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ABSTRACT

Dirichlet's theorem describing the structure of the unit group of
the ring of integers of an algebraic number field shows that the units
are generated by a primitive root of unity of the field plus a finite
set of units called a fundamental system of units. However Dirichlet's
theorem does not suggest any method by which a fundamental systém of
units can be obtained. In this thesis we consider the problem of
calculating a fundamental system of units for certain types of quartic
field which are a quadratic extension of a quadratic field Q(S). Our
attention is mainly centered on type I quartic fields, that is quartic
fields for which Q(8) is camplex. In such cases a fundamental system

of units contains a single unit called a fundamental unit.

To calculate fundamental units of type I quartic fields we use the
simple continued fraction algorithm, real quadratic field case as a
~guide. This topic is reviewed in chapter one where we also note
Voronoi's view of simple continued fractions in terms of relative minima

of a Z module.

In chapter two we consider the idea of relative minima of a module
over a ring of complex quadratic integers. Basically we generalize the
simple continued fraction algorithm which calculates best approximations
to a real number using rational integer coefficients to an algorithm
which calculates best approximations to a complex number using complex
quadratic integer coefficients. The ideas are developed with respect
to an arbitrary complex quadratic field Q(8) and show many similarities
to the simple continued fraction algorithm. (Existing work of this
nature restricts its attention to cases where Q(8) has class number one).

We obtain an algorithm which is periodic for complex numbers w satisfying
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w2 € Q(8), w £ Q(98). This enables us to calculate units of type I

quartic fields.

In chapter three we consider quartic fields Q(T') which are a
quadratic extension of a quadratic field Q(§). In section one we
express the ring of integers of Q(I') in terms of the integers of Q(S§)
thereby recognising four forms which these rings may take. In section
two we consider the problem of calculating fundamental units of type I
quartic fields. The algorithm developed in chapter two is only
guaranteed to locate a fundamental unit when the ring of integers of
Q(T) is of the simplest of the four forms mentioned above. A modified
version of the algorithm allows us to calculate a fundamental unit when
the ring of integers of Q(I') is of the second simplest form. For the
two remaining forms we obtain a unit U which may or may not be
fundamental. We therefore develop an algorithm which calculates a
fundamental unit from U. To illustrate the use of our algorithms we

calculate fundamental units for the type I quartic fields
Q(b), Dez, -99 <D< -1

Finally in section three we consider the calculation of a fundamental

system of units for type IIb quartic fields, that is semi-real quartic
fields which are a quadratic extension of a real quadratic field. A

connection between type IIb and type I quartic fields enables us to

calculate fundamental systems of units for type IIb quartic fields.
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CHAPTER ONE

ALGEBRAIC NUMBER FIELDS, QUADRATIC FIELDS, AND SIMPLE
CONTINUED FRACTIONS

This introductory chapter is intended to serve two main purposes.
Firstly to introduce the notation related to the theories of algebraic
number fields, quadratic fields, and simple continued fractions which
is to be used in this thesis. Secondly to record for the purposes of
easy reference and brief review the main ideas, results and algorithms
from these theories which are either used or referred to in chapters
two and three. Note that the presentation in this chapter is.intended
for the reader who is already familiar with the terminology and ideas
of these theories. For a detailed coverage of the material noted in
this chapter we will refer the reader to an appropriate selection of

texts from the literature.

SECTION ONE

ALGEBRAIC NUMBER FIELDS, MODULES, AND MISCELLANEA

The symbols defined below will have the same meaning throughout
this thesis.

+

Z - the set of positive rational integers
Z - the set of rational integers
Q - the set of rational numbers

R - the set of positive real numbers



R - the set of real numbers
C - the set of complex numbers
7 - the square root of -1
Re(x) - the real part of x € C
Im(x) - the imaginary part of x € C
arg(x) - the argument of x € C
x - the complex conjugate of x € C
YX - the square root of x € € having arg(vx) € (—%3 %J
R\S - the set of elements contained in set R but not in set S
[x] - the greatest integer function for x € R

We shall also use the notation (al,az,...,ak) to denote the greatest

common divisor of a,,a e € 7, and {r} to denote the nearest

IR
integer function for r € R, that is

{r} = a € Z where |r-a| < |r-b|] V b € Z (1)

(Ties to be settled by some arbitrary rule). Note that the last two
notations are not exclusively reserved for the two purposes indicated.
For example ordered pairs will be denoted by (a,B) and certain infinite
sequences will be denoted by {Ak}' However the meaning will always be
clear from the context. All other notation used in this thesis will be

introduced as it is required.

The general theory and terminology for the subject of algebraic
number fields should be well known to any reader of this thesis. Texts
such as Adams and Goldstein [1976], Borevich and Shafarevich [1966],
Cohn [1962], Richman [1971], and Stewart and Tall [1979] amongst many

others cover to varying degrees the relevant general background.



However at this point we briefly note a number of basic terms and results

from this subject area in order to define notation used in this thesis.

Let o be an algebraic number of degree n over Q. Then we use
Q(a) to denote the algebraic number field of degree n over Q formed by
adjoining o to Q. The degree of this extension field is symbolized by
writing [Q(a) : Q] = n. The ring of integers of Q(a) will be denoted by

Z(a).

Now suppose B is of degree m over Q(o). Then we use Q(a) (B) to
denote the algebraic number field formed by adjoining 8 to Q(a) and

Z(a) (B) to denote the ring of integers of Q(a)(B). We write

[Q(e) (B) : Q(a) ]

m

[Q(@) (8) : Q] = [Q() (B) : Q(x)][Q(a) : Q] = mn

to symbolise the facts that Q(a) (B) is a degree m extension of Q(a) and
a degree of mn extension of Q. We can always find Y € Q(a) (B) of

degree mn over Q such that Q(Y) = Q(a) (B). (Thus Z(Y) = Z(a)(B)).

The norm function from Q(a) to Q will be denoted by N while the

relative norm function from Q(a) (B) to Q(a) will be denoted by Na'

Of particular interest in this thesis is the structure of the unit
group of Q(a) (more correctly of Z(a)) which is described by the
following theorem. Note that by a real field we mean a field F such
that F< R and by a non-real field we mean a field F such that F < C
but F ¢ R.

THEOREM 1.1 Dirichlet's Theorem (Stewart and Tall [1979,p219])

Suppose o (equivalently Q(a)) has s real conjugates (s real conjugate

fields) and 2t non-real conjugates (2t non-real conjugate fields) where

n = s+ 2t is the degree of the minimal polynomial for a. Let £ be a



primitive uth root of unity which generates the (finitely many) roots of

unity of Z(a). Then we can find units

0 el | € 25, T =Bt L

1,
such that the units of Z(a) are precisely those numbers of the form

a a; a, a
.Ur s 124 g aj€Z,j=1,2,...,r //

The set {U,,U .,U_} (which is not unique) will be referred to as
1 T

L
a fundamental system of units of Q(a) and can be characterised as follows.

Lek © -5 O denote the real monomorphisms of Q(a) into C and let

12995

Ocy1? 9417 * 95+t T4t denote the pairs of complex monomorphisms of

Q(a) into €. Then

{u,,u

1 2,...,Ur} is a fundamental system of units of Q(a)

if and only if

IR

of any order r square submatrix of

.,Ur are units of Q(a) for which the determinant

bllnlol(U1)| ..... bs+t2n|os+t(U1)| -
. . Gk g 48

: : 2if § > s
.P12n|ol(Ur)| ..... bs+t2n|os+t(Ur)L

is non-zero and of minimal magnitude R amongst all sets
of r units of Q(@). (The colums of the above matrix
sum to zero so R does not depend on which column is

deleted to give the order r submatrix).

The minimal magnitude value R is called the regulator of Q(a).

Note that if s >0 thenu=2, £ = -1. If r=1 then a fundamental
system of units contains just one unit which is normally referred to as

a fundamental unit.



Dirichlet's theorem only asserts the existence of a fundamental
system of units and does not suggest any way by which such a system
might be calculated. One of the principal aims of this thesis is to
develop algorithms for calculating fundamental systems of units for

certain types of quartic fields.

In this thesis we will make extensive use of modules of the form

R[Al’A'Z""’Ak] = {alAl+ Ay Ayt tog A ajE R}

where R is the ring of integers of an algebraic number field (that is
R=Z or R=Z(a)) and the generators Al’ AZ’ vy Ak are conplex numbers
or two dimensional complex vectors. Such modules will be referred to
as R modules and a minimal set of generators will be called a basis. A

basis for an R module is not unique but two bases are related by an R

integral matrix whose determinant is a unit of R.

We finish this section by noting a result which will be used in
chapter two. Suppose we have a collection of non-overlapping circles
(that is the area of intersection of any two distinct circles is zero)
of radius r in the plane. For t € R’ let n(t) denote the number of
these circles which lie completely within a circle of radius t centered
on the origin. The packing constant for this collection of circles is

defined to be

1lim ( area of n(t) circles 5 = lim n(t)rz
t>o ‘area of circle of radius t troo

The densest possible packing of equal radius circles in the plane is
hexagonal and this produces the largest possible packing constant of

m/2/3 =~ .907. (See Fejes T6th [1953, chapter III] ).



SECTION TWO
QUADRATIC FIELDS

In this section we define the notation related to quadratic
fields which will be used in this thesis. For ease of reference we
also include a number of the more important results and ideas which are
relevant to later chapters. A major part of this thesis will deal with
results related to quartic fields which are quadratic extensions of the
quadratic fields described in this section. Consequently the case
discussed below will occasionally be referred to as the ''standard

quadratic case'" in later chapters.

The literature of course contains numerous works which deal with
the subject of quadratic fields. For example Cohn [1962], Adams and
Goldstein [1976], Hardy and Wright [1979] and Richman [1971] to name but

a few. We have mainly used Cohn as a source for the following results.

Let d be a square-free rational integer, d # 1, and let

§=vd

Then Q(8) is a quadratic field. Where necessary we distinguish the two
subcases corresponding to d > 0 and d < 0 by using the prefixes ''real"
and '"complex'". The integers of the field Q(§) are referred to as quad-
ratic integers and the set of all integers of Q(8) is of course denoted
by Z(§). Define

C =

2 if d = 1(mod 4)
|

1 otherwise
Then

Z(8) ={(a*b8)/c:a,b € Z, a = b(modc) }

Note that whenever we use the notation (a+bs)/c to denote a Z(8) integer



then we will assume that the above conditions on a,b,c are understood.
In particular c will be used exclusively throughout this thesis to

denote the value defined in (2). If we define

{(1+5) /2 if d = 1 (mod 4)
5, 5

) otherwise

then we have the alternative form
Z(8) = {a+bw:a,b € Z} = Z[1,u)]

for the integers of Q(8). We shall make use of both forms in this
thesis. Note that the second form implies that {1,w} is an integral

basis for Q(S8) and so we have that the discriminant of the field Q(§8) is

{d if d = 1 (mod 4)
A =

4d otherwise

For o = a+bs8 € Q(8) (a,b € Q) we use o' to denote the conjugate a - bé

of o. The nom function from Q(8) to Q is of course N(a) = an' =aZ - bad.

The following result will prove useful on several occasions in later
chapters.
THEOREM 1.2 (Cohn [1962,p128, "Hurwitz's Lemma'])

If o, € Z(8), g € Z and g| (N(2), N(B), N(o+B)) then

glaB', a'B VA

Dirichlet's theorem shows that the structure of the unit group of Q(§)
depends on whether the field is real or complex.
COMPLEX Q(8). The only units are the following roots of unity.

d=-1 chh § e

d=-3 t1, (t1¢/-3)/2



REAL Q(8) The units are of the form
s (@), k €z

where €(d) is the unit satisfying 1 < e€(d), e€(d) minimal. We shall
refer to €(d) as the fundamental unit of Z(§). e€(d) is most
efficiently calculated by the use of the simple continued fraction

algorithm which is described in the next section.

Recall that the integers of Z(§) do not necessarily factor uniquely
but that unique factorization is ''recovered' through the study of the
ideals of Z(8). We shall need the following terminology and results

concerning the ideals of Z(8) and their property of unique factorization.

We shall use <0505 e 50> to denote the Z(§) ideal generated by
L TEERFIN € Z(8). Recall that an ideal I < Z(S) is said to be
principal if and only if 3 o € Z(8) such that I = <a>. The conjugate

ideal of an ideal I = Z(8) will be denoted by I', that is
* = (el €L}

Recall that if I = I' then I is said to be self conjugate. The nomm
of an ideal I < Z(8) will be denoted by N(I). (Note that N(I) is a

positive rational integer and that
IT' = <N(I)>

Thus II' is not only principal but is also the ideal generated by N(I).

Note also that N(I) = N(I') and N(<a>) = |N(a)].

Of course any ideal of Z(8) factors uniquely as a product of prime
ideals. For ease of reference we now note the prime ideals of Z(§).
THEOREM 1.3  (Cohn [1962,ppl42-145])

Let (A/p) be the Kronecker symbol. Then the prime ideals of Z(§)



are precisely those ideals of the following three types.
(1) P = <p> where p is a rational prime for which (aA/p) = -1
(ii) P,P' (distinct) with PP' = <p> where p is a rational prime
for which (a/p) =1

(1ii) P with P2 =<p>, P = P' where p is a rational prime for which

(a/p) = 0, that is p|A

(Note that type (i) ideals are principal while type (ii), (iii) ideals
may or may not be principal, and type (i), (iii) ideals are self-

conjugate while type (ii) ideals are not self-conjugate).

A more precise description of the prime ideals of Z(8) is given by
the following decompositions of the rational prime ideals. The factors

in these decompositions give all the prime ideals of Z(§).

(<2,w> <2,w'> if d =1 (mod 8) (a/2) = 1)
<2> if d = 5 (mod 8) ((a/2) = -1)
<2> ={
S5k if d = 2 (mod 4) 2|8)
L <2,1465% ifdz3 (mod 4) 2|8
and for p > 2
<p> if (&/p) = -1
<p> ={ <p,a+d><p,a-6> if (A/p) =1 (a2 = d (mod p))
<p, 6> if p|a Vi

The study of ideals and unique factorization also leads to the
concept of the class number of the field Q(S§) which we will denote by
h(d). Of course Z(§) is a unique factorization domain if and only if

h(d) = 1.
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In this thesis we will often need to represent an ideal as a Z
module.
THEOREM 1.4 (Cohn [1962, chapters 4,7,8])

The ideal I € Z(6) can be represented in Z module form as
I =12[a,qa]
where the basis {a,a} satisfies

(i) a is the minimal positive rational integer in I

(i1) o = (e+f8)/c € Z(8) with f the minimal positive coefficient

of § occurring in I and 0 < e < ac.

This representation is unique and will be referred to as the standard

representation of I.  Furthermore N(I) = af and fle, f|a. //

Note that <a> = Z[a,wa] although this is not usually the standard
representation of <o>. In this thesis we will often need to reduce a

non standard ideal representation

I = Z[al,az,...,ak], Qg 50y ,e 50 € Z(8)

to the standard representation for I. We remind the reader of the
technique used with the following example.

EXAMPLE 1.1
Let § = V2, o =4+35, B = 6+78. Using a Euclidean type algorithm

which first reduces the § coefficients we have

<a,B> = Z[o,ow,B,Bw]
= Z[4+36,6+46,6+78,14+66]
= Z[4+38,2+46,-2+6,6]
= Z7[-2,2+6,-4,6]
= Z7[-2,6,0,0]

= 7[2,68]
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which is the standard representation of <ao,8> as a Z module. //

We shall also have need of the following result concerning the
basis of a standard representation of an ideal.

