optfinddif f.f discussed in appendix F.

column 5: is the value of the constant when log(y) is fitted against log(z) for the
path found using the specified values of zg, yo, a; and aj.

column 6: is the value of linear terms when log(y) is fitted against log(z) for the

path found using the specified values of zg, yo, @; and as.

Columns 1 2 3 4 5 6 Columns 1 2 3 4 5 6
1 1 1 1 1 -1.387102e-016 1 2 1 4 1 i 1.386294 1
3 1 7 1 1 1.945910 1 4 1 10 1 1 2.302585 1
5 4 1 1 1 -1.386294 1 6 4 4 1 1 -3.467754e-016 1
7 4 7 1 1 5.596158e-001 1 8 4 10 1 1 9.162907e-001 1
9 7 1 1 1 -1.945910 1 10 7 4 1 1 -5.596158e-001 1
11 7 7 1 1 2.774203e-016 1 12 7 10 1 1 3.566749e-001 1
13 10 1 1 i -2.302585 1 14 10 4 1 1 -9.162907e-001 1
15 10 7 1 1 -3.566749e-001 1 16 10 10 1 1 -2.774203e-016 1
17 i 1 1 1 -1.387102e-016 1 18 1 4 1 1 1.386294 1
19 1 7 1 1 1.945910 1 20 1 10 1 1 2.302585 1
21 4 1 { 1 -1.386294 1 22 4 4 1 1 -3 467754e-016 1
23 4 7 1 1 5.596158e-001 1 24 4 10 1 1 9.162907e-001 1
25 i 1 1 1 -1.915910 1 26 7 4 1 1 -5.596158e-001 1
27 7 7 1 1 2.774203e-016 1 28 7 10 1 1 3.566749e-001 1
29 10 1 1 1 -2.302585 1 30 10 4 1 1 -9.162907e-001 1
31 10 7 1 1 -3.566749¢-001 1 32 10 10 1 1 -2.774203e-016 1
33 1 1 1 4 -5.009483e-002 2.399414 34 1 4 1 4 1.295189 2.486314
35 1 7 1 4 1.856405 2.529466 36 1 10 1 4 2.218388 2.556390
37 4 1 1 4 -3.295319 2.370107 38 4 4 1 4 -1.990094 2.399414
39 4 7 1 4 -1.493846 2.428429 40 4 10 1 4 -1.180343 2.451794
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Columns 1 2 3 4 5 6 Columms 1 2 3 4 5 6

41 7 1 1 4 -4.613235 2.367877 42 7 1 4 -3.275105 2.381254
43 7 7 1 4 -2.773229 2.399414 44 it 10 1 4 -2.465525 2.416707
45 10 1 1 4 -5.455371 2.367298 46 10 4 1 4 -4.099219 2.374703
47 10 7 1 4 -3.584576 2.386614 48 10 10 1 4 -3.272364 2.399414
49 1 1 2 4 -4.962620e-003 1.576490 50 1 4 2] 4 1.381293 1.604032
51 1 7 2 4 1.943357 1.611772 52 1 10 2 4 2.301271 1.614863
53 4 1 2 4 -2.169246 1.565258 54 4 4 2 4 -8.041474e-001 1.576490
55 4 7 2 4 -2.614558e-001 1.587326 56 4 10 2 4 8.485774e-002 1.594962
57 7 1 2 4 -3.043077 1.564468 58 7 4 2 4 -1.669582 1.569412
59 7 7 2 4 -1.126760 1.576490 60 i 10 2 4 -7.844333e-001 1.583092
61 10 1 2 4 -3.600466 1.564266 62 10 4 2i 4 -2.222180 1.566935
63 10 7 2 4 -1.675567 1.571486 64 10 10 3 4 -1.332380 1.576490
65 1 1 3 4 4.909546e-004 1.212109 66 1 4 3 4 1.386899 1.215756
67 1 7 3 4 1.946585 1.216205 68 1 10 3 4 2.303280 1.216328
69 4 1 3 4 -1.676104 1.209707 70 4 4 3 4 -2.935548e-001 1.212109
71 4 7 3 4 2.634529e-001 1.213958 72 4 10 3 4 6.188387e-001 1.214933
73 7 1 3 4 -2.352674 1.209526 74 7 4 8] 4 -9.688057e-001 1.210638
75 7 7 3 4 -4.122544e-001 1.212109 76 7 10 3 4 -5.795029e-002 1.213300
77 10 1 3 4 -2.783962 1.209480 78 10 4 3 4 -1.399224 1.210087
79 10 7 3 4 -8.421058e-001 1.211087 80 10 10 3 4 -4.879085e-001 1.212109
81 1 1 4 4 -1.387102e-016 1 82 1 4 4 4 1.386294 1

83 1 7 4 4 1.945910 1 84 1 10 4 4 2.302585 1

85 4 1 4 4 -1.386294 1 &G 4 4 4 4 -3.467754e-016 1

87 4 7 4 4 5.596158e-001 1 88 4 10 4 4 9.162907e-001 1

89 7 1 4 4 -1.945910 1 90 7 4 4 4 -5.596158e-001 1

91 7 7 4 4 2.774203e-016 1 92 7 10 4 4 3.566749e-001 1

93 10 1 4 4 -2.302585 1 94 10 4 4 4 -9.162907e-001 1

95 10 7 4 4 -3.566749e-001 1 96 10 10 4 4 -2.774203e-016 1

97 1 1 1 7 -1.367470e-001 3.289976 98 1 4 1 7 1.116551 3.408096
99 1 7 1 7 1.646999 3.473312 100 1 10 1 7 1.993694 3.517960
101 4 1 1 7 -4.539487 3.247863 102 4 4 1 7 -3.311327 3.289976
103 4 7 1 7 -2.865656 3.328609 104 4 10 1 7 -2.587535 3.359947
105 7 1 1 7 -6.338714 3.244182 106 1/ 4 1 7 -5.049362 3.264793
107 7 7 1 7 -4.592834 3.289976 108 7 10 1 7 -4.319807 3.313052
109 10 1 1 7 -7.4905154172 3.243201 110 10 4 1 7 -6.1663497050 3.255081
111 10 7 1 7 -5.6896922864 3.272417 112 10 10 1 7 -5.4096108617 3.289976
113 1 1 3 7 -0.0103862314 1.736302 114 1 4 3 7 1.3730415032 1.777213
115 1 7 3 7 1.9369035545 1.791531 116 1 10 3 7 2.2963105722 1.798306
117 4 1 3 7 -2.3861761578 1.721078 118 4 4 3 7 -1.0311179996 1.736302
119 4 7 3 7 -0.4967310158 1.751418 120 4 10 3 7 -0.1561784673 1.762674
121 7 1 3 7 -3.3462160158 1.720004 122 7 4 3 7 -1.9785648333 1.726704
123 7 7 3 7 -1.4431644082 1.736302 124 7 10 3 i/ -1.1073659233 1.745421
125 10 1 3 7 -3.9587968222 1.719728 126 10 4 3 7 -2.5841248138 1.723354
127 10 7 3 7 -2.0431671604 1.729507 128 10 10 3 7 -1.7057850005 1.736302
129 1 1 5 7 0.0003446144 1.251835 130 1 4 5 7 1.3868449453 1.257101
131 1 7 5 f 1.9465940171 1.257810 132 1 10 5 7 2.3033104371 1.258008
133 4 1 5 7 -1.7299433068 1.248610 134 4 4 5 7 -0.3487726767 1.251835
135 4 7 5 7 0.2071775518 1.254423 136 4 10 5 7 5.619829e-001 1.255849
137 7 1 5 T -2.428145 1.248372 138 7 4 5 7 -1.045129 1.249847
139 7 7 5 7 -4.897035e-001 1.251835 140 7 10 5 [ -1.363346e-001 1.253487
141 10 1 5 7 -2.873247 1.248310 142 10 4 5 7 -1.489046 1.249114
143 10 7 5 7 -9.328103e-001 1.250448 144 10 10 5 7 -5.795267e-001 1.251835
145 1 1 7 7 -1.387102e-016 1 146 1 4 7 7 1.386294 1

