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Abstract 

This thesis looks at issues in Industrial Experimental Design and Quality Control . 

The first part is a review of Parameter Design and i ts evolution into methods of 

modell ing the mean and variance as one system. 

The second part introduces the concepts of observable and unobservable factors 

as an extension to the ideas of control lable and uncontrollable factors of Parameter 

Design . Methods wil l  be devised to show how to choose the best settings of the 

controllable factors and how to move to those settings once chosen. In the last sec­

tion estimates for tracking the unobservable uncontrollable factors wi l l  be devised . 

These wil l be examined to see whether they can be used to improve the monitoring 

of the system via control charts. 
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C hapter 1 

Review 

This thesis comes in  two parts. The first part i s  a review of Parameter Design 

and i ts evolut ion into the joint modell ing of the mean and variance. The second 

part extends some of the ideas of Parameter Design for use in Qual ity Control .  

1 . 1  Parameter Design 

1 

At the end of the Second World War much of the infrastructure in  Japan had 

been damaged or destroyed. Importance was placed in restoring and repairing the 

damaged infrastructure as quickly as possible. Or Genichi Taguchi was employed 

to get the telephone system up  and running again and his methods started their 

evolution during this period . 

Once the infrastructure was put into place the Japanese realised that the way to 

rebuild the prosperity of their country was to do so through manufacturing. 

Producing products of high qual i ty became an important issue for two reasons. 

The first was to change t he poor reputation that Japanese products had before 

the Second World War and the second was to minimise the wastage of imported 

raw materials. In this cl imate many ideas were conceived and continue to be 

conceived as a means of improving qual i ty. Or Taguchi's methods were 

transferred into this environment
, 
and evolved . His ideas were influenced by his 

background in Ellgineering and Communications Theory and so they were easily 

passed on to other practising industrial engineers as they were written in  

engineering "language" . Or Taguchi 's methods gave improvements which could 

be readi ly seen and this enhanced their appeal . For both of these reasons his 
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ideas became well known although not universally accepted in  Japan . 

Japan 's success in  the manufacturing fields came under scrutiny as other countries 

endeavoured to find the reasons for their success and to copy them. In t he 1 980's 

Or Taguchi 's method were introduced to the United States of America. S ince 

then there have been varied responses to h is techn iques although the underlying 

ideas that gave rise to Paremeter Design were seen as an important breakthrough . 

1 . 2  The Design of a Product or Process 

Dr Taguchi divides the design of a product or process into t hree groups, system 

design , parameter design and tolerance design. 

System design is when ideas and methods about a product or process are 

thought up and implemented to the stage of a working prototype. This stage 

i nvolves utilising the latest technology. Quality variables are determined. 

Proposed tolerances are found for them as well as parameters that are thought to 

affect them. 

Parameter design is a pre-production quality control method. At this stage 

optimal values for the parameters are found through experimentation so that the 

quality variable is in some way optimised . 

The last step is Tolerance design. Tolerances are set at the system design stage 

and if after the paral neter design stage t hese tolerances are not met then action 

has to be taken in  order to conform to these tolerances. This may invol ve using 

h igher quality components or reworking inferior products. Choosing t he best 

option involves calculating a loss function . This function is intended to represent 

the gain the customer gets and the loss the manufacturer has under a specific 

option. The options that gives the least loss is considered the best option. 

System and Tolerance Design are very much the preserve of engineers however 

Parameter Design blends i tself into the wider topics in Industrial Statistics. 

1 . 3 Parameter Design Methodology 

Parameter Desigll utilises Experimental Design and extends some of the 

terminology. In this new setting the parameters are split into two groups of 

factors, uncontrol lable (noise) factors and controllable factors. Controllable 
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factors are those that can be controlled or that the manufacturer chooses to 

control during production i .e. on-l ine. The uncontrollable factors are ones that 

the manufacturer can't control or chooses not to control during production. 

These uncontrol lable factors could include humidity in the workplace, the quali ty 

of products used or the way the customers treat the product. 

A factor can only belong to one of these factor sets at any one time. However 

sometimes the choice of which set the factor can fal l  into l ies with the 

experimenters. For example humidity can be control led during production but at 

great cost and so the economic choice may be to deem it to be uncontrollable. 

The experimentation in Parameter Design is done off- l ine and all the factors, 

controllable and uncontrollable are set at fixed levels. The uncontrol lable factors 

are used directly or simulated and are varied with the controllable factors, using a 

designed experiment, and the results are noted . From this data the controllable 

factors are subdivided into four groups. They are 

Controllable Factors 

Figure 1 . 1 : I nterpretation of Factors. 

• Group 1 .  Controllable factors that effect only the mean level of the process 

or product variable. 

• Group 2. Controllable factors that effect only the variance of the process or 

product variable 

• Group 3. Controllable factors that effect both the mean and variance. 

• Group 4.  Control lable factors that effect neither the mean nor the variance. 

Group 2 and 3 members are called dispersion effects or variance control factors 

and group 1 and 3 members are cal led mean effects or-target control factors. 
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1 . 4 The Method 

The experimental designs that Or. Taguchi advocates are orthogonal arrays 

which are mostly fractionated factorial designs of which a large subset are the 

ones described by Plackett and Burman [ 30] in 1946. These are resolution three 

desigm which allow only the main effects to be estimated . One design is used for 

the controllable factors and is called the inner array. Another design is used for 

the uncontrol lable factors and called the outer array. They are crossed so that for 

each setting of the controllable factors a complete replicate of the outer array is 

run .  For each distinct run of the controllable factors the response mean and 

variance are calculated. 

1 . 4 . 1 An Example 

This example is taken from Engel 's [ 1 3] paper on modeling variation. This 

experiment looks at the percentage shrinkage in an injection moulding process. 

The factors are set at two levels and are defined in Table 1 . 1 .  There are seven 

controllable factors and three uncontrollable factors . 

Table 1 . 1 : Factors i n  the Experiment. 

Controllable Factors Uncontrollable Factors 

A: cycle time M: percentage regrind 

B: mould temperature N :  moisture content 

C: cavity thickness 0: ambient temperature 

0: holding pressure 

E: injection speed 

G :  holding time 

H:  gate size 

The design for the controllable factors is a F2�-4 and is shown in Table 1 . 2 .  The 

design for the uncontrollable factors is a F2�-l and is shown in Table 1 . 3. The 

first design contains eight trials and the latter four and so after crossing, the 

entire experiment will contain 32 . 
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Cell Control lable Factors 

A B C 0 E G H 

1 - 1  - 1  - 1  - 1  - 1  - 1  - 1  

2 - 1  - 1  - 1  1 1 1 1 

3 - 1  1 1 - 1  -1 1 1 Cell Uncontrollable Factors 

4 -1 1 1 1 1 - 1  - 1  M N 0 

5 1 - 1  1 -1 1 - 1  1 1 - 1  - 1  - 1  

6 1 - 1  1 1 - 1  1 - 1  2 - 1  1 1 

7 1 1 - 1  - 1  1 1 - 1  3 1 -1 1 

8 1 1 - 1  1 - 1  - 1  1 4 1 1 - 1  

Table 1 . 2 :  The Inner Array. Table 1 .3 :  The Outer Array. 

The data is collected and l isted as i n  Table 1 .4 .  

Table 1 .4 :  The Complete Array. 

OuterArray 
M - 1  -1 1 1 
N - 1  1 - 1  1 
0 - 1  1 1 - 1  

A B C 0 E G H Yl,i Y2,i Y3,i Y4,i Yi Si 
1 - 1  - 1  - 1  - 1  - 1  - 1  - 1  2 .2  2 . 1  2 .3  2 . 3  2 .225 0 . 10  
2 - 1  - 1  - 1  1 1 1 1 0 .3 2 .5 2 .7 0 .3  1 .45 1 .33 
3 - 1  1 1 - 1  -1  1 1 0 .5 3 . 1  0 . 4  2 .8 1 . 7 1 . 45 
4 - 1  1 1 1 1 - 1  -1 2 .0  l.9 l.8 2 .0  l.925 0. 10 
5 1 - 1  1 - 1  1 - 1  1 3 .0 3 . 1  3 .0  3 .0 3 .025 0 .05 
6 1 - 1  1 1 - 1  1 - 1  2 . 1  4 .2 1 .0 3. 1 2 .6  1 . 37 
7 1 1 - 1  - 1  1 1 - 1  4 .0 1 . 9  4 . 6  2 .2  3. 1 75 1 .33 
8 1 1 - 1  1 - 1  - 1  1 2 . 0  1 .9 1 .9 1 .8 1 . 90 0 .08 

InnerArray 

I f  we consider (A ,  B ,  C ,  0 ,  E, G ,  H ,  M ,  N ,  0) to be a run in  the experiment then 

the run ( - 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ) generated the value 2 2070 and ( - 1 - 1  , " " ' " . l( " 
-1 , - 1 ,  -I, - 1 ,  -I, - 1 ,  I, 1 ) generated 2 . 1 % for the percentage of shrinkage, etc. 

Suppose that our target value is 1 . 5 % then we could say that trial two has 

produced the closest mean value to the target and we could set the process going 

with the controllable factors at the levels of this trial . On the other hand we 
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could look at the run with the smal lest sample variance, which is trial five, work 

out those controllable factors that only effect the mean and use them to bring the 

process mean to its target value. The latter case is preferable (although not 

necessarily optimal) since the process will be on target and the deviatiolls from 

this target value will be smal l .  

1.5 The Analysis 

Dr. Taguchi advocates this method of analysis. To work out those controllable 

factors that affect the mean value an ANOVA is done using the design matrix for 

the controllable factors and the mean values ( Yi ) for each run of the inner array 

as the response. To work out which cOl ltrollable factors affect the variance of the 

process an ANOVA is done using the design matrix for the controllable factors 

and the transformed response data. The transformation that is used is cal led the 

Signal to Noise ratio ( SN ratio ) .  I t  has units of decibels. 

The transformation depends on the intent of the experiment and engineering 

knowledge of the system.  The three most imporant cases are when the process 

has a target to conform to, as in the previous example, when the process variable 

is to be maximised , or when the process variable is to be minimised . Note that i 
refers to the ith disti l lct trial of the controllable factors . 

• The first case is called "nominal is best" and the sn-ratio is 

• The second case is cal led "higher is better" and the sn-ratio is 

1 11 1 
SNHB = - 10 10g1o ( - L2") n i=l Yi 

• The last case is called "lower is better" and the sn-ratio is 

1 . 5. 1  Example Continued 

(l. 1 ) 

(l.2) 

(l.3) 

In order to demonstrate some of the above results I wi l l  return to the example 

started in sect ion 1 .4 .l. In this example the percentage shrinkage of an article 
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from an injection moulding process has to conform to a certain target .  There are 

eight means for the response variable and seven factors so an analysis of variance 

cannot be done as there are no degrees of freedom for the estimation of the error 

variance. A QQPlot of the coefficients of the factors found by least squares is 

shown in Figure 1 .2a) . It shows that factors A and H are factors that affect the 

mean level of the process since they do not l ie on the l ine of the insignificant 

effects. 

a) 

. 
o 

'" o 

o o 

'" 
<? H 

o 

-1.0 

OOplot Of Coefficients 

A 

c 

B 

-0.5 0.0 0.5 1.0 

OUentikts of Standard Normal 

b) 

o o 

... <? 

-1.0 

OOplot Of Coefficients 

.().s 0.0 0.5 

Ouantiles of Standard Normal 

KEY: X represents the coefficient of the Factor X.  

1.0 

Figure 1 . 2 :  QQPlot of coefficients for a) the analysis of the means and b) the 

analysis of the signal to noise ratio. 

Using equation 1 . 1  eight values for the sn-ratio were calculated . These act as the 

response. Since there are also seven factors an analysis of variance cannot be 

done as there are no degrees of freedom for estimation of the error variance. A 

QQPlot of the coefficients found by least squares shown in Figure 1 . 2b) shows 

that factor G is the only factor that affects the variance of the process. 

In doing an analysis of variance procedure or a QQPlot we assume that the 

response variable is distributed normally which in  turn means that the error 
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distribution has a zero mean and constant variance. Constant variance is not 

necessari ly true in some cases. Engel gave an analysis that doesn 't rely on the 

distribution of the response variables. He plotted the averages of each factor for 

each level .  These plots are shown in  Figures 1 .3a) and 1 .3b) . Using subjective 

judgement, factors A ,  0 and H are mean control factors and possibly E .  In the 

latter Factor G is the noise control factor. 

a) b) 

A2 O. 

:! 
d. :: 

H' 

� E2 

I 
:: 

•• C2 1 f-n f o. � d. 

I 
E21 " Ht J 02 ! :! 82 C. 

� ., E. 

! 
N 02 

.2 A. 

E' 

H2 � 
0 '" 

02 

:: 
A

. 
02 :! 

0 C 0 0 
FOC1or. F"""" 

KEY: Xl represents the l I lean for the lower level for factor X. X2 represents the 

upper level .  

8 

Figure 1 .3 :  Plot of means for each level of the factors a) for the analysis of the 

mean shrinkage and b) for the analysis of the signal to noise ratio. 

From Engel's results we would use Factor G to minimise the variance of the 

process ( i .e .  set G at i t's low level) and use factors A ,  0 and H to set the process 

to the target shrinkage level , setting all the others at any level .  

1 . 5 . 2  Confirmation Trials 

The final step is to do a confi rmation check. This involves using the derived 

settings to do further runs to check that these new responses match the expected 

responses from the model . 
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1 . 5.3 Rationale Behind The Experimental Designs 

9 

The Inner and Outer arrays are both level 3 Designs. In  these designs the main 

effects are aliased with the two factor interactions (and higher interactions) but 

not amongst themselves. Crossing the inner and outer arrays allows for the 

estimation of the ControlxNoise (C x N) interactions. However the C x C and 

N x N interact ions are confounded .  The approach that advocates [25] of Dr. 

Taguchi 's method of Parameter Design use, is to choose the quali ty variable and 

the SN ratio so that the C x C are absent or small .  However this requires 

engineering knowledge of the system which may not always be the case. The 

confirmation trials allow for the checking of large C x C interactions. If these 

i nteractions are present then Dr Taguchi advocates that a new SN ratio or a new 

qual i ty response should be chosen and the process i terated. 

The advocates of Dr. Taguchi 's  method of Parameter Design say that by choosing 

the SN ratio and qual ity variable so that there are no C x C interact ions means 

that 

• the number of runs requi red to esimate the parameters is reduced 

• large factor sets can be split up into smaller sets allowing different teams to 

simultaneously do experimentation . This shortens research and 

development time. 

• the optimum settings in the lab will translate into the factory and the field .  

If  there are strong C x C interactions then there are l ikely to be 

interactions between the control variables and the unobserved factor of 

'place' . If th is is so then the optimun found in the lab won 't  translate into 

the field or factory. 

1 . 6  Critism o f  t he Method 

There are two major criticisms of the Taguchi method of Parameter Design. The 

first is with the SN ratio alld the second is with the concept of interactions. 

The SN ratio is a measure used to find the controllable factors that effect the 

variance of a process i . e. the Variance Control Factors. However Box [7] showed 

that the SN-ratio may not always pick up the variance control factors. For 

example - after experimentation the responses generated by each distinct rUll of 
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the controllable factors are condensed into a single value, the SN ratio, which is 

analysed by ANOVA or some related techn ique. 

1 0  

I n  the constructed example below consider this F 2 2  factorial design with factors 

C and D that has been repl icated four  times and out l ined in Table 1 .5 

Table 1 . 5 :  Design and Results for Constructed Example. 
trial SN 

no C D Yl Y2 Y3 Y4 S2 
t Ratio 

1 - 1  - 1  20 20 20 20 0 26 .0206 

2 1 - 1  1 5 .4246 35 .4246 15 .4246 35 .4246 1 33 .3333 26.0206 

3 - 1  1 20 20 20 20 0 26.0206 

<1 1 1 1 5 .4246 35 .4246 1 5 .4246 35 .4246 133 .4333 26.0206 

and represented graphically in  Figure 1 . 4 .  Suppose we want to maximise the 

, target value then we would use equation 1 . 2 of Section 1 . 5 to get the SN ratios 

out l ined in Table 1 . 5 . 

Responses for Two Experimental Conditions 
;!l 62 t 

"' '" 

AI A2 A3 A � ---------------

.., 61 
2 3 

run number 

KEY: The Points A represent the four  responses found from trial 1 ( or 

equ ivalently trial 3 ). The Points B represent the four responses found from t rial 

2 ( or equivalently trial 4 ) . 

Figure 1 .4 :  The Responses for Four Replicates of a F22 Experiment. 

Doing an ANOVA on the SN ratios wou ld give the result that none of the factors 

are variance control factors for the process as the SN ratios are all equal. 

However, from observatioll , at the low level of C, the variances are both zero 

while at the h igh level the variances are both 133 .3333 . This tells us that C is a 

factor that influences the variance of the process . In the graph it is clear that the 
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variance of runs A and B are very different. The analysis that Taguchi advises 

has fai led to pick this up. 

1 1  

Box [7 J also showed that there were problems with SNLB (see equation 1 .3 ) .  This 

is used to find the controllable factors that affect the variance of the process and 

is made up of 

and this fol lows the formula 

n 

LY; = n'r/ + (n - 1 )s2. 
i=l 

( 1 . 4 )  

This means location effects are being confounded with dispersion effects i . e .  i f  

factor A i s  only a significant location effect i t  may be found to  be  a sign ificant 

dispersion effect when using SN LB. 

These designs, the inner and outer arrays, are both highly fractionated which 

means only main effects can be modelled. If there are any interactions amongst 

the factors in each group their effect is going to be incorporated into the aliased 

main effects. By crossing the inner and outer arrays together this new design 

allows the Noise x Control interactions to be estimated . The Noise x Noise 

interactions are of no importance to making the process insensitive to noise. This 

leaves the C x C interactions. Taguchi advocated that only the responses that 

cause the control factors to be additive in the range of interest should be studied. 

He advocated that engineers should use their knowledege of the proccess in order 

to choose the right qual ity response to use. However there is no guarantee that 

there is such a qual i ty response or if there is one that it is known .  A chosen 

quali ty response may be assumed to be l inear but may not be l inear in practice 

and then the method wi l l  fai l .  

Depending on the  intent of  the experiment and the  interpretation of  the 

experimenter a factor could be uncontrollable or controllable. To assume that this 

factor wi l l  interact with the control factors when it is a noise factor and not 

interact with any control factors when it is one i tself is not sound . Jerome Sacks 

and William Welch [25 J are quoted as saying 

Taguchi's main motivation for ignoring interactions between control 

factors appears to be economy of experimental effort rather than any 

assurance it is safe to do so. 
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Even when ignoring the ex  C interactions the experiment can b e  quite large . 

Suppose there are M control factors and and N noise factors then an experiment 

will consist of at least M x N trials. For even moderate M and N this is a large 

number of experiments. 

Or Taguchi says [25] that 

.. the objective of parameter design is very different from a pure 

scientific study. The goal in  parameter design is not to characterize 

the system but to achieve robust function. Pure science strives to 

discover the causal relationships and to understand the mechanics of 

how things happen. Engineering, however, strives to to acheive the 

result needed to satisfy the customer. Moreover, cost and time are 

very important issues for engineers. Science is to explain nature while 

engineering is to uti lize nature. 

This is understandable if the product is only going to be made for a short t ime. 

However if the production run is going to be long then an i terative method of 

experimentation is best. This is where the results of the last experiment are used 

to point towards new areas of investigation and experimentation. The best 

decisions are made in the presence of maximum information combined with 

engineering experience. 

There are also some minor quibbles regarding some of the dangers in some of the 

analyses that were not acknowledged in outl ining the method. They are 

associated with the an lysis of experimental design in general and are worth 

recording because of their wider use and mis-use. 

I n  highly fractionated designs there are often not enough degrees of freedom to 

estimate the variance of the error. Taguchi advocated pooling the smal lest effects 

for use as the error variance. This often leads to non-significant effects being 

labelled signi ficant. Taguchi explained that including non-significant effects into 

the solution does not affect the result , i .e. a non-significant effect at a high or low 

level wil l give the same estimated value for the response. However Box [25 ] argued 

that it is necessary to know which factors are truly significant and those which 

are not as this will give a clearer understanding of the system and wil l provide 

avenues of exploration for the next stage of experimentation. 

In an experiment the concept of randomisation has to be adhered to. Problems 

arise when the experiment is run ,  unintentionally, as a split plot design . This 
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occurs when for each distinct r un  o f  the control lable factors all the different runs 

of the uncontrollable factors are done (or vice versa) . In such cases the reasoning 

behind this has been economic in that i t  is often cheaper to change the sett ings of 

the uncontrollable factors than the controllable factors or vice versa but not both 

sets together. The correct way to do the experiment is to l ist the M x N runs and 

then choose the ordering by randomly picking runs from this list. Of course the 

original experiment could be re-analysed taking into account the split-plot effect .  

The reasoning behind the SN ratios is  also different from the way statisticians are 

taught. Parameter design puts forward a transformation before the data is 

collected and a confirmation t rial is done to see if the model fits. Statisticians 

work in the opposite direction. They col lect the data but let the data show what, 

if any, transformation need be done. 

The first method is a cookbook approach . At each step there is an appropriate 

act ion that does not rely on an statistical experience e.g. viewing residual plots to 

check for outliers. This recipe style of presentation is easy to fol low and so many 

experiments were done. In a lot of cases this did lead to improvements, however 

when things went wrong the 'cook' could be left not knowing what went wrong 

lIor what to do next.  

1 . 7  A Simpler View 

The method of Parameter Design proposed by Dr .  Taguchi ,  under some 

conditions, is more complicated th(m is needed. Rather than crossing arrays and 

using SN-ratios a classical experimental design can be run. In Parameter Design 

the way that controllable factors act on the qual i ty variable have been given 

names i . e. mean control factors, variance control factors. By observing the way 

the controllable factors interact with the uncontrollable factors it can be seen 

that there is a direct connection between the Parameter Design terminology and 

classical Experimental Design terminology. 

Consider the simplest experiment - two factors one a control lable factor A and 

the other an uncontrollable factor B. In the usual way of Parameter Design the 

experiment is done off-l ine and factors A and B are set at fixed levels. From the 

resulting experiment we can see how these factors interact . Consider these 

interaction graphs 
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I II Figure 1 .5 there i s  no  interaction between A and B.  The variance of  Y ,  the 

quali ty variable, at the low level of A is the same as at the high level of A. The 

mean of Y at the low level of A is the same as at the high level of A. By 

connecting the low levels of B with a line and the high levels of B with a l ine we 

can see that the mean and variance of Y would not be predicted to change at 

points between the low and high level of A. Therefore A, by definition, would be 

neither a mean nor a variance control factor i .e. adjusting A doesn't affect the 

mean or the variance of Y. In classical experimental design we would say factor A 

does not have a main e ffect or an interaction with B .  

Interaction 

Y I =� L=:--SIOW 
low high 

A 

Figure 1 .5 :  No Interaction Between A and B 

hi Figure 1 .6 there is an increase in Y between the high and low levels of A. The 

variance of Y at the low level of A is the same as at the high level of A. However 

the mean of Y at the low level of A is less than at the high level of A. Connecting 

the levels of B,  as before, we can see that at points between the high and low 

levels of A there is a change in mean of Y but no change in variance. Therefore A 
would be a mean but not a variance control factor i .e . adjusting A affects the 

mean of Y but not the variance of Y. In classical Experimental Design we would 

say A has a main effect but that it has no interaction with B.  

Interaction 
Between A and B 

v i  ___ S lOW l::::h 
low high A 

Figure 1 . 6 :  No interaction Between A and B 

II I  Figure 1 .  7 there is an interaction between A and B.  The variance of Y at the 

low level of A is less than at the high level of A. However the mean of Y at the 
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low level of A is the same as at the high level of A .  Connecting the levels of B ,  as 

before, we can see that at points between the high and low levels of A there is no 

change in mean but there is a change in variance. Therefore A would be a 

variance control factor but not a mean control factor i .e . adjusting A would affect 

the variance of the responce but not the mean. In classical Experimental Design 

we would say that A had no main effect but has an interaction with B. 

�teractlon 

I 7:� 
'L::::::= 

low high 
A 

Figure 1 . 7 :  An Interaction Between A and B 

In Figure 1 .8 there is also an interaction between A and B .  The variance of Y at 

the low level of A is less than that at the h igh level of A.  The mean of Y at the 

low level of A is the less than at the high level of A.  Connecting the levels of B, 
as before, we can see that at points between the levels of A there is a change in 

mean and a change in variance. Therefore A would be a mean and variance 

control factor i .e .  adjusting A would affect the mean and variance of Y. In 

classical Experimental Design we would say that A has both a main effect and an 

interaction with B.  

low nlgn 
A 

Figure 1 .8 :  An Interaction Between A and B 

To determine those factors that are mean and/or variance control factors all that 

is neccessary is to have an experimental design that allows for main efFects and 

interactions between control and noise factors. The inner and outer arrays of 

Parameter Design allow for this as do many classical experimental designs. The 

latter are usually smaller and also allow for interactions and h igher order 
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relations between control factors and between noise factors. The Split Plot and 

Response Surface methods outlined in the next section use this rationale. 

However for testing procedures it introduces the assumption of a constant error 

variance which may not always be seen in practice. 

Most of the current research has focused more closely on the idea of modelling 

the mean and variance in terms of the control factors alone. The noise factors 

may be introduced into the experimental design but it is not an absolute 

requirement. This is handy when the experimenter 

1 )  does not know all or many of the possible noise factors or 

2) what levels the noise factors should be set at if they are known. 

1 6  

This joint modell ing of the mean and variance requires more lattitude i n  the 

specification of their distributions. The methods seen in the next chapters allow 

for this requirement.  

1 . 8  The Positive Aspects of Parameter Design 

According to Pignatiello and Ramberg[32] the main triumph of of Dr  Taguchi 's 

method of parameter design is that is has been actively promoted. Although Box 

[25J showed that some of Dr Taguchi's ideas had been avaliable in the West 

1 )  the othogonal arrays were very similar to the fractionated factorials of Placket 

and Burman[30J and bee" 
2)  that the idea of uncontrollable variables had also"conceptualised by 

M ichae.ls[22J 1 . However this knowledge had never been put together to give a 

method of quality control for use in the workplace. 

People at AT&T, Ford, ITT and Xerox and The American Supplier Institute 

have put some effort into promoting Dr Taguchi's method in the United States of 

America, the latter supplying articles for manufacturing magazines such as 

Process Engineering[17] ,  Engineering[2] and Metallurgia[3] . These ideas also have 

been spread through seminars and courses. This has had two impacts. A wider 

range of people, managers as well as engineers, have been introduced to quality 

engineering and using statistical techniques to make improvements in qual ity. I t  

has also increased the awareness of the variances role in quality improvements. 

1 In his paper MichlJQ.ls talked about the importance of knowing about the interactions between 
the product and the evironment ( ie Control x Noise Interactions) so that the quality of the 
product would be competitive in all environments. 
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The publicity has led to experiments being done and improvements in quality 

have been seen as a result. However these improvements have not always been 

optimal . 

17  

Unfortunately some of  the teaching in these seminars and courses has been poor. 

Teachers have given incorrect information or omitted to outline the appropriate 

assumptions behind the method. This has led to opposition and in some cases 

very strong opposition to the 'Taguchi Method' .  A polarisation occurred as 

groups formed into those that believed the Taguchi method of Parameter Design 

was the be-all and end-all in quality improvement and another group that have 

been highly critical and in some cases antagonistic. Bob Pease writing in 

Electronic Design [27J [29J had a very negative opinion of the Taguchi Methods 

partly due to being introduced to i t  in a condescending manner and with 

unrealistic examples. For example during the seminar Mr Pease noted that 

It looked to me as if somebody were laying down some funny data to 

make it easy for us to analyze. That made me very suspicious, so I 

was on my toes looking for any other suspicious statements. 

The lecturer then belitt led the operator of the machines - ' Joe 

thought he knew how to run the machines better then anybody else, 

but the Taguchi method found an optimum operatng point that Joe 

never thought of . . .  ' . Again I was suspicious, because that might be 

true, but maybe Joe knows something that the computers don 't .  For 

example, it 's easy to prove, by math or computer, that in many cases 

you get the best acceleration and performance from a car if you slip 

the clutch a lot. Al l  very true until the clutch burns out . '  

I n  the follow-up article Mr  Pease described an  example taken from Dr  Taguchi 's 

Introduction to Off-l ine Quality Control [36J and showed that i t  had been 

presented poorly and was wrong. 

The comments Bob Pease made generated much feedback [28] from both the 

supporters and opponents of the 'Taguchi Method' .  

However there were a some academics and practitioners who realised that the 

concept of model l ing both the mean and variance and the ideas of off-l ine quality 

control were important developments in quality improvement . They 'set out to 

build on and improve Dr. Taguchi 's methods. 
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1 . 9 Alternatives 

Several methods have been devised to improve upon Or. Taguchi 's method of 

Parameter Design . Six approaches taken by various autho S will be outlined 

here. The methods are the work of the acknowledged author!>. The examples are 

my own . 

1. 9 . 1  Union-Intersection Method 

This method devised by G hosh and Duh[16] aims to produce a set of runs that 

produce the least variance in a response variable. For each controllable factor a 

sample variance is produced for the high and low levels of that factor. An F test 

is done to see whether the variances at each level are significantly different. If a 

variance is significantly different at one of its levels then the level giving least 

variance is preferred. If there is no significant difference then no particular level is 

preferred. 

For all interaction between two factors this method looks at whether the variance 

of the factors is better when they are both at either high or low levels compared 

to when they are at different levels. An F test is done to make the comparison .  

When there i s  no  significant difference no  level i s  preferable. I f  there is a 

significant difference between the two factors set at different levels, compared to 

when they are set at the same levels, then the individual variances, at a l l  four  

factor levels, are compared. Multiple rules are given for which setting or settings 

are preferred . 

When all these preferences or decisions from the test have been compiled they are 

sorted into sets of statements that agree and statements that disagree. These are 

recombined by rules based on unions and intersections to give a set of runs with 

minimal variance. 

The method makes the assumption that any point in the experimental region wi l l  

be unbiased to the target value. 

Definitions 

The level combinations of control factors or a run is denoted by 

ti = ( ti, l ,  . . .  , ti ,J , . . .  , ti ,m ) ,  where ti ,J is the level of the control factor f on the ith 
run, ti ,J=O, 1 , f = 1 ,  . . .  , m and i = 1 ,  . . .  , n i .e .  there are m factors and n runs. 
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The design matrix, D, contains the n runs o f  which the ith row i s  t i .  For the ith 
run there are T repl icates denoted (Yi, l ,  . . .  , Yi,r ) .  The model assumed for the data 

is the general l inear model with an error structure given by a diagonal matrix not 

necessarily E=a21 .  The parameter a; is the i th diagonal element of E and is 

called the dispersion of run i .  

Example 

Consider this experiment where there are m = 2 factors , f and 9 and n = 4 runs 

with design matrix 

0 0 

1 0 D = 
0 1 

1 1 

Where the first column represents the levels of factors f and the second column 

the levels of factor g.  The second r U I l  i s  t2 = ( 1 , 0) with f at its high level and 9 
at its low level .  

For factors f and g,  f, 9 E { l ,  . . . , m } ,  f =/:. 9 

M = { 1 if the level of f in the i th run is u 
t,U 

0 otherwise 

{ I  bj,g -i ,u,v -

0 

if the levels of f and 9 in  the i th run are u and v 

otherwise 

Example Continued 

So b{,o = 1 as f is set at level 0 on the first run and b�,o = 0 as on the fourth run 

9 is not set at o .  6{:8, [ = 0 as f and 9 are not set at 0 and 1 respectively in the 

first run.  

• 

• 

Now define 
n L bf.u = nj (u) 

i= l  
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and 
n 

LOU,v = n" g (u, v) 
i= 1  

so that n,(u) i s  just the number of  times that factor j i s  set at level U in the 

design matrix. and n" g (u, v ) is j ust the number of times that factors j and 9 are 

set at levels U and v in the design matri� 

n 

n, (u)Clj (U) = L 6!.lP; ( 1 .5 )  
i= 1  

n 

n " g (u, v ) Cl1,g (u, v ) = L 6f.�,vCl; ( 1 .6 )  
i= 1  

and ClJ (u) and ClJ,g (u, v ) are the average variances for the specified factor at the 

specified levels. 

The dispersion main effects of factor j for j = 1 . . .  , m is defined as 

This has an inverse denoted by 

- I  _ ClJ (O) 
D, 

- ClJ ( l )  

The dispersion interaction effect for factors j and g ,  j, 9 = 1 ,  . . .  , m ,  j -# 9 is 

defined as 

( 1 .7) 

( 1 .8 )  

_ 2:;=0 n" g (u, U)ClJ,g (U, u)/ 2:;=0 n" g (u, u) 
( 1 .9 )  D" g 

- 2:;=0 2:�=o,utv n" g (u, V)ClJ,g (U, v )/  2:;=0 2:�=o,utv n" g (u, v ) 
In practice 51 is substituted for Cll in equations 1 . 5  and 1 .6 to provide 5] (u) 

and 5J,g (u , v) . These are used to get D" g and DJ from equations 1 .9 and 1 .7. 

The critical values, �, for D, and DJl are F statistics. 51 has r - 1 degrees of 

freedom. The numerator of D, is made up from a of the Sf 's where a = n, ( l )  so 

the degrees of freedom i n  the numerator is a x (r - 1 ) .  The denominator of D, is 

made up from b of the 51 's where b = n, (O) so the degrees of freedom in the 

denomiantor is b x (T - 1 ) .  So define for D, 

( I )  �, = F{ l -a) ,a x (r- I ) ,bx (r- l )  

and similarly for DJ I , 
(2) �, = F{ l -a),bx (r- I ) ,ax (r- l ) .  
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By similar arguments define for D /,g , 

A - 1  and for D /,g ' 

( 1 ) 6/,g = F ( l -o) ,c x (r- 1 ) ,dx (r- 1 ) 

(2) 

6./,g = F( l -o) ,dx (r - l ) ,c x (r- l ) 

where c = nf,g (O ,  0) + nf,g ( 1 ,  1 ) and d = nf,g (O, 1 )  + nf,g ( 1 ,  0 ) . 

Method 

A run , ti , is a 1 x m vector each place corresponding to either the high or low 

level of one of the m factors. A set of decisions is made about the value of each 

the places, i .e. a 0 or a 1 , corresponding to the low or high level . The decisions 

may be ambiguous. 

The decisions made on the dispersion main effects . 

2 1 

• If D f 2': 1 and D f > 6 �l ) then the place in the run vector corresponding to 

the factor f is 0. 

• If DJ l 2': 1 and D / > 6. �2) then the place in  the run vector corresponding to 

the factor f is 1 .  

• I n  all other cases there is no decision. 

The decisions made on the dispersion interactions . 

• I f  Df,g 2': 1 and D/,g > 6��� then we consider M in [ 5},g (0, 0) , 5J,g ( 1 , 1 ) J .  

- If  Min [  5},g (0, 0 ) ,  5},g( 1 , 1 ) ] > Min[  5},g (0 ,  1 ) , 5},g ( 1 , 0 )  1 then the 

places corresponding to f and 9 are not equal otherwise 

- I f Min [ 5},g (0, 0 ) ,  5},g ( 1 , 1 ) 1 :::; Min[ 5},g (0 ,  1 ) , 5},g ( 1 , 0) ] 
* if M in [ 5},g (0, 0) , 5},g ( 1 ,  1 )  ] = 5},g (0 ,  0) then there are two 

decisions 

1 .  places f and 9 are not equal and 

2. places f and 9 both equal O. 
* If Min [ 5},g (0, 0 ) ,  5J,g ( 1 , 1 )  ] = 5J,g ( 1 , 1 ) instead then 

1 .  places f and 9 are not equal and 

2 .  places f and 9 both equal 1 .  
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A 1 A (2) . , 2 2 ) 1 • I f  Dj,g � 1 and D/,g > /::"/,g then we consIder Mm[  5/,g (O, I ) ,  5/,g ( l ,  0 . 

- If Min [ 5},9 (O, I ) , 5},g ( l , 0) 1 > Min[  5},g (O, 0) ,  5},9 ( 1 , 1 )  1 then the 

places corresponding to f and 9 are equal otherwise 

- If Min [  5},g (O , I) , 5},g ( l , 0) 1 � Min[  5},g (O , 0) , 5},g ( 1 , 1 )  1 
* if Min [  5},g (O, 1 ) , 5J,g ( l ,  0) 1 = 5J,g (O, 1 )  then there are two 

decisions 

1 .  places f and 9 are equal and 

2. place f equals 0 and place 9 equals l. 

* I f Min[ 5},9 (O, I ) ,  5J,g ( l , 0) 1 = 5},9 ( 1 ,  0) instead then 

l. places f and 9 are equal and 

2 .  place f equals 1 and 9 equals O. 

• I n all other cases there is no decision .  

Combining Decisions 

22 

After working out the possible values for each position in the run vector there 

may be some ambiguities. Two groups of sets are defined . The first are sets of 

disagreements which contain all the ambiguities and the second is the set of 

agreements. The group of disagreements are put into sets so that a statement in a 

set only disagrees with the members in i ts set and not with a member in another 

set of d isagreements i .e .  two set of disagreements do not disagree with each other. 

For example we might have this group of d isagreements 

• place 1 does not equal place 2 , 

• place 1 equal 0, 

• place 2 equals 0,  

• place 3 does not equal place 4 ,  

• place 3 equal 0 and 

• place 4 equals 0 

then we would get two sets of disagreements namely 

• G 1 = { place 1 does not equal place 2, place 1 equals 0, place 2 equals O} and 
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• G2= {place 3 does not equal place 4 ,  place 3 equals 0, place 4 equals o } .  
i .e. sets G ]  and G2 do not d isagree. 

For all the maximal subsets of the disagreements we find the sets that are in 

agreement. For G1 the subsets would be [ {place 1 does not equal place 2 , place 1 

equals O} , { place 1 does not equal place 2 ,  place 2 equals O } , {place 1 equals 0, 

place 2 equals O} ] . Final ly each subset from each subset of maximal 

disagreements and the agreement set is intersected to give a sequence of runs that 

have minimal variance. For example if an agreement set was G3= { place 5 equals 

O } then G 1  gives subsets 

• (O, l ,x,x,x ) ,  ( l ,O,x,x,x ) ,  (O,O,x,x,x) 
and G2 gives 

• (x,x,O , l ,x) ,  (x,x , l ,O,x) , (x,x,O,O,x) 

• (x,x,x,x,O) 
where the x's represent either a 1 or a 0. 

Taking the intersect ion of all these sets gives th is set of runs 

Example 

{ (0 , 1 , 0 , 1 , 0) 

( 1 , 0 , 0 , 1 , 0) 

(0, 0 , 0, 1 , 0) 

(0 , 1 , 1 , 0 , 0) 

( 1 , 0 , 1 , 0 , 0 )  

(0, 0, 1 , 0, 0 )  

(0, 1 , 0 , 0 , 0) 

( 1 , 0, 0, 0 , 0 )  

(0 , 0, 0, 0, 0) } 

This section gives an example of the previous method at work. A F 2�-4 design 

was used to construct an experiment. The data was normally distributed with 

factors A and C being dispersion effects. The overall mean was 125 .  There were 

no mean effects and th is complies with the condition that any design point in the 

experimental region is unbiased for the target value of 125. The variances were 

A C Variance 

- 1  - 1 4 

1 - 1  1 1  

- 1 1 1 2  

1 1 33 
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Six replicates were taken at each design point. The data is outlined in Table 1 .6 .  

Note the data has been rounded to 1 decimal place and the low level is denoted 

by 0 and the high level by 1 .  

DesigllArray Data 82 
l 

1 0 0 0 0 0 0 0 0 1 25.3  1 25.6 122.3 1 24 .3  1 27.6 1 23 . 1  3 .60 

2 1 0 0 0 1 1 1 0 1 27.5 1 23.4 1 18 .8  1 22. 1 1 27.3 1 15 .9  2 1 .22 

3 0 1 0 0 1 1 0 1 1 22.4 1 25.6 127.5 1 26.6 1 28.0 1 29.8 6.43 

4 1 1 0 0 0 0 1 1 1 24.9  1 27.8 1 18.6 1 28.0 1 22.5 1 30.8 19.39 

5 0 0 1 0 1 0 1 1 1 26 .6  1 26.8 1 1 9.5 1 1 7 .6 1 3 1 .2 1 2 1 .8 26.53 

6 1 0 1 0 0 1 0 1 1 28.9 1 25 .5  1 1 7.5 1 28. 1 1 1 9.0 1 20.8 23.37 

7 0 1 1 0 0 1 1 0 1 27.5 1 29 .5  1 26.0 1 23.6  1 24.9  1 22 . 1  7 . 2 1  

8 1 1 1 0 1 0 0 0 1 24.0 1 27.4 1 29. 1 1 25.2  1 1 6.5 1 1 7.9 25.87 

9 0 0 0 1 0 1 1 1 122 .6  1 26.8 1 23 .3  1 22.8  1 29 .7  1 22.9  8 .62 

10  1 0 0 1 1 0 0 1 1 2 1 . 2 1 27.7 124. 1 1 28 .4  124 .3  1 25 .6  6 .98 

1 1  0 1 0 1 1 0 1 0 1 25 . 2  1 25.6 1 2 1 . 8  123.4 122 .6  1 2 1 .4 3 . 1 3  

1 2  1 1 0 1 0 1 0 0 1 24 . 7  127 .6  1 33.3 1 24 .5  1 19 . 1  123.0 22.72 

1 3  0 0 1 1 1 1 0 0 1 28.0 1 28. 1 1 25.3 1 2 1 .6 1 1 7 .8 1 20.2 18.4 1 

14 1 0 1 1 0 0 1 0 1 16.5 1 32.5 1 29.5 1 24.4 1 20.3 1 18.9 39.86 

1 5  0 1 1 1 0 0 0 1 1 29.4 132.6  1 22 .3  1 26 .7  1 28.0 1 28.8 1 1 .68 

16 1 1 1 1 1 1 1 1 1 20.8 1 27.5 1 24.8  1 24 .2  1 28 . 2  1 18 .6  14 .04 

Table 1 .6 :  The Design Array and Data. 

The iJ / estimates are in Table 1 .7. and the iJ /,g estimates are in Table 1 .8 .  
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Factor f 
A 1 
B 2 
C 3 
0 4 
E 5 
F 6 

G 7 
14 8 

x )( 

l!/ or D[ 
Dl 
D:; I 
D3 
D:; l 
D- I 

5 
D6 1 
D7 
D8 1 

1 
= 2 .03 
= 1 .35 
= 1 .8 1  
= 1 .07 
= 1 . 1 1 
= 1 . 1 2  
= 1 . 18 
= 1 . 2 1  

Table 1 .7: D/ and fyjl Estimates. 

The larger value is reported for each factor pair ing. 

Factors f 

A B  1 

A C 1 

A D  1 

A E  1 

A F  1 

A G  1 

A H  1 

B C  2 

B D  2 

B E  2 

B F  2 

B G  2 

B H  2 

C D  3 

9 

2 

3 

4 

5 

6 

7 

8 

3 

4 

5 

6 

7 

8 

4 

' ' 1  D/,g or D!.g 
D1 ,2 = 1 . 16 
' - 1 D1 ,3 = 1 .07 
' - 1 D1 ,4 = 1 .03 
A - 1  D1 5 = 1 .6 1  , ' - 1 D 1 ,6 = 1 .05 

D1 7 = 1 .08 , ' - 1 D1 ,8 = 1 . 70 
A - L D2 3 = 1 .6 1  , 
A - 1 D2 4 = 1 .05 , ' - 1 D2 5 = 1 .07 , ' - L D2 6 = 1 .03 , 

D2,7 1 = 1 . 70 

D2,8 = 1 .08 

D3,4 = 1 . 08 

Factors f 9 

C E 3 5 

C F  3 6 

C G  3 7 

C H  3 8 

D E  4 5 

D F  4 6 

O G  4 7 

O H  4 8 

E F  5 6 

E G  5 7 

E H  5 8 

F G  6 7 

F H  6 8 

G G  7 8 

, , - 1 . 
Table 1 .8 :  D /,g and D /,g Estimates. 

The larger value is reported for each factor pairing. 

' A 1 D/,g or D!.g 
D3 5 = 1 . 1 6 , ' - 1 D3 6 = 1 .70 , ' - 1 D3 7 = 1 .03 , ' - 1 D3 8  = 1 .05 , 

A - 1 D4,5 = 1 .70 

D4,6 = 1 . 1 6  
' - 1 D4 7 = 1 .07 , 
A

_
I D4 8 = 1 .6 1  , 

D5,6 = 1 .08 
' - 1 D5 7 = 1 .05 , 
' - 1 D5 8  = 1 .03 , ' - 1 D6 7 = 1 .6 1  , ' - 1 DG,8 = 1 .07 

D7,8 = 1 . 16 

Let a be the level of signi ficance for the testing and take a = 0.05. Since this 

design is balanced with 16 design points and six replicates at each design point 

then all the critical values are � = F(o.95,40,40) = 1 .69 . From Table 1 . 7  Dl =2 . 03 is 

greater than one and greater than � so the decision is "place one equals 0" . 

25 



CHAPTER 1 .  REVIEW 26 

D3= 1 .8 1  so "place three is a 0" .  No other decisions can be made from this table. 
A _ I A _ I A _ I A _ I . . . 

From Table 1 .8 DI ,8 = D
2
,7 = D3,6 = D4,5 = 1 .70 wlllch IS Just greater than 1::1 . 

All of these interactions are aliases of each other so that explains why their 

estimates are equal and their 52 (u, v ) values are all the same. The 52 (U ,  v ) 's are 

in i n  Table 1 .9 .  

52 (u, v) V = ° v = 1 

u = ° 8.08 13 .31 

u = 1 27.42 15 .95 

Table 1 .9 :  The 52 (u, v ) values for factors A and H ,  B and G ,  C and F and D and 

E. 

Min [ 5J,g (0, 0), 5J,g ( 1 , 1) 1 = 5J,g (0, 0) = 8 .08 and 

Min [ 5J,g (0, 1 ) ,  5J,g ( 1 , 0) 1 = 5J,g (0, 1 )  = 13 . 3 1 . The former is smaller so the 

decisions are 

"place 1 equals place 8" , "place 2 equals place 7" , 

"place 3 equals place 6" , "place 4 equals place 5" . 

The set of agreements is 

{ (place 1=0, place 3=0, 

place l =place 8, place 3=place 6) } 

= {  (O,X,O,X,X,O,X,O) } 

where X can equal 0 or l . 

The set of disagreements is { ( place 2=place 7) , (place 4=place 5) }  . These are 

spli t  i nto sets i n  which only those within each set disagree with each other. 

G 1 = { (place 2 = place 7) }= { (X,0,X,X,X,X,0,X) , (X,l ,X,X,X,X, 1 ,X) } 

and 

G2= { (place 4 = place 5) }= {  (X,X,X,O,O,X,X,X) , (X,X,X, l , l ,X,X,X) } 

The maximal subsets of G 1  are { (X,O,X,X,X,O,X) } and { (X , l ,X,X,X,X, l ,X) } and 

for G2 { (X,X,X,O,O,X,X,X) } and { (X ,X,X, l , l ,X ,X,X) } .  

Final ly each set i n  the maximal disagreement sets is intersected with the 

agreement set. For example 

(0 ,  X, 0, X, X, 0, X, 0) n (X, 0, X, X, X, 0, X) n (X, X, X, 0, 0, X, X, X)  
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= (0, 0 , 0 , 0, 0 , 0 , 0 , 0) 

The complete set of runs is 

{ (O, O, O, O, O, O, O, O) , (0 , 0, 0 ,  1 , 1 , 0, 0, 0) ,  (0, 1 , 0 , 0 , 0, 0 , 0 , 1 ) ,  (0 , 1 , 0,  1 , 1 , 0 , 0, I ) }  

Since the factors A (place 1 ) ,  C (place 3 ) ,  F (place 6 ) ,  and H (place 8)  are fixed , 

in this case at zero, this suggests that they are variance factors that affect the 

variance of the process. From the construction of the data it is known that only 

A and C are factors that affect the variance of the process. However for a=0.0495 

the correct decisions are made. This method requires sensitivity analysis on the 

value of a as the outcomes can change as a changes. 

I f  the response is squared then the response is no longer Normally distributed . 

The method gives { (O, 0, 0 , 0, 0 ,  0 ,  0 ,  O) } as the outcome. This signi fies that all the 

factors are variance control factors which is not the case. 

Comments 

This method allows for the implicit introduction of t he noise factors. 

The assumption that each point in the design space is unbiased to the Target 

value is tcorestrictive. It may be possible to manipu late this through the use of 

mean control factors that are not variance control factors . However the point of 

this method is to identify the factors that are variance control factors; having this 

knowledge prior to the experiment begs the question of why the experiment 

should be done at all .  

The notation for this method is very unwieldy which can be offputting although 

it represents very simple concepts. The method taken to get to a solution feels 

foreign in this area of Quality Control e.g. taking unions and intersections of sets. 

It is not easy to relate what is happening in the method back to the system under 

study. 

The method is not robust to non-Normal distributions however the use of the F 

test can be justified by the Central Limit Theorem as long as the experiment has 

a reasonably large number of design points and/or replicates . For few replicates 

the estimates of (J2 wil l  not be good.  

The choice of a has also to be carefully considered as a large number of 

hypothesis tests are done. The outcomes can vary depending on the choice of a 
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therefore sensitivity analysis should be done to see how the solution set of runs 

changes as a changes. 

28 

Careful consideration of alias e ffects has to be taken after the decisions have been 

made as these can affect the outcome of the places in the run vector. If there are 

no subjective reasons why one interaction or effect in an alias string is preferred 

then taking into account all possible al iased effects as being possible effects wil l 

make the solution set large. 

The output allows for multiple solutions but gives no h ints as to which one of 

those is preferred . If there are a large number of runs in the optimal set, it is not 

easy to work out what the nature of the effects are. This makes it d i fficult to 

decide what direction to take for fur ther investigation . 

1 .9 . 2  Transformations and a Data Analytic Approach 

One of the problems of the Taguchi technique for Parameter Design was that t he 

sin ratios can be affected by large mean effects. One example of this is when the 

mean is proportional to the variance. Box [7] proposed a method which is based 

on transforming the data to remove the relationship between the mean and 

vanance. 

After performing an experiment the relationsh ip  between the mean and variance 

should be analysed and once the relationship had been discovered the original 

data should be transformed to remove it .  An ANOVA is then done on the means 

of the transformed data to work out the factors that can be used to adjust the 

level of a process to a target .  Similarly an ANOVA is done on the log standard 

deviations of the transformed data to work out those factors that affect the 

variance of the process so they can be used to minimise the variance. 

Box proposed the Box-Cox transformations as the a set of appropriate 

transformations to use. They are defined as 

xl') = { 
and are continuous i l l  ). for x>O .  

xA - l 
->.-
ln x 

The transformations arc used to achieve two characterist ics - parsimony, where 

the model is as uncomplicated as possible and separation , where the variance and 

mean are not related to each other. 
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Box showed how a lambda plot could be used to find the correct transformation 

and Nair and Pregibon also gave some further graphical methods for analysing 

the data both in [7] . This is a combination of both their methods. 

• Start with a box plot for each experimental run. Some pattern in the data 

may give an indication of which factors affect the mean and the variance. 

Also any outliers can be observed . Outl iers are a problem since they inflate 

the variance. Careful consideration has to be given as to whether it is 

random chance that has caused them to appear, some kind of error or a 

true reflection of the system. 

• Another exploratory tool is a Mean-Variance plot. The mean and variance 

of each experimental run are plotted against each other on log scales. This 

will show up any relationship of the type (J2 ex: MO. A least squares slope is 

drawn. No dependence is observed if the data appears to be random and 

the slope of the l ine appears to be insignificant. 

• Lambda plots for both the mean effects and the log standard deviation 

effects are drawn . This plots the t-value of an effect against the value of 

lambda that has been used to transform the data. The points for each factor 

are joined and the value of ). where the absolute value of the derivative of 

the slope for each factor is the smallest is considered . Hopeful ly the values 

found for )' wil l  be very similar for t hose factors deemed signi ficant . 

To acheive parsimony, ). is observed at the place on the plot where there is 

t he least complication, where as many of the points lie as close to t=O as 

possible. The points t hat are significantly different from 0 are the ones that 

will be included in the model . 

The t-values for the mean effects can be worked out from the with in-run 

sums-of-squares. The way I preferred to do this however, was to fit the 

model to all the data, i nstead of just the experimental means, by computer, 

which still gives the correct values for the effects of the means and t he 

t-values for the effects as well .  The value for the variance of the log 

standard deviation effects are found by using (Jlog s � 2(n� 1 )  . 

• Once a value for lambda has been decided upon, QQPlots for the mean and 

log standard deviation effects are drawn. The slope of the line through the 
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non-signi ficant factors in both graphs are recorded as a measure of the error 

vanance . 

