Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Electronic, Structural, and Magnetic Properties of the Chromium Dihalides - from the Gas-phase to the Solid-state

A thesis submitted in partial fulfillment of the requirements of the degree

of Doctor of Philosophy

in

Theoretical Chemistry

at

Massey University, Albany

New Zealand

Brian Michael Vest

June 10, 2008

Contents

Introduction 1 $\mathbf{2}$ Theory 2.12.2Variational Principle 2.3Hartree-Fock Theory 2.4Møller-Plesset Perturbation Theory 2.5Coupled-Cluster Theory 2.62.72.82.8.12.8.22.8.32.8.4Broken Symmetry DFT 2.92.10.1 Introducing Pseudopotentials into the Hartree-Fock Equations . . . 2.14.2 Least-Squares Refinement

9

13

13

16

16

17

19

21

22

24

26

27

28

29

30

32

34

37

41

44

44

45

45

47

CONTENTS

3	Res	ults	48
	3.1	Monomers	48
		3.1.1 Infrared Analysis	64
	3.2	Clusters	66
		3.2.1 Dimers	66
		3.2.2 Trimers	73
		3.2.3 Tetramers	81
		3.2.4 Basis Set Superposition Errors	88
		3.2.5 Thermodynamics	92
		3.2.6 Infrared Analysis	100
	3.3	Gas-Phase Electron Diffraction Analysis of $CrCl_2$	103
	3.4	The Solid State of $CrCl_2$	108
4	Tre	nds among the Chromium Dihalides	115
5	Cor	nclusions	122
6	App	pendix	128
	6.1	Cartesian Coordinates of the Low-energy Structures	128
	6.2	Experimental Electron Diffraction Molecular Intensities	160
	6.3	Modified Basis Sets for Cr, Br, and I	161

List of Figures

2.1	Scheme of an apparatus for gas-phase electron diffraction
3.1	DFT bending potential curves for the ${}^{5}B_{2}$ and ${}^{5}A_{2}$ states of the chromium
	dihalides
3.2	APES of a linear molecule in a doubly-degenerate ground state 60 $$
3.3	Initial dimer structures used in the preliminary analysis
3.4	Representations of the low-energy minima for the dimers $\ldots \ldots \ldots$
3.5	Initial trimer structures used in the preliminary analysis
3.6	Representations of the low-energy minima for the trimers
3.7	Overlap of the d_{z^2} orbitals in the tridecet state of Cr_3Br_6
3.8	BS spin-coupling patterns for the trimer global minima \ldots \ldots \ldots \ldots 80
3.9	Initial tetramer structures used in the preliminary analysis $\ldots \ldots \ldots 82$
3.10	Representations of the low-energy minima for the tetramers $\ldots \ldots \ldots 83$
3.11	BS spin-coupling patterns for the tetramer global minima
3.12	Experimental and theoretical electron diffraction molecular intensity curves 104
3.13	Experimental and theoretical electron diffraction radial distribution curves 105
3.14	Thermal-averaged dimer and trimer structures for ${\rm CrCl}_2$
3.15	Magnetic unit cell of the anti-ferromagnetically coupled $\alpha\text{-}\mathrm{CrCl}_2$ 109
3.16	Different intra and interchain coupling schemes examined for $\alpha\text{-}\mathrm{Cr}\mathrm{Cl}_2~$ 110
3.17	$E(\Omega_o)$ -curves
3.18	Magnetic coupling constants from hybrid-DFT calculations
4.1	Comparison of the Cr-X bond lengths and angles among the different
	monomers
4.2	Comparison of the Cr-Cr distances and Mulliken spin densities for the
	singlet state dimers

LIST OF FIGURES

4.3	Gas-phase $\operatorname{Cr} X_b$ distances for the dihalide-bridged, anti-ferromagnetically	
	coupled oligomers	119
4.4	Dissociation energies for the different chromium dihalide oligomers ob-	
	tained from DFT calculations	120

List of Tables

Relative energies, geometrical parameters, and vibrational frequencies of	
${\rm Cr}{\rm F}_2$ in different electronic states $\hfill\hfil$	50
Relative energies, geometrical parameters, and vibrational frequencies of	
CrCl_2 in different electronic states	52
Relative energies, geometrical parameters, and vibrational frequencies of	
CrBr_2 in different electronic states	54
Relative energies, geometrical parameters, and vibrational frequencies of	
CrI_2 in different electronic states	56
Contributions from the major configurations within the active space of the	
${}^{3}\Sigma_{g}^{-}, {}^{1}\Sigma_{g}^{+}, \text{ and } {}^{5}\Pi_{g} \text{ states from CASPT2(4,5) geometry optimizations }$	63
Mulliken charges and spin densities for the chromium dihalide monomers .	65
Relative energies among the dimer minima from various geometry opti-	
mizations	69
Geometrical parameters for the lowest energy singlet and nonet dimers	
obtained from intensive geometry optimizations	71
Mulliken charges and spin densities for the lowest energy singlet and nonet	
dimers obtained from the intensive geometry optimizations $\ldots \ldots \ldots$	72
Relative energies among the low energy trimers from various geometry	
optimizations	77
Geometrical parameters for the trimer global minima obtained from inten-	
sive geometry optimizations	79
Relative energies among the low energy tetramers from various geometry	
optimizations	84
Selected geometrical parameters for the tetramer global minima obtained	
from intensive geometry optimizations	86
	Relative energies, geometrical parameters, and vibrational frequencies of CrF_2 in different electronic states