THEOREM 1.5

Let
& = : €
I <_a1’0'2"“’ak>’ c:,j aj bjw, aj,bj Z

be an ideal of Z(§). Then in the standard representation of I

described in theorem 1.4 we have that the § coefficient of o 1is
f = (al,bl,az,bz,...,ak,bk)

PROOF

Let f1 - (al,bl,. ..,a_k,bk). Clearly V B€I f1|B, In particular
flla = (e+f8)/c and it follows that fllf. (If ¢ = 2 then ‘
(e+f8)/2 = (e-f)/2 + fw). Since w'aj = ij(w)-Fajw' it is not difficult
to see that we have e14-f1u)€ I for some e € Z. Consequently f|f1
and the result now follows. /

We finish this section on quadratic fields with a paragraph which
only applies to complex quadratic fields, that is the subcase d < 0.
For this subcase we have o' = a . Note that Z(§) is a discrete subset
of €. In fact if a,B € Z(8), o # B then |a-B| > 1. We can therefore
generalize the nearest integer function as follows. Given x € € we

define
{x} = a € Z(8) where |x-a| < |x-B| VB € Z(8) (3)

(Ties to be decided by some arbitrary rule). Of course the nearest
integer function now depends on the complex quadratic field under
consideration. Note that if a € Z(8)\Z then |a-Re(a)| 2 V3/2 > 1/2

(the minimum value occurs when d = -3, a = (at§)/2). Consequently (1)
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and (3) agree for x € R. We also define
2(8)" = {a € 2(8) : a#0,arg(a) € (-1/2, 7/2]}

Note that for o € Z(8) we have precisely one of either a = 0, or

a € Z(G)+, or -a € 2(6)+. Finally note that h(d) = 1 for
d= -1, -2,-3, -7, -11, -19, -43, -67, -163
and that Q(S) is Euclidean for

d=-1, -2,-3, -7, -11.

SECTION THREE

SIMPLE CONTINUED FRACTIONS AND REAL QUADRATIC UNITS

The main purpose of this section is to briefly review material
concerning the simple continued fraction algorithm with particulaf
reference to its application to the problem of determining the
fundamental unit of a real quadratic field. The ideas and results
covered in this section plus the following section are central to much
of the work in this thesis in that we will use them as a guide in our
development of an algorithm for the calculation of units of quartic

fields which are quadratic extensions of complex quadratic fields.

Detailed development of the theory reviewed below can be found in
texts such as Hardy and Wright [1979], Chrystal [1959], and LeVeque

[1977].

Throughout this section we assume that d > 0. Thus 8§, w € R and

the field Q(8) is real.

A simple continued fraction will be denoted by
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(al, aZ,...)

<+

The partial quotients 315 8y5ee- satisfy a, € Z, a € Z . The

1 greee

convergents of a simple continued fraction will be denoted by
pk/qk, kEal, 00 & ...

where
Pp=9.4=1,pP1=9;=0

+
Pe = 3Px-1 *Prps U = k-1 Y %20 K€ 2
Successive convergents satisfy

Pi-1 " UPr-1 = -k (4

Of course every simple continued fraction represents a real number and
conversely every real number can be represented as a simple continued
fraction which can be obtained as follows.

ALGORITHM 1.1

Let x € R. Then the partial quotients of the simple continued

fraction expansion of x are calculated as follows.

1 Set Xy = X, k=1

2 Set a = [xk]

3 If a = X then stop
4 Set x = (X, - )_1
k+1 k%

5 Increment k by 1, go to 2 /

Note that in practice the number of partial quotients which can be
accurately calculated using algorithm 1.1 depends on the initial
accuracy of the approximation to x. Consequently it is often necessary

to use multiprecision arithmetic if we wish to calculate more than a

dozen or so partial quotients.



14

The simple continued fraction expansion of x is essentially unique

and we have
x has a finite simple continued fraction expansion

if and only if (5)
*€Q

Thus if x € Q we have
X = (al, az,...,ah) and x = pn/qn

Note that if p, q € Z, (p,q) = 1 then from (4) we see that a solution

of pa-qb = 1 with a, b € Z is given by a = (-l)nqn_l, b = (-l)npn_1

where p/q = (al, a2,...,ah).

The complete quotients x,, k=1,2,... in algorithm 1.1 satisfy
xk = _(pk-z-qk-le/(pk-lﬁqk-lx] (6)

The convergents of the simple continued fraction expansion of x form a

sequence of increasingly better approximations to x. In fact we have

2
[x-p/ay | < 1/ayqy,q s 1/ay (7

The first equality is only possible if x = pk+1/qk+1 and the second
equality is only possible if Qe = Qgyq = k = 1. As a partial converse

of (7) we have that if x € R, p, q € Z then
Ip/a-x| < 1/2q%
implies (8)

p/q is a convergent of the simple continued fraction

expansion of x.

More important than (7) as far as this thesis is concerned is the idea
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of a best approximation. For p € Z, q € Z+, x - [x] # 1/2 we say
p/q is a best approximation to x

if and only if (9)
Vabe€Z,0<bzs<q, a/b# p/qwe have |p-qx| < |a-bx|

THEOREM 1.6  (LeVeque [1977, sections 9.2, 9.3])

If x - [x) € [0,1/2) (resp. x -[x]) € (1/2,1)) then the convergents
pk/qk, k=1,2,... (resp. k=2,3,...) of the simple continued fraction
expansion of x are precisely the best approximations to Xx. (If xeQ

then assume the expansion is the shorter of the two possibilities). /

A periodic simple continued fraction will be denoted by

(a)58p50c058 15 B 5eeesd ) (10)

We assume that m,r € z* are minimal. The partial quotients
ayse.5an 4 form the preperiod and the partial quotients & seeesdi g
form the period. If m = 1 then the simple continued fraction is
said to be purely periodic. Note that for an expansion of form (10)

we have
ey = X Vkxm

Consequently it is easily deduced using (6) that if x has an expansion
of form (10) then x is a real quadratic surd. The simple continued
fraction expansion of any real quadratic surd is most easily calculated
using a modified form of algorithm 1.1.

ALGORITHM 1.2 (Chrystal [1959, chapter 33])

let x = (a+bs)/e, a,e € Z, b € " with a% = b°d (mod &). (If

necessary this can be arranged by replacing a, b, e with ale|, b|e],

elel). Then the simple continued fraction expansion of x can be
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calculated as follows.

il Set P1 = a, Q1 =e, k=1

2 Set a = [(P,+b8)/Qy]
3  SetB - aQ-B

4 set Q= (bFa-PD/Q

5 Increment k by 1, go to 2 /
We have
X = (Pk+bGJ/Qk, k= 1,205 (1D

and Pk’Qk are small rational integers which eventually satisfy
0 < Pk’ Qk < 2bé

It follows that the X can only assume finitely many distinct values
and so the expansion of any real quadratic surd is periodic with the
end of the first period corresponding to the first occurrence of

Xner = Xp? that is Pm+r = Pm’ Qm+r = Qm. We therefore have the result
x has a periodic simple continued fraction expansion

if and only if
X is a real quadratic surd.

Note that it is easily deduced from (6) and (11) that
. k-1
Qk = (‘1) QlN(pk—l_qk—li ’ k = 1:2:- . (12)

Since algorithm 1.2 basically only involves integer arithmetic ([b§]
is a good enough approximation to bd in step 2) the advantage this
algorithm has over algorithm 1.1 from a computational point of view is

obvious.
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We now review the connection between real quadratic units and
simple continued fractions. Using (8) it is relatively easy to show
that if €(d) = a -bw' then for d#5 a/b is a convergent of the simple
continued fraction expansion of w. In view of (12) we have fdrci#s
that €(d) = pJ._1 -qj_lw' where j> 1 is the minimal integer for which
Qj==Q1. A study of the coefficients obtained in the expansion of w
using algorithm 1.2 enables us to be more specific about this value of
i
THEOREM 1.7 (Chrystal [1959, chapter 33])

For d #5 the sequences Pk’ Qk’ a obtained when w is expanded by

algorithm 1.2 exhibit the following symmetries.

We have

2&1 ifw=2_§

w= (a;,a,,8;,...,2,,a,,a ), a :{
177273 37727 r+l r+l 2a;-1 otherwise

Ost<6,lst<26,l.<_ak<25
Furthermore
Qj = Ql if and only if j =1 (mod r)

and so

e(d) = p,-qo' /

The amount of work involved in calculating €(d) can be
approximately halved if we take advantage of the symmetric nature of

the Pk’ Qk in theorem 1.7.



18

THEOREM 1.8
For d #5 the midpoint of the expansion of w can be recognized by

the first occurrence of one of the following conditions.
(@) Quq = Qo34 = 8, in which case r=2k -1,
Proez = P Quuz = Q1o B2 = %n

Pres = Pi1s Qs = Qg 3,3 = 3y, etc,

and
e(d) = (pk-l_qk-lw') [pk-qkw'J/JN(pk-quk-lw‘)I (13)
(b) Pk"_1 = Pk in which case r = 2k - 2,
Qo1 = Q12 Bl T 1
ez T P10 Qez = Qgr Bap T 3 ete,
and
- = L} 2 =L 1
E(d) - (pk'l qk“lm ) /lN(Pk_l qk_lw )l (14)
PROOF
Chrystal [1959, chapter 33] gives the results concerning the Pk’Qk’
ay . To prove (13) and (14) we use (6) to show that

e(d) = pr~qrm'= X)Xgoee X 4q

and then use the symmetries exhibited by the Pk’ Qk to obtain the

expressions given for e(d). /

At this point we note that if d=1 (mod 4), d#5 then €(d) can also
be calculated using the simple continued fraction expansion of §.
THEOREM 1.9

Let d=1 (mod 4). Then theorem 1.7 and the symmetries of theorem
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1.8 also apply to the expansion of §. € = pr-fqrd is the fundamental

unit of Z[1,8] §Z(§). Ford > 5 we have

(a) if d

1 (mod 8) then € = €(d)

e(d) or (e@)>. If e = (e(@)>

@) z£d

S (mod 8) then €

then 3 j, k € Z+, ly=< j= kK g ¥suchythat Qj = Qk = 4 and
2
e(@) = (p;.1%9;_18)/2, (@) = (p_y*ay_10)/2 /
We finish this section by noting a variation on algorithm 1.1 which

is often referred to as the nearest integer continued fraction algorithm.

ALGORITHM 1.3

Let x € R. Then the partial quotients of the nearest integer

continued fraction expansion of x are calculated as follows.

1 Set X; =X, kil

2 Set a, = {xk}

3 If a, =X then stop
-1
4 Set 4= (xk-ak)
5 Increment k by 1, go to 2 //

The properties of the nearest integer continued fraction expansion
of x are similar to those of the simple continued fraction expansion of
X. However the nearest integer continued fraction algorithm is not
guaranteed to obtain all best approximations to x. The nearest integer
continued fraction expansion of x is periodic if and only if x is a
real quadratic surd and the obvious modification of algorithm 1.2
applies. We can also use the nearest integer continued fraction
expansion of w to calculate €(d) and this is generally more efficient
than using the simple continued fraction expansion of x. (See

Williams and Buhr [1979]). However the work in chapter two is more
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directly related to the better known ideas of the simple continued
fraction algorithm and best approximations. It is for this reason
that we have not featured the nearest integer continued fraction

algorithm more prominently.

SECTION FOUR

RELATIVE MINIMA OF Z MODULES

In this section we present an alternative approach to the material
in the previous section which is based on the ideas of a best
approximation given in (9). The ideas presented are basically due to
Voronoi [1896] and they provide the most appropriate basis for the

generalization which we will be considering in chapter two.

For the set R X R we can define arithmetic operations in the
obvious componentwise fashion. For example if A = (x,y),
B = (z,t) € R XR then AB = (xz,yt) and A/B = (x/z,y/t) (provided

zt #0). For A = (x,y) we define
A* = (y,x), |A] = |x]

Clearly (A/B)* = A*/B*, |A*| = |y], |A/B| = |A|/|B].

For x € R\{0} let
M(X) = Z[(lsl) ’X]’ X< (X,'X)

with module operations as defined in the previous paragraph. Note

that for A = a(1,1) +bX = (a+bx,a-bx) € M(x) we have

A* = a(1,1) -bX = (a-bx,a+bx), |A*| = |a-bx]|

A+A* = 2a(1,1), A-A* = 2b(x,-x)
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A relative minimum of M(x) is any A € M(x)\{(0,0)} satisfying
v B € M(x)\{(0,0)} |B| < |A| implies |B*| > |A*|
and |B| = |A| implies |B*| > |A*|

The following results are easily proved.

THEOREM 1.10

(a) If A= a(1,1) +bX € M(x) is a relative minimum

then (a,b) = 1.

Onlh || 21
(b) A0 = is a relative minimum of M(x).
L X x| <1

(c) If A is a relative minimum of M(x) then so are -A, +A*.

Furthermore if |x| # 1 then A, -A are the only relative minima of

magnitude |A].
(d) If A is a relative minimum of M(x) then either |A| = |A0| !
or |A| > |A0| > |A*|, or |A| < A | < |A*]. W

A relative minimm A = (p+gx,p-qx) for which q € z* and |A| > [AOI
will be called a positive relative minimum. In view of theorem 1.10
it is easily seen that we can restrict our attention to the positive
relative minima of M(x). M(x) is a countable set and so we can label

the positive relative minima as Ak’ k=1,2,... so that we have

1Al < A < |A,] < For k=0,1,2,... and |Af| # 0 we define

R = A /AL M () = M(x)/A = {A/A 1A € M(X)}

THEOREM 1.11

(@) We can find Bk € M(x) (not unique) such that
M(x) = Z[Ak,Bkl

and so
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M 0O = Z[(1,1),X], X_= B /A

(b) Ry

if k = 0, x < -1 and positive first component otherwise which also

is the unique R € Mk(x) having negative first component

satisfies |R*| < 1, |R| minimal.
(©) We can find Sk € Mk(x) such that
Mk(x) - Z[Rk’sk]
and so

Meag 09 = M GI/R = 20,1, %], Xpy = S /R /

This theorem suggests the following method for calculating positive
relative minima.

ALGORITHM 1.4

Let x € R\{0}. Then the positive relative minima of M(x) can

be calculated as follows.

1 If |x| > 1 then set A

|
~
=
-
—
—
>
o
|
~

0=

else set AO

]
~
<

]
-5

2 Set k =0

3 Find R €M () = Z[(1,1),X,]
4 Set A, = RA

5 LE |Ri = 0 stop

6 Find S, € Mk(x) such that Mk(x) = Z[Rk,Sk]

k

7 Set Xy ,q = Sk/Rk’ that is Mk+1(x) = Z[(l,l),Xk+1]

8 Increment k by 1, go to 3 //

In fact algorithm 1.4 simplifies to what is essentially the simple

continued fraction algorithm. (In the simplest case x 2 1 we find
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7:20
I

= ak+1(1,1)+Xk and we can take Sk = (1,1). It follows that

= pk(131)+qu! X‘k = Ak_]/A ’ k=1s2""! and

>

_ (P %1% Pr-17%-1%
) PtaX ' PgX

Py 191X
= JLL_EE_, -x k=0,1,2,...
Pty X k+1
For x < 1 there are several minor differences). However we have given

algorithm 1.4 in a semi-developed form because it is this form which is
the basis for generalization in chapter two. The simplified form of
algorithm 1.4 (that is the simple continued fraction algorithm) is much
less suitable for this purpose and we shall not pursue the precise
details of this simplification. However we finish this section by
noting the precise connection between the positive relative minima of
M(x) and the convergents of the simple continued fraction expansion of
X. Note that this theorem shows that the results of section three
(after appropriate modification) apply to the positive relative minima
of M(x).