• Finally a cross plot is drawn of the mean effects, x, versus the log standard 

deviation effects, y, and filter l ines, are drawn in .  The filter l ines are drawn 

in at x= ±2at and y= ±2ad where at is the slope of the l ine through the 

non-signi ficant mean effects and ad is the slope of the l ine through the 

non-signi ficant log standard deviation effects. Where the factors fal l  in this 

graph gives an indication of what type of factor i t  is. There are four zones 

in the graph;  

- zone 1 .  The centre box of the cross arms is where all the 

non-sign ificant factors l ie. 

- zone 2 .  The horizontal cross arms, outside the center box, are where 

the signi ficant mean effects l ie . 

- zone 3. The vertical cross arms, outside the center box, are where the 

significant log standard deviation effects l ie . 

- zone 4 .  The areas outside the crossarms are where both significant 

mean and log standard effects lie. 

This is d isplayed in Figure 1 .9. 

Figure 1 .9 :  The Spec ial Areas of a Cross Plot 

Example 

This Section gives an example of this method at work. A F 2�-4 design was used 

to construct an experiment. The data was normally d istributed with factor A and 
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D being mean effects and factors A and C being variance effects. The overal l 

mean was 1 25 ,  factor A=10  and D = 15 .  The variances were 

A C Var-iance 
- 1  - 1  4 

1 - 1  1 1  

- 1  1 1 2  

1 1 33 

where the ± 1 's indicate the level of the factors. Six replicates were taken at each 

design point. The resulting data was divided by ten and squared to give the 

working data outlined in Table 1 . 10 .  Note the data has been truncated to 

integers. 

Table 1 . 10: F2�-4 Design plus the Response Data 

A B C D E F G H Yl Y2 Y3 Y4 Y5 Y6 
- 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  100 1 0 1  94 98 1 05 96 

1 - 1  - 1  - 1  1 1 1 - 1  1 50 1 40 1 29 1 37 1 49 1 23 
- 1  1 - 1  - 1  1 1 - 1  1 94 1 0 1  1 05 1 03 1 06 1 09 

1 1 - 1  - 1  - 1  - 1  1 1 1 43 1 50 1 29 1 5 1  1 38 1 58 
- 1  - 1  1 - 1  1 - 1  1 1 1 03 103 89 85 1 1 2 93 

1 - 1  1 - 1  - 1  1 - 1  1 1 53 1 45 126  1 5 1  1 29 1 34 
- 1  1 1 - 1  - 1  1 1 - 1  105 1 09 102 97 99 94 

1 1 1 - 1  1 - 1  - 1  - 1  1 4 1  1 49 1 53 144 1 24 1 27 
- 1  - 1  - 1  1 - 1  1 1 1 1 62 1 73 1 64 1 63 1 8 1  1 63 

1 - 1  - 1  1 1 - 1  - 1  1 2 1 3  233 222 235 222 226 
- 1  1 - 1  1 1 - 1  1 - 1  1 69 1 70 1 60 1 64 1 62 1 59 

1 1 - 1  1 - 1  1 - 1  - 1  224 232 250 223 207 2 1 8  
- 1  - 1  1 1 1 1 - 1  - 1 1 76 1 77 1 69 1 60 1 50 156  

1 - 1  1 1 - 1  - 1  1 - 1  200 248 238 223 2 1 1  206 
- 1  1 1 1 - 1  - 1  - 1  1 1 80 189 1 6 1  1 73 1 76 1 78 

1 1 1 1 1 1 1 1 2 1 2  232 224 222 234 206 

The generators for this design are I=ABCE, I=ABDF, I=ACDG and I=BCDH. 

They are a l l  four characters long confirming that this is  a resolution 4 design. 

The aliases are listed below. The number associated with them wil l  be used in 

the plots to fol low; 
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1 .  AF, BD,  CH, EG 

2 .  AH, BG, DE, CF 

3 .  AC, OG, HF , BE 

4. AB,  OF,  CE, HG 

5. AD, EH, CG,  BF 

6. AE, BC, FG, DH 

7. AG , BD,  EG , CH. 

a) 
Boxplots of Each Experimental Run 
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Mean Versus Variance for each Experimental Run, Log Scales 
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Figure 1 . 10 :  a) Boxplot and b) Mean-Variance P lot of the Response Data 

In Figure 1 . 10 a) the boxplot of the data is shown. After observing the design 

matrix as well it is apparent that factors A and D are mean control factors i .e. 

first group of boxplots are centred about a different value than the second group 

and alternating boxplots are centred about different values. Although there 

appears to be differences in the variances for the runs there does not seem to be 
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any pattern to it .  The Figure 1 . 10 b) gives an indication that the mean and 

variance are interl i l lked , therefore a Taguchi type analysis of this data may not 

give the correct sets of control factors. The value of the slope is �l = 1 .64 has 

p-value=0.0237 i l ldicating that the dependence between the mean and variance is 

signi ficant. The relationship is log 82 = 1 .64 log x - 3 .89 or 82 ex: X 1 .64 

a) b) 
t·values o f  Mean Effects versus Lambda t-values of Log SD. Effects versus Lambda 

:/ 
/7 //A/ ./ If •• 2 

� ·w ·�7 c �7c c c c 

i i i i iz:IL:� .-;-�; 
. - � - 2 -���- -I=t=t-t-t = = =- B - I -=  = = = � -t=� j7!=�=� i-2=2=2=2=2=2 � 

A // 
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Figure 1 . 1 1 :  Lambda Plots of a) Mean Effects and b) Log S .D .  Effects after trans­

formation 

The lambda plot of the mean effects is shown in Figure 1 . 1 1  a) . What we are 

looking for in this plot is a value for lambda where the plot is simplest and the 

change in slope of the significant factors is smallest in  absolute value. Lines have 

been drawn at t = ±2 to give an indication of the non-significant factors. The 

lines labelled A and 0 have smallest gradient in absolute value at approximately 

A E [0, 1 ] .  Line 5 is the AD interaction (although without prior knowledge it 

could also be the aliases of AD i .e . EH=CG=BF) .  It passes through zero at 

A = 0 .5 .  Since a model with no interactions is s impler than a model with 

interactions this value would give the model the characteristic of parsimony. 

y,.·2 
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The lambda plot of the log s.d. effects is shown in  F igure 1 . 1 1  b) . In  this plot the 

only significant effects are A and D although C may also be. If  we look at 

parsimony then two possible values for lambda are A = - 1  where the t-value for 

factor A is zero or ). = 0 .5 where the t-value for factor D is zero. The gradients of 

all slopes are unchanging. In  this plot there are two possible choices for lambda 

but only one that agrees with that from the first plot therefore we would choose 

0 .5  for the value for ). .  

b) 
Mean Versus Variance for each Experimental Run. Log Scales 

'8 
.. 

'2 

'9 

. , 

� �--------------------------� 
rl r2 r3 r4 r5 r6 r7 r8 r9 riD r l 1  r12 "3 r 1 4  rl5 rl6 20 

mean 
Runs 

Figure 1 . 1 2 : a) Boxplot and b ) Mean-Variance Plot of the Transformed Response 

Data 

The data has been transformed by a Box-Cox transformation with A = 0 .5 and 

the boxplot in Figure 1 . 1 2  a) does not appear to add much information to that 

which is already known. The Mean-Variance plot (Figure 1 . 12 b) shows a more 

random scattering of the data and although there is a non-zero slope it is 

non-significant with a p-value of 0 .3436. This confirms that we have found a 

suitable metric in which to analyse the dispersion effects without the mean effects 

clouding the issue. 

� 2  
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aa·Plot of  Log S.D. Effects 

·c 

.z F ·G 

· 1  

Normal Quantiles 

Figure 1 . 1 3 :  QQPlots of a) Mean Effects and b) Log S .D .  Effects after transforma­

t iOll 

The QQPlot of the mean effects (F igure 1 . 13 a) with a least squares l ine through 

the estimated non-significant effects shows clearly that factors A and D are 

significant mean effects. The QQPlot of the log standard deviation effects (figure 

1 . 1 3  b) with a least squares l ine also through the estimated non-significant effects 

shows that factors A and C are significant dispersion effects. 
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Cross Plot Of Mean Effects Versus Log S.O. Effects 

N 'A 
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'3 
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Mean Effects 

Figure 1 . 14 :  Cross Plot of Transformed Data 

The final figure is the crossplot (F igure 1 . 1 4 ) .  Only the factors A, C, D and 

interaction 2 ( the AH=BG=DE=CF interaction) lie outside zone 1 .  Interaction 
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2 ,  since it lies in zone 3 ,  affects the variance of the process. In the QQPlot 

interaction 2 had a large effect but was consistent with being on the line of 

insignificant effects therefore interaction 2 wil l be presumed to fall (j ust) outside 

zone 1 by chance alone. Factor C is in zone 3 indicating it is a variance control 

factor. Factor 0 is in zone 2 indicating it is a mean control factor and factor A is 

in zone 4 indicating it is both a mean and variance control factor . Reading off the 

axes or doing an ANOVA gives the value of the effects. Noting that y is the 

response variable, the model for this data is therefore 

* yO.5 
_ 1 

Y = 
0 .5 

/-Ly. = 22 .91  + 1 .90A + 3 .03D 

and 

log (sy. ) = 0.33 + 0.2 1 A  + 0. 18e. 

Since all the coefficients in the variance model are positive the variance will be 

least when factors A and C are set at their low levels. A is fixed i l l  the mean 

model by the minimisation of the variance model and the level of the process can 
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be changed through factor D. It may be that man ipulating factor D will not bring 

the process to the level required and A may have to be changed to achieve that 

level with some increase in variance. 

Comments 

This method allows for the uncontrollable factors to be implicity set . 

The positive feature of this method is the use it makes of graphical methods. The 

graphs allow for a good understanding of the modell ing proceses involved and the 

relationships between the factors. 

Instances occur when a single transformation will not bring about the properties 

of parsimony and separation. Removing the ralationship between the mean and 

variance when modelling the variance is preferable i .e .  separation. The model 

also assumes that the transformation will cause the response variable to be 

normally distributed . This may not happen either. Of course i f  the amount of 

data is large the Central Limit Theorem will hold and the effects will be 

Normally Distributed and the QQPlot becomes valid. 

With fractionated designs of resolution three discerning between a main effect or 

i ts aliased interaction is impossible, and using lambda plots to get a parsimonious 

model maybe very difficult . With very few factors, especially i f  many are 

significant, it may be impossible to judge from the Lambda Plot what the correct 

transformation could be. 

From experience,estimation of the variances requires many more repl icates for 

each design point when compared with the mean estimates. This means this 

method can be quite expensive because of the size required to get good estimates . 

1.9.3 Response Surface Methods 

Myers et al [24] used the ideas of RSM to simultaneously give a surface for the 

expected response and variance of the response. The first surface is used to find 

values of the factors that either achieve a target, a minimum or maximum 

depending on the intent of the experiment . The second surface is used to find 

values of the factors that «3 ive minimum variance. On many occasions these two 

sets of values may not coincide and a subjective analysis of which objective is the 

more important will have to be done. 
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The Method 

In th is method there are two sets of factors , control factors and uncontrol lable 

(noise) factors . The noise factors produce the heterogeneous variance in the 

process while the control factors do not . 
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A RSM design is used where the control factors, Xj, j = 1 ,  . . .  , p, and noise factors, 

Zk ,  k = 1 ,  . . .  , q ,  are treated identical ly. The ith run is made up of Xi, I , . . . , Xi,p , 

Zi, l , . . . Zi,q , Yi where Yi is the response. 

The model that is fitted is 

where (3 and is are vectors of coefficients. g' (Xi) is a row from the matrix of 

independent variables, X, with the first number removed . This number would be 

a one which is used in the estimation of (30 but here (30 is estimated separately. A 
is a matrix of interaction parameters between the Xj and Zk . The Xj and Zk are 

chosen at fixed levels. 

Although the Zk

'

S have been taken to be fixed in the first surface they are in fact 

random variables and th is is exploited in finding the variance response surface. 

The process variance is 

var( y(x) ) var ( [<5' + g' (x)A] z + €) 
[<5' + g' (x)A]V[<5' + g' (x )A] ' + 0"; 

w here V is the variance-covariance matrix of z .  V is not estimated in the 

experiment and so i t  must be estimated or guessed from other data. 

The Zk

'

S are centered around zero and hence their expectation is zero. The 

estimated response surface for t he mean is therefore 

y(X) = �o + g' (x)/3 

and the variance response surface is 

var(fj(X) )  = [6' + g' (x)A]V[6' + g' (x)A], + a; . 
This model assumes that there are no interactions between the Zk

'

S.  
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Example 

A RSM experiment was run with t he design, a F24 with four center points, and 

data given in Table 1 . 1 1 .  There were two control factors and two noise factors 

labeled X l , X2 , Z l and Z2 respectively. 

Design Data 

X I X2 Zl  Z2 Y 

0 0 0 0 97.70483 

0 0 0 0 96.473 1 7  

0 0 0 0 100. 72425 

0 0 0 0 1 0 1 . 1 75 1 0  

- 1  - 1  - 1  - 1  95.22444 

- 1  - 1  - 1  1 104 .42875 

- 1 - 1  1 - 1  87.671 68 

- 1  - 1  1 1 95.66690 

-1 1 - 1  - 1  99.87573 

- 1  1 - 1  1 95.88072 

- 1  1 1 - 1  89.58390 

- 1  1 1 1 80.90409 

1 - 1  - 1  - 1  75. 24423 

1 - 1  - 1 1 82 .74909 

1 - 1  1 - 1  93.53634 

1 - 1  1 1 1 0 1 .74036 

1 1 - 1  - 1  1 18 . 1 7977 

1 1 - 1 1 1 15 .46 1 1 6  

1 1 1 - 1  1 36.44676 

1 1 1 1 1 29 .0851 7  

Table 1 . 1 1 : RSM Design and Data. 

The estimated parameters for the model are given in Table 1 . 1 2 .  

39 
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coe! std.eTT t .stat p.value 

InteTcept 99.8878 0 .3850 259 .4163 0.0000 

X l  6 . 4504 0 .4305 1 4 .9836 0.0000 

X2 8.0722 0 .4305 1 8 .7509 0 .0000 

Zl 1 . 7245 0 .4305 4 .0057 0 .0031 

Z2 0 .6346 0.4305 1 .474 1  0. 1 746 

X t X2 10 . 1 656 0 .4305 23.6 1 37 0 .0000 

Xl Zt 6.9223 0.4305 16 .0799 0.0000 

X 1 Z2 0 .0690 0 .4305 0 . 1 603 0 .8762 

X2Z l  -0.8966 0 .4305 -2 .0828 0.0670 

X2Z2 -3.4790 0.4305 -8.081 3  0 .0000 

Z l Z2 -0.61 49 0 .4305 - 1 .4283 0 . 1 870 

Table 1 . 1 2 :  Table of Coefficients for RSM Design. 

The terms Z2 , X r Z2 , X2Z l and Zt Z2 were found not to be significant at the 5% level 

and were discarded from the model .  An ANOVA was done with the remaining 

terms and is presented in Table 1 . 1 3 .  The variance of the center points was used 

for the pure error mean square and the residual error was used for the total error 

to work out the lack of fit .  At the 5% there was no evidence of lack of fit as 

Pr(F)=0.29. 
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Analysis of Variance Table 

DJ Sum oJ Sq Mean Sq F Value P1· (F) 

X l  1 665.73 665 .73 1 66.05 0 .00 

X2 1 1042.57 1 042 .57 260.05 0 .00 

Zl 1 47.58 47.58 1 1 .87 0 .00 

X t X2 1 1 653.44 1 653.44 4 1 2.42 0 .00 

X t Z t 1 766. 70 766 .70 1 9 1 .24 0 .00 

X2Z2 1 193.65 1 93.65 48.30 0 .00 

Residuals 1 3  52. 1 2  4 .0 1  

DJ Sum oJ Sq Mean Sq F Value PT(F) 

Lack of Fit 10  36.35 3.64 0 .69 0 .29 

P'uTe En·oT 3 15 .76 5 .25 

Total En'oT 1 3  52. 1 2  4 .01  

Table 1 . 1 3 :  ANOVA for RSM Design . 

The model was taken as 

in terms of the notation this is 

/30 = 99.9, g (x) = ( :: ) , /3 = ( : :� ) , 

X tX2 10 . 2  

z = ( :: ) , J = en ' 
a; = 5 .3 .  

The response surface for the mean is 

y(X) /3o + g' (x )/3 
99 .9  + 6.5x t + 8 . 1x2 + 1O .2x I X2 

and [or the variance response surface 

var(iJ(X) ) = [8' + g' (x )A] V[8' + g' (x)A], + a; 

4 1  

( 1 . 10) 
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[( 17, 0) + (X l >  x" X I X, ) 0
9 

-� 5 ) 1 v x 

[( 17 , 0) + (Xl> x" XI X, ) et -� 5 ) r + 5 25 

[ ( 1 .7, 0) + (6 .9xl , -3 .5x2 ) ]  V [( 1 .7 , 0) + (6 .9x l , -3 .5x2 ) ] '  + 5 .3 

At this  point either the variance-covariance matrix of z has to be guessed or 

estimated by sampliug. Suppose that V has been estimated as 

This gives for var( iJ(x) ) 

var( iJ(x) ) ( 1 . 7 + 6 .9x [ , -3. 5x2) ( 2 0 ) ( 1 . 7  + 6.9x l ) + 5 . 25 o 4 -3.5x2 

42 

2( 1 . 7 + 6 .9xd2 + 4( -3.5x2? + 5.3 ( 1 . 1 1 ) 

18. 1 + 47.8x l + 47.9x� + 1 93 .7x� 

From equations 1 . 1 0 and 1 . 1 1 the surfaces for the mean and variance surfaces 

can be drawn . The response surface for the mean is in Figure 1 . 1 5 .  
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a) 
Mean Response Surface 
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Figure 1 . 1 5 :  a) Contour Plot and b) Perspective Plot of the Mean Response Surface. 

The response surface for the variance is in Figure 1 . 16 .  

a) 
Variance Response Surface 

0 ,----------
,...: 00 

o �O 
� , '0---.-----,---,--0' 

- 1 .0 -0.5 0.0 0.5 1 .0 
x1 

b) 
Variance Response Surface 

' T  .\ 

Figure 1 . 16 :  a) Contour Plot and b) Perspective Plot of the Variance Response 

Surface. 

Using equation ( 1 . 11 ) the point of minimum variance is Xl = - 1 .7/6.9 = -0.25 
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and X2 = 0 and the variance at that point is 5.3. At that point on the mean 

response surface the value for the mean is 98.3 found using equation ( 1 . 1 0 ) .  
Suppose that the target value was y = 100 then we need to  operate the  process at 

x l and X2 such that 

100 = 99.9 + 6.5x I + 8. 1x2 + 1O .2x lx2 ( 1 . 12 )  

and 

Vai'( y(x) ) = 2 ( 1 . 7  + 6.9xt }2 + 4( -3. 5x2 ) 2 + 5 .3 ( 1 . 13) 

is a minimum. Solving equation ( 1 . 1 2 )  for X2 and substituting th is in  equation 

( 1 . 13 )  and sol ving numerically for X l , then X2 , gives xl =-0. 15 ,  x2=0. 16 with the 

variance at this point being 7.5 .  This is shown graphically in  Figure 1 . 1 7. 

Plot Of Mean and Variance 
Res anse Surfaces 
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I / I 

I I 
o 00 1� 
..­, c,----,--.,---,---r' 

-1 .0 -0.5 0.0 0.5 1 .0 
x1 

Figure 1 . 1 7: Joint Contour Plot of the Mean Response Surface and Variance Re­

sponse Surface. 

A balance has to be made between minimising the variance and keeping the mean 

on target. Only one of these may be achieved at the expense of the other. 

Comments 

The uncontrollable factors are explicitly set in the experimental designs for this 

method. 



CHAPTER 1 .  REVIEW 45 

The major criticism of this method is that interactions between the Zk

'

S are not 

catered for .  A preferable model would be 

where r is a matrix of interaction parameters between Z
j 

and Zk . The reason for 

leaving that term out is that the variance of Yi for this model is extremely ha:rd to 

find as it involves higher moments of the z 's. In a very special case i f  r is a 

projection matrix and z is a standard normal vector then z'r z is d istributed as 

X� where p is the rank of r .  r is unl ikely to be a projection matrix. 

The other criticism of this method is that the noise and control variables have 

constraints on their behaviour i .e .  noise variables produce the heterogeneous 

variance while the control variables do not . Sometimes the choice of what is an 

uncontrollable variable and what is not is dependent on the beliefs of the 

experimenter therefore having the d istinction between the two is not practicable. 

This method was extended further by Engel and Heule [ 1 4] to include the case 

when there is a non-constant variance of the residuals by using generalised linear 

models. 

1 . 9 . 4  Split-Plot Methods. 

Box and Jones [8] proposed the use of split plot experimental designs as an 

alternative method to Or. Taguchi 's method of Parameter Design. One of the 

main criticisms of Taguchi 's method of Parameter Design is that the designs can 

become large when the inner and outer arrays are crossed. This means that the 

amount of experimental work is large which increases the complexity and cost . 

Split plot designs offer a way of arranging the sequence of runs in more 

convenient manner so that there is less experimental work. This arrangement of 

runs may reduce the complexity or the cost or both .  In some cases the physical 

constraints within the system under study may mean that split plot designs may 

be the only design possible. 

The idea of having uncontrol lable and control lable factors in split plot designs to 

improve quality is not a recent development. An example of testing four washi l lg 

products in four washing machines with the noise factors of temperature and 

water was reported by �/I ichae�22] in 1964. 
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Method 

The extension from the classical use of split plot designs to the use of split plot 

designs for the analysis of mean and d ispersion effects is not large. Here the 

uncontrollable factors are put in the whole plots and the controllable factors are 

put in the split plots. 

Box and Jones [8] proposed that there be n levels of the controllable factors, 

Cl , . . .  , Ct , . . .  , Cn , applied to the spl it plots, m levels of the uncontrollable factors, 

UI , " ,� ,  . . .  , Um , applied to the wll/JI� plots and that there be l replicates, 

1'[ , . . . , Tb . . . 1'/ with the whole plots in l randomized blocks. 

The model for the arrangement is 

where Yijk is the kth replicate of the ith level of the Controllable factor C and the 

lh level of the Uncontrollable factor U, fJ, is the overall mean , Tk is the random 

effect of the ktlt replicate with T'k being distributed as N(O ,  a;) , Uj is the fixed 

effect of the ;tit level of factor U, Ci is the fixed effect of the ith level of factor C, 
(U C)ij is the interactioll of the itlt level of factor U with the ;tit level of factor C, 
77Jk is the whole plot error and T/jk is d istributed as N(O ,  a�J The subplot error, 

Eijk, is d istributed as N (O, a; ) . The Eijk are independent. 

The ANOVA table is in Table 1 . 14 wfue Uj , Ci and Ucij are estimates of Uj , Ci 
and UCi,j respectively. 
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Source 

Whole Plot 

Reps (R) 

U 
R x U  
(Error 1 )  

Split Plot 

C 

U x C  
Error 2 

d .f. Sum of Squares 

l - 1 
m 

m - I nl E U] 
j=1  

(l - l ) (m - 1 )  

n 
n - 1  lm E e; 

i= 1  n m 
(n - l ) (m - 1 )  1 E E(UC)�j 

i=1 j=1 

(l - l )m(n - 1 )  
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Expected Mean Square (MSE) 

lm � C2 2 -- L..; i + (Js n - 1 i= l 
1 n m 

(n - l ) (m - 1 )  r; :;(UC)�j + (J; 
(J2 s 

Table 1 . 14 :  ANOVA Table for Split Plot Design . 

The test for the U factors is M��!�u against F1-a,m- I , (m- l ){l - 1 ) . The test for the 

C factors is M��Ec against F1-a n- 1  (n- 1 )m{l- 1 ) . The test for the U x C Error 2 
' , 

. . .  MSEU x c  . 
F l l lteractlOns IS IIl SEError 2 agamst l -a,{n- 1 )(m- 1 ) , {n- l )m{l- 1 ) · 

When there is no replication l - 1 =0 so there is no degrees of freedom to estimate 

(J; + n(J� . By the same reasoning (J; is unable to be estimated as well .  In th is 

case two QQPlots can be drawn .  One for the whole plot effects and one for the 

spl i t  plot effects . From these t he significant effects can be found. If the design for 

the whole plot or split plot are factorial designs then the h igher order interactions 

can be deemed insign ificant and their sums of squares pooled to give an estimate 

of the errors i ll the plot or subplot . However this can lead to biased results. 

I f  a U x C interaction is significant it means that t he control factor is a d ispersion 

effect .  Any control factors that have significant main or interaction effects with 

other control factors are mean control factors. 

Example 

In this contrived example the amount of wear on anodes is to be analysed. There 

are three control lable factors 

1 .  shape of the anode; regular and rounded, 
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2 .  tar content; usual and extra, and 

3.  coke content ; usual and extra. 

There are also three uncontro l lable factors which are 

1 .  voltage; usual and extra, 

2. computer controller; new or old and 

3. temperature; high and low. 

The data was col lected by the way of a spli t  plot design with a pot being a 

wholeplot and an anode being a subplot. The uncontrollable factors were 

arranged in a F23 design wi th 8 pots being necessary. The controllable factors 

were also arranged in a F23 design and 8 anodes in  a pot were needed . The data 

and design matrix is in appendix H .  This was used to get the effects by least 

squares. 

The whole plot had 3 factors and 23 = 8 treatments so three main effects, three 

two-way interactions and a three-way interaction are able to be found. This adds 

up to seven e ffects. Looking at the ANOVA table there are only 

m - I = 8 - 1 = 7 degrees of freedom associated with the whole plot therefore no 

degrees of freedom are avai lable to estimate the error for the whole plot . The 

whole plot effects were plotted on a QQPlot and the significant effects were the 

main effect of temp and the volt x temp interaction. See Figure 1 . 1 8a) . 

In the split plot there were three main effects and three two-way interactions 

associated with the controllable factors and nine two way interactions between 

the control lable and uncontrollable factors . Further higher order interactions were 

deemed insigni ficant and were pooled to give an estimate of the error variance. 

As pooling can give biased estimates a QQPlot was made of the split plot effects. 

The significant effects were associated with coke, tar x temp and shape. See 

Figure 1 . 18b) . 
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a) 

QQPlot of Whole Plot Effects 
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b) 
QQPlot of Spl it Plot Effects 
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Figure 1 . 18 :  QQPlot of a) Whole Plot Effects and b) Sp[i t Plot Effects 
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The effects used for the QQPlot are in Table 1 . 15 

(I ntercept ) -0 .024435292 

Whole Plot Effects 

volt -0.056244830 

cant -0.028085566 

temp 6 .8873701 20 

volt : cant 0.235066655 

volt : temp 7.638473966 

cant : temp 0. 1 22329345 

volt : cant : temp -0.078367673 

Split P lot Effects 

shape -5 . 1 70959307 

tar 0 . 1 20246 167 

coke 10 .035556 172 

shape : tar -0 .0050 1 1 248 

shape : coke 0. 1 59066978 

shape : volt 0.066287725 

shape : cant 0 .00494 1601 

shape : temp -0.057336007 

tar : coke -0.099856759 

tar : volt 0 .0 176 1 9564 

tar : cant 0.2265061 1 2  

tar : temp 4.908526862 

coke : volt 0 . 1 7874 1 544 

coke : cant -0.03475 1 595 

coke : temp -0.248175007 

Table 1 . 15 :  The Effects for the Split Plot Example 

The ANOVA table is l isted in Table 1 . 16 and this confirms the significant effects 

found by the QQPlot at the 5% level . 
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Table 1 . 1 6 :  Analysis of Variance Table 
DJ Sum oJ Sq Mean Sq F Value Pr- (F)  

WholePlot 

U 

temp 1 3035. 90 

volt : temp 1 3734 . 1 6  

volt 1 0.20 

cont 1 0.05 

volt : cont 1 3.54 

cont : temp 1 0.96 

volt : cont : temp 1 0 .39 

whole plot en·or- 0 

Split Plot 

C 
shape 1 171 1 .28 1 7 1 1 .28 1 243.36 0.000000 

coke 1 6445. 59 6445.59 4683. 1 6  0.000000 

tal' 1 0.93 0.93 0 .67 0 . 4 1 G973 

shape : tar· 1 0.00 0.00 0.00 0. 972906 

shape : coke 1 1 .62 1 .62 1 . 18 0. 284393 

tar- : coke 1 0.64 0.64 0.46 0.49974 1 

C x U  

tar- : temp 1 1 54 1 .99 1541 .99 1 120.36 0.000000 

shape : volt 1 0.28 0.28 0.20 0.653634 

shape : cont 1 0.00 0.00 0 .00 0. 973282 

shape : temp 1 0 . 2 1  0.2 1 0. 1 5  0.697836 

tar· : volt 1 0.02 0.02 0 . 0 1  0.90495 1 

tar· : cont 1 3 .28 3 . 28 2 .39 0. 1 3 0 1 34 

coke : vol t  1 2.04 2 .04 1 .49 0 .229864 

coke : cont 1 0.08 0.08 0.06 0 . 8 1 3856 

coke : temp 1 3.94 3.94 2 . 86 0.098 1 7  

split  plot er-TOT 4 1  56.43 1 .38 

(based on higheT 

oTdeT iT tter-actions) 
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The model found is 

wear lU, C 10 .04 x coke - 5 . 1 7  x shape + 6.88 x temp 

+ 7.64 x volt x temp + 4 .91  x tar x temp 

52 

The controllable factors shape and coke enter into the equation only in a linear 

manner so they are mean control factors. The control lable factor tar enters into 

the equation only as an interaction wi th the uncontrollable factor temp and so 

tar is a dispersion control factor. To make wear robust to the uncontrollable 

factors then the variance of the mean response of tar at one level over both the 

levels of temp should be compared with the other level of tar. The interaction 

graph for these two factors is in Figure 1 . 19 .  From the interaction graph it can 

be seen the required behaviour occurrs when when tar = - 1 .  However it may 

also be worthwhile doing further experimentation with lower values of tar. 

I nteraction Plot of Tar and Temp 

· 1 .0 ·0.5 0.0 0.5 1 .0 
Tar 

Figure 1 . 19 :  Interaction Plot of Tar and Temp 

Suppose that the factors were quantitative and that controllable factors are 

required to be set to give a target value of wear = 5. I n  order to do this some 

distribution assumptions need to be made about the uncontrollable factors. If we 

assume that the uncontrollable factors are independent and have expectation zero 

then 

E(wear IUC) = 10 .04 x coke - 5 . 1 7  x shape ( 1 . 1 4) 

so 

5 = 10 .04 x coke - 5 . 1 7  x shape 
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A contour plot of equation 1 . 14 was drawn and is in  Figure 1 . 20 .  Hunting out the 

wear = 5 contour gives some ideas about the levels of coke and shape that wil l  

give the target value. Solving for coke gives 

coke = . 50 + . 5 1  x shape 

a) b) 

Contour  Plot of Coke and Shape 

to 

9 

o 
..­, 'o----,---,-------r---r-' 

-1 .0 -0.5 0.0 0.5 1 .0 
shape 

3-D Plot of Coke and Shape versus Wear 

,.., .. ..-�..-.. " . 

Figure 1 . 20: a) Contour Plot and b)  Perspective Plot. 

In the perspective plot t he l ine coke = 0 .5 1  x shape + 0.50 has been added. 

To set the process on target of five values for coke and shape conforming to 

coke = . 5 1  x shape + 0.50 are chosen for shape E [- 1 , 1 ]  and coke E [0, 1 ] .  

Amongst th is subset some value o f  shape and coke may be more economical and 

the process would be run at these values. 

In fact shape is quali tative and not a quantatative factor and can only be set at 

the values ± 1 .  Setting shape at - 1  requires coke = -0 .0 1 .  Setting shape = 1 

requires that coke = 1 .0 1  which is j ust outside the experimental region. 

Comments 

This method requires that the uncontrollable factors are explicit ly set in the 

experimental design, that t here is normali ty of errors or that a transformation of 

the response wil l give normality of errors. 



CHAPTER 1 .  REVIEW 54 

Box and Jones[8] showed that the precision of the estimates derived from the 

whole plots have the lower prec ision than those derived from split plots. The 

precision of the estimates for a completely randomised design and a randomised 

block design fal l  between the two. The precision i n  the estimates for the 

uncontro l lable factors i .e .  the noise factors, is not crit ical as their parameter 

values are of no consequence, it is their interaction with the spl i t  plot factors i .e . 

control factors, that is of greater i mportance. The latter have the greater 

precision as they are estimated i n  the spl i t  plot . However due to physical 

constraints i t  may only be poss ible to have noise factors appeari ng i n  the split 

plot. The d isadvantage of th is is that the control factors that are now estimated 

with the least precision and this may reduce the accuracy of the model used for 

bringing the process to the target value. The important U x C interactions are 

sti l l  estimated with in the split plot . The ANOVA table for this design is s imi lar 

to Table 1 . 1 4  but with the U's and C's and their degrees of freedom interchanged . 

1 . 9 . 5  Generalised Linear Models 

The aim in  parameter design is to min imise the variance of a process whi le 

adjusting the mean of the process to some preferred level . However the mean and 

variance may be related i l l some way dependi ng on the nature of the data. 

General ised Liner Models gives a way of model l ing this relationship between the 

variance and the mean . It states that var(Yi )  = <Pi V (/ld when Yi takes a 

d istribution in  the Exponential Fami ly. <P is cal led the dipersion and is that part 

of the variance that does not depend on the mean of Yi ' 
McCullagh and Nelder [2 1 ]  [25] proposed setting up two GLM models with the 

exploratory variables being the experimental factors. There is one model for the 

mean of the process and one for the d ispersion with the variance relationship 

given above connecting the two models. 

The defin it ions for this joint model is 

• a set of response variables, Yl ,  . . . , Yn which belong to a subfami ly of the 

exponential fal l l i ly, 

• a set of parameters {3 and explanatory variables nXp = ( :� ) , 



CHAPTER 1 .  REVIEW 55 

• a differentiable monotonic l ink function 9 such that g(J-li ) = 1/i = xj3 where 

J-li = E(Yd , 

• a set of general ised residuals, d[ , . . . , dn , 

• a set of parameters 'Y and explanatory variables nU q = ( �� ) ,  
• a differentiable l llonotonic l ink function h such that h( cPi )  = (i = u�, where 

var (di )  = TVD (cP) . 

nU q and nXp are a subset of the matrix of i ndependent variables. 

The extended quasi-likelihood, Q+ gives a measure of how wel l  this joint model is 

performing. I t  is an alternative to the l ikel ihood function when the underlying 

probabil i ty function is not known and relies only on the first and second moments. 

The extended quasi-deviance, EQD, is defined as 

The V(J-l) that describes the data best amongst a set of possible V(J-l) is the one 

that gives a minimum value for the EQD or a maximum for Q+ . . 
The deviance residuals, rD , are defined as 

rD 

where di 

sign(Yi - J-li);;i rYi Yi - J-li 
dt iILi V(t) 

The deviance residuals are distributed approximately normally so the di are 

distributed approximately cP2X� and a Gamma distribution is used to model them. 

The Method 

To fit the model described above two GLM models are fitted simultaneously with 

one model depending on the other. The first model , the mean model , uses the 

experimental data to model the means and uses the .!- 's as weights. The squared <Pi 
deviance residuals derived from this model are used as the response variable in  

the second, d ispersion model. The fitted values from the latter model form the 
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c/J; 's. This interl inking of the models, i .e . the weights of the first model are found 

from the second model and the response variables for the second are found from 

the first ,  is resolved by setting -!- = 1 then i terating both models al ternately until tPi 
the weights, and hence the EQD, converges. 

For a saturated mean model the process of i teration is Uflneccessary as a change in  

weightings does not change the  values of  any of  the parameters in  the EQD 

function or any of the parameter estimates in  the two models. 

As in the graphical method the idea is to force the data to have a model that is 

parsimonious i .e .  as simple as possible, and separable where the mean and 

dispersion are not related to each other. Here instead of using one transformation 

to achieve both criteria, two manipulations are used . To achieve separation an 

appropriate variance function is chosen which is labelled V (fl,) .  This function 

ellsures that the c/J/s are i ndependent of the mean . The mean-variance plot 

described in Section 1 .9 .2  is used to find how the mean and variance are related 

and hence choose a distribution having the appropriate mean-variance 

relationship. Parsimony is achieved by choosing the right l ink function . The 

Lambda plot ill Section 1 .9 . 2  give a useful exploratory tool for working out the 

types of transformations t hat the l ink functions could take. 

The four steps in the method are 

• Step 1 .  At the first step V (it) is found. 

GLM models for the mean and dispersion model are fitted . For the 

dispersion model the error distribution is taken to be Gamma with a log 

l ink function . At this stage the exact specification of l ink functions is 

unimportant although i t  should conform to the nature of the data i .e. a log 

l ink function is inappropriate if the data�(e. not strictly posit ive. A saturated 

model for the mean is fitted . For a saturated mean model , the fitted values, 

ili ,  remain unchanged for different V( it) whereas the di do not. The EQD is 

a function of di 's and Ji 's and hence a function of V (it) . This means it gives 

a measure of the performance of the V (it) . The V (it) that gives the smallest 

EQD value is taken to be an appropriate V(it) for the mean model . 

• Step 2 .  In this step a parsimonious model for the dispersions is to be found. 

The saturated mean model is fitted once again with the V (it) function 

found in the last step. The squared deviance residuals are used to model 

the dispersion .  Different l ink functions for the dispersion model are tried to 
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see which gives the most parsimonious model. Step-wise analysis of 

deviance fitt ing call be used, or as l ikel ihood functions give estimates that 

are asymptotically Normally distributed , a QQPlot can be used to see with 

which link function the effects are behaving Normal ly. However the latter 

method relies on there being few significant effects. 

Another option, if the appropriate l ink function is thought to be a power 

function, is to use a lambda plot as described in Section 1 .9 . 2 .  However 

instead of using a least squares fit and the t-values, a GLM model is used 

and t-values of the effects are plotted against A where the l ink function is 

Power(,�) = y>' .  

• Step 3. At this  step a parsimonious model for the mean is  to be found. 

The mean model is fitted using several l ink functions and similarly to Step 

2, step-wise analysis of deviance fitti ng or QQPlotting can be used to find 

the parsimonious model. A lambda plot can also be used here. 

• Step 4. At this stage the parameters of the model are to be estimated . At 

the last two stages the effects that are signi ficant have been found. We 

reduce both models from being saturated to only including the 

parsimonious effects. Now that the mean model is not saturated the weights 

that are given to it are going to have an effect .  The mean model is fitted 

with weights of one, then the dispersion model is fitted using the resulting 

d/s. The fitted values give Ji . The EQD is calculated . The mean model is 

fitted again with weights -:... and so on till the EQD converges. The <l>i 
parameters come from the resulting output .  The EQD's can be used to test 

how wel l  a reduced model fits the data. 

• Step 5. The model is then checked for consistency. See [2 1 J  chapter 1 1 . 

An Example 

Consider again the data in the example in Section 1 . 9 .2 which is to be used as an 

example for this method. The method is set out here using Splus but packages 

such as Genstat alld GLIM can also be used to do this method. The data is y.ex, 

the data frame (experimental design) is ex.df. 

• Step 1 .  The mean model is specified as a quasi d istribution with an identity 
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l ink.  The dispersion model is specified as a Gamma distribution with a log 

l ink.  

From Section 1 .9 .2  the mean-variance relationship for th is data was 

a2 ex: pY'>4- and the square-root transformation brought parsimony. The 

Splus code below uses the former information and fits a saturated model for 

the mean and dispersion model , with the former having an identity l ink and 

V(J1.) = J1.2 and the latter having a log link and Gamma errors. The last l ine 

gives the EQD for V(J1.) = J1.2 . To fi lld the EQD for a different V(J1.) the 

variance must be changed in the mean model and V (Yi ) i n  the EQD 

equation . 

mean . model <- glm (y . ex - . , data = ex . df ,  fam i l y  = 

quas i ( l ink = ident ity , variance = ImuA 2 " ) ,  

start = rep ( 100 , 96 ) , maxit = 300) 

deviance . re si d  <- resid (mean . mode l ) A 2 

di spers i on . model <- glm (deviance . re s id - . , family = 

phi 

EQD 

Garnrna ( l ink = log) , data = ex . df ,  max it  = 300 ) 

<-f itted (dispers i on . model )  

<-sum (deviance . res id/ph i )  + 

surn ( log (2  * pi * phi * y . ex-2»  

Several different V(J1.) were tried . In the Table 1 . 1 7 the relevant EQD's are 

l isted. 

V (J1.) EQD 

1 673.40 

J1. 673 .30 

J1.2 673 . 3 1  

J1.3 673 .4 1  

Table 1 . 1 7: Extended quasi deviances for different V(J1.) . 

The minimum EQD occurs when V (J1.) = J1. and this is what wil l  be used in 

the fol lowing steps. Splus is restricted in th is case as i t  only allows 

V (J1.) = J1.0 for Cl' =0 ,  I , 2 and 3 in the GLM function . It is possible to work 



CHAPTER 1 .  REVIEW 59 

out where the minimum in the EQD occurs for values of a other than t hese 

but other than for i nterest this knowledge is Hot much use as it can 't be 

used in  the modell ing process. 

The graph in F igure 1 .2 1  is a plot of EQD against a and shows t hat for 

a = 1 . 45 the EQD is a minimum. This compares to the value of a = 1 .64 

found by the mean-variance plot i .e .  (j2 ex: fl 1 .64: 

o ..,: I'­ID 

<Xl O M  0 1'­w ID 

ID M I'­ID 

EQD Versus alpha for 
V(u)=u"alpha 

Min at  
( 1 .45, 673.29) 

·3 ·2 · 1 0 2 3 

alpha 

Figure 1 . 2 1 :  A Graph of E .Q .D .  for different val ues of a for the variance function 

V(J.l) = J.lo . 

• Step 2 .  Now a l ink function for the dispersion model is to be found that wi l l  

give parsimony. The Splus code for a identi ty l ink for the dispersion model 

is 

mean . model <- glm (y . ex - . ,  data = ex . df , family = 

quas i C l ink = ident ity , variance = "mu" ) ,  

start = rep ( 100 , 96) , maxit = 300) 

deviance . re s id <- res id (mean . mode l ) - 2  

dispers i on . model <- glm ( deviance . re s id - . ,  fam i l y  = 

Gamma ( l ink = ident ity) , data = ex . df ,  

maxi t  = 300 ) 
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QQplots for the inverse, identit� square root and log link were QQplotted in 

Figure 1 .  22 a) , b) c) and d)  respecti vely. 

a) b) 
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Figure 1 . 22 :  QQplots of coefficients for a) Inverse l ink and b) Identity l ink c) 

Square root l ink and d)  Log l ink .  

All of the plots in Figure 1 . 22 show that A and C are signi ficant factors. 
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Figures 1 .  2 2  a )  b )  and c )  have the insignificant coefficients forming a bowed 

l ine instead of a straight l ine therefore the straight l ine of 1 . 22 d ) ,  

corresponding to a log l ink function, is preferred. 

The analysis of extended quasi deviances for the comparisons between a ful l  

model ,  a model with factors A and C,  a model with one each of factors A 

and C and the null model appear in  Table 1 . 18 .  There are 96 observations 

and fi tting a saturated mean model reduces the degrees of freedom available 

for the dispersion model to 96- 1 5- 1=80. The degrees of freedom for the null 

model is 79 and for the saturated model , 64. 

Table 1 . 1 8: EQD's for the Dispersion Model. 

Model EQD DOF 

NULL 695.36 79 

A 689. 5 1  78 

C 691 . 164 78 

A + C  683.44 77 

Ful l  673 .30 64 

The difference in EQD's between the ful l  model and the A+C model is 

683.44-673 .30= 10 . 14  on 77-64=13  degrees of freedom. The reduced model 

therefore fits the data almost as wel l  as the ful l  model .  The difference 

between EQD's for the NULL and A+C model is 1 1 .92 on two degrees of 

freedom showing that the A+C model is a significant improvement on the 

null model . Similarly the A+C model is better than models with either 

factor by i tself. 

• Step 3. At this step a l ink function for the mean model is chosen to achieve 

parsimony. The Splus code for a square root (power(0 .5 )  2 ) l ink for the 

mean model is 

mean . model < - glm ( y . ex - . ,  data = ex . df ,  fami ly = 

quas i ( l ink = power (0 . 5 ) , vari ance = " constant " ) , 

start = rep ( 100 , 96) , max it  = 300 ) 

2 Due to a bug in Splus, the start parameter is necessary when using the power function with 
the variance parameter in the quasi function. The start values should be chosen carefully as 
values far away from the optimum may lead the GLM function to fiud a local optimum. 
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QQplots for the inverse, identity and log link and square root are 

QQplotted in Figure 1 . 23 a) , b) , c) and d) respectively. 
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Figure 1 . 23: QQplots of coefficients for a) Inverse l ink and b) Identi ty l ink c) 

Log l ink and d )Square Root l ink .  

Al l  of the plots in  Figure 1 .23 show that A and D are significant factors. In 



--------- -----

CHAPTER 1 .  REVIEW 63 

Figure 1 . 23 a) and b) interaction 5 ,  the AD=EH=CG=BF interaction also 

appears to be significant. S ince an interaction model is less parsimonious 

than a non- interaction model these two l inks will be discarded . There is 

l i ttle to choose between the log link and square root l ink of Figures 1 .23 c) 

and d ) .  The lambda plot for mean effects (Figure 1 . 24 indicates that at 

A � 0.5 the AD i nteraction passes through zero and the gradients of the A 

and D effects are approximately zero therefore Power(0 .5)  is the l ink 

function that wi l l  be used. The t-values are for the coefficients of the mean 

model with variance function V (J.L) = J.L found using the summary function 

for a GLM object in Splus. Lambda is a value for the power link function 

i .e .  Power(A) = data).. . 

t-values of Mean Effects versus Lambda 

0_0-0 _____ 
0 _________ 

0 _______ 
0 

A_A--A_ A __ 
A _____ A 

_____ 5 
_____ 5 

�5�
5 

1�I�i=i�I-1 
0.0 0.5 1.0 1 .5 2.0 2.5 lambda 

Figure 1 . 24: Lambda plot of the mean effects using a GLM model and vari­

ance function V (J.L) = J.L . 

• Step 4 .  

At this stage the coefficients of the parameters are wanted . The 

parsimonious models are known i .e. factors A and D for the mean model 

and factors A and C for the dispersion model. Due to the I lon-orthogonality 

of the effects in  GLM models, these factors have to be fitted joint ly, without 

the insignificant e ffects, to get their parameter values. On reducing the 
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mean model, the weightings, �i ' wil l  change the values of the parameters 

and the EQD. However, on iteration, the EQD and parameter values 

quickly converge. In the previous steps this iteration was omitted since in a 

saturated model for the mean the parameters remain unchanged with 

changing weights. 

The code to do this is l isted below. It consists of commands (part 1 )  that 

call a function (part 2 ) .  Although this may not be good programming style 

Splus is very inefficient at looping so i t  is a lot quicker to run part 1 (once 

with the weighter command and then without) and part 2 ten times than to 

have a loop i terating for fifty. 

- Part 1 .  This command is entered from the main l ine 

weighter< -rep ( 1 , 96)  

f or ( i  in  1 : 5 ) {pr int (Mult i . model . fitter ( ) ) } 

Part 2 .  

Mult i . model . f itter<­

funct ion O 

{ 

mean . model « - glm ( y . ex - . ,  data = ex . df [c ( l , 4 ) ] , 

family = quas i ( l ink = power (0 . 5 ) , 

vari ance = I Imu l l ) , start = 

rep ( 100 ,  96) , maxit  = 300 , 

we ights = we ight er)  

deviance . res idual s« - res id (mean . mode l ) �2/we ighter 

dispers i on . model « - glm (deviance . res iduals - . ,  

we ighter 

family = Gamrna ( link = log) , data = 

ex . df [c ( l ,  3 ) ] , max i t  = 300) 

« - f itted (di spers ion . model ) � - l  

EQD « - sum (deviance . res iduals/f itted (dispers ion . mode l ) ) + 

sum ( log (2  * pi * f itted (dispersion . model )  * y . ex) ) 

} 

All the variables are global since a GLM function which is i tself in a 
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function looks not at the function it is in  but at the global frame to find out 

the value of weights. Having global variables also means that the outputs 

from the GLM function are accessible from the global level. 

Now that the apparatus is set up to do the i teration, the EQD for the 

reduced mean model can found,  which takes into account the dispersion 

model with only factors A and C i ncluded. The table l isting these is 

Table 1 . 19 

Model EQD DOF 

NULL 1 003.20 92 

A 972 .70 9 1  

D 866 .43 9 1  

A + D  698. 1 8  90 

Ful l  683.44 77 

Table 1 . 1 9 : EQD's for the Mean Model taking into account the D ispersion 

Model . 

From the EQD table the difference between the FULL model and the A + 0 

model is 14 .74 on 1 3  degrees of freedom which means the A+D model is 

doing a good job in modeling the data. The difference in EQD's between 

the A+D model and the NULL model is 305 on 2 degrees of freedom 

showing that the former model is a vast improvement over the nul l  model . 

The sequence of code above was used to find the co-efficients for the models 

with A and C as mean factors and A and D as dispersion factors. The 

models are 

ViL 
log <t> 

and Var' (Yi ) 

Comments 

1 2 .46 + 0.97 x A + 1 .49 x D 

-0.59 + 0.33 x A + 0.34 x C 

cPi V (/-li )  
exp[ -0.59 + 0.33A + 0 .34C] x ( 1 2 . 46 + 0.97 A + 1 .49D)2 

The uncontrollable factors need not be explicitly set in  the experiment. 
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The method described in Section 1 .9 .2  uses one transformation to achieve 

parsimony and separation . For some data this may not achievable in one 

transformation . In this method separation and parsimony are achieved separately. 

The former method relies on the transformed data being Normally distributed. 

This is reasonable when there is a moderate amount of data due to the Central 

Limit Theorem. In  this method Normality of the data is not assumed and so i t  

can be applied to a much wider range of data i .e .  counts and proportions. 

Many of the previous methods relied on the designs being factorial designs with 

factors at two levels while here factors with more levels and covariate factoIS can 

be used . 

The method is not wel l documented and what has been written about the 

method is at a very high level .  Persons unfamilar with GLM models and 

appropriate G LM packages for model fitting would find wading through the 

l iterature very hard going. 

1 . 9 . 6  Restricted Generalised Linear Models 

Engel [ 13] proposed this method based around the ideas of GLM.  The method is 

more restrictive then the GLM method but has the advantage that all the 

parameters can be estimated by least squares. Fitting GLM models involves 

specialist software or specialist knowledge 

The Model 

The combined model for the mean, J-t and dispersion , cP is 

E(Yi) 
var (Yi ) 
log( cPi) zn· 

( 1 . 1 5) 

( 1 . 16) 
( 1 . 1 7) 

where Xi and Zi are subsets of the matrix of independent variables and J-ti is the 

mean at each distinct design point. V(J-ti , 0) is the component of the variance 

related to the mean and <Pi is the component of the variance not related to the 

mean i .e .  the dispersion . 

This is similar to the GLM model but in this case the l inks are fixed. For the 

mean model (equation 1 . 1 5 ) it is the identity link and for the variance model 

(equation 1 . 1 7) it is the log l ink .  In  this model only "power of the mean" 
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variances are considered i .e .  V (J.Li ,  0) = J.Lr Yi is used to estimate J.L where Yi is the 

average value at each distinct design point. Simi larly s; estimates var (Yi ) . 
In terms of the attributes of parsimony and separation, separation is achieved by 

picking the right V (J.Li , 0) which hopeful ly can be model led as J.Lr I f  i t  is some 

other variance function then this method may give i naccurate results. Parsimony 

is achieved by choosing the right l ink function. In this case they are pre-chosen . 

If parsimony is not achieved then a transformation of the data can be done and 

the method of estimation redone. In this case the V(J.Li , 0) function may change. 

The Method 

The estimation procedure goes like this 

• Step 1 .  First an estimate of 0 is found by least squares and with the model .  

log s; = log 4> + 0 log Yi + error. 

The aim in this step is to find out what 0 is for the power of the mean model 

by using the model specification var (Yi ) = 4>iV (J.Li , 0) where V (J.Li , 0) = J.Lr 

• Step 2 .  The signi ficant factors in  the matrix of independent variables are 

found by observing the parameters estimates of , using least squares and 

the model 

log (;�) = Xi' + error 

where X is the matrix of independent variables. The signi ficant factors are 

renamed Zi . 

• Step 3 .  Using the appropriate significant factors for the dispersion model ,  

which were found in the last step, , and 0 are re-estimated via least squares 

and the model 

log(s; ) = Zi, + 0 10g(Yi )  + error 

Since a new value of {j may have been found steps 2 and 3 are iterated unti l 

a stable set of the factors are found. 

• Step 4 .  Estimates for {3 are found using weighted least squares, with the 

weights given by 
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where 

�i = exp [zi'i'l 

as specified in the equation ( 1 . 1 7) and est imated in the previous step, and 

wi th the model 

and the sign i ficant factors are renamed Xi . 