147 1 7 7 7 1.945910 1 148 1 10 7 7 2.302585 1

149 4 1 7 7 -1.386294 1 150 4 4 U/ 7 -3.467754e-016 1

151 4 7 7 7 5.596158e-001 1 152 4 10 7 7 9.162907e-001 1

153 7 1 7 7 -1.945910 1 154 7 4 7 7 -5.596158e-001 1

155 7 7 7 7 2.774203e-016 1 156 7 10 7 7 3.566749e-001 1

157 10 1 7 7 -2.302585 1 158 10 4 7 7 -9.162907e-001 1

159 10 7 7 7 -3.566749e-001 1 160 10 10 7 7 -2.774203e-016 1

161 1 1 1 10 -2.239266e-001 3.987067 162 1 4 1 10 9.468466e-001 4.114020
163 1 7 1 10 1.44298765 4.185480 164 1 10 1 10 1.76888583 4.235675
165 4 1 1 10 -5.53040560 3.938556 166 4 4 1 10 -4.36488038 3.987067
167 4 7 1 10 -3.95522737 4.028775 168 4 10 1 10 -3.70170598 4.062278
169 i 1 1 10 -7.70650958 3.933820 170 7 4 1 10 -6.45977704 3.958874
171 7 7 1 10 -6.03649009 3.987067 172 7 10 1 10 -5.78711666 4.012086
173 10 1 1 10 -9.10136425 3.932527 174 10 4 1 10 -7.80656753 3.947447
175 10 7 1 10 -7.35939720 3.967572 176 10 10 1 10 -7.10190196 3.987067
177 1 1 4 10 -0.01356637 1.811878 178 1 4 4 10 1.36761087 1.858999
179 1 7 4 10 1.93214959 1.876756 180 1 10 4 10 229231173 1.885661
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Coluns 1 2 3 4 5 6 Columns 1 2 3 4 5 6
181 4 1 4 10 -2.48903668 1.794835 182 4 4 4 10 -1.13906879 1.811878
183 4 7 ] 10 -0.60881952 1.828918 184 4 10 4 10 -0.27117863 1.841837
185 7 1 4 10 -3.48984092 1.793626 186 7 4 4 10 -2.12515395 1.801142
187 7 7 4 10 -1.59340875 1.811878 188 7/ 10 4 10 -1.26078985 1.822126
189 10 1 4 10 -4.12853468 1.793315 190 10 4 4 10 -2.755700 1.797390
191 10 7 4 10 -2.217544 1.804277 192 10 10 4 10 -1.882985 1.811878
193 1 1 7 10 2.532713e-004 1.268608 194 1 4 7 10 1.386799 1.274651
195 1 7 7 10 1.946585 1.275497 196 1 10 7 10 2.303313 1.275736
197 4 1 7 10 -1.752656 1.265015 198 4 4 7 10 -3.721166e-001 1.268608
199 4 7 7 10 1.833392e-001 1.271539 200 4 10 7 10 5.378646e-001 1.273182
201 7 1 7 10 -2.459975 1.264752 202 7 4 7 10 -1.077345 1.266388
203 7 7 7 10 -5.224339e-001 1.268608 204 7 10 7 10 -1.694983e-001 1.270472
205 10 1 7 10 -2.910901 1.264684 206 10 4 7 10 -1.5269:12 1.265574
207 10 7 7 10 -9.711066e-001 1.267058 208 10 10 7 10 -6.182396e-001 1.268608
209 1 1 10 10 -1.387102e-016 1 210 1 4 10 10 1.386294 1
211 1 7 10 10 1.945910 1 212 1 10 1o 10 2.302585 1
213 4 1 10 10 -1.386294 1 214 4 4 10 10 -3.467754e-016 1
215 4 7 10 10 5.596158e-001 1 216 4 10 10 10 9.162907e-001 1
217 7 1 10 10 -1.945910 1 218 7 4 10 10 -5.5961 58e-001 1
219 7 7 10 10 2.774203e-016 1 220 - 10 10 10 3.566749e-001 1
221 10 1 10 10 -2.302585 1 222 10 4 10 10 -9.162907e-001 1
223 10 7 10 10 -3.566749e-001 1 224 10 10 10 10 -2.774203e-016 1
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Appendix F

Finite Difference Algorithm:1

Heading to a Minimal Point

The listings below are the files required to run the finite difference algorithm for
the Boundary Value Problem. The solution to the Boundary Value Problem is
equivalent to the solution of the Euler-Lagrange differential equations
corresponding to the problem of finding a path on L(z,y) that minimises a line
integral on L(z,y). The files in this section finds the path when one of boundary
points is a minmum on L(z, y)

1)optfinddiff.f: this program finds the optimal path between zo and the
minimum of L(z,y) = a;2% + azy? + ag in order to minimse the path integral of
L(z,y). The assumption is that L(z,y) is a cup shaped surface.

2)ff: this program returns the value of f(z,y,y’). This function is the
Euler-Lagrange equation in y"

3)ffy: this program returns the value of fy(z,y,y’). This function is the partial
derivative of the Euler-Lagrange equation in 3" with respect to y.

4)ffydash: this program returns the value of fy (z,y,y’). This function is the
partial derivative of the Euler-Lagrange equation in y” with respect to y'.
5)transformout.f: this program takes a generic cup shaped surface and
transforms it to L(z,y) = a12? + azy® + ag. It then calls opt finddif f.f to find

the optimal path.
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The Function:optfinddiff.f

This program finds the path that minimises the line integral of
L(z,y) = a 2% + azy® + ag by solving the corresponding Boundary Value Problem.

The inputs are

Input:

a : the x value of the initial position.

I : the x value of the final position.

alpha : the y value of the initial position.

beta : the y value of the final position.

N: the number of points in the path not counting the beginning and end points.
Toler: the error in successive approximations. When the algorithin gets to a value
below Toler it ends the program and supplies the path found.

M: the number of iterations to do before failing without a solution.

al-a6: the coefficients of L(x,y) = a 2% + aqu + asy?® + a4y + aszy + ag. For this
problem ay, asq and ay are taken to be zero. If any of these are not zero then the

function transformout.f should be called intead.

Output:

As the program runs there will be output describing the iteration number, the
tolerance level set as input and the current value of the tolerance. There will also
be a graph displayed with the current path under consideration. This aids as a
visual check to see that the algorithm is generating a smooth curve. If there are
bumps in the curve which are increasing with each iteration it is likely to mean
the algorithm will be unsuccessful in finding a solution.

The final output is a (N + 2) x 3 matrix. If the algorithim stojgssuccessfully the
matrix will contain in the

first column: the x positions of the path

second column: the y positions of the path and

third column: a one in the first position to signify successful completion.

If the algorithm stops without success then the matrix will contain a set of zeros.

The algorithm is

optfinddiff.f<-
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function(a, b, alpha, beta, N, Toler, M, al, a2, a3, a4, a5, a6)
{

plot(c(a, b), c(alpha, beta))

xx <- matrix(0, N + 2, 3) #
#step 1

h<- (b-a/N+1)

w <- matrix(0, N + 2, 1)

w1, 1] <- alpha

w[N + 2, 1] <- beta #
#step 2

if (a1 < a3) {

grad <- exp(0.686696259 * log(a3/al) - 0.035938571
* log(a3/al)~2)
}
if(a3 < atl) {
grad <- 1/exp(0.686696259 * log(al/a3) - 0.035938571
* log(al/a3)"2)
)
if(al '= a3) {
for(i in 1:N) {
wli + 1, 1] <- alpha * ((a + i * h)/a) (grad)

}
if(al == a3) {
for(i in 1:N) {
wli + 1, 1] <- alpha + (i * (beta - alpha))/(b - a) * h

E
lines(seq(a, b, length = length(w)), w)
points(seq(a, b, length = length(w)), w)
k <-1#

#step 4
aa <- matrix(0, N, 1)
bb <- matrix(0, N, 1)
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cc <- matrix(0, N, 1)
d <- matrix(0, N, 1)
1 <- matrix(0, N, 1)
u <- matrix(0, N, 1)
v <- matrix(Toler, N, 1)
z <- matrix(0, N, 1)
while(k < M & sum(abs(v)) > Toler) {
#Step 5
x <-a+h
t < (w[3, 1] - alpha)/(2 * h)
aal1l, 1] <- 2+h~2xffy(x, w[2, 1], t, al, a2, a3, a4, a5, ab)
bb[1, 1] <- -1 + (h/2 * ffydash(x, w[2, 1],t, al, a2, a3,
a4, a5, a6))
df1, 1] <- - (2 * w[2, 1] - w[3, 1] - alpha + (h"2
* ff(x, w[2, 1], t,al, a2, a3, a4, a5, a6))) #
#step 6
for(i in 2:(N - 1)) {
x <-a+1xh
t <= (wli + 2, 1] - w[i, 11)/(2 * h)
aali, 1] <- 2 + (h~2 * ffy(x, wli + 1, 1], t, al, a2, a3,
a4, a5, a6))
bb[i, 1] <- -1 + (h/2 * ffydash(x, wli + 1, 1], t, al, a2,
a3, a4, a5, a6))
ccli, 1] <- -1 - (h/2 * ffydash(x, w[i + 1, 1], t, al, a2,
a3, a4, a5, a6))
dli, 1] <= - (2 *wli + 1, 1] - wli + 2, 1] - wli, 1] +
(h~2 * ff(x, wli + 1, 1], t, al, a2, a3, a4, a5, a6)))
)
#step 7
x <~ b-nh
t <- (beta - w[N, 1])/(2 * h)
aa[N, 1] <~ 2 + (h"2 * ffy(x, w[N + 1, 1], t, al, a2, a3, a4,
a5, a6))
cc[N, 1] <= -1 - (h/2 * ffydash(x, w[N + 1, 1], t, al, a2, a3,
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a4, a5, a6))
dIN, 1] <= - (2 * w[N + 1, 1] - beta - w[N, 1] + (h"2 *
ff(x, w(N + 1, 1], t, al, a2, a3, a4, a5, a6))) #
# step 8
1[1, 1) <- aal1, 1]
ull, 1] <- bb[1, 1]/aall, 1] #
#step 9
for(i in 2:(N - 1)) {
LLi, 1) ¢ aafi, 1) - ecli; 1) & wli - 1, 1]
uli, 1] <- bbli, 1]/1[i, 1]
}
#step 10
1[N, 1] <- aalN, 1] - cc[N, 1] * ulN - 1, 1] #
#step 11
z[1, 1] <= dl1, 1]/1[1, 1] #
#step 12
for(i in 2:N) {
z[i, 1] <- (d[i, 1] - ccli, 1) * z[i - 1, 1])/1[i, 1]
}
#step 13
v[N, 1] <- z[N, 1]
wlN + 1, 1] <- w[N + 1, 1] + v[N, 1] #
#step 14
for(i in (N - 1):1) {
vli, 1] <- z[i, 1] - uli, 1] * v[i + 1, 1]
wli +1, 1] <= wli + 1, 1] + v[i, 1]
}
#step 15
#step 16
cat(k, Toler, sum(abs(v)), N, fill = T)
if (sum(abs(v)) < Toler) {
for(i in 1:(N + 2)) {

xx[i, 1] <-a + (i -1) xh
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# step 17