THEOREM 1.12

Let x € R\{0}. Let pk/qk denote the kKt

convergent of the simple
continued fraction expansion of x. Then the positive relative minima
of M(x) are as follows. (If x € Q then assume the expansion is the

shorter of the two possibilities).

(a) x 21 Ak pk(lsl) i Qkx’ k=192""

(b) 0<x<1 = pk+1(1,1)-+qk+1X, k=1,2,...

s

(€ -31<x<0 A =p,,1Q,1)+q,X, k=1,2,...

@ x=-4 Ap = -(1,1) + 2X

(e) -1<x< -3 Ak=pk(l,1)+qu k=1,2,...

@ W=



24

(D) Kl#2d<xmsixlsl Ar=mp 0,1+ Xk=1,2,...

(i) x = [x] +} Ap = (pp*1)(1,1) +q X

=
|

2 - pz(lsl) +q2X

@i B &% ix] =5 A = (p;*1)(1,1) +qX

A =P @1 +a X k=2,3,...

(iv) x = [x] A; =py(1,1) +q4X /
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CHAPTER TWO

RELATIVE MINIMA OF MODULES OVER A RING OF COMPLEX QUADRATIC
INTEGERS

In chapter one section four we noted how the idea of relative
minima of modules of the form Z[(1,1),X], X = (x,-X), x € R\{0} leads
to what is essentially the simple continued fraction algorithm and hence
(chapter one section three) to a method for calculating fundamental
units of real quadratic fields. In this chapter we shall generalize
this idea to modules of the form Z(8§)([(1,1),W] where W = (w,-w),

w € €\{0}, and Z(8§) is a ring of complex quadratic integers. Our main
motivation for considering this idea is the desire to develop an
algorithm which can be used to calculate fundamental units of quadratic
extensions of complex quadratic fields. However in chapter three we
shall see that the work in this chapter is not entirely successful in
this respect although fortunately the problems which arise do not prove

to be insurmountable.

SECTION ONE

DEFINITIONS, NOTATIONS, AND BASIC THEOREMS

Throughout this chapter we assume that Q(S8) is a complex quadratic

field (see chapter one section two).

We shall need the following operations on CXC.
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DEFINITION 2.1

Let (u,v),(x,y) ECXC, z€C. We define

(a) (u,v) £(x,y) = (uxx,viy)

) (u,v)(x,y) = (ux,vy)

(©) (u,v)/(x,y) = (u/x,v/y) provided xy #0
(d) z(u,v) = (zu,zv)

(e) u,v)* = (v,u)

called the reverse of (u,v)
(£) || = |yl

called the magnitude of (u,v)
(8) u,v) = (u,v)

called the complex conjugate of (u,v) //

Note that the reverse function preserves operations a,b,c,d :nd the
magnitude function preserves operations b,c,d. Furthermore the
magnitude function satisfies the triangle inequality and if A € € XC
then |AA*| #0 if and only if neither component of A is zero. Finally

note that (A*)* = A and that AA* has identical components.

In this chapter we will be primarily interested in the properties
of the following Z(8) module which is a subset of C XC.

DEFINITION 2.2

Let w € C\{0}. We define M(w) to be the module
Mw) = Z(8) [(1,1),W], W = (w,-w)

where Z(8) is a ring of complex quadratic integers. The module

operations are given in definition 2.1. For A € M(w) we have
A = a(1,1) +BW = (a+Bw,0-Bw), a,B € Z(§)

The Z(8) integers o,B will be referred to as the coefficients of A. W
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Clearly A € M(w) implies A* € M(w). Since (1,1), W are linearly
independent over C we see that the coefficients of A € M(w) are unique.
It is also easily seen that {A,B} is a basis of M(w) if and only if
A =o0o(l,1) +BW, B = k(1,1) + \W € M(w) with aX -B« = £ a root of unity of
Z(8). Note that {A,E-IB} is also a basis whenever {A,B} is a basis and

so we can in general assume that £ = 1.

The following theorem gives a number of fairly obvious results
which will be used frequently in this chapter.
THEOREM 2.1

(a) Let A =o0a(1,1) +BW € M(w). Then

|A| = |o+Bw|, A+A* = 20(1,1), A-A* = 28(wW,-W)

A

2|a| - |A%] 2|a] +[A*|

IA

|Al

N

Al

A

28w - A% 2|8w + |A*]

(b) Letr,s € R’.  Then there are only finitely many A € M)
satisfying |A| < r, |A*| < s.
PROOF
Only part (b) requires some explanation. Suppose A = a(1,1) + BW

satisfies |A|< r,|A*| <s. Then from part (a) we have
2|al,2|gw| < |A] + [A*] < r+s

The result is now clear since there are only finitely many o,B € Z(8)

satisfying these conditions. /

In developing results concerning M(w) we shall need to consider a

larger class of Z(§) modules which are derived from M(w).

DEFINITION 2.3

Let X € €XC and suppose |XX*| # 0. Then we define
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M(w) /X = Z(8) [(1,1)/X,W/X]
= {B/X:B € M(w)}
The module operations are given in definition 2.1. Furthermore if

Y € CXC, |YY*| # 0 then we define

(M(w)/X)/Y = M(w)/ (XY) /

We will mainly be interested in the cases where X € M(w) and
Y € Mw)/X. Note that {R,S} is a basis of M(w)/X if and only if
{A=RX,B=SX} is a basis of M(w). However note that (A/X)* = A*/X* is

not necessarily an element of M(w)/X.

We are now able to define a relative minimm of M(w)/A, A € M(W).

DEFINITION 2.4

Let A € M(w), |AA*| # 0. A relative minimum of M(w)/A is any

R € (M(w)/AN{(0,0)} satisfying

VS € MW/AN (0,00} |S| < |R| implies |S*| > |R*|

and [S| = |R| implies |S*| > |R*| 7

Of course our main interest lies with the relative minima of M(w).
(That is A= (1,1) in definition 2.4). However when calculating relative
minima of M(w) we shall find it convenient to work with relative minima
of certain M(w)/A. The connection between relative minima of M(w) and
relative minima of M(w)/A is simple and straightforward.

THEOREM 2.2

Let B € M(w), |BB*| # 0. Then
A is a relative minimum of M(w)

if and only if

A/B is a relative minimum of M(w)/B
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PROOF

The result is clear once we have noted the one to one correspondence
A € M(w) «—— A/B € M(w)/B
and relationships such as

|C/B| < |A/B| if and only if |C| < |A|, etc. //

The importance of this result with respect to the calculation of
relative minima of M(w) will become clear in section three. However
this result is also of more immediate use in that it simplifies some

of the following proofs.

The next theorem shows that the relative minima of M(w), M(-w),
M(w 1), and M(w) are closely related.

THEOREM 2.3

(a) M(w) and M(-w) have identical relative minima
(b) A is a relative minimum of M(w)
if and only if
A/W is a relative minimum of M(w_l)
(c) A is a relative minimum of M(w)

if and only if

A is a relative minimm of M(w)

PROOF

(a) The result is clear once we have noted that
a(1,1) +8(w,-w) = a(1,1) + (-B) (-w,w)

since this shows that M(w) = M(-w).
(b) We have

M(w) /W

2(8) [(1,1) /W, W/W]
2w w1, (1,1)]

Mw 1)
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The result now follows from theorem 2.2. (Take B=W).

(c) The result is clear once we have noted that A=a(1l,1) + BWEM(W)

implies A = o(1,1) +BW € M(w) and that |A| = |A]. /

So far we have developed some of the relationships that exist
between the relative minima of distinct modules. We now turn our

attention to relationships between and properties of the relative minima

of a given module. The first result is a fairly trivial consequence of
definition 2.4. However we shall refer to it on a number of occasions.
THEOREM 2.4

If R,S are relative minima of M(w)/A then

IR[ > [S| implies [R*| < [S*| /

THEOREM 2.5
A/B is a relative minimum of M(w)/B
if and only if

A*/B is a relative minimum of M(w)/B

PROOF

In view of theorem 2.2 we need only consider the case B=(1,1).

Furthermore since (A*) *=A we need only. prove the forward implication.

Suppose A is a relative minimum of M(w). If A* is not a relative

minimm of M(w) then we can find C € M(w)\{(0,0)} satisfying

either |C] < |A*| and |C*| < |A|
or |C| = |A*| and |C*| < |A]
However D =C* therefore satisfies
either ID| < |A| and |D*| < |A*|
or ID| = |A| and |D*| < |A¥

which contradicts the fact that A is a relative minimum. /
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Cur next objective is to establish an ordering and labelling of
the relative minima of M(w). We begin by noting that M(w) is a
countable set and so there are at most countably many relative minima of
M(w). The next theorem gives us a base point for our labelling system.

THEOREM 2.6

(a) (1,1) is a relative minimum of M(w)
if and only if
lw| 21
(b) W is a relative minimum of M(w)
if and only if
lw| <1
PROOF
(a) Suppose (1,1) is a relative minimum of M(w). If |w| <1
then we have |[W| = |w| <1 = |(1,1)| and |W*| = |-w|] < 1 = |(1,1)*].

This contradicts the fact that (1,1) is a relative minimum.

Now suppose that |w| = 1. If (1,1) is not a relative minimum then
we can find A=a(1,1) +8W € M(wf\{(Q,O)} such that either |A| < 1 and
|A*] < 1 or |A] <1 and |A*| < 1. In either case 2|a| = |A+A*| < 2
implies |a| < 1, and 2|8w| = |A-A*| < 2 implies |8] < 1. Consequently

a =8 =0 and so A= (0,0) which is a contradiction.

(b) This case is proved in a manner similar to part (a). /

DEFINITION 2.5

We define
J(l,l) if |w| 2 1

A=
i W if |w| <1 //
L

Before extending this labelling to other relative minima of M(w)
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we must consider several points. Note that if A is a relative minimum
then so is UA where U = (§,8), & a Z(8) root of unity.

(JUA| = |A|,|(UA)*| = |A*|). Furthermore it is possible to have
relative minima A,B € M(w) with |A| = |B|, |A*| = |B*| yet A,B not
related by a root of unity factor. For example when |w| =1,w not a
root of unity we find that (1,1), W are two such relative minima.

(See A A:El) in example 2.7b for a less trivial example).

3 ’
DEFINITION 2.6

Let R,S be relative minima of MW)/A satisfying
IR| = IS|, [R*| = |S*|
We shall call R,S equivalent relative minima and write

Ry =&

Clearly R ~ S if and only if R* ~S*. Of course this equivalence
relation divides the relative minima of M(W) into equivalence classes.
This fact is acknowledged in the following definition which also gives
the required ordering and labelling of the relative minima of M(w).

DEFINITION 2.7

The sets of equivalent relative minima of M(w) will be denoted by

Ek’ k € Z, as defined below. A

K for k#0 will denote any element of

Ek.

E, is the set of all relative minima equivalent to A

0 0"

Ek for k > 0 is the set of all equivalent relative minima

satisfying |Ak| > |Ak_1|, ]Ak] minimal.

E, for k < 0 is the set of all equivalent relative minima

k

satisfying |Ak| < |Ak+ll’ |A, | maximal.

//
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(If Ek is empty for some k > 0 then we define Ek+1’ Ek+2"" to be
the empty set. Similarly for k < C). Where we wish to denote more
than one element of Ek we will use the notation Ak’ Al((l), A]EZ) 5o .

i () (3]
The coefficients of Ak’ Ak will be denoted by Oy s BK, 0”7 B that
is

A= o (1,1) +H, AD) = 00) (1,1 + g0y

Any sequence of relative minima ..., Ak, Ak+1’ Ak+2" .. (finite or
infinite) will be called a chain of relative minima. A chain which
contains an element from every non-empty Ek will be called a complete
chain and a chain which contains A0 and an element from every non-empty

Ek for k > 0 will be called a half chain. /

It is fairly obvious that each Ek is a finite set (see theorem
2.1b) and with a little effort we can obtain a more precise upper bound
for the number of elements in Ek Divide the complex plane into the

6 regions
= {x € C:arg(x) € [ (j-Dn/3,jn/3)}, j=1,2,...,6

Now 1if Ek has 37 or more elements then we can find Ak, Algl) such that
a.k+8kw, a( )+ B(l)w € R and o Bkw a(l) Blgl)w € Rm' However it then

follows that A=Ak-Ak satisfies |A| < |Ak|’ |A*| < [Af] which
contradicts the fact that Ak is a relative minimum. Thus Ek has at

most 36 elements. However we generally find that the number of elements

in Ek is the same as the number of roots of unity in Z(§).

Note that the elements of a complete chain of relative minima

satisfy
<< Al < 1Al < 1Al < .. (1)

Furthermore if {Ak} is a complete chain of relative minima of M(w) then

theorem 2.2 shows that {Ak/A} is a complete chain of relative minima of
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M(w) /A. (Although definition 2.7 only applies to M(w) the idea of a

complete chain extends easily to M(W)/A).

The next theorem shows that we can restrict our attention to the
relative minima of M(W) having magnitude greater than |AO| |

THEOREM 2.7

The sets of equivalent relative minima of M(W) satisfy
= {A*:- A€
E R {A* - A Ek}

That is Al‘; ~ A—k' Consequently the half chain AO’ Al’ AZ’ ... can be
extended into a complete chain by taking A_k to be A]*; for k=1,2,...
PROOF

From definition 2.7 and theorem 2.4 we have (1) and

< |AY] < [Ag] < |AZ,l < ...

Furthermore {A]‘;} is a complete chain whenever {Ak} is a complete chain.

Since |AO| = |A6| the theorem is now clear. //

In section three of this chapter we shall consider the problem of
calculating a half chain of relative minima of M(w). Note that when
calculating relative minima of M(w) we will initially only be interested

in calculating one arbitrary representative of each Ek, k% 0.

The next theorem will be of importance when we develop an algorithm
for calculating relative minima in section three. However we present
it at this point so that we can use it in its simplest form (A= (1,1))
in example 2.1 which follows the theorem.

THEOREM 2.8

The relative minimum Ak+1/A € M(w)/A satisfies

@ (A% < (A /N
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(b) ¥ B/A€ MW)/AN\{(0,0)} satisfying |(B/A)*| < |(A/A)*|
we have either |[B/A| > IAk+1/A|
or |B/A| = IAk+1/A| and | (B/A)*| 2 | (Ap,1/8)*]

PROOF

In view of theorem 2.2 and the fact that |A|, |A*| are simply scale
factors in the above inequalities we need only consider the case

A=(1,1). Furthermore condition (a) is just theorem 2.4.

To see that condition (b) must also hold we suppose to the contrary
that we have B € M(W)\{(0,0)} satisfying [B*| < |Af| with |B| < IAk+1|
and either [B| # [A,,| or |B*| < |Af, |- Now if [B| = |Ay,q| then we
must have |B*| < |Ai+1| which contradicts the fact that A, is a
relative minimumn. Therefore we must have |B| < |Ak+1|' Now choose
C € Mw)\{(0,0)} satisfying |C| < |B|, |C*| £ |B*|,|CC*| minimal.
(Theorem 2.1b guarantees that the choice is from a finite set). It is
easily checked that C is a relative minimum of M(w). Note that
|C*| < [B*| < |Af| and so theorem 2.4 implies |C| > A l- Thus Cis a
relative minimum of M(w) satisfying |Ak| < |C|'<|Ak+1| which is a

contradiction. Therefore (b) must indeed hold. /

We now illustrate some of the ideas presented so far in this chapter.
This example also suggests some of the ideas which we will develop in

later sections.