Example 

Consider again the data in the example in section 1 .9 .2  which is to be used as an 

example for this method .  The method is set out here using Splus but many 

simpler statistical packages with \veighted least squares wil l perform this method 

for example min itab. 

The design matrix is cal led ex. mat . The means are ill eX.mean and the sample 

variances are in ex.s2 . 

• STEP 1 Estimate e using the model 

log s; = log cP + e log Yi + en·or. 

The Splus command and output is 

l s . pr int ( l s f it ( 10g ( ex . mean) , c ( 1 0g ( ex . s2) ) ) )  

Re s idual St andard Error = 0 . 7533 , Mult iple R-Square = 0 . 3 1 5  

N = 1 6 , F-stat i s t i c  = 6 . 4392 on 1 and 14  df , p-value = 0 . 0237 

coef std . err t . stat p . value 

I ntercept -3 . 8866 

Xl 1 . 64 1 1  

3 . 2549 - 1 . 1 9 4 1  0 . 2523 

0 . 6467 2 . 5375 0 . 0237 

This gives 0=1 .64 and log cP=-3 .89 .  Only the latter is significant at the 5% 
level. 

• STEP 2 The signi ficallt factors for the variance model are found using the 

model ( 82 ) 
log yf = Xn + error. 
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All the factors are fitted and then plotted on a QQPlot to f i l ld  wh ich are 

sign i fical l t .  The Splus command and output follow and the QQPlot is 

Figure 1 . 25 .  

l s . print ( ls f it ( ex . mat , c ( l og (ex . s2/ex . mean- l . 64 1 1 ) ) ) )  

Re s idual St andard Error = NA , Multiple R-Square = 1 

N = 16 , F-stat i s t i c  = NA on 1 5  and 0 df , p-value = NA 

coef std . err t . stat p . value 

I ntercept -3 . 8866 NA NA NA 

X l  0 . 3209 NA NA NA 

X2 -0 . 1387 NA NA NA 

X3 0 . 3652 NA NA NA 

X4 -0 . 2004 NA NA NA 

X5 -0 . 0433 NA NA NA 

X6 0 . 0569 NA NA NA 

X7 0 . 0639 NA NA NA 

X8 -0 . 0062 NA NA NA 

X9 -0 . 0353 NA NA NA 

X l 0  -0 . 3030 NA NA NA 

X l l  -0 . 1 546 NA NA NA 

X 1 2  0 . 1 500 NA NA NA 

X 1 3  -0 . 0696 NA NA NA 

X 14 -0 . 2 1 25 NA NA NA 

X 1 5  0 . 0452 NA NA NA 
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Figu re 1 . 25 :  QQPlot of Dispersion Effects. 

From Figure 1 .25  fac tors A and C are the only significant factors . 

• STEP 3 

Using the smaller set of factors, i .e .  factors A and C, , and e are 

re-estimated using 

log(si ) = Zi/ + e log(:ili )  + error. 

70 

ls . pr int ( l s f it ( cbind ( ex . mat [ , c ( 1 , 3 ) ] , l og (ex . mean) ) , c ( log ( ex . s2) ) ) )  

Res idual Standard Error = 0 . 5425 , Mult iple R-Square = 0 . 6955  

N = 1 6 , f-stat i st i c  = 9 . 1 367 on 3 and 1 2  df , p-value = 0 . 00 2  

coef std . err t .  stat p . value 

I ntercept 0 . 1 630 2 . 7695 0 . 0589 0 . 9540 

X l  0 . 44 6 1  0 . 1603 2 . 7827 0 . 0 1 66 

X2 0 . 3632 0 . 1 356 2 . 6776 0 . 02 0 1  

X 3  0 . 835 1 0 . 5505 1 .  5169  0 . 1 552 

This gives 'YA = 0 .446 1 ,  'Ye = 0 .3632 and B = 0.8351 .  Since e has changed 

step 2 is redone to see if the set of signi ficant factors changes. In th is case 

factors A and C remain the only signi ficant factors. 
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• STEP 4 .  

Using 'YA , 'Ye and iJ found previously the weights are found i .e . 

and 

then the mean model 

'fli = Xd3 + en·or 

is fitted . 

phi<-exp ( 0 . 446 1 *ex . mat [ , 1 ] +0 . 3632*ex . mat [ , 3] )  

weight inv<-phi*ex . mean- 0 . 835 1 

l s . pr int ( l sf it ( ex . mat , c ( e x . me an )  , wt= ( weight inv - - l » )  

Res i dual 

N = 1 6 , 

Intercept 

X l  

X2 

X3 

X4 

X5 

X6 

X7 

X8 

X9 

X 1 0  

X l 1  

X 12 

X 1 3  

X 1 4  

Standard Error = NA , Mult iple R-Square = 1 

F-stat i s t i c  = NA on 15 and 0 df , p-value = NA 

coef 

158 . 5325 

23 . 8834 

1 . 4862 

-0 . 3669 

37 . 7849 

- 1 . 3259 

-0 . 4 1 60 

- 1 . 1 242 

1 .  4 1 66 

-0 . 2969 

-0 . 5677 

- 1 . 0864 

-0 . 4265 

3 . 6623 

0 . 4870 

std . err 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

t .  stat p . value 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

7 1  
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X 1 5  0 . 4555 NA NA NA 

QQPlotting thc parameters from the table above in Figure 1 . 26 shows that 

factors A and D are significant mean effects . 

o (') 

'" 
"':0 �'" o 
X Q) 

o 

QQplot of Coefficients 

-1 0 1 
Quantiles of Standard Normal 

Figure 1 .26: QQPlot of Mean Effects. 

The part l lctcrs for factors A and D were re-estimated si llce with the 

weightings they loose the property of orthogonality. 

l s . pr int ( lsfit ( e x . rnat [ , c ( 1 , 4 ) ]  , c ( ex . mean) , wt= ( weight inv - - 1 » ) 

Re s idual Standard Error = 0 . 6933 , Mul t iple R-Square = 0 . 9876 

N = 1 6 , F-stat i stic  = 5 1 7 . 8323 on 2 and 13  df , p-value = 0 

coef  std . err t . stat p . value 

Intercept 1 58 . 2268 

Xl 23 . 4768 

X2 35 . 506 1 

1 . 4884 106 . 3043 

1 .  4662 1 6 . 0 1 17 

1 . 2778 27 . 7862 

SO ,6A=23 .48 alld ,6c=35 . 5 1 .  

o 
o 
o 
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The conclusioll drawll is that D is a mean effect, C is a dispersion effect ,  A is 

both and all the other factors are neither. The model for them is 

73 

1 58 .23 + 23.48A + 35 .5 1 Di 

0.45Aj + O.36Ci 

( 1 . 18) 

log(�d 

vaT (yd if>i V (Pi , 0) 

exp(0.45Ai + O.36Qi )  x ( 158.23 + 23.48Ai + 35 . 5 1Di )o.S4 

To achieve minimum dispersion factors A and C would be set to their lowest level 

and then using equation 1 . 18 the mean would be brought to the target value 

through factor D. If the target is not met then A will need to be adjusted to 

meet the target. This wil l  increase the variance. 

1 . 9 . 7  Comments 

The uncontrol lable factors need not be set explicitly in the experimental design. 

The only major flaw in this method is that some alternative variance functions 

are not possible, for example the binomial variance function V(pi , O) = Pi ( 1  - pd 
and the negative binomial variance function V(Pi , 0) = Pi ( 1 - OPi ) .  

I t  has the advantage over the generalised l inear model method of the previous 

section in that the required steps need a lower level of expertise and computing 

power to use this method. 

• 
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Chapt er 2 

Opt imisat ion Under Changing 

Conditions 

One of  the aims of  Parameter Design i s  to keep the mean response on target 

while simultaneously minimising the variance. The model for the mean response 

and variance response is found in terms of the controllable factors. However, 

when the process is running, some of the uncontrollable factors may be 

observable. This addit ional information should enhance our choice of the levels of 

the controllable factors. What I propose is to spl i t  the uncontrollable factors into 

two sets, observable and unobservable factors. In  the first set there may be 

factors l ike temperature and humidity while in the second there may be 

component qual ity which may be unmeasurable due to expense. The aim wil l  be 

to find a relationship between the controllable factors and the observable 

uncontrollable factors while simultaneously minimising the variance of the 

response and keeping the mean response on target. During the production 

process whenever a particular value of an observable uncontrollable factors occurs 

an appropriate value for the controllable factors can be generated, using the 

relationship discovered , that meets the stated objective. 

In practice the type of observable uncontrollable factors that would give the most 

benefit are the ones that change smoothly over time, l ike temperature and 

humidity, or ones that have a slower rate of in fluence than the production rate. 

Certainly if an observable factor changes its values in wild swings it would not be 

sensible making continuous invasive adjustments to the product/process. In such 

cases i t  may be advisable to enforce some control over the factor. �-v 

l Selected sections of this chapter were published in a paper that appears in Appendix B 
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2 . 1  A First O rder Model 

As an example consider the first order model below which is an extension of the 

ideas of Myers et al [24] . In  this case the model has been generated through 

Response Surface Designs however other types of experimental designs could lead 

to a model such as this. 

Let Y represent the qual i ty variable and Yi a response. Let Xi represent the 

control lable factors, ti the observable uncontrollable factors and Zi the 

unobservable uncontrol lable factors. 

Let the model for the quality response variable, Yi , be 

where the response is dependent on Xi, ti , and Zi . 
The list below defines the sizes of the matrices and vectors. 

f30 1 x 1 

f3I P x 1 ,  Xi P x 1 ,  �I  q X p, ti rv Dist(O , AI )  
f32 q x 1 ,  ti q x 1 ,  �2 r x p, Zi rv Dist(O , A2 ) 
f33 r x 1 ,  Zi r x 1 ,  �3 l' X q, Ei rv Dist(O , an 

where Dist(/l, A) represents some joint d istribution with /l = 0 and 

variance-covariance matrix A. The last requirement is that E, t and Z be 

i l ldependent. 

2 . 1 . 1  Model O ne 

The aim here wil l  be to minimise variance of Y IXi ,  ti while keeping the mean of 

YIXi ,  ti to target and finding a relationship between the Xi and ti . The factors Zi 

are eliminated as the only information they provide are through their means and 

variances. First the mean of Y I Xi, ti wil l be found 

Theorem 2.1 
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Proof 

Ez (E}r ( l� IXi '  ti , Zi) )  

Ez U30 + X�.Bl + t�.B2 + Zi.B3 + X�:El ti + zi:E2Xi + zi:E3ti ) 

f30 + X�.Bl + t�.B2 + X�:Elti 

• 

and then the variance of Y IXi , ti . 

Theorem 2.2 

Proof 

Ez (VarY (� lxi '  ti , Zi ) )  + Varz (EY (� lxi '  ti , Zi ) )  

a; + Var·z (f3o + X�.Bl + t�.B2 + X�:Elti + Zi (.B3 + :E2Xi + :E3ti ) )  

a; + (.B3 + :E2xi + :E3td A2 (.B3 + :E2Xi + :E3ti) 

• 

Now we wish to minimise Var·Y (� lxi '  ti)  subject to T = Edl� lxi ' ti ) where T is 

the target . 

Theorem 2.3 If A2 is positive definite and E2 is of rank r then the value that 

mznzmzses 

subject to 

zs 

Where 

A = (:E�A2:E2 ) - l ,  
B = H.Bl + :Elti ) ' 
D = AB , E = AC , and 

assuming that A is i llvertible, 

C = :E�A2 (.B3 + :E3ti ) '  
F = T - f30 - t�.B2 . 

(2 . 2 )  
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Proof 

Lagrangian minimisation will be used . 

2��A2�2Xi + 2��A2,L33 + 2��A2�3ti - ).. (,131 + �i ti ) 

therefore Xi (��A2�2 ) - 1  (� (,L31 + �lti ) - ��A2 (,L33 + �3ti )) 

Let A = (��A2�2t l ,  assuming thatA is  invertible, B = � (,L31 + �lti ) and 

C = ��A2 (,L33 + �3ti ) '  so Xi = A ( )"B - C) . 

Let D = AB and E = AC, therefore Xi = )..D - E .  

Now 
8L 
8)" 

therefore ).. 

where F 

and x; 

providing A is invertible. 

A lso 

T - (30 - XH,L31 + �1  ti ) - t�,L32 
T - (30 - 2 ( )"Dt - Et ) B  - t�,L32 
(2DtB ) - 1 ( F  + 2EtB )  

T - (30 - t�,L32 
(2DtB ) - 1 ( F + 2EtB ) D  - E 

As long as A2 is positive definite and �2 is of rank r then 2��A2�2 is positive 

definite and so xi is the minimum critical point. 

• 

During production the values of the observable uncontrollable factors ti would be 

used to generate the values of the controllable factors, xi using equation ( 2 . 2 ) . 

2 . 1 . 2 Model Two 

The usual method of parameter design is to treat the ti and Zi as one group and 

to find a value for Xi that keeps Y on target with least variance. The factors ti 
and Zi are el iminated as the only information they now provide is through their 

means and variances. First the mean of Y IXi will be found 
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Theorem 2.4 

Proof 

ET(Ez ( Ey (J-i lxi ,  ti , Zi ) ) )  

- (30 + X�,Bl 

Finding the variance of y lxi depends on the fol lowing result .  

Theorem 2.5 

• 

Var (Y)  = Ex (Ez (Vary (Y IX, Z)) )  + Ex (Va7'z (Ey (Y IX, Z) ) )  + Varx (Ey (Y I X ) )  

Proof 

Now it is known that 

so 

therefore 

Var(Y)  = Ex (Vary (Y IX ) )  + Varx (Ey ( Y IX ) )  

Var' (Y IX )  = Ez( Vary (Y IX, Z) )  + Varz (EdY IX, Z) )  

Var(Y)  = Ex (Ez (Var'y (Y IX, Z) ) + Varz (Ey (Y IX, Z) ) )  + Varx (E)/ (Y I X ) )  

which gives the result .  

Now the variance of Y IXi wil l be found. 

Theorem 2 .6 

• 

( 2 .3) 

Proof 

Vary (1� l xi ) - ET(Ez (Vary (1� l xi '  ti , Zi ) ) )  + ET ( Varz (E)/ (}i lxi , ti , Zi ) ) )  

+VarT(Ey (1� lxi ' ti ) ) 
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Now 

and 

Now 

therefore 

So 

ET( l I  a7·z (Edl'i lxi , ti , Zi ) ) )  

ET (Varz (f3o + X�,BI + t�,B2 + z�,Bs + X��lti + Z��2Xi + Z��sti ) )  

ET ( (,Bs + �2Xi + �3ti ) tA2 (,BS + �2Xi + �s  ti ) )  

ET ( (,Bs + �2Xi + �sti) tA2 (,B3 + �2Xi + �3ti ) )  

Finally 

Hence 

(,Bs + �2Xi ) tA2 (,BS + �2Xi) + ET (t��;A2�3ti + 2 (,Bs + �2Xi) t �sti ) 

(,Bs + �2Xi) t  A2 (,Bs + �2Xi) + ET (t��;A2�sti) 

(,Bs + �2Xi)t A2 (,Bs + �2Xi) + tTace(�;A2�sAd 

VaT(f3o + X�,BI + t�,B2 + X�� l ti )  

1I aT(f3o + X�,BI + t �  (,B2 + �i  Xi ) )  

(,B2 + � i  xd Al  (,B2 + � i  Xi) 

CIf + ET ( (,Bs + �2Xi + �sti ) tA2 (,BS + �2Xi + �Sti ) )  

+ VaT(f3o + X�,BI + t�,B2 + X��I ti ) 

CIf + (,Bs + �2Xi) t  A2 (,Bs + �2Xi) + tTace(�;A2�sAd 

+(,B2 + �ixdAd,B2 + �i Xi) 

Now we wish to min imise 1I aTy ( Yi lxi )  subject to T = Ey ( l'i lxi ) .  

• 
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Theorem 2.7 If A2 is positive definite and :E2 is of rank r or if A l  is positive 

definite and :E l  is of mnk q then the value that minimises 

Vary ( l� IXi )  = O"{ + (133 + :E2xd A2(f33 + :E2Xi) + trace(:E;A2:E3Ad 
+(132 + :EixdAdf32 + :EiXi )  

subject to 

zs 

Where 

G = (:E�A2:E2 + :E l Al :Ei ) - I , assuming that G is invertible, 

H = :E�f33 + :E1 f32 , K = G� and J = GH. 
Proof 

Using Lagrangian minimisation once more 

therefore Xi 
Let G 

H 
Let K 

8L 
8)" 

so ).. 

and x�* t 

Also 

2:E�A2:E2Xi + 2:E1 A1 :Ei Xi + 2:E�f33 + 2:Elf32 - )..131 

( I:�A2I:2 + I: I AI I:i ) - I (�f31 - :E�f33 - I: 1f32) 
(:E�A2:E2 + :E l A l I:i ) - I , providing G is invertible 

:E�f33 + :E1f32 , so Xi = G( �f31 - H) 
131 GT and J = G H, so Xi = )"K - J 

T - f30 - X�f31 
T - f30 - ()"Kt - Jt )f31 
( Ktf3d - I (T - f30 + Jtf3d 
(Ktf3d - 1 (T - f30 + Jtf3d K  - J 

82 L t t � = 2:E2A2:E2 + 2:EI Al :El UXixi 
Since A2 and Al are Variance-Covariance matrices they are both posi tive 

semi-definite. However, if A2 is positive defin i te and :E2 is of rank 7' then 

(2 .4 )  
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is positive definite and so 

is positive defin i te. I f, instead , A l  is positive defin ite and � l  is of rank q then 

is positive definite and so 

is positive defin ite. 

Therefore if A2 is positive definite and �2 is of rank T or i f  Al is positive definite 

and �l  is of rank q then xi*  is the minimimum critical point. 

ow for some values of ti ,  xi* may predict a value for Yi that is closer to the 

target then that predicted for xi . To compare the two predictions the statistic 

E((Yi - T)2 ) will be considered for xi and xi* . 

Theorem 2.8 For model one 

Proof 

Under model one T = E(Yi !xi ,  ti )  so 

Theorem 2.9 For· model two 

Proof 

Under model two T = E(Yi !Xi* ) and 

• 

• 
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so 

E(Yi lxi , ti - E(Yi lxi * ) ) 2  

E(Yi lxi* , ti - E(Yi l xi* ,  ti ) + t�f32 + xi* t� l ti ) 2  

V aT(Yi I xi* , t i )  + (t�f32 + xi*  t�l  ti )2 . 

• 

So far two methods have been specified i .e . using xi or xi* exclusively. A third 

approach is to use either depending on the value of k On observing a value of ti 
calculate E(Yi - T)2 for xi and xi* and choose that corresponding to the least 

E(Yi - T)2 value. 

In practice the model is specified but the coefficients of the model are unknown 

and these are found by experimentation. These estimated coefficients are used to 

give estimates of Yi , Xi , E(Yi ) and VaT(Yi )  denoted by rh , Xi , E(Yi ) and VaT(yd 
respecti vely. 

2 . 2  Simulation Example 

To il lustrate these procedures let the underlying model be 

(2 .5 )  

Where E i s  d istributed as Normal (f..£ = 0,(J2 = 1 0) and with a target of 100 .  The 

first step i l l  parameter design is to do an experiment with all the factors at fixed 

levels. This was done with a 26- 1 factorial design and the results are in Table 2 . 1 .  
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Fact.ors Response 

X I  X 2  t l t2  ' I '2  
- I  - I  - I  - I  - I  - I  9 1 . 5 3 1 1 

I - 1  - 1  - I  - I  I 1 1 0.09547 

- I  1 - I  - I  - I  I 1 20.90064 

I 1 - 1  - I  - I  - I  1 33.24822 

- 1  - I  I - I  - I  I 99.8026 

I - I  1 - I  - I  - I  7 1 . 35239 

- I  1 1 - I  - I  - I  1 0 1 . 25509 

1 1 1 - I  - 1  1 78.83396 

- I  - 1  - I  1 - 1  1 1 06.93987 

1 - 1  - I  1 - I  - I  1 34 . 56 4 2 1  

- I  1 - I  1 - I  - I  1 38.35204 

1 1 - 1  1 - I  1 98.02461 

- I  - I  \ \ - \  - \  96.73753 

1 - I  1 1 - \  1 78.68531 

- I  1 1 1 - 1  1 92. 89983 

1 1 1 1 - I  - I  1 2 5 . 50 1 5 7  

- I  - I  - 1  - 1  1 1 79.88534 

1 - \  - \  - I  1 - I  93.5 1969 

- 1  1 - 1  - I  1 - I  80.66505 

1 1 - \  - I  1 1 96.4498 

- I  - I  1 - I  1 - I  5 8 . 77738 

1 - I  1 - I  1 1 96. 73602 

- I  1 1 - 1  1 1 1 0 1 . 59202 

1 1 1 - I  1 - I  1 26.37272 

- \ - 1  - 1  1 1 - I  75.88907 

1 - I  - I  1 I 1 87.37854 

- I  1 - I  1 1 I 66. 28703 

1 1 - I  1 1 - 1  1 43.92734 

- 1 - 1  1 1 1 1 93.3468 

1 - 1  1 1 1 - I  1 22 . 44309 

- I  1 1 1 1 - 1  1 1 6.39455 

1 1 1 1 1 1 83.3959 

Table 2 . 1 :  The experimental design and the responses for a 26- l factorial design in  

X l , X2 , t l , t2 , Zl and Zl · 

The model found was 

fj = 100 .06 + 4 .98x l + 6 .45x2 - 3 .55t l + 3 .74t2 - 4 .86z1 - 6.85z2 - 3.57x l t l 

+6. 1 lx l Zl - 6 .98x I Z2 - 2 . 1 5x2t2 - 7.36x2Z2 + 8 .24t l zl - 8.58t2z2 

The residuals were used to estimate a; and 0-; = 1 1 .56. 

The two parameter variable ti wil l be taken to have a 2 dimensional multivariate 

Normal distribution with a mean of 0 and a Variance-Covariance matrix equal to 

the identity matrix .  Similarly for Zi . The parameter E wil l  have a standard 

Normal distribution. Four  simulations are to be done to compare four different 

methods. 100,000 values wi l l  be generated for each of the Zi , ti and E and they 

wil l  be used for each simulation. 

In order to use equation (2 . 2 ) A2 must be posit ive definite and t2 must be of 

rank T .  Now A2 is the identi ty matrix so i t  is positive definite and 

A ( 6 . 1 1  
:E2 = 

-6.98 
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is of rank 2 and 7' = 2. The conditions are met. 

For simulation 1 . 1  equation (2 .2 )  was used to generate the xi from the ti . The 

equations for Xl and X2 in terms of ti were generated by Maple and appear in  

Table 2 .2 .  

x l  : =  - ( - .2499999997 + 1 . 1 1 1 1 1 1 1 1 1  t1  + . 1 74603 1 745 t2 

+ . 2222222226 t1 2 - .6031 746025 t2 t1 - .2729591838 t22 

- .0680272 1 120 t22 t1 + . 142857 1429 t23) /( . 5555555552 

+ . 2222222224 t1 + .2222222222 t1 2 - .5952380950 t2 

- .3333333334 t2 t1  + . 2 168367346 t22 ) 

x2 : =  (- . 1 899092969 t2 + 1 .253968253 t1  - .3492063483 t1 2 

- .42857 14285 t2 t1  - .02 1 25850360 t22 - .09070294800 t1 2 t2 

+ . 1 90476 1904 t22 t1  + .2000000000 1 0-9 t23 - . 1 785714284) /( 
. 5555555552 + . 2222222224 t1 + . 2222222222 t1 2 

- .5952380950 t2 - .3333333334 t2 t1  + . 2 1 68367346 t22 ) 

Table 2 .2 :  The Maple output giving the relationship between the controllable fac­

tors, Xi ,  and the observable u ncontrollable factors, ti , that minimises the variance 

and keeps the mean on target .  

The xi and ti were used with the Zi and Ei to generate the f)i using the regression 

model in equation (2 . 5 ) .  The variance of the resulting f)i was 67.72±1 . 1 0  and the 

mean 100.40±0.03. 

The variance of f)i can be broken into three components. That due 

1 )  to E ,  

2)  to the influence of the random variable z and its interaction with x and t , and 

3) to the use of the estimated coefficients. 

The size of the latter can be estimated by generati ng Yi with Ei and Zi equal l ing 0 

and keeping xi and ti as before. The resulting variance was 1 . 274±0.003. This 

variance would decrease with the i ncreased accuracy of estimating the coefficients. 
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In  order to use equation (2 .4 )  A2 must be positive defin ite and E2 must be of 

rank r or Al must be positive defi l l ite and El must be of rank q. It has been 

shown previously that A2 is positive defin ite and E2 is of rank T. Al is the 

identi ty matrix so it is positive defin i te. Now 

A _ ( -3.57 0 ) 
� l -

o -2 . 1 5  

which i s  o f  rank 2 and q = 2 .  So both the conditions hold . 

For t he second simulation, simulation 1 .2 ,  equation (2 .4) was used to give 

x;*= (0.0358, -0 .0363) which gives, using equation (2 .3) , ra-r(y) = 249.40. The 

underlying model is known in this case so V ar(y) can be calculated and is 

Var(y) = 223.67. Using xt and the previous ti and Zi,  the yt were generated 

from the regression model in equation (2 .5) to give a sampling variance of 

223. 74±1 .43 and a mean of 99.97±0.05. 

By accounting for the specific values of the ti when choosing the Xi an 

approximately 70% decrease in variance was achieved. Graphing the two sets of 

data in  h istograms in Figure 2 . 1  i l lustrates the reduction in  the variance of the 

response Yi from simulation 1 .  2 to sim ulatiol l  1 . 1 .  
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60 80 1 00  120 1 40 
Response lor Sirrula!ion 1 

o 

60 80 1 00  120 1 40  
Response lor Simulation 2 

Figure 2 . 1 :  Responses col lected from simulation 1 . 1  and simulation 1 . 2 .  They show 

how accounting for the values of the observable uncontrollable factors has reduced 

the variance of the response. 

It is possible to generate a Box type model [7] . In this method the uncontrollable 

factors do not enter into the experiment or the model l ing process expl icitly. 

During the experimental stage the design is replicated so that at each distinct 

design point there are multiple readings. The means and variances are col lected 

at each point. They are both used as responses to be explained by the 

controllable factors. The 26- 1 design was converted into a 22 design in  X l and X2 

with 8 replications at each design point. The mean and variance at each design 

point were collected and the model found is given below . 

fJ, 1 00 .06 + 4.98xI + 6.45x2 - 0.76x l X2 

log S 3 .04 + 0. 10x l + 0. 1 3x2 - O .07X IX2 

Calculus shows that the values for Xl and X2 that minimises log s while keeping p, 

on a target of 1 00 is (-0.0026, -0.0067) . The model predicts a variance at that 

point of 433.87. A third simulation , simulation 1 .3 ,  using these Xi and the 
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previous ti and Zi , gives a sampling variance of 223.49± 1 .42 and a mean of 

99.99±O.03. 

Once again accounti ng for the ti i n  calculating Xi has given an improvement over 

an accepted method. 

The third approach is to calculate E(y - T)2 for both xi and xi* alld to use the 

Xi that minimises E(y - T)2 . Using Maple software both expressions were derived 

in terms of t t  and t2 and a contour plot of E(y lxi ,  ti - T)2_ E(y lxt ,  ti - T)2=O 

is d isplayed in Figure 2 .2 .  The smaller regions denote where xt has lower 

E(y - T)2 then xi . 

2 . 5  

2 '  

0 . 5  

r 0 . 2  0 . 4  0:6 ) 0 . 8  t
1 

I 

- Q . 51\---- .---/ ---� 

1 . 2  1 . 4  1 . 6  1 . 8  

Figure 2 . 2 :  A contour plot of E(Yi lxi* , ti - T)2 - E(Yi l xi ,  ti - T)2 = O .  Inside the 

two smaller regions xi* gives the smaller E(Yi lxi , ti - T)2 value. 

A further simulation , simulation 1 .4 ,  using xi* when ti falls in  the enclosed 

regions and xi otherwise, gives a mean and variance for the response as 

l OO. 18±O.03 and 65 .44±O.62 respectively. This approach shows l ittle 

improvement over using xi exclusively because only 8.9% of the ti fall in the 

enclosed region. Whell the probabil ity of the ti fall ing in such regions is larger 

this approach may give greater improvements. 

A summary of the four simulations appears in Table 2 .3 .  
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Simulation Mean Standard Error Variance Standard Error 

1 . 1  1 00.40 0 .03 67.85 1 . 10 

1 . 2 99.97 0.05 223 .74 1 .43 

1 . 3 99.99 0 .05 223 .49 1 .42 

1 .4 100 . 1 8  0 .03 65.44 0 .62 

Table 2 .3 :  A summary of the simulation results. 

2 . 3  Complications 

In the typical inner / ou ter array, only the main e ffects and the interactions 

between the controllaUe and uncontrollable factors are est imable, i . e .  everything 

in equation (2 . 1 ) except E3 . However i t  maybe the case that an experiment is 

designed to produce a model that contains interactions and/or quadratic terms 

especially when using response surface methods. Adding terms l ike X�EXi to the 

model gives no closed form solution for xi . 

Others problems are that the xi found may not be in the experimental region or 

that A and/or G is not invertible. These problems can be overcome by solving 

numerically and setting appropriate upper and lower bounds on the Xi. 

Further Example 

Engel [ 1 3] reported an experiment to improve an injection moulding process by 

minimising the shrinkage of the product. The experiment consisted of seven 

controllable factors and three uncontrollable factors and these appear in Table 

2 .4 .  



CHAPTER 2. OPTIMISATION UNDER CHANGING CONDITIONS 89 

Controllable Factors Uncontrollable Factors 

A Cycle Time M Percentage Regrind 

B Mould Temperature N Moisture Content 

C Cavity Thickness ° Ambient Temperature 

o Holding Pressure 

E Injection Speed 

F Holding Time 

G Gate Size 

Table 2 .4 :  The factors in the injection moulding experimellt .  

The experimellt alld the responses are in Table 2 .5 .  

Percentage shrinkage for 

Cell Controllable factors the noise factors (M , N , O)  

A B C D E F G ( 1 , 1 , 1 )  ( 1 , 2 , 2) (2 , 1 , 2 ) (2 , 2 , 1 )  

1 1 1 1 1 1 1 1 2 . 2  2 . 1  2 . 3  2 . 3  

2 1 1 1 2 2 2 2 2 . 5  0 .3  2 . 7  0 .3 

3 1 2 2 1 1 2 2 0 .5 3. 1 0 .4 2 .8 

4 1 2 2 2 2 1 1 2 .0  1 .9  1 . 8 2 .0  

5 2 1 2 1 2 1 2 3 .0 3 . 1  3 .0 3.0 

6 2 1 2 2 1 2 1 2 . 1  4 . 2  1 .0 3 . 1  

7 2 2 1 1 2 2 1 4 .0 1 . 9 4 .6 2 .2  

8 2 2 1 2 1 1 2 2 .0 1 .9 1 .9 1 .8 

Table 2 .5 :  The design and the responses in the injection moulding experiment. 

Of the noise factors , percent regrind appears to be unmeasurable while ambient 

temperature is measurable. Moisture content I wil l  deem to be measurable since 

it is a functioll of the ambient humidity and the amount of t ime the material is 

exposed to the air. All the factors appear quantitative. 

The experi l l lent was re-analyzed by Steinberg and Bursztyn [35] and they stated 

that perhaps two of the responses had been swapped.  They were 0 .3  and 2 .5  in 

the second row,  first and second column. Assuming this to be true the 

experiment will be analyzed again under the new method. For this example the 

aim wil l  be to set shrinkage to a low target rather than minimise it .  
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The experiment can be written in the form give in Table 2 .6 .  

A B C D E F G M N 0 Response 
· 1  · 1  · 1 · 1 · 1  · 1  · 1  - 1  - 1  · 1  2 . 2  

· 1  · 1  · 1  1 1 1 1 · 1  - 1  · 1  2. 5 

· 1  1 1 · 1  · 1  1 1 · 1  · 1  · 1  0 . 5  

· 1  1 1 1 1 · 1  · 1  · 1  · 1  · 1  2 

1 · 1 1 · 1 1 · 1  1 · 1  · 1  - 1  3 

1 · 1  1 · 1  · 1  1 1 1 1 - 1  2 . 1  

1 1 · 1  - 1  1 1 · 1  - 1  - 1  · 1  4 

1 1 - 1  1 · 1  · 1  1 - 1  - 1  · 1  2 

· 1  · 1  · 1  · 1  · 1  · 1  · 1  - 1  1 1 2 . 1  

· 1  · 1  - 1  1 1 1 1 · 1  1 1 0 . 3  

- 1  1 1 · 1  · 1  1 1 · 1  1 1 3. 1 

· 1  1 1 1 1 - 1  · 1  · 1  1 1 1 .9 

1 - 1  1 · 1 1 · 1  \ - \  \ \ 3. 1 

1 · 1  \ 1 · 1  \ . \  . \  \ \ 4 . 2  

1 1 · 1  - 1  1 \ . \  . \  1 \ 1 .9 

1 1 · 1  1 · 1  . \  \ . \  \ \ 1 .9 

· 1  · 1  · 1  - 1  · 1  . \ - 1  \ - \  \ 2 . 3  

- 1  · 1  · 1 1 1 1 1 \ . \  1 2 . 7  

· 1  1 1 · 1  . \  1 \ \ - \  \ 0.4 
.\ 1 1 1 1 . \  . \  1 - 1  1 1 .8 

\ · 1  1 - 1  1 - \  \ \ - \  \ 3 

1 · 1 1 1 · 1 \ - 1  \ - 1  \ 1 

1 1 - 1  · 1  1 \ · 1  1 - \  1 4 . 6  

1 1 · 1  1 · 1  - 1  \ 1 - 1  \ 1 .9 

· 1  · 1  - 1  . \ . \  . \  . \  1 1 - 1  2 . 3  

. \  · 1  - 1  1 1 1 1 1 \ · 1  0.3 

-\ \ 1 . \  · 1  1 1 \ 1 - \  2 . 8  

- 1  1 1 1 \ - 1  - 1  \ \ . \  2 

1 · 1  1 . \  1 · 1  1 1 1 . \  3 

1 · 1  \ \ - \  \ · 1  1 1 · 1  3 . 1  

1 1 · 1  · 1  \ 1 · 1  1 1 - 1  2 . 2  

1 \ · 1  \ · 1  . \  1 1 \ - \  1 .8 

Table 2 .6 :  The rewritten design of the injection moulding experiment. 

A half normal plot of the main effects and interactions appears in Figure 2 .3 .  

The effects and interactions not fall ing on the l ine were deemed to be sign ificant 

and a regression equation was derived with these. Note that the controllable 

factors B and F were were found to be insignificant and so in production they 

can be set to our economic advantage. 
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Figure 2 .3 :  A half-normal plot of the main effects and interactions for the injection 

moulding experiment 

The regression equation is 

f) = 2 .25 + 0 .4250A + O .0625C - O .28 13D + O. 1 438E 

Therefore 

-O.23 1 3G - O.05M + O . 1063l\1E - O. 1 25MC - O.0938MD 
+O .OOOON + O .5875NC - O.5563N E 

E(Y IA ,  C, D,  E, G, N)  = 2 .25 + 0 .4250A + O.0625C - O .2813D + O . 1 437E 

-0 .23 1 3G + O.OOOON + 0.5875NC - 0.55625N E 

(2 .6)  

In order to work out the variance a couple of assumptions have to be made. I wil l 

assume that the d istribut ions of M, % regrind , and N, the ambient temperature 

are Normal and centered about O.  Secondly I wil l  assume that 95% of the 

distribution l ies between their levels i.e. they have standard deviations of � .  
Therefore 

V;;r(Y IA , C, D, E, G, N) = va1" ( l\I ) ( -0 .05 - 0. 1 25C + 0. 1 063E - 0.0938D)2 + 0-; 
[ 1 1  this case the target wil l  be set at 1 .6% shrinkage. A quadratic program was set 

up using the student ampl software package with Var(y IA ,  C, D, E, G, N) as the 
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objective that is to be minimised subject to E(Y IA ,  C, D ,  E, G ,  N )  = 1 .6 .  A lso 

since the experiment was done in the unit hypercube all controllable factors wi l l  

be constrained to l ie  between ± 1 .  Dur ing production N can vary alld the best 

approach would be to solve the quadratic program for the particular value for N 
at that time. This case wil l  be simulated later. General ly this is l ikely to be 

expensive and approximations to the solution can be foul ld .  In the approximate 

method the idea wil l  be to observe the solution to the quadratic program for 

di fferent values of N and relate the solu tions for the controllable factors to N by 

regression equations. Techn ically only values of N between ± 1  should be 

considered , however in  practise values outside this range (and in this case 5 out of 

100) will be seen, so N was observed over the range ±3. For each value of N a 

solution from the quadratic program was found for each of the controllable 

factors. These were plotted against N in Figure 2 .4 .  

o 

" A 

-3 ·2 

o 

o 

A & E  

., 
VakJe of me Controllabkt FadOf, N 

Figure 2 .4 :  A plot of the observable uncontrollable factor, N versus the controllable 

factors, A, C, D, E, G. 

From this it call be seen that factor A should be always set at - 1  alld G at l . 
The others challge their values along smooth curves with breakpoints at - 1 . 4425 

and -0.3825. Regression equations were fitted to these smooth curves i l l  order 

that the values for factors C, D and E could be predicted given a value of N. In 

this case we want these equations to be good predictors so that parsimony is not 
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necessary. Terms were added to each equation until a term became insigni ficant 

or the residual squared error reached some threshold . In this case the threshold 

was 1 e-5. This threshold couldn't  be reached in the regression for equation C in 

the range (-0 .3825 , 3)  and this equation does not predict as well as the others. 

The solution is in Table 2 . 7. 

A = - 1  - 3 < N < 3  

B our choice - 3 < N < 3  

=
{ 

19 . 3 1  + 59.20N + 83 . 1 8N2 + . . .  + 0 .015N8 -3  < N ::; - 1 .4425 

C -0.93 - 1 .25N - 0.34N2 - 0.07 N3 - 0 .0 1N4 - 1 .4425 < N ::; -0 .3825 

-0.72 - 0.29N + 0.39N2 + . . . + 0 .0002N14 -0.3825 < N < 3 

=
{ 

-26 .28 - 78.90N - 1 l 0 .85N2 + . . .  - 0.02N8 -3  < N ::; - 1 .4425 

D - 1  - 1 .4425 < N ::; -0.3825 

-0 .70 + O .39N - 0.52N2 + . . . + 0 .0003N13 -0 .3825 < N < 3 

=
{ 

0 -3 < N :::; - 1 .4425 

E - 1 .5 1  - 1 .47N - 0.40N2 - 0.09N3 - 0 .0 1N4 - 1 .4425 < N ::; -0.3825 

- 1  -0.3825 < N < 3 

F our choice - 3 < N < 3  

G = 1 - 3 < N < 3  

Table 2 .7: The solution giving the relationship between the controllable factors 

A, B, C, D ,  E,  F, G and the observable uncontrol lable factor , N, that minimises 

the variance and keeps the mean on target. 

Since the underlying model is not known we cannot tel l how the solution would 

do. This could only be found by using the solution practically. However the two 

different methods can be compared to see if there is any difference between them. 

Two simulations were done with the same 100,000 random variates for each of N 

and M. I n  the first simulation for each value of N the quadratic program was 

solved to give values for the control lable factors. These were used in equation 

2.6 to generate the responses ih . The variance of Yl was 2 .26e- 1 2 .  In the second 

simulation the values of the controllable factors were chosen using the solution in 

Table 2 . 7  and these were used in equation 2 .6  to generate the responses Y2 . The 

variance of Y2 was 9.97e- 1 1 .  The two methods show l ittle difference in the 
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response variance. With any reasonable error variance these response variances 

would be swamped and the two methods would be indistinguishable i n  outcome. 

The responses for the second simulation were plotted against N in Figure 2 . 5 .  

·2 -1 

Factor N 

Figure 2 .5 :  A plot of the response to the regression equation using the solutions in 

Table 2 .7 for the factors and 100 ,000 random variates for M and N. 

After N = -0.3825 the variance in the response is greater. This is due to the 

poorer predictive power of the regression model for factor C in  this region. 

2 . 4  Implicit Introduction o f  Uncontrollable 

Factors 

The previous sections have deal t with the case where the uncontrollable factors 

have been explicitly i ntroduced into the experiment and this was demonstrated 

by using Response Surface methods. There are methods that use the implicit 

introduction of uncontrollable factors. Instead of modell ing the quali ty response 

as in the RSM method or the Split Plot method , these methods produce a joint 

model for the mean and for the variance. These include 

• the tranformation and data analytic approach 

• generalised l inear models approach 
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• restricted generalised models approach 

These methods can be extended very easily to include the idea of separating the 

uncontrollable factors into those that can be observed and into those that are 

unobservable. This extra information from the observable uncontrol lable factors 

can be used to our advantage. 

The Design Stage 

In these three methods given above the uncontrollable factors need not be 

explicitly part of the experimental design. They are introduced into the 

experiment by having replications at each of the design points. The assumption is 

that the uncontrollable factors fol low their normal pattern of behaviour. If th is 

assumption is l ikely to be inval id then these factors should be explicitly 

introduced into the experiment i .e .  given factor names and levels and with the 

experiment designed accordingly. 

In this new method the unobservable uncontrollable factors are al lowed to enter 

into the experiment implicitly whi le the observable uncontrollable factors enter 

into the experiment explicit ly. 

The Modelling Stage 

The methods l isted above produce a joint model for the mean and variance based 

on the control lable factors. Recall that these methods cal led for separation of the 

mean and variance of the quality response i .e .  there was no relationship between 

the mean and variance. The transformation method used a transformation of the 

quality response to effect this separation . The variances of this transformed data 

set are used as the responses for the variance model . 

For the other two methods the variance was separated into two parts V(J.L) and 4>. 

The former being that part of the variance that was related to the mean and the 

latter being that part of the variance unrelated to the mean. In these cases 4> was 

used as the response for the variance model . 

In this new method, at the model l ing stage, the controllable and observable 

uncontrollable factors are treated similarly. A joint model for the mean and 

variance is put together using the control lable and observable uncontrol lable 

factors. 
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The final stage is to find the values of the controllable factors by minimising the 

variance whi le keeping the mean model on target . This may be possible to solve 

using Lagrangian Minimisation techn iques. However i t  is most l ikely that 

l inear/quadratic progamming methods are needed to force any solutions for the 

controllable factors to be within the region on the experimental design . 

2 . 4 . 1  Example 

In Section 1 .9 .5 the Generalised Linear Models method was demonstrated and 

the fol lowing model was found. The model is 

� 
log <P 

and Var (Yi ) 

1 2 .46 + 0.97 x A + 1 .49 x D 

-0.59 + 0 .33 x A + 0.34 x C 

<Pi V (J-ld 
exp[ -0.59 + 0.33A + 0 .34C] x ( 12 .46 + 0.97 A + 1 .49D)2 

Suppose A was an observable uncontrollable factor and that the levels of - 1  and 1 

were chosen so that 95% of the values of A were known to fal l  between them. 

Minimising the variance while keeping the mean on target of 144 or .Jti = 1 2  

would involve minimising 

-0 .59 + 0 .33A + 0 .34C subject to 1 2  = 1 2 . 46 + 0 .97 A + 1 .49D 

The only solut ion to the latter equation is having 

b = ( 1 2  - 12 .46 - 0.97 A ) / 1 .49 A = - 1 . . . 1  

Min imising the variance would involve sett ing C so t hat -0.59+0.33A+0.34C i s  a 

minimum. That is when (; is at - I , the lowest val ue available to C within the 

experimental region. 

If  the target was 100 then 

b = ( 10 - 1 2 .64 - 0.97 A )/ 1 .49 A = - 1 . . . 1  

However the equation for b would give values o f  D that were not i n  the range 

( - 1 , 1 ]  but in the range [- 1 ,  -2 .3] .  Since the model loses validity outside the 

experimetal region i t  would be advisable to do more experimentation. Using 

smaller levels of D, say -1 and -2.3, should be considered. A lso since the variance 

is decreasing as C decreases, smaller values of C maybe worth investigating as 

wel l .  However there may be practical l imitations on how low C can go. 
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2 . 5  Allowing For B ias 

The goal has been to choose values for the controllable factors Xi that keep the 

mean of the qual ity control variable, Y, on target while minimising its variance. 

If the contraint of keeping the mean on target is relaxed then lower values for the 

variance are possible. However it is still important to keep the mean of Y as close 

to the target as possible. The Mean Square Error about the target gives an 

indication of how far we expect the quality control variable to be from the target. 

I t  is 

It is both a function of the variance and a function of the difference between the 

mean and the target. 

For model one of chapter two the MSE can be represented as 

Vary (Y lxi , ti) + (Ey (Y l xi , ti )  - T)2 
(J"; + ((33 + :E2Xi + :E3ti ) t  A2 ((33 + :E2xi + :E3ti ) 

+ (,80 + X�(31 + t�(32 + X�:E1ti - T)2 

The fol lowing theorem finds a value for Xi that minimises the MSE. 

Theorem 2.10 If 
1) the inverse exists 
2) A2 is positive definite matr·ix and 
3) :E2 is of mnk r 
then the minimimum of E(  (Y IXi ,  ti - T)2) with respect to Xi is 

Proof 

Now 

X;* *  - (:E�A2:E2 + ((31 + :E1ti ) ((3i + t�:Ei ) ) - l 

X (:E�A2(33 + :E�A2:E3ti + ((31 + :E1ti )  (,80 + t�(32 - T) ) 

(J"; + ((33 + :E2xi + :E3tdA2 ((33 + :E2xi + :E3ti) 

+(,80 + X�(31 + t�(32 + X�:E 1 ti - T)2 
a; + ((33 + :E2xi + :E3ti ) tA2 CB3 + :E2xi + :E3ti) 

+ (,80 + (3i Xi + t�(32 + t�:Ei Xi - T)2 
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Differentiating this with respect to Xi gives 

8E( (Yi I Xi l  ti - T)2 ) 
8Xi 

Solving this for Xi gives 

2:E�A2,83 + 2:E�A2:E3ti + 2:E�A2:E2Xi 

+2(,81 + :E1ti ) (f30 + ,8iXi + t�,82 + t�:EiXi - T) 
2 (:E�A2:E2 + (,81 + :E1ti ) (,8i + t�:Ei ) )Xi + 2:E�A2,83 
+2:E�A2:E3ti + 2 (,81 + :E 1 ti ) (f30 + t�,82 - T) 

Xi** - ( :E� A2:E2 + (,81 + :E1ti ) (,8i + t� :Ei ) ) - l 
X (:E�A2,83 + :E�A2:E3ti + (,81 + :E1 ti ) (f30 + t�,82 - T))  

The second derivative wi th  respect to  Xi is 

82 E( (Yi lxi l  ti - T)2 ) 
= 2 (:Et A :E + ( a + :E t . ) (at + t�:Et ) )  !:l !:l t 2 2 2 fJl 1 t fJl t 1 UXiUXi 

If 82 E((�I:v�,t1-T)2 ) is posit ive definite then x;** is the minimum critical point. I f  
X t.  Xi 

we take that A2 is positive definite then 

will be positive definite if :E2 is of rank r. 

Let 

and O(p- l )Xp  be a (p - 1 )  x p matrix of zeros. Combine these to give S where 

a p x p matrix . Now 

Since S is square and has the same rank as Rt then RRt is positive semi-definite .  
This means 

82 E( (Yi lxi l  ti - T)2 ) 
8Xi8x� 

is positive definite. 

• 
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In theory if  a2 £( ( y. lx" t i - 7 ') 2 ) is positive definite then i t  wi l l  be non-sil lgular 8x,8x� 
however in  practice if 

is to ' large' then it wil l swamp 

Trying to fil ld the inverse by computer wil l fai l  as the computer tries to invert 

what appears to be a singular matrix. 

In practice, the parameters will be replaced with their estimates. 

2 . 5 . 1  Simulation Example Cont i nued 

In th is simulation xi and xi** are to going to be compared using the data from 

Section 2 .2 .  In the previous example, the conditions for xi to be the minimum of 

the variance when the mean is on target, were met. If A2 is positive defin i te and 

�2 is of rank r then xi** is the minimum of the MSE. Now recall that A2 was the 

identi ty matrix so it is positive definite. Also 

A ( 6. 1 1  0 ) 
�2 = 

-6.98 -7.36 

is of rank 2 and l' = 2 .  And so the conditions are met. 

Twenty-one thousand values for t l and t2 , and Z l  and Z2 were generated in sets of 

1000 with the same distributions as before. Two different versions of Xi were 

generated , xi and xi* * .  The function of xi in terms of ti was given in table 2 . 2 .  

The function of x;** i l l  terms of t i  i s  given in  Table 2 .8 .  

(x l , x2 ) t = ( 2476 - 6 1 88 t l - 277t2 - 685tl 2 + 1445tl t2+489t22 +252t1 t22_277t2 3 + 1 e - 8 t l 2 t22+2e-8t2 3 tl ) 
3643- l288t2 +398t22+442tl - 789tJ t2+690t12+ le-8 tl2 t22 

-4091 +662 7 t l  -3300t2 - 1 l 5 l t 1 2  -879t1 t2+52 t2 2 _4 18 t 1 2 t2+460tl t22 - 1 e -8t1 3 t2 
3643- l 288t2 +398 t22+442t1 - 789 t l  t2+690t12+ 1 e - 8 t J  2 t22 

Table 2 .8 :  The equation giving the relationship between x*** and ti found using 

maple. 

These values were used to generate Y, the qual i ty variable, according to the 

underlying model given in equation 2 .5 .  

A histogram comparing t he two resulting d istributions for the first 1 0 ,000 values 

of Y appears in Figure 2 .6 .  
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Histogram of Quality Variable. Y. for x' 
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Figure 2 .6 :  Responses collected in histograms for Y when T=100 for xi and xi"'* 
respectively. 

The h istogram for simulation 2 . 1 ,  using xi has a bell-shape but is more spread 

then simulation 2 .2  which uses xt* . The histogram for simulation 2 . 2  does not 

look bell-shaped . To the left of t he target value i t  has the shape of a triangular 

distribution peaking at the target .  To the right of the target it has the shape of 

an exponential d istribution. 

A comparison of the results for these two simulations appears in  Table 2.9. The 

first simulation are the results for Y when using xi . The second simulations are 

the results Y when using xi"' * .  
The means and variances were collected from each o f  the 2 1  sets o f  1 000 

responses and were averaged to give the mean and variance reported in the table. 

The standard error for each reported mean and variance was derived from the 

sample variance of the 2 1  means and 21 variances respectively. 

Simu lation Mean Standard Error Variance Standard Error 

2 . 1 100 .36 0 .04 66.92 1 .07 

2 .2  100.05 0.03 47.46 0 .86 

Table 2 .9 :  Responses collected in  histograms for Y when T=100 for xi and xt* 
respectively. 



CHAPTER 2. OPTIMISATION UNDER CHANGING CONDITIONS 1 0 1  

From the table i t  can b e  seen that the mean o f  Y i s  closer to the target when 

using xi** . The mean of Y for xi** is within two standard errors of the target .  

while the mean for xi is not. 

The variance of Y is much smaller using x;** compared \vith using xi . 
The simulations were run again but with a target value of 1 25 rather than 1 00. 

The versions xi and x;** were generated once again and used in the underlying 

model of equation 2.5 to generate Y. A h istogram of the first 10 ,000 Y values for 

each version of Xi appears in  Figure 2 .7 .  

Histogram of Quality Control Variables for x* 

� target ; _ _ _ _  ...•• 111111 11111111 •.. _ _ _ _  _ 

100 y 

Histogram of Quality Control Variables for x'" 

o 

y 

Figure 2 .7: Responses col lected in  h istograms for Y when T=125 for xi and x;** 
respecti vely. 

The first h istogram which records Y, generated from xi,  has a mean that is much 

closer to the target value of 1 25 but is much more spread out. The second 

histogram which records Y generated from x;** has a mean for Y which is about 

10 units from the target of 1 25 but is much more compact about its mean then 

for the first simulation. 

The simulation results for twenty-one thousand values is in Table 2 . 10 .  Since x;** 
gave a mean for Y that was far from the target the Mean Square Error for both 

variables appears in the table as wel l .  
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Simulation Mean Std .  Error Variance Std Error MSE Std. Error 

3 . 1  1 28 . 2 1  0 .23 872 . 20 1 9 .89 873.52 20. 76 

3 .2  1 14 .69 0 .08 2 13 .37 2 . 1 0  309.68 3 .36  

Table 2 . 1 0 :  A summary of the  simulation results of the  mean , variance and 

MSE(T=1 25 )  for Y. 

In the general case it would seem that x;* *  would be recommended over xi as i t  

i s  not toofar from the target and has lower variance. However it may be needed to 

get the mean closer to the target. One approach could be to try and exert some 

control over k 
Lin and Yu [ 1 8] gave another approach . They recommend using an adjusted 

version of the Mean Square Error. They introduced two new variables, ) 1[  > 0 

and A2 > 0, to give the adjusted MSE 

The values of A l  and A2 are adjusted to suit the preference of the experimenter. 