#STOP
xx[, 2] < w[, 1]
xx[1, 3] <- 1
cat("Done", fill = T)

)
#step 18
#
lines(seq(a, b, length = length(w)), w)
points(seq(a, b, length = length(w)), w)
k <-k +1
}
#step 19
XX
}

The Function:ff

This program returns the value of f(z,y,v’).

ff<-
function(x, y, ydash, a, b, ¢, d, e, f)
{
((1 + ydash™2) * ((2* c*y+d+e*xx)-(2*xa*xx+b+ex*xy)
* ydash))/(a * x’2 + b* x + c xy"2+dx*xy+ex*xx*xy+f)
I

The Function:ffy
This program returns the value of f,(z,y,y').

ffy<-
function(x, y, ydash, a, b, ¢, d, e, f)
{
(1 + ydash”2) * ((2 * ¢ - e * ydash)/(a * x"2 + b * x + ¢ * y~2
+d*xy+exx*xy+f)-((2*xc*xy+d+exx) *

((2*x c*xy+d+e*x)-(2*x*a+
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b+ e xy) * ydash))/(a * x"2 + b * x + ¢ * y°2 + d *
y+ex*xxxxy+ £f)2)

The Function:ffydash

This program returns the value of fy(z,y,v")

ffydash<-
function(x, y, ydash, a, b, c, d, e, f)
i
(2 * ydash * ((2 * c*y+d+e*xx) - (2*axx+b+ex*xy)
* ydash)) /(a * x"2 + b*x x +c *y2+dx*xy+e*xx
*y+f) - ((2*xax*xx+b+ex*y)x* (1+ ydash™2))/

(a*xx"2+bxx+c*xy2+dx*xy+e*xxx*y+f)

The Function:transformout.f

This program finds the optimal path that minimises the line integral for the

surface L(z,y) = a,2% + aoz + a3y® + a4y + aszy + as. The inputs are

Input:

a : the x value of the initial position.

b : the x value of the final position.

alpha : the y value of the initial position.

beta : the y value of the final position.

N: the number of points in the path not counting the beginning and end points.
Toler: the error in successive approximations. When the algorithin gets to a value
below Toler it ends the program and supplies the path found.

M: the number of iterations to do before failing.

al-a6: the coefficients of L(z, y) = a,2? + asx + azy® + aay + as2y + as.

Output:

As the program runs there will be output describing the iteration number, the

tolerance level set as input and the current value of the tolerance. There will also
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be a graph displayed with the current path under consideration. This aids as a
visual check to sec that the algorithmn is generating a smooth curve. If there are
bumps in the curve which are increasing with each iteration it is likely to mean
the algorithm will be unsuccessful. The algorithm works on the transformed data
and the labels on the graph refer to the transformed data values. The final
output is back transformed and can be graphed.

The final output is a (N + 2) x 3 matrix. If the algorithm stop successfully the
matrix will contain in the

first column: the x positions of the path

second column: the y positions of the path and

third column: a one in the first position to signify successful completion.

If the algorithi stops without success then the matrix will contain a set of zeros.

The algorithm is

transformout.f
function(a, b, alpha, beta, N, Toler, M, al, a2, a3, a4, a5, a6)
{

bl <- al
b2 <- a2
b3 <- a3
b4 <- a4
b5 <- ab
b6 <- a6
a0 <- a
b0 <- b

alpha0 <- alpha
beta0 <- beta
if(abs !'= 0) {
#
#find angle of rotation
theta <- 1/2 * atan(a5/(al - a3)) #
#recovers if (al-a3) = 0 !
#find new coeffs of equation
bl <- al * (cos(theta))~2 + a5 x cos(theta) * sin(theta)
+ a3 * (sin(theta))"2
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b3 <- al * (sin(theta))”"2 - a5 * sin(theta) * cos(theta)
+ a3 x (cos(theta)) 2

b2 <- a2 * cos(theta) + a4 * sin(theta)

b4 <- -a2 * sin(theta) + a4 * cos(theta)

b5 <- a5 * ((cos(theta))”"2 - (sin(theta))~2) +
2 * ((a3 - al)) * sin(theta) * cos(theta)

b6 <- a6 #

#finds new alpha, beta, a0 and bO
a0 <- a * cos(theta) + alpha * sin(theta)

alpha0 <- - a * sin(theta) + alpha * cos(theta)

b0 <- b * cos(theta) + beta * sin(theta)

beta0 <- - b * sin(theta) + beta * cos(theta)
}o#

#adjusts the axes so minimum is at (0,0)
a0 <- a0 + (b2/(2 * bl))
alpha0 <- alpha0 + (b4/(2 * b3))
b0 <- b0 + (b2/(2 * bl))
beta0 <- beta0 + (b4/(2 * b3)) #
# check to see which way optdiff is more likely to work
if (b1 <= b3) {
getx <<- optfinddiff.f(a0, b0, alphaO, betaO, N, Toler,
M, b1, 0, b3, 0, 0, b6)
}
if (b3 < b1) {
getx <<- optfinddiff.f(alphaO, betaO, a0, b0, N, Toler,
M, b3, 0, bl, 0, 0, b6)
hold <- getx[, 1]
getx[, 1] <- getx[, 2]
getx[, 2] <- hold
}
# re-adjusts the minimum
gx <- getx[, 1] - (b2/(2 * bl1))
gy <- getx[, 2] - (b4/(2 * b3)) #

#return solution to the o0ld co-ordinates
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if(ab '= 0) {
ggx <- gx * cos(theta) - gy * sin(theta)
ggy <- gx * sin(theta) + gy * cos(theta)
gx <- ggx
gy <- ggy

}

cbind(gx, gy, getx[,3])

Typical Input

This is the Splus command to call transformout.f. The starting positions is
(3,1) and the end position is (0,0). There are to be 20 points on the path
(besides the points (3, 1) and (0,0)). The tolerance is 0.000001 and 100 iterations
will be considered. The value of L is L(z,y) = 1z% + 100y? — 1zy.

gg<-transformout.f(3,0,1,0,20,0.000001,100,1,0,100,0,-1,0)

Typical Output

The screen output is

1e-006 0.76853690975329 20
1e-006 0.0770720818316491 20
1e-006 0.00837555031841968 20
1e-006 0.000100336134869916 20
1e-006 1.62367731103413e-008 20

A W N -

The path data is

gg
gx gy
(1,] 3.0000000 1.0000000000
[2,] 2.8602917 0.3288987357
(3,] 2.7180483 0.1597504459
(4,] 2.5753417 0.0823193350
(5,] 2.4324357 0.0443803052
[6,] 2.2894317 0.0258368226
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(e 2k
.0033036
.8602172
.7171262
.5740333
.4309397
.2878458
.1447519
.0016579
. 85685639
.7154699
.5723759
.4292820
.2861880
.1430940
.0000000

(8,]

[9,]
(10,]
[11,]
[12,]
(13,]
[14,]
[15,]
(16,]
(17,]
(18,]
[19,]
(20,1
2n.a
[22,]

Finally here is the graph of the optimal path found by transformout. f

O O O O O© O© O H P P P P = = N

1463793

Figure F.1: The graph of the path found by transformout.f
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Appendix G

Finite Difference Algorithm:2

Heading to a Non-Minimal Point

The listings below are the files required to run the finite difference algorithmn for
the Boundary Value Problem. The solution to the Boundary Value Problem is
equivalent to the solution of the Euler-Lagrange differential equations
corresponding to the problem of finding a path on L(z,y) that minimises the line
integral on L(z,y). The files in this section find the solution when neither
boundary points is a minmum on L(z,y)

1 )foptfinddiff.f: this program finds the optimal path between zo and z; for the
surface L(z,y) = a;2? + azy? + ag in order to minimse the path integral of
L(z,y). The assumption is that L(z, y) is a cup shaped surface.

2)fF: this program returns the value of f(z,y,y’'). This function is the
Euler-Lagrange equation in y"

3)ffy: this program returns the value of f,(z,y,y'). This function is the partial
derivative of the Euler-Lagrange equation in " with respect to y.

4)ffydash: this program returns the value of fy(z,y,y’). This function is the
partial derivative of the Euler-Lagrange equation in y"” with respect to y.
5)transformoutnomin.f: this program takes a generic cup shaped surface, a
polynomial of order 2 in two variables, and transforms it to

L(z,y) = a2 + a3y® + as. It then calls{optfinddiff.f to find the optimal path.
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The Function:foptfinddiff.f

This program finds the path that minimises the line integral of
L(z,y) = a;2? + azy® + ag by solving the corresponding Boundary Value Problem.

The inputs are

Input:

a : the x value of the initial position.

b : the x value of the final position.

alpha : the y value of the initial position.

beta : the y value of the final position.

N: the number of points on the path not counting the beginning and end points.
Toler: the error in successive approximations. When the algorithm gets to a value
below Toler it ends the program and supplies the path found.

M: the number of iterations to do before failing without a solution.

al-a6: the coefficients of L(z,y) = a;2? + agx + asy? + a4y + aszy + ag. For this
problem as, a4 and as are taken to be zero. If any of these are not then the

function transformout. f should be called intead.