EXAMPLE 2.1
Let § = v-10 and W = V144, We shall calculate a chain

AO’Al""’A7

these relative minima.

in M(w) and note some of the more interesting points about

Of course A, = (1,1) by definition since |w| 2 1. A simple though

0

very inefficient method for finding the remaining relative minima is to
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perform an exhaustive search in the manner outlined in the following

paragraph.

Suppose we knOW'Ak(k 2 0,|A§| > 0) and we wish to find Ay, - From
theorem 2.8 we see that we can take Ak+1 to be any A € M(W)\ {(0,0)} which

satisfies
(a) |A*| < IAil, |A| minimal

(b) B[ = [A| implies |B*| 2 [A*|

We therefore search through the g € Z(cS)+ (see the final paragraph of
chapter one section two) in order of increasing magnitude until we find
a B for which there exists an o € Z(8) satisfying [a-Bw| < [Af].

(Where there is more than one choice for o we choose the one which
minimizes |a+Bw|). Now A = o(1,1) +BW may or may not be the required
A

k+1°
Therefore by theorem 2.1la

However |A*| < |Ai| and so theorem 2.8 gives |Ak+1| < |Al.

2|Bk+1w] = [A';+1] = IAk+1[ s IA] s ZIBWI ¥ ]A*|
Since [Af,)|, |A*| < |A¥| this implies
1Baql < 18]+ [AX]/[w]

Therefore by checking the remaining possibilities indicated by this
bound we will be able to determine A, ;. Note that ]Ai| < Al < |wl

and so |Ai|/lw| < 1.

The search outlined produces the results given in table 2.1. (The
calculations were of course done by a computer. See example 2.3). Note
that the number of B € Z(G)+ satisfying |B| < r is proportional to rz.
Consequently the amount of work required to find Ak quickly becomes
unmanageable as k grows. Indeed finding the relative minima in table

2.1 requires the testing of approximately 106 possibilities.
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TABLE 2.1 Relative minima of M(v1 +/-10)
¥ +

k o By |A| |A£|l3k|
0 1 0 i 1.0

1 4+¢ 3 | 10.6 =
2 9+26 6 j 21.9 1.4
3 2+56 6 +26 ; 31.8 .6
4 37 - 146 2-106 115.4 159
5 104 - 36 43 - 126 208.9 1.2
6 245 - 208 88 - 348 506.1 3
7 2464 + 3276 1427 - 1086 5344.4 1.2

i l
1T Rounded to 1D

In section three we will develop a more efficient algorithm for
calculating relative minima. This algorithm will still use the above
search technique but on a fairly minor scale. In fact finding each Ak
will involve a search which is roughly equivalent to the search required

to find A1 in the above example.

A second point to note is the fact that IAil|Bk' is approximately
constant or equivalently |Ai| 1s approximately proportional to 1/|Bk|.
In section two of this chapter we shall investigate this relationship in

greater detail.

The most important observations about these relative minima come
when we note that ak-+8kw, oy - B W are conjugate algebraic integers in
the quartic field Q(w) which is clearly a quadratic extension of Q(¢).
For a+gw € Qw) (a,B € Q(8)) the relative norm function from Q(w) to
Q(8) is

N, (o8 = o - g%? = of - 8% (146)

and we therefore have the obvious definition NG(A) = Nd(a+8w) for

A =a(l,1) +BW € M(w). Note that AA* = Ng(A)(1,1) = Ng(A*) (1,1).
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TABLE 2.2  Norms of relative minima of M(v1+/-10)

k 0 1 2 3 4 5 6 7

N6 [A,k) 1 =30 5 -2 5 ~3-6 1 -3-08

Thus all the relative minima listed in table 2.1 have small norms and

in particular A_ corresponds to a unit of Q(w). Furthermore it is easily

€

checked that A7 =A6A1 and in fact since M(w) is closed under

multiplication we have the more general result
Ak a relative minimum of M(w)

implies (2)

AkAj , J € Z is a relative minimun of M(w) |

To see this note that if AkA(J3 is not a relative minimm then ‘ |

3 A€ MW)\{(0,0)} such that
either [A| < |[AAL] and [A*] < |(AAD*|
or |A| = |[AA]| and |A*| < |(AAD*

6Je M) (Ag is a wnit of

M(w) ,Aél =Ag) and the existence of such an element in M(w) is fairly

However we would therefore have A A

easily seen to contradict the fact that Ak is a relative minimum.

A simple consequence of (2) is that a complete chain of relative

minima of M(w) is given by

AJ, k=0,1,...,5and j €2

= A 5’

Aroj = Ak

Since NcS (Akl\%) = NG (Ak) it follows that all relative minima of M(w) have

small norms.

We can also use (2) to partially explain the reflective nature of

the Ng(A ), k=0,1,...,6. Recall that |Afy1] < [Af] and so
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[Agl = 1= [AA] < [AZAG] < ... < |AAL < [AgAgl = [A]

Since each Al: A6 is a relative minimum we must have

A]:‘A6 ~A6-k’ k=0,1,...,6
We therefore have

]N(S(Ak)l = INé(Aﬁ_kJJ’ k = 0,1’---’6

since N (&) = NS(A]:)’ |N5(A)| = |[Ng(B)| when A ~B,and Ns(Ag) = 1.

These results are typical of the case w=v0o, a € Q(8) which will be

considered in greater detail in section four of this chapter. /

We finish this introductory section with two further theorems. The
first gives the obvious generalization of (5) in chapter one section
three.

THEOREM 2.9
(a) M(w) has a finite complete chain

if and only if

w € 0(8\{0}

(b) If w € Q(8)\{0} and Ags Aps oees A is a half chain then
|A’| = 0 andw=q /8.

(c) If w¢ Q(8) then as k + = we have |Ak| > o, IAil + 0, and
/B> -
PROOF

(a) Suppose w €Q(8)\{0}. Then w = o/ for some a,B € Z(8).
Let A = a(1,1) +BW. Since |A*| = 0 we see that any relative minimum

of M(w) must satisfy ,|A*| < |A|]. From theorem 2.1b it is now
k

clear that M(w) can only have finitely many relative minima.
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Now suppose w £ Q(8). Note that in this case IAA*I = 0 if and only
if A = (0,0). Consequently if A is a relative minimum then |A|,|A*| # O.
To prove that M(w) has an infinite chain of relative minima it suffices
to prove that V r > 0, 3 A € M(w) satisfying |A*| < r and A is a relative

minimmum.

Let

BB = {Bw}(1,1) +BW, B € Z(9)

where {Bw} denotes the nearest Z(§) integer to Bw. Clearly BB € M(w)
and |B§| < |1+8|/2. Since Z(8) is an infinite set it now follows by a
standard argument that we can find B =BB for some B € Z(8) satisfying

B # (0,0), |B*| <. Now choose A€ MwW)\{(0,0)} satisfying

|A*| < |B*|,|A| < |B|,|AA"| minimal. It is easily seen that A is a
relative minimum. Since |A*| < r the proof is complete.
(b) and (c) now follow easily. 4

The final result of this section shows that if w € R\{0} then the
relative minima of M(w) = Z(8)[(1,1),W] and the relative minima of
Mw) = 2[(1,1),W] (see chapter one section four) are essentially the
same.
THEOREM 2.10

Let w € R\{0} and let Ak be any relative minimum of M(w). Then

up to a Z(§) root of unity factor we have
Ak =m(1l,1) + nW, m,n € Z

Consequently a half chain of relative minima of M(w) is given by A0 plus
the positive relative minima described in theorem 1.12.

PROOF

The final statement follows easily from chapter one section four
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once we have shown Ak is of the stated form. Note that without loss of

generality we can assume that for d =-3 we have
arg[ak+8kw) € (-n/3,7/3], arg(ak-Bkw) € (-n/3,7/3] vu(2n/3,47/3]

This is because Z(v/-3) contains the 6 sixth roots of unity ((1+Y-3) /ij "

j=0,1,...,5 andAkEEkimpliesf\kEEk. Let
. = (a+bs) /c, Bk = (e+fd)/c

Of course if b=£f=0 then Ak is clearly of the required form. It there-

fore remains to consider the case where b,f are not both zero.

In such a case we have
B = b(1,1) +fWw € M(W)\{(0,0)}

Note that

|Ak| = |ak+8kw| = | (atew)/c + (b+fw)§/c]|

A oy -8B W| = | (a-ew)/c + (b-fw)é/c]

We now consider two cases.

d#-3 We have |8|/c 21, 6§ = |§]¢ and so

|B| = [b+fw| < | (b+fw)d/c| < |A, ]

|B*| = |b-fw| < | (b-fw)é/c| < |A{]
Since Ak is a relative minimm we have must |B| = |Ak| , |B*| = lAl:l
which can only occur when |§| = 1, atew=0, that is § = /-1, a=e =0.

Thus if b,f are not both zero we conclude that
Ak = 6(b(1,1) +fw), & =/-1

Since v-1 is a root of unity Ak is of the required form.
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d=-3 We have c=2. The conditions satisfied by arg(aktBkw) imply
| (b+£fw) /2] < /3|Ak|/2, Bhat s [B) & |Ak|
| (b-£w)8/2| < /3|A%|/2, that is |B*| < |Af]|
Since A, is a relative minimum we must have |B| = IAkI’ |B*| = |A;| which

can only occur if arg(ak+8kw) = 7/3, arg(ak-Bkw) € {n/3,41/3}. It then

follows easily that arg(ak), arg(Bk) € {n/3,4n/3} and therefore

o = m(1+/73)/2,8k = n(1+/-3)/2 with m,n € Z. Thus
A = ((1+/73)/2)(m(1,1) +nW)

is of the required form. A

SECTION TWO

ORDER OF APPROXIMATION OF A RELATIVE MINIMUM

One of the fundamental results from simple continued fraction theory

is

IPayxl < 1/ay,
(See (7) in chapter one section three). In this section we partially
develop a similar result for relative minima of M(w). Fjellstedt [1953]

has shown that for w & Q(8) the inequality
|a-gw| < (1+|d])/]|B] o ,B€Z(S)

has infinitely many solutions. Consequently we might expect to be able

to develop a result of the form
|A£| = |ak-6kw | < r|d|/|8k|, k>0
for some r € l(+. In fact we shall prove

&2l < 2/2181/cY3n* 8] + (9]s))?/[81%, Kk > 0 3)
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where |B| = max{|Bk|,|Bk+1[}. ( Usually |Bk+1| 2 |8k|. However
example 2.4 will show that we can have |Bk+1| < |Bk| . Note that if
By, does not exist then we take |B| = |Bk| ). In section four of this

chapter we use this partial result to derive the bound
[A£| < 2/2'5'/CV§W%(|BkI"l/2), k>0 4

The large size of the final term of (3) is of little consequence since
we shall only require an asymptotic result when developing bound (4).
Consequently the results in this section are by no means best possible.
(Sharper results are obtainable by refinement of the proofs. However
the extra effort is not warranted since these sharper results do nothing

to simplify the development of (4)).

The result in (3) is based on the next two theorems.

THEOREM 2.11

For r € R’ let n(r) be the number of B8 € Z(8) satisfying |R| s .

Then
2
n(r) > cnr’/|§| - c2/2nr

PROOF

We begin with the case d = 2,3(mod 4). Thus c=1. Let n, denote

the number of B € Z(8) NS where
S = {x+y7: x,y > 0,1/)(2 +y23 T}

We have n(r) > 4n1. (Note that S does not contain any real or pure

imaginary numbers). For B = a+bd € Z(§) define
Sg = {xtyi:a-1 < x <a,(b-1)|8] <y < bls|}

Note that the S, form a disjoint covering of the complex plane. Thus

B

=US
BE

the region R Sg

1 has area n1|c5| . Now consider the region
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R, = {x+y< :'/42+y2 < - |1+8]5 x,y 2 0}

Suppose x +yZ € R,.  Then x+y% also lies in Sa+b6 where
+
a-1T asme; bl =y/f) <ib; b E27)

We have |a+bd| < |x+(y/|6])6] + |1+6| < r and so a+bs € S. Consequently

R12 R, and the corresponding area relationship
2 2
n1|6| > m(r-|1+8|)°/4 > nr°/4 - 2mr|1+68| /4

gives us the bound for n(r) since |1+8|/|8| < V2.

For d=1 (mod 4) we have c=2. Note that a+b8§ € Z(§)NS (a,b € Z)
implies ((2a-1) + (2b-1)8)/2 € Z(6§) NS. Consequently n(r) > 8n1 where n,

is the number of B = a+b8§ € S (a,b € Z). The result now follows by

using the lower bound for n, derived in the previous paragraph. //
THEOREM 2.12
Let
FR(§) = {x+yi:0<x<1,0<yc< |§}
(FR standing for fundamental rectangle). Suppose that we have n complex
numbers zj , J=1,2,...,n contained in FR(§). Then for n > 2 we can find

Zj’ 2 with j #k satisfying
lzj - zy] < /2|8|/(/3n-2) + 2(1+|8])/(/3n-2)

PROOF

The result is trivially true if two of the n complex numbers
coincide. Therefore assume zj # 2y when j #k. Centre a circular region
C. of radius s on each zj with s chosen so that at least two Cj touch but
no two Cj overlap. (Cj’ Ck overlap if Cj n Ck has non-zero area). We

can therefore clearly find Zj’ 2y satisfying Izj = zk| = 2s. Let
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FR(8) = {x+yl:-s sx <1+s, -s<s y < |§] +s}

Now the n circular regions Cj are completely contained within FR((S)s

but do not occupy the entire area. Let

n
t = (area U Cj) / (area FR(G)S) = nwsz/(1+25)(|6| +25)

j=1
Clearly t < 1 but we can obtain a better bound as follows. The
rectangle FR(G)S and the circular regions Cj form a pattern P which

(when we consider all possible translations of P of the form
P+2(1+2s) + im(|8|+2s), &, m€ Z)

defines a packing of the plane by equal radius non-overlapping circles
with a corresponding packing constant of t. (See chapter one section

one). Consequently t< n/2/3 and so we have
nms?/ (1+25) (|8]+25) < 7/2/3
Rearranging this inequality gives
s?(2/3n-4) - 2s(1+|6]) - |8] < O

which implies

L. 20+[s]) +/4a+[s])” +4]8] (2/3n-4)
- 2(2/3n-4)

(1+]8]) + A+|6+v]8] (2/3n-4)
(2/3n-4)

V|8|/(2/3n-4) + (1+|8])/(¥3n-2)

We now use theorems 2.11, 2.12 to prove the main result of this

section.

THEOREM 2.13

Let Ak’ k>0 be a relative minimum of M(w) and let

8] = max{|8k|,|8k+1|}. (See the first paragraph of this section).

/
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Then

IAL] < 2/2|s|/c¥B 8] + (9]s]) /18]

PROOF

We begin with the d=2,3 (mod 4). Thus c=1.