When Ai =A2= 1 then the adjusted MSE is equivalent to the MSE. When A l = 1 

and A2 tends towards infinity then minimising the adjusted MSE is equivalent to 

minimising the variance of Y subject to the mean being on target. 

The value that Xi takes will be adjusted for the values of Al and A2 . 

Theorem 2.11 If 
1) the inverse exists, 
2) A2 is positive definite 
3) E2 is of rank r and 
4) A I > 0 and A2 > 0 

then the minimum of 

with respect to Xi is 

X;*** -(A I  ��A2�2 + A2 ({31 + �lti ) ({3i + t��i )tl  
X (A l ��A2{33 + A l ��A2�3ti + A2 ({31 + �ltd (,6o + t�{32 - T) )  
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Proof 

Now 

MSE* (T) A l Var(Y) + A2 (E(Y) - T)2 

A la; + A l ({3a + :E2xi + :Eati ) tA2 CBa + :E2Xi + :Eati) 
+A2 (,60 + f3i Xi + t�f32 + t�:Ei Xi - T)2 

Differentiating this with respect to Xi gives 

OE((Yi l xi ,  ti - T)2) 
OXi 

Solving this for Xi gives 

A l  (2:E�A2f3a + 2:E�A2 :Eati + 2:E�A2:E2Xi) 

+ 2A2 (f31 + :El td (,60 + f3i Xi + tif32 + ti:Ei Xi - T) 
2 (A I :E�A2:E2 + A2 (f31 + :E1ti ) (f3i + A l t�:Ei ) )Xi + 2AI :E�A2f3a 
+2Al :E�A2:Eati + 2A2 (f31 + :Elti ) (,60 + t�f32 - T) 

X;*** - (A l :E�A2:E2 + A2(f31 + :E1ti ) (f3i + ti:Ei ) ) - 1 
x (Al :E�A2f3a + A l :E�A2:Eati + A2 (f31 + :Elti ) (,60 + tif32 - T)) 

The second derivative with respect to Xi i s  

If &2E((Yilxi ,t i-T)2) is positive defin ite then x�*** will be the minimum critical &xi&xl t 

point. If we take that A2 is positive defin i te then AI :E�A2 :E2 wil l  be posit ive 

definite if :E2 is of rank r and A l  > O. 

Let 
1 

R = Ai (f31 + :E 1 ti )  

and O(p- l ) Xp  be a (p - 1 )  x p matrix o f  zeros. Combine these to give S where 

a p x p matrix. 

Now 



CHAPTER 2. OPTIMISATION UNDER CHANGING CONDITIONS 104 
Since S is square and has the same rank as Rt then RRt is positive semi-definite .  

This means 

is posit ive defini te. 

82 E( (Yi lxi , ti - T)2) 
8Xi8x� 

In  theory if 82 E((�I;v�,t� _T)2) is positive definite then i t  wi l l  be non-singular. I I I  x ,  X i  

practice i f  (A2 (!31 + I:1ti ) (!3i + t�I:i ) )  or A2 is to ' large' or Al to 'small ' then 

• 

(A2 (!31 + I:1ti ) (!3i + tiI:i ) )  wil l  swamp A I I:�A2I:2 .  Trying to find the i nverse by 

computer wi l l  fai l  as the computer tries to invert what appears to i t  to be a 

singular matrix. 

2 . 5 . 2  S imulation Example Cont inued 

In th is simulation different versions of xi** are to going to be compared using the 

data from Section 2 .2 .  If A2 is posit ive defin ite and I:2 is of rank r and At and 

A2 are both greater than zero then xi** is the minimum of the MSE. Now recal l 

that A2 was the identity matrix so i t  is posit ive definite. A lso 

� ( 6 . 1 1 0 )  
I:2 = -6.98 - 7.36 

is of rank 2 and l' = 2 .  And so as long as Al and A2 are chosen to be both greater 

then the condit ions are met. 

Ten thousand values for tt and t2 ,  and ZI and Z2 were generated in sets of 1000 
with the same distribution as before. Four different versions of Xi were generated. 

They were xi*** with different values for Al and A2 .  

These values were used to  generate Y ,  the qual i ty variable, according to  the 

underlying model given in equation 2 .5 .  The simulations were run with a target 

value of 1 25 .  

A histogram of  the  first 10 ,000 Y values for x/*** with  A2= 1 ,  2 ,  5 ,  and 10 , 
appears i l l Figure 2 .8 .  
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Y values when lambda l = l ,  lambda2=1 
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Figure 2 .8 :  Responses col lected in  h istograms for Y when T=1 25 for xi*** when 

Al = 1 and A2 = 1, 2 ,  5 and 10  respectively. 

As A2 increases the mean of Y moves closer to the target. However the variance 

and Mean Square Error for Y increases. 

The simulation results for ten thousand values of the quality response are in  

Table 2 . 1 1 . Since xi* *  gave a mean for Y that was different from the target the 

Mean Square Error appears in the table as wel l .  Also included in the table are 

the results from simulation 3 from Table 2 . 10 .  
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Simulation A2 Mean Std. Error Variance Std Error MSE Std. Error 

3 .2  1 1 1 4 .69 0 .08 2 13 .37 2 . 10 309 .68 3 .36 

4 . 1 2 1 18 .86 0 . 1 5  3 16 .08 3 .66 353.74 4 .64 

4 . 2  5 123. 1 0  0 .26 489 .35 9 .06 493 . 52 9 .66 

4 .3 10 1 24.94 0.24 6 1 5 .36 13 .7 1  6 1 5 .84 1 3 .65 

4 .4 200 1 27.47 0 .30 839. 1 2  25 .65 845. 2 1  25 .65 

3 . 1 NA 1 28 . 2 1  0 .23 872 .20 1 9 .89 873 .52 20. 76 

Table 2 . 1 1 :  A summary of the simulation results of the mean , variance and 

MSE(T= 125)  for Y for different values of Al 

The last l ine in the table is the simulation results when using xi i . e .  keeping the 

mean of Y on target while minimising the variance. This is equivalent to having 

A2 = 00. The mean of Y is not on target since xi is being used to estimate xi . I n  

using the est imate a degree o f  error has been introduced . 

The first l ine of the table contains the results when using x;* * .  These are found 

by minimising the MSE about 1 25 .  These results show the most bias but the 

least variance and MSE. The other l ines of the table are for A2 = 2, 5, 10 and 200. 

As A2 increases then the variance and MSE of Y increases. Also the means are 

increasing to the value of the mean for simulation 3 . l .  

Using A l  and A2 to adjust the Mean Square Error can be beneficial in getting the 

mean of the qual ity control variable closer to the target but at the expense of i ts 

variance. Choosing values of A l  and A2 is a subjective decision that balances 

minimising the bias and minimising the variance. 

2 . 6  Bias and the Implicit Introduction of 

Uncontrollable Factors 

In the previous section models based on the qual ity response were used to find a 

setting of the control lable factors that minimised the Mean Square Error of the 

quality response about the target. Models that are based on the mean and 

variance of the qual ity response can be used in a similar way. These models came 

about from experimental designs where the uncontrollable, unobservable factors 

need not be introduced i nto the designs explicitly. 
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Example Continued 

In section 1 .9 .5  the fol lowing model based on the mean and variance of the 

qual ity response was found. In section 2 .4 . 1  the target was given as T = 144. 

The model is 

� 
log cP 

and Var (yd 

1 2 .46 + 0.97 x A + 1 .49 x D 

-0.59 + 0 .33 x A + 0 .34 x C 

cPi V (Md 
exp[  -0 .59 + 0.33A + 0.34C] x ( 1 2 .46 + 0.97 A + 1 .49D ) 2 

Suppose that A is an observable uncontrollable factor and that the levels of - 1  

and 1 ,  used i n  the experiment, were chosen so that 95% of the values o f  A were 

known to fal l  between them. Also take that the remain ing factors, C and D, are 

controllable factors. In the design their levels were ± 1 .  I n  consequence, \-vhell 

solving for C and D, wc wi l l  only consider values within the range [- 1 , 1 ] .  

Minimising the Mean Square Error would mean minimising 

NISE(T) VaT' ( Y) + (E(Y) - T)2 
exp[-0 .59 + 0 .33A + 0 .34C] x ( 1 2 .46 + 0 .97A + 1 .49D)2 

+ ( ( 1 2 .46 + 0 .97 x A + 1 .49)2 - 1 44)2 

For various values of A, the Mean Square Error was minimised and solutions for 

C and D were found subject to the constraint that C and D were bounded by 

± 1 .  The solutions are plotted against A in Figure 2 .9 .  
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Solutions for Minimising the MSE(T) 

o .,; 

� D ' "",  
� 

� 
� . � 

'"" 
"" 

' "" 
� . - . �. - . - . - . - . - . - . - .  

-1 .0 -0.5 0.0 A 0.5 1 .0 

Figure 2 .9 :  The Solutiol l for C and D for Different Values of A.  

The solut ions observed for C, for values of A bewteen -1  and 1 ,  i s  - 1 .  The 

solutions for D change depending on the values of A.  

If the appropriate software were available then this minimisation problem could 

be solved every time a new value of A is observed . Al ternatively, regression 

equations can be used as approximations to the solutions for C and D.  

The best fit  for C i s  - 1 .  Fitting a l ine, using the observed solut ions for D as the 

response and A as the independent variable gives 

D = -0.3087 - 0.65 10A 

with R2 = 1 .  Therefore with a change in  A the settings for D could be chosen 

using that equation. 

For this example, the values of D and C, given a value of A, always have the 

response mean on target .  However if the mean was biased for the target then 

using the adjusted Mean Square Error, as described in the previous section, could 

be used to move the mean closer to the target. 

2 . 7  A Note on Notation 

In this chapter three functions have been used in order to find optimal values of 

the controllable factors. These functions were the Mean Square Error, the 

adjusted Mean Square Error and the Lagrange function . In the next chaper these 
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functions wil l  be used again .  However there wi l l  be no need to differentiate 

between them and they wi l l  all be referred to as variance or adjusted variance 

functions and labelled L (  x ) . 

This notation excludes the parameters ti . It wil l be t.aken that these values have 

been observed and enter into the function L( x ) as constants. 

• 
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C hapter 3 

Making O pt imal C hanges 

Observing a change in an observable uncontrol lable factor means making a change 

in the controllable factors i n  order that some function of the quality variable l l Iay 

be optimised . The hest way to change the control lable factors would be t .o do so 

instantaneously however there are many practical reasons why this is not poss i ble . 

3 . 1  Non-Instantaneous Adjustment 

In this case all the controls can be adj usted at once but in a non-instantal leous 

mallner. Suppose that the p controllable factors have been set at Xo after 

observing the q observable, uncontrol lable factors, to , at some point prior. At 

time TO = 0 a new value of the observable uncontrol lable factors, t l , is observed . 

This requires an adjustment of t he control lable factors from Xo to X l  over some 

period of t ime Tl - TO > O .  

The way X l  i s  chosen i s  dependent 01 1  the method bu t  usually involves the 

minimisation of some funtion, L(x) , of the mean and variance of Y, the qual i ty 

response, as seen in the previous chapter. 

There are an infin ite number of paths between Xo and Xl when t here is more 

than one controllable factor. Ideally the best path would be one that minimises 

the integral of L(x )  taken over the path. In a loose sens e this is to min i l l l ise the 

total variance. This lends i tself to the methods i nvolved with CalcuhAs of 

Variations which wil l be discussed later. 

The most obvious path is a straight l ine between Xo and Xl and this wil l be 

referred to as the straight l i l le solutiol l .  
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Another way to construct a path is to use a greedy algorithm. I n  general a greedy 

algorithm chooses the best option at that particular instant. In th is case it would 

involve heading in the direction that brings about the greatest decrease in L {x ) .  

From calculus th is direct ion i s  given by - �� ,  evaluated at x .  

A t  t ime, T = 0 then x = Xo,  the starting point. After some small un it  o f  t ime we 

would l ike x to have moved in the direction of steepest descent or, in other words, 

we want the way x changes over t ime to be equal to - �� .  Expressing this 

mathematically i t  gives 

dx 

dT 

fJL 

fJx 
(3 . 1 )  

Unfortunately a greedy algorithm doesn ' t  guarantee an optimal path .  However et 

n ice property of the problem is that the greedy algorithm will always construct a 

path to get to a ( local) min imum when that miuimum is a crit ical point. The 

path that is constructed by this method wil l  be referred to as the greedy path .  

3 . 1 . 1  Explicit Introduction o f  U no�rvable U ncontrollable 

Factors 

As an example consider model 1 the last chapter. I t  gives 

and that 

fJL 

fJx 

or in terms of the previous notation 

And x* is the solu tion when �� = 0 and a m in imu I l l  when A is posit ive defin i te .  

To make the notation simpler this wi l l  be written as 

where 

fJL - = -Mx - N  
fJx 

M = -2A-1  and N = - 2C + 2)"B 
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Therefore the path from Xo to X l  = x* is the solution of 

dx 
- = Mx + N  
dr 

And the solutiol l  to this d ifferential equation, a l inear system with constal lt  

coefficients, is gi ve i l  by 

x (r )  = exp (Mr)xo + foT exp( M (r - s) ) N  ds r > 0 [ 1 0] 

Numerical Example 

1 1 2  

From the numerical example given in the last chapter the underlying model was 

y lx ,  t, Z = 100 + 5X l + 7X2 - 4t l + 3t2 - 5z1 - 6z2 - 4Xl t l - 3X2t2 + GZ ' :!; l 

-7:t2 Z2 - 7X t Z2 + 8t , z, - 8t2Z2 + E 

lOO + ( C l  x, ) ( � ) + ( t l t, ) ( �4 ) + ( ZI Z, ) ( =: ) 
+ ( .L '  X2 ) ( - 4  

0 ) ( t l ) + ( Z l  Z2 ) ( G 0 ) ( .'C ' ) 
o -3 t2 - 7 - 7 X2 

+ ( z ,  Z2 ) ( 8 0 ) ( t l  ) + Ei 
o -8 t2 

Suppose that a new observation of e = ( 1 ,  - 1 )  is observed and that a path from 

xb = ( 1 ,  1 )  to x* is required . Using Maple t he differential equation to be solved is 

dx 

dr 
Mx + N  ( - 1 70 -98 ) ( Xl  ) + ( -8. 1 665 ) 

-98 -98 X2 26.3353 

which has as i ts solution 

x (r )  = exp (Mr)xo + foT exp (M(r - s) ) N  ds 

exp [ (  - 1 70 -98 ) 
r
] ( 1 ) 

-98 -98 1 

+ r exp [ (  - 1 70 -98 ) ( r  - s)] ( -8. 1 665 ) ds 
lo -98 -98 26.3353 
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The solution was found using Maple and the output given is where 

xh = (X(O, l ) , X(O,2) ) and the path is xt = (px , py) . 

1 9v'I09 
pX - X(O, I )  2 exp( - 134r - 1O )1 09r) - X(O, I )  545 

exp( - 134r + 1O )109r) 

9 )109 1 
+X(O, I )  

545 
exp( - 1 34r - 1 O )10 9r) + X(O, l )  2 exp( - 134r + 1 O )1 09r) 

1 1 3 

49 )109 49V109 
-X(O 2) exp( - 134r + 10JiOgr) + X(O 2) exp (  - 134r - 1O)109r) , 1 090 ' 1090 

and 

+ .5080034728 exp( -29 .5969349r) - .0288 1203407 exp( -238.403065 1 r) 

- .479 191 4387 

49 )109 49 )109 
PY = -X(O, I )  1090 

exp( - 134r + 10 JiOgr) + X(O, l )  
1 090 

exp (  - 1 34r - 1O)109r) 

1 9v'I09 
+X(O,2) 2 exp( - 134r - 1O )1 09r) + X(O,2) 545 

exp (- 134r + 10JiOgr) 

9)109 1 
-X(O,2 ) 

545 
exp( - 134r - 1 0J1Q9r) + X(O,2) 2 exp( - 1 34r + 10 J1Q9r) 

- .0201 1052490 exp( -238.4030651q)  - .7278086 190 exp( - 29 .5969349r) 

+ .747919 1439 

for r > 0 

When xot = ( 1 , 1 )  the particular solut ion is 

PX = 0 .36625986 16  exp( -29.5969349 r) + 1 .649747084 exp( -238.403065 1 r )  

-0.4791914387 

PY 0 .77681 56235 exp( -29.5969349 r) - 0.5247347674 exp( -238.403065 1 r) 

+0.7278086 19  

for r > o .  
I t  i s  worth noting that the constants at the end of each equation match 
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X*t = ( -0.479 1 9 1 4387, 0 .7278086 19) . That is, as T tends towards infinity, the 

c l l rve tends towards x* . 

The straight l ine solution is 

X = XO + (X* - XO)T T = O  . . . l 

For this example 

xi ( 1 ,  l ) t  + ( (  -0.479 19 14387, 0. 7278086 1 9)t - ( 1 ,  l ) )T  

( 1 ,  l ) t  - ( l .48, 0 .27)tT T = 0 . . . 1 (2dpl ) 

Figure 3 . 1 corn pares the directions of two paths over the surface of L .  

Alternative Paths after Observing A Change From xO to x* 

o 
LO 
C') 
o 
o 
C') 
o 
LO 
N 
o 
o 

-' N 
o 
LO 
..-

o 
o 
..-

o 
LO 

o 

1 . 6 1 .4 1 .2 0 .8 
X2 

0 . 6  0 .4 0 .2 

Figure 3 . 1 :  A comparison of the direct ions of the greedy and straight paths 

1 1 4 

In Figure 3.2 each path has i ts value of L plotted against the distance travel led 

along the path .  The direct path to x * , covers the least distance however the 

greedy path has a smaller value of L for most of i ts t ravell ing distance. 
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Figure 3 . 2 :  A comparison of the value of L for the two paths 

1 1 5 

In this example the parameters from the underlying model were used . I I I  practise 

these parameters would be estimated and used in the equations. 

The problem of findi l lg an optimal solution will be further broken down iuto two 

cases . When there are two controllable variables and when there are more then 

two. 

3 . 1 . 2  The Two Variable Case 

Suppose L(x)  call be constructed through some means and is a polynomial of 

order two with two controllable factors with a minimum at some point . Let this 

polynomial be 

This function is more complex than neccessary for further work and wi l l  be 
transformed to a simpler form.  By setting 

U l = Xl cos(e) + X2 sin (e) 
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and 

and choosing 0 to be 

U2 = -X l sin(O) + X2 cos(O) 

b l - b3 o = cot (20) = 
b5 

then the trall forl l lation has rotated L I (X I , X2 ) by 0 i n  the X I , X2 plane. 

1 1 G 

In t he new co-ordinate system the polynomial no longer has a cross-product term 

and is 

where 

a l = b l (cOS (O ) )2 + b5 cos(O)sin(O) + b3 (sin (O ) ) 2 

a3 : =  b l (sin (O ) )2 - b5 s in (O) cos (O) + b3 (cos (O) ) 2 

a2 : =  b2 cos(O) + b4 sin(O) ; 

a'l : =  -b2 sin(O) + b4 cos (O) ; 

Furthermore by completing the square for U t and U2 the Hew version of L2 is 

which can be succinctly  wri t ten as 

I II further work i t  wil l be sufficient to work with this reduced form. 

3 . 1 . 3  Line Integrals 

So far two possible paths have been contemplated, a straight path or a greedy 

path .  The better path to take wi l l  be the one that has smaller area under L( x )  

along that path .  This can be  calculated by constructing a l ine integral for L (x)  

along each path .  

The l ine i ntegral for L (x )  is defined to  be  le L(x) ds  where C i s  the path and s i s  

an  in fin itely small vector on C. 
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3 . 1 . 4 Line Integrals For t he G reedy and Li near Paths 

1 1 7 

L i n  the reduced form is L(x, y) = a x2 + b y2 + c. The requirement is to travel on 

a path that l ies between (xo , Yo ) and (0,0 ) ,  the m inimum o f  L(x, y) . I t  wi l l  be 

assumecl that L (x, y) � O. If i t  is not then the smal lest constant neccessary to 

make i t  so will be added. 

The obvious path is the straight l ine between these two points which can be 

algebraical ly represented by y = Yot and x = xot for t = 1 . . . 0 . Alternatively this 

path can be represented as 

x = Xo exp( -et ) and y = Yo exp( -et ) t = 0 . . . 00 e > 0 

An alternative path is the greedy path which can be represented by 

y = Yo exp( -bt) and x = Xo exp( -at) t = 0 . . .  00 ,  b, a > 0 

This was found using the d ifferential equation in the previous section . Without 

loss of general ity let b > a.  If i t  is not then i t  j ust requires an interchange of t he 

labels between y and x. 
This integral represents the l ine i ntegral for L(.'E , y) = a X2 + b y2 + c. 

I n  the following section the l i ne i ntegral for the straight path wi l l  be found.  

Case 1:  The Linear Case 

The fU l lctions of x and y, for the l inear case, can be represented as 

x = Xo exp (  -et ) and y = Yo exp ( -et) t = 0 . . . 00 e > 0 

so that the l i ne integral for th is system is 

P Ilinear 
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+c 10 (e2 :J;6 exp ( -2et) + e2y� exp ( - 2et ) )  � Idt l  

aX6 10
00 (e2x6 exp ( -6et) + e2y� exp ( -6et) )  � Idt l  

+bya fu (e2x6 exp ( -6et) + e2y� exp ( -6et ) )  � Idt l 

+c 10 (e2x6 exp ( -2et) + e2y� exp ( - 2et ) ) �  Idt l  
Now make these substitutions 

so that 

or 

and 

so that 

or 

du = - Gru dt or -du = dt and so I dt l = I du l 
6eu 6eu 

dv = -2e(e2x6 exp ( -2et) + e2y� exp ( -2et ) )  dt 

dv = -2eu dt -dv 
or -- = 2ev dt and so I dt l = I dv l 

2ev 
The integral becomes 

1 1 8 

• 
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Going back one step in the evaluation of the integral al lows for the construction 

of upper and lower bounds for P [linear ' This is not directly useful here but will be 

more relevant later. At one step back 

P [linear = 

> 

P [linear 

< 

aX6 + by� + 3c ( 2 2 2 2) 3e e Xo + e Yo 
Let e = b then 
a''C6 + by� + 3c (b2 2 b2 2) 3b Xo + Yo 
aX6 + bY5 + 3c ( 2 2 b2 2) 3b a Xo + Yo 
since a ::; b 
alternatively let e = a then 
aX6 + bY5 + 3c ( 2 2 2 2) 3a a Xo + a Yo 
a·'C6 + bY5 + 3c ( 2 2 b2 2) 3a a Xo + Yo 
since a ::; b 

This gives the inequali ty 

aX6 + bY5 + 3c ( 2 2 b2 2) aX6 + bY5 + 3c ( 2 2 2 2) 3b a Xo + Yo ::; P Ilinear ::; 3b a Xo + b Yo 

Case 2 :  The Greedy Case 

A closed form solution for the l ine integral for the greedy path could not be found 

by the author and an upper amI lower bound wi l l  be constructed . 

The greedy path can be represeuted by Y = Yo exp( -bt) and x = Xo exp( -at) for 

t = 0 . .  00 with 0 < a, b and by convention a < b so that 

and 

and 

X2 = x6 exp ( -2at) and y2 = y� exp ( -2bt) 

x = - axo exp( -at) and iJ = - byo exp (  -bt) 

The path integral is 
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100 aX6 exp (  -2at) (a2x6 exp (  -2at) + b2y� exp( -2bt ) )  � I dt l  

+ 100 by� exp (  -2bt) (a2x6 exp( -2at) + b2y� exp( -2bt ))  � I dt l  

+ c  100 (a2x6 exp( -2at) + b2y� exp( -2bt ) )  � I dt l  

100 ax� (a2x� exp( -6at) + b2y� exp( -2bt - 4at ) )  & Idt l  

+ 100 by� (a2x� exp( -2at - 4bt) + b2y� exp (  -6bt ) )  t I dt l  

+ c  .1000 (a2x� exp( -2at) + b2y� exp( -2bt )) � I dt l 

Now when there are two constants such that 0 � d < e i t  fol lows that 

exp( -dt )  2: exp( -et) for t � O .  

First ,  by replaci l lg the a 's with b's we have a lower bound for P Igl'eedy . 

P Igl'eedy = 100 ax� (a2x6 exp( -6at) + b2y� exp (  -2bt - 4at ) )  � I dt l  

+ 100 by� (a2x6 exp( -2at - 4bt ) + b2y� exp( -6bt ) )  t Idt l  

+c 100 (a2x� exp (  -2at) + l/y� exp( -2bt ) )  � I dt l  

> ax� 100 (a2x6 exp( -6bt) + b2y� exp( -Gbt ) )  t I dt l 

+by� 100 (a2x6 exp( -6bt) + b2y� exp (  -6bt ) )  & I dt l  

+c 100 (a2x6 exp (  -2bt) + b2y� exp (  -2bt ) )  � l at l  

Now make these substitutions 

so that 

or 

and 

so that 

du = -6b(a2x� exp ( -6bt) + b2y� exp( -6bt ) )  dt 

du = -6bu dt -du 
or -- = 6bu 

Idu l at or I dt l  = -b-6 u 

1 20 
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or 

dv = -2bv dt -dv 
or -- = 2bv dt and so J dt J  = 

J d
b
v J 

2 v 
which gives 

ax; t�+ b'Y� ( :b�) Idu l + by; 1.:"�+b'Y� ( :!) Idu l 

+c 1.:'�+b'Y� (;b:) I dv l 

ax2 1° (u- � ) ( -du) + by2 1° (u-� ) (-du) o a2x6+b2y� 6b 0 a2x�+b2y� Gb 

+c 1.:"�+b'Y� (;b:) Hv) 

Secondly, by replacing the  b ' s with  a's we have a upper bound for P Ig1·eedy 

P Igreedy = 1000 aX6 (a2x6 exp ( -6at ) + b2Y6 exp ( -2bt - 4at ) )  � J dt J  
+ 1000 by� (a2x6 exp ( -2at - 4bt )  + b2y� exp ( -6ut ) )  � J elt J 
+c 1000 (a2x6 exp ( -2at ) + b2Y6 exp ( -2bt) )  � Jdt J 

< aX6 1000 (a2x� exp ( -6at ) + b2Y6 exp ( -6at ) ) � Idt J 
+by� 1000 (a2x6 exp ( -6at ) + b2Y6 exp ( -6at ) )  � Idt J 
+c 1000 (a2x� exp ( -2at ) + b2Y6 exp ( -2at ) ) � Jdt J  

Now make these substitu tions 

so that 

1 2 1  
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or 

and 

so that 

or 

which gives 

du = -6au dt -du 
or -- = 6au dt or I dt l = 

I du l 
6au 

dv = -2a(a2x6 exp ( -2bt ) + b2y� exp ( -2bt ) ) dt 

dv = -2av dt -dv 
or -- = 2av 

Idv l dt and so I dt l = -2av 

Idu l 

( u6-al )  (-du) 

2 [ -2u � 1 0 2 [ -2u � 1  0 [ -2u� 1  0 axo -6- + byo -6- + c -2-a 
a2x6+b2 Y6 a 

a2x6+b2 Y6 a a2x6+b2Y5 
1 

3a (ax6 + by� + 3c) (a2x6 + b2y� ) 
Putting this together gives 

aX6 + bY5 + 3c ( 2 2 b2 2) aX6 + bY5 + 3c ( 2 2 2 2) 3b a Xo + Yo -:; P Igr'eedy -:; 3a a Xo + b Yo 

1 22 

Unfortunately both P [greedy and P [linear conform to the same bounds so i t  is not 

possible to tel l from this which one has the lower integral and hence w hich path is 

the better path to take. 

3 . 1 . 5  N u merical Comparisons 

Since the line i ntergral for the greedy system with two variables has been found 

impossible to integrate by the author, numerical rather then analytic solutions 

will have to be compared. 
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Maple was used to i l ltegrate the l ine integrals for these numerical examples. The 

fi rst example has L (x, y) = 2X2 + 3y2 with ( 7, 2) as the in i tal posit ion. The first 

path i n  the example is the straight l ine path .  

> xO : =7 ;  

> yO : =2 ;  

> a : =2 ;  

> b : =3 ;  

xO 7 

yO 2 

a : =  2 

b : =  3 

> f : = (a*x- 2+b* y - 2) * (doty - 2+dotx- 2 ) - ( 1 /2 ) ; 

2 2 2 2 1 /2 

> y :  =yO * t ; 

> doty : =diff ( y , t ) ; 

> x : =xO*t ; 

> dotx : =d i f f ( x , t ) ; 

ff  ( 2  xx + 3 yy ) ( dotxx + dotyy ) 

Y 2 t 

doty 2 

x 7 t 

dotx 7 

> int 1 : =evalf ( int (f , t=O . .  1 » ; 
int 1 : =  266 . 9373626 

The path integral for the straight l ine case evaluates to 266.94 (2 clpl ) . The 

second path is the greedy path .  

> f f : = C a*xx- 2+b*yy- 2) * Cdotxx- 2+dotyy- 2 ) - ( 1 /2 ) ; 

2 2 2 2 1/2  

ff  ( 2  xx  + 3 yy  ) Cdotxx + dotyy ) 

> yy : =yO * exp ( -b*t) ; 

> dotyy : =d i f f ( yy , t ) ; 

yy 2 exp C - 3 t )  
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> xx : =xO*exp ( -a*t ) ;  

> dotxx : =d i f f ( xx , t ) ; 

dotyy - 6 exp ( - 3 t )  

xx 7 exp ( - 2 t )  

dotxx : =  - 1 4  exp ( - 2 t )  

> int 2 : =eval f ( int (ff , t =0 . .  inf init y ) ) ; 

int2 : =  266 . 366500 

The path integral for the greedy path evaluates to 266.37 (2dpl ) . The greedy 

path produces the smaller path integral and is the preferred path .  

1 24 

The second example has L(x , y ) = 2X2 + 3y2 + 25 with (7 , 2 )  as the in i tal position. 

The first path in the example is the straight line path .  

> xO : =7 ;  

> yO : =2 ;  

> a : =2 ;  

> b : =3 ;  

xO 7 

yO 2 

a : =  2 

b : =  3 

> f : = ( a* x - 2+b*y- 2+25) * (doty- 2+dotx - 2 ) - ( 1 /2) ; 

> y : =yO*t ; 

> doty : =diff ( y , t ) ; 

> x : =xO*t ; 

> dotx : =d i f f ( x , t ) ; 

2 2 2 2 1 /2 

f ( 2  x + 3 Y + 25) (doty + dot x ) 

y : =  2 t 

doty : =  2 

x : =  7 t 

dotx 7 

> int 1 : =evalf ( int ( f , t=0 . .  1 ) ) ; 

int 1 : =  448 . 9401098 

The path integral for the straight l ine case evaluates to 448.94 (2  dpl ) .  Evaluating 

the l ine integral for the greedy path gives 
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> f f : = ( a*xx� 2+b*yy-2+25 ) * (dotxx � 2+dotyy � 2 ) � ( 1/ 2 ) ; 

2 2 2 2 1/2  

ff : =  ( 2  xx + 3 yy + 25) (dotxx + dotyy ) 

> yy : =yO *exp ( -b * t ) ; 

> dotyy : =d i f f ( yy , t ) ; 

> xx : =xO*exp ( -a*t ) ; 

> dotxx : =d i f f ( xx , t ) ; 

yy 2 exp ( - 3 t )  

dotyy - 6 exp ( - 3 t )  

xx 7 exp ( - 2 t )  

dotxx : =  - 1 4  exp ( - 2 t )  

> int 2 : =eval f ( int (ff , t=O . .  inf init y ) ) ; 

int2 : =  449 . 17 177 

1 25 

The l ine integral for the greedy path evaluates to 449. 1 7  (2dpl ) . The greedy path 

produces the larger line integral and the straight path is preferred. These two 
examples show that the preferred path may change from case to case. 

The di fference in these two examples has been the addit ion of a constant terl t l  to 

L i .e . in the first example L(x, y) = 2X2 + 3y2 while i l l  the second example 

L (x ,  y) = 2x2 + 3y2 + 2 5 .  By re-arranging the path i ntegral 

PI lt l (ax2 + by2 + c) (i2 + ]/) 1/2 Idt l to 
lt l (ax2 + by2 ) (i2 + ]/) 1/2 Idt l + c r t l  (i2 + !/ ) 1 /2 I dt l  � J� 

I t  can be seen that the second integral on the second l ine is the defin i tion of path 

length .  vVith a value of c > 0, min imising the path integral i nvolves, in part, 

minimising the path length .  

3 . 2  O n  Finding A Minimal Path Wit h Calculus 

of Variations 

Our iuterest is in finding a path C with fixed endpoints on a function L that 

min imises le L ds. From the theory on Calculus of Variations [37] there is a result 

which states that 
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A necessary condition for' n twice-differentiable functions X l  ( t) , X2 ( t ) , . . .  , Xn ( t) to 
extremize an integml 

is that the vector function [X l ( t ) , X2 ( t ) ,  . . . , xn ( t ) ]  be a solution of the n 
simultaneous Euler-Lagmnge equations 

i = 1 , 2 ,  . . . , n 

Consider the two dimensional case where L = L(x, y) .  The path intgral which is 

to be minimised is 

Let f ( t , X, y, x, y) = L(x, y) JX2 + y2 and let t \  < t2 then 

r L ds = rt 2 f ( t ,  x, y , x, y) dt le lt l  
and this integral is i l l  the form o f  I i n  the theorem . 

ow 

and 

and 

d (Of ) 
dt Ox 

of oL (x, y) J' 2 ' 2 - = X + y  OX OX 

of L( ) ' ( ' 2 ' 2 ) _ 1 � =  x , y x x  + y 2 uX 

d(L(x' Y) ) ' ( ' 2 ' 2 ) _ 1 + L( ) [ " ( ' 2 ' 2 ) _ 1  
dt X X + Y 2 X, Y X X + Y 2 

-x(xx + yy) (x2 + y2) - � ]  
. 0L(x, y) ' ( ' 2 ' 2 ) _ 1  . oL(x, y) ' ( ' 2 ' 2 ) _ 1  X OX X X + Y 2 + Y oy X X + Y 2 

+L(x, Y) [X(±2 + y2t � - :i; (xx + yy) (x2 + J? ) - � l  

S o  the first Euler-Lagrange equation becomes 

o = 
oL(x, y) ( . 2 + ' 2) � . 0L(x, y ) ' ( ' 2 + ' 2 ) _ 1 . oL(x , y ) ' ( . 2 + ' 2) _ 1 x Y - x  X X  Y 2 - Y X X  Y 2 OX OX oy 
-L (x , y).i (x2 + ]/t � + L(x , y)x (xx + yy) (x2 + y2t� 1  

• 
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DL(x, y ) ( . 2 ' 2) 2 . DL (x , y) ' ( ' 2 ' 2 ) . OL(X , y ) . . . ( . .  2 ' 2 ) !:l X + y  - X  !:l X X + y  - y  !:l .t X + y  uX uX uy 
-L(x, Y)X (X2 + ii) + L(x, y)X(XX + iry) 
oL(x , y) ( . 4 2 ' 2 ' 2 · 4 · 4 . 2 . 2) . oL(x, y) . ( . 2 . 2 ) !:l X + X Y + y  - X  - X  y - y !:l X X + y  uX uy 
-L(x , y ) (XX2 + xii - x2x - xYY) 
DL(x , y) ( . 2 ' 2 + . 4) . DL (x , y ) . ( .. 2 + . 2 ) !:l x y  Y - y  !:l X X  Y uX uy 
- L( .T , y) (.iy2 - xyD) ( . DL(X , y) . OL(X, y) ) ( . 2 . 2) L ( ) ( .. . . . . ) y OX - X Dy X + y - x, y xy - xy 
or 

o = y 

By symmetry, the Euler-Lagrange equation for y is 

o 

o 

( . OL(X , y) . OL(X , y) ) ( . 2 ' 2 ) L( ) ( .. . . . . ) X - Y X + y - X, Y y:t - Y1; oy OX 
:1: 

The twice d i fferentiable fUI lctions x (t ) ,  y ( t) that minimizes the i l ltegral fe L ds 

must satisfy these Euler-Lagrange equations. 

There are three interesting aspects that come out of these equations. 

1 )  The solutions i; = 0 and i; = 0 can be d is- regarded as they are not twice 

d i fferentiable functions. 

2) The first equation ( . DL (X , y) . DL (X, y) ) ( . 2 . 2) L( ) ( .. . . . . ) 0 y - X X + y - X, Y xy - xy = ox oy 
is l inearly dependent 011 its counterpart ( .. OL(X, y) . OL(X , y) ) ( . 2 ' 2) L( ) ( .. .. . ; .. ) X !:l - y !:l  X + y - X ,  Y yx - ./J.t uy uX 
which meal ls that any solution may not be unique. 

3) In the first set of brackets there is th is equation 

. oL (x, y) . oL(x, y) X oy - y ox 

1 27 

• 
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I t  is worth noting that this wi l l  equal zero when x(t ) and y(t ) are the greedy 

solutions. For the two variable case, the equation 3 . 1 has to be solved to get the 

greedy solution . They are 

and 

oL(x , y) . --'--- = -y oy 
oL(x, y) 

ox = -x 
Putting these into the equation above gives 

A lso 

. oL(x, y) . oL(x, y ) x - Y --':---'--'-oy ox 
-xiJ + iJi; 
o 

yx - yx 
equals 0 when x(t ) and y ( t )  are the straight l i l le solut ions. That is if x = cl t + ('2 
and y = C3t + C4 then the second derivatives with respect to t are both zero. 

For the case L(x, y) = ax2 + by2 + c there is a set of triv ial solutions when a = U. 
They are that x = xot ami y = Yot for t = 1 . . .0 . It i s  easy to  show this with Maple . 

Theorem 3.1 The functions :1: = xot and y = Yot for t = 1 . . . 0  ar'e solutions to 
the Euler-Lagrange equations when L (x, y) = ax2 + ay2 + c. 

Proof The Euler-Lagrange equations are ( . OL (X, y) . aL (x, y) ) ( ' 2 ' 2) L( ) ( .. . . .. ) 0 X !:l - y !:l X + y - x, y yx - yx = uy uX 
Suppose that L(x, y) = ax2 + by2 + c. The mathematical package Maple wil l  be 

used to do the calculations for each part of the left hand side of the equatio l l .  

> y : =yO*t ; 

> x : =xO*t ; 

> dotx : =di f f (x , t ) ; 

> dotdotx : =diff (dotx , t ) ; 

y yO t 

x : =  xO t 

dotx xO 
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> doty : =d i f f (y , t ) ; 

> dotdoty : =diff (doty , t ) ; 

> dldy : =2*b*y ; 

dotdotx 0 

doty yO 

dotdoty 0 

2 2 2 2 

L a xO t + b yO t + C 

dldy 2 b yO t 

dldx : =  2 a xO t 

These values were fed into the Eu ler-Lagrange equations (c1 +c l l ) .  

> c l : =expand « dotx*dldy-doty*dldx) * (dotx- 2+doty -2) ) :  

> c l : =combine ( c l , power) : 

> c l l : =expand « -L) * (dotx*dotdoty-doty *dotdotx ) ) : 

> c l 1 : =combine ( c l l , power) : 

> c 1 3 : = c 1 i+ c l : 

> factor ( c 13 ) ; 

2 2 

- 2 xO yO t (xO + yO ) ( - b + a )  

c13 is the  factored Euler-Lagrange equation. Providing x6 > 0 and Y5 > 0 then 

this equation wil l  equal zero when b = a. This proves that x = xot and Y = Yo t for 

t = 1 . . . 0  are solutions for the case when L (x, y) = ax2 + ay2 + c. 

• 

However apart from this special case there are no obvious solution .  The author 

tr ied many functions for x( t ) and y( t ) to solve the Euler-Lagrange equations with 

1 10 success. A majority of these trial functions were mixtures of the greedy and 

straight line solut ion . 

The Euler-Lagrange equations can be separated into two parts i .e .  ( . 8L(X, y) , . 8L(X, y) ) ( .. 2 . 2) X !:l - Y !:l  X + y  
UY uX 
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and 

L(x, y) (fix - yx ) 

Thc rationale for trying greedy and straight l ine combinations was that the f irst 

part equal zero when :r: ( t ) and y( t )  are the greedy solution . Whi le the sccond part 

equals zero when :r: ( t )  and y( t )  are the straight l ine sol ution. The hope was that 

by choosing the right mix the Euler-Lagrange equation wou ld  equal zero . 

• 

There is a second result from the theory of Calculus of Variations [37] that states -
If f does not involve l explicitly then the first integral of the system is 

n 
. of 

L Xi-. - f = k 
i= l OXi 

Recollect ing that .f = L( .?; , y ) VX2 + y2 and observing that it doesn't  invo l ve t 
means that this t l lcorc l I l  applies. Now 

and 

of L( ) . ( . 2 . 2 ) - '!'  
ox 

= x , y x x + 
Y 

2 

of L( ) . ( . 2 . 2 ) - '!' 
oy = x, y y x + y 2 

so the first integral i s  

k xL(.x ,  y) :i : (j;2 + y2) - � + yL(x, y)y(x2 + y2) - � - L (x, y) Ji2 + y2 

L(x , y) :i;2 ( :i;2 + y2) - �  + y2 L (x , y) (x2 + y2 ) - � - L(x, y)  Ji2 + y2 
L (x, y) (i'2 + y2 ) 

_ L(x ) . 1j;2 + . 2 
( · 2 · 2 ) '!' , y y Y 

x + Y 2 
o 

The result collapscs into k = 0 which is of no help i l l  fi nding y( t )  and x ( t ) . It is 

i I lcl uded here on ly for completeness. 

3 . 2 . 1  P lacing Restrictions on the Solution 

During personal cOl l lmun ications with Professor Graeme Wake of Auckland 

University he suggested Laking a more restrictive relationsh ip between x and y 

namely that y = y( .x ) i .e .  that y is a function of x. Setting x = t gives 

j; = 1 and x = 0 
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and 

. dy dx dy y = - - = -dx dt dx 

dy' dx 
dx dt 

1 3 1  

Taking either o f  the two Euler-Lagrange equations, since they are dependent, and 

substituting the above results into i t  gives ( . aL . aL ) ( . 2 . 2 ) L (  ) (
. . .  . . . ) x ay - y ax x + y - x , y yx - yx 

( 1 + (��) ') (aL dy aL ) 
- - - -

ay dx ox 

which when solving for � gives 

d2y 
(aL _ c!JL aL ) ( 1 + (!Ei. ) 2) 

ay clx ax dx 

dx2 L(x, y) 
The restrict ion that y = y(x ) means that for every value of x there can be only 

one value for y. It can 't  be guaranteed that the function of L given will have an 

optimal solution in this form. 

Any second order polynomial in two variables with a minimum can be 

represented in the reduced form L (x , y) = a[ x2 + a3y2 + a6 . It has the properties 

that i t  is symmetric about the x and y axes and has a min imum at (0,0 ) .  

Consider any path from Ixo l  and I Yo l ,  to the minimum at (0,0) . Suppose that an 

optimal path was constructed by some means and i t  crosses either or both of the 

x-axes and y-axes. Since the path starts in the posit ive-positive quadrant and the 

function is symmetric about the axes then , at the point of crossing, the path can 

be reflected back into the posit ive-positive quadrant of x and y while sti l l  

remaining an optimal path .  This means that the optimal path can be constructed 

to always remain in its quadrant of origin. 

Now, since there is symmetry, only posit ive values of Xo and Yo need be 

considered when constructing the optimal path .  For i f  an optimal path from any 

other signed combination of Xo and Yo needed to be constructed , then it need only 

be constrcuted from Ixo I and I yo I and reflected in the appropriate axes. 

The last thing that will be assumed is that with this L, the optimal path 

generated can be represented as a fU Ilction, y(x ) . The justification for this wil l  be 

based on the two sub-optimal solutions found .  The straight l ine path gets to the 
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minimum by taking the path of shortest d istance. The greedy path gets to the 

minimum by taking the path that always gives the lowest value of L at the next 

instance. This path isn ' t  restricted by path length and can be as long as it l ikes. 

The optimal solution balances both these two objectives. It wants to minimise 

the heights of L and take the shortest path .  This means it is unl ikely to be as 

curvaceous as the greedy path and wil l  tend to the st raight path as a6 gets very 

large. Therefore we would expect the optimal path to lie between the greedy path 

and the straight l ine path .  

Now the straight l ine path is both a non-decreasing and a non-increasing function. 

When a l < a3 then the greedy path is an increasing function when going from 

(0 ,0) to ( Ixo l , I Yo l ) .  If the optimal path l ies between these two paths then it seems 

l ikely that the optimal path is either all increasing or 1 I01 l-decreasing funtion .  

\-Vhen a3 < a l then the greedy path is a decreasing fU llction when going from 

(0 ,0) to ( Ixo l ,  I Yo l ) .  If the optimal path l ies between these two paths then it seems 

l ikely that the optimal path is also a decreasing or non-increasing funtion. 

In  both cases the optimal path seems l ikely to be a non-decreasing or 

non-increasing function i .e .  a function .  This mean placing the restriction of only 

looking for solut ions that have Y as a function of x seems reasonable. 

The problem is now to solve this d ifferential equation 

(OL _ !!1L OL ) ( 1 + (!!1L) 2) 
d2 Y oy dx ox dx 

dx2 L(x, y) 

with the condi tions that y (xo) = Yo and Y(X l )  = Yl . One last condit ion wil l  be 

that Yo is not equal to Y l . This type of problem is  cal led a Boundary Value 

problem .  

For the  case L(x, y ) = a lx2 + a3y2 + a6 the Boundary Value problem is  to  solve 

d2y (2a3Y  - 2alXy' ) ( 1  + (y')2 ) 
dx2 a [x2 + a3y2 + a6 

with y (O) = ° and y(xo) = Yo and Yo > o.  

3 . 2 . 2  The Finite D ifference Algorithm 

The generic Boundary Value problem can be written as 

y" = f (x, y, y') , a ::; x ::; b, y (a) = (x , y(b) = (3, ex not equal to (3 
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The finite difference algorithm[ l l ] for non-l inear functions of y" solves this 

problem prov iding f satisi fies the fol lowing conditions 

1 )  f and the partial derivatives of fy = U and fy, = � are all continl lollS Oil 

D = { (x, y , y' ) l a ::; x ::; b, -00 < y < 00, -00 < y' < oo} 

2) fy (x,  y ,  V') � <5 > 0 on  D for some <5 > 0 

3 )  constants k and l exist , with 

k = 77WX(x,y,y' ) ED l fy (x, y, V') ! ,  l = 77WX(x,y,y' ) ED l fy' ( x ,  y, V' ) I 

However if some of these conditions are not met then starting \vith a good 

approximat ion and/or reducing the step size can be considered. 

The value of f (x, y, y') is 

Now 

and 

(8L _ !!:1L 8L ) (1 + (!!:1L) 2) 
I 8y dx 8x dx 

f (x ,  y, y )  = 
L(x, y) 

f ( ' ) - 2y' (2a3Y - 2a lxy' )  - ( 1 + (yl ) 2 ) 2at .r � x, y , y - 2 2 al x + a3Y + a6 
The intention is to reach the minimum at (0 , 0) . When a6 = 0 the point (0 , 0) 
means that f(x, y, V') ,  fy (x, y , V') and fy, (x, y, V') are not bounded in any way. 

The necessary conditions won ' t  hold. 

Also 

is required to be greater thell zero. With x = 0, a6 = 0 then 

and the condit ion doesn't hold .  

1 33 
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This means that the algorithm may not always find the optimal pat.h .  From 

observation, the algori thm fails as the guess for y' becomes very large and this is 

most apparent whel l a[ is much larger then a3 or v ice versa. From observation the 

algorit hm is much more sensitive to the former case than to the latter. The 

standard starting approximation is the straight line. Finding a better starti l lg 

approximation may aid in resolving this problem. 

Recall that for L(x , y) = a [ x
'2 + a3y2 + a6 the optimal path will be able to be at 

its longest and most curvacoous when a6 = 0 and wil l  progressively get shorter as 

a6 increases. As aG geLs very large the optimal solu tion wil l tend tovvards the 

solution of shortest l ine length i . e .  the straight l ine. Therefore i t  is reasonable to 

assume any optimal solution will be bounded by the optimal solution when 

a6 = 0 and the straight l ine .  The aim will be to find a good approximation for y 

when a6 = O. 

3 . 2 . 3  Finding an A pproximaion 

The greedy path will be llsed as a starting function. Recall that for this greedy 

system 

By el iminating t this system can be wri tten as 

y = Yo (:J � x = O . . . xo 

:0 wil l  always be positi ve as x and Xo will always have the same sign i .e. the path 

always stays in the same quadrant. Now any optimal path can be found by 

looking at the path from Ixo l  and l yo l and doing t he appropriate reflections i l l  the 

axes . So take Xo and Yo to be posi tive. 

Taking logs of y gi ves 

log(y) = log(yo ) + 
a3 

log (�) 
a[ Xo 

An assumption was made that a good approximation wi l l  have a similar for l l l  i .e .  

log(y) = log(yo ) - 9 log (xo ) + 9 log (x) 

and the intention wil l  be to find g .  

The finite di fference algorithm was solved for 4 values o f  a3 , a l ,  Xo and Yo in the 

ranges 
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1 )  1 < a3 < 10 ,  

2) 1 < a t  < a3 , 
3) 1 < Xo < 10  and 

4 )  1 < Yo < 10 respectively. 

These ranges were chosen since the finite difference algori thm was observed to 

work for these values. 
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The finite d ifference algorithm returns a set of values for x and a set of values for 

y .  The point (Xi , Vi ) from these sets wi l l  represent a point on the optimal path .  

Logs were taken o f  x and y. Fitt ing a l inear model to the logged data gave 

reasonably good fits with al l r2 ,
s being at least 0 .95 .  The variable of interest, g ,  is 

the l inear coefficient in this regression . This data is given in appendix E.  

The g's were then used as a new response variable with Xo ,  Yo , a l  and Y3 as the 

exploratory variables and were contained in the respective columns of the matrix 

object pathdetail in  Splus. A fter much trial and error the fUI lction for 9 was 

found to be 

9 = 0 .6868 log (:�) - 0 .0360 ( lOg (:�) ) 2 

I . e .  

u<-log (pathdetail [ , 4] !pathdetai l [ , 3] )  

ls . pr int ( l s f it ( cbind (u , u - 2 ) , log (pathdetail [ , 6] » ) 

Res idual Standard Error = 0 . 0 1 19 ,  Mult iple R-Square = 0 . 9993 

N = 240 , F-statist i c  = 1 66846 on 2 and 237 df , p-value = 0 

coef std . err 

Intercept -0 . 0004 

u 0 . 6867 

-0 . 0359 

0 . 00 1 1  

0 . 0035 

0 . 00 1 6  

t . stat p . value 

-0 . 3643 

197 . 9522 

-22 . 0478 

0 . 7 159 

0 . 0000 

0 . 0000 

and has r2 
= 0 .9993. Therefore when al < a3 a good approximating function is 

( X ) exp(O.6867 1og( � ) -O.0359(log(  � ) )2 ) 
a l  0 )  

y = Yo -Xo 
X = 0 . .  :1:0 

In Figure 3 .3  the estimates of 9 are plotted against 9 and a (0 ,  1 )  l ine has been 

plot ted . The estimate works wel l  for low values of 9 but fal ls off as g increases. 

However this seems h ighly reasonable for use as a starting solutioll . 
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g versus the estimate of g 

00 02 0.' 0.6 0.' 1.0 9 l2 Lt 

Figure 3.3 :  The graph of the g's versus the estimates of g 
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With th is refinement the finite difference algori thm is complete and is in 

appendix E. This function is cal led optjinddif f.f .  In the same appendix i s  a 

function cal led transfoTmout . f  that takes a polynomial of order 2 and 

manipu lates it into the reduced form. When al > a3 th is function also 

interchanges x with y, and a and b with alpha and beta, and then cal ls the f inite 

d i fference algor i thm, optJinddiJ f. J ,  to find the solution. This latter refinement is 

to take care of the cases when y' gets very large which is a by-product WhCl l  

al > > a3 · The algorithm can fai l  under this extreme condit ion . 

After a great deal of use the algori thm, transjo1·mout .j  , has not failcd when 

attempting to produce a path to the minimum of L when L has been put into the 

reduced form.  It has also been observed to converge to a solution l llore qu ickly 

than when starti ng from the straight l ine solution. 

3 . 2 . 4  Paths t o  Non-Minimal Points 

The paths that have been considered so far have always ended at the min imumon 

L. This requirement was neccessary in order to derive the greedy path .  However 

it is not a requirement for the construction of a straight l ine path .  