Output:

As the program runs there will be output describing the iteration number, the
tolerance level set as input and the current value of the tolerance. There will also
be a graph displayed with the current path under consideration. This aids as a
visual check to see that the algorithm is generating a smooth curve. If there are
bumps in the curve which are increasing with each iteration it is likely to mean
the algorithm will be unsuccessful.

The final output is a (V + 2) x 3 matrix. If the algorithm stop§successfully the
matrix will contain in the

first column: the x positions of the path

second column: the y positions of the path and

third column: a one in the first position to signify successful completion.

If the algorithm stops without success then the matrix will contain a set of zeros.

The algorithm is

foptfinddiff.f<-
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function(a, b, alpha, beta, N, Toler, M, al, a2, a3, a4, a5, a6)
{
plot(c(a, b), c(alpha + 1, beta))
xx <- matrix(0, N + 2, 3) #
#step 1
h<- (b-a/(N+1)
w <- matrix(0, N + 2, 1)
w[l, 1] <- alpha
wlN + 2, 1] <- beta #
#step 2
for(i in 1:N) {
wli + 1, 1] < alpha + (i * (beta - alpha))/(b - a) * h
¥
lines(seq(a, b, length = length(w)), w)
points(seq(a, b, length = length(w)), w)
k <-1#
#step 4
aa <- matrix(0, N, 1)
bb <- matrix(0, N, 1)
cc <- matrix(0, N, 1)
d <- matrix(0, N, 1)
1 <- matrix(0, N, 1)
u <- matrix(0, N, 1)
v <- matrix(Toler, N, 1)
z <- matrix(0, N, 1)
while(k < M & sum(abs(v)) > Toler) {
#Step 5
x <-a+h
t <- (w[3, 1] - alpha)/(2 * h)
aal1l, 1] <- 2 + h"2 * ffy(x, w[2, 1], t, al, a2, a3, a4,
a5, a6)
bb[1, 1] <- -1 + (h/2 * ffydash(x, w(2, 1], t, al, a2, a3,
a4, a5, a6))
dl1, 1] <- - (2 * w[2, 1] - w[3, 1] - alpha + (h™2 * ff(x,
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#step 6

for(i in 2

w[2, 1], t, al, a2, a3, a4, a5, a6))) #

(N - 1)) {

x <-—a+1x*xh

t <= (w

(i + 2, 1] - wli, 11)/(2 * h)

aali, 1] <- 2 + (h"2 * ffy(x, wli + 1, 1], t, al, a2, a3,

a4, a5, a6))

bb[i, 1] <- -1 + (h/2 * ffydash(x, wl[i + 1, 1], t, al, a2,

a3, a4, a5, a6))

ccli, 1] <- -1 - (h/2 * ffydash(x, w[i + 1, 1], t, al, a2,

dli, 1]

}
#step 7
x <~ b-h
t <- (beta

a3, a4, a5, a6))
<- - (2 *xwli+1, 1) -wli+2, 1) - wli, 1] +
(h~2 * ff(x, wli + 1, 1], t, al, a2, a3, a4, ab, a6)))

- wlN, 1])/(2 * h)

aa[N, 1] <- 2 + (h"2 * ffy(x, w[N + 1, 1], t, al, a2, a3, a4,

a5, a6))

cc[N, 1] <- -1 - (h/2 * ffydash(x, w[N + 1, 1], t, al, a2, a3,

d(N, 1] <-

# step 8
101, 1] <-
ull, 1] <-
#step 9

for(i in 2:

1iis 2]
uli, 1]
}
#step 10
1[N, 1] <-
#step 11

a4, a5, a6))
- (2 * w(N + 1, 1] - beta - w[N, 1] + (h~2 * ff(x,
w(iN+1,11], t, al, a2, a3, a4, a5, a6))) #

aal1, 1]
bb[1, 1]/aal1l, 1] #

(N -1)) {

<- aali, 1] - ccli, 1] * uli - 1, 1]
<- bbli, 11/1[1i, 1]

aa[N, 1] - cc[N, 1] * ulN - 1, 1] #
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z[1, 1] < dl1, 11/1[1, 1] #
#step 12
for(i in 2:N) {
zhi, B <& @@iin 1 - caliy 1] mmbE - 1, PI/NE, 1
}
#step 13
v[N, 1] <- z[N, 1]
wiN + 1, 1] <- w[N + 1, 1] + v[N, 1] #
#step 14
for(i in (N - 1):1) {
vli, 1] <- z[i, 1] - uli, 1] * v[i + 1, 1]
wli+ 1, 1] <-wli + 1, 1] + v[i, 1]
k
#step 15
#step 16
cat(k, Toler, sum(abs(v)), N, fill = T)
if (sum(abs(v)) < Toler) {
for(i in 1:(N + 2)) {

xx[i, 1] <-a + (i - 1) *h

}

# step 17

#STOP
xx[, 2] <- w[, 1]
xx[1, 3] <- 1
cat.("Done", fill = T)

3
#step 18

lines(seq(a, b, length = length(w)), w)
points(seq(a, b, length = length(w)), w)
k <-k +1

XX
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The Function:ff

This program returns the value of f(z,y,y').

ff<-function(x, y, ydash, a, b, c, d, e, f)

{
((1 + ydash™2) * ((2 *x c x y+d+e*xx) - (2*xa*xx+b+exy)
* ydash))/(a * x"2 + b* x + c *x y"2 +d *y +e *x xy+ f)

The Function:ffy

This program returns the value of f,(z,y,y’).

ffy<-function(x, y, ydash, a, b, c, d, e, f)

i
(1 + ydash™2) * ((2 * ¢ - e * ydash)/(a * x2 + b * x + c * y~2
+dxy+exx*xy+f) - ((2*xcx*xy+d+e*x)*
(2*xcxy+d+ex*x) - (2*xx*a+
b+ e *y) * ydash))/(a * x"2 + b * x + Cc * y"2 +d *
y+exxx*xy+ f)2)
}

The Function:ffydash

This program returns the value of f,(z,y,y’)

ffydash <- function(x, y, ydash, a, b, ¢, d, e, f)

{

(2 xydash * ((2 * cxy+d+e*xx)~-(2*xax*xx+Db+ex*xy)
* ydash)) /(a * x"2 + b*x x +c *y2+d*y+ex*xx
*y+f) - ((2*xa*xx+b+exy)x* (1+ydash™2))/
(a* x"2+b*x+c*xy2+d*xy+e*xxx*xy+f)

}

The Function:transformoutnomin.f

This program finds the optimal path that minimises the line integral for the

surface L(z,y) = a12? + ayz + azy? + aqy + aszy + ag. The inputs are
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Input:

a : the x value of the initial position.

b : the x value of the final position.

alpha : the y value of the initial position.

beta : the y value of the final position.

N: the number of points in the path not counting the beginning and end points.
Toler: the error in successive approximations. When the algorithi gets to a value
below Toler it ends the program and supplies the path found.

M: the number of iterations to do before failing.

al-aG: the coefficients of L(z,y) = a;2% + a2 + azy® + asy + aszTy + a.

Output:

As the program runs there will be output describing the iteration number, the
tolerance level set as input and the current value of the tolerance. There will also
be a graph displayed with the current path under consideration. This aids as a
visual check to see that the algorithm is generating a smooth curve. If there are
bumps in the curve which are increasing with each iteration it is likely to mean
the algorithm will be unsuccessful. The algorithmm works on the transformed data
so, the labels on the graph refer to the transformed data values. The final output
is back transformed and can be graphed.

The final output is a (N + 2) x 3 matrix. If the algorithin stop successfully the
matrix will contain in the

first column: the x positions of the path

second column: the y positions of the path and

third column: a one in the first position to signify successful completion.

If the algorithm stops without success then the matrix will contain a set of zeros.

The algorithm is

transformoutnomin.f
function(a, b, alpha, beta, N, Toler, M, al, a2, a3, a4, a5, a6)
i

bl <- al

b2 <- a2

b3 <- a3
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b4 <- a4
b5 <- ab
b6 <- a6
a0 <- a
b0 <- b
alpha0 <- alpha
beta0 <- beta
if(a5 '= 0) {
#
#find angle of rotation
theta <- 1/2 * atan(a5/(al - a3)) #
#recovers if (al-a3) = 0 !
#find new coeffs of equation
bl <- al * (cos(theta))~2 + a5 * cos(theta) * sin(theta)
+ a3 * (sin(theta))"2
b3 <- al * (sin(theta))~2 - ab * sin(theta) * cos(theta)
+ a3 * (cos(theta))"2
b2 <- a2 * cos(theta) + a4 * sin(theta)
b4 <- - a2 * sin(theta) + a4 * cos(theta)
b5 <- ab * ((cos(theta))~2 - (sin(theta))"2)
+ 2 * ((a3 - al)) * sin(theta) * cos(theta)
b6 <- a6 #
#finds new alpha, beta, a0 and bO
a0 <- a * cos(theta) + alpha * sin(theta)
alpha0 <- - a * sin(theta) + alpha * cos(theta)
b0 <- b * cos(theta) + beta * sin(theta)
beta0 <- - b * sin(theta) + beta * cos(theta)
}
a0 <- a0 + (b2/(2 * bl))
alpha0 <- alpha0 + (b4/(2 * b3))
b0 <- b0 + (b2/(2 * bl))
beta0d <- beta0 + (b4/(2 * b3))
# check to see which way optdiff is more likely to work
getx <<- foptfinddiff.f(a0, b0, alphaO, betaO, N, Toler, M,
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bl, 0, b3, 0, 0, b6)
gx <- getx[, 1] - (b2/(2 * bl))
gy <- getx[, 2] - (b4/(2 x b3)) #
#return solution to the old co-ordinates

if(as !'= 0) {
ggx <- gx * cos(theta) - gy * sin(theta)
ggy <- gx * sin(theta) + gy * cos(theta)
gx <- ggx
gy <= ggy