If A, does not exist then |A] = 0 and the result is trivial.
Therefore assume A4 exists.  Since |A;| < 1for k>0 the theorem is
trivially true if |B| S 9|8|. Therefore assume |B| > 9|§|. Let

r = (|B]-1)/2. For Y € Z(8) satisfying |Y| < r let LW (nY-Yw), with
ny € Z(8) chosen so that X, € FR(S). This gives n(r) complex numbers in

FR(8) and by theorem 2.12 we can find two numbers Xy oXy satisfying
1 2

|x, -x, | < V2[8[/(/3n(r)-2) + 2(1+|6])/(/3n(r)-2)
1 2

Let n =n_ -n, ,Y = Y,-Y,, A =n(l,1) + YW. Note that A€ Mw)\{(0,0)}
Y1 Y 1 2
since Yq # Y, Furthermore
A*| = In-Wwl = Ix x|
Y7,
We now show that |Af| < |A*|. If |A"] 2 |Ag| then this result is
trivial since |Ag| < |Ayl-  Therefore suppose |A*| < |A0|. Note that

1| < vyl + [v,] < |8] -1 and so

|A| < 2|Yw| + |A*| by theorem 2.1la

2|gw| -2|w| + |A7]

n

< 2|Bw]| - |AO| since |A"]| < |A0| < |wl
Now if |B| = |B,| then
|A] < 2|Bw| - |A1:| since |Ag| < |A0|
< |Ak| by theorem 2.1a

A
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If however |B| = |8k+1| then
lAI < Z[qu.lwl = IA]*('q.lI < |A‘k+1|

In either case [A| < [Ap,;|. Now if o = |Af| then either A or some

B € M(w) satisfying |Ak| < |B| < |A], |B*| < |A1’;| will be a relative
minimum of M(w). However this contradicts the fact that Ak o is a
relative minimum of minimal magnitude greater than |Ak| . Therefore we

must have |Ai| < |A*|. Thus to this point we have the bound

x| < Y2[8[/(/3n(x)-2) + 2(1+]8])/(/3n(r)-2) (5)

We now use theorem 2.11 to obtain the bound stated in the theorem.

From theorem 2.11 we have
3n(r)-2 » /3_nr2/]6|-2/5nr—2

Substituting r = (|B|-1)/2 gives

/n()-2 > 75 (181%-2181+1) - vBn(]8|-1)-2

2
=ﬁ|ﬁ|__/3' 1, +_.‘/§..7I_ -2
TR ORI

2
Bl g )12

4]s|

_ /31]8]? <1_2(1+2/Z)|<S|>
|8

_ Aulg|’ (1_8151)

418 8]
Note that the final expression is positive for |B8| > 9|8|. Therefore
] (1- 8!_<s|)‘1
3n(r)-2 - | 8|

] /34-n| fsl 2 (1 . lf:Il (l ] |8§D_1)
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< 416!2(1+7215|) since |B| > 93]
V37 |8| 18]

Substituting this result in (5) gives
/8|6| 1+ 25) z(1+|5|);|5|<1+72|5[\
/S8l /38| g

Now /(1+72]8]/[8]) < 1+36|8|/|8],1+|6] s2]8|, and (1+72|8|/[8]) < 9

for |8| > 9|8|. Therefore

2/28| (1+36[6[)+ 14452

|Ag] <

v3n?|g| /3n|8[_2_
2

2vZ|8| (7272 , 144) H

YSni|g| (mi 3T/ g

1
Since 72vZ/V3 w2 + 144//3 7 < 9% the result is now clear.

The proof of the case d=1 (mod 4) is similar to the above case.
However one important difference must be noted. For d=1 (mod 4) there
are at least two choices for nY. One choice is of the form a +bd,

a,b € Z and another choice is of the form (a+bd)/2, a,b € Z. This
gives cn(r) =2n(r) points in FR(S) as opposed to only n(r) points in the
case d=2,3 (mod 4). This difference plus the factor c =2 in theorem

2.11 account for the factor c =2 in the final result. //

SECTION THREE
AN ALGORITHM FOR THE CALCULATION OF RELATIVE MINIMA

In this section we develop an algorithm for calculating a chain of
relative minima AO’Al’AZ’ .. in M(w) which is based on the idea of
algorithm 1.4. The algorithm we develop suffers the same drawback as
the general simple continued fraction algorithm (algorithm 1.1) in that

its use in practice is limited by the precision to which calculations

can be performed. Of course in practice we would only use the algorithm
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developed in this section for w ¢ R. For w € R the simple continued

fraction algorithm (see theorem 2.10) is more appropriate.

We begin with the definition of several types of objects which are
at the heart of the algorithm to be developed .

DEFINITION 2.8

Let Ak be a relative minimum of M(w) satisfying |AkA1:| # 0. We

define

Mk(w) = M(w) /Ak

and for all j € Z

Ek,j {AJ./A](:Aj € Ej}

If Algn) ~ Ak then Mlgn) (w) will have the obvious meaning. We shall use

Ry ; to denote an arbitrary element of Ey 3 and where we wish to denote
b b

more than one such element we shall use the notation Rk - (1).

P 0
Finally if j=k+1 then we shall use the briefer form Rk for Rk K+ /

Given Ak,A]EI) it can happen that M.k(w) and Mlgl)(w) are not the same
sets. (See example 2.5b where MS(W) # Mgl) w). If Ak = UA}EI) ,
U= (£,£) with £ a Z(8) root of unity, then we will indeed have
Mk (w) = Mlgl) (w). Note however that Mk (w) and Mlgl) (w) are always
isomorphic (A/Ake Mk(w) corresponds to A/AIEI) € M]Sl) (w)) and that
|A/Ak| = |A/Alsl) [, |(A/Ak)*| = |(A/A1£1))*| . Therefore the relative

minima structures of M.k(w) and Mlgl)(w) are identical.

The following result is obvious yet important. It is obvious in
that it is really just a restatement of special cases of theorems 2.2,

2.8 using the notation of definitions 2.7, 2.8.
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THEOREM 2.14

A complete chain of relative minima of M.k(w) is given by

coRy s Ry g R g e

In particular (1,1) = Ak/Ak ~ Rk K’ and Rk = Ak+1/Ak satisfies

(a) |R£| <o
(b) vSE€ Mk(w)\{ (0,0)} satisfying |S*| < 1
we have either |S| > |Rk|

or |8| = |R,| and |S*| 2 |RY|
Finally, given the chain AO’ Al’ cees Ak plus Rk we can extend the chain
by taking Ak PR AkRk /

The final statement of theorem 2.14 reflects the basic idea for the
algorithm we will develop. That is (as in algorithm 1.4) we will
calculate a chain AO’ Al’AZ" .. in M(w) indirectly by calculating
Rk € Mk(w) s BE0RL 120 . Now this basic idea is of little use by
itself since it suggests nothing more than a scaling of M(w) and a change
of notation. Of course the crucial fact is that we will be able to
choose a representation of Mk(w) (not Mk(w) =Z(8)[(1,1D) /Ak,W/Ak]) which
results in the amount of work required to locate Rk being O(|§]). (In
example 2.1 the amount of work required to find Ak is O(|8k|2)).

Therefore the next step in the development of our algorithm is to develop

the appropriate representation of M w).

Ideally we would like to be able to represent Mk(w) in the form

M W) = Z(8) [(1,1),W,]

for some Wk € Mk(w). (The reason why such a representation is desirable
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will become clearer when we look at the actual calculation of Rk). Now
(1,1) belongs to a basis of Mk(w) if and only if Ak belongs to a basis of
M(w) which occurs if and only if akx - Bk k=1 for some «,\ € Z(§). (See
comments following definitions 2.2, 2.3. If k,\ exist then for
B=k(1,1) + \W we have M(w) =Z(§) [Ak’B] and so Mk(w) =Z(8)[(1,1) ’B/Ak] ,
that is we can take Wk=B/Ak) .  However the following example shows that
a relative minimum need not belong to a basis of M(w). (Note that if
Z(8) is a unique factorization domain then it is easily seen that a
relative minimum must belong to a basis of M(w)).
EXAMPLE 2.2

In example 2.1 wé saw that A3= (2+568) (1,1) + (6+28)W is a relative
minimum of M(w), w=/I+8, § = v/-10. Now if A3 belongs to a basis of

M(w) then we will be able to find k,A € Z(8) for which
(2458) 1 - (6+28)k =1 (6)

Let «k = a+bd, A = e+£f§ with a,b,e,f € Z. Substituting for «,\X in (6)

and then separating out the real part gives the equation
2e - 50f -6a+20b =1

which clearly has no solution. Consequently (6) has no solution and

we can conclude that A3 does not belong to a basis of M(w). /

Clearly a more general form for representing Mk(w) is required.
To develop such a representation we shall need the following theorem and
definition.

THEOREM 2.15

Let ak’Bk be the coefficients of a relative minimum. Then ak’Bk

have no common rational integer factor and so

<oy ,By > = Z[g,o]
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where g is the minimal positive rational integer in <ock,8k> and

g = (a+8)/c € Z(8) with 0 < a < cg.  Furthermore
g = (N(oq) N(B) N(oy +8,))

PROOF

Since ak,Bk are the coefficients of a relative minimum they clearly
have no common Z(8) factor and so the form of <<xk,8k> follows from
theorems 1.4, 1.5. Therefore the only point which really requires
explanation is the final one. Let f = (N(a,k) ,N(Bk) ,N(ak+8k)). Now

as g € <ak,8k> we have g = aka+ BkB where o,B € Z(§). Thus

gy = N(ak)a+a]'<8k8, g8y = oqBra+N(8, )8

By theorem 1.2 we have f|0lk81'<,0.1'(8k and so f|ga1'<,g81'(. Since af(, Bf(
have no common rational integer factor we conclude that f|g. However

since we can find 2,m,n € Z such that

f = RN(Gk) *IIIN(Bk) "'DN(GR*BR)
= op(hay + noy +8y)) + B, (mBy +nloy+61))
we have f € <oy 5By > and so g|f. Thus g=f. /

DEFINITION 2.9

A relative minimum Ak € M(w) will be called basic (non-basic) if

Ak belongs (does not belong) to a basis of M(w).

For Ak a relative minimum of M(w) we define
Ik = <ak,8k>
The standard representation of Ik (see theorems 2.15, 1.4) will be

I = 2[g,o ), 9 = (a,+8)/c
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We shall use Kies >‘k to denote Z(S) integers satisfying

A~ By = 8k

and finally we define

B]( = Kk(l,l) +}\kw, Wk = Bk/Ak /

Note that Ak is basic if and only if gk=1. If Ak is basic then
MWw) = Z(6) [Ak’Bk] and Mk(w) =Z2(08)[(1,1) ,Wk]. Of course S >‘k (and

hence Bk’ Wk) are not unique since

(In general there are other solutions as well as those given).

We now give a standard representation of Mk(w) which will be used
in the algorithm. (Other non-standard representations are possible if
we allow ak)\k - BkKk = &gk where £#1 is a Z(S8) root of unity. We shall
assume that M.k(w) representations are of the following standard form
unless otherwise stated).

THEOREM 2.16

Suppose Ak is a relative minimum of M(w) and Ik’ Ky >‘k’ wk are

as defined in definition 2.9. A standard representation of Mk(w) is

given by

Mk(w) = {(af{l1,1) + Bwk)/gk: (o,B) W allowable}
By (o,RB) Wk allowable we mean
o = K)\k- J\Kk, B= -KBk*-Aak, k,A € Z(68) (7

Furthermore we can find a unique "bk € Z (for the given Wk) satisfying

0 < wk gy such that
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(a,B) Wk allowable

if and only if
(Q,B) = ml(gk’{)] *mzcok’g) +m3(0’ng +m4(wk’ck), mJ E Z'

(The terminology (a,B) Wk allowable reflects the fact that a,B are
allowable as coefficients of an element of Mk(w). (For the given Wk).
Note that if Ak is basic then gk=1, ¢Jk=0, 0 =W and Mk(w) =Z(8)[(1,]D ,Wk] .
However if Ak is non-basic then (1,1) does not belong to a basis of Mk(w)
and so the representation of Mk(w) is not in terms of a module basis.
Finally we note that it is easily shown thattﬁ(=0 if and only if

Kk,lk € Iﬁ. Such Kk,xk can always be found (see the proof of theorem
2.15) and it is therefore possible to have a simpler representation of
Mk(w). However this simpler representation is usually more difficult to
obtain especially if we encounter a chain of two or more non-basic

relative minima and so we have not pursued this matter).

PROOF

It is easily checked that

(1,1) = (\A-BBI/g > W= (kA 0B ) /g,

Thus
Mw) = {k(1,1) +\W:k, A€ 2(8)}
- {((Kkk-AKk)Ak-F(-KBk+Auk)Bk)/gk: K,AE Z(8)}
= {(aAk+BBk]/gk: (a,B) Wk allowable}
and so

Mk(w) = {(a(1,1)+BWk)/gk: (a,B) Wk allowable}

It therefore remains to show that the Wk allowable (o,B) are precisely

those pairs of Z(S8) integers described in the if and only if condition

of the theorem.
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Note that (gk,O) s (O,gk) are Wk allowable. (Take |<=ock,}\ = Bk and
K =r<k,)\ =)\k in (7)). Furthermore with the aid of (7) it is easily

checked that if (a«,B), (Y,0) are Wk allowable then so is
k(a,B) +A(Y,0) = (ka+dY,kB+A0) V Kk, € Z(6)

The set of Wk allowable B coefficients (that is the set of B for which

3 a € Z(8) such that (a,B) is W, allowable) is clearly

k
Ik = <or.k,8k> = Z[gk,ok]. Thus any Wk allowable B coefficient is
uniquely representable as My8) * MOy where Mg, My € Z. Let

Yy = (e+f8)/c be the Z(8) integer satisfying (wk,ok) Wk allowable, f
non-negative and minimal, and e non-negative and minimal for this value

of f. We can therefore write any W, allowable (a,B) as

k

(@,8) = (o-m,¥y ,0) +m; (0,8, ) +m, (¥ ,0,) (8)

The set of all o such that (a,0) is Wk allowable is easily seen to

be an ideal I. We have
a €1 = (a(1,1) +0W) /g, € M (W)
= ahy /g € Mw)
= (o /g)(1,1) + (aB, /g )W € M(W)

Clearly 8k € I and in fact g) must be the minimal positive rational
integer in I since o, By have no common factor. Now 9 @ Z ak,8k>
implies O = Koy * )\Bk for some x,\ € Z(8). Theorems 1.2, 2.15
imply gk|N(ak) , N(Bk) , o:.ksl'(, “1'<Bk and it therefore follows that

' ' ' = PR
okor.k/gk, Okek/gk € Z(8). Thus Oy € I. It is now not difficult to

see that we must have I = Il‘(.
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Returning to (8) we now have that a - m4lpk =mg +mzok for unique
m, , m, € Z. We therefore have that any Wk allowable (a,B) is of the
form

(@,8) =m, (g,0) +m,(qy,0) +m3(0,gk) +m4(wk,ck), . £ Z.

Furthermore it is clear that any such (a,B) is Wk allowable since each

of (g,0), (oy,0), (0,g), (¥,0,) is W, allowable.

To complete the proof we must show that wk satisfies the stated
conditions. Since m (gk,O) +m, (of(,O) + (wk,ok) is Wk allowable and
ol'(= (ak-G)/c it is clear that £=0 and 0 < e < gy - That is wk=e/c €7
and 0 < wk < g The uniqueness of by follows from the fact that 8x is
the minimal integer in Il'c nz'.
COROLLARY
g < 2|8|/cvV3

PROOF
Since (0,/g)(1,1),((oy-g,)/g,) (1,1) € M, (w) we have
R = ((a-é)/cgk) (1,1) € Mk(w) with |a| < cgk/z. However since (1,1) is

a relative minimm of M (w) and IR| = |R*| we must have |R| 2 1.  Thus

|(a-6)/cg, | 21 = gicz < af-d

= glz(cz-glz(cz/ll s-d

~ g <2|8|/cv3 /

Although the representation of Mk(w) in theorem 2.16 may seem a
little cumbersome it will prove quite satisfactory when it comes to
calculating Rk in Mk(w). We shall not calculate the required
representation of Mk(w) from s Bk since these coefficients eventually
become unmanageably large. Instead we shall use coefficients which

arise in the calculation of Rk-l € Mk_l(w) . Consequently we delay
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discussion of the practical aspects of calculating a representation of

Mk(w) until later in this section.