It is also not a requ irement for the construction of  the optimal path through the 

numerical method above. An optimal path can be constructed to go to a l lother 

point besides the minimum. This is particu larly useful when there are cOllstraiuts 

on the values that the variables call take. For example the variables may be 

constrained to only take values that were in the space of the original experimental 

design while the minimum may lie outside this region .  
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However in  j ustifying that the optimal path could be expressed as a function 

y (x ) ,  t he properties of the greedy path were used. This justification cannot be 

used when an end point is not a minimum. It is easy to find end points, that are 

not minimums, for which an optimal path is not able to be represented as a 

function y (x) . I n  most cases there is a way of getting around this restrictioll .  

Consider that we are interested in  only the first quadrant. I f  the path cannot be 

expressed as a fU l lction y(x) , then by reflecting the surfaces in the l ine y = x and 

re-label l ing y and x the optimal solut ion may now have the required form. The 

only remaining problem is that in  the new L(x, y)  = a lx2 + a3y2 + aG this property 

may hold a l  > a3 . When a l  is much greater than a3 the algorithm may fai l .  

The function optfinddif f.f ,  of the  previous section used an approximating 

function to get a good first approximation for the path to the minimum. This was 

based on the greedy solution. Since the path of interest doesn 't  go to the 

minimum the greedy approximating function is of no use. A straight l ine as a first 

approx imation will be used. The function ,  f optfinddif f.f ,  that generates a 

solution to th is boundary value problem is in appendix G .  There is also a 

function cal led trans f ormoutnomin . j  that takes a general polynomial of order 2 

and puts i t  i n  reduced form and then cal ls foptfinddif f.f .  I t  doesn't 

automatically swap axes as transfonnout .j  did. This is because t here are now 

two ways that the algorithm may fail 

1) if al » a3 or a3 » >  al 

2 )  the optimal solution may have y' -+ 00 on some point on i ts path 

By manipulating the axes manually a solution can be found if one or both of these 

issues proves to be a problem . F inally the algorithm may fai l  even with careful 

manipulation of axes. In that case the best answer is to use a straight l ine .  

Example 

1 )  Consider two di fferent L(x,  y )  namely Ll  = 5x2 + y2 and L2 = x2 + 5y2 with 

the starting point being (3 , 1 )  and going to ( 1 , 1 ) .  By using foptfinddif f.f the 

optimal paths can be d isplayed and are in Figure 3 . 4 .  
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Optimal Paths for each L(x,Y) 

L(x.Yl=5x'2+t'2 

L(x.y)=x'2+5t'2 
d 

1.0 2.5 x 
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3 0  

Figure 3.4: The optimal paths for L(x, y)  = 5x2 + y2 al ld L (x, y) = x2 + 5y2 from 

(3 , 1 )  to ( 1 , 1 ) .  

2 )  Consider L = 5:1:2 + y2 with the starting point being (3 ,3 )  and going to (4 , 1 )  

The Splus functiol l call is 

g l <-foptf inddiff . f ( 3 , 4 , 3 , 1 , 40 , O . OOOOO l , 100 , 5 , O , 1 , O , O , O ) 

For this situation the algorithm fails. This can be seen in Figure 3 .5  where the 

path being generat.ed flips from below the stright l ine solutiun to above it .  I f  the 

algorithm were to continue the paths being generated would continue to fl ip  back 

and forth without finding a solution. The optimal path has y' = 00 at some point 

on the path and the algorithm fai ls to deal with this. 

Algorithm Failure 
� 

� 
y 

:;: 
� 
0 N 

on 

q 

3.0 3.2 3.' X 3.' 3.' . 0  

Figure 3 .5 :  The optimal path on L = 5x2 + y2 from (3 ,3) to (4 , 1 ) .  

The solution is to i nterchange x with y and a and b with a and f3 i .e .  the problem 

becomes L = x2 + 5y2 with the starting point being (3,3) and going to ( 1 ,4 ) .  The 

Splus function cal l is 
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g5<-f optf indd i f f . f (3 , 1 , 3 , 4 , 40 , O . OOOOO l , 1 00 , 1 , O , 5 , O , O , O)  

and the paths being gel lerated by the algorithm is in  Figure 3 .6 .  

u x '  l.S 
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Figure 3 .6 :  The generation of paths that converge to the optimal path OIl L = 
x2 + 5y2 from (3 ,3)  to ( 1 ,4 ) .  

Taking the output fwm the algorithm and re- labell ing the O l ltput i .e .  i l l terchange 

x with y again , gives the optimal solution for the original problem. The path is 

plotted in Figure 3 . 7  ami  i t  easily observed that y cannot be represe l ltcd as a 

function of x .  

Optimal Path for the Original 
0 M Problem 

� 
Y 

� 

" 
-

0 -
3.0 3.2 31 X 3.6 3.8 '.0 

Figure 3 .7 :  The optimal path on L = 5x2 + y2 from (3,3) to (4 , 1 )  

3 . 3  Opt imal Paths with More than Two 

Variables 

So far the number of cOl ltrollable factors has been restr icted to two. In th is 

section p control lable factors wil l be considered. Let x represent the p 
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control lable factors and let L(x )  be the (adj usted) variance of x which is a 

polynomial of order 2. The requirel l lent is to find a path from Xo to the minimum 

of L (x ) ,  x· , that minimises the path integral of L(x ) .  
The Euler-Lagrange equations can be derived for this system but solutions to 

these equations were no more obvious to the author than for the 2 dimensional 

case. The numerical solutions found in the previous section depended on there 

being only 2 variables in the Euler-Lagrange equations and so that method of 

solut ion is not aval iable here. 

This leaves three appropriate solutions. The first is to choose a straight l ine 

solution i .e .  x = Xo + (x* - XO )T, 0 ::; T � 1 .  This has the benefi t  of s implicity. 

The second solution is to compare the line integrals of the straight l ine path and 

the greedy path and choose the path with the smaller l ine integral. 

The third solut ion , if the appropriate software is available, is to consider m ixtures 

of the greedy and straight l ine solution . The justification for this is based on how 

the two different solutions come about. The straight l ine solution is the path of 

shortest length but doesn't take into consideration the height of L( x) along its 

path .  

The greedy path doesn 't  consider path length but aims solely for the maximum 

decrease in  L(x)  at all times. 

The optimal solution, which m inimises the path integral, looks at minimising the 

path length and also having low values of L(x)  on the path .  This suggests that a 

m ixture of the greedy and straight l ine solution may make a good approximation 

to the optimal path. 

At point x t here are two extreme directions that the path can take for a mixture 

solution. One direction is the path of steepest descent and the other is the 

direction straight to the minimum. I f  we take a units of the first d irection and 

1 - a units of the second solut ion we have that 

dx oL • - = -a- + ( 1 - a) (x - x )  dT ox 
With L(x ) ,  a polynomial of order 2, it gives that �� = Mx + N so 

dx 
-a oL + ( 1  - a) (x'  - x)  

ox 
-a(Mx + N) + ( 1  - a) (x· - x)  

( - ( 1 - a) I  - aM)x + ( ( 1  - a)x· - aN) 
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The solution for this differential equation is 

1 4 1  

and this wil l be the approx imating function for the optimal solution.  I t  is worth 

noting that the approximate function does not satisfy the Eu ler-Lagrange 

equations and as such cannot be the optimal solution . 

The functions found in th is solution are s imi lar in nature to the greedy path i .e .  a 

l inear combination of exponentials. An attempt was made by the authour to find 

closed form solut ions for the l ine integral for a path made of these functions. 

However no closed form solutions could be found . 

Example 

In this example L(  x ) will be dependent on two variables so that the results can 

be cOll l pared with previous methods. 

Let L(x J , X2 ) = xi + x� - X , X2 with the x6 = ( 1 , 2) and x
*t 

= (0, 0 ) .  The Maple 

program i l l  appendix D was used to generate the m ixture path which is 

and 

3 1 
X l  = 2 exp(-7 ) - 2 exp( - 27a - 7) 7 � 0 

1 3 
X2 = 2 exp( - 27a - T ) + 2 exp( - T ) T � 0 

Now that the path has been found the value for Cl:' wil l be found that minimises 

the path integral . This was done in Splus and the code is in appendix D .  The 

value found for Cl:' was Q = 0 .50966 (5 dpl) wh ich gives the approximate solution, 

written here to 5 decimal places, as 

and 

3 1 
X l  = 2 exp( -7) - 2" exp (  - 2 . 0 1935T ) 7 � 0 

1 3 
X2 = 2" exp( -2.01 935T) + 2 exp( - T ) T � 0 

and the l ine integral evaluates to 2 . 1 5364 1 05 (8 dpl ) .  

However setting Cl:' = 0 i nstead gives the straight l ine path which is 

Xl = exp (-7 ) T � 0 

and 

X2 = 2 exp (  -7) T � 0 
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which has a line integral of 2 . 24 (2 dpl ) .  

Setting a = 1 instead gives the greedy path which is 

and 

3 1 
X l = "2 exp (-T) - "2 exp( -3T) T � 0 

1 3 
X2 = "2 exp( -3T ) + "2 exp( -T) T � 0 

with a l ine integral of 2 . 1 8  (2 dpl ) .  
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The optimal path was generated by the finite difference algorithm and consisted 

of 1 002 points. A Riemanll sum approximation to the l ine integral for this path 

was calulated with 1 00 1  sub-intervals. This evaluated to 2 . 1 5364 1 0 1  (8 dpl) wh ich 

is less than the path integral for the greedy case. 

The numerical approx imation of the l ine integral for the optimal case is ol l ly very 

slightly less then the l Iumerical approximation of the l ine integral for the mixture 

case. 

Figure 3 .8 compares the three paths: straight , greedy and mixture. The optimal 

path is not distinguishable from the mixture path at this resolution . 

The Three Paths 
� 

� 

v 
� 

� 

� 
0 0  u 0.' 0.' 0.1 1.0 

X 

Figure 3 .8 :  A comparison of the t hree paths: straight, greedy and mixture . 

3 . 4  Moving One Factor a t  a Time 

In this situation the goal is to move from an initial setting, Xo , of the contro l lable 

factors, to a final setting, X l ,  during some time period T > O. An added 

imposition is that the controllable factors can only be moved one factor at a time. 

In  a practical situation this is equivalent to moving the controls by hand when 

the controls are not within arms length of each other. 
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This change from Xo to Xl wil l  be cal led a transition . Let L (x)  represent a 

function of the control lable variables and be a variance or adjusted variance 

function. Each factor change wi l l have an associated path and a corresponding 

l ine i ntegral for that path on L( x ) .  For p control lable factors there will be p paths 

and so p line integrals for each transition . The transi tion that has the smallest 

value i .e . the smallest sum of l ine integrals, wil l  be the preferred transition . 

3 . 4 . 1 Two Factor C ase 

Let L (x)  be a polynomial function of order two, with two control lable factors 

which can be represented as 

L(x, y) = a.1:2 + bx + cy2 + dy + exy + f 

Let x�= (g , h) and xi= ( i , j ) . Moving one factor at a t ime means that there are 

two paths in each transition from Xo to Xl . There are also two d ifferent 

transi t ions aval iable. This is demonstrated in Figure 3 .9 . 

Figure 3 .9 :  A comparison of the two possible transit ions and the two paths that 

make up each transition . 

The first transition from Xo to X l  is to move factor 1 ,  x ,  fi rst , from a value of 9 to 

i , and then factor 2 ,  y, from a value of h to j .  This cal l be represented by 

(g , h) -7 ( i ,  h) -7 (i ,  j ) . 
The second transit ion from Xo to Xl is to move factor 2 ,  y, fi rst, from a value of h 

to j ,  and then factor 1 ,  x, from a value of 9 to i. This can be represented by 

(g ,  h) -7 (g , j ) -7 U , j) 
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Evaluating the First Transition 

144 

The fi rst tral lsition consists of two paths and there is a l i l le integral for each path .  

The fi rst path is  for when factor 1 ,  x, changes from 9 to i with factor 2 , y, 
remain ing constant at h. The l ine integral is 

TU, l )  = 19 ax2 + bx + cy2 + dy + exy + J Idx l 
I f  i < 9 then 

T(t, l )  19 a:r2 + bx + ch2 + dh + exh + J dx 

[�X3 + �X2 + ch2x + dhx + �hX2 + JX] 9 3 2 2 . 
t 

� (l - i 3 ) + � (g2 - i2 ) + ch2 (g - i ) + dh(g - i) + �h (l - i2 ) + J(g - i ) 

i f  i > 9 thel l 

T(�, I )  19 m;2 + bx + ch2 + dh + exh + J (-dx) 

�t ax'2 + bx + ch2 + dh + exh + J dx 
[�x3 + �X2 + ch?x + dhx + �hX2 + JX] i 3 2 2 9 

� (i3 - l) + � (i2 - g2) + ch2 (i - g) + dh(i - g) + �h(i2 - l) + J(i - g) 3 2 2 

The second path is when y changes from h to j with x remaining constant at its 

new value i . The line integral is 

rh T( l ,2) = Jj ax2 + bx + cy2 + dy + exy + J Idy l 
I f  j < h then 

T(i,2) = ih ai2 + bi + cy2 + dy + eiy + J dy 

[ai2y + biy + �y3 + �y2 + �y2i + Jy] 
h 

3 2 2  . J 
c d e ai2 (h - j ) + bi (h - j )  + _ (11,3 - i) + _ (h2 - j2 ) + -i(h2 - l) + J(h - j ) 3 2 2 
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If j > h then 

T(�,2 ) = �h ai2 + bi + cy2 + dy + eiy + f ( -dy )  [ c d e ] j  ai2y + biy + 3y3 + 2y2 + 2y2i + fy It 

1 4 5  

ai2 (j - h) + bi(j - h) + � (l - h3 ) + � (l - h2 ) + � i (l - h2 ) + f(j - h)  

The combined l ine integrals for this transition is T(tl ) + T(t2) . 

Evaluating the Second Transition 

The second transit ion also consists of two paths and a line integral for each path .  

The first path is when y changes from h t o  j with x remaining constant at g . The 

l i ne i ntegral is 

rh T(2, 1 )  = Jj ax2 + bx + cy2 + dy + exy + f /dy / 

I f  j < h then 

T(t l ) = �h al + bg + cy2 + dy + egy + f dy [ag2y + bgy + �y3 + �y2 + �y2g + Iv[ 
al (h - j) + bg (h - j ) + 9.. (h3 - j3 ) + � (h2 - j2 ) + �g(h2 - l) + f(h - j ) 

3 2 2  

If j > h then 

T(2, 1 ) �h ag2 + bg + cy2 + dy + egy + f (-dy ) rj al + bg + cy2 + dy + egy + f dy Jh 
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The second path is for when x changes from 9 to i with y remaining constant at 

its Hew value of j .  The l ine integral is 

T(2,2) = 19 ax2 + b:c + cy2 + dy + exy + f Idx l 
I f  9 > i then 

T(t2) 19 ax2 + bx + ci + dj + exj + f dx 

[�X3 + �X2 + cix + djx + �jx2 + fX] 9 3 2 2 .  t 

a b e 
3 (l - i3 ) + 2 (g2 - i2 ) + ci (g - i) + dj (g - i) + 2j (l - i2 ) + f (g - i ) 

I f  9 < i then 

T(2,2 ) 19 ax2 + bx + cj2 + dj + exj + f (-dx) hi ax2 + bx + ci + dj + exj + f dx 

[�x3 + �.1:2 + cj2x + djx + � jx2 + f xl i 3 2 2 
9 a . b e 

3 ( i3 - g3) + 2 (i2 - g2) + ci(i - g) + dj (i - g )  + 2j( i2 - g2) + f(i - g) 

The combined l ine i l ltegrals for this transition is T(t I ) + T(t2) 

Comparing Paths 

There are four cases corresponding to the values of g, h, i and j . 
Case 1 :  9 > i and h > j .  

The fi rst t ransition wil l b e  preferred i f  T(i, l ) + T(t2) < T(t l ) + T(t2) or 

a > T(tl ) + T(t2) - T(t l ) - T(t2) 

� (l - i3 ) + � (g2 - i2 ) + ch2 (g - i )  + dh(g - i )  + �h(g2 - i2 ) + f(g - i ) 

+ai2 ( h - j) + bi (h - j) + � (h3 - j3) + � (h2 - /)  + : i (h2 - i) + f(h - j )  3 2 2 
- (ag2 (h - j ) + bg(h - j )  + � (h:J - j3) + � (h2 - l ) + �g(h2 - l) + f (h - j ) )  3 2 2 
- (� (l - i3) + � (l - i2 ) + cl (g - i ) + dj (g - i ) + �j (g2 - i2 ) + f (g - i ) )  

- 1/2 ( -g + i ) (  -h + j ) (ej - 2jc + 2ia - ei + 2b - 2d + eh - 2ch + 2ga - eg) 



CHAPTER 3. MAKING OPTIMAL CHANGES 

so the first transition wil l  be preferred when 

o < (ej - 2jc + 2ia - ei + 2b - 2d + eh - 2ch + 2ga - eg ) 

or 

(2a - e ) ( i + g) + 2b > (2c - e ) (h + j) + 2d 
else the second transit ion is preferred . 

Case 2 : 9 > i and j > h . 
The first transition will be preferred if  T(t l ) + T(�,2) < T(2, 1 ) + T(t2) or 

o > T(t l ) + T(�,2) - T(2, 1 ) - T(t2) 
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1 /2 ( -g + i ) ( -h + j) (ej + 2jc + 2ia + ei + 2b + 2d + eh + 2ch + 2ga + eg) 

so the fi rst transition will be preferred when 

o < ej + 2jc + 2ia + ei + 2b + 2d + eh + 2ch + 2ga + eg 

or 

-(2a + e) (i + g) - 2b < (2c + e) ( h + j) + 2d 
else the second transition is preferred. 

Case 3 : 9 < i and h > j . 
The fi rst transi tion wil l  be preferred i f  T(�, l ) + T(i,2) < T(t l ) + T(2,2) or 

o > T(�, I ) + T(t2) - T(t l ) - T(2,2) 
- 1 /2 ( -g + i ) ( -h + j ) (ej + 2jc + 2ia + ei + 2b + 2d + eh + 2ch + 2ga + eg) 

so the first transition wil l  be preferred when 

o > ej + 2jc + 2ia + ei + 2b + 2d + eh + 2ch + 2ga + eg 

or 

-(2a + e) ( i + g) - 2b > (2c + c ) (  h + j ) + 2d 
else the second transition is preferred .  
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Case 4: 9 < i and h < j . 
The first tral lsition will be preferred if  T(�, , ) + T(I,2) < T(2, 1 ) + T(2,2 ) or 

o > T(I, , ) + T(�,2 ) - T(2, , )  - T(2,2) 
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1 /2 ( -g + i ) (  -h + j ) (ej - 2jc + 2ia - ei + 2b - 2d + eh - 2ch + 2ga - eg) 

so the first trallsi tion wi l l  be preferred when 

o > ej - 2jc + 2ia - ei + 2b - 2d + eh - 2ch + 2ga - eg 

or 

(2a - e ) (g + i ) + 2b < ( 2c - e) (h + j) + 2d 
else the second transition is preferred . 

Example 

Let L(x, y) = 10 + 3:c + 4y + 5x2 + 4xy + 3y2 and let the transition be between 

Xb = (3 , 6 )  and xi = (0 , 0 ) .  This means 

a = 5, b = 3, c = 3 , d = 4 , e = 4 , f = 10 , 9 = 3, h = G , i = 0, j = 0 

Now 9 > i and h > j so it is Case 1 .  

(2a - e ) (g + i )  + 2b = ( 2  x 5 - 4 ) (3 + 0 )  + 2 x 3 = 24 

and 

(2c - e) (h + j )  + 2d = (2 x 3 - 4) (6 + 0) + 2 x 4 = 20 
Since 24 > 20 then (2a - e ) (g + i ) + 2b > ( 2c - e) ( h + j ) + 2d and the first 

transition is preferred i . e .  moving factor 1 ,  x, from 3 to 0 and then factor 2, y ,  
from 6 to O .  

I f  x� = (3 , 8) then ( 2a - e) (g + i )  + 2b = ( 2c - e) (h + j ) + 2d = 24 and either 

transition is preferred . 

If xb = (3 , 9) then 24 = ( 2a - e) (g + i ) + 2b < (2c - e) (h + j )  + 2d = 26 and the 

second transition is preferred . 

3 . 4 . 2  Two o r  More Factors Case 

If the number of control laule factors is p � 2 than there are p! possiule transitions. 

For each transit ion there are p l ine integrals to be evaluated . As p gets large this 

is a proulem most suited to ue solved by computer rather than by hand. 



CHAPTER 3. A- IAKING OPTIMAL CHANGES 

Let L(x )  be a polynomial function of order 2 with p controllable factors wh ich 

can be represented as 

1 49 

Where C is a symmetric matrix. Let Xo be the ini tial postion and Xl  be the final 

postion. The algori thm whichtochange.f ,  in appendix I ,  takes this data and 

returns the transition with the smallest value. If t here is more than 1 transition 

that has the smallest val ue then all the transitions with that smal lest value wi l l  

be returned . 

Example 

Using the data in the previous example gives 

L(x)  A + xtB + xtCx 

1 0 + (x, y)  ( ! ) + (x, y) U ! ) ( : )  
and x� = (3 , 6 )  aJl(l x� = (0 , 0 ) .  Considering both t ransitions and using the 

algorithm whichtochange .f gives that the first transit ion is best with the S U I l 1  of 

path integrals for each transition being 940.5 and 976 .5  respectively. 

When x� = (3 , 8) then ei ther transition is preferred with the sum of path 

integrals for both transi tions being 1624 .5 .  

When Xo = (3 , 9) then the second transition is preferred with the sum of path 

integrals for each transi tion being 2068.5  and 204 1 .5 respectively. 

3 . 5  Moving Two Factors at a Time 

In  this si tuation the goal is to move from an initial setting, xo,  of the controllable 

factors, to a final setting, X I ,  during some time period T > o .  An added 

imposi tion wil l be that the controllable factors can only be moved two factors at 

a t ime. In  a practical s itua.tion moving two factors at a time is equivalent to 

moving the controls when the operator can use both hands. 

With an even number of factors then all the moves can be two factor moves . With 

an odd number of factors there wil l  be a single factor move. This single factor 

move can occur at any stage, before, after or between any of the two factor moves. 
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This change from Xo to X l  will be called a transition and consist of the two factor 

and possible one factor moves. Let L( x) represent a function of the controllable 

variables and be a variance or adjusted variance function . Each two factor or 

single factor change will have an associated path and a corresponding l ine integral 

for that path on L (x) . The transition that has the smallest value i .e .  the smallest 

sum of l ine integrals for the factor changes, wil l  be the preferred t ransition. 

With ]J controllable factors there wil l be np unique transitions. If ]J is even then 

there are np = :r transit ions. For the case when p is odd the number of 

transitions is more complex to work out .  I f  the single factor move is always last 

then there wi l l  be 2� transitions. However the single factor transition can be 

first, last or  between any pair of factors and there are (P;l ) ways of arranging that 

amongst the pairs. This gives np = (;4l transi tions in  total . 

There are an infinite number of paths that can be taken between two points i n  

two dimensions. However straight l ine paths wil l  b e  the only paths considered for 

these two factor changes. The cost in  time of gett ing accurate values for the l ine 

integrals for the optimal paths, as considered in the last section, would swamp 

any benefit in using them i .e .  while waiting for the best transition to be 

calculated the controllable factors remain at a non-optimal setting. 

Once the minimal transi t ion is found then the choice of paths i .e . straight , greedy 

or optimal , can be chosen according to which is the most practical . 

3 . 5 . 1  Two or More Factors Case 

Let L(x )  be a polynomial function of order 2 with ]J controllable factors which 

can be represented as 

Where C is a symmetric  matrix. Let Xo be the in itial postion and X l  be the fi nal 

postion .  There are two cases to consider, when the number of factors is even and 

when the number of factors is odd. The former case is very much simpler and the 

algorithm that finds the minimal transition is whichtwotochangeeven.f and is in 

Appendix J .  

The latter case, when there is an odd number of factors means that single factor 

moves need to be considered . This is computation ally much harder. The 

algorithm for this is also in  Appendix J and is called whichtwotochangeodd.f 
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In both algorithms, if there is more than one minimal transition, then all those 

minimal transi tions are reported . 

Example 

1 )  For this fi rst case there wil l be an even number of factors. Consider this va. lue 

of L(x)  

with  xb = ( 5 , 5 , 5 , 5 )  and xi = ( - 1 , - 1 , - 1 , - 1 ) .  

This gives 

0 1 0 0 0 

0 0 2 0 0 
A = O  B =  , c = 

0 0 0 3 0 

0 0 0 0 4 

From observat iol l  the minimal transit ion wou ld be to move fa.ctors 3 ancl 4 first, 

then factors I and 2. 
The matrix, ]Jaths ,  of possible transitions is l isted below . Each row represents a 

transition . The fi ft h row represents the transit ion , move factors 2 a l ld 4. fi rst and 

then factors 1 and 3 .  

1 2 3 4  

1 3 2 4 

1 4 2 3  

2 3 1 4 

2 4 1 3 

3 4 1 2 

With p = 4 factors there are np = ;1- = 6 transitions. They are all accounted for 

i l l  paths .  

Running whicht wotochangeeven.f  gives th is  output 

1 2 1 04 . 3497808 1 1 16 

2 1900 . 70302782944 

3 1 697 . 0562748477 1 

4 1697 . 0562748477 1 

5 1493 . 40952 1 86599 
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6 1 289 . 76276888426 

$paths : 

[ 1 ]  6 

$min . path . length : 

[ , 1] 

[ 1 , ]  1 289 . 763 

1 52 

The output says that row 6 of the 1Jaths matrix gives the minimal transit io Il .  

This i s  move factors 3 and 4 first then factors 1 and 2 .  This transition has value 

1 289.76. 

2 )  In th is case there are an odd number of factors. Consider this value of L(x )  

with xh = (5 , 5 , 5 , 5 , 5) and xi  = ( - 1 ,  - 1 , - 1 , - 1 ,  - 1 ) .  

This gives 
0 1 0 0 0 0 

0 0 2 0 0 0 
A = O  B =  0 , C =  0 0 3 0 0 

0 0 0 0 4 0 

0 0 0 0 0 5 

From observation the minimal transition would be to move factors 4 and 5 first, 

then factors 2 and 3 then factor 1 .  

The matrix paths, i n  th is case, represents all the possible transitions where the 

last factor is the factor that moves singly. During computation the other possible 

single factor moves will be considered . For example, the first row of paths 
represents the transition, move factors 1 and 2, t hen factors 3 and 4 and finally 

factor 5 .  Dur i ng computation the transition that has factor 5 first, and the 

transition that has factor 5 move occurring between the two factor moves wi l l  also 

be evaluated . Putting paths in this 'short-hand ' notation is to ease computation 

and to reduce paths size. Here the matrix paths has been formatted over two 

columns. 
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Column 1 Column 2 

1 2 3 4 5 2 4 1 3 

1 2 3 5 4 2 4 1 ;) 
1 2 4 5 3 2 4 3 5 

1 3 2 4 5 2 5 1 3 

1 3 2 5 4 2 5 1 4 

1 3 4 5 2 2 5 3 4 

1 4 2 3 5 3 4 1 2 

1 4 2 5 3 3 4 1 5 

1 4 3 5 2 3 4 2 5 

1 5 2 3 4 3 5 1 2 

1 5 2 4 3 3 5 1 4 

1 5 3 4 2 3 5 2 <I 
2 3 1 4 5 4 5 1 2 

2 3 1 5 4 4 5 1 3 

2 3 4 5 1 4 5 2 3 

153 

5 

3 

1 

4 

3 

;) 
2 

1 

4 
2 

1 
3 

2 

1 

As jJ = 5 the number of transitions with the single fac tor movement happening 

last is +-r = 30 anu these are all l isted in paths. To represent all the possile 
2 --r  

transi tions would require a matrix of length 4- = 90 rather than 30 .  
2 1  

The truncated output from whichtwotochangeodd.f usi l lg the data above is 

1 S ingleton f irst 3899 . 20259455355 

1 S ingleton before pair 2 4485 . 43635946 2 1 8  

1 S ingleton last 4495 . 670 1 243708 1 

2 S ingleton f irst 3695 . 55584 1 57 183 

2 S ingleton before pair 2 4 137 . 78960648045 

2 S i ngleton last 4292 . 02337 1 38908 

3 S ingleton f i r s  . . . .  

. . .  last 2707 . 5844 1227157 

30 S i ngleton f irst 4 1 27 . 55584 157 182 

30 S i ngleton bef ore pair 2 3035 . 20259455355 

30 S ingleton last 25 1 8 . 84934753528 

$paths : 

[ , 1 ] [ , 2] 

[ 1 ,  ] 30 3 
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$min . path . length : 

[ , 1] 

[ 1 , ]  25 1 8 . 849 

The program concludes that the thirtieth path gi ves that smallest transi t ion 

value and that the single factor move should come before the third pai r .  Since 

t here are only two pai rs this means the single factor move comes last. This 

transi t ion is move factors 4 and 5 first, then move factors 2 and 3 and finally 

move factor 1 .  This transition has a value of 2518.849. 

1 54 

• 
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Chapter 4 

O n-Line Quality Control 

During production the value of  the qual ity control variable, Y ,  is often recorded 

on qual ity control charts. The most basic chart, the X-chart, consists of two lines 

about f-Ly at a distance of ±30"}·· . Any point that l ies outside these l ines is suspect 

and is either deemed indicative of a process out of control or an observation that 

has happened purely by chance . Ru les of thumb, based all observed sequences of 

these suspect points, are used to make a decision on the stabil ity of the process . 

However the qual ity variable is just a reflect ion of the error variable. Whenever 

the former is out of control then it is the error variable that is out of control .  

When there are more sources of randoll l lless than the error distribution alone i .e . 

the uncontrollable variables, observing the qual ity control variable is not going to 

be a reliable measure of whether any of the random variables are out of control .  

For example say that Y = Z + f: where Z and f: are independent and bivariate 

standard Normal . This means that Y has a N (0,2 ) distribution and would have 

control l imits set at ±30"y = ±6. After some time this set of Y values may be 

observed 

Run Z f: Y 
1 3 .6884570 0 .86G69 16  4 .5551 486 
2 -G .64 1 9924 0 .3272760 -6 .3 1 47 1 64 
3 -3 .6477334 -0 . 8 1 47046 -4 .4624380 
4 3 . 5 1 9 1 5G8 0 . 150890 1 3 .6700469 

Now Y is observed to be outside of the control l imits at at run 2 .  I f  this were the 

only such occurrence for some considerable time then it would most l ikely be 

deemed to have happened by chance alone. However it appears that Z may have 
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had a change in d istribution (specifically a change in variance) and is outside the 

±3eT z l imits for all of these runs. If this information about Z had been avaliable 

then i t  wou ld have aided in  realising that the system was now out of control .  

After more runs the out of control behaviour would most l ikely be spotted. 

However there would be no i ndication as to which of the variables, Z or E was the 

one causing the out of control behaviour. When there are many variables 

cOl ltri buting to the variance, quickly identifying which variable is causing the out 

of control behaviour wi l l  a id in  getting the system back under control more 

qu ickly. 

The problem is that the unobservable, uncontrol lable variables, as their name 

suggests, are unobservable so t he best that can be done is to estimate them. 

4 . 1  The Distribut ions of Z and E Given Y 
Suppose that we have the fol lowing information. The u l lobservable uncontrollable 

variables, Z, are distributed Nr (Or , A2 ) where Or is a l I latrix of s ize T x 1 of 

zeros . For simplicity A2 wil l  be written as A and has elemellts 

{ 2 eT for i = J. 
A[i, j ] = t 

Pi,jeTiCTj i =1= j 
The pure random error, E, is d istributed as N(O, eT;) .  Now let E and Z be 

independent and have a joint distribution 

Let the quality variable, Y, be related to Z and E by the equation 

Y = A + ZtB + E 

Thus for example, for model 1 in chapter 2 , we have that 

and 

An estimate of Z and E wi l l  be found by considering the distribu tions of Z I Y  and 

E l Y . Finding the distribution of Zi l Y  will be done in three steps 
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1 ) the joint d istribution of Z and Y will be found, 

2 )  the margi nal distribution of Zi and Y will be found 

and finally 

3) the condit ional d istribution of Zi I Y = y will be found. 

Theorem 4 . 1  The joint distribution of Z and Y is 

Proof 
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) )  
A transformation wi l l  be used to get the joint distribution of Y - A and Z from 

the joint distribution of Z and E .  

There i s  a result wh ich says that i f  V is Nn (J,L , �) and W = CV where C i s  a 

matrix of constants \Vi th  dimensions n x n and rank=n then W is 

Nn (CJ,L, c�ct ) .[3�) 
Now 

C' � A ) ( �, �. ) ( � )  
The transformatiol l  matrix is C = and is (T + 1 )  x (T + 1 ) . 

( Ir Or ) 
Bt 1 

C contains Ir which is l' x l' so it has rank of at least 7'. Let the ith elel l lent of B 

be bi of which there are l' such elements. Perform these row operations on the last 

row i .e . row ( 1' + 1 )  that contains Bt 

1'OW ( 1' + 1 )  
1 

TOW (1' + 1 )  - b; X TOW 1 

row (1' + 1 ) 
1 

row (1' + 1 )  - bi X 1'OW i 

1 'OW (1' + 1 ) 
1 

TOW ( 1' + 1 )  - br 
x row l' 

Now the row reduced version of C, Creduced , is an identity matrix of size T + 1 

and so has rank( Creduced) = r + 1 and thus C is of full rank. 
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The mean of  ( Z ) i s  
Y - A  

and the variance is 

hence 

ow 

( � ) = ( Y � A ) + ( � ) 
so 

( n � 
N,+ I ( (  � ) , ( B�A BIA�+ a; ) )  

Theorem 4 . 2  The marginal distribution of Zi and Y is 

Proof 

There is a result that says if V is Np(J.l, �) and C is a q x p matrix of constants 

with rank(C)=q (�  p) then if W = CV then W is Nq (CJ.l, c�ct ) .(:!CO l 
Let Ci be a 2 x ( 1" + 1 )  matrix where 

C, [j, kj = { � j = 1 , k = i, k f= r + 1 
j = 2, k = r + 1 
otherwise 

• 
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The C, matrix has rank 2 and p icks the i'h and (r + 1 ) 'h rows of ( � ) to give 

the marginal d istributiol l of Zi and Y i .e .  

The meall of Zi and Y is 

al ld the variance is 

Ci�ci ( � 0 1 

0 0 

0 1 0  

0 0 0  

0 1 0  

0 0 0  

0 0 

0 0 

O ) ( A AB ) 1 BtA BlAB + IJ� 
0 0 

o 0 

1 0 

o 0 

o 0 

o 1 

� ( L;� r ,j#' P��'t7j + Bwl 
to give the distribution as required . 

Theorem 4.3  The conditional distribuiton of Zi I Y = Y is 

0 0 

0 0 

1 0 

0 0 

0 0 

0 1 

• 

Z' I Y = rv N (L:j=l ,Hi BjPIJjIJi + BiIJI 
( 

_ A) 2 _ (L:jL= l ,Hi BjPIJjIJi + BiIJl) 2 ) 
t y 

Bt AB + 172 
Y , IJt Bt  AB + 172 

( f 
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Proof 

There is a resu l t  which says that i f  V = ( \1(1) ) where \1(1) is a q x 1 matrix 
\1(2) 

and \1(2) is a (]J - q) x 1 matrix and is d istributed as 

Np (J-L = ( J-L( l )  ) , � =  ( �(1 '1 ) � ( 1 '2» ) )  
J-L(2) �(2, 1 ) �(2,2) 

then the condit ional distribution of \1(1) given \1(2) = v is 

The distribution of Zi and Y is 

Putting J-L( l ) = 0 , J-L(2) = A ,  �( l , l )  = 0-; , �(1 ,2 )  = �(2 , 1 ) = 
,,£j= l ,lti Bj(JOjO"i + BiO"; alld �(2,2) = BtAB + 0"; gives the mea l l  of Zd } ·  = y as 

and the variance of Zi I Y = y as 

to give the d istribution as required . 

4 . 2  E l Y  = Y 

• 

Ultimately the distribution of E given a value, y ,  of the quality control variable } '  

wi l l  be found. This wil l be done in three steps 

1 )  the joint ci ist ribution of E, a partition of Z and Y wil l be found,  

2) the marginal distribut ion of E and Y wi l l  be found, 

and fi l lally 

3) the condit iol lal distribution of E lY  = Y will be found. 
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Now Z can be partitioned into two components ( Z( l )  ) where Z( l ) = Zl and 
Z(2) 

Z(2) = ( :: ) so that the joint d istribution of Z and Y can be wri tten as 

A( 1,2) 
A (2,2) 

O�_ l  

Corresponding to the partition of Z, B can be partitioned into B = 

where B( l )  = Br  and B(2) = ( :: ) and A can be partitioned into 

where 

and 

A = ( A( l , l )  A( 1 ,2» ) 
A(2 , l )  A(2,2) 

A( 1 , l )  = /\ l , l 

A( 1 ,2) = ( /\ , ,2 . . . /\ l 'T ) 

Theorem 4.4 The joint dislr-ibution of Y ,  Z(2) and E is 

Proof 

B ( 1 ) I\( l ,2) + B(2 ) 1\(2 ,2 )  
1\(2,2) 
0' � - 1  

A transformation will be used to get the joint distribution of  Y - A ,  Z(2) and E 
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from the joint distribution of Z and E .  
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There is a result wh ich says that i f  V is Nn (j.£, :E) and W = CV where C is an 

matrix of constants that has dimensions n x n and rank=n then W is 

t C � 'i J  Nn (C j.£ ,  C:EC ) . 
Now 

C

' - A )  ( BC1) 
Z�2) = Or

o
- l  

So the transformation matrix is 

( B(l) C = Or
o
- l  

B(2) 
Ir- 1  
O�_ l  

B(2) 
Ir- 1  
O�_ l  

1 ) (  Z(1 ) ) 
Or- l  Z(2) 

1 E 

1 

) 
Or- l  

1 

Consider the matrix containing the last l' rows and 7' colu l l lns of C. This matrix 

is an identity l l l atrix of size r and hence is of rank r .  Let Vi be the ith clement of 

B and there are l' sl Ich elements, Perform these row operations on C 

row 1 

row 1 

row 1 

and finally let 

row 1 

row 1 

1 
1'OW 1 - - X row 2 

b2 

1 
row 1 - - x row i 

bi 

1 
row 1 - - X row r 

bT 

row 1 - row ( 1' + 1 )  
1 

row 1 x 
b l 

Now the row reduced version of C, Creduced, is an identity matrix of size l' + 1 

and so has rank (Creduced) = 1' + 1 and thus C is of full ran k .  

The mean of 
( ��: � 

) 
is 

Y - A  

1 

) ( <_ 1 ) ( or�- , ) 
1 
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and the variance is 

c�ct 

( 

B ( 1 ) B( 2) 

) ( 

1\ ( 1 , 1 ) 1\ ( 1 , ' )  0 

) ( 

B ( 1 )  B( ,) 
O� _ l 1", _ 1 0 .. _ 1 1\ ( > , 1 )  1\ p , , )  0,. _ 1 0 ... _ 1 1" _ 1 0", _ 1 

0 0 '  0 ° .... _ 1 O'� 0 0 '  " - 1 " - 1 

( 

B ( 1 ) 1\ ( 1 , I )  + B( 2) 1\ ( 1 , I )  B ( 1 ) 1\ ( 1 ,')  + B ( ,) 1\ (2,,) 
2 

) ( 

B( I ) 0 '  0' ,  . - 1 
1\ ( 1 , 1 )  1\ ( " , )  0,. _ 1 B ( 1 )  1 .. _ 1 

0 0 '  O'� 1 0 '  . - 1  . - 1  

B ( 1 ) 1\ ( 1 , I ) B ( 1 )  + B ( , ) 1\( 2 , 1 ) B( 1 )  ( + B( 1 ) 1\ ( 1 , 2) B(1) + B ( 2) 1\ ( 1, , ) B p) + O'� B( 1 ) I\ ( 1 , ') + B (, ) 1\ (1,,) O'� ) 
hence 

( 

Y - A 
Z( 1 )  

Now 

so 

1\ p, I ) B ( 1 )  + I\ p , , ) B ( 2 )  
2 

", 

B t A B + u �  

I\ p , 1 ) B ( 1 )  + 1\ ( 2 , 2 ) B(» 
O'� 

1\ ( 1,') 0,. _ 1 
0,, _ 1 O'

� 

B ( 1 ) 1\ ( 1 , 2 )  + B ( 2) 1\ ( 1 , 2 )  
1\( 1,2) 
0 '  . - 1 

B ( 1 ) 1\ ( 1 ,2 )  + B ( 2 ) 1\ ( 2 , 2 )  
1\ ( 1 , 2 )  
0 '  . - 1 

Theorem 4 .5  The marginal distribution of Y and E is 

Proof 

) ' 
0 

) 

Oyo _ l 

O'
� 

) )  

0", _ 1 
O'� 

There is a result that says if V is Np (J-t ,  � ) and C is a q x p matrix of constants 

with rank(C)=q( � p) then if W = CV then W is Nq (CJ-t , c�ct ) .
( >e] 

Let C be a 2 x (r + 1 )  matrix where 

Gb, kj = { � 
So 

j = 1 , k = 1 , k =/: r + 1  

j = 2 , k = r + 1 

otherwise 

• 
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The C matrix has rank 2 and picks the 1 '" and (T + 1 )" rows of ( �) ) to give 

the marginal distribution of Y and E .  

The mean of Y and E is 

and the variance is 

1 0 . . . 0 0 
' ( 0  0 . . . 0 I )  A(2, 1 ) B ( 1 )  -t;Ap,l ) Bp) 

( B ' AB + ,,2 B ( 1 )A ( 1 , l) + B (l) A (l ,l) 
A (l ,l) 
0 ... _ 1  " , 

to give the distribut ion as requi red . 

Theorem 4.6 The conditional distTibuiton of E l  Y = y is 

Proof 
There is a result which says that if V is Np(J-L, �) then the condit ional 

distribution of V(l )  given V(2) = v is 

Nq (J-L( l )  + �l2�(21,2 ) (V - J-L(2» ) ,  � ( l , l )  - �( l ,2 )�(21,2) �(2 , l » ) ' 
The d istribution of Y and E is 

This gives J-L(l )  = 0, J-L(2) = A, �( l , l )  = (J; , �( 1 ,2 )  = �(2 , l )  = (J; and 

�(2,2 )  = BtAB + (J; . 
The mean of E l Y  = y is 

0 +  (J; x (Bt AB + (J; ) - l (y - A)  
(J; (Y - A) 

BtAB + (J2 f 

• 
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The variance of E J ) '  = Y is 

which gives the distribution of E l Y  = Y as required. 

Therefore the mean of Zi l Y  = Y can be used as an estimate of Zi ' Si l l l i larly the 

mean of E lY = Y can be used as an estimate of E .  

4 . 3  Highest P robability Estimates 

An alternative method of predicting Z and E is by using calculus with Lagrange 

I l lultipliers .  I I I  th is I l lcthod the most l ikely values of Z and E wi l l  be [oul ld 

subject to the condition that Y = A + zt  B + E ,  the regression cquRt io l l ,  found 

through experimcntal design . 

• 

Recall the model that was introduced in  the previous section wi th  thc relevant 

information being listed below. The unobservable, uncontrollable \'ariables, Z,  

are distributed N,. (Or ,  A2 ) and A2 will be written as A for simplicity. The pure 

random error, E ,  is distributed as N(O ,  an , Let E and Z be independent and have 

joint d istri bu tion 

where d is a constant required to make iZ,f (Z ,  E) a probabil ity density fUl lction ,  

The qual ity variable, Y ,  i s  related to Z and E by the equation 

Y = A + ZtB + E  

Finding the most l ikely value of Z and E for our value of Y = y wil l  involve 

maximising Iz,( ( z , E )  subject to Y = A + zt B + E .  

Theorem 4.7 If the Variance- Covar'iance matrix of the joint dist1'ibution of Z 
and E is positive definite then the values of Z and E that maximise their' joint 
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distr'ibution 

subject to 

z = 
AB 

(y A )  
BtAB + (72  

-

and 

Proof 

The joint distributiol l of Z and E is 

wh ich is to be max i l l l i sed subject to the condition that 

This is equ ivalent to maximising 

subject to 

Let 

Now 

1 t _ I  1 E2 
( t )  L = - -z A z - - - + A y - A - z B - E  2 2 (72 

aL - 1  - = - A  z - AB 
az 

Setting this equal to zero gives 

z = -AAB 

Also 

Setting this equal to zero gives 

1 66 
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And 

fJL 
B)" 

y - A - zLB - € 

Y - A + )"BLALB + )..a2 

Setting this equal to zero gives 

Therefore 

z = 
AB 

(y A) BLAB + a2 -

and 
a2 

€ = BtAB + a2 (y - A) 
The final requirement is to check that these solutions give a maximum. The 

matrix of second derivatives is ( 82L _ _  A- 1 8z8zt -82L 
_ ot 8E8zt - r 

82L - 0 8z8E - r 82 L - 2 7if2 = -a 

This matrix is the negative inverse of the Variance-Covariance matrix of the joint 

distribution of z and € .  G iven that the VariaIlce-Covariance is posit ive definite 

then i ts inverse is positive definite . The negative of a positive defin i te matrix 

gives a negative definite matrix. Hence the solutions for z and € give a maximum . 

Note that these solutions match the solutions found by finding the means of  the 

distributions of Z I Y  = y and € I Y  = y.  

Example 

Consider the regression equation 

y = 1 0  + 6z[ + 7Z2 + € 

with Z 1 and Z2 having a multi-variate Normal distribution , with mean zero, and 

with a Variance-Covarial lce matrix of A. Let € have a standard Normal 

distribution and be independent of Z1 and Z2 and have a joint multi-variate 

Normal distribution. 1 0 ,000 random multi-variate random Normal variates were 

• 



CHAPTER 4.  ON-LINE QUALITY CONTROL 

generated for Z l , Z2 and E with mean zero and for several di fferent 

Variance-Covariance matrices as outl ined in Table 4 . l .  

1 68 

The speci fic Variance-Covariance matrices that wil l  be of interest in  this example 

are those that have this form 

I .e .  in  this example 

where p is the correlation coefficient between Z l  and Z2 . 

Theorem 4 . 7  rel ies 011  this matrix being posi tive defi nte. A l I latrix wi l l be positive 

defin i te i f  there is a non-singu lar matrix C such that A = eCI . Using Maple the 

following l I I atrices were constructed to find C. 

>P : =evalm (matr ix (3 , 3 ,  [0 , 1 / ( 2- ( 1 /2» , 1 / ( 2- ( 1 / 2 »  

, 0 , 1 / (2 - ( 1 /2 » , 1 / ( 2- ( 1 / 2 » , 1 , 0 , OJ »  ; 

P 

[ 1 / 2  1 / 2 ] 

[ 0  - 1 /2 2 1/2  2 ] 

[ ] 

[ 

[ ° 
[ 

[ 1 

1 /2 2 

° 

1/2  1 / 2  ] 

1 / 2  2 ] 

] 

° ] 

> Ahal f : =evalm (matri x (3 , 3 ,  [ 1 , 0 , 0 , 0 , ( 1 -rho ) - ( 1 / 2 )  

, 0 , 0 , 0 ,  O+rho ) - O / 2 ) ] » ; 

[ 1 ° ° 
[ 

[ 1/2  

Ahalf - [ ° o - rho ) ° 
[ 

] 

] 

] 

] 

] 

[ 1 /2 ] 
[ ° ° o + rho ) ] 
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> C : =evalm ( P& * Ahalf ) ; 

[ 1 /2 1 /2 1 /2 

[ 0 - 1 / 2  2 ( 1  - rho ) 1 / 2  2 

[ 

C - [ 1/2  1/2  1 /2 

[ 0 1 /2 2 ( 1  - rho ) 1 / 2  2 

[ 

[ 1 0 

> evalm (C&*transpose (C) ) ; 

[ 1 rho 

[ 

[ rho 1 

[ 

[ 0 0 

169 

1/2  ] 

( 1  + rho ) ] 

] 

1/2  ] 
( 1  + rho ) ] 

] 

0 ] 

0 ] 

] 

0 ] 

] 

1 ] 

So there is a matrix e ,  namely e = P x Ahal J ,  such that A = eC
l
. e w i l l be 

non-singular as long as p doesn 't equal ± 1 .  Therefore I\. is posit ive defin ite and 
the theorem wi l l  hold for all  values of p except ± 1 .  

10 ,000 estimates for Zl , Z2 and E were created using the estimators frol l l  the 

Largrange method. These were compared with Zl , Z2 and E and an estimated 
MSE for each Variance-Covariallce combination and estimator was calculated . 

The results are contained i n  Table 4 . 1 .  
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Table 4 . 1 : This table gives the sample Mean Square Error for each estimate of z \ , 

Z2 and E for different Variance-Covariance matrices of the joint d istribution of z\ , 

Z2 and E .  
Variance-covariance Total Variance Variables Estimated MSE 

Matrix BtAB + (J2 
f E(predicted - actual ) 2  

U 

0 

n 

z \  0.5852 
1 85 Z2 0 .4356 
0 E 0.9891 

( +  

0.75 

n 

z \  0 . 1 504 
1 148 Z2 0. 1 1 2 1 
0 E 0.9925 

( 
-O�75 

-0.75 

n 

z \  0.9775 
1 22 Z2 0.7288 
0 E 0.9546 

The figures that fol low give a v isual indication of how wel l  the estimators of z and 

E do for d i fferent values of the Variallce-Covariance matrix. 

Case 1 .  

The Figures 4 . 1 , 4.2 and 4 .3 give time series plots o f  the first 30 values o f  Z " Z2 
and E and their estimates when the Variance-Covariance matrix is 

A = ( � . 75 �
.75 
� )  

0 0 1  
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Z1 and Prediction of Z1 for p=O.75 

10 20 
neration 

The Zt values are joined by sol id l i l ies. 
The Zt values are joined by brokel l  l ines . 

1 7 1  

Figure 4 . 1 :  The graph of the value of Z l  and the pred ictiol ls o f  Zl  when the covari­
al lcc (and correlation

) 
between Zl and Z2 is 0 .75 .  

Z2 and Prediction of  Z2 for p=O.75 

�� . .  � , 

-. :' . . 
. 

10 20 
neratloll 

The Z2 values are joined by sol id l i l ies. 
The Z2 values are joined by broken l ines . 

Figure 4 .2 :  The graph of the val ue of Z2 alld the predictions of Z2 when the covari­
ance (and correlation ) between Zt and Z2 is  0 .75 .  
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10 20 
Reratlon 

The E values are joined by sol id l ines. 

The f. values are joined by broken l ines. 

1 72 

Figure 4 .3 :  The graph of the value of E and the predictions of E when the covariance 

(and corre lation) between Z I and Z2 is 0.75 .  

Clearly the est i m ators of Z I  and Z2  are doing a good job while the est imator of f 

is doing a poor job.  

Case 2.  

The Figures 4 . 4 ,  4 .5  and 4 .6 give time series plots of the first 30 val ues of Zl , Z2 
and E and their estimates when the Variance-Covariance matrix is 

A = ( �0 . 75 ;0 . 75 � ) 
° ° 1 
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z1 and Prediction of z1 for p= -0.75 

10 20 
KeriJtion 

The 2 ,  values are joined by sol id l ines. 

The 2, values are joined by broken l ines. 
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Figure 4 .4 :  The graph of the value of 2 1 and the predictions of 2 ,  when the covari­

ance (and correlation) between 2 l  and 22 is -0 .75 .  

.. 
::J (ij > 

z2 and Prediction of z2 for 

" 20 30 
neration 

The Z2 values are joined by solid l ines . 

The 22 values are joined by broken l ines. 

F igure 4 .5 :  The graph of the value of Z2 and the predictions of 22 when the covari­

ance (and correlation ) between Zl and 22 is -0 .75 .  
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Epsilon and Prediction of Epsilon 
., r-------------::-:::-c::---, for p= - 0.75 

t 
.. 20 30 

fteriltion 

The E values are joined by solid l ines. 
The E values are joined by broken l i nes. 
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Figure 4 .6 :  The graph of the val ue of E and the predictions of E when the covariance (
and correlation

) 
between Z l  and Z2 is -0 .75 . 

I n  this case the estimators for Z l , Z2 and E are doing a poor job. The performance 
of the estimators varies. 

