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Abstract

Unrestricted Kohn-Sham (broken symmetry) density functional calculations have been
used to determine the low-energy geometries of the chromium dihalide molecules (CrXs)
and their clusters, CryXy, Cr3Xg, and CryXg. The monomers are also investigated at
a higher level, including coupled-cluster and state-average CASSCF computations. Our
calculations show that the monomers have a 5By ground state arising from the Renner-
Teller distorted °II, transition state, leading to a bent geometry. The global minima of the
gas-phase clusters of CrFy and CrCly consist of two-dimensional, anti-ferromagnetically
coupled chains of CrX, units forming four-membered, doubly bridged CrsX, rings, closely
resembling their solid-state structures. The global minima of the CrBry, and Crly clus-
ters consist of the same two-dimensional chain-like structures for their dimers, but their
trimers and tetramers consist of three-dimensional triangular’ structures which contain
two capping ligands bound to three chromium atoms along with a Cr-Cr bond. Each
Cr atom within these clusters has spin quantum number S=2. There is approximately
a constant change in energy, between 45-55 kcal/mol, with every new CrX, unit during
cluster formation.

Information about the structure of the CrCly clusters is used in the reanalysis of
high-temperature electron diffraction data. The vapor at 1170 K contains about 77%
monomeric molecules, 19% dimers, and a small amount of trimers. Monomeric CrCl, is
found to be bent with a bond angle of 149(10)°, in good agreement with our computations.

Solid-state DF'T calculations are performed on a-CrCl; to determine the lattice struc-
ture and spin-coupling constants for the Cr atoms within the crystals. The GGA (PW91)
method produces a structure in good agreement with the literature. In the lowest energy
structure, the spins of the Cr atoms within the chains along the crystallographic c-axis
are anti-ferromagnetically coupled with four parallel spins situated almost exclusively in
the d-bands of Cr along these chains. This anti-ferromagnetic coupling is also seen in the

CrXy clusters.
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