We now consider the problem of calculating Rk € Mk(w). The
following notation will be needed.

DEFINITION 2.10

Suppose Mk(w) is represented as in theorem 2.16. The components
of Wk will be denoted by wk’l,wk’2 and the coefficients of Rk will be

denoted by M 12"k 2 That 1is
Wk = (wk,l’wk,z)’ Rk = [nk,l(l’l) +nk’2"\'k)/gk

with wk,P“&,Z € C and (nk,Pnk,Z) Wk allowable. /

Let us suppose that we have available a standard representation of

Mk(w) as described in thecrem 2.16 which will be obtained by a process

outlined later in this section. Now from theorem 2.14 we see that we

can take Rk to be any R € Mk(w)\{(0,0)} which satisfies

(@) |R*| <1, |R| minimal

(b) S€ MW and |S| = IR| implies [S*| 2 |R¥|

We shall find the required Rk by using a search of the type used in
example 2.1 to find Al' The next two theorems help to clarify this
procedure by indicating the maximum amount of work which may be required
by the search.

THEOREM 2.17

Let

FR(8) = {x¥7 :0<xs1, 0sy<|§]})

Suppose that we have n complex numbers Xj’ j=1,2,...,n satisfying

X; € FR(8) with
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n > 2|8|/¥3c
Then we can find xj, X with 1 < j,m £ n and j # m such that
|x. -x +¥Y|] <1
j ‘m

for some Y € Z(6).

PROOF

We begin with the case d=2,3 (mod4) and so c=1. Suppose no pair
xj, X with j #m satisfy the inequality. We show that this leads to a

contradiction. Figure 2.1

‘L-xj + (1+6)

For each xJ. let

- I % = 1
Xj = {x€ ¢ |)(j X|$7}
FR(§)
and let —
Y. = U X.+Y) N FR(S
y Y€Z(<S)(( y : ) X; t—x}. +1

where Xj +Y = {x+y:x¢€ Xj}. (See fig 2.1). Note that YJ. < FR(9S).
Furthermore since |Y1-Y2| > 1 Kor Y15, € z{s8), Y #Yz, the area of
(XJ.+Y1) n (Xj+Y2) must be zero. Consequently it is clear that Yj and
Xj have equal areas of w/4. Now if any two regions YJ., Ym (3 #m) have
a non-zero area of intersection then-it is easily seen that

|xj - xm+Y| < 1 for some Y € Z(§) contrary to our supposition at the
beginning of the proof. Therefore the Yj must have zero area of

n
intersection and so Y = .Y

j&1 Yj has area nm/4. By using the same

argument as in the proof of fheorem 2.12 we see that Y has area at most
m|§|/2v3.  Consequently nm/4 <m|8|/2/3. This implies n <2|§|/V3

which is a contradiction.

The proof for the case d=1 (mod4) is virtually identical to the

above proof. The only difference is that _Yj has area cn/4 = /2
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rather than n/4. The additional area comes from translations of the

form Xj +Y where Y = (a+bd)/2 with a,b odd.

COROLLARY

We can find R = (a(1,1) +8W,)/g, € M _(W\{(0,0)} satisfying
IR*| <1, 8] <2/8]/v3c, BEZ, glb.

PROOF

Let & = [2|8]|//3¢c g ] Note that as (8g,,0) is W, allowable
vV 6 € Z(§) we have R € Mk(w) implies R+6(1,1) € Mk(w),V 6 € Z(68).
Therefore for m=0,1,...,2 and n=0,1,..., 8 - 1 we can choose

8 € Z(8) such that
m,n

’

Sn,n = Pp,nlel) * (o (1,1) +mg W, )/g = (Sm,n,l,sm,n’z)

has Sm n.2 € FR(§). Now this gives us (Sl+l)gk numbers in FR(S).

Since (2+1)g, > 2|8|/V/3c theorem 2.17 shows that we can find

Sm,n,Z’Sp q,2 with 0O sm,p <2, 0<n,qs% gk-l and m#p or n#q such
that

|Sm,n,2 -Sp’q’2+Y| <1 for some Y € Z(§)
Let

R=Bl_ -5 =]
m,n~ Sp,q " T

Clearly R € Mk(w), IR*| = |Sm,n,2 -S . Z+Y| < 1. It is not difficult

p,q,

to check that R # (0,0). Finally note that R= (a(1,1) + Bwk)/g1< with
8] = |g mp)| s gt < 2|8]/f3c /
The R described in the corollary can be found by successively

testing the B € il Ik (that is the multiples of gk) in order of

increasing magnitude for the existence of an a € Z(§) such that (a,B)
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is W, allowable and |R*| < 1. (If more than one o satisfies the
condition then we choose an a for which |R| is minimal. However if this
minimal value of |R| occurs for more than one a we choose one of these o
for which |R*| is minimal). The corollary guarantees that we will find
such an R with |B| < 2|§|/c/3. Now this R will not necessarily be R,
(it often is) but it does give a bound for |nk,2| .

THEOREM 2.18
Suppose R = (a(1,1) + swk),gk € Mk(w)\{ (0,0)} satisfies |R*| < 1.

Then
@ Ing ol < g UR[+1)/ W W] (9)
5 3.3
= (IR[+1)] oy - By w"[/2|w]
2.2 2
®) Iy, <2[8]/eV3 + |og-B”|/|w]
PROOF

_ *
We have Rk— (nk,l(l’l) +nk,2wk)/gk’ IRkl < |R|, |Rk| <1.

Thus
i”k,zmk'wp| = gkle'R;‘ < gk(]Rl"'l)

Now wk=Bk/Ak for some Bk=l<k(l,l) +>\kW € M(w) with ak)\k - BkKk=gk.

Therefore
_ * - e * *
W Wil = |B /A B /Ay
Kk+)\kw ] Kk-kkw
B aghy
_ | o - B
- 2 2 7
% Bk

2 2.2
ng|W/(ak = Bkw ) ‘

Since w#0 we have IWk-Wil # 0 and so part (a) is clear. (Note that
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Mk(w) is only defined for |AkA}:| = |a1?;- BIZ(WZ | #0).

To prove part (b) we note that gkR = B(kaW§)-+gkR* and so from part

(a) plus the above expression for |wk-w£| and the fact |R*| < 1 we have
|”k,21 * IBJ'ng(IR*|+l)/[Wk"wi|
2 2l
< [B] + | (o - B W]

By the corollary to theorem 2.17 we see that we can assume that

|8] < 2[8|/v/3c which gives result (b). /

Thus to find Rk we first find R as indicated following theorem 2.17.
This gives a bound (9) for |nk,2| and the remaining possibilities (often
none) in Z[gk,ok]ﬂZ(G)+ can be checked. (See chapter one section two
for Z(G)+. Note that if d=-1 we can in actual fact restrict our
attention to the B satisfying arg(B) € [0,n/2). This is because Z(§)
contains the roots of unity +< as well as + 1. Similarly when d =-3 we
can restrict our attention to the B satisfying arg(B) € [0,n/3). To
simplify the presentation we shall however ignore this simplification in
the following paragraphs and the resulting algorithm. Of course in

practice this simplification is easily made and should always be used).

The bound in theorem 2.18b has been given as an indication of the
maximum number of tests which may be required to find Rk‘ In the proof

of theorem 2.33 we shall see that
= 1
lof - By Wl < 4/Z |8 [w] /Y8 nic

Thus |aﬁ-8iwz|/|w| < 2.4|8|/c and so we obtain an upper bound of

3.6|6|/c for Of course this bound describes the worst possible

|”k,2|'

case and in practice we usually find |nk 2| < o).
b
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Recall that following theorem 2.14 we indicated that a representation
of Mk(w) involving (1,1) is most desirable. We can now give a very brief
indication of why this is so. More general representations of Mk(w)
involving linearly independent elements T, V € Mk(w) are of course
possible. We can also develop corresponding generalizations of the last
few theorems. The generalization of theorem 2.18b gives a bound
depending on |T| and |T*|. Now we would expect the search for R, to
involve the least work when this bound is minimal. This occurs when |T|,
|T*| are approximately equal and minimal. However (1,1) is a relative
minimum of M, (w) so we cannot have |T|, |T*| < 1. The choice T =(1,1) is
therefore the most obvious and the simplest one. Of course in any given
case other choices of T may give a better bound forlnk,zl. However the
effort required to find such a T would normally far outweigh any savings

that are gained in the calculation of Rk‘

So far we have seen that the location of Rk involves a relatively
simple search. We now look more closely at the details of this search.
In particular we consider the order in which the g (coefficients of Wk)
are searched through, and the method for determining if there exists

a € Z(8) such that (a«,B) is Wk allowable and
R*] = [(a(L,1) +84)/g | = [Ca+ oy ,)/g| <1

We have already noted that |nk 2|< 3.6|8|/c and so we can take

b(B) =3.6|68|/c as the initial upper bound on the magnitude of the

B € Z(G)+IWZ[gk,ok] which need to be considered in the search for Rk‘
Now as any B € Z[gk,ok] is of the fomm Mgy +Myoy , M,y € Z we can
search through the appropriate g in the following order. For

m, =0,1,-1,2,-2... (while|m4H6|/c < b(B)) test B = mgg +m,0,

me =2,2+1,...,n where 2 (resp.n) is the minimal (resp. maximal)

rational integer such that the corresponding g satisfies |g| < b(g),



63

B e 2(6)+. (Note that 2,n may not exist in which case there are no

values of B corresponding to the current value of m, to test). For

any B generated in this manner we must test for the existence of an a
satisfying the properties listed previously. Now any a for which

(a,B) is Wk allowable is of the form

a=m gk+m20}'<+m4wk,ml, m, € Z, m, determined by B
We therefore seek ml,anE Z such that

| my g+ my o *my g+ By p)/gyl < 1 (10)
If such m, ,m, exist then we must certainly have

| Im(o+Bw 5)/gy | = | Cmy|8]/c + Im(Bw 5)) /gy |

<1

This implies

c[—gk+Im(Bwk 2))/]6| <m, < c(gk+Im(8wk 2))/|6!
and so

[c(-g+Im(Bwy ,))/8]1+1<my < [c(g+Im(Bw, ;))/|8]]

Now chk/|6| < 4/3 ~ 2.3 and so there are 0,1,2 or 3 possibilities for
m, . For any one of these possibilities we then require m, € Z
satisfying (10). Clearly two possibilities for my will need checking.
Thus for a given B there are up to 6 pairs ml,lnz(corresponding to 6

values of a) which may lead to R satisfying |R*| < 1.

As the search for Rk proceeds we will produce a number of
R € M (w) satisfying |R¥| < 1. Of course R, will be amongst these R
and it can be sifted out as follows. Since the R indicated in the

corollary to theorem 2.17 satisfies
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IR = [BON W) /g #R*| < 2[8][wy 1wy ,|//3cg +1
we have an initial upper bound for |Rk| of
mR = 2|8 [wk’l-wk’2|fc/§gk+ 1

Set mR* = 1. Now when the search produces an R € Mk(w) for which

[R*| < 1 we check to see if |[R| < mR, or |R| =mR and |R*| < mR*. If
either condition is satisfied then we set T=R, mR = |R|, mR* = [R*|, and
update b(B) using (9). We then continue the search. In this way we
keep track of the current best possibility for Ry and when the search

is completed we will have R =T.

The discussion in the last few paragraphs tends to give the
impression that the calculation of R.k involves far more work than it
actually does in practice. Generally speaking we find gk==1.
Consequently for a given B there is usually at most one possibility for
m

2
8 > 1 (and so more possibilities for m, are likely to occur) we are

and often there are no m, possibilities. On the other hand when

only considering one in every 8 of the B € Z(G)+, that is there will be
fewer B coefficients to consider in the search. Finally we normally
find that the location of the R indicated in the corollary to theorem

2.17 results in the bound b(B) being at least halved.

The ideas of the last few paragraphs are now collected together in
the form of an algorithm which will eventually become a major part of our
algorithm for the calculation of relative minima.

ALGORITHM 2.1A

Assume that we have available a standard representation of Mk(w).

(See theorem 2.16). Then Rk can be calculated as follows.

1 Set b(B) = 3.6/6|/c, mR = 2|5||Wk,1'wk,z|//3- cg, *+1, mR* = 1
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22

23

24

25
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Set m3=1, m4=0, B=gk

Calculate x = Bwk,Z mgs

Calculate m, = [c(-g, +Im(x))/|8]] +1, m; - [c(gk+Im(x))/|6|]
If m, > m; go to 15

Calculate m; = [-(m,a,/c +Re(x))/g,]

Set mI =m, + 1

Calculate r* = Im1 + (m,0p*x) /8k|

If r* 21 go to 13

Calculate r = [ml + (1112 0‘1'{+m4¢k+ﬁwk,13 /gk!

If r >mR, or r=mR and r* 2 mR* go to 13

+m,0, + =8, m=r, mR*=r"

Set My 1 = Mg MO FMVs My o

[}

b(®) = g (r+1)/ [ 1 5l

+ .
If m, < m, then increment m

1 by 1 and go to 8

1

—

Increment m, by 1 and go to 5

2

Increment my by 1

Set B =m +m,o

38k T M %

If |8] <b(B) go to 3

If m, >0 reset m, to -m,, 80 to 21

4 4

Reset m, to -m, +1

If m4|6|/c 2 b(B) go to 24

Set m; = -[mqak/c gk]

If my <0 and msgk+m4ak/c= 0 then increment m, by 1
Go to 16

Stop



66

We now return to the problem of calculating the required
representation of Mk(w) . The algorithm for calculation of relative

minima will obviously start with the module

My = Z(8)[(1,1),W)/A, = 2(8)[(1,1) ;]

1

where W if |w| < 1. (We must take negative

o = Wif |w| > 1and Wy = -W
wl in order that the coefficients Kg = -1, Ay = 0 of B0 = A0 WO satisfy

0‘0>‘0 - BOKO =1). We also have

g0=1s¢0=0300_w

Thus a standard representation of M0 (w) is fairly trivial to obtain.
More generally suppose that we have a standard representation of Mk(w)
(theorem 2.16) plus Rk € Mk(w) and we wish to calculate a standard
representation of Mk+1(w) where Ak ‘1 =RkA.k. We have already indicated
that we wish to avoid working with the coefficients a8 since they
grow with k. The following theorem shows how this can be done.
THEOREM 2.19

Suppose that we have a standard representation of Mk(w) and that we
have Rk - (nk,lcl’l) +nk’2Wk}/gk € Mk(w) giving Ak+1 - RkAk Then we

can find nk,3’ nk’4 € Z(68) such that (nk,s,nk’4) is Wk allowable and

",1M,4 " ,2",3 T 8kBk+1

Let

Sk = (nk’3(1,1) +nk,4wk)/gk

Then provided ]Rk R]’EI # 0 (equivalently IAk+1AT<+1| # 0) we have a standard

representation of Mk +1(w) defined by

Wee1 = Si/Ry

Tier = 20ome 20 - opme o/8me 15 (o 1 - ey /8y
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Yiep = Oy 4By S)/g (mod Iy )

where (a,B) is Wk allowable and (-ank’2+8nk’1)/gk = Op41-
PROOF

Note that

A1 = ARy = (nk,lAk+nk,2Bk)/gk

(g, 199 M, 25960 (11D * (e 1By * i M) /8

Thus oy g = (g 109 * My 2<9 /8y and Byyy = (g 1B +my oh) /gy Let
Kk+1,kk+1 € Z(8) satisfy ak+lxk+1-8k+1Kk+l = 84 and let

N3 = Akl "KMk’ Ma T ke T Bkt
From (7) (in theorem 2.16) we see that (ns,n4) is’wkallowable and it is

easily checked that M 1n4-nk Nz = gkgk+1. Thus nk 3 4 do indeed

exist.