4 . 4  Evaluating the Performance o f  the 

Estimators 

From the examples in the previous sect ion i t  is obvious that the esti mators z and 
E vary in their abil ity to estimate z and E wel l .  Therefore a measure of how wel l  
those estimators perform would b e  a useful  tool . A way of making a measure i s  to 
consider the Mean Square Error between i and z and between E and E. Recall 
that the estimators of z and E are 

AB z = BtAB + a2 
(y 

-
A) 

and 

Theorem 4.8 The Mean Square Error of i for z is 
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Proof 
Consider 

E( (i - z ) ( iL - ZL ) )  

= E(iiL ) - E(izL )  - E(zi L )  + E(ZZL )  

Evaluating each expectation separately gives 
1 )  

sll1ce 

2 )  

as 

E ( ( BLz  + t: )2 ) 
Var(BLz )  + Var (t: )  

since E(Btz )  = 0, E(t: )  = 0 and Z is independant of t: 

= BtAB + (J2 
f 

1 75 
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3) 

4 ) 

P u tting these together gives 

E (Z ((y � A)  B'A�+ a; ) ') 
E (Z (Y � A) (B ,:�A+ a; ) ') 

BtA (E(zzt )B + E(u) ) Bt AB + (7; 
ABBtA 

BtAB + (72 f 

E(zzt ) = var (z )  = A 

E( (z - z ) ( zt - zt ) )  

E(zzt ) - E(zzt ) - E(zzt ) + E(zzt ) 
ABBtA ABBtA ABBI'A 

BtAB + (7; BtAB + (7; BtAB + (7; + A 

ABBtA A - ---==_____=_ BtAB + (7 2 
f 

1 76 

• 

Now A - B�f:�_�2 is a square matrix with the ith ,  ith element being E ( ( Zi - zd2 ) 
, 

which is the MeaIl Square Error of Zi for Zi . 

Similarly a Meal l Square Error can be generated for E .  

Theorem 4.9 The Mean Square Error of E is 

Proof 
Consider 

Eval uating each expectat ion separately gives 
1 )  
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BL AB + a2 
f 

2 ) 

E ( (  a; ( }1" -
A) ) E) 

BLAB + a2 
f 

3 ) 

Putting these together gives 

Example Continued 

Using the model and data from the previous example means that the Mean 
Square Error for each estimate can be generated and compared with those found 
from the s imulation . This data is in  Table 4 .2 .  

• 
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Table 4 .2 :  This table gives the sample Mean Square Error and theoretical Mean 
Square Error for each est im ate of Z l , Z2 and E for different Variance-Covariance 
matrices of the joint distribution of Z l , Z2 and E .  

Variance-covariance Variables Estimated MSE MSE 

U 

0 

n 

Z l  0 .5852 0 .58 1 3  

1 Z2 0 .4356 0 . 4302 

0 E 0 . 989 1 0 .9883 

( +  

0.75 

n 

Zl 0 . 1 504 0 . 1 506 

1 Z2 0 . 1 1 2 1  0 . 1 1 24 

0 E 0 .9925 0 .9933 

( 
-�75 

-0 .75 

n 

Z\  0 .9775 0 .9755 

1 Z2 0 . 7288 0 . 7282 

0 E 0 .9546 0.96 

The actual values of the Mean Square Error are very close to those found through 
s imulation.  
The Mean Square Error for each variable, Zl , Z2 and E,  depends on the 
correlation, p, between Z \  and Z2 . Using the model from the exainple above with 
d i fferent values of p enables the Mean Square Error for each estimate to be 
plotted against the correlation coeffcient. 
I n  Figure 4 . 7  the Mean Square Error of i t for Zt  has been plotted against the 
correlation coeffcient of Zl  and Z2 . 
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·1.0 -0.5 0,0 0.5 
Corrrelation Coefficient 

1 79 

10 

Figure 4 .7 :  The graph of the Mean Square Error for .2"  the estimate of z" versus 
the Correlation Coefficient of ZI and Z2 . 

The estimate works best when the MSE is smal lest .  For this case this is when p 
tcnos to 1 ano is M SE = 0 . 006. The MSE peaks at p = -0.857 with a value of 

the NISE = 1 .  I I I comparison est imating ZI with  a random standard Normal 
variate would give a MSE of 2 .  

I I I  Figure 4 .8  the Mean Square Error of .22 for Z2 has been plottcd against the 
correlation coeffcient of z, and Z2 . 

The Mean Square Error for the Estimate of 

:;: �--�--�--�----.-' 
·1.0 ·os 0 0  0.' 1 0  

Corrrelation Coefficient 

Figure 4 .8 :  The graph of t he Mean Square Error for Z2 , the est imate of Z2 , versus 
the Correlation Coefficient of ZI and Z2 . 

For this case thc  MSE is smallest when p tends to 1 and is MS E = 0 .006 . The 
MSE peaks p = -0.881  with a value of MSE = 0 .755 . 

In Figure 4 .9 thc Mean Square Error of £. for f has been plotted agai nst the 
correlation coeffcicnt of ZI and Z2 . 
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-1.0 -o.S 0 0  D.S 
Corrrelation Coefficient 

180 

Figure 4 . 9: The graph of the Mean Square Error for E, the estimate of E ,  vcrsus the 
Correlation Coefficient of Z I and Z2 

For this case M S E  is sl l lal lest when p tends to - 1  and is lVISE = 0 . 5 .  The MSE 

peaks when p tends to  1 with a value of /If SE = 0 .994.  However for p ::::: - 0.90 
the MSE is greater then 0 . 9 .  
These estimates vary widely i l l  their abi l ity t o  estimate Z l ,  Z2 and E wel l .  

4 . 5  Sensitivity t o  Changes i n  the P rocess 

During on-l ine process control the quality control variable, Y ,  is recorded 011 an 
X -Chart . Control Li l l l i ts are set at /h· ± 3ay and any observations fal l ing outside 
these l i mits are i nvestigated . There are two occasions when this can occur 
1

) 
when the observation fal ls  outside the control l i mits purely by chance or 

2
) 

when there has been a change in the system e.g. a change in process mean or 
variance. 
The occurance of an observation outside the contro l  l imits when it happens 
purely by chance is called a false alarm. The probabil ity of a false alarm w hen the 
control limits are sct at It}' ± 3ay has a value of 0.0027 or 2.7 observations in 
cvery 1 000. The average run length to a false alarm, ARL- to-false-alarm, is 370 

observatiolls .  
I t  is costly to  have a systcm that generates false alarms and so it  is bellcficial to 
have the A RL-to-false-alan n  statistic as large as possible.  Whell there has becB a 
change in the process mean or variance then i t  is beneficial to have this change 
detected as quic

k
ly as possible .  The average run length to detection,  
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ARL-to-detection, counts the number of observations from a change i n  the 
process until  an out of contro l  condit ion is found .  The smaller the 
ARL-to-detection the better. 

1 8 1  

I n  order that the estimates of z and E . are to be usefu l  i n  detecting changes in  the 
system they must have large values of A R L-to-false-alarm and smal l val ues of 
A RL-to-detection . They must also be ab le to point out which particular variable 
is the cause of the change . 

4 . 5 . 1  Example 

Consider again the example given i n  the previous section i .e . The regression 

equation is 
y = 1 0  + 6z I + 7 Z2 + E 

with Z l  and Z2 having a fYlLd+ivo hate Normal distribu tion with mean zero and 

variance A. Let E have a standard Normal distribut ion and be independant of Zl 
and Z2 . Together let all three variables have a mu l t ivar iate Normal d istribution . 

One hundred thousand variates were generated for Z l , Z2 alld E with mean zero 

and Variance-Covariance I llatrix 

( 1 P O ) 
p l O  

0 0 1 
LU here p is the correlation between Z l  aud Z2 . 
Finally Z l , Z2 and E were used to generate y which was i n  turn used to give the 
est imates 21 , 22 and E. This was repeated for different val ues of p. 

These estimates will now be evaluated for their use 011 X-charts. 
The control l i mi ts for each X-chart were set at th ree t imes the variables variance . 
I n  th is case all three variables had control l imits at ±3.  Three counts were made 
for each estimate. A count 

1 )  of when the variable and i t  estimate were both ou tside the control l i m i ts 
2)  of when the variable was outside the control l imi ts and the est imate was i nside 
and 

3)  of when the variable was inside the cOll trol l imits and the estimate was outside. 

These counts are graphed in  F igures 4 . 1 0 ,  4 . 1 1  and 4 . 1 2  for d ifferent values of 

p, the correlation beb,veen Z I  and Z2 . 
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_ 0  "C M  
C ", ., Vl N  :J 0 0  .e N  
..... .... ., Q) -C. 
- 0  

VI "  ..... C o  :J d  
o 

U o o 
· 1 .0 

A count of when 

Counts For Factor z1  

.. . . -.. . . . ... 
2 

.().!5 0.0 O �  Correlation between z1 and z2 

1 )  Z ,  and ZI were both outside the control l imits 

' 0  

2 )  z ,  was outside the control l imits and Z ,  was i nside and 

3) z, was inside the control l imits and Z, was ou tside. 

182 

Figure 4 . 10: Counts of z l  and i ts  estimate for being inside and outside the control 

l im its .  

1 ) L ine 2 

When - 1 :::; p < 0 .25 the estimates of Z l  do not estimate z ,  as wel l  compared to 

when 0 .25 :::; p < 1 .  In the former region Zl is underestimating Z t . This is reflected 

in l ine 2 where the count is of the number of times z, is outside the control l imits 

and Zt is inside. This count is the highest of the three counts and i ts value is 

observed to be il l the interval (2 .5 ,  3 )  per 1 000 variates. From the point of view of 

estimation this underestimation is poor behaviour but in terms of qual i ty control 

this behaviour is welcome since i t  indicates a large value of ARL-to-false-alarm. 

2 ) Line 1 

For l ine I , which counts when Z I  and ZI are both outside the contro l  l imits, the 

count is remaining close to zero per 1 000 variates unti l 0 .25 < p < 1 where it 

i ncreases steadily to peak at a count of 2.2 per 1 000 variates. In the region 

- 1  < p < 0 .25 there wi l l  be a very low probabil ity of gett ing a false alarm but 

this wi l l  increase steauily i n  the region .25 < p < 1 .  

3 ) Line 3 

For l ine 3 ,  wh ich counts when Z I  is within the control l im i ts and Z,  is outside the 

control l imits, the COllnt is remaining close to zero per 1000 variates unti l  

0 . 25 < p < 1 where it increases steadily to peak at a count of 0 .4 per 1 000 



CHAPTER 4. ON-LINE QUA LITY CONTROL 

variates. In the region - 1  < p < 0 .25 there w ill be a very low probabil ity of 

getting a false alarm when the process is under control .  In  the region 

0 .25 < p < 1 there is a small probability of generating false alarms when the 

estimate for z ,  is within the control l imits .  

The number of false alarms per 1000 variates ranges from 0 to peak at 2 .6  at 

p = 1 .  In comparison to an X-Chart of the quali ty control variable Y with 2 .7 

false alarms per 1000 variates th is  offers a very good to sl ight improvement.  
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The graph for Z2 is i l l  Figure 4 . 1 1 . It is very similar to Zl . The relatively minor 

change is that Z2 is estimated comparatively better for smaller values of p i .e . for 

O < p < 1 . 

Counts For Factor z2 

2 
'. 

3 

.,  0 Cor��lation betw"e°en z1 and z2� 1.0 

A count of when 

1) Z 2  and 22 were both outside the control l imits 

2 )  Z2 was outside the control l imits and 22 was inside and 

3) Z2 was i nside the control l imits and 22 was outside. 

F igure 4 . 1 1 :  Counts of z2 and i ts estimate for being inside and outside the control 

l imits. 

A similar graph for € is in  Figure 4 . 1 2 .  
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·1.0 

A count of when 

Counts For Factor epsilon 

2 

1 & 3 

-O.� 0 0  O !i  Correlation between z1 and z2 

1 )  E and E were both outside the control l imits 

1 .0 

2)  E was outside the control l imits and E was inside and 

3) E was inside the control l imits and E was outside. 
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Figure 4 . 1 2 :  Counts of epsi lon and its estimate for being inside and outside the 

control l imits. 

For E there wi l l  never be a false alarm generated . This is because the estimates 

for E are comparatively poor and are severely underestimating E .  

The behaviour of our estimates appears to have some useful features when the 

process is under control i .e . the ARL-to-false-alarm is h igh. Now their behaviour 

will be compared when the process is not under control . 

Suppose there has been a 3aZ1 shift in the mean of ZI i . e .  the mean on Zl is now 

3. That is equivalent to 1 .95ay shift in Y when p = O. 5000 values were 

generated for Z I , Z2 and E under this new d istribution and ""ere used to generate 

Y. Subsequently Y was used to generate 21 , 22 and E .  An X-Chart for the first 50 

values of Y when p = 0 is i ll Figure 4 . 1 3  
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X chart for Y 
s 

>- �  
I+-0 
(1) 0  :J M  
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l? 
10 20 30 

Observation Number 
ID 50 

Figure 4 . 13 :  An X-Chart of the First 50 values of Y for p = 0 

The X-Chart of },- shows that there are about seven out of control points. For 

this shift of 1 . 95a \ ·  the ARL-to-detection was found to ue 6 .9 .  In  [ 1 ]  the 

ARL-to-dctec. t io l l  for a 2a\, shift was given as 6. 
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I n  Figure 4 . 1 4  i s  an X-chart of  z \  and 2l ' The whole l ine represC ' l l t.s z \  ami the 

broken l ine 2 \ . The former has clearly had a change i l l  mean and the 
ARL-to-dctectiol l for t.h is data is 2.0 1 .  This corresponds to the theoretical value 

of 2 .  This is lowcr than the ARL-to-detection for Y so being able to observe Z l 

wou ld be invaluable. 

In comparison the ARL-to-detection for 2t is 238 . 10 .  This is clearly vcry poor. 

Cl) 
70 
.§ 
- . (J) w 
(J) � ..... 

.... 0 

N 
.... 
o 

X chart of Z1 and its Estimate 

10 20 30 40 
Observation Number 

50 

The whole l ine represents Z \ .  

The jagged l ine represents 2 \ . 

Figurc 4 . 14 : An X-Chart of the First 50 values of 2l for p = 0 

In Figure 4 . 1 5  thcre is an X-chart of Z2 and 22 . The whole l ine represents Z2 and 
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the broken line 22 . Z2 has clearly had no change in mean . The ARL-to-false-alarm 

for Z2 is 4 16 .67 which is higher thall the theoretical value of 370 . 

In comparison the ARL-to-false-alarm for 22 is 50.5 1 .  This is clearly very poor. 

X chart of Z2 and its Estimate 
Cl) 1U M i========�======! 
E ; M  en W 
en ­;!: 
"C o  c: 
"' 

� .,  

10 20 30 40 
Observation Number 

The whole line represents Z2 . 

The j agged l ine represents 22 . 

Figure 4 . 15 :  An X-Chart of the First 50 values of Z2 and 22 for p = 0 

I n  Figure 4 . 1 6 is an X-chart  of E and E. The whole l ine represents E and the 

broken l ine E. E has clearly has had no change in mean . The ARL-to-false-alarm 

is 384 .61  whic is close to the theoretical value of 370. 

In comparison the AnL-to- false-alarm for f. is > 5000 for this set of 5000 

observations. This is because at this value of p the estimate f. is severely 

underestimating E .  

� X thart of e sllon and Its Estimate � M  
lil W "  
.. 

� N  o 
.. 

� � t=����������� > 0 w � D � 

Observation Number 
The whole l ine represents E .  

The jagged l i l le represents f. .  

Figure 4 . 1 G :  An X-Chart o f  the First 50 values of E and f. for p = 0 

X-Charts of ZI , Z2 and E are giving no more information about the behaviour of 
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the system than a X-Chart of Y.  When the system was given a 3a Z t  shift in  the 

mean of z\ then both z\ and Z2 expressed some degree of that change rather than 

being solely reflected in the estimate of Zt . In fact the ARL-to-detection turned 

out to be lower for Z2 than ARL-to-detection for Zt . This would mean a user 

could suspect that it was Z2 that had a shift in mean rather than Zl i .e . an out of 

control condit ion is more l ikely to be observed in Z2 than Z\ . This is the opposi te 

to what is wanted . 

The reason that the ARL-to-false-alarrn turned out to be lower for Z2 than 

ARL-to-detection for Zt is in the way the estimates are caclulated . Recall i ng that 

z -
AB ( - A)  - BtAB + a2 y 

Each element of AB is less than Bt AB + a2
, the denominator in the estimate, so 

the estimates carve up Y - A in proportion to the fract ion Bt::+a2 . Now the 

denominator is a constant for each estimate so the part that changes from 

estimate to estimate is contained in the differences between the rows of AB.  I n  

the case in  the example above Z ,  ahvays takes a 7 %  proportion o f  y - A and Z2 

always takes an 8% proportion. This happens whether there is a change in mean 

of one of the variables or not .  If the mean of one factor increases then Y - A 

increases and all the factors increase in order to stil l carve up y - A to the same 

percentage. 

In this example i2 is always going to be sl ightly larger than il , because it carves 

up y - A with the bigger percentage, and therefore wil l be more l ikely to fal l  

outside the control limits. 

A similar situation occurs when a factor has had a change in variance rather than 

a change in mean. Using the data from the same example again but this time 

with an increase in the variance of z\ . This would give an increase in the variance 

of Y - A. However there would sti l l  be the same proportions of y - A attributed 

to z\ and Z2 i .e .  7% and 8% respectively. There is no abi l i ty in these estimates to 

be able to d istinguish which factor out of Zt and Z2 was associated with the 

variance change. 

For these reasons an X-Charts based on Z and E cannot be recommended . 

It is very unfortunate that accurate estimates of Z and E can 't be found under 

process shifts in mean or variances. Their ARL-to-detection statistic is lower than 

for the same statistic for the variable Y while having the same value for 

ARL-to-false-alarm. 
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4 . 5 . 2  COlll lllents 
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It is obviously very valuable to have some means of tracking the uI lobservable 

uncontrol lable factors and detecting when they have had a change il l mean or 

variance. The est i l T lates presented here can, in some cases, provide very good 

estimates of the values of the unobservable uncontrollable factors. However 

comparing an X-chart of these estimates with an X-chart of the quality response 

showed that the former X-chart has larger ARL-to-false-alann values. A lso, i f  

there is a change i l l  the process, these estimates are unable to reflect which 

factors have changed and their resulting estimation abi l i  ty deteriorates . Therefore 

X-charts of these estimates can' t  be recommended. 

• 
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C hapter 5 

C oncluding Remarks 

This thesis has demonstrated methods for ut i l ising the information in the 

uncontrollable factors that has not been previously recognised i l l  Parameter 

Design. These uncontrollable factors can be split into those that are not 

observable and those that are. Using the information avai lable in the observal > le 

uncontrol lable factors has al lowed for choosing settings of the control lable factors 

that optimises the qual ity variable in some way. This could be minimising the 

variance whi le keeping the mean on target , minimising the Mean Square Error 

about the target or minimising an adjusted Mean Square Error. 

The uncontrollable factors change their value over t ime. This means moving the 

control lable factors to a new setting to optimise the response. Methods were 

given for making these moves in order that a function of the quality response, 

taken over the complete movement, was minimised . 

Finally the information that comes from observing the quality response, the 

controllable factors and the observable uncontrollable factors, al lows for the 

estimation of the unobservable uncontrol lable factors. Using these estimators as 

values on an X Chart were considered. However the X chart of these est imators 

was found to be less useful than an X chart of the response. The former had 

larger ARL-to-false-alarm values and fai led to give information about which 

factors were out of control i .e .  the charting of the etimators provides less 

information than charting the response. 

• 
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App endix A 

Review Details 

The review chapter o f  this thesis was originally written for my Masters thesis. I t  

was used as a jumping off  point for the work in the Ph .D .  For this publication i t  

has been updated and revised. The fol lowing table l ists the changes made. 

Section Changes 

1 . 1  Rev ision and additional material 

1 . 2 M inor revisions and additional material 

1 . 3 Very m inor revisions 

1 .4 Revision and addit ional material 

1 . 6 Additional material 

1 . 7 New material 

1 . 8 New material 

1 . 9 M inor revisions 
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Appendix B 

A P ublicat ion From This Thesis . 

This paper, based 011  some of the work in chapter 2 ,  was published i l l  the Journal 

of Qual ity Technology, vol 28, 1 53- 1 62 .  
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Observable Uncontrollable Factors 
in Parameter Design 

M EGAN PLEDGER 
Massey University, Palmerston North, New Zealand 

Parameter design does not take into account the common occurrence that some of the uncontrollable 

factors are observable during production.  The extra information any observable uncontrollable factors 

provides should enhance our choice of values for the controllable factors that both keeps the mean response 

on target a nd reduces the variance. This paper describes an approach to explicitly introduce uncontrollable 

factors into a designed experiment. 

Introduction 

ITN his ideas for parameter design, Taguchi splits the 
factors into two sets. One set is referred to as 

the controllable factors and the other as the uncon­
trollable factors. Although several different methods 
of analysis have been used , the underlying idea is to 
choose levels for the controllable factors so that the 
uncontrollable factors have the least influence on the 
response. The mean response should also either hit 
some target, be minimized, or be maximized. In this 
paper the problem of hitting the target will be exam­
ined. 

The different analysis methods fall into two groups 
depending on the way the uncontrollable factors are 
treated . Taguchi sees parameter design as a pre­
production technique where the uncontrollable fac­
tors are designed into the experiment. His method 
uses inner and outer arrays and the SIN ratio. Box 
and Jones ( 1 992) advocate the use of split-plots, 
while Vining and Myers ( 1990) and Myers, Khuri , 
and Vining ( 1992) use response surface methods. 
Box ( 1 988) , Engel ( 1992) ,  and Nelder and Lee ( 1991 )  
have given different methods o f  analysis where the 
uncontrollable factors need not explicitly enter into 
the design but are accounted for in the analysis by 
the replication of the design points of  the controllable 
factors. A summary and discussion of these methods 
was given in Nair ( 1992) . 

Whatever the method of design, with the choice 
depending on the situation, the appropriate model is 
found in terms of the controllable factors . However, 

Ms. Pledger is a doctoral student in the Statistics Depart­

ment. 
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when the process is running some of the uncontrol­
lable factors may be observable. This additional in­
formation should enhance our choice of the levels of 
the controllable factors. In this paper the uncontrol­
lable factors are split into two sets, observable allll 
unobservable. In the first set there may be factors 
like temperature and humidity, while in the second 
there may be component qual ity which may be un­
measurable due to expense. The aim is to find a rela­
tionship between the controllable factors and the ol>­
servable uncontrollable factors while simultaneously 
minimizing the variance of the response and keeping 
the mean response on target. During the productioll 
process, whenever a particular value of an observable 
uncontrollable factor occurs, an appropriate value for 
the controllable factors can be generated that meets 
the stated objective. 

In practice, the type of observable uncontrollaule 
factors that would give the most benefits are the 
ones that change smoothly over time, like temper­
ature and humidity, or ones that have a slower rate 
of influence than the production rate. Certainly, i f  
an observable factor changes value in wild swings, it  
would not be sensible to make continuous invasive 
adj ustments to the product or process. Rather, it 
would make sense to implement formal control over 
such a factor. 

Example 

As an example consider the model below, which is 
an extension of the ideas in Myers, Khuri, and Vining 
( 1 992) . 

At time i, let Yi represent the response, Xi the 
controllable factors, ti the observable uncontrollable 

Journal of Quality Technology 
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ractors, and Zi the unobservable uncontrollaule rac­
t ors. The aim here will  be to minimize variance or 
.1/" while keeping the niean on target alld finding a 
rt'iationship between Xi and t i .  

Let the model for t.he 4uality re�pollse variaule , y , 
he 

( 1 )  

where the response is dependent on Xi , t i ,  and Zi , 
and fJo is 1 x I ,  f31 is P x I , f32 is q x I , f3"J is T x I , 
x, is P x 1 ,  t, is q x 1 ,  Zi is T X 1 ,  � \ is P x q, �2 is 
,. x p, �3 is T x q, ti � D is t(O, A I l ,  Zi � D ist(O, A2 ) ,  
and € , � Dist (O,  a;) ,  w here "Dist" represents some 
distribution. The last requirement is t hat €, t, alld Z 

he independent. 

Now 

Ey ( Y, lx" t , )  = Ez ( Ey ( Yi lxi , t i ,  z , ) )  
= fJo + x;f3\ + t;f32 + x; � \ t, 

and 

Varr- { Y, l x" t , )  = Ez (Vary (Y; lx i ,  ti , z ; ) )  
+ Varz ( Ey ( Yi lxi , t"  z, ) )  

=a; + Varz (fJo + x;f3 \ + t;f32 
+ X: � l ti + Z; (f33 + �2Xi + �3t, ) )  

=a; + (f33 + �2Xi + �3t , ) '  A2 
x (f33 + �2Xi + �"Jt; ) .  

We wish to minimize Vary ( Y; lXi ' t, ) suuject to 
T = EI, (Y. lx" t i ) ,  where T is the target .  Using La­
grangian minimization, we get 

xi = (20'B)- 1  (F + 2E'B)D - E 
where, assuming that A is invertible,  

A = (�;A2 �2 ) - 1 

1 
B = 2 (f31 + � l t ; )  

C = ��A2 (f33 + �3t ; )  
O = AB 
E =  AC 
F = T - fJo - t;f32 . 

(2 )  

(Sec A ppendix A for details . )  S o  d uring product.ion 
the values or the observable u ncontrollaule factors 
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t ,  would ue used with (2) obtain t he valucs of the 

colltrollable factors, xi . 

The usual method of paramet.er design is to treat 
t., and z, as one group and find a value for Xi t.lmt 
keeps y, on t.arget with least variance. I I I  t his ca..<;(� 

alld 

L�\· ( Ydx, )  = E-dEz ( Ey ( Yi l xi , ti, z , ) ) )  
= /30 + x;f3\ 

Var d )� l x , )  = £.d Ez ( Var y ( Yi lxi , t i ,  z; ) )  
+ Varz ( Ey ( Yi lxi , t i ,  z; ) ) )  
+ Var·r( Ey ( Y; l xi ,  t ; ) )  

=a, + (f3"J + �2x;) 'A2 (f33 + �2X, ) 
+ tr(��A2 �3A l )  
+ (f3� + �'\ x; ) ' Al (f32 + �'\ Xi ) .  (3 )  

( Sce t h e  results i l l  Appendices B and C, respectively. ) 

Now we w ish to minimize Vary (Y; Ix ; )  subject to 
T = El' ( Y, Ix, ) .  Using Lagrangian minimizat.ion onc(' 
1 l I0re we get 

wherE', asslImillg G is i l lvertible, 

G = (��A2 �2 + � \ A l �� ) - \  
H = �;f33 + � \ f32 

K = G f3\ 
2 

J = G H .  

(Sce A ppendix C for details. ) 

(4 )  

Now for some values of ti ,  xi*  may predict a val l w  
for y. that i s  closer to the target then that predict.ed 
for x; . To compare the two predictions t he statistic 

E((y, - T)2 ) will be considered. 

For x; I 

so 

8(y, - T)2 = 8(y - E(ylxi , t ; ) )2 = Var(yl x; , t , ) . 

Fbr x; · I 

E(y; j x; ' ) = (Ju + X;- ' f3\ 
= E(yd x; ' , t , )  - (t;f32 + x;" � \ t, ) 

Val. 28, No. 2, April 1 996 
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so 

E(Yi -T)2 = E(y, - E(ydx:+ ) )2 

= E(y, - E(ydx; + ,  t i )  + t;.a2 + x;· · �\ t ; )2 

= Var(ydx; ' , t; )  + ( t;.a2 + x;- - � \ ti )2 . 

So far two methods have been specified ( i .e . ,  us­
ing x; or xi '  exclusively) . A third approach is to 
use either method depending on the value of t i .  On 
observing a value of t i ,  calculate E(Yi - T)2 for xi 
and xi "  and choose that corresponding to the least 
E(y, - T)2 value. 

In practice the model is specified, but the coeffi­
cients of the model are unknown and these are found 
by experimentation. These estimated coefficients are 
used to give estimates of Yi , Xi , E(y; ) , and Var(y; )  , 
denoted by fi" X, , E(Yi ) ,  and Va;:(y; ) ,  respectively. 

S i mulation 

To i l l ustrate these procedures let the underlying 
model he 

yd x "  t " z,  = 1 00 + 5x \ + 7X2 - 4t \  + 3t2 - 5z\ 
- 6z2 - 4x \ t \  + 6x\ z\ - 7X \ Z2 - 3x2 t2 
- 7X2 Z2 + 8t \ z \ - 8t2z2 + € (5) 

where € is d istributed as Normal (J.L = 0, (72 = 10) , 
and the target is T = 100. The first step i n  parame­
ter design is to do an experiment with all the factors 
at fixed levels. This was done with a 26- \ factorial 
design, and the results are given in Table 1 .  

The model found was 

fi = I OO.06 + 4 .98x \ + 6.45x2 - 3.55t \ + 3.74t2 
- 4 .86z\ - 6.85z2 - 3.57x\ t \  + 6. 1 1 x \  z \  
- 6.98x \ Z2 - 2 .  15x2t2 - 7.36x2 Z2 + 8.24t \  z\ 
- 8.58t2 Z2 . 

The residuals were used to estimate (7; , a; = 

1 1 .56. Four simulations wil l  be used to compare 
four different methods. In each simulation the same 
100,000 standard normal random variates wil l  be 
used for t i , Z i , ann € i .  The ti  ann the Zi are standard 
normal , and €i is distributed as N (J.L = 0 , (72 = 1 0) . 

For simu lation 1 ,  equation (2) was used to gener­
ate the xi from the t i .  The equations for x\ and X2 
in terms of ti were generated in Maple ( 1 994) and 
appear in Table 2 . The xi and ti were used with 
the Zi to generate the Y; using the regression model 

Vol. 28, No. 2, April ' 996 

TAB L E  1. The Experimental Design and Responses for 

a 26- 1 Factoria l  Design in X l .  x2 . tl . t2 . Z} . and Z2 

Factors 
x \  X2 t \ t2 z \  Z2 Response 

- 1  - 1 - 1 - 1 - 1  - 1  91 .531 1 
1 - 1 - 1 - 1 - 1  1 1 10.09547 

- 1  1 - 1 - 1 - 1 1 1 20.90064 
1 1 - 1 - 1 - 1 - 1  1 33.24822 

- 1  - 1  1 - 1  - 1  1 99.8026 
1 - 1  1 - 1  - 1  - I  7 1 .35239 

- 1  1 1 - 1  - 1  - I  10 1 . 25509 
1 1 1 - 1  - 1  1 78.83396 

- I  - 1  - 1  1 - 1  1 106.93987 
1 - I  - 1  1 - 1  - I  1 34.56421 

- 1  1 - I  1 - 1  - I  138.35204 
1 1 - 1  1 - 1  1 98.02461 

- 1  - 1  1 1 - 1  - 1  96.73753 
1 - 1  1 1 - 1  1 78.68531 

- \  \ 1 1 - 1  1 92.89983 
1 1 1 1 - 1  - \  1 25.50157 

- I  - 1  - 1  - 1  1 79.88534 
1 - 1  - I  - 1  - I  93.51969 

- I 1 - \  - 1  - 1  80.66505 
1 1 - I  - 1  1 96.4498 

- 1  - 1  1 - 1  - I  58.77738 
1 - I  1 - 1  1 96.73602 

- \  1 1 - 1  1 1 0 1 .59202 
1 1 1 - I  - I  1 26.37272 

- I  - 1  - 1  1 1 - 1  75.88907 
1 - 1  - 1  1 1 1 87.37854 

- I  1 - 1  1 1 1 66.28703 
1 1 - I  1 1 - 1  1 43.92734 

- 1  - I  1 1 1 1 93.3468 
1 - 1  1 1 1 - I  1 22.44309 

- 1  1 1 1 1 - 1  1 16.39455 
1 1 1 1 1 1 83.3959 

in equation (5) .  The variance of fi: was 67.72 ± 1 . 1 0 
and the mean 1 00.40 ± 0.03. The variance of fi: mn 
be broken into three components due to: (1) { ,  (:2) 
the influence of the random variable z and its illLer­
action with x and t, and (3) the use of the estimated 
coefficients. The size of the latter can be estimatt'd 
by generating y with € and Zi equal to zero whi le 
keeping xi and t i  as before. The resulting variallce 
was 1 .37. This variance would decrease with the in­
creased accuracy of estimating the coefficients. 

For the second simulation, equation (4 ) was used 
to obtain xi- = (0.0358, -0.0363) giving Va;(y) = 

249 . '10 from equat ion (3) . The underlying model is 
known in this case, so Var(y) can be calculated, and 
it is Var(y) = 223.67. Using xi - and the previous t , 
and z" the Y; - were generated from the regres:;ioll 
model in equation (5 ) to give a sampling varianc(' llf 
223.74 ± 1 . 43 with a nIean of 99.97 ± 0.05. 

Journal of  Quality Technology 
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TABLE 2.  Maple ( 1994) Output giving the Relationship 
between the Controllable Factors and the 

Observable Uncontrol lable Factors 

xstar : -

[ ( - 6 . 920059986 - 4 . 847453307tl + 4 . 8145 156 1 4 t 1 2 

- . 1496378740t2 - 2 . 752304982t2 t l  + 2 . 507256324t22 ) 
( . 0 1 532797490 + . 04782552040tl - . 02734032426t2) / (  

. 4020299378 + . 109444 2 1 24 t 1 + . 1 707409638t 1 2 

- . 3 1 89447000t2 - . 1952143239t2t1 + . 09853725602t22 ) 

+ . 7962406109 - 1 . 348573357t l }  
[- ( - 6 . 920059986 - 4 . 847453307 t l  + 4 . 8 1 4 5 1 5614t 1 2 

- . 1496378740t2 - 2 . 752304982t2t l  + 2 . 507256324t22 ) 

( . 07415264317 + . 04538610643tl - . 0458 1858850t2 ) / (  

. 4020299378 + . 1 09444 2 1 24t l • .  1707409638t12 

- . 3 1 89447000t2 - . 1952143239t2t l • .  09853725602t22 ) 

- 1 . 687182865 + 1 . 279787306t l - 1 . 165842752t2} 

By accounting for the specific values of the t, when 
choosing the Xi , an approximately 70% decrease in 
variance was achieved. Histograms of the two data 
sets, shown in Figure I ,  illustrate the red uction in 
the variance of the response Yi frolll simulation 2 to 
simulation 1 .  

§ 
M 

o --
60 60 1 00  1 20 1 40 

Response for Simulation 1 

o 

60 60 1 00  1 20 140 

Response lor Simulation 2 

F I G U RE 1 .  Histograms of the Responses Collected In  

Simulation 1 and Simulation 2,  Showing a Reduction in  

Variance by Accounting for the Observable U ncontrollable 

Factors. 
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It is possible to generate a Box-type model ( Box 
( 1 988) ) .  In this llIethod the uncontrollable factors 
do not enter into the experiment or the Illodeling 
process explicitly. During the experimental stage the 
design is replicated so that at each distinct design 
point there are multiple readings. The means and 
variances are collected at each point. They are both 
used as responses to be explained by the controllable 
factors. The 26- 1 design was converted into a 22 
design in XI and X2 with 8 replications at each design 
point. The mean and variance at each design point 
were collected, and the model was 

jJ. = 100.06 + 4.98xI + 6 .45x2 - 0.76x IX2 
log( s ) = 3.04 + O. lOx I + 0. 13x2 - 0.07x I X2 . 

Calculus shows the values of X I  and X2 that mi ni­
lllize log(s) while keeping jJ. on a target of lOO are 
( -0.0026, -0,0067) .  The model predicts a variance 
at that point of 433.87. Simulation 3, using t1\C)se Xi 

with the previous ti and Zi , gives a sampling vari­
ance of 223.49 ± 1 .42 and a mean of 99.99 ± 0.03. 
Again, accounting for t i  in calculating x ,  has given 
an improvement over an accepted method. 

The third approach is to calculate E(y - T)2 for 
both xi and xi ' and to use the Xi that minimizes 

E(y - T) 2 . Using Maple ( 1994) ,  both expre.c;sions 
were derived in terms of t l  and t2 '  A contour plot of 
E(ylx; - ,  ti - T)2 - E(ylxi , ti - T)2 

= 0 is in Figure 
2.  The smaller regions denote where x; · has lower 

E(y - T) 2 than xi . 
A fourth simulation, using xi" when ti falls in 

the enclosed regions and xi otherwise, gives a mean 

2 , 

, , 

0 2  0 4  o 6 0 8 1 2  I '  I ', I S  

FIGURE 2.  A Contour Plot of E(Yilxj '  ,ti - T)2  -
� ,  2 E(Yi lxi , ti - T) = O. 
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TAB L E  3.  Summary of the Simulation Results 

Standard Standard 
Error of Error of 

Simulation Mean Mean Variance Variance 

1 1 00.40 0.03 67.85 1 . 10 
2 99.97 0.05 223.74 1 .43 
3 99.99 0.05 223.49 1 .42 
4 1 00. 1 8  0 .03 65.44 0.62 

and variance for the response as 100. 1 8  ± 0.03 and 
65.44 ± 0.62 , respectively. This approach shows li ttle 
improvement over using xi exclusively because only 
8.9% of the ti fall in  the enclosed region . When the 
probability of the ti falling in such regions is larger 
this approach may give greater improvements. 

A summary of the four simulations appears in  Ta­
ble 3. 

Complications 

In the typical inner/outer array, only the main ef­
fects and the interactions between the controllable 
and uncontrollable factors can be estimated ( i .e. , ev­
erything in equation ( 1 )  except �3 ) '  However, espe­
cial ly when using response surface methods, it may 
be the case that an experiment is designed to produce 
a model containing interactions or quadratic terms or 
both.  Adding terms like X: :Exi to the model al lows 
no closed-form solution for xi . 

Other problems are that the xi found m ay not be 
in the experimental region or that A or G or both 
are not invertible. These problems can be overcome 
with numerical solutions and appropriate upper and 
lower bounds on Xi . 

A Second Example 

Engel ( 1992) reports an experiment to i mprove an 
injection molding process hy minimizing the shrink-

TAB L E  4. The Factors in the I njection 
Molding Experiment 

Controllable 

----A, Cycle Time 
B, Mold Temperature 
C, Cavity Thickness 
D, Holding Pressure 
E, Injection Speed 
F, Holding Time 
G, Gate Size 

Uncontrollable 

M, Percentage Regrind 
N, Moisture Content 
0, Ambient Temperature 

age of the product. The experiment consists of the 
seven controllable factors and three uncontrollable 
factors listed in Table 4. The experiment design and 
the responses are in Table 5 .  

Of the noise factors, percent regrind appears t o  be 
un measurable whi le ambient temperature is measur­
able. Moisture content is assumed to be measurable, 
since it is a function of the ambient humidity and 
the amount of t ime the material is exposed to the 
air. Al l  the factors appear quantitative. 

Steinberg and I3ursztyn ( 1994) re-analyzed this ex­
periment and suggested that perhaps two of the re­
sponses had been swapped. These were 0.3 and 2 .5  in 
the second row, first and second colum n .  Assuming 
the responses were swapped, t he experiment will be 
analyzed under the new method. For this example, 
the aim will be to set shrinkage to a low target rather 
than minimize it .  The experiment can be written in 
the form give in Table 6. 

A half-normal probabi lity plot of the main effects 
and interactions appears in Figure 3. The effects and 
interactions not fall ing on the line were deemed to 
be significant, and a regression equation was derived 
with these. Note that the controllable factors B and 
F were found to be insignificant, so in production 
they can be set to our economic advantage. 

TAB L E  5. The Design a nd Responses for the I njection Molding Experiment 

Controllable Factors PerC(!I1t Shrinkage for Noise Factors M, N, 0 
Cell A I3 C D E F G ( 1 , I , 1 )  ( 1 , 2 , 2)  (2 , 1 , 2)  (2 , 2 , 1 )  

1 1 1 1 1 I I 2.2 2 . 1 2 .3  2 .3  
2 1 1 2 2 2 2 2.5 0 .3  2 .7  0.3 
3 2 2 l 1 2 2 0.5 3. 1 0 .4 2.8 
4 2 2 2 2 1 1 2 .0 L .9 1 .8 2.0 
5 2 1 2 1 2 1 2 3.0 3. 1 3.0 3.0 
6 2 1 2 2 1 2 I 2 . 1 4 . 2  1 .0 3. 1 
7 2 2 1 1 2 2 1 4 .0  1 .9 4 .6 2 .2 
8 2 2 1 2 1 1 2 2.0 1 .9 1 .9 L . 8  
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TAB L E  6.  The Rewritten Design for the I njection 
Molding Experiment 

Factors 
A n C D E F G M N 0 Response 

- 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  2 . 2  
- 1  - 1  - 1  1 1 1 1 - 1  - 1  - 1  2 .5  
- 1  1 1 - 1  - 1  1 1 - 1  - 1  - 1  0 .5  
-1  1 1 1 1 - 1  - 1  - 1  - 1  - I  2 

1 - 1  1 - 1  1 - 1  1 - 1  - 1  - 1  3 
1 - 1  1 1 - 1  1 - 1  - 1  - I  - 1  2 . 1 
1 1 - 1  - 1  1 1 - 1  - 1  - I  - 1  4 
1 1 - 1  1 - 1  - 1  1 - 1  - I  - 1  2 

- 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  I 2 . 1 
- 1  - 1  - 1  1 1 1 1 - 1  I 0.3 
- 1  1 1 - 1  - I  1 1 - 1  1 3 . 1  
- 1  1 1 1 1 - 1  - 1  - 1  1 1 .9 

1 - 1  1 - 1  1 - 1  1 - 1  I 3 . 1  
1 - 1  1 1 - 1  1 - 1  - 1  1 4 . 2  
1 1 - 1  - 1  1 1 - 1  - 1  1 1 . 9  
1 1 - 1  1 - 1  - 1  1 - 1  1 1 . 9  

- 1  - 1  - 1  - 1  - 1  - 1  - 1  1 - 1  1 2 .3  
-1  -1 - 1  1 1 1 1 1 - 1  1 2 . 7  
- 1  1 1 - 1  - 1  1 1 I - 1  I 0.4 
- 1  1 1 1 1 - 1  - 1  1 - 1  I 1 .8 

I - 1  1 - 1  1 - 1  1 1 - 1  1 3 
1 - 1  1 1 - 1  1 - 1  1 - 1  1 1 
1 1 - 1  - 1  I 1 - 1  1 - 1  1 4 .6  
1 1 - 1  1 - 1  - 1  1 1 - 1  1 1 .9 

- 1  - 1  - 1  - 1  - 1  - 1  - 1  1 1 - 1  2 . 3  
- 1  - 1  - 1  1 1 1 1 1 1 - 1  0 .3  
- 1  1 1 - 1  - 1  1 1 1 1 - I  2.8 
- 1  1 1 1 1 - 1  - 1  1 1 - 1  2 

1 - 1  1 - 1  1 - 1  1 1 1 - 1  3 
1 - 1  1 1 - 1  1 - 1  1 1 - I  3 . 1  
1 1 - 1  - 1  1 1 - 1  1 1 - 1  2 . 2  
1 1 - 1  1 - 1  - 1  1 1 1 - 1  1 .8 

The regression equation is 

y =2.25 + 0.4250A + 0.0625C - 0.28 13D 
+ 0 . 1 438E - 0.2313G - 0.05M + 0. 1063M E 
- 0. 1 25MC - 0.0938M D + O.OOOON 
+ 0.5875NC - 0.5563N E. (6 )  

Therefore 

E(YIA, C, D, E, G, N) =2.25 + 0.4250A + 0.0625C 
- 0.2813D + 0. 1 437 E 
- 0.23 13G + O.OOOUN 
+ 0.5875NC - 0 .55625NE. 

I n  order to work out the variance, a couple of assUIl lP­
tions have to be made. Assume that the distribut ions 

of M ,  % regrind, and N , t he ambient tell lperature, 
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are Normal and centered about zero. Further assume 
that 95% of the distribution lies between their levels 
( i .e. , they have standard deviations of � ) . Therefore 

V;;(y IA ,  C, D, E, G, N) 

= Var ( M ) (  -0.05 - 0. 1 25C + 0. 1 063E - 0.0938D)2 

+ a; . 

In this case the target will  be set at 1 .6% shrinkage. 

A quadratic program was set up using A mpl ( 1 993) 
w ith Va;(yI A,  C, D, E, G, N) as the objective that is 

to be minimized, subject to E(Y IA ,  C, D, E, G, N) = 

1 .6.  A lso, since the experiment was done in the 
unit hypercube, all controllable factors will be con­
strained to lie between ± l .  During production, fac­

tor N can vary, and the best approach would be to 
solve the quadratic program for the particular value 

of N at that time. This case will be simulated later. 
Generally t h is will be expensive and approximations 

to the solution can be found. In the approxilllate 
method the idea wil l  be to observe the solutioll to 

the quadratic program for different values of N and 

relate the solutions for the controllable factors to fac­
tor N by regression equations. Technically only val­
ues of N between ± 1 should be considered. However 

<0 
0 

eN 
EN 

'" 
0 

� A 0 

� '" � 0 
w 

D 

N G 
.,; 

0 0  0 5  1 .0 1 .5 2.0 2 5  

Hall·normal Ouanllles 

F I G U RE 3. A Half- Normal Probabil ity Plot of the Main  

Effects and the Interactions for the I njection Molding Ex-
.--....., . 

penment . 
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G 

D 

A & E  

. , 
Value of the Uncontroftabkt Fador, N 

From this it can be seen that factor A should be al­
ways set at - 1  and factor G at 1 .  The others change 
their values along smooth curves with breakpoints 
at - 1 .4425 and -0.3825. Regression equations were 
fitted to these smooth curves in order that the val­
ues for factors C, D, and E could be predicted given 
a value of N. In this case we want these equationB 
to be good predictors so that parsimony is not nec­
essary. Terms were added to each equation until a 
term became insignificant or the residual squared er­
ror reached some threshold. In this case the thresh­
old was 1 x 10-5 . This threshold could not be reached 
in the regression equation for -0.3825 � C � 3, and 
this equation does not predict as well as the others. 
The solution is in Table 7. 

FIGURE 4.  A Plot of the Observable Uncontrol lable Fac­

tor N versus the Controllable Factors A, C, D,  E,  and G .  

Since the underlying model i s  not known, we can­
not tell how the solution would do. This could only 
be found by using the solution practically. Howev('r 
the two different methods can be compared to see i f  
there is any difference between them. Two simula­
tions were done with the same 1 00,000 random vari­
ates for each of N and M. In the first simulation, th!' 
quadratic program was solved for each value of N to 
give values for the controllable factors . These wer!' 
used in equation (6) to generate the responses YI .  
The variance of YI was 2 .26 x t o - 12  In the second 
simulation, the values of the controllable factors were 
chosen using the solution in Table 7, and these were 
used in equation (6) to generate the responses Y2 . 
The variance of Y2 was 9.97 x to- I 1 . The two meth­
ods show little difference in the response variance. 
With any reasonable error variance these response 

in practice values outside this range (and in this case 

5 out of 1 00) will be seen, so N was observed over the 
range ±3. For each value of N a solution from the 
quadratic program was found for each of the control­
lable factors. These controllable factors were plotted 
against the uncontrollable factor N in Figure 4 .  

TABLE 7 .  Solution giving the Relationship between the Controllable Factors A, B ,  C,  D,  E .  F.  and G ,  a nd 
the Observable Uncontrollable Factor N that Minimizes the Variance and Keeps the Mean on Target. 

Factor 

A 

B 

C 

D 

E 

F 
G 

Factor Value 

= - 1  
our choice { 1 9 . 3 1 + 59.20N + 83. 1 8N2 + . . . + 0 .015N8 
= -0.93 - 1 .25N - 0.34N2 - 0.07N3 - 0.01 N4 

-0.72 - 0.29N + 0.39N2 + . . . + 0 .0002N14  

= { =�6.28 - 78.90N - 1 1 O.85 N2 + . . .  - 0.02N8 

-0.70 + 0.39N - 0.52N2 + . . . + 0.0003 N I 3  

= 

{ � 1 .5 1  - 1 .47 N - 0.40N2 - 0.09N3 - 0.01  N 4  
- 1  

our choice 
= 1 

Vol. 28, No. 2, April 1 996 

Range of Factor N 

-3 < N < 3 
-3 < N < 3 

-3 < N � - 1 .4425 
- 1 .4425 < N � -0.3825 

-0.3825 < N < 3 

- 2  < N � - 1 .4425 
- 1 .4425 < N � -0.3825 

-0.3825 < N � 3 

-2 < N � - 1 .4425 
- 1 .4425 < N � -0.3825 

-0.3825 < N � 3 

-3 < N < 3 
-3 < N < 3 

Journal of Quality Technology 
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·2 ·1 
FaClor N 

FIGURE 5. A Plot of the Response to the Regression 

Equation, using the Solutions in Table 7 for the Factors and 

the 100,000 Random Variates for M and N. 

variances would be swamped and the two methods 
would be indistinguishable in outcome. 

The responses for the second simulation were plot­
ted against N in Figure 5. A fter N = -0.3825, the 
variance in the response is greater. This is due to 
the poorer predictive power of the regression model 
for factor C in this region . 

Conclusion 
Accounting for the observable uncontrollable fac­

tors in setting the values of the controllable factors 
can decrease the variance of the response while keep­
ing the mean on target. The proposed approaches 
compare favorably with current methods of parame­
ter design. 
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Appendix A 
We wish to minimize Var y (Y, lxi , t,)  subject to 

T = Ey ( Yi lxi , t ; ) ,  where T is the target. For this 

Journal of Quality Technology 

we will use Lagrangiall minimization with 

L =x; E;A2 E2xj + 2,13�A2 E2Xj + 2x; E;A2 E3t, 
+ A (T - f30 - X;,I31 - tj,l32 - X; El t ; )  

: =2E;A2E2Xj + 2E;A2,133 + 2E;A2 E3 t , 

- A(,I31 + E l tj )  
therefore 

Xj =(E;A2 E2 ) - 1  (� (,I3l + E l ti )  

- E;A2(,I33 + E3t; )) . 

Assuming that A is invertible, let 

A = ( E; A2 E2)- 1 
1 

B = '2 (,131 + E l t; )  

C = E;A2(,I33 + E3t j )  

s o  Xj  = A (AB - C) .  Let D = AB , E = A C ,  and 

Xj = AD - E. Now 

:� =T - f30 - X; (,131 + E l t, )  - t;,I32 

=T - f30 - 2(AD' - E' ) B  - t ;,I32 . 

Therefore A = (2D'B ) - I (F + 2E' B )  (where F 
T - f30 - t;,I32) and xi = (2D'B) - I (F + 2E' B ) D - E. 

Additionally 

As long as A2 is positive definite and E2 is of rartk 
r, then Xj is the minimum critical point. 

Appendix B 
Theorem 

Var(Y) =Ex (Ez (Vary (YIX, Z ) ) )  

P ro o f  

+ Ex (Varz (Ey (YIX, Z ) ) )  

+ Varx (Ey (YIX ) )  

I t  is known that 

Var(Y) £Ex (Vary (YIX))  + Varx ( Ey ( Y I X ) )  

Vol. 28, No. 2, April 1 996 
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so 
Var ( Y I X )  =Ex (Vary (YIX, Z)) 

+ Varz (Ey (ylx, Z)) 
giving the result 

Var ( Y )  =Ex (Ez(Vary (Y IX, Z)) 
+ Varz (Ey (ylx, Z))) 
+ Varx (Ey ( Y I X ) ) .  

Appendix C 
In this case 

and 

Vary ( Ydx. ) = ET ( Ez (VarY (� lxi '  t i ,  z. ) )  
+ Varz ( EY (� lxi , t . . z; ) ) )  
+ VarT(Ey (Yi lxi , t ; ) )  

Firstly, 

so 

Now 

=0, + ET « {33 + 1:2xi + 1:3t;) '  A2 
x ({33 + 1:2Xi + 1:3t . )) 
+ VarT(!30 + X;{31 + t;{32 + X; E l t; ) .  

ET « {33 + E2Xi + E3t; )' A2 ({33 + E2Xi + 1:3 t; ) )  
= ({33 + E2Xi)' A2 ({33 + E2Xi ) 

+ Er(t; E;A2E3t; 

And finally, 

+ 2({33 + E2X; )'E3t ; )  
= ({33 + E2x;)' A2  ({33 + E2X;) 

+ ET(t; E;A2E3t; )  
= ({33 + E2x;)'  A2({33 + E2X; )  

+ tr(E;A2 1:3A d ·  

Var(/1o + X;{31 + t:{32 + X; El t ; )  
= Var(/1o + X;{31 + t: ({32 + 1:'1 x; ) )  
= ({32 + E'l x; )' A 1 ({32 + 1:'1 x; ) .  

Vol. 28, No. 2 ,  April 1 996 

Substituting, 

VarY (� IXi ) =0, + Er«{33 + E2Xi + E3ti ) 'A2 
x ({33 + E2Xi + E3ti ) )  
+ Var(/1o + X;{31  + t;{32 + X; E l t . )  

=0, + ({33 + E2x; )' A2({33 + E2Xi )  
+ tr(E;A2 E3Ad 
+ ({32 + E; Xi ) 'A1 ({32 + 1:;x; ) . 

We wish to minimize VarY (� lxi ) '  subject to T = 
Ey (Ydx; ) .  Using Lagrangian minimization once 
more 

and 

L =x;E;A2E2Xi + x; E I AI E'l xj + 2{3;E2xi 
+ 2{3; E; xj + )"(T - /10 - x;{3d 

8L , � , ' {3  Bxi =2E2A2E2xj + 2.u I A 1 E lxj + 21:2 3 

+ 2E1 {32 - )..{3 1  

Providing G i s  invertible, let 

G = (E;A2E2 + E 1 A1 E'I ) - 1 

H = E;{33 + E 1 {32 

so x. = G( �{31  - H).  Let 

K = G {31 
2 

J = GH 

and Xi = )"K - J .  Then 

so 

and 

8L f3 ' 8)" = T - 0 - xj{31 
= T - /10 - ()..K' - J'){31 

X� ·  = (K'{3d- I (T - /10 + J'{3dK - J. 