}

cbind(gx, gy, getx[,3])

Typical Input

This is the Splus command to call trans formoutnomin.f. The starting position
is (3,1) and the end position is (1,1). There are to be 40 points on the path
(besides the points (3, 1) and (1,1)). The tolerance is 0.000001 and 100 iterations
will be considered. The value of L is L(z,y) = 122 + 1y% — 1zy.

g2<-transformoutnomin.f(3,1,1,1,40,0.000001,100,1,0,1,0,-1,0)

Typical Output
The screen output is

1 1e-006 1.00775265276267 40
2 1e-006 0.05659800861419 40
3 1e-006 0.000120086434477465 40
4 1e-006 3.2598197324736e-010 40

The path data is

g2

gx gy
[1,] 3.000000 1.0000000
[2,] 2.953246 1.0020268
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[3,] 2.906258 1.0038194

(4,] 2.859032 1.0053731

[5,] 2.811561 1.0066832

(6,] 2.763843 1.0077452

[7,] 2.715872 1.0085546

[8,] 2.667644 1.0091073

[9,] 2.619155 1.0093994

(10,] 2.570403 1.0094276
(11,] 2.521384 1.0091890
[12,] 2.472096 1.0086815
[13,] 2.422538 1.0079038
[14,] 2.372710 1.0068559
(15,1 2.322612 1.0055389
(16,] 2.272248 1.0039557
[17,] 2.221624 1.0021113
(18,] 2.170745 1.0000132
(19,] 2.119623 0.9976719
[20,] 2.068272 0.9951015
[21,] 2.016711 0.9923205
[22,] 1.964962 0.9893524
[23,] 1.913056 0.9862270
(24,] 1.861030 0.9829809
[25,] 1.808927 0.9796591
[26,] 1.756803 0.9763155
[27,] 1.704722 0.9730146
gx gy

[28,] 1.652759 0.9698319
[29,] 1.601001 0.9668546
[30,] 1.549548 0.9641822
(31,] 1.498511 0.9619255
[32,] 1.448011 0.9602057
[33,] 1.398177 0.9591523
[34,] 1.349144 0.9588996
[35,] 1.301046 0.9595830
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[36,] 1.254017 0.9613337
[37,] 1.208177 0.9642746
[38,] 1.163637 0.9685149
[39,] 1.120488 0.9741463
(40,] 1.078802 0.9812409
(41,] 1.038629 0.9898490
(42,] 1.000000 1.0000000

The graph of the soultions is in figure G.I.

Optimal Paths for L(x,y)

L

og8 090

o

Figure G.1: The optimal path on L = z? + y? — zy from (3,1) to (1,1).
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The data in the table below is that collected for the split plot example in Chapter
1.

shape tar coke volt cont temp data

-1

-1

.15875977
.20568296
.51069135
.00010966
.761915641

2.70721242

. 76840067
.13835194
.32344358
.95964132
.79212294
.28714965
.14217644
. 48589399
.06517826
.03065844
.09651132
.09722972
.16299795
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1 1 -1 -1 1 -1 0.82381815
21 Sl 1 Sl 1 -1 -1.54259351
1 - 1 -1 1 -1 -0.34825481
=il 1 1 il 1 -1 0.25956763
1 1 1 -1 1 -1 1.39071878
i -1 1 1 -1 -0.36839460
1 -1 - 1 1 -1 -0.65586610
ol I| G| 1 1 -1 -0.02044628
1 O | 1 1 -1 0.02623366
Sl -1 1 1 1 -1 2.18119632
1 -1 1 1 1 -1 -1.25550984
=il 1 1 1 1 -1 -0.09207472
1 1 1 1 1 -1 0.63682325
=i =1 =1 ! -1 1 2.09393221
1 -1 -1 ! =1 1 -1.51767761
il 1 -1 -1 =il 1 0.48643948
1 T | il -1 1 0.71073556
=1 -1 1 -1 -1 1 -1.29747482
1 Sl 1 =il S 1 -0.63506206
-1 1 1 -1 -1 1 0.15379463
1 1 1 -1 -1 1 -1.24940022
-1 =il wl 3 (R | 1 -1.38599347
1 -1 = 1 -1 1 1.01398356
=il 1 =i 1 =il 1 -1.43891814
1 1 -1 1 =il 1 -0.12583428
=il -1 1 1 -1 1 0.68550895
1 -1 1 1 -1 1 0.59457865
-1 1 1 1 = 1 -1.16981467
1 1 1 1 -1 1 -0.6197410
Sl —1 =il s 1 1 0.3829985
1 -1 -1 s 1 1 -1.5483784
-1 1 -1 il 1 1 2.0846723
1 1 -1 ! 1 1 -0.5608030
-1 -1 1 -1 1 1 0.7745685
1 =1 1 -1 1 1 -0.1349605
-1 1 1 =1 1 1 -1.3571536
1 1 1 -1 1 1 -1.8949398
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= il =i 1 1 1 1.0059796
O | 1 1 1 -0.3897107
=1 1 =3 1 1 1 0.2757704
1 L = 1 1 1 0.1216626
=1 1! 1 1 1 1 -1.8323588
y i 1 1 1 1 -0.4633447
=il 1 1 1 1 1 1.9977313
1 1 1 1 1 1 0.8531242
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Appendix 1

Determining Minimal

Transitions:1

One Factor per Change

This algorithm whichtochange. f finds the transition from xg to x; that has the
smallest value. A transition value is the sum of the line integrals on L(x)
corresponding to each factor change. L(x) is a variance or an adjusted variance
function. It is a polynomial of order 2 in p controllable factors and can be

represented by
Lx)=A+z'B+z'Cz

Where C is a symmetric matrix.

whichtochange.f
Inputs

The inputs are

paths: This is a matrix of dimensions n, x p. Where p is the number of
controllable factors and n, is the number of paths to be considered. A row in the
path matrix represents a transition and is the order that the p factors are
changed e.g a typical row for a 3 factor problem would be (2,1,3) which means
the second factor is changed first, then the first factor and lastly the third. The
largest values that n, can take without there being repeats is p!. Some transitions

may not be practical and these need not be listed in the paths matrix.
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AA: represents the constant, A, in the equation L(z) = A+ z'B + z'Cz.

BB: represents the linear terms, B, in the equation L(z) = A+ «'B + z'Cz. It
is a p x 1 matrix.

CC: represents the interaction and squared terms, C, in the equation

L(x) =A+z'B + z'Cz. C is a p x p symmetric matrix where each coefficient
of an interaction will appear twice and so is halved.

start: represents the p x 1 matrix xq

finish: represents the p x 1 matrix

Outputs

As the algorithm proceeds it outputs the row number of the transition under
consideration and the sum of the line integrals for the paths in that transition.
The final output comprises a list of references to the rows of the matrix, paths
that correspond to transitions with the smallest value i.e. the output 4 7 would
mean that there are two transitions that have the smallest value and that the
transition order is contained in rows 4 and rows 7 of the matrix pat/is. The other
object is the value of the sum of the line integrals for the paths that have minimal
transitions.

The algorithm is

whichtochange.f<-
function(paths, AA, BB, CC, start, finish)
{
noofpaths <- dim(paths) (1]
nooffactors <- dim(paths) (2]
minpath <- c()
minpathlength <- 1000000000000
currentpathlength <- 0
for(i in 1:noofpaths) {
currentpos <- start
currentpathlength <- 0
for(j in 1:nooffactors) {
currentpathlength <- currentpathlength + pathintegral(pathsl(i,
jl, currentpos, AA, BB, CC, finish(paths(i, j]], start(
paths[i, jl1)
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currentpos(paths(i, jl]] <- finish[paths[i, j]]
k
cat(i, currentpathlength, fill = T)
if (currentpathlength == minpathlength) {
minpath <- c(minpath, i)
}
if (currentpathlength < minpathlength) {
minpath <- 1

minpathlength <- currentpathlength

I
}
list (paths = minpath, min.path.length = minpathlength)
}
pathintegral

This function is called by whichtochange. f and is a generic solver for line

integrals of the type specified by L(z) when only one variable is changing.

pathintegral<-
function(x, values, AA, BB, CC, lower, upper)
{

BBB <- BB

BBB[x, 1] <- BB[x, 1]/2

CCC <= CC

ccel, x] <- ccl, x1/2

ccclx, 1 <- ccclx, 1/2

CCC[x, x] <- ccCclx, x1/3

uppervalues <- values

uppervalues[x, 1] <- upper

uppervalues <- matrix(uppervalues, , 1)

lowervalues <- values

lowervalues([x, 1] <- lower

lowervalues <- matrix(lowervalues, , 1)

abs(upper * (AA + t(uppervalues) %x% BBB + t(uppervalues) %%/
CCC %+’ uppervalues) - lower * (AA + t(lowervalues) %x*J% BBB
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+ t(lowervalues) Y%x*% CCC %x*% lowervalues))

Typical Input

Suppose L(z,y, z) = 10 + z + 3y + 4z + 5% + 6y* + 32? + 4zy + 22z + Gyz then

L(z,y, z) can be represented by

1 8 2 1 T
L(z,y,2) =10+ (z,y,2) | 3 | +(z,9,2)| 2 6 3 Yy
4 L. 3 3
ie.
1 5 2 1
A=10.B=| 3 |.&E=]| 2 b 3
4 L 8 3

Asinput AA=A, BB=DBand CC =C.