Now suppose that Nk 32N 4 is any pair of integers satisfying the
) b
conditions stated in the theorem. Let B==A.kSk and note that B € M(w).

We have
B = (e 3% * My 4By /8y
= ((nk,Sak-Fnk,4Kk)(l’l)‘+(nk,38k+-nk,4kk)wk)/gk
Let = (my 50 * Ty 453 )/ 80 X = [y By ¥y yNJ/gy. Since B € M(W)

we have k,\ € Z(8) and it is easily checked that ak+lx-'8k+1K = 811

We can therefore take « =Ky Ay T X, Bk+1 = B and so we have

k+1
Wea1 = Bk+1/Ak+1 B (Bk+1/Ak)/(Ak+l/Ak) B Sk/Rk

From the expressions for R, , Sk we have

1,1) = O 4Ry - e 2510/ Bhar s M= Oy sRy * My 1510781



Thus
M (W) = {(a(l,l)-+8wk)/gk P (@,B) W allowable}
= {((O.rlk dy = BHk,S)Rk“‘ ("Omk,z i Bnk,l)sk)/gkgk+l
: (o, B) Wk allowable}
and so
My (6) = M G0) /Ry

= {[(Omk,4 o Bnk,s) (131) i (_ank,z + Bnk’l)wk+l)/gkgk+1

: (o,B) wk allowable}

We must therefore have
Ik+l = {('O‘”k,z + B”k,l)/gk : (o, B) Wk allowable}

+m.,o! +m

Now &=y @ + M0y *My¥yc> B= Mgy + M0y

Thus

{(Y(l,l)-+8Wk+1)/gk+1 : (v,8) Wk+1 allowable}
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+m,o mj € 7n (See theorem 2.16).

= {- o ! i
Tpeq = 1My o =Wo0LM o/8 *Maty o +my(opmy 4 =Wy 2)/8

:m. € Z
j }

which is the required form for Ik+1'

Finally let (o,B) be wk allowable and satisfy

(-ony,2* By 1)/8 = O

We therefore have ((ank,4 -Bnk,s)/gk,ok+l) Wk+1 allowable.

(wk+1’0k+1) is also W, allowable and so

(@ 4 By /8K Va1 € Tinn

which is the final result of the theorem.

Now

/
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We therefore calculate the required Mk +1 (w) representation as follows.
First reduce Ik +1 35 given in theorem 2.19 to the standard form
Z[gk+1’0k+1]’ (See example 1.1). This will give mj, nj € Z such

that
8ieq = My Oy o) *my(opmy /gy ) +many 4 +my (o o -y Q)78

= (g 1m&y *my0p) -1y (g +myop vman)) /gy

Op4q = (”k, 1 (g, +1, crkJ , 2(nlgk-*n 0k+n4wk))/gk (11)

We can therefore take nk,3 = mlgk+m2c5k 4“’1« nk,4 3gk +m O
Clearly (nk 32N 4) is Wk allowable. These coefficients are then used
b ’

to calculate Sk and Wk+1. Now if el = 1 we know that Va1 = 0 and so

the complete representation of Mk +1 (w) is known. If el > 1 then we
2 = 1
must determine l‘bk e From (11) we see that o n g *n,0p +n 4lpk,

B =n.g +n,o satisfy the conditions in the theorem. We therefore

38k "M%

calculate y = (omk 4 Bnk 3) /gk and then reduce this integer mod Ik +q t
obtain the required Vh1- This completes the calculation of a standard

representation of Mk ‘1 w).

Note that when M 2= 1 we can bypass virtually all of the above

calculation. It is not difficult to see that nk ) =1 can only occur if
8K =841 " 1. Consequently we can take nk 3= -1, nk A =0.  Furthermore
we will also have Ik+1 =Z[1,w] = Z(8) and so Opy] ~Ws Vg1 = 0. Thus the

only calculation required is that of Wk+1 = -(1,1) /Rk' This short cut
for finding a standard representation of Mk +1 (w) is particularly relevant
when Z(8) is a Euclidean domain (d =-1, -2,-3, -7,-11) since in almost all
cases we find nk,Z =1. For other small values of d we also find that

the occurrence of N 2™ 1 is relatively common.
b

Before presenting the above ideas in algorithmic form we consider

one further point. It is quite possible that Wi will grow with



k eventually reaching an unmanageable size. The following theorem
indicates how this possible problem can be avoided.

THEOREM 2. 20

Suppose we have a standard representation

{(a(l,l)-+BWk)/gk: (o, B) W, allowable}

M )

Then

(a1 +)\W1£1))/gk: (<) wlgl) allowable}

M, (4)

is a standard representation

if and only if
3 1t € I} such that W(l) = (1/g,) (1,1) +W
k k k= k

and wﬁl) Ewk-rok/gk (mod Ii)

PROOF

We have Akwk =B = xk(l,lj-bkkw with akkk-BkKk =By Thus

k

W= (oyBy - ) /8y
Now if we also have a standard representation
M 6) = {(x(1,1) +)\W1£1))/gk: (<,\) wlgl) allowable}
then AkW£1) = Bﬁl) = Kél)(1,1)4-xél)w with akxéé)-BkK£1)==gk
v a0 On e
Equating these two expressions for W gives the relationship
B = (G- en ) By

which implies

WD = (- /) (1,1) +W

and so

70
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Clearly ((Kﬁl) -Kk)/ak)(l,l) € Mk(w) and so 3 1 € Ik such that
(Kﬁl)- Kk)/ak = T/gk. Note that R = (wk(l,l)-+0kwk)/gk,
RO = M, +oi{M/g, € M) implies

Lol _ om0
and so wk-wﬁl)-rok/gk & Ii which is the second of the two conditions

in the theorem.

The proof of the reverse implication is basically just a reversal

of the steps in the previous paragraph. /

Thus to prevent the possibility of Wk growing with k we shall in
practice always reduce the Wk+1 obtained via theorem 2.19 as follows.

Choose T € Ii+1 such that |Wk+1-+Wk+1-+(21/gk+1)(1,1)| is ''small" and
replace Wk+1 with Wk+1-+(T/gk+1)(1,l). To see more clearly how t should

be chosen let 1 = and let ey = We have

P18k41 *P2Oke1 Wir1,1 T WK1, 2°
[Wieq *Wiear * 20/, ) A1) | = 0
= Dy 2/l = 0
= Im(y, 1+21/8 ) = 0, Re(yy +21/g, 1) =0
= Im(yy,q) - 2p,|8]/c g, =0, Re(yy, 1) +2(P;*Pyay41/C 8yyy) =0
= p,=cg ., Imly,,;1)/2]8], p; =-Re(y} 1)/2-P,3) 1/C g4y
We shall therefore choose t by taking

p2 = {Cgk+1 Im(yk+1J /2'5[} ’ pl ={-Re (Yk_'_l)fz = pza](+l/cgk+1}

where { } denotes the nearest integer function. (To choose 1 so that
"small" = minimal involves extra calculation when 341 > 0 and it is not

justified. However when ak+1==0 the resulting Wk+1 will have
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+W;+1| minimal). Note that this process produces W satisfying

IWk+1 k+1
* . *
IWk+1 +Wk+1] < Z(gk+1 + |6|/c)/gk+1. Since |Wk+1 —Wk+1| does not vary

with the choice of Wk+1 (see the proof of theorem 2.18) we also have that

|W +1| will be approximately minimal amongst all possible choices

SRR
for W -

k+1°
The above reduction of Wk+1 will be performed immediately following

the calculation of W as outlined in the paragraph following theorem

k+1
2.19. Note that this reduction of Wk +1 necessitates a modification of
the calculation of Ve We now calculate

b= (omy g - By 3)/8 " Ok /By

and then reduce this integer mod Il'( il to obtain the wk o corresponding

to the reduced Wk+1.

ALGORITHM 2.1B

Given a standard representation of Mk(w) and Rk € Mk(w) with

R = (nk,l(l’l) +”k,2wk)/ g we calculate a standard representation of

M]<+1(W) (Ak+1 =RkAk) as follows.

1 If ”k,2=1 then set nk,3=-1, nk,4=0, gk+1=1, Oy~ and go to 19
— | ! = 1 -

2 Setmy =My oMy = ORMy /8 N3Ny 15 Ny = (O 3 Wy D)/gy

3 Set ¢, = (1,0,0,0), ¢, = (0,1,0,0), ¢, =(0,0,1,0), ¢, =(0,0,0,1)

4 Find & such that|Im(n2)| >0, |Im(n2)| minimal

5 Exchange Nys Ny and Cys Sy

6 For £=2,3,4 set m = {Im(ng)/lm(nl)}, replace
ng with Ng ~mny, €y with C, ~mcy

7 If |Im(n1)| > |8|/c go to 4

8 If |Im(n1)| < 0 then multiply n;, c; by -1



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Find &, 2 < 2 < 4 such that n, #0, Inzl minimal

Exchange N,,Ny and C,sC

L

For £ = 3,4 setm = {nz/nz}, replace

o with Ny =N,

, C. with c -me,

L

Lf n37‘ 0 or n4;‘0 go to 9

L

1f n, < 0 then multiply N, by -1

Set gk+1 = nz

Set m= [Re(nlJ/gk+1]

Replace Ny with Ny " MgLg0 € with ¢ -me

Set °k+1 = n1

- '
SOt Mg~ M[uEy W0

m

2%k "k,4 "

m

where C, = (ml, m,, Mg, m4)

38k

2

+m

Set 5y = (m z(1,1) +my W )/8)» Wy = S /Ry

Set p,={cg,; Im(wk+1’1 +wk+1,2)/2|6|}

4%

Set p, = {_Re(wk+1,1+wk+l,2)/2 - pzak+1/c gk+1}

Replace W, with W, + ((P;8),; *P,%,1)/8; 1) (1,1)

If ey 1 go to 25

Set lpk+1 =0 and stop

= ! =
Set a—nlgk+n20k+n4lpk, B nsgk+n

where c, = (nl, n,

Set Wyq = (0 4~ BNy /8y~ (018447 *P)04,1) 001/ 81y

Set m=c Im (wk+1)/|6|

Replace "Uk +1 with wk+1 +

Set m= [wk+1/gk+1]

» Mg, n4)

|
I

4%k

73
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30 Replace Vi with Vel " MEya1

31 Stop /

We have now developed the major sections of our algorithm for
calculating relative minima. Before stating the complete algorithm we
consider one final point. The calculations required by the algorithm
will mainly involve general complex arithmetic rather than Z(S§) integer
arithmetic. Consequently we will obtain each Ak expressed as a two
dimensional complex vector Ak= (A](,l’Ak,Z)’ Ak,j € C. However we are
often interested in knowing the coefficients of Ak The next theorem

shows how s B, are most easily calculated from Ak

THEOREM 2.21

Let Ak’ k > 0 be a relative minimum of M(w) with

A= O ol ) A5 EC

Then the coefficients of Ak are

o = Wy 1723, By = Ay /W)

where { } is the nearest integer function.
PROOF

We have Ak,l =oy + Bkw, Ak,Z =q - Bkw and so

O Ay 12 =By of2, B =N /2= A S 2w

Now IAk,Zl = |al < IAOI = min {1,|w|}. Therefore IAk,2/2|’|Ak,2/2w| <1/2.

The theorem now follows since o,8 € Z(8), a#B implies |a-B| 2 1. //

We now summarise the results of this section in the following

algorithm.

ALGORITHM 2.1

Let w € €\{0}. A half chain of relative minima of M(w) can be



75

calculated as follows.

1 If |w| 21 set A= (1,1), oy=1, B;=0, W =W, and go to 3

0 0

2 Set A =W, o -1

0 o~ 8

=1, W.=-W

0 0

3 Setg0=1,00=w,w0=0
4 Set k=0

5 Use algorithm 2.1A to calculate Rk € Mk(w)

6 Set Ay SAR Bag = Ay ,1/% By = Wy /21

7 If IRI’E = 0 then stop

8 Use algorithm 2.1B to calculate a standard representation of Mk +1 (w)
9 Increment k by 1
10 Go to 5 //

If w € Q(8) then this algorithm will eventually stop at step 7 having
calculated a half chain of relative minima. Of course if w ¢ Q(S8) then
the algorithm is non-terminating since there are infinitely many Ak in a
half chain for such a w. However in practice an appropriate stopping
condition must be added to the algorithm. This is because calculations
will necessarily involve finite approximations to irrational numbers and
so we find a steady decline in the accuracy of the various values computed
by the algorithm. In general we find that n significant digit arithmetic
will only reliably calculate relative minima of magnitude up to
approximately 10n/ ¢ (for |w| =~1). Consequently to calculate large
relative minima we must use multiprecision arithmetic. Note that it is
only the calculation of Wk 41 Ak +10 %412 Bk i which require multiprecision
arithmetic. We generally find that 6-8S is sufficient for all other

calculations required by the algorithm, when |[§| is small.



76

We now illustrate the use of algorithm 2.1 with several examples.
(We have used a fortran implementation of algorithm 2.1 on a Prime 750
computer for the examples in this thesis).

EXAMPLE 2.3

We repeat example 2.1. That is we have w=/1+§, § = /-10 and we
calculate a chain AO’ Al’ ..
calculations in this example (and following examples) have been carried

- A7 € M(w) using algorithm 2.1. The

out using 14S arithmetic (double precision in fortran on the Prime 750)
and rounded to the number of digits shown. Note that d =2 (mod 4) and so

c=1, w=4d.

We have
w ~1.469120 +1.0762497
Since |w| 2 1 we set
Ay = (1,1), oy=1, B)=0
and the representation of MO (w) is defined by
g =i, Lpo =0, % =4, WO = (w,-w)

The calculation of RO € M(w) using algorithm 2.1A is summarised in the

following table. (Note that initially b(B) =3.6|8|/c =~ 11.4)

TABLE 2.3 Calculation of R

0
B a il T b(B)
1 —
2 -
3 4+8 .41 10.56 3.17
5+§ .60 11.37
8

This table and tables 2.4, 2.5, 2.6, 2.8, 2.9 give the following
information. The first column gives all B € Z(G)+ﬂ Ik which required

testing by algorithm 2.1A. A dash in the o colum indicates that
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at step 5 and so no values of o needed to be considered. If

N+

m,> m
2

m, <m
2

m , m,
value of r* and if r* <1 then r is also recorded. Finally if step 12 is

then the o column lists all a corresponding to the pairings

N+

which needed checking. For each o we record the corresponding

reached then the updated value of b(B) is recorded. Thus the coefficients

of Rk correspond to the final updating of b(B) in the table.