Additionally 
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As long as A2 and A 1 are both positive definite and 
I:::2 and I::: l arc of rank r and q respectively, then xt 

is the minimulIl  critical point. 
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App endix C 

Source Files For The Quadratic 

P rogram 

The fi les in this section are used to solve a quadratic program using the package 

Student Amp! .  The Model and Data files described below were originally set up 

by Or J ulie Faulkuer, formerly of Massey U niversity, who introduced me to the 

Student Ampl package. The problem consists of minimising a variance function 

subject to the mean bei l lg on target and with bounded parameters .  

The fi les are 

1 )  A * . mod file - a model file that sets up the structure of the problem. The 

objective is a variance function which is to be minimised subject to the constraint 

that the mean is on target. The number of parameters and the values of the 

objective and the constraints are not specified in this file. This file remains 

unchanged from problem to problem. 

2)  A * . dat fi le - a data fi le which sets out the number of parameters and the 

values i n  the objective and constraints. This specific data file is for the data in 

the Engel problem of Chapter 2 .  

3 )  A * . com fi le - a command fi le that i nstructs ampl to solve each quadratic 

program for each inputted value of the observable uncontrollable factors and to 

output the results. This specific file is for the Engel problem of Chapter 2. 

4) A * .gen fi le - a generator fi le of Splus commands to write the * . com file above. 

5) A * .al ls fi le - al l  answer file of output  for the Engel example of Chapter 2 .  
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Model File 

A model fi le settiug up .the structure of the generic problem. The file is  called 

megan . mod 

# Model f i le called Megan . mod 

param m > O ·  , # number of unknown variable s  

param n > O ·  , # number of known parameters 

param ub ; # upper bound on variables  and parameters 

param lb <= ub ; # lower bound on variables  and parameters 

set index - 1 . .  m+n ; # index-set f or coeff i c ients 

set v i ndex - 1 . .  m ;  # index-set f or variables  

set  p index - m+ 1 .  . m+n ; # index-set f or known parameters 

param const ; # the constant term in the const raint 

param alpha{ index} ; # coef f i c ients of linear terms in constraint 

param beta{ index , index} ; # coeffs of  quadrat i c  terms in constraint 

param gamma{ index} ; # coeffs of  linear terms in obj ect ive 

param delta{ index , index} ; # coeffs of  quadrat i c  terms in obj ect ive 

var xv{vindex} >= lb <= ub # the var iables 

param xp{pindex} >= -3 . 1  <= 3 . 1 ;  # value s of the known parameters 

# the obj e ct ive funct ion 

minimize cost : sum{ i in index} gamma [i]  * 

( i f  i <=  m then xv [ i ]  e l s e  xp [i] ) 

+ sum{i In index , j in index} delta [i , j ]  * 

# the constraint 

( i f  i <=  m then xv [i]  e l s e  xp [i] ) * 

( if j <= m then xv [j ] e l s e  xp [j ] ) ;  

subj ect  t o  quad : sum{ i in index} alpha [ i ]  * 
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( if i <= m then xv [i]  e l s e  xp [i] ) 

+ sum{ i in index , j in index} beta [ i , j ]  * 

= const ; 

Data File 

( i f i <= m then xv [i]  else  xp [i] ) * 

( i f j <= m then xv [j ] e l s e  xp [j ] ) 

The data fi le gives the number of parameters and the values in  the objective and 

the constraint . 

# Data f i l e  called engel change . dat 

param m : = 5 ; # number of unknown variables  

param n - l '  # number of known parameters , 

param const - - . 65 ; # the constant term in the constraint 

param lb - - 1 . ; # the l ower bound 

param ub - 1 . ; # the upper bound 

param alpha - # coeffs  of linear terms in the constraint 

1 0 . 4250 

2 0 . 0625 

3 -0 . 28 125 

4 0 . 1 4375 

5 -0 . 23 1 25 

6 O ·  , 

param beta # coeffs  of quadrat i c  terms in the constraint 

1 2 3 4 5 6 : =  

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 . 29375 

3 0 0 0 0 0 0 

4 0 0 0 0 0 -0 . 278 1 25 

5 0 0 0 0 0 0 

6 0 0 . 29375 0 -0 . 278 1 25 0 O ·  , 
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param gamma : = # coef f s  o f  linear terms in the obj ect ive 

1 0 

2 0 . 003 125  

3 0 . 00234375 

4 -0 . 00265625 

5 0 

6 o ·  , 

param delta # coeff s o f  quadrat i c  terms in the obj ective 

1 2 3 4 5 6 : =  

1 0 0 0 0 0 0 

2 0 0 . 00390625 0 . 0029296875 -0 . 0033203 1 2 5  0 0 

3 0 0 . 0029296875 0 . 002 1 97265625 -0 . 002490234375 0 0 

4 0 -0 . 0033203 1 25 - 0 . 002490234375 0 . 002822265625 0 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 o ·  , 

Command File 

This fi le is rul l  from within ampl and instructs ampl to solve the quadratic 

program for each .1,p[6] , the one observable, uncontrol lable factor, from -3 to 3 i n  

step sizes o f  0 .025. This list i s  a very small snippet o f  the  actual fi le. 

reset ; 

model megan . mod ; 

dat a engel change . dat ; 

let xp [6] : =  -3 ; 

s olve ; 

di splay xv >enge l . ans ; 

let xp [6] : =  -2 . 975 ; 

s o lve ; 

di splay xv >enge l . ans ; 
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let xp [6] : =  -2 . 95 ;  

s olve ; 

di splay xv >engel . ans ; 

let xp [6] : =  -2 . 925 ; 

solve ; 

di splay xv >engel . ans ; 

etc . . .  

G e n  F i le 

This file generates the file el lgel .com l isted above. The above file is too long to be  

generated effic iently by hal ld .  

funct ion O 

{ 

} 

cat ( " reset ; " ,  f i l l  = T ,  f i le = " enge l . com" ) 

c at ( "rnodel rnegan . rnod ; " ,  f i l l  = T ,  f i le = " engel . com" , append = T) 
c at ( " data engelchange . dat ; " ,  f i l l  = T, f i l e  = " enge l . com " , 

append = T) 
f or ( i  in seq ( -3 ,  3 ,  by = 0 . 025»  { 

} 

cat ( " let xp [6] : = " i ,  " ; " ,  f i l l  = T ,  f i l e  = " enge l . com" , 

append = T)  
cat ( " s o lve ; " ,  fill  = T,  file  = " enge l . com" , append = T) 

c at ( " di sp lay xv >enge l . an s ; " ,  fill  = T,  f i l e  = " enge l . com" , 

append = T)  
cat ( " " f i ll = T,  f i le = " engel . com" , append T) 

O ut put File 

This fi le is a very small snippet of the output fi le generated by engel .com. After 

i t 's stripped of extraneous characters it can be read into Splus or some other 
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mathematical package for manipulation .  

xv  gives the  values of  the  controllable factors that should b e  used for each value 

of xp, the one observable, uncontrol lable factor. 

x v  [ * ]  

1 - 1  

2 -0 . 40000 1 3495 1903465 

3 0 

4 0 

5 0 . 03 175 1 6638867985 

xv [ * ]  

1 - 1  

2 -0 . 3999689699064476 

3 0 

4 0 

5 0 . 03 1 75 1 6638867985 

xv [* ]  -

1 -0 . 9999350776809466 

2 -0 . 399999994676 1 0 153 

3 0 

4 0 

5 0 . 03 175 1 6638867985 

etc 

• 
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Appendix D 

Maple And S plus Commands 

This section gives the Maple and Splus code needed to find the mixture path as 

an approximation to the optimal path .  The code is for a specific problem but i t  is 

easily Cl mended for different data and for a larger number of variables. 

Maple Commands 

These are the IVlaple commands for generating the mixture path for 

L(X l ' X2 ) = xi + x� - X1X2 with xb = ( 1 , 2) and x*t = (0, 0) . 

> with ( l inalg) : 

Warning : new def in it ion for norm 

Warning : new def init i on f or trace 

> xO : =matrix ( 2 , 1 ,  [ 1 , 2] ) ;  

> M : =matr ix ( 2 , 2 , [2 , - 1 , - 1 , 2] ) ; 

> N : =matrix ( 2 , 1 , [-O , O] ) ;  

[ 1 ] 

xO [ ] 

[ 2 ] 

[ 2 - 1 ] 

M [ ] 

[ - 1 2 ]  
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> I I : =matrix ( 2 , 2 ,  [ 1 , 0 , 0 , 1 J ) ; 

> xstar : =matr ix ( 2 , 1 , [O , OJ ) ; 

> Ma : =evalm ( -a*M- ( 1-a) * I I ) ; 

[ 0 ] 

N [ ] 

[ 0 ] 

[ 1  0 J 

I I  [ ] 

[ 0  1 ] 

[ 0 J 

xstar [ J 

[ 0 J 

[ - a - 1 a ] 

Ma - [ 

[ a 

J 

- a - 1 J 

> Na : =evalm ( -a*N+ ( 1 -a) *xstar) ; 

[ 0 ] 

Na [ J 

[ 0 J 

> P 1 : =evalm ( exponent i al (Ma*q) &*xO) ; 

[ 3/2 exp ( - q) - 1/2  exp ( - 2 q a - q) J 

P 1  [ J 

209 
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[ 1 / 2  exp ( - 2 q a - q) + 3/2 exp (- q) ] 

> P2 : =evalm ( exponent ial (Ma* (q-s » &*Na) ; 

bytes  used= 1000 124 , al loc=720764 , t ime=2 . 1 2 

[ 0 ] 

> P 2 1 : = int (P2 [ 1 , 1 ] , s=0 . .  q) ; 

> P 2 1 : =numer (P2 1 ) /denom (P2 1 ) ; 

> P22 : = int (P2 [2 , 1] , s=O . .  q) ; 

> P22 : =numer (P22) /denom (P22) ; 

> #f irst path 

> x : =evalm ( P 1 [ 1 , 1 ] +P2 1 ) ; 

P2 [ ] 
[ 0 ] 

P 2 1  0 

P21  0 

P22 0 

P22 0 

x : =  3/2 exp ( - q) - 1/2  exp ( - 2 q a - q) 

> #second path 

> y : =evalm (P 1 [2 , 1 ] +P22) ; 

Y 1 / 2  exp ( - 2 q a - q) + 3/2 exp ( - q) 

2 1 0  
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> dotx : =diff (x , q) ; 

2 1 1  

dot x - 3/2 exp ( - q) - 1 / 2  ( - 2 a - i ) exp ( - 2 q a - q) 

> doty : =diff (y , q) ; 

doty 1/2 (- 2 a - i ) exp ( - 2 q a - q) - 3/2 exp ( - q) 

SpIus Funct ions for Finding a 

There are two functions 

theint . f: which represents the integrand of the l i ne integral . I t  takes inputs of q, 
the variable of integration, and a,  the trial version of Q. 

tominint . f: integrates the intregral whose integrand is theint .f .  I t  takes i l lPuts a 

as the trial version of Q .  

To find Q the cOl l l mand 

nlmin (tominint . f , 0 . 7 , print . level= 1 )  

is cal led . This Splus function nlmin minimises the function tominint . j  with 

respect to a.  The value 0 .7  is the starting value for a.  

The Function: tominint . f  

>tominint . f<­

funct ion ( a) 

{ 

integrate ( theint . f ,  lower = 0 ,  upper = Inf , a = a) $ integral 

} 

The Function : theint . f  

> the int . f  

funct ion ( q ,  a) 

{ 

x <- 3/2 * exp ( - q) - 1 / 2  * exp ( - q - 2 * q * a) 

y <- 1/2  * exp ( - q - 2 * q * a) + 3/2 * exp ( - q) 

dotx <- -3/2 * exp ( - q) - 1/2  * ( - 1  - 2 * a) 
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* exp ( - q - 2 * q * a) 

2 1 2  

doty < - 1 / 2  * ( - 1  - 2 * a) * exp ( - q - 2 * q * a )  

- 3 / 2  * exp ( - q) 

(x-2  + y-2 - x * y )  * (dotx-2  + doty- 2 ) - ( 1/2)  

} 

O utput 

The output of the command nlmin(tominint . f,0.7,print.ievel=1 )  is given below. 

nlrnin (torninint . f , 0 . 7 , pr int . level= 1 )  

i t  nf f reldf preldf reldx 

0 1 2 . 1 5geO 

1 2 2 . 1 57eO 1 . 068e-3 5 . 972e-4 3 . 764e-2 

2 3 2 . 1 54eO 1 . 208e-3 1 . 696e-3 1 . 64ge- l  

3 4 2 . 1 54eO 1 . 576e-4 2 . 033e-4 5 . 440e-2 

4 5 2 . 1 54eO 6 . 831e-6 6 . 393e-6 8 . 444e-3 

5 6 2 . 1 54eO 2 . 797e-8 2 . 846e-8 5 . 878e-4 

6 7 2 . 1 54eO 6 . 98 1 e - 1 2  6 . 974e - 1 2  9 . 135e-6 

* * * * *  relat ive funct ion convergence * * * * *  

funct i on 2 . 1 5364 1eO reldx 9 .  1346e-6 

function evaluat i ons : 7 gradient evaluat i ons : 9 

preldf 

$x : 

6 . 973ge- 1 2  npreldf 

[ 1 ]  0 . 509677 143334584576 

$converged : 

[ 1 ]  T 

$conv . type : 

[ 1 ]  " re l at ive funct ion convergence " 

6 . 973ge- 1 2  

After 6 steps nlrnin finds a convergent solution for Q and returns Q = 0 .5097 ( 4  

dpl ) .  

To calulate the l ine integral corresponding to the straight l ine path just requires 

cal ling torninint .J with a = 0. 
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> torninint . f (O)  

[ 1 ] 2 . 236067977353 1 5776 

2 1 3  

To calu late the l ine integral correspondi ng to the greedy path just requires cal l ing 

t07ninint .J  with a = 1 .  

> torninint . f ( 1 )  

[ 1 ]  2 . 1 8 1 1 158590544 1568 

To cal ulate the l ine integral corresponding to the mixture path integral just 

requires cal l ing tominiut .f  with a = 0 .509677143334584576. 

torninint . f (0 . 509677 14333458457 6 )  

[ 1 ] 2 . 1 5364 1055 1 1009 1 2  

For th is case, the order o f  preference for the choice of path is ( 1 )  the m ixture 

path ,  ( 2 )  the greedy path and (3) the straight l ine path .  

• 
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Appendix E 

Approximation Data 

This data was used to create an approximate solution for the optimal path from 

(xo , Yo ) to the l I l in imum OIl the surface of L = alx2 + a3y2 . The data is 

column 1 :  is the initial x position, Xo 

column 2 :  is the ini tial y position, Yo 

column 3: is the value for a ,  

column 4: i s  the value for a3 

The optimal path for each xo , Yo , al and a3 was found in terms of x and Y as 

output from the function optfinddif J.f discussed in  appendix F.  

column 5 :  i s  the value of the constant when log(y) is fitted against log(x) for the 

path found using the speci fied values of xo , Yo , al and a3 · 

column 6 :  is the value of li near terms when log(y) is fitted against log(x) for the 

path found using the specified values of xo , Yo ,  a l  and a3 . 

Columns 1 2 3 4 5 6 Columns 1 2 3 4 5 6 

1 1 1 I 1 · 1 .3871 020·0 1 6  1 2 1 4 1 1 1 .386294 1 

3 1 7 1 1 1 .9459 1 0  1 4 I 1 0  I I 2.302585 I 

5 4 I 1 I · 1 .386294 1 6 4 4 1 I ·3. 4677540·0 1 6  1 

7 4 7 1 I 5 . 596 1 580·001 1 8 4 1 0  I 1 9. 1 629070·001 1 

9 7 1 1 1 · 1 .9459 1 0  I 1 0  7 4 1 1 ·5 .596 1 580·00 1 1 

1 1  7 7 1 I 2 . 7 7  4 2030·0 1 6  I 1 2  7 1 0  1 1 3.5667490-001 I 
1 3  1 0  1 I I · 2.302585 I 1 4  1 0  4 I 1 -9. 1 629070-00 1 I 

1 5  10 7 1 1 -3.5667490·00 1 1 1 6  1 0  1 0  I I -2.7742030-0 1 6  I 

1 7  I I 1 I · 1 .387 I 02.·0 1 6  I 1 8  I 4 1 I 1 .386294 I 
1 9  I 7 1 I 1 . 9459 1 0  I 20 I 1 0  I I 2 .302585 I 

2 1  4 I I I · 1 .386294 1 22 4 4 I 1 ·3 4677540-016 I 

23 4 7 1 I 5 . 596 1 580-001 1 24 4 1 0  I I 9. 1 629070·001 I 

25 7 I 1 1 - 1 .9459 1 0  1 26 7 4 I I ·5 .596 1 580-00 I I 

2 7  7 7 I 1 2 . 7742030-0 1 6  1 28 7 1 0  1 I 3.5667490-001 1 

29 1 0  I 1 1 - 2.302585 I 30 1 0  4 1 1 ·9. 1 629070-001 I 

3 1  1 0  7 1 I -3 .566749c-001 1 32 1 0  1 0  1 1 ·2. 7742030-0 1 6  1 

33 1 I I 4 · 5 . 009483.-002 2.3994 1 4  34 I 4 1 4 1 . 295 1 89 2 . 4863 1 4  

35 1 7 I 4 1 . 856405 2 . 529466 36 1 1 0  1 4 2 . 2 1 8388 2. 556390 

37 4 1 1 4 -3.2953 1 9  2.370 1 0 7  38 4 4 1 4 - 1 .990094 2 . 3994 1 4  

39 4 7 1 4 - 1 . 493846 2 . 428429 40 4 10 I 4 - 1 . 1 80343 2 . 45 1 794 
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COIUIllIIS 1 2 3 4 5 6 Colulllns 1 2 3 4 5 6 

4 1  7 1 1 4 - 4 . 6 1 3235 2.367877 42 7 4 1 4 -3.275 1 05 2.38 1 254 

43 7 7 1 4 - 2 . 773229 2.3994 1 4  44 7 1 0  1 4 - 2 . 465525 2 . 4 1 6707 

45 1 0  1 1 4 - 5 . 4 55 3 7 1  2 . 367298 46 1 0  4 1 4 - 4 . 0992 1 9  2 . 374703 

47 1 0  7 1 4 -3.584576 2 .3866 1 4  48 10 10 1 4 -3.272364 2 . 3994 1 4  

49 1 1 2 4 - 4 . 962620e-003 1 . 576490 50 1 4 2 4 1 .38 1 293 1 .604032 

5 1  1 7 2 4 1 .943357 1 .6 1 1 772 52 1 1 0  2 4 2 . 30 1 27 1  1 . 6 1 4863 

53 4 1 2 4 - 2 . 1 69246 1 . 565258 5·1 4 4 2 4 -8.04 1 474e-001 1 . 576490 

55 4 7 2 4 -2.6 1 4558.-00 1 1 .587326 56 4 1 0  2 4 8 . 4 85774e-002 1 . 594962 

57 7 I 2 4 -3.043077 1 . 564468 58 7 4 2 4 - 1 .669582 1 . 5694 1 2  

59 7 7 2 4 - 1 . 1 26760 1 .576490 60 7 1 0  2 4 -7.844333e-001 1 . 583092 

6 1  1 0  I 2 4 -3.600466 1 . 564266 62 1 0  4 2 4 - 2 . 22 2 1 80 1 . 566935 

63 1 0  7 2 4 - 1 .675567 1 . 5 7 1 486 64 1 0  10 2 4 - 1 .332380 1 . 576490 

65 1 I 3 4 4 . 909546e-004 1 . 2 1 2 1 09 66 1 4 3 4 1 .386899 1 . 2 1 5756 

67 1 7 3 4 1 .946585 1 . 2 1 6205 68 1 1 0  3 4 2.303280 1 . 2 16328 

69 4 1 3 4 - 1 .676 1 04 1 . 209707 70 4 4 3 4 - 2.935548e-001 1 . 2 1 2 1 09 

7 1  4 7 3 4 2.634529.-001 1 . 2 1 3958 72 4 1 0  3 4 6. 1 88387e-00 l l . 2 1 4933 

73 7 I 3 4 -2.352674 1 . 209526 74 7 4 3 4 -9.688057.-001 l . 2 1 0638 

75 7 7 3 4 - 4 .  1 22544e-00 I l . 2 1 2 109 76 7 1 0  3 4 - 5 . 79502ge-002 1 . 2 1 3300 

77 1 0  1 3 4 - 2 .783962 1 . 209480 78 1 0  4 3 4 - 1 .399224 1 . 2 1 0087 

79 1 0  7 3 4 -8.4 2 1 058e-00 1 1 . 2 1 1 087 80 10 1 0  3 4 -4.879085e-001 1 . 2 1 2 1 09 

8 1  1 I 4 4 - 1 .3871 02e-0 1 6  1 82 I 4 4 4 1 .386294 1 
83 I 7 4 4 1 .9459 1 0  1 84 1 1 0  4 4 2 . 302585 1 

85 4 1 4 4 - 1 .386294 1 86 4 4 4 4 -3.467754e-0 1 6  I 

87 4 7 4 4 5 .596 1 58e-00 I I 88 4 1 0  4 4 9. 1 6 2907e-00 1 I 

89 7 1 4 4 - 1 .9459 1 0  I 90 7 4 4 4 -5.5961 58e-00 I 1 

9 1  7 7 4 4 2 . 774 203e-0 1 6  1 92 7 1 0  4 4 3 . 5667490-00 1 I 

93 1 0  I 4 4 - 2 . 302585 1 94 1 0  4 4 4 -9. 1 62907e-00l I 

95 1 0  7 4 4 -3.56674ge-00l I 96 1 0  1 0  4 4 -2. 774203e-0 1 6  1 

97 I 1 I 7 - 1 .367470e-OOl 3.289976 98 I 4 I 7 1 . 1 1 65 5 1  3 . 408096 

99 I 7 1 7 1 .646999 3.4733 1 2  1 00 I 1 0  1 7 1 .993694 3 . 5 1 7960 

1 0 1  4 I I 7 - 4 . 539487 3.24 7863 1 0 2  4 4 I 7 -3.3 1 1 327 3 . 289976 

1 03 4 7 1 7 - 2.865656 3.328609 1 04 4 1 0  1 7 -2.587535 3.359947 

105 7 1 1 7 -6.3387 1 4  3.244 1 82 1 06 7 4 1 7 - 5 . 049362 3 . 264793 

107 7 7 I 7 - 4 . 592834 3.289976 1 08 7 1 0  1 7 - 4 . 3 1 9807 3 . 3 1 3052 

109 1 0  I I 7 -7. 4905 1 54 1 72 3.243201 1 1 0 1 0  4 1 7 -6. 1 663497050 3 . 25508 1 

I I I  1 0  7 I 7 -5.6896922864 3.2724 1 7  1 1 2 1 0  1 0  1 7 -5.4096 1086 1 7  3 . 289976 

1 1 3 1 I 3 7 - 0 . 0 1 038623 1 4  1 .736302 1 1 4 1 4 3 7 1 .37304 1 5032 1 . 7772 1 3  

1 1 5  1 7 3 7 1 .9369035545 1 . 79 1 5 3 1  1 1 6 1 1 0  3 7 2.2963105722 1 . 798306 

1 1 7  4 I 3 7 - 2.386 1 7 6 1 578 1 .72 1078 1 1 8 4 4 3 7 - 1 .031 1 1 79996 1 . 736302 

1 1 9 4 7 3 7 -0.49673 1 0 1 58 1 . 75 1 4 1 8  1 20 4 1 0  3 7 -0. 1 56 1 784673 1 . 762674 

1 2 1  7 I 3 7 -3.3462 1 00 1 58 1 .  720004 1 22 7 4 3 7 - 1 .9785648333 1 . 726704 

1 23 7 7 3 7 - 1 .443 1 644082 1 .  736302 1 24 7 1 0  3 7 - 1 . l 073659233 1 . 74 5 4 2 1 

1 2 5  1 0  I 3 7 -3.9587968222 1 . 7 1 9728 1 26 1 0  4 3 7 - 2 . 584 1 24 8 1 38 1 .  723354 

1 2 7  1 0  7 3 7 -2.043 1 6 7 1 604 1 .729507 1 28 to 1 0  3 7 - 1 .  7057850005 1 . 736302 

1 29 1 I 5 7 0.000344 6 1 4 4  1 .2 5 1 835 1 30 1 4 5 7 1 . 3868449453 1 . 25 7 1 0 1  

1 3 1  1 7 5 7 1 .946594 0 1 7 1  1 .2578 1 0  1 32 1 1 0  5 7 2 . 3033 104371 l .258008 

133 4 1 5 7 - 1 . 7299433068 1 .2486 1 0  1 34 4 4 5 7 -0.3487726767 1 . 25 1835 

1 3 5  4 7 5 7 0.207 1 7755 1 8  1 .254423 1 36 4 1 0  5 7 5.6 1 982ge-OOl l . 255849 

137 7 1 5 7 - 2 . 428 1 4 5 1 .248372 1 38 7 4 5 7 - 1 .04 5 1 29 l . 249847 

139 7 7 5 7 -4 .897035e-00 1 1 .2 5 1 835 1 40 7 1 0  5 7 - 1 .363346e-00l 1 . 253487 

1 4 1  1 0  1 5 7 -2.873247 1 .2483 1 0  1 4 2  t o  4 5 7 - 1 .489046 1 . 24 9 1 1 4  

1 4 3  1 0  7 5 7 -9.3281 03e-00l 1 .250448 1 44 1 0  1 0  5 7 -5. 795267e-00 1 1 . 25 1835 

145 1 I 7 7 - 1 .387 1 02e-0 1 6  1 1 46 1 4 7 7 1 .386294 1 

1 4 7  1 7 7 7 1 .9459 1 0  1 1 48 I 1 0  7 7 2.302585 1 

1 4 9  4 1 7 7 - 1 . 38629'1 1 1 50 4 4 7 7 -3. 467754e- 0 1 6  1 

1 5 1  4 7 7 7 5.596 1 58e-001 1 1 52 4 1 0  7 7 9. 1 6 2907e-00 l 1 

1 53 7 1 7 7 - 1 .9459 1 0  I 1 54 7 4 7 7 -S.S961 58e-OO 1 1 

1 55 7 7 7 7 2.774203e-0 1 6  1 1 56 7 1 0  7 7 3.56674ge-00l I 

1 5 7  1 0  I 7 7 - 2.302585 1 1 58 1 0  4 7 7 -9. 1 629070-00 1 1 

1 59 1 0  7 7 7 -3.56674ge-001 1 1 60 1 0  1 0  7 7 - 2 . 774203e- 0 1 6  1 

1 6 1  I I I 1 0  - 2 .239266e-00 1 3.987067 1 62 I 4 1 1 0  9.468466e-00 1 4 . 1 1 4020 

163 I 7 I 1 0  1 . 4 4 298765 4 . 1 85480 1 64 1 1 0  1 1 0  1 . 76888583 4 . 235675 

165 4 I I 1 0  -5.53040560 3.938556 1 66 4 4 I 1 0  - 4 .36488038 3 . 987067 

167 4 7 1 1 0  -3.95522737 4.028775 1 68 4 1 0  I 1 0  -3.701 70598 4 . 062278 

169 7 I I 1 0  - 7 . 70650958 3.933820 1 70 7 4 I 1 0  -6.45977704 3 . 958874 

1 7 1  7 7 I 1 0  -6.03649009 3.987067 1 72 7 1 0  I 1 0  - 5 . 7 8 7 1 1666 4 . 0 1 2086 

1 73 1 0  1 I 1 0  -9. 1 0 1 36425 3.932527 1 74 1 0  4 I 1 0  - 7 . 80656753 3.947447 

1 75 1 0  7 I 1 0  - 7 . 35939720 3.967572 1 76 1 0  1 0  1 1 0  - 7 . 1 0 1 9 0 1 96 3 .987067 

1 7 7  1 I 4 1 0  - 0 . 0 1 356637 1 .8 1 1 878 1 78 1 4 4 t o  1 . 36761087 1 .858999 

1 79 1 7 4 1 0  1 .932 1 4959 1 .876756 1 80 I 1 0  4 1 0  2.2923 1 1 73 1 . 885661 
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Columns I 2 3 4 5 6 Columns 1 2 3 4 5 6 

1 8 1  4 I <1 1 0  - 2 .48903668 1 . 794835 1 8 2  4 4 4 1 0  - I  1 3906879 1 .8 1 1 878 

1 83 4 7 4 1 0  -0.6088 1 952 1 .8289 1 8  1 84 4 1 0  4 1 0  -0.27 1 1 7863 1 .84 1 837 

1 85 7 I 4 1 0  -3.48984092 I .  793626 1 86 7 4 4 1 0  - 2 . 1 2 5 1 5395 1 .80 1 1 4 2  

1 87 7 7 <1 1 0  - 1 .59340875 1 .8 1 1 8 78 1 88 7 1 0  4 1 0  - 1 .26078985 1 . 822 1 26 

1 89 1 0  I <1 1 0  - 4 . 1 2853468 1 . 7933 1 5  1 90 1 0  4 4 1 0  - 2 . 755700 1 . 797390 

1 9 1  1 0  7 4 1 0  - 2 . 2 1 7544 1 . 804277 1 9 2  1 0  1 0  <1 1 0  - 1 .882985 1 .8 1 1 878 

1 93 I I 7 1 0  2.5327 1 3e-004 1 . 268608 1 94 I 4 7 1 0  1 .386799 1 . 27465 l 

1 9 5  I 7 7 1 0  1 . 946585 1 . 275497 1 96 I 1 0  7 1 0  2.30.3 3 1 3  1 .275736 

197 4 I 7 1 0  - 1 . 752656 1 . 2650 1 5  1 98 4 <1 7 1 0  -3.72 1 1 66e-00 I 1 . 268608 

199 4 7 7 1 0  1 .8333920-001 1 .2 7 1 539 200 4 1 0  7 1 0  5.378646e-00 I 1 . 273 1 82 

20 1 7 I 7 1 0  - 2 . 459975 1 . 264752 202 7 4 7 1 0  - 1 .077345 1 . 266388 

203 7 7 7 1 0  -5.22433ge-00l 1 .268608 204 7 1 0  7 1 0  - 1 .694983e-00 I 1 . 270472 

205 1 0  I 7 1 0  - 2 . 9 1 090 1 1 . 264684 206 10 4 7 1 0  - 1 .5269'12 1 . 2655H 

207 1 0  7 7 1 0  -9. 7 I \ 066e-001 1 . 267058 208 1 0  1 0  7 1 0  -6. 182396e-00 1 1 .268608 

209 1 1 1 0  l a  - 1 .38 7 1 02e-0 1 6  1 2 1 0  1 4 1 0  l a  1 . 386294 1 

2 1 1  1 7 1 0  1 0  1 .9459 1 0  1 2 1 2  1 1 0  l a  1 0  2.302585 1 

2 1 3  4 1 1 0  l a  - 1 .386294 1 2 1 4  4 4 l a  l a  -3.467754e- 0 1 6  1 

2 1 5  4 7 1 0  1 0  5.5961 580-001 1 2 1 6  4 1 0  1 0  l a  9 . 1 629070-001 1 

2 1 7  7 I 1 0  1 0  - 1 .9459 1 0  1 2 1 8  7 4 1 0  1 0  -5.5961 580-001 1 

2 1 9  7 7 1 0  1 0  2.7742030-0 1 6  1 220 7 1 0  1 0  l a  3.566H90-00 I I 

2 2 1  1 0  I 1 0  1 0  -2 .302585 I 222 l a  4 1 0  1 0  - 9 . 1629070-00 I I 

223 1 0  7 1 0  1 0  -3.5667490-001 1 224 l a  1 0  1 0  1 0  - 2 . 7742030-0 1 6  I 

• 
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Appendix F 

Finite D ifference Algorithm : 1 

Heading to a Minimal Point 

The listings below are the files required to run t he finite difference algorithm for 

the Boundary Value Problem. The solution to the Boundary Value Problem is 

equivalent to the solution of the Euler-Lagrange di fferential equations 

corresponding to the problem of finding a path on L(x, y) that minimises a l ine 

integral on L(x, y ) .  The files in this section finds the path when one of boundary 

points is a minmum on L(  x, y) 
l )optfinddiff.f: th is program finds the optimal path between Xo and the 

minimum of L (x ,  y) = a jx2 + a3y2 + a6 in order to minimse the path integral of 

L(x, y ) .  The assumption is that L(x, y) is a cup shaped surface. 

2)ff: th is program returns the value of f (x, y, y') .  This function is the 

Euler-Lagrange equation in y" 

3)ffy: th is program returns the value of fy (x, y, y') .  This function is the partial 

derivative of the Euler-Lagrange equation in y" with respect to y.  

4)ffydash: th is  program returns the value of fyl (x,  y ,  y') . This function is  the 

partial derivative of the Eu ler-Lagrange equation in  y" with respect to y'. 

5)transformout .f: this program takes a generic cup shaped surface and 

transforms it to L (x, y ) = alx2 + a3y2 + a6 . It then calls optfinddif f.f to find 

the optimal path .  



• 
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The Function :optfinddiff. f  

This program finds the path that minimises the l ine integral of 

2 18  

L(x, y) = alx2 + a3y2 + a6 by solving the corresponding Boundary Value Problem. 

The inputs are 

Input:  

a : the x value of the ini tial position . 

IJ : the x value of the final position. 

alpha : the y value of the ini tial position. 

beta : the y value of the final position . 

N :  the number of points in  the path not counting the beginning and end points. 

Toler: the error in successive approximations. When the algorithm gets to a value 

below Toler it ends the program and supplies the path found. 

M: the number of iterations to do before fai l ing without a solution. 

a l -aG: the coefficients of L(x, y )  = a lx2 + a2X + a3y2 + a4Y + a5xy + aG . For this 

problem a2 , a4 and a5 are taken to be zero. If any of these are not zero then the 

function transformout .f should be called intead . 

O utput : 

As the program runs there wi l l  be output describing the iteration number, the 

tolerance level set as input and the current value of the tolerance. There will also 

be a graph displayed with the current path under consideration. This aids as a 

visual check to see that the algorithm is generating a smooth curve. I f  t here are 

bumps in the curve which are increasing with each i teration i t  is l ikely to mean 

the algorithm wil l  be unsuccessful in finding a solution. 

The final output is a (N + 2)  x 3 matrix .  If the algorithm sto{t successful ly the 

matrix wil l contain in the 

first column: the x positions of t he path 

second column: the y positions of the path and 

third column: a one in the first position to signify successful completion . 

If the algorithm stops without success then the matrix will contain a set of zeros. 

The algorithm is 

optfinddiff . f<-
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function ( a ,  b ,  alpha , bet a ,  N ,  Toler , M ,  a l , a2 , a3 , a4 , a5 , a6) 

{ 

plot ( c ( a ,  b) , c (alpha , beta) ) 

xx <- matrix (O , N + 2 ,  3 )  # 

#step 1 

h <- (b - a) / (N + 1 )  

W < - matrix (O , N + 2 ,  1 )  

w [ l ,  1 ]  < - alpha 

w eN + 2 ,  1]  <- beta # 

#step 2 

if ( a 1  < a3 ) { 

} 

grad <- exp (0 . 686696259 * log (a3/a1 ) - 0 . 03593857 1 

* log ( a3/a t )  - 2 )  

i f  (a3 < a t )  { 

} 

grad <- 1/exp (0 . 686696259 * log (a1/a3) - 0 . 03593857 1 

* log ( a 1/a3) - 2 )  

if (a1  ! =  a3) { 

for ( i  in l : N ) { 

w [i + 1 ,  1] <- alpha * « a  + i * h) /a) - (grad)  

} 

} 

if (al  -- a3) { 

for C i  in 1 : N ) { 

w [i + 1 ,  1 ]  <- alpha + ( i  * (beta - alpha) ) / (b - a) * h 

} 
} 
lines (seq ( a ,  b ,  length = length (w ) ) , w )  

points ( s eq ( a ,  b ,  length = length (w) ) , w)  

k <- 1 # 

#step 4 

aa <- matrix (O , N ,  1 )  

bb < - matrix (O , N ,  1 )  

2 19  
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C C  <- matrix (0  , N ,  1 )  

d < - matrix ( O , N ,  1 )  

1 < - matrix ( O , N ,  1 )  

u < - matrix ( O , N ,  1 )  

v < - matrix (Toler , N ,  1 )  

z < - matrix (0  , N ,  1 )  

while (k < M & sum ( abs ( v »  > Toler) { 

#Step 5 

x <- a + h 

t <- ( w [3 ,  l J  - alpha) / (2 * h) 

220 

aa [ l , l J  <- 2+h-2*ffy ( x ,  w [2 ,  l J , t ,  a l , a2 , a3 , a4 , a5 , a6) 

bb [ l , l J  <- -1 + (h/2 * ffydash (x , w [2 ,  1J  , t , a l , a2 , a3 , 

a4 , a5 , a6» 

d [ l , lJ <- - (2  * w [2 ,  lJ - w [3 ,  1 J  - alpha + (h- 2 

* ff ( x ,  w [2 ,  l J , t , al , a2 , a3 , a4 , a5 , a6» ) # 

#step 6 

for ( i  in 2 :  ( N  1 »  { 

x <- a + i * h 

t <- ( w [i  + 2 ,  l J  - w [i ,  l J ) / (2 * h)  

aa [ i , l J  <- 2 + (h-2  * ffy (x ,  w [i + 1 ,  l J , t ,  al , a2 , a3 , 

a4 , a5 , a6» 

bb [i , 1 ]  <- - 1  + (h/2 * ffydash (x , w [i + 1 ,  1 ] , t ,  al , a2 , 

a3 , a4 , a5 , a6» 

cc [i , 1 ]  <- -1  - (h/2 * ffydash ( x , w [i + 1 ,  1 ] , t ,  a l , a2 , 

a3 , a4 , a5 , a6» 

d [i , 1 ]  <- - ( 2  * w [ i  + 1 ,  1] - w [ i  + 2 ,  1 ]  - w [ i , 1 ]  + 

( h - 2  * ff (x , w [i + 1 ,  l J , t ,  al , a2 , a3 , a4 , a5 , a6» ) 

} 

#step 7 

x <- b - h 

t <- (beta - w eN ,  l J ) / (2 * h) 

aa [N , l J  <- 2 + (h-2  * ffy ( x ,  w eN + 1 ,  l J , t ,  a l , a2 , a3 , a4 , 

a5 , a6 » 

cc [N , l J  <- -1  - (h/2 * ffydash (x , w eN + 1 ,  1] , t ,  al , a2 , a3 , 
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a4 , a5 , a6» 

d eN ,  1]  <- - (2 * w eN + 1 ,  1 ]  - beta - w eN ,  1]  + (h�2  * 

ff (x , w eN + 1 ,  1 ] , t ,  al , a2 , a3 , a4 , as , a6» ) # 

# step 8 

1 [ 1 ,  1 ]  <- aa [ l , 1 ]  

u [ l ,  1 ]  <- bb [ l , l ] /aa [ l , 1 ]  # 

#step 9 

for ( i  in 2 : (N - 1 »  { 

1 [  i ,  1 ]  < - aa [ i , 1 ]  - cc  [i , 1] * u [i  - 1 ,  1 ] 

u [i ,  1 ]  <- bb [i , l ] /1 [ i , 1 ]  

} 
#step 10 

1 [N ,  

#step 1 1  

z [ 1 , 

#step 12  

1 ]  

1 ]  

<- aa [N , 1 ]  - cc [N ,  1] * u [N -

<- d [ 1 , 1 ]  / 1  [ 1 , 1 ]  # 

for ( i  in 2 : N ) { 

1 ,  1 ]  # 

z [i ,  1] <- (d [i , 1]  - cc [i , 1] * z [i - 1 ,  1 ] ) / 1 [i ,  1 ]  

} 
#step 13  

v [N , 1] <- z [N , 1]  

w [N  + 1 ,  1 ]  <- w [N + 1 ,  1 ]  + v [N , 1] # 

#step 14 

for ( i  in (N  - 1 ) : 1 ) { 

} 
#step 15  

#step 16  

v [i ,  1] <- z [i ,  1]  - u [i ,  1]  * v [i + 1 ,  1 ]  

w [i + 1 ,  1 ]  <- w [i + 1 ,  1 ]  + v [i ,  1] 

cat (k ,  Toler , sum ( abs (v» , N ,  f i l l  = T) 

if ( sum (abs ( v »  < Toler)  { 

for ( i  in 1 : (N + 2 »  { 

xx [i , 1]  <- a + ( i  - 1 )  * h 

} 

22 1  
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# step 17  

#STOP 

} 

#step 18  

# 

xx [ ,  2J <- w e ,  1]  

xx [ l , 3J <- 1 

cat ( " Done " , f i ll = T) 

lines ( s eq ( a ,  b ,  length = length (w» , w )  

points ( s eq ( a ,  b ,  length = length(w» , w )  

k <- k + 1 

} 

#step 19 

xx 

} 

The Funct ion : ff  

This program returns the value o f  f(x, y ,  y') . 

ff<-

funct i on (x ,  y ,  ydash , a ,  b ,  c ,  d ,  e ,  f )  

{ 
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« 1  + ydash-2)  * « 2  * c * y + d + e * x )  - (2 * a * x + b + e * y) 

* ydash» / (a * x-2 + b * x + C * y - 2  + d * Y + e * x * y + f )  

} 

The Function:ffy 

This program returns the value of fy (x, y, y' ) .  

ffy<-

function ( x ,  y ,  ydash , a ,  b ,  c ,  d ,  e ,  f)  

{ 

( 1  + ydash-2)  * « 2  * c - e * ydash) / (a * x - 2  + b * x + C * y - 2  

+ d * Y + e * x * y + f )  - « 2  * c * y + d + e * x) * 

« 2  * c * y + d + e * x)  - (2  * x * a + 
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} 

b + e * y )  * ydash» / C a * x - 2  + b * x + C * y - 2  + d * 

Y + e * x * y + f ) - 2 )  

The Function : ffydash 

This program returns the value of fyl (x, y ,  y') 

ffydash<-

functi on (x ,  y ,  ydash , a ,  b ,  c ,  d ,  e ,  f )  

{ 
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(2 * ydash * « 2  * c * y + d + e * x )  - (2 * a * x + b + e * y) 

* ydash» I ( a * x - 2  + b * x + C * y - 2  + d * Y + e * x 

* y + f )  - « 2  * a * x + b + e * y )  * ( 1  + ydash-2» 1 

C a  * x - 2  + b * x + C * y - 2  + d * Y + e * x * y + f )  

} 

The Function : transformout . f  

This program finds the optimal path that minimises the l i ne integral for the 

surface L(x, y) = a [x2 + a2X + a3y2 + a4Y + a5xy + a6 . The inputs are 

Input: 

a : t he x value of the i l l i tial posi tion . 

b : the x value of the final position. 

alpha : the y value of the initial posi tiol l .  

beta : the  y value of  the final posit ion. 

N:  the number of points in the path not counting the beginning and end points. 

Toler: the error in successive approximations. When the algorithm gets to a value 

below Toler it ends the program and suppl ies the path found. 

M:  the number of i terations to do before fai l ing. 

a l -a6: the coefficients of L(x, y) = a L x
2 + a2X + a3y2 + a4Y + a5XY + a6 . 

Output: 

As the program runs there wi l l  be output describing the iteration number, the 

tolerance level set as i llPut and the current value of the tolerance. There will  also 
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be a graph displayed with the current path under consideration . This aids as a 

visual check to see that the algorithm is generating a smooth curve. If there are 

bumps in the curve which are increasing with each i teration i t  is l ikely to mean 

the algori thm wil l be unsuccessfu l .  The algorithm works 011 the transformed data 

and the labels on the graph refer to the transformed data values. The final 

output is back transformed and can be graphed . 

The final output is a ( N  + 2)  x 3 matrix. I f  the algorithm stop successful ly the 

matrix will contain in the 

fi rst column: the x positions of the path 

second column : the y positions of the path and 

th ird column:  a one in the first position to signify successful completion . 

If the algori thm stops without success then the matrix will contain a set of zeros. 

The algorithm is 

transf ormout . f  

function (a , b ,  alpha , bet a ,  N ,  Toler , M ,  a i , a2 , a3 , a4 , a5 , a6) 

{ 

# 

b l  ( - al  

b2 (- a2 

b3 (- a3 

b4 (- a4 

b5 (- a5 

b6 (- a6 

aO (- a 

bO (- b 

alphaO (- alpha 

betaO (- beta 

if ( a5 1 =  0)  { 

#find angle of rotat ion 

theta (- 1/2 * atan (a5/ ( a i  - a3) ) # 

#recovers if ( a i -a3) = 0 ! 

#find new coeffs of equat ion 

b i  (- a i  * (cos ( theta) ) -2 + a5  * cos ( theta) * s in (theta) 

+ a3 * ( s in ( theta) ) - 2 
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b3 <- a i  * ( s i n ( theta» - 2  - a5 * s in (theta) * cos  (theta) 

+ a3 * (cos (theta» - 2  

b2 <- a 2  * cos  (theta) + a4 * s in (theta) 

b4 <- -a2 * s in (theta) + a4 * cos (theta) 

b5 <- a5 * « cos (theta» - 2  - ( s i n ( theta» - 2 )  + 

2 * « a3 - a i »  * s i n ( theta) * c o s  (theta) 

b6 <- a6 # 

#f inds new alpha , beta , aO and bO 

} # 

aO <- a * cos (theta) + alpha * s in (theta) 

alphaO <- - a * s in (theta) + alpha * cos (theta) 

bO <- b * cos (theta) + beta * s in (theta) 

betaO <- - b * s i n ( theta) + beta * cos (theta) 

#adj usts the axes so  minimum is  at ( 0 , 0 ) 

aO < - aO + (b2/ ( 2  * b i »  

alphaO <- alphaO + (b4/ ( 2  * b3» 

bO <- bO + (b2/ (2 * b i »  

betaO <- betaO + (b4/ (2 * b3» # 

# check to  see  whi ch way optdiff i s  more l ikely t o  work 

if ( b i  <= b3) { 

# 

getx « - opt f inddiff . f (aO , bO , alphaO , betaO , N ,  Toler , 

M ,  b i , 0 ,  b3 , 0 ,  0 ,  b6) 

} 
if ( b3 < b i )  { 

} 

getx « - optf inddiff . f ( alphaO , betaO , aO , bO , N ,  Toler , 

M ,  b3 , 0 ,  bi , 0 ,  0 ,  b6) 

hold <- getx [ ,  i]  

getx [ ,  i ]  <- getx [ ,  2] 

getx [ ,  2] <- hold 

re-adj usts the minimum 

gx < - getx [ ,  i ]  - (b2/ ( 2  * b i )  

gy < - getx [ ,  2] - (b4/ (2 * b3» # 

#return solut ion to  the old co-ordinates 

225 



APPENDIX F. FINITE DIFFERENCE ALGORITHM: l  

i f  (a5 ! =  0 )  { 

ggx (- gx * cos ( theta) - gy * sin  ( theta) 

ggy (- gx * sin ( theta) + gy * cos (theta) 

gx (- ggx 

gy (- ggy 

} 
cbind ( gx , gy , getx [ , 3] )  

} 

Typical Input 
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This is the Splus command to call tTansfoTmout .f .  The starting positions is 

(3 , 1 )  and the end position is (0, 0 ) .  There are to be 20 points on the path 

(besides the points (3, 1 )  and (0, 0) ) .  The tolerance is 0 .00000 1 and 1 00 i terations 

wil l  be considered . The value of L is L(x, y) = lx2 + 100y2 - lxy . 

gg(-transformout . f (3 , 0 , 1 , 0 , 20 , 0 . 00000 1 , 1 00 , 1 , 0 , 100 , 0 , - 1 , 0 ) 

Typical O utput 

The screen output is 

1 1 e-006 0 . 76853690975329 20 

2 1e-006 0 . 07707208 183 1 64 9 1  20 

3 1 e-006 0 . 0083755503 1 84 1968 20 

4 1 e -006 0 . 000100336 1348699 16  20 

5 1 e-006 1 . 62367731 1034 1 3e-008 

The path data is 

gg 

gx gy 

[ 1 , ]  3 . 0000000 1 . 0000000000 

[2 , ]  2 . 86029 17 0 . 3288987357 

[3 , ]  2 . 7 180483 0 . 1597504459 

[4 , ]  2 . 57534 17 0 . 0823 1 93350 

[5 , ]  2 . 4324357 0 . 0443803052 

[6 , ]  2 . 28943 17 0 . 0258368226 

20 
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[7 , ] 2 . 1463793 0 . 0 1 68871 458 

[8 , ] 2 . 0033036 0 . 0 1 254045 14 

[9 , ] 1 . 8602 172 0 . 0 1 03060083 

[ 1 0 , ] 1 . 7 1 7 1 262 0 . 0089908 1 13 

[ 1 1  , ]  1 . 5740333 0 . 00805 1 9528 

[ 1 2 , ] 1 . 4309397 0 . 0072566798 

[ 13 , ]  1 . 2878458 0 . 0065 1 18780 

[ 14 , ]  1 . 14475 1 9  0 . 005783 1 887 

[ 1 5 , ] 1 .  00 1 6579 0 . 005059087 1 

[ 1 6 , ] 0 . 8585639 0 . 004336 1 236 

[ 1 7  , ]  0 . 7 1 54699 0 . 0036 1 33987 

[ 1 8 , ] 0 . 5723759 0 . 0028907 1 44 

[ 1 9 , ] 0 . 4292820 0 . 002 1 680354 

[20 , ]  0 . 286 1880 0 . 0014453569 

[2 1 ,  ] 0 . 1430940 0 . 0007226785 

[22 , ] 0 . 0000000 0 . 0000000000 

Finally here is the graph of the optimal path found by tmnsformout.j 

Optimal Path 

0,0 .. , lO lS 
X 

1. U 3,0 

Figure F . l :  The graph of the path found by transformout .f  
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Appendix G 

Finite D ifference AIgorithm: 2  

Heading to a Non-Minimal Point 

The l istings below are the fi les required to run t he fin ite difference algorithm for 

the Boundary Val ue Problem. The solution to the Boundary Value Problem is 

equivalent to the sol l l tion of the Euler-Lagrange differential equations 

corresponding to the problem of finding a path on L(x, y) that minimises the J i l le 

integral on L(x,  y) .  The fi les in this section find the solution when neither 

boundary points is a minmum on L(x, y) 

l )foptfinddiff.f: this program finds the optimal path between Xo and Xl for the 

surface L(x ,  y) = a lx2 + a3y2 + a6 i n  order to minimse the path integral of 

L(x,  y) . The assumption is that L(x, y) is a cup shaped surface .  

2)ff: this program returns the value of f(x, y,  y') .  This function is the 

Euler-Lagrange equation in  y" 

3)ffy: this program returns the value of fy (x, y, y' ) .  This function is the partial 

derivative of the Euler-Lagrange equation in y" with respect to y. 

4)ffydash: this program returns the value of fy, (x, y, y') .  This function is the 

partial derivative of the Eu ler-Lagrange equation in y" with respect to y. 

5 ) transformoutnomin.f: this program takes a generic cup shaped surface, a 

polynomial of order 2 in two variables, and transforms it to 

L(x, y) = a l x2 + a3y2 + a6 . I t  then cal lsfoptfinddi! f.! to find the optimal path .  



APPENDIX G. FINITE DIFFERENCE ALGORITHM:2 

The Function: foptfinddiff. f 

This program finds the path that minimises the l ine integral of 
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L(x, y)  = a [x2 + a3y2 + a6 by solving the corresponding Boundary Value Problem. 

The inputs are 

Input:  

a : the x value of the in it ial position . 

b : the x value of the final position. 

alpha : the y value of the in it ial position. 

beta : the y value of the final position. 

N :  the number of points on the path not counting the beginning and end poi nts. 

Toler: the error in successive approximations. When the algorithm gets to a value 

below Toler it ends the program and suppl ies the path found. 

M: the number of i terations to do before fai l ing without a solution. 

a l -a6: the coefficients of L (x ,  y)  = a [x2 + a2X + a3y2 + a4Y + asxy + a6 . For th is 

problem a2 , a4 and as are taken to be zero. If any of these are not then the 

function transformout.f  should be cal led intead . 

O utput:  

As the program runs t here wil l be output describing the i teration number, the 

tolerance level set as i nput and the current value of the tolerance. There wil l  also 

be a graph displayed with the current path under consideration. This aids as a 

visual check to see that t he algorithm is generating a smooth curve. I f  t here are 

bumps in the curve which are increasing with each iteration it is l ikely to mean 

the algorithm wil l  be unsuccessful .  