3
The initial postition is ¢g = ( 2 | and input as the variable start.
4
0
0

The final position is ¢, = and is input as the variable finish.

1
The last input is the paths martrix. There are three factors and so there are

3! = 6 unique transitions. The matrix paths below represents those transitions.

W W NN - =
= N W =, W N
N = = W N W

i.e. in row G the transition is to move factor 3, z, first, then move factor 1, z, and

then move factor 2, y.
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Typical Output

The function call is whichtochange. f (paths, AA, BB, CC, start, finish). The

output is

918.
948.
816.
807.
873.
903.
$paths:
(1] 4

D OO W N =
g o o1 1 o1 O;

$min.path.length:
(,1]
[1,] 807.5

The transition with the lowest sum of path integrals is in row 4 and the sum is

807.5. This transition is (2,3,1) i.e. y is moved first, then z and then .

Calculations By Hand

Calculating the first transition, (1,2,3), by hand, as a final check gives
Path 1.
The first factor is changed from value 3 to 0 with factors 2 and 3 remaining

constant at 2 and 4 respectively.

3
/ 10 4+ z + 3y + 4z + 522 + 6y + 322 + 4zy + 222 + 6y =z |dz|
0

£ 3

2
= [10$+%+3x2x+4x4x+ +6x (2)% +3 x (4)%z

3

41:2(2) 2z% x 4
+6 x 2 x4z

+
2 2 .
= 30 +4.5+ 18 + 48 + 45 + 72 + 144 + 36 + 36 + 144

= 977.5

Path 2.

The second factor is changed from value 2 to 0 with factors 1 and 3 remaining
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constant at 0 and 4 respectively.

2
/ 10 + = + 3y + 4z + 52% + 6y + 32° + day + 222 + Gyz |dy|
0

3y? 6y> 6y*]”
10y + 2L 44 x dy + L +3 x 4%y + =
2 3 2 |,

= 20+6+32+16+96+ 48
= 218

Path 3.
The third factor is changed from value 4 to 1 with factors 1 and 2 both remaining

constant at 0.
1
/ 10 + z + 3y + 4z + 522 + 6y® + 32° + dxy + 222 + Gyz |dz|
1

42 328
= |102+ = + 2=
o 4 5]

= 40+32+64-10-2-1
= 123

The transition value is the sum of these integrals which is
577.5+ 218 4+ 123 = 918.5 which agrees with the first transition value in the

computer output.
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Appendix J

Determining Minimal

Transitions:2

Two Factors per Change, Even Number of

Factors

The algorithm whichtwotochangeeven.f finds the transition from xqg to ; which
has smallest value when only two controllable factors are changed at a time and
the number of factors is even. When two factors are moved it is assumend that
they follow a straight line path. L(x) represents a variance or an adjusted
variance function. It is a polynomial of order 2 in p factors and can be

represented by
Liz)=A+z'B+z'Cz

Where C is a symmetric matrix. A transition consists of the sequence of two
factor changes. Its value is the sum of the line integrals on L(x) corresponding to

the paths these factor changes take.

whichtwotochangeeven.f
Inputs

The inputs are
paths: This is a matrix of dimensions n, x p. Where p is the number of
controllable factors and n, is the number of paths to be considered. A row in the

path matrix represents the order that the p factors are going to be changed in e.g
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a typical row for a 4 factor problem could be (2,4,1,3) which means the second
and fourth factor are changed together and then the first and third.

AA: represents the constant, A, in the equation L(z) = A+ z'B + z'Cz. It is a
scalar object.

BB: represents the linear terms, B, in the equation L(z) = A+ z'B + z'Cz. It
is a p x 1 matrix.

CC: represents the interaction and squared terms, C, in the equation

L(z) = A+ z'B + z'Cz. C is a symmetric p x p matrix where each coefficient
of an interaction will appear twice and so is halved.

start: represents the p x 1 matrix xg

finish: represents the p x 1 matrix «,

Outputs

As the algorithmm proceeds it outputs the row number of the transition under
consideration and the sum of the line integrals for the paths in that transition.
The final output is a list comprising of

1) a list of the row numbers of the matrix, paths. These row numbers correspond
to rows in the paths matrix that are the transitions with the smallest value.

2) a list of the smallest transition value.

The algorithm is

whichtwotochangeeven.f<-
whichtwotochangeeven.f
function(paths, AA, BB, CC, start, finish)
{

noofpaths <- dim(paths) [1]

nooffactors <- dim(paths) [2]

even <~ T
if ((nooffactors/2) == round(nooffactors/2)) {
even <- T

noofits <- nooffactors
}
else {

even <- F

cat("No of factors is not even", fill = T)
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return()
}
minpath <- c()
minpathlength <- 1000000000000
currentpathlength <- 0
for(i in 1:noofpaths) {
currentpos <- start
currentpathlength <- 0
for(j in seq(i, (noofits - 1), by = 2)) {
currentpathlength <- currentpathlength + pathintegral2(paths([i, j
], paths[i, (j + 1)], currentpos, AA, BB, CC, start[paths[
i, jl1, finish([paths[i, jl], start(paths(i, (j + 1)1],
finish[paths[i, (j + 1)]])
currentpos[paths[i, j]] <- finish([paths[i, j]]
currentpos[paths[i, (j + 1)]] <- finish(paths[i, (j + 1)]]
&
cat (i, currentpathlength, fill = T)
if (currentpathlength == minpathlength) {
minpath <- c(minpath, i)
}
if (currentpathlength < minpathlength) {
minpath <- 1

minpathlength <- currentpathlength

}
}
list(paths = minpath, min.path.length = minpathlength)
}
pathintegral2

This function is called by whichtwotochange. f and is a generic solver for line
integrals of the type specified by L(x) when two variables are changing in a

straight line path.

pathintegral2<-
function(x1, x2, values, AA, BB, CC, lowerl, upperl, lower2, upper2)
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BBB <- BB

BBB[x1, 1] <- BB[x1l, 1] * (lowerl + (upperl - lower1)/2)

BBB[x2, 1] <- BB[x2, 1] * (lower2 + (upper2 - lower2)/2)

CCC <- CC

ccCl, x1] <- ccl, x1] * (lowerl + (upperl - lowerl)/2)

CcCClx1, ] <~ cclx1l, ] * (lowerl + (upperl - lowerl)/2)

cccl, x2] <- cC[, x2] * (lower2 + (upper2 - lower2)/2)

CCC[x2, ] <- CC[x2, ] * (lower2 + (upper2 - lower2)/2)

CCClx1, x1] <- CC[x1, x1] * (lower1”2 + lowerl * (upperl - lowerl)
+ 1/3 * ( upperl - lowerl)~2)

CCC[x2, x2] <- CC[x2, x2] * (lower2”2 + lower2 * (upper2 - lower2)
+ 1/3 * (upper2 - lower2) 2)

CCC[x1, x2] <- CCIlx1, x2] * (lower2 * lowerl + (lowerl x*
(upper2 - lower2))/2 +(lower2 * (upperl - lowerl))/2 +
((upperl - lowerl) * (upper2 - lower2))/3)

ccCclx2, x1] <- ccclx1, x2]

uppervalues <- values

uppervalues[x1, 1] <- 1

uppervalues[x2, 1] <- 1

uppervalues <- matrix(uppervalues, , 1)

((upperl - lowerl)~2 + (upper2 - lower2)~2)70.5 * (AA + t(uppervalues)
A*% BBB + t(uppervalues) %*J, CCC %*J, uppervalues)

Typical Input

Consider this example.

L(z1, Ty, T3, T4) = 2} + 223 + 325 + 4z3

with § = (5,5,5,5) and ! = (=1, -1, —1,—1). zo and x, are used as inputs for

the variables start and finish respectively.
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By looking at the equation L(z,,x,, T3, T4) it gives as inputs

c o & =

0
2
0
0

0
0
3
0

_ o o C

From observation the minimal transition would be to move factors 3 and 4 first,

then factors 1 and 2 i.e. 3 and x4 then x, and x,.
The matrix below, is the input object paths. Each row represents a transition.

The fourth row represents the transition, move factors 2 and 3 first and then

factors 1 and 4.

1
1
1
2
2
3

R W e W N

3
2
2
1
1
1

N W s W e s

With p = 4 factors there are n, = ff{ = 0 transitions. They are all accounted for

in paths.

Typical Output

The function call is whichtwotochangeeven. f(paths, AA, BB, CC, start, finish).

The output is

1 2104.34978081116
2 1900.70302782944
3 1697.05627484771
4 1697.05627484771
5 1493.40952186599
6 1289.76276888426
$paths:

(1] 6
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$min.path.length:
(,1]
[1,] 1289.763

The transitions with the lowest sum of path integrals is in row 6. This is move
factors 3 and 4 together then factors 1 and 2. This transition has a value of
1289.763.

Calculations By Hand

Calculating the first transition, (1,2,3,4), by hand gives
Path 1.
The first and second factors are both changed from value 5 to —1 with factors 3
and 4 remaining constant at 9.
Let 2y =5—-6t, t=0..1andz,=5-6t, t=0..1 so
/OI (J:f + 222 + 3u5 + 412) (&2 + 2)7 |dt|

= (6®+6%)2 /01 (3(5 -6t 4+ 75+ 100) dt
(62 + 62)2 [3(25t = 62—0t2 + 33—6t3) i+ 175t]l
= 1663.11514935075968 0

Il

Path 2

The third and forth factors are both changed from value 5 to —1 with factors 1
and 2 remaining constant at -1.