Thus ”0,1 =4+4, nO,Z =3 and so

Ry = (4+8)(1,1) +3W0 ~ (8.41+6.39%, -.41 - .077)
Therefore

A = AyRy= Ry, o, =445, B, =3
We now use algorithm 2.1B to calculate a representation of M1 w). We
have

T11=-3, n2=36, n3=4fd, n4=-10+46
and so

Il=Z[n1,n2,n3,n4] = Z[1,8], that is g1=1, 01=5

The reduction of I 1 to the standard representation also gives

c, = (-9,0,-4,1)
and so
Ng,3 = (-Ngy+00p* ¥p=-9, ny 4= (-4)gy*og=-4+8
Sy = (-9)(1,1) + (-4+6)Wy ~ (-18.28+.34%, .28 - .340)

and the initial value for W1 is
W, =Sy/Ry= (-1.36+ 1.07%, - .54 +9217)

To reduce W1 we calculate P, =0, P, = 1 and reset W1 to
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(-1.36 +1.07%, - .54 + .92%) + (1,1) = (-.36 + 1.07%, .46 + .92)

Since g, =1 we set y, =0 and so the representation of M, (w) is defined
1 1 il

by
g = 1,0,=8, ‘”1 =0, Wl‘*’ (-.36 +1.07%, .46 + .92Z)
We now increment k to 1 and use algorithm 2.1A to calculate
R1 € M1 (w). The results are summarised in the following table.
TABLE 2.4 Calculation of R1
B a g T b(B)
1 -1 1.07
0 1.03
z =
3 -2-6 72 3.08 4.88
-1-6 55 2.08 3.68
6 =
1+¢ 2-6 .90 =67
3-8 .94 5351
1-6 -4 .82 2.41
=3 .67 2. 21

Thus nl’1 = -1=6 ”1,2 = 3, and we have

R, ~ (-2.08+.06%, .39 - .39()
AZ = A].Rl ~ (-17.81-12.787, -.19+ .13)
0.2 = '9'26, 82 = -6

The calculation of a representation of M2 (w) is once again straight

forward and we obtain

=
1

z[-3,36,-1-6,10-8] = Z[1,6], c, = =40, 0L=1)

2
N,3= 4Nyt 1c8
S; = ~4(1,1) + 1-8)Wy = (-.96 +2.21¢, -.61 - .547)
W, = S/R; & (.49-1.05%, -.09 - 1.487)
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is left unchanged.

We have P,=P; = 0 and so W Since g,= 1 we have

2
11;2 =0 and so the representation of M2 (w) is defined by

g =1, 0,=6, ¥, =0, W, = (.49-1.05%, -.09-1.48)
We now increment k to 2 and calculate R2 € M2 (w). The search for

R2 is summarised in the following table.

TABLE 2.5 Calculation of R

2
B o P T b(B)
1 -
2 § .28 1.45 3.36
1+8 .84 2.25
3 =
§ -5 .44 2.29
-4 .74 1.70
1+6 -
1-§ -
Thus nz,l =4, ”2,2 = 2 and we have
R2 =46(1,1) +2w2 ~ (.99+1.067, -.19+ .207)

A:,) = AZRZ ™~ (-4.01 - 31.56%Z, .0079 - .0627)

az = -2- 56, By = -6 - 26
The calculation of a representation of M3 (w) is slightly more involved

than previous cases since we find g2 ° 2. We have

—
]

z[-2,26,6,-10] = 2[2,6], ¢, = (-1,0,0,0)

Ty &= "l Mgy = 0

wn
|

= -(1,1) +0W, = (-1,-1)

=
|

5 = S,/R, w5 (-.47 +.50%, 2.47 +2.661)

We then calculate P, = J I P, = -1 and replace W3 with
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We+ ((-8503)/8) (1,1~ (-1.47 - 1.08%, 1.47 +1.081)

We also have ¢, = (0,0,1,0) giving a=0, B=1 and so

ws 'nz’s/gz - (‘83+0é)03/g3 (mOd Ié)

1-(-2-8)6/2 (mod Ié)

-4+86= 0 (mod Ié)
Therefore the required representation of MS (w) is defined by

85 = 2, 05=8, =0, Wy & (-1.47 - 1.08%, 1.47 + 1.08%)

The calculation of RS € M3 (w) is quite short as is indicated by the

following table.

TABLE 2.6 Calculation of R3

B a T b(B)
2 -4-6 .73 4.37 2.95
-2-6 .69 3.63 2.54

Thus ”3,1 =l V= I5% Nz 2=2 and we have
’

R3 = ((-2-6)(1,1) +2W3)/2 ~ (-2.47 - 2.6617, .47 - .507)
A4 = AS st (-73.97 +88.587, -.028 - .0332)
ay = -37 + 146, B4=-2+106

The remaining calculations for this example involve nothing new and

so we briefly list the results.

Calculation of M 4 (w) representation

I z[-2,68,-2-6,5-8] = Z[1,6], c, = (-4,0,1,-1)

4

n3,3 -8, n3’4=2-6, S3 & (-7.17 +1.257, -.83-1.257)



W, (initially) ~ (1.09-1.68%, .51-2.11), p,=-1, p

and so M A (w) is defined by

gy =1, 0,=6, ¥, =0, W, ~ (.09 +1.48%, -.49 +1.05%)

Calculation of R4 € M4 (w)

g=1,2,3,6,1+6, 2+6,1-68, 2-6 required testing
Ny1 = 176 ny 5= 3, Ry~ (1.28+1.284,-.48-.019)
A5 = A4R4 ~ (-208.01+18.967,.013+.016%)
ag = 104 +38, B =-43+126

Calculation of M5 (w) representation

—
1]

z[-3,356,1-6,10+8] = Z[1,6], c, = (-4,0,-1,-1)
= -4, 4,4 = -1-§, S4 & (.59-1.78%,-.19+.517)
W, ~ (-.46 - .927,.36 - 1.077), p2=p1=0

and so M5 (w) is defined by

g =1, 0.=6, ¥g= 0,W.m (-.46 -.927, .36 -1.07%)

Calculation of R5 € M5 (w)

g=1,2,3,4,6,146,2+8,1-6,2-8 required testing
”5,1 = -1+6, n5’2=3, R5 ~ (-2.39+.397,.075-.057%)
A6 = ASRS ~ (489.998 -126.4927, .0019+.000497)

245-206, 86 =88-346

Calculation of M6 (w) representation

I, = 2[-3,36,-1+6,-10-8] = Z[1,8], c, = (-4,0,1,1)

6

n5,3 = -4, n5’4= 1+§, SS ~ (-1.54-2.397, ‘.254‘.067/)

W6 (initially) =~ (.47+1.087, -2.47-1.087), P, =0, Py ==,

and so M6 (w) is defined by

1

=-1

81
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g = 1, 0 =8, ¥ =0, W, =~ (1.47+1.087,-1.47-1.08)

Calculation of R6 € M6(w)

B =1,2,3,8 required testing
n6,1 = 44§, n6,2:=3’ R6 & (8.41+6.397,-.41-.07%)
A7 = A6R6 ~ (4928.0007+2068.137,-.00075-.000337)
a7 = 2464 + 3276, 87 =1427 - 1086

We now note several points about these calculations. The first

point to note is the amount of work involved in calculating the chain

AO’ 1,...,A_/.. In example 2.1 we had to test approximately 106
possibilities. However in using algorithm 2.1 we only had to consider
38 values of B. Of course the calculation of each Mk(w) also involves

a reasonable amount of work but it is clear that algorithm 2.1 is a vast

improvement over the exhaustive search technique used in example 2.1.

Note that the chains in example 2.1 and this example are not identical.
However the only difference is a root of unity factor and therefore of no
real consequence.

Another point to note is that we appear to have W6==WO and R6==R0.
Since we have used finite precision arithmetic in these calculations we
must be cautious about drawing any conclusions from such observations.
However if we recall from example 2.1 that A6 is a unit of M(w) (which is

closed under multiplication) it is not difficult to see that we will in

fact have
Mﬁ(w) = Mo(w) = M(w)

It is then easily seen that W6 =W0, R6 =R0.
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Finally we note that we also appear to have

__* =_* =~*
Wl- WS, Wz wd, WS WS

Since Ik = I6-k’ wk =Lp6_k for k=1,2,3 this would be equivalent to having

Ml (w) =M§ W), MZ (W) =MZ W), M3 (W) = Mg (w)
where
Ml’;(w) ={R*:R € M.k(w)}

These observations are also easily confirmed algebraically and are typical

of the case w=va, a € Q(6). (See section four of this chapter). /

The value of w in the next example has been carefully chosen to
illustrate a number of points concerning relative minima of M(w). It
also gives another illustration of the use of algorithm 2.1.

EXAMPLE 2.4
Let § = V-17, w=.72+.218 ® .72 + .8658521814%.  Algorithm 2.1

produces the results listed in table 2.7. (Note that -17=3 (mod 4) and

so c=1, w=68. Furthermore |w| 2 1 so A0= (1,1), ag=1, 80 =0)
TABLE 2.7 Calculation of relative minima of M(w)
e
M. () Ry Ag+1
i :
ks e Lo g [z | Al o Brs1
o |10 | s 1 1 1.9 . 1 1
1 1 0 § 1+§ 3 9.3 1 248 1+8
2 3l [Jes]] 1=6"] 6 9.6 |  3+6 4
3 2 0 1+§ 4 3-8 9.7 ! 2-6 -2-6
4 i\ 0 § -1+68 4 9.9 i 3-6 -1-6
5 /4 1 1+§ -2 2 16.5 1+26 6+§
6 1 0 8 1+§ 3 24.2 12 7-26
/ 3 0 1+§ 3 2-8 29.4 -8+38 4+38
8 ! 0 § -1+§ 3 30.8 -13-268 -13+6
9 3 0 2+§ 1+§ 3 8.5 2-108 -27-66
10 3 2 1+§ 1-6 3 111.6 -45+86 -3+12¢8
11 1 0 § ) 3 175.7 -47+188 24+188§
12 1 0 § $ 2 225.2 -72-218 -100

The algorithm stops at k=12 since |R’1'2| = |A.13| = 0. This is as we
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would expect in view of theorem 2.9 since w € Q(§). Note that

w=a In comparison with example 2.3 we find in the present

13/613°
example that there is a greater proportion of non-basic relative minima
and that IAkl grows more slowly with k. To give some idea of the amount
of work involved in the calculation of the various Rk tables 2.8, 2.9

detail two extreme cases.

TABLE 2.8 Calculation of R

2
B a r’ T b(8)
3 -2-8 .75 1.34 8.68
1-8 .50 1.22 8.24
6 -2-8 .91 1.15 7.99
1-6 .75 1.03 7.54
-1-28 .78 2.36
2-26 1.003
1+8 4 .36 1.06
7 1.01
4+8 2-6 .71 1.15
5-6 .29 1.77
2-8 -7 1.14
-4 .66 1.05
-6-6 .93 2 12
-3-6 .82 1.44
5-8 -6-68 .65 1.99
-3-8 .51 1.26
TABLE 2.9 Calculation of R9
B a e T b(B)
3 1+6 .56 2.68 4.09
4+6 .62 3.30

The amount of calculation required to find Rk clearly varies quite
considerably. The remaining 11 cases are fairly evenly distributed
between these two extremes. Note that for =6, 2-§ in table 2.8 we

have in each case 4 possibilities for a to consider. This corresponds

+—

to m, =m +1 in step 4 of algorithm 2.1A, that is there are two

2

possibilities for m,.

We now note several points of a general nature which this example

was chosen to illustrate. Firstly we note that
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85| =4 < /8 = [B,], [Bg| = VI8 < v21 = |8,

Thus although we generally have ]Bk+1|2 IBkl this is obviously not always

the case. It is for this reason that theorem 2.13 was stated in terms

of |B] =max{|8kl, |Bypq |3

The second point to note is that although the equation

(71+218)6 - 100A = o 1

139 - By5t =

is solvable (6 =12-416,X =155-278 is one solution) the coefficients of
A12 do not give a solution. In fact a13812 - 312813 = -2, Thus given
o,B € Z(8) such that the equation a6 - BA = 1 is solvable for 6,\ € Z(6)
we see that the relative minima of M(a/f) are not guaranteed to produce a
solution of this equation. This contrasts with the simple continued
fraction case where the penultimate convergent of the expansion of a/b,
a,b € Z, (a,b) =1 is guaranteed to give a solution x,y € Z of the
equation ax - by =1. The reason why M(a/B) can fail to produce a
solution of the equation o6 - BA = 1 is as follows. Given a solvable
equation of this type we can only guarantee that there is a solution with
6 satisfying |6| < tB, t = |1+8|/2 for d=2,3 (mod 4), t==(1+|6|2)/4|6|
for d=1 (mod 4). Now when t > 1 it is therefore possible that all
solutions of the equation have |8] > |8|. Consequently it is possible

that for all solutions of the equation we have
IB| > |Al, B = A(1,1) +6W, A = a(l,1) +BW

where w = o/B. Since |A*| = 0 1t follows that in such cases B can not
be a relative minimum of M(w). (Note that even if the relative minima
of M(a/B) were guaranteed to give a solution of a6 - BA = 1 then this
would not provide the most efficient method for solving the equation.
Equations of the form a6 - B\ = k are most easily solved using the ideas

used in the first part of algorithm 2.1B).
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The final point we note concerns the relationship between the
relative minima of M(w) and the relative minima of M(w+a), o € Z(§). We

use a fairly arbitrary choice of a =5 to illustrate the situation.

TABLE 2.10 Relative minima of M(w+9)

kK o0 . 3, 4 | s

o 1 10 39+6 -6-106 55+116 | 75-186

Bf | 0 1 4 18 6+ 7-28
67 8 9 10 11
|28+306 | -130+76 | -241-648 | -72+1166 | 169+1806 | -972-216
| as36 | -13+6 | -27-66 | -3+126 | 24+186 -100

As we might expect there is a strong link between the relative

minima of M(w) and M(w+9). It is easily checked that

+ +
o = o + 9By, By = By, k= 0,1
+ +
oy = a3+983, 82 = 83
T = T k= 3,4 11
O = Mg * Bz BT Brags KT 3uhheens

Note that there are no relative minima of M(w+9) corresponding to

AZ’A4 € M(w). This illustrates the fact that there 1s not necessarily
a one to one correspondence between the relative minima of M(w+a) and
M(w) for a € Z(8). This contrasts once again with the simple continued
fraction case where we find a one to one correspondence between the
convergents of x € R and the convergents of x+m, m € Z. Note that the

Bi: coefficients in table 2.10 satisfy |Bi| < |B;+1| and in fact it can be

shown that |8k+1| < IBkl can only occur for |w| = 1. //

We finish this section by briefly considering the special case where
h(d) =1, that is Z(8) is a unique factorization domain. This of course

occurs for

d = Blec208 =1, - iy, -1'9 =48 =6i75=165



87

We have already noted that the relative minima of modules over such

Z(8) will necessarily be basic. It therefore follows that a standard
representation of any Mk(w) will always have 8 = 1, wk =0, ) =w.
Consequently algorithm 2.1 can be modified to take advantage of this fact.
Modifications include deletion of all redundant steps and arithmetic.

For example steps 14 to 17 and 23 to 30 in algorithm 2.1B can be deleted

and a step such as 10 in algorithm 2.1A can be rewritten as

10 Calculate r = |m1-rm2m'-+8wk’l[

The simplified algorithm which results will of course involve less work
than the original algorithm. However the improvement will be relatively
small since the main work in algorithm 2.1 lies in the calculation of

Rk’ nk,S’ ”k,4 which must of course still be calculated in the simplified

version of the algorithm.

SECTION FOUR
PERIODIC RELATIVE MINIMA

In this section we shall mainly confine our attention to the case
w2 € Q(8), w & Q(8). Results developed are in the main generalizations
of results associated with periodic simple continued fractions. A
specific algorithm for the calculation of periodic relative minima will
be derived. (This algorithm plus a modified version of this algorithm
will be used in the next chapter to calculate fundamental units of