The final output is a (N + 2 )  x 3 matrix. If the algorithm stopSsuccessful ly t he 

matrix wil l contain in  the 

first column: the x posit ions of the path 

second column: the y positions of the path and 

third column: a one in the first position to signify successful completion . 

If the algorithm stops without success then the matrix wil l contain a set of zeros. 

The algorithm is 

foptf inddiff . f<-
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funct ion ( a ,  b ,  alpha , beta , N ,  Toler , M ,  a l , a2 , a3 , a4 , a5 , a6 ) 

{ 

plot ( c ( a ,  b ) , c (alpha + 1 ,  beta» 

xx <- matrix ( O , N + 2 ,  3 )  # 

#step 1 

h <- (b  - a) / (N + 1 )  

w < - matrix ( O , N + 2 ,  1 )  

w [ l ,  1 ]  < - alpha 

w eN + 2 ,  1] <- beta # 

#step 2 

for O in l : N ) { 

w [i + 1 ,  1 ]  <- alpha + ( i  * (beta - alpha» / (b - a) * h 

} 
l ines (seq ( a ,  b ,  length = length (w» , w )  

po ints ( seq ( a ,  b ,  length = length (w» , w )  

k <- 1 # 

#step 

aa 

bb 

cc  

4 

<-

<-

<-

matrix ( O , 

matrix ( O , 

matrix ( O , 

N ,  1 )  

N ,  1 )  

N ,  1 )  

d < - matrix ( O , N ,  1 )  

1 < - matri x ( O , N ,  1 )  

u < - matrix ( O , N ,  1 )  

v < - matrix (Toler , N ,  1 )  

z < - matr i x ( O , N ,  1 )  

whi le ( k  < M & sum (abs (v»  > Toler) { 

#Step 5 

x <- a + h 

t <- ( w [3 ,  1 ]  - alpha) / (2 * h)  

aa [ l , 1 ]  <- 2 + h-2 * ffy (x ,  w [2 ,  1] , t ,  al , a2 , a3 , a4 , 

a5 , a6) 

bb [ l , 1 ]  <- -1 + (h/2 * ffydash (x , w [2 ,  1] , t ,  al , a2 , a3 , 

a4 , a5 , a6» 

d [ l ,  1 ] <- - (2 * w [2 ,  1] - w [3 ,  1]  - alpha + (h-2 * ff ( x , 

230 
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w [2 ,  1 ] , t ,  a l , a2 , a3 , a4 , a5 , a6) ) )  # 

#step 6 

for ( i  in 2 : (N - 1 ) )  { 

x <- a + i * h 

t <- ( w [i  + 2 ,  1 ]  - w [i ,  1 ] ) / ( 2  * h) 

23 1 

aa [ i , 1 ]  <- 2 + (h-2  * ffy (x , w [i + 1 ,  1 ] , t ,  al , a2 , a3 , 

a4 , a5 , a6) )  

bb [ i , 1 ]  <- -1  + (h/2 * ffydash (x , w [i + 1 ,  1 ] , t ,  a l , a2 , 

a3 , a4 , a5 , a6) ) 

edi , 1 ]  <- - 1  - (h/2 * ffydash (x , w [i + 1 ,  1 ] , t ,  a l , a2 , 

a3 , a4 , a5 , a6) ) 

d [i , 1 ]  <- - ( 2  * w [i  + 1 ,  1 ]  - w [i  + 2 ,  1 ]  - w [i , 1 ]  + 

(h-2  * ff ( x , w [ i + 1 ,  1 ] , t ,  al , a2 , a3 , a4 , a5 , a6) ) )  

} 
#step 7 

x <- b - h 

t <- (beta - w EN ,  1 ] ) / ( 2  * h)  

aa [N , 1 ]  <- 2 + (h-2  * ffy (x , w [N + 1 ,  1 ] , t ,  a l , a2 , a3 , a4 , 

a5 , a6) ) 

ee [N , 1 ]  <- - 1  - (h/2 * ffydash (x , w EN 

a4 , a5 , a6) ) 

d EN ,  1 ]  <- - ( 2  * w EN + 1 ,  1 ]  - beta -

w EN + 1 ,  1 ] ,  t ,  a l , a2 , a3 , 

# step 8 
1 [ 1 , 1 ]  <- aa [ 1 , 1 ]  

u [ 1 , 1 ]  < - b b [ 1 , 1 ]  / aa [ 1 , 1 ]  # 

#step 9 

for ( i  in 2 : (N - 1 ) )  { 

+ 1 ,  1 ] , 

w EN ,  1 ]  

a4 , a5 , 

l [i ,  1 ]  <- aa [ i , 1 ]  - edi , 1 ]  * u [i - 1 , 1 ]  

u [i ,  1 ]  <- bb [i , l] /l [ i , 1 ]  

} 
#step 1 0  

l [N ,  1 ]  <- aa [N , 1 ]  - ee [N , 1 ]  * u [N - 1 , 1 ]  # 

#step 1 1  

t ,  a l , a2 , a3 , 

+ (h-2  * ff ( x , 

a6) ) )  # 
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z [ l ,  1] (- d [ 1 ,  1] / 1 [ 1 , 1] # 

#step 12  

for C i  in 2 : N ) { 

z [i ,  1]  (- (d [ i , 1]  - c c [i , 1]  * z [i - 1 ,  1 ] ) / 1 [i ,  1] 

} 
#step 13 

v [N , 1]  (- z [N , 1]  

w eN + 1 ,  1 ]  (- w eN + 1 ,  1 ]  + Y eN ,  1]  # 

#step 14 

for ( i  in ( N  - 1) : 1 ) { 

} 

v [i ,  1]  (- z [i ,  1]  - u [i ,  1]  * v [i + 1 ,  1 ]  

w [ i + 1 ,  1] (- w [i + 1 ,  1 ]  + v [i ,  1]  

#step 15  

#step 16  

cat (k ,  Toler , sum ( abs (v» , N ,  fill  = T)  

if ( sum ( abs (v»  ( Toler) { 

for ( i  in l : (N + 2 »  { 

xx [i , 1]  (- a + ( i  - 1 )  * h 

} 
# step 1 7  

#STOP 

} 

xx [ , 2] (- w [ , 1 ]  

x x  [ 1 , 3 ]  (- 1 

cat.( IDone " , f i l l  = T) 

#step 18 

} 
xx 

} 

lines ( s eq ( a ,  b ,  length = length (w» , w)  

points ( s eq ( a ,  b ,  length = length (w» , w )  

k (- k + 1 
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APPENDIX G. FINITE DIFFERENCE ALGORITHM:2 

The Function : ff  

This program returns the value o f  f (x,  y ,  y') .  

ff<-funct ion (x ,  y ,  ydash , a ,  b ,  c ,  d ,  e ,  f )  

{ 
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« 1  + ydash- 2 )  * « 2  * c * y + d + e * x) - (2 * a * x + b + e * y) 

* ydash» / (a * x - 2  + b * x + c * y - 2  + d * Y + e * x * y + f )  

} 

The Function : ffy 

This program returns the value of fy (x, y ,  y') . 

ffy<-funct ion ( x , y ,  ydash , a ,  b ,  C ,  d ,  e ,  f )  

{ 

( 1  + ydash- 2 )  * « 2  * c - e * ydash) / (a * x - 2  + b * x + C * y - 2  

+ d * Y + e * x * y + f )  - « 2  * c * y + d + e * x )  * 

« 2  * c * y + d + e * x) - ( 2  * x * a + 

b + e * y) * ydash» / (a * x-2  + b * x + C * y - 2  + d * 

Y + e * x * y + f ) - 2 )  

} 

The Function :ffydas h  

This program returns the value of  fy, (x, y , y') 

ffydash <- funct ion ( x ,  y ,  ydash , a ,  b ,  c ,  d ,  e ,  f )  

{ 

( 2  * ydash * « 2  * C * Y + d + e * x )  - ( 2  * a * x + b + e * y )  

* ydash» / (a * x - 2  + b * x + c * y - 2  + d * Y + e * x 

* y + f )  - « 2  * a * x + b + e * y )  * ( 1  + ydash-2» / 

( a  * x - 2  + b * x + C * y-2  + d * Y + e * x * y + f )  

} 

The Function :transformout nomin.f 

This program finds the optimal path that minimises the l ine integral for the 

surface L(x, y) = a [ x2 + a2X + a3y2 + a4Y + a5xy + aG . The inputs are 
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Input: 

a : the x value of the initial position . 

b : the x value of the final position . 

alpha : the y value of the initial posit ion . 

beta : the y value of the final position. 
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N:  the number of points in  the path not counting the beginning and end points. 

Toler: the error in  successive approximations. When the algorithm gets to a value 

below Toler it ends the program and suppl ies the path found. 

M:  the number of i terations to do before fail ing. 

al-a6: the coefficients of L(x, y) = a [x2 + a2X + a3y2 + a4Y + a5XY + a6 . 

Output: 

As the program runs there wil l  be output describing the i teration number, the 

tolerance level set as input and the current value of the tolerance. There wil l  also 

be a graph displayed with the current path under consideration. This aids as a 

visual check to see that the algorithm is generating a smooth curve. If there are 

bumps in the curve which are increasing with each i teration i t  is l ikely to mean 

the algorithm wil l  be unsuccessful .  The algori thm works on the transformed data 

so, the labels on the graph refer to the transformeu data values. The final output 

is back transformed and can be graphed . 

The final output is a (N  + 2) x 3 matrix . If the algorithm stop successfu l ly the 

matrix will contain in  the 

first column:  the x positions of the path 

second column: the y positions of the path and 

third column: a one in the first position to signify successful completion. 

If the algorithm stops without success then the matrix wil l contain a set of zeros. 

The algorithm is 

transformoutnomin . f  

funct i on ( a ,  b ,  alpha , bet a ,  N ,  Toler , M ,  a l , a2 , a3 , a4 , a5 , a6) 

{ 
b l  (- a l  

b 2  (- a2 

b3 (- a3 
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# 

b4 <- a4 

b5 <- a5 

b6 <- a6 

aO <- a 

bO < - b 

alphaO <- alpha 

betaO <- beta 

if ( a5 ! = 0) { 

#f ind angle of rotat ion 

theta <- 1 /2 * atan ( a5/ ( a 1  - a3» # 

#recovers if  ( a 1 -a3) = 0 ! 

#f ind new coeffs of equat ion 

b1 <- a1  * ( cos (theta» - 2  + a5 * cos ( theta) * s i n ( theta) 

+ a3 * ( s in (theta» - 2  

b 3  < - a 1  * ( s in (theta» - 2  - a 5  * s in ( theta) * cos (theta) 

+ a3 * (cos ( theta» - 2  

b 2  < - a2 * c o s  ( theta) + a4 * s in ( theta) 

b4 <- - a2 * sin ( theta) + a4 * cos ( theta) 

b5 <- a5 * « cos ( theta» - 2  - ( s in ( theta» - 2 )  

+ 2 * « a3 - a 1 »  * s i n (theta) * cos ( theta) 

b6 <- a6 # 

#f inds new alpha , beta , aO and bO 

} 

aO <- a * cos (theta) + alpha * sin ( theta) 

alphaO <- - a * s i n ( theta) + alpha * cos ( theta) 

bO <- b * cos (theta) + beta * s i n (theta) 

betaO <- - b * s in ( theta)  + beta * cos ( theta) 

aO <- aO + (b2/ ( 2  * b 1 »  

alphaO < - alphaO + (b4/ ( 2  * b3» 

bO <- bO + (b2/ (2  * b 1 »  

betaO < - betaO + (b4/ (2  * b3» 

# check to  see which way optdiff is more l ikely to work 

getx « - f optf inddiff . f ( aO , bO , alphaO , betaO , N ,  Toler , M ,  
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b l , 0 ,  b3 , 0 ,  0 ,  b6) 

gx <- getx [ ,  1 ]  - (b2/ ( 2  * b l »  

g y  < - getx [ ,  2] - (b4/ (2  * b3» # 

#return solution t o  the old co-ordinates 

if ( a5 ! =  0)  { 

ggx <- gx * cos  ( theta) - gy * s in (theta) 

ggy <- gx * s i n ( theta) + gy * cos ( theta) 

gx <- ggx 

gy <- ggy 

} 
cbind (gx , gy , getx [ , 3] )  

} 

Typical Input 
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This is the Splus command to call transfo1·moutnomin.f .  The starting position 

is (3 , 1 )  and the end position is ( 1 , 1 ) .  There are to be 40 points on the path 

(besides the points (3 , 1 )  and ( 1 , 1 ) ) .  The tolerance is 0 .000001 and 100 i terations 

will be considered . The value of L is L (x, y) = lx2 + ly2 - lxy. 

g2<-transformoutnomin . f (3 , 1 , 1 , 1 , 40 , 0 . 00000 1 , 100 , 1 , 0 , 1 , 0 , - 1 , 0 ) 

Typical Output 

The screen output is 

1 l e-006 1 . 00775265276267 40 

2 l e -006 0 . 0565980086 1 4 1 9  40 

3 l e-006 0 . 0001 20086434477465 40 

4 l e-006 3 . 2598 1 97324736e- O l 0  40 

The path data is 

g2 

gx gy 

[ 1 , ]  3 . 000000 1 . 0000000 

[2 , ]  2 . 953246 1 . 0020268 
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[3 , ]  2 . 906258 1 . 0038 1 94 

[4 , ] 2 . 859032 1 . 005373 1 

[5 , ] 2 . 8 1 156 1 1 . 0066832 

[6 , J  2 . 763843 1 . 0077452 

[7 , ] 2 . 7 1 5872 1 . 0085546 

[8 , J  2 . 667644 1 . 009 1073 

[9 , ] 2 . 6 19 155 1 . 0093994 

[ 1 0 , ] 2 . 570403 1 . 0094276 

[ 1 1 , ] 2 . 52 1384 1 . 009 1890 

[ 1 2 , ] 2 . 472096 1 . 00868 1 5  

[ 1 3 , J 2 . 422538 1 . 0079038 

[14 , ] 2 . 3727 10 1 . 0068559 

[ 1 5 , J 2 . 3226 12  1 . 0055389 

[ 16 , ] 2 . 272248 1 . 0039557 

[17 , ]  2 . 22 1624 1 .  002 1 1 13 

[ 18 , J  2 . 170745 1 .  0000 132 

[ 1 9 , J 2 . 1 19623 0 . 99767 1 9  

[20 , J 2 . 068272 0 . 995 1 0 1 5  

[2 1 , ]  2 . 0 1 67 1 1  0 . 9923205 

[22 , ] 1 . 964962 0 . 9893524 

[23 , J  1 . 9 13056 0 . 9862270 

[24 , ]  1 . 861030 0 . 9829809 

[25 , ] 1 . 808927 0 . 979659 1 

[26 , J  1 . 756803 0 . 9763 155 

[27 , J 1 . 704722 0 . 9730 146 

gx gy 

[28 , ]  1 . 652759 0 . 96983 1 9  

[29 , ] 1 . 601001  0 . 9668546 

[30 , ]  1 . 549548 0 . 964 1822 

[3 1 , J 1 . 4985 1 1  0 . 96 19255 

[32 , J 1 . 4480 1 1  0 . 9602057 

[33 , ]  1 . 398177 0 . 9591523 

[34 , J 1 . 349 144 0 . 9588996 

[35 , J  1 . 301046 0 . 9595830 
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[36 , ]  1 . 2540 1 7  0 . 96 13337 

[37 , ]  1 . 208 1 77 0 . 9642746 

[38 , ]  1 . 163637 0 . 9685 149 

[39 , J 1 . 120488 0 . 974 1463 

[40 , J  1 . 078802 0 . 98 1 2409 

[4 1 ,  ] 1 . 038629 0 . 9898490 

[42 , ]  1 . 000000 1 . 0000000 

The graph of the sou lt ioIlS is in figure G . 1 .  

Optimal Paths for L(x,Y) 
q 

� 
y 

� 

� 

� 
!i 0 

1.0 1.5 2.0 2.5 ' 0  
x 

Figure G . 1 :  The optimal path on L = x2 + y2 - xy from (3 , 1 )  to ( 1 , 1 ) .  
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Design Matrix for the Split P lot 

D at a  
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The data in  the table below is that col lected for the split plot example in Chapter 

1 .  

shape tar coke volt cont temp data 
- 1  - 1  - 1  - 1  - 1  - 1  1 . 15875977 

1 - 1  - 1  - 1  - 1  - 1  0 . 20568296 
- 1  1 - 1  - 1  - 1  - 1  1 . 5 1 059 135 

1 1 - 1  - 1  - 1  - 1  - 1 . 000 10966 
- 1  - 1  1 - 1  - 1  - 1  0 . 76 1 9 1 5 4 1  

1 - 1  1 - 1  - 1  - 1  2 . 7072 1242 
- 1  1 1 - 1  - 1  - 1  0 . 76840067 

1 1 1 - 1  - 1  - 1  -0 . 1 3835 194 
- 1  - 1  - 1  1 - 1  - 1  -0 . 32344358 

1 - 1  - 1  1 - 1  - 1  - 1 . 95964 132 
-1 1 - 1  1 - 1  - 1  0 . 7921 2294 

1 1 - 1  1 - 1  - 1  - 1 . 287 14965 
- 1  - 1  1 1 - 1  - 1  0 . 142 17644 

1 - 1  1 1 - 1  - 1  -0 . 48589399 
- 1  1 1 1 - 1  - 1  -0 . 065 17826 

1 1 1 1 - 1  - 1  1 . 03065844 
-1 - 1  - 1  - 1  1 - 1  -2 . 0965 1 1 32 

1 - 1  - 1  - 1  1 - 1  -0 . 09722972 
- 1  1 - 1  - 1  1 - 1  0 . 16299795 
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1 1 - 1  - 1  1 - 1  0 . 8238 1 8 1 5  
- 1  - 1  1 - 1  1 - 1  - 1 . 54259351 

1 - 1  1 - 1  1 - 1  -0 . 34825481 
- 1  1 1 - 1  1 - 1  0 . 25956763 

1 1 1 - 1  1 - 1  1 . 3907 1878 
-1 - 1  - 1  1 1 - 1  -0 . 36839460 

1 - 1  - 1  1 1 - 1  -0 . 655866 10  
-1  1 - 1  1 1 - 1  -0 . 02044628 

1 1 - 1  1 1 - 1  0 . 02623366 
- 1  - 1  1 1 1 - 1  2 . 1 8 1 1 9632 

1 - 1  1 1 1 - 1  - 1 . 25550984 
- 1  1 1 1 1 - 1  -0 . 09207472 

1 1 1 1 1 - 1  0 . 63682325 
- 1  - 1  - 1  - 1  - 1  1 2 . 09393221 

1 - 1  - 1  - 1  - 1  1 - 1 . 5 1 767761  
- 1  1 - 1  - 1  - 1  1 0 . 48643948 

1 1 - 1  - 1  - 1  1 0 . 7 1073556 
- 1  - 1  1 - 1  - 1  1 - 1 . 29747482 

1 - 1  1 - 1  - 1  1 -0 . 63506206 
- 1  1 1 - 1  - 1  1 0 . 1 5379463 

1 1 1 - 1  - 1  1 - 1 . 24940022 
-1  -1  -1  1 - 1  1 - 1 . 38599347 

1 - 1  - 1  1 - 1  1 1 . 01398356 
- 1  1 - 1  1 - 1  1 - 1 . 4389 1 8 1 4  

1 1 - 1  1 - 1  1 -0 . 1 2583428 
- 1  - 1  1 1 - 1  1 0 . 68550895 

1 - 1  1 1 - 1  1 0 . 59457865 
- 1  1 1 1 - 1  1 - 1 . 1 698 1 467 

1 1 1 1 - 1  1 -0 . 6 1974 10  
-1  -1  -1  -1  1 1 0 . 3829985 

1 - 1  - 1  - 1  1 1 - 1 . 5483784 
- 1  1 - 1  - 1  1 1 2 . 0846723 

1 1 - 1  - 1  1 1 -0 . 5608030 
- 1  - 1  1 - 1  1 1 0 . 7745685 

1 - 1  1 - 1  1 1 -0 . 1349605 
- 1  1 1 - 1  1 1 - 1 . 357 1 536 

1 1 1 - 1  1 1 - 1 . 8949398 
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- 1  - 1  - 1  1 1 1 1 . 0059796 
1 - 1  - 1  1 1 1 -0 . 3897 107 

- 1  1 - 1  1 1 1 0 . 2757704 
1 1 - 1  1 1 1 0 . 1 2 1 6626 

- 1  - 1  1 1 1 1 - 1 . 8323588 
1 - 1  1 1 1 1 -0 . 4633447 

- 1  1 1 1 1 1 1 . 99773 1 3  
1 1 1 1 1 1 0 . 8531 242 
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Appendix I 

Determining Minimal 

Transit ions : 1 

O ne Factor per Change 

242 

This algorithm whichtochange.f finds the transition from Xo to Xl that has the 

smallest value. A transition value is the sum of the l ine integrals 011 L( x) 
corresponding to  each factor change. L(  x) i s  a variance or an adjusted variance 

function . It is a polynomial of order 2 in p controllable factors and can be 

represented by 

Where C is a symmetric matrix. 

whichtochange .f  

Inputs 

The i nputs are 

paths: This is a matrix of dimensiolls nt x p. Where p is the number of 

controllable factors and nt is the number of paths to be considered . A row in the 

path matrix represents a transition and is the order that the p factors are 

changed e.g a typical row for a 3 factor problem would be (2 , 1 ,3) which means 

the second factor is changed first ,  then the first factor and lastly the third. The 

largest values that nt can take without there being repeats is p ! .  Some transitions 

may not be practical and these lleed not be l isted in the paths matrix. 
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AA: represents the constant, A,  in the equation L(x)  = A + xt B + xtCx. 

BB: represents the l inear terms, B ,  in  the equation L(x) = A + xt B + xtCx. I t  

is  a p x 1 matrix . 

C C :  represents the interaction and squared terms, C, in the equation 

L(x)  = A + xt B + xtCx. C is a p x p symmetric matrix where each coefficient 

of an interaction wi l l  appear twice and so is halved . 

start : represents the p x 1 matrix Xo 

finish: represents the p x 1 matrix Xl  

Outputs 

As the algori thm proceeds i t  outputs the row number of the transition under 

consideration and the sum of the l ine i ntegrals for the paths in that transition. 

The final output comprises a l ist of references to the rows of the matrix, paths 

that correspond to transitions with the smallest value i .e .  the output 4 7 would 

mean that there are two transitions that have the smallest value and that the 

transition order is contaiued in rows 4 and rows 7 of the matrix paths. The other 

object is the value of the sum of the l ine integrals for the paths that have minimal 

transi tions. 

The algori thm is 

whi chtochange . f <-

funct i on (paths , AA , BB , CC , start , f inish) 

{ 

noofpaths <- dim (paths)  [ 1 ]  

nooffactors < - dim (paths)  [2] 

minpath <- c O  

minpathlength <- 1000000000000 

currentpathlength <- 0 

for ( i  in l : noofpaths) { 

currentpos <- start 

currentpathlength <- 0 

for ( j  in l : nooffactors ) { 

currentpathlength <- currentpathlength + pathintegral (paths [i , 

j ] , currentpos , AA , BB , CC , f inish [paths [i , j ] ] , start [ 

paths [i , j ] ] )  
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} 

} 

currentpos [paths [ i , j ] ]  <- f inish [paths [ i , j ] ]  

} 
cat ( i ,  currentpathlength , f i l l  = T) 

if ( currentpathlength == minpathlength)  { 

minpath <- c (minpath , i )  

} 
if ( currentpathlength < minpathlength) { 

minpath <- i 

minpathlength <- currentpathlength 

} 

list (paths = minpath , min . path . length = minpathlength) 

pathintegral 

This function is called by whichtochange .f  and is a generic solver for l ine 

integrals of the type specified by L{x) when only one variable is changing. 

pathintegral<-

funct ion (x , values , AA , BB , CC , lower , upper )  

{ 

BBB < - BB 

BBB [x , 1]  <- BB [x , 1 ] /2 

eee <- CC 

eee [ ,  x] <- ee [ ,  x] /2 

eee [x , ] < - eee [x , ] /2 

eee [x , x] <- eC [x , x] /3 

uppervalues <- values 

uppervalues [x , 1 ]  <- upper 

uppervalues <- matrix (uppervalues ,  , 1 )  

lowervalues < - values 

lowervalues [x ,  1 ]  <- lower 

lowervalues <- matrix  ( lowervalues , , 1 )  

abs (upper * (AA + t (uppervalue s )  %*% BBB + t (uppervalues )  %*% 

eee %*% uppervalues )  - lower * ( AA + t ( lowervalue s )  %*% BBB 

244 
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+ t ( lowervalues )  %*% eee %*% lowervalues»  

} 

Typical Input 

Suppose L(x, y, z )  = 1 0  + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz then 

L(x, y, z )  can be represented by 

I .e .  

As input AA = A,  BB = B and CC = C. 

The init ial postition is Xo = ( � ) and input as the variable start. 

The final position is Xl = ( � ) and is input as the variable finish. 

The last input is the paths martrix. There are three factors and so there are 

3! = 6 unique transitions. The matrix paths below represents those transitions. 

1 

1 

2 

2 

3 

3 

2 

3 

1 

3 

2 

1 

3 

2 

3 

1 

1 

2 

i . e .  in row 6 the transition is to move factor 3 ,  z ,  first ,  then move factor 1 ,  x, and 

then move factor 2 , y. 
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Typical O utput 

The function cal l i s  whichtochange.f (paths , AA,  BB ,  CC, start , finish) . The 

output is 

1 9 18 . 5  

2 948 . 5  

3 8 1 6 . 5  

4 807 . 5  

5 873 . 5  

6 903 . 5  

$paths : 

[ 1 ]  4 

$rnin . path . length : 

[ , lJ 

[ 1 , J 807 . 5  
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The transit ion with the lowest sum of path integrals is in row 4 and the sum is 

807.5 .  This transition is (2, 3 , 1 )  i . e .  y is moved first, then z and t hen x. 

Calculations By Hand 

Calculating the first transition, ( 1 , 2 , 3) ,  by hand, as a final check gives 

Path 1 .  

The first factor is changed from value 3 to 0 with factors 2 and 3 remain ing 

constant at 2 and 4 respectively. 

Path 2 .  

103
1 0  + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz Idx l [ x2 5x3 

1 0x + 2 + 3 x 2x + 4 x 4x + 3 + 6 X (2 )2X + 3 X (4)2x 

4x2 (2) 2X2 x 4 ] 3 + 
2 

+ + 6 x 2 x 4x 
2 0 

30 + 4 .5  + 18  + 48 + 45 + 72 + 144 + 36 + 36 + 144 

577.5 

The second factor is changed from value 2 to 0 with factors 1 and 3 remaining 
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constant at 0 and 4 respectively. 

Path 3. 

102
1 0 + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz Idy l 

[1 0Y + 
3y2 

+ 4 x 4y + 
6y3 

+ 3 X 42y + 
6y2 j 2 

2 3 2 0 
20 + 6 + 32 + 1 6  + 96 + 48 

2 1 8  
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The third factor is changed from value 4 to 1 with factors 1 and 2 both remaining 

constant at O .  

i4 10  + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz Idz l  [ 4Z2 3z3 j 4 10z + - + -
2 3 1 

40 + 32 + 64 - 1 0  - 2 - 1 

1 23 

The transition value is the sum of these integrals which is 

577.5 + 2 1 8  + 1 23 = 9 18. 5  which agrees with the first transition val ue in the 

computer output. 

• 
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The algorithm whichtwotochangeeven.f finds the transition from Xo to Xl which 

has smallest value when only two controllable factors are changed at a time and 

the number of factors is even. When two factors are moved it is assumend that 

they fol low a straight l ine path. L(x) represents a variance or an adjusted 

variance function . It is a polynomial of order 2 in p factors and can be 

represented by 

Where C is a sym metric matrix. A transition consists of the sequence of two 

factor changes. Its value is the sum of the l ine i ntegrals on L(x) corresponding to 

the paths these factor changes take. 

whichtwotochangeeven.f  

Inputs 

The inputs are 

paths: This is a matrix of dimensions nt x p. Where p is the number of 

controllable factors and nt is the number of paths to be considered . A row in the 

path matrix represents the order that the p factors are going to be changed in e.g 
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a typical row for a 4 factor problem could be (2 ,4 , 1 ,3)  which means the second 

and fourth factor are changed together and then the first and third. 

AA: represents the constant, A, in the equation L(x) = A + xtB + xtCx. I t  is a 

scalar object .  

BB: represents the l inear terms, B ,  in the equation L(x)  = A + xtB + xtCx. I t  

is a p x 1 matrix. 

CC: represents the iuteraction and squared terms, C, in t he equation 

L(x) = A + xtB + xtCx . C is a symmetric p x p matrix where each coefficient 

of an interaction wi l l  appear twice and so is halved. 

start :  represents the p x 1 matrix Xo 

finish: represents the p x 1 matrix Xl 

Outputs 

As the algorithm proceeds i t  outputs the row number of the transition under 

consideration and the sum of the l ine integrals for the paths in that transition. 

The final output is a list comprising of 

1) a list of the row numbers of the matrix, paths. These row numbers correspond 

to rows in the paths matrix that are the transit ions with the smallest value. 

2) a list of the smal lest transition value. 

The algorithm is 

whi chtwotochangeeven . f(­

whi chtwotochangeeven . f  

function (paths , AA , BB , CC , start , f inish) 

{ 
noofpaths (- dim (paths ) [ 1 ]  

nooffactors (- dim (paths ) [2] 

even ( - T 

if « nooffactors/2) -- round (nooffactors/2) ) { 

even ( - T 

noof its (- nooffactors 

} 
else  { 

even (- F 

c at ( l i No  of factors i s  not even " , f i l l  = T) 
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return O 

} 
minpath (- c O  

minpathlength (- 1 000000000000 

currentpathlength (- 0 

for ( i  in l : noofpaths)  { 

currentpos (- start 

currentpathlength (- 0 

for ( j  in seq O , ( noof its - 1 ) , by = 2) ) { 
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currentpathlength (- currentpathlength + pathintegral2 (paths [i , j 

] ,  paths [ i , ( j  + 1 ) ] , currentpos , AA , BB , CC , start [paths [ 

} 

} 

} 

i ,  j ] ] , f inish [paths [i , j ] ] , start [paths [ i  , ( j  + 1 ) ] ] , 

f inish [paths [i , ( j  + 1 ) ] ] )  

currentpos [paths [i , j ] ]  (- f inish [paths [i , j ] ]  

currentpos [paths [i , ( j  + 1 ) ] ]  ( - f inish [paths [i , ( j  + 1 ) ] ]  

cat ( i ,  currentpathlength , f i l l  = T) 

if ( currentpathlength == minpathlength) { 
minpath (- c (minpath , i )  

} 
if ( c urrentpathlength ( minpathlength) { 

minpath (- i 

minpathlength (- currentpathlength 

} 

l ist ( paths = minpath , min . path . length = minpathlength) 

pathintegra12 

This function is cal led by whichtwotochange .f  and is a generic solver for l ine 

integrals of the type specified by L (  x) when two variables are changing in a 

straight l ine path .  

pathintegral2(-

funct i on ( x 1 , x2 , values , AA , BB , CC , lower 1 ,  upper1 ,  lower2 , upper2)  
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{ 

} 

BBB <- BB 

BBB [xl , 1] <- BB [ x l , 1]  * ( lowerl + (upper l - lower l ) /2 )  

BBB [x2 , 1]  < - BB [x2 , 1]  * ( lower2 + (upper2 - lower2) /2)  

eee <- cc 

eee [ ,  x l ]  < - ee [ ,  x l] * ( lower l + (upper 1 - lower! )  /2)  

eee [xl , ] <- ee [ x l , ] * ( lower l + (upper1  - lower l ) /2)  

eee [ ,  x2] <- CC [ ,  x2] * ( lower2 + (upper2 - lower2) /2)  

eee [x2 , ] <- CC [x2 , ] * ( lower2 + (upper2 - lower2) /2)  

CCC [xl , x l ] <- CC [x l ,  x l ]  * ( lower l � 2  + lower l * (upper l 

+ 1/3 * ( upper l  - lower l ) � 2 )  

- lowe r ! )  

CCC [x2 , x2] <- CC [x2 , x2] * ( lower2 � 2  + lower2 * (upper2 - lower2) 

+ 1/3 * (upper2 - lower2) � 2 )  

CCC [xl , x2] <- CC [x l , x2] * ( lower2 * lowerl  + ( lower l * 

(upper2 - lower2» /2 + ( lower2 * (upper l  - lower l » /2 + 

( (upperl  - lowerl )  * (upper2 - lower2 » /3) 

eee [x2 , xl ]  <- eCC [x l ,  x2] 

uppervalues <- values 

uppervalues [xl , 1] <- 1 

uppervalues [x2 , 1 ]  <- 1 

uppervalues <- matrix  (uppervalues ,  , 1 ) 

( (upper l - lower l ) � 2  + (upper2 - lower2) � 2 ) � O . 5  * (AA + t (uppervalue s )  

%*% BBB + t (uppervalue s )  %*% eee %*% uppervalues )  

Typical Input 

Consider this example. 

L(Xl ' X2 , X3 , X4 ) = xT + 2x� + 3x� + 4x� 

with xb = (5 , 5 , 5 , 5 )  and xi = (- 1 , - 1 ,  - 1 , - 1 ) .  Xo and Xl are used as inputs for 

the variables start and finish respectively. 
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By looking at the equation L(Xl , X2 , X3, X4 ) it gives as inputs 

0 1 0 0 

0 0 2 0 
AA = 0 BB = , CC = 

0 0 0 3 

0 0 0 0 

0 

0 

0 

4 
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From observation the minimal t ransition would be to move factors 3 and 4 fi rst ,  

then factors 1 and 2 i .e .  X3 and X4 then X l  and X2 . 

The matrix below, is the input object paths. Each row represents a transition. 

The fourth row represents the transition, move factors 2 and 3 first and then 

factors 1 and 4. 

1 2 3 4 

1 3 2 4  

1 4 2 3  

2 3 1 4 

2 4 1 3 

3 4 1 2 

With p = 4 factors there are np = :f = 6 transitions. They are all accounted for 

in paths. 

Typical O utput 

The function call is whichtwotochangeeven.f(paths, AA, BB, CC, sta7·t, finish) . 

The output is 

1 2 104 . 3497808 1 1 16 

2 1900 . 70302782944 

3 1697 . 0562748477 1 

4 1697 . 0562748477 1 

5 1493 . 40952 186599 

6 1289 . 76276888426 

$paths : 

[ 1 ] 6 
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$min . path . length : 

[ , 1 ] 

[ 1 , ]  1 289 . 763 

The transitions with the lowest sum of path integrals is in  row 6 .  This is move 

factors 3 and 4 together then factors 1 and 2. This transition has a value of 

1 289 .763. 

Calculations By Hand 

Calculating the first transition, ( 1 , 2 , 3 , 4 ) ,  by hand gives 

Path 1 .  

The first and second factors are both changed from value 5 to - 1  with factors 3 

and 4 remaining constant at 5 .  

Let X l = 5 - 6t ,  t = 0 . . .  1 and X 2  = 5 - 6t ,  t = 0 . . .  1 so 

Path 2 .  

r t (x� + 2x� + 3x� + 4xn (i;� + i;� ) � ldt l ./0 
(62 + 62 ) � 101 (3 (5 - 6t)2 + 75 + 1 00) dt 

2 2 
1 [ 60 

2 
36 3 ] 1 (6 + 6 ) 2 3(25t - -t  + -t  ) + 1 75t  

2 3 0 
1 663. 1 15 14935075968 

The third and forth factors are both changed from value 5 to - 1  with factors 1 

and 2 remaining constant at - l .  
Let X3 = 5 - 6t ,  t = 0 . . .  1 and X4 = 5 - 6t, t = 0 . . .  1 so 

10 t (x� + 2x� + 3x� + 4x�) (i;� + i;� )  � Idt l 

(62 + 62) � 10 1 (3 + 7(5 - 6t)2) dt 

(G2 + 62 )  � [3 + 7(25t _ 60 t2 + 36 t3 ) ] 1 
2 3 0 

44 1 . 23463 1460405632 

The transition value is the sum of these integrals which is 

1 663. 1 1 5 1  + 44 l . 2346 = 2 104 .3498. This agrees with the first transition value in 

the computer output. 

• 
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Two Factors per Change , Odd Number of Factors 

The algorithm whichtwotochangodd.f finds the transition from Xo to Xl which 

has smallest value when two control lable factors are changed at a time. In th is 

case there must be one single factor change. This factor change can be first, last 

or between any of the two factor changes. When two factors are moved it is 

assumend that they fol low a straight l ine path .  L( x) represents a variance or an 

adjusted variance function .  It is a polynomial of order 2 in p factors and can be 

represented by 

Where C is a symmetric matrix . A transition consists of the sequence of two 

factor with a final one factor change if the number of controllable factors is odd. 

Its value is the sum of the l ine integrals on L(  x) corresponding to the paths these 

factor changes take. 

whichtwotochangeodd.f 

Inputs 

The inputs are 

paths : This is a matrix of dimensions nt x p. Where p is the number of 

controllable factors and nt is the number of paths to be considered . A row in  the 

path matrix represents the order that the p factors are going to be changed in 

with the last factor being the factor that changes by i tself. A typical row might 

be ( 2 ,  4 , 3, 5 ,  1 )  which means that factors 2 and 4 change first then factors 3 and 

5 .  Factor 1 changes by i tself. It can change first, last or between the two factor 

changes. In in this case the row represents 3 transit ions. 

AA: represents the constant, A, in the equation L(x)  = A + xtB + xtCx. I t  is a 

scalar object . 

BB: represents the l inear terms, B, in the equation L(x) = A + xtB + xtCx. I t  

is  a ]J x 1 matrix. 

CC: represents the interaction and squared terms, C, i l l the equation 

L( x) = A + xt B + xtCx. C is a symmetric p x p matrix where each coefficient 

of an interaction will appear twice aud so is halved . 

start: represents the ]J x 1 matrix Xo 

finish: represents the ]J x 1 matrix Xl  
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Outputs 

As the algorithm proceeds it outputs the row number of the transition under 

consideration , the position of the single factor change, and the sum of the l ine 

integrals for the paths in that transition. 

The final output is a l ist comprising two parts 
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1) a matrix. The fi rst column of this matrix gives the row numbers corresponding 

to rows in the matrix paths. The second column gives the positions of where the 

single factor change occurs. A one means that the change occurs first, a two 

means it occurs before the second two factor change etc. Together they give the 

recommended trallsitions. 

2) a list that gives the smallest t ransition value. 

The algorithm is 

whichtwotochangeodd . f  

function (paths , AA , BB , CC , start , f inish) 

{ 

noofpaths <- dim (paths)  [ 1 ]  

nooffactors <- dim ( paths)  [2] 

even <- T 

if « nooffactors/2)  -- round (nooffactors /2 ) ) { 
even <- T 

cat ( I I Error : even number of factors " ,  f i l l  = T) 

return O 

} 
else  { 

even < - F 

noof its <- (nooffactors - 1 )  

} 
minpath (- matrix ( O , 1 ,  2 )  

minpathlength < - 1000000000000 

currentpathlength <- 0 

for ( i  in  1 : noofpaths ) { 
for (k  in 1 :  (noofits/2 + 1 ) )  { 

currentpos <- start 

currentpathlength <- 0 
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} 

if (k  == 1 )  { 

currentpathlength (- currentpathlength + pathintegral ( 

paths [ i , nooffactorsJ , currentpos ,  AA , BB , CC , f inish [ 

paths [i , nooffactorsJ J ,  start [paths [i , nooffactorsJ J )  

currentpos [paths [i , nooffactorsJ J (- f in i sh [paths [i , 

nooffactorsJ J 

for (j  in seq C l ,  (noof its - 1 ) , by = 2»  { 

currentpathlength (- currentpathlength + pathintegra12 (  

paths [i , j ] , paths [i , ( j  + 1 ) ] , currentpos , AA , BB , 

} 

CC , start [paths [i , j J J , f inish [paths [i , j J J , start [ 

paths [i , ( j  + 1 ) J J , f inish [paths [i , ( j  + 1 ) J ] )  

currentpos [paths [i , j J J  (- f in i sh [paths [i , j J J  

currentpos [paths [ i , ( j  + 1 ) ] ] (- f inish [paths [i , 

C j  + 1 ) J J  

cat ( i ,  " Singleton first " , currentpathlength , f i l l  = T) 

if ( currentpathlength == minpathlength)  { 

minpath (- rbind (minpath , matrix ( c ( i , 1 ) , 1 ,  2 »  

} 
if ( currentpathlength ( minpathlength) { 

minpath (- matrix ( c ( i , 1 ) , 1 ,  2 )  

minpathlength ( - currentpathlength 

} 

i f ( k  == ( noof its/2 + 1 »  { 

} 

for ( j  in seq ( 1 ,  (noof its - 1 ) , by = 2»  { 

currentpathlength (- currentpathlength + pathintegra12 (  

paths [i , j J , paths [i , ( j  + 1 ) J , currentpos , AA , BB , 

CC , start [paths [i , j J J , f inish [paths [i , j J J , start [ 

paths [ i , C j  + 1 ) J J , f inish [paths [ i , ( j  + 1 ) ] J )  

currentpos [paths [i , j J J  (- f inish [paths [i , j J J  

currentpos [paths [i , C j  + 1 ) J J  (- f in i sh [paths [i , C j  + 1 ) J J  

currentpathlength (- currentpathlength + pathintegral ( 
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} 

paths [ i , nooffactorsJ , currentpos , AA , BB , CC , f inish [ 

paths [ i , nooffactorsJ J ,  start [paths [ i , nooffactorsJ J )  

cat ( i ,  " S ingleton last " , currentpathlength , f i l l  = T) 

i f ( currentpathlength == minpathlength) { 

minpath <- rbind (minpath , matrix ( c ( i , 

( noof its/2 + 1 » , 1 ,  2 »  

} 
if ( currentpathlength < minpathlength) { 

} 

minpath <- matrix ( c ( i , noof its/2 + 1 ) , 1 ,  2 )  

minpathlength <- currentpathlength 

i f « k ! =  1 )  & (k ! =  (noof its/2  + 1 » ) { 
for (j  in seq C i , « k  - 1 )  * 2 ) , by = 2» { 

} 

curr�ntpathlength <- currentpathlength + pathintegra12 ( 

paths [ i , j J , paths [ i , ( j  + l ) J , currentpos , AA , BB , 

CC , start [paths [ i , j J J , f inish [paths [ i , j J J , start [ 

paths [ i , ( j  + 1 )  J J ,  f inish [paths [ i , C j  + 1 )  J J )  

currentpos [paths [ i , j J J  <- f in i sh [paths [i , j J J 

currentpos [paths [ i , ( j  + l ) J J  (- f inish [paths [ i , 

( j  + 1 ) J J  

currentpathlength (- currentpathlength + pathintegral ( 

paths [ i , nooffactorsJ , currentpos , AA , BB , CC , f in i sh [ 

paths [ i , nooffactorsJ J ,  start [paths [ i , nooffactors J J )  

currentpos [paths [ i , nooffactorsJ J <- f inish [paths [ i , 

nooffactorsJ J 

for ( j  in seq« k * 2 - 1 ) , (noof its  - 1 ) , by = 2»  { 

currentpathlength <- currentpathlength + pathintegra12 ( 

paths [ i , j J , paths [ i , ( j  + 1 )  J ,  currentpos , AA , BB , 

CC , start [paths [ i , j J J , f inish [paths [ i , j J J , start [ 

paths [ i , ( j  + 1 ) J J , f inish [paths [ i , ( j  + l ) J J )  

currentpos [paths [ i , j J J  (- f inish [paths [ i , j J J  

currentpos [paths [ i , ( j  + 1 ) ] ]  (- f inish [paths [ i , 
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(j + 1 ) ] ]  

} 
cat ( i ,  " Singleton before pair " k ,  currentpathlength , 

f i l l  = T) 

} 

} 
} 

} 
} 

if ( currentpathlength == minpathlength) { 
minpath <- rbind (minpath , matrix ( c ( i , k) , 1 ,  2 »  

} 
if ( currentpathlength < minpathlength)  { 

minpath <- matrix ( c ( i , k ) , 1 ,  2 )  

minpathlength < - currentpathlength 

l i s t (paths = minpath , min . path . l ength = minpathlength) 

pathintegra12 

The function pathintegTal2 is called by whichtwotochangeodd.f .  This algortithn 

is  also called by whichtwotochangeeven.f and appears earl ier in this appendix. 

pathintegral 

This function is called by whichtwotochangeodd.f and is a generic solver for l ine 

integrals of the type speci fied by L(x) when only one variable is  changing. It is 

identical to the fUl lction of the same name in  the previous appendix. I t  is 

repeated here only for completeness. 

pathintegral<-

funct i on (x , values , AA , BB , CC , lower , upper) 

{ 
BBB <- BB 

BBB [x , 1 ]  <- BB [x , 1 ] /2 

CCC <- CC 

CCC [ ,  x] <- CC [ ,  x] /2 



} 
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eee [x , ] <- eee [x , ] /2 

eee [x , x] <- ee [x , x] /3 

uppervalues <- values 

uppervalues [x , 1] <- upper 

uppervalues <- matrix (uppervalues ,  , 1 ) 

lowervalues <- values 

lowervalues [x , 1]  <- lower 

lowervalues <- matrix  ( lowervalues , , 1 ) 

abs (upper * (AA + t (uppervalues )  %*% BBB + t (uppervalues )  %*% 

eee %*% uppervalues )  - lower * (AA + t ( lowervalue s )  %*% BBB 

+ t ( lowervalues )  %*% eee %*% l owervalue s ) ) 

Typical Input 

This example uses the same data as the example in the previous appendix for 

single factor changes. 
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Suppose L(x, y, z )  = 10 + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz then 

L (x, y, z )  can be represented by 

I .e . 

L(x, y, z ) = 10 + (x, y, z) ( n  + (x, y, z)  U � : ) ( � )  
A = 10 ,  B = 

U 
) , C = U : n 

As input AA = A,  BB = B and CC = C. 

The init ial posti tion is "'0 = ( � ) and input as the variable start. 

The final position is "1 = ( � ) and is input as the variable finish. 

The last input is the paths i'YICl trix. For this problem the paths in rows 1 and 4, 2 

and 5 , 3 and 6 are equivalent . 
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1 

1 

2 

2 

3 

3 

2 

3 

3 

1 

1 

2 

3 

2 

1 

3 

2 

1 
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In row 6 the transition is to move factor 3, z and factor 2, y together and then 

move factor 1 ,  x. 

Typical Output 

The fU l lction cal l is whichtwotochange .f(paths, AA, BB ,  CC, stm·t ,  finish ) .  The 

output is 

1 Singleton f irst 785 . 74 1 403441 035 

1 Singleton last 647 . 6077 1 05800 1 

2 Singleton f irst 668 . 1 35605693432 

2 Singleton last 655 . 605735 1 6602 1 

3 Singleton f irst 829 . 888589282479 

3 Singleton last 632 . 304934942278 

4 Singleton f irst 785 . 74 1 40344 1 035 

4 Singleton last 647 . 6077 1 05800 1 

5 Singleton first 668 . 1 35605693432 

5 Singleton last 655 . 605735 1 6602 1 

6 Singleton f irst 829 . 888589282479 

6 S ingleton last 632 . 304934942278 

$paths : 

[ , 1 ] [ , 2] 

[ 1 , J 

[2 , J 
3 

6 

2 

2 

$min . path . length : 

[ , 1 ] 

[ l , J  632 . 3049 
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The transitions with the lowest sum of path integrals is in  row 3 and 6 with the 

sum of 632 .3 .  This transition is (2 , 3 , 1 )  or equivalently (3, 2 , 1 ) .  Both have a 

corresponding 2 meaning that the single factor move occurs after the paired 

factor move. A one would indicate that the single factor move would happen first .  

In the previous appendix, where only single factor moves were considered , the 

same transition sequence was 
.
given as the minimum. The sum of l ine integrals for 

that transition was 807.5 which is larger. 

Calculations By Hand 

Calculating, by hand , the first transition, ( 1 , 2 , 3) with the single factor change 

occuring last, gives 

Path 1 .  

The first and second factors are changed from value 3 to 0 and 2 to 0 respectively 

with factor 3 remaining constant at 4. 

Let x = 3t ,  t = O  . . . l aud y = 2t ,  t = O  . . . l so 

101 ( 1 0  + .'E + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6Yz) (:t2 + l/ ) � Idt l 

(32 + 22 ) 2  l Ot + - + - + 4 x 4 + + --l [ 3t2 6e 5 x 9t3 6 X 4t3 
2 2 3 3 

3 2 4 x 3 X 2t3 2 x 3 x 4t2 6 x 2 x 4t2 ] L 
+ x 4 + 

3 
+ 

2 
+ 

2 
o 

(32 + 22 ) 2  X 1 0  + - + - + 16 + -- + --l ( 3 6 5 x 9  6 x 4  
2 2 3 3 

3 42 4 x 3 x 2 2 x 3 x 4 6 x 2 x 4 ) 
+ x + 

3 
+ 

2 
+ 

2 
524.6077 

Path 2. 

The third factor is changed from value 4 to 1 with factors 1 and 2 both remaining 

constant at O. 

14
1 0  + x + 3y + 4z + 5x2 + 6y2 + 3z2 + 4xy + 2xz + 6yz Idz l  

[10Z + 
4Z2 

+ 
3Z3 j 4 

2 3 L 
40 + 32 + 64 - 10 - 2 - 1 

1 23 



APPENDIX J. DETERMINING MINIMAL TRANSITIONS:2 

The transition value is the sum of these integrals which is 

524 .6077 + 1 23 = 647.6077.This agrees with the second value for the first 

transition in the computer output .  
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1 

Corrections 

A l isting of correct ions to the text . 

Page ; L ines Original and Corrected Text 

9: 2 The Inner and Outer arrays are both level 3 Designs. 

The I nner and Outer arrays are both resol ut ion 3 designs. 

30: 7 'Where the factors fal l  in this graph gives an indication of what type 

of factor it is . 

30: 1 7  

Where a factor fal ls i n  this graph gives an indication of what type 

of factor it is . 

The areas outside the crossarms are where both significant mean and 

log standard effects l ie .  

The areas outside the crossarms are where both significant mean and 

log standard de\'iation effects l ie .  

99 :  9 In the previous example, the condit ions for xi to be the 

m in imum of the variance when the mean is on target, were met . 

In  the previous example, the condit ions for xi to give the 

minimum of the variance when the mean is on target, were met . 

99: 1 0  

104:  1 3  

167: 2 1  

I f  A 2  is positiYe definite and �2 is of rank r then x;** 
is the minimum of the MSE. 

I f  A2 is positive definite and �2 is of rank r then x;** 
gives the minimum of the MSE.  

And so long as A l  and A2 are chosen to be both greater then 

the conditions are met . 

And so long as A l  and A2 are chosen to be both greater than 0 

then the conditions are met . 

Let E have a standard Normal distribution and be independant of ZI 

and Z2 and have a joint multi-variate Normal d istribution . 

Let E have a standard Normal distribution and be independant of ZI 

and Z2 . Together, let E, ZI and Z2 and have a multivariate Normal 

distri bu tion. 



2 

Page; Lines Original and Corrected Text 

1 78 :  1 1  In F igure 4 .7  the Mean Square Error of Zl for Zl has been plotted against 

the correlation coefficient of Zl and Z2 . 

1 79 :  2 

1 78 :  7 

1 79:  9 

1 79 :  1 3  

1 79 :  2 

1 80: 9 

In F igure 4 .7  the Mean Square Error of Zl for Zl has been plotted against 

the correlation coefficient between Zl and Z2 . 

The graph of the Mean Square Error for Zl , the estimate of Zl , versus 

the Correlation Coefficient of Zl and Z2 . 

The graph of the Mean Square Error for Zl , the estimate of Zl , versus 

the Correlation Coefficient between Zl and Z2 . 

In  F igure 4 .8  the Mean Square Error of Z2 for Z2 h as been plotted against 

the correlation coefficient of Zl and Z2 . 

In  Figure 4 .8  the Mean Square Error of Z2 for Z2 has been plotted against 

the correlation coefficient between Zl and Z2 . 

The graph of the Mean Square Error for Z2 , the estimate of Z2 , versus 

the Correlation Coefficient of Zl and Z2 . 

The graph of the Mean Square Error for Z2 , the estimate of Z2 , versus 

the Correlation Coefficient between Zl and Z2 . 

In  Figure 4 .9  the Mean Square Error of E for E has been plotted 

against the correlation coefficient of Zl and Z2 . 

In F igure 4 .9  the Mean Square Error of E for E has been plotted 

against the correlation coefficient between Zl and Z2 . 

The graph of the Mean Square Error for E, the estimate of E, versus 

the Correlation Coefficient of Zl and Z2 . 

The graph of the Mean Square Error for E, the estimate of E, versus 

the Correlation Coefficient between Zl and Z2 . 

2) when there has been a change in  the system e.g. a change in 

process mean or variance. 

2) when there has been a change in the system e.g. a change in 

process mean or an increase in variance. 
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