Let z3=5—-6t, t=0...land x4 =5—-06t, t=0...1 so

|
/U (23 + 203 + 322 + 422) (&3 + 32) 2 dt|
2 2\ L : 2
= (@ +6) [ (3+7(-61)) ot
JO
60, 36,1
— (6% + 6 [3 HT(25 - S+ ?t:")]
0
441.234631460405632

Il

The transition value is the sum of these integrals which is
1663.1151 + 441.2346 = 2104.3498. This agrees with the first transition value in

the computer output.
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Two Factors per Change, Odd Number of Factors

The algorithin whichtwotochangodd.f finds the transition from xg to ; which
has smallest value when two controllable factors are changed at a time. In this
case there must be one single factor change. This factor change can be first, last
or between any of the two factor changes. When two factors are moved it is
assumend that they follow a straight line path. L(x) represents a variance or an
adjusted variance function. It is a polynomial of order 2 in p factors and can be
represented by

Liz)=A+z'B+2'Cz

Where C is a symmetric matrix. A transition consists of the sequence of two
factor with a final one factor change if the number of controllable factors is odd.
Its value is the sum of the line integrals on L(x) corresponding to the paths these

factor changes take.

whichtwotochangeodd.f
Inputs

The inputs are

paths: This is a matrix of dimensions n, x p. Where p is the number of
controllable factors and n; is the number of paths to be considered. A row in the
path matrix represents the order that the p factors are going to be changed in
with the last factor being the factor that changes by itself. A typical row might
be ( 2, 4, 3, 5, 1) which means that factors 2 and 4 change first then factors 3 and
5. Factor 1 changes by itself. It can change first, last or between the two factor
changes. In in this case the row represents 3 transitions.

AA: represents the constant, A, in the equation L(x) = A+ 'B + z'Cz. It is a
scalar object.

BB: represents the linear terms, B, in the equation L(z) = A+ z'B + z!Cz. It
i1s a p x 1 matrix.

CC: represents the interaction and squared terms, C, in the equation

L(z) = A+ x'B + z'Cz. C is a symmetric p x p matrix where each coefficient
of an interaction will appear twice and so is halved.

start: represents the p x 1 matrix xg

finish: represents the p x 1 matrix @,
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Outputs

As the algorithm proceeds it outputs the row number of the transition under
consideration, the position of the single factor change, and the sum of the line
integrals for the paths in that transition.

The final output is a list comprising two parts

1) a matrix. The first column of this matrix gives the row numbers corresponding
to rows in the matrix paths. The second column gives the positions of where the
single factor change occurs. A one means that the change occurs first, a two
means it occurs before the second two factor change etc. Together they give the
recommended transitions.

2) a list that gives the smallest transition value.

The algorithim is

whichtwotochangeodd. f
function(paths, AA, BB, CC, start, finish)
f
noofpaths <- dim(paths) [1]
nooffactors <- dim(paths) [2]
even <- T
if ((nooffactors/2) == round(nooffactors/2)) {
even <- T
cat ("Error: even number of factors", fill = T)
return()
}
else {
even <- F
noofits <- (nooffactors - 1)
);
minpath <- matrix(0, 1, 2)
minpathlength <- 1000000000000
currentpathlength <- 0
for(i in 1:noofpaths) {
for(k in 1:(noofits/2 + 1)) {
currentpos <- start

currentpathlength <- 0
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if(k == 1) {
currentpathlength <- currentpathlength + pathintegral(
paths[i, nooffactors], currentpos, AA, BB, CC, finish[
paths[i, nooffactors]], start[paths[i, nooffactors]])
currentpos [paths[i, nooffactors]] <- finish([paths[i,
nooffactors]]

for(j in seq(1, (noofits - 1), by = 2)) {

currentpathlength <- currentpathlength + pathintegral2(

paths[i, j], paths[i, (j + 1)], currentpos, AA, BB,

CC, start[paths(i, j]], finish[paths[i, j]], start[
paths[i, (j + 1)]1]1, finish[paths[i, (j + 1)]1])
currentpos [paths[i, j]] <- finish[paths[i, j]]
currentpos[paths(i, (j + 1)]] <- finish([paths[i,
(j + 1)]1]
}
cat(i, "Singleton first", currentpathlength, fill = T)
if (currentpathlength == minpathlength) {
minpath <- rbind(minpath, matrix(c(i, 1), 1, 2))
}
if (currentpathlength < minpathlength) {
minpath <- matrix(c(i, 1), 1, 2)

minpathlength <- currentpathlength

)3
if(k == (noofits/2 + 1)) {
for(j in seq(1, (noofits - 1), by = 2)) {
currentpathlength <- currentpathlength + pathintegral2(
paths[i, j], paths[i, (j + 1)], currentpos, AA, BB,
CC, start[paths[i, j]], finish[paths[i, j]], startl[
paths(i, (j + 1)]], finish[paths[i, (j + 1)1])
currentpos[paths[i, j]] <- finish[paths([i, j]]
currentpos[paths(i, (j + 1)]] <- finish[paths[i, (j + 1)]]
}

currentpathlength <- currentpathlength + pathintegral(
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paths[i, nooffactors], currentpos, AA, BB, CC, finish[

paths[i, nooffactors]], start([paths(i, nooffactors]])
cat(i, "Singleton last", currentpathlength, fill = T)
if (currentpathlength == minpathlength) {

minpath <- rbind(minpath, matrix(c(i,

(noofits/2 + 1)), 1, 2))
}
if (currentpathlength < minpathlength) {
minpath <- matrix(c(i, noofits/2 + 1), 1, 2)

minpathlength <- currentpathlength

}
if((k !'= 1) & (k '= (noofits/2 + 1))) {
for(j in seq(l, ((k - 1) * 2), by = 2)) {
currentpathlength <- currentpathlength + pathintegral2(
paths[i, j], paths[i, (j + 1)], currentpos, AA, BB,
CC, start(paths(i, j]], finish([paths[i, j]], start[
paths([i, (j + 1)]1], finish[paths(i, (j + 1)]1)
currentpos[paths[i, j]] <- finish[paths[i, j]]
currentpos[paths[i, (j + 1)]] <- finish[paths[i,
(G +1)]]
}
currentpathlength <- currentpathlength + pathintegral(
paths[i, nooffactors], currentpos, AA, BB, CC, finish[
paths[i, nooffactors]], start[paths[i, nooffactors]])
currentpos[paths[i, nooffactors]] <- finish[paths[i,
nooffactors]]
for(j in seq((k * 2 - 1), (noofits - 1), by = 2)) {
currentpathlength <- currentpathlength + pathintegral2(
paths[i, j], paths[i, (j + 1)], currentpos, AA, BB,
CC, start([paths(i, j]], finish[paths[i, j]], startl[
paths[i, (j + 1)]], finish([paths[i, (j + 1)1])
currentpos [paths[i, jl] <- finish[paths[i, j]]
currentpos [paths[i, (j + 1)]] <- finish([paths[i,
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G+ DI]
}
cat(i, "Singleton before pair ", k, currentpathlength,
fill = T)

if (currentpathlength == minpathlength) {

minpath <- rbind(minpath, matrix(c(i, k), 1, 2))
}
if (currentpathlength < minpathlength) {

minpath <- matrix(c(i, k), 1, 2)

minpathlength <- currentpathlength

}
}
F
}
list(paths = minpath, min.path.length = minpathlength)
F
pathintegral2

The function pathintegral2 is called by whichtwotochangeodd. f. This algortithn

is also called by whichtwotochangeeven.f and appears earlier in this appendix.

pathintegral

This function is called by whichtwotochangeodd.f and is a generic solver for line
integrals of the type specified by L(x) when only one variable is changing. It is
identical to the function of the same name in the previous appendix. It is

repeated here only for completeness.

pathintegral<-
function(x, values, AA, BB, CC, lower, upper)
{

BBB <- BB

BBB[x, 1] < BB[x, 1]/2

CECE <- €€

cccl, x]J <- ccl, x1/2



APPENDIX J. DETERMINING MINIMAL TRANSITIONS:2 259

ceelx, J < ccoclx, 1/2

ccclx, x] <- CClx, x1/3

uppervalues <- values

uppervalues([x, 1] <- upper

uppervalues <- matrix(uppervalues, , 1)

lowervalues <- values

lowervalues[x, 1] <- lower

lowervalues <- matrix(lowervalues, , 1)

abs(upper * (AA + t(uppervalues) %x) BBB + t(uppervalues) %%/
CCC %*% uppervalues) - lower * (AA + t(lowervalues) %x*} BBB

+ t(lowervalues) Y%x% CCC %x% lowervalues))

Typical Input

This example uses the same data as the example in the previous appendix for
single factor changes.

Suppose L(z,y, z) = 10 + = + 3y + 4z + 52% + 6y? + 3z* + 4zy + 22z + Gyz then
L(z,y, z) can be represented by

1 5 2 1 &
L(z,y,2) =10+ (z,y,2) | 3 | +(z,y,2)| 2 G 3 (]
1 3 3
i.c.
1 iR 1
A=10,B=|3|,C=]2 6 3
4 1 8 8
As input AA=A, BB =B and CC =C.
3
The initial postition is €g = | 2 | and input as the variable start.
4
0
The final position is £y = | 0 | and is input as the variable finish.
1

The last input is the paths matrix. For this problem the paths in rows 1 and 4, 2

and 5, 3 and 6 are equivalent.
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W W NN =
N = = W W N

=N WP, NN W

In row 6 the transition is to move factor 3, z and factor 2, y together and then

move factor 1, x.