LIST OF TABLES

3.14	Calculated BSSE for the oligomer global minima	90
3.15	Comparison of the counterpoise-corrected binding energies of the global	
	minima with other low-lying states	91
3.16	Dissociation energies for the global minima of the CrF_2 clusters for each	
	spin state	92
3.17	Thermodynamic properties for the CrF_2 nucleation $\ldots \ldots \ldots \ldots \ldots$	93
3.18	Dissociation energies for the global minima of the $CrCl_2$ clusters for each	
	spin state	94
3.19	Thermodynamic properties for the $CrCl_2$ nucleation	95
3.20	Dissociation energies for the global minima of the $\rm CrBr_2$ clusters for each	
	spin state	97
3.21	Thermodynamic properties for the $CrBr_2$ nucleation	97
3.22	Dissociation energies for the global minima of the CrI_2 clusters for each	
	spin state	98
3.23	Thermodynamic properties for the CrI_2 nucleation	99
3.24	Calculated vibrational frequencies and IR intensities for the chromium di-	
	halide global minima	101
3.25	Geometrical parameters and vapor composition for $CrCl_2$ from electron	
	diffraction	106
3.26	Comparison of the intrachain Cr-Cl bond lengths from crystalline α -CrCl ₂	
	with our gas-phase structures	112
3.27	Spin coupling constants for α -CrCl ₂ , calculated at experimental and theo-	
	retical geometries	113
6.1	Cartesian coordinates and energies of the optimized CrF_2 oligomers \ldots	128
6.2	Cartesian coordinates and energies of the optimized $CrCl_2$ oligomers	135
6.3	Cartesian coordinates and energies of the optimized $CrBr_2$ oligomers	144
6.4	Cartesian coordinates and energies of the optimized CrI_2 oligomers \ldots	151
6.5	Electron diffraction molecular intensities for two camera ranges for ${\rm CrCl}_2~$.	160
6.6	Modified basis set for Cr	161
6.7	Modified basis set for Br	162
6.8	Modified basis set for I	163

Abstract

Unrestricted Kohn-Sham (broken symmetry) density functional calculations have been used to determine the low-energy geometries of the chromium dihalide molecules (CrX₂) and their clusters, Cr₂X₄, Cr₃X₆, and Cr₄X₈. The monomers are also investigated at a higher level, including coupled-cluster and state-average CASSCF computations. Our calculations show that the monomers have a ${}^{5}B_{2}$ ground state arising from the Renner-Teller distorted ${}^{5}\Pi_{g}$ transition state, leading to a bent geometry. The global minima of the gas-phase clusters of CrF₂ and CrCl₂ consist of two-dimensional, anti-ferromagnetically coupled chains of CrX₂ units forming four-membered, doubly bridged Cr₂X₂ rings, closely resembling their solid-state structures. The global minima of the CrBr₂ and CrI₂ clusters consist of the same two-dimensional chain-like structures for their dimers, but their trimers and tetramers consist of three-dimensional 'triangular' structures which contain two capping ligands bound to three chromium atoms along with a Cr-Cr bond. Each Cr atom within these clusters has spin quantum number S=2. There is approximately a constant change in energy, between 45-55 kcal/mol, with every new CrX₂ unit during cluster formation.

Information about the structure of the $CrCl_2$ clusters is used in the reanalysis of high-temperature electron diffraction data. The vapor at 1170 K contains about 77% monomeric molecules, 19% dimers, and a small amount of trimers. Monomeric $CrCl_2$ is found to be bent with a bond angle of $149(10)^\circ$, in good agreement with our computations.

Solid-state DFT calculations are performed on α -CrCl₂ to determine the lattice structure and spin-coupling constants for the Cr atoms within the crystals. The GGA (PW91) method produces a structure in good agreement with the literature. In the lowest energy structure, the spins of the Cr atoms within the chains along the crystallographic *c*-axis are anti-ferromagnetically coupled with four parallel spins situated almost exclusively in the *d*-bands of Cr along these chains. This anti-ferromagnetic coupling is also seen in the CrX₂ clusters.

Acknowledgements

First and foremost, I would like to give many thanks to my advisor Prof. Peter Schwerdtfeger. He has helped me more times than I can count with getting this thesis written and encouraged me to see the entire forest and not just the trees. I also want to thank him for his guidance, encouragement, and wonderful sense of humour. I would also like to thank Behnam Assadollahzadeh for his help with Gaussian and $\[MTex]$ X templates and commands. He has also provided me with invaluable knowledge of various fishing spots around New Zealand and has taught me how to speak "proper" German. I want to also thank Andreas Hermann for his help with the solid-state of $\[CrCl_2\]$ and creating nice EPS files. Christian Thierfelder also deserves my thanks for helping me with various physics, mathematics, and Xmgrace problems. Lastly, I would like to thank Dr. Magdolna Hargittai for her help in understanding gas-phase electron diffraction.