Typical Output

The function call is whichtwotochange. f(paths, AA, BB,CC,start, finish). The

output is

(o2 I o> B & 2 B & 2 B O L A O B O B O R

Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton
Singleton

$paths:

0,11 ([,

(1,] 3
[2,] 6

first 785.741403441035
last 647.60771058001
first 668.135605693432
last 655.605735166021
first 829.888589282479
last 632.304934942278
first 785.741403441035
last 647.60771058001
first 668.135605693432
last 655.605735166021
first 829.888589282479
last 632.304934942278

2]
2
2

$min.path.length:

[,1]
[1,] 632.3049
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The transitions with the lowest sum of path integrals is in row 3 and 6 with the
sum of 632.3. This transition is (2,3, 1) or equivalently (3,2,1). Both have a
corresponding 2 meaning that the single factor move occurs after the paired
factor move. A one would indicate that the single factor move would happen first.
In the previous appendix, where only single factor moves were considered, the
same transition sequence was given as the minimum. The sum of line integrals for

that transition was 807.5 which is larger.

Calculations By Hand

Calculating, by hand, the first transition, (1,2, 3) with the single factor change
occuring last, gives

Path 1.

The first and second factors are changed from value 3 to 0 and 2 to 0 respectively
with factor 3 remaining constant at 4.

Letz=3t, t=0..1andy=2t, t=0...1s0

1 .
/ (10 + 243y + 4z + 522 + 6y% + 322 + dzy + 222 + Gyz) (&% + gz)%ldtl
0

3t?2 62 5x 93 6 x 4¢3
= (324 2?)z 1+ 2 80 g +
2 2 3
s Ax3x2 2x3x4t2  6x2x4t?]
+3 x 42 + + +
B 2 2 .
3 O O5x9 O6x4
= (324223 (10 £ ge— 116 +
(3°+2%)7 x i &S 5 T3
o 4 x3x2 2x3x4 6x2x4
+3 x 4%+ + + )
3 2 2
= 524.6077
Path 2.

The third factor is changed from value 4 to 1 with factors 1 and 2 both remaining

constant at 0.

1
/ 10 + 2 + 3y + 4z + 52% + 6y? + 32% + dzy + 2x2 + Gyz |dz]
1

422 33"

102 + — 4+ —
o 5]
40+32+64-10—-2-1
= 128

I
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The transition value is the sum of these integrals which is
524.6077 + 123 = 647.6077.This agrees with the second value for the first

transition in the computer output.
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Corrections

A listing of corrections to the text.

Page; Lines
9 2

303 ¥

30: 17

99: 9

99: 10

104: 13

167: 21

Original and Corrected Text

The Inner and Outer arrays are both level 3 Designs.

The Inner and Outer arrays are both resolution 3 designs.

Where the factors fall in this graph gives an indication of what type
of factor it is.

Where a factor falls in this graph gives an indication of what type

of factor it is.

The areas outside the crossarms are where both significant mean and
log standard effects lie.

The areas outside the crossarms are where both significant mean and
log standard deviation effects lie.

In the previous example, the conditions for &; to be the

minimum of the variance when the mean is on target, were met.

In the previous example, the conditions for &} to give the

minimum of the variance when the mean is on target, were met.

If A, is positive definite and 2 is of rank r then &}**
is the minimum of the MSE.

If A, is positive definite and X is of rank r then &}**

gives the minimum of the MSE.

And so long as A; and A, are chosen to be both greater then

the conditions are met.

And so long as A; and A, are chosen to be both greater than 0

then the conditions are met.

Let € have a standard Normal distribution and be independant of z;
and z; and have a joint multi-variate Normal distribution.

Let € have a standard Normal distribution and be independant of z;
and z;. Together, let ¢, 2, and z; and have a multivariate Normal

distribution.



Page; Lines Original and Corrected Text
178 11 In Figure 4.7 the Mean Square Error of Z; for 2, has been plotted against
the correlation coefficient of z; and z,.
In Figure 4.7 the Mean Square Error of z; for z; has been plotted against
the correlation coeflicient between z; and z,.
179: 2 The graph of the Mean Square Error for Z;, the estimate of 21, versus
the Correlation Coefficient of 2; and z,.
The graph of the Mean Square Error for Z;, the estimate of z;, versus
the Correlation Coefficient between 2; and zs.
INHSE T In Figure 4.8 the Mean Square Error of 2, for 2; has been plotted against
the correlation coeflicient of z; and z,.
In Figure 4.8 the Mean Square Error of 2, for z; has been plotted against
the correlation coefficient between z; and z,.
179: 9 The graph of the Mean Square Error for Z,, the estimate of 29, versus
the Correlation Coefficient of z; and z,.
The graph of the Mean Square Error for 2,, the estimate of z,, versus
the Correlation Coefficient between z; and zs.
179: 13 In Figure 4.9 the Mean Square Error of € for ¢ has been plotted
against the correlation coefficient of z; and 2.
In Figure 4.9 the Mean Square Error of € for € has been plotted
against the correlation coefficient between z; and z,.
179: 2 The graph of the Mean Square Error for €, the estimate of ¢, versus
the Correlation Coeflicient of z; and z,.
The graph of the Mean Square Error for €, the estimate of €, versus
the Correlation Coefficient between 2; and z,.
180: 9 2) when there has been a change in the system e.g. a change in
process mean or variance.
2) when there has been a change in the system e.g. a change in

process mean or an increase in variance.



	20001.pdf
	20002.pdf
	20003.pdf
	20004.pdf
	20005.pdf
	20006.pdf
	20007.pdf
	20008.pdf
	20009.pdf
	20010.pdf
	20011.pdf
	20012.pdf
	20013.pdf
	20014.pdf
	20015.pdf
	20016.pdf
	20017.pdf
	20018.pdf
	20019.pdf
	20020.pdf
	20021.pdf
	20022.pdf
	20023.pdf
	20024.pdf
	20025.pdf
	20026.pdf
	20027.pdf
	20028.pdf
	20029.pdf
	20030.pdf
	20031.pdf
	20032.pdf
	20033.pdf
	20034.pdf
	20035.pdf
	20036.pdf
	20037.pdf
	20038.pdf
	20039.pdf
	20040.pdf
	20041.pdf
	20042.pdf
	20043.pdf
	20044.pdf
	20045.pdf
	20046.pdf
	20047.pdf
	20048.pdf
	20049.pdf
	20050.pdf
	20051.pdf
	20052.pdf
	20053.pdf
	20054.pdf
	20055.pdf
	20056.pdf
	20057.pdf
	20058.pdf
	20059.pdf
	20060.pdf
	20061.pdf
	20062.pdf
	20063.pdf
	20064.pdf
	20065.pdf
	20066.pdf
	20067.pdf
	20068.pdf
	20069.pdf
	20070.pdf
	20071.pdf
	20072.pdf
	20073.pdf
	20074.pdf
	20075.pdf
	20076.pdf
	20077.pdf
	20078.pdf
	20079.pdf
	20080.pdf
	20081.pdf
	20082.pdf
	20083.pdf
	20084.pdf
	20085.pdf
	20086.pdf
	20087.pdf
	20088.pdf
	20089.pdf
	20090.pdf
	20091.pdf
	20092.pdf
	20093.pdf
	20094.pdf
	20095.pdf
	20096.pdf
	20097.pdf
	20098.pdf
	20099.pdf
	20100.pdf
	20101.pdf
	20102.pdf
	20103.pdf
	20104.pdf
	20105.pdf
	20106.pdf
	20107.pdf
	20108.pdf
	20109.pdf
	20110.pdf
	20111.pdf
	20112.pdf
	20113.pdf
	20114.pdf
	20115.pdf
	20116.pdf
	20117.pdf
	20118.pdf
	20119.pdf
	20120.pdf
	20121.pdf
	20122.pdf
	20123.pdf
	20124.pdf
	20221.pdf
	20222.pdf
	20223.pdf
	20224.pdf
	20225.pdf
	20226.pdf
	20227.pdf
	20228.pdf
	20229.pdf
	20230.pdf
	20231.pdf
	20232.pdf
	20233.pdf
	20234.pdf
	20235.pdf
	20236.pdf
	20237.pdf
	20238.pdf
	20239.pdf
	20240.pdf
	20241.pdf
	20242.pdf
	20243.pdf
	20244.pdf
	20245.pdf
	20246.pdf
	20247.pdf
	20248.pdf
	20249.pdf
	20250.pdf
	20251.pdf
	20252.pdf
	20253.pdf
	20254.pdf
	20255.pdf
	20256.pdf
	20257.pdf
	20258.pdf
	20259.pdf
	20260.pdf
	20261.pdf
	20262.pdf
	20263.pdf
	20264.pdf
	20265.pdf
	20266.pdf
	20267.pdf
	20268.pdf
	20269.pdf
	20270.pdf
	20271.pdf
	20272.pdf
	20273.pdf
	20274.pdf
	20275.pdf
	20276.pdf
	20277.pdf
	20278.pdf
	20279.pdf
	20280.pdf
	20281.pdf
	Binder4.pdf
	10011
	10012
	10013
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10042
	10043
	10044
	10045
	10046
	10047
	10048
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10102
	10103
	10104
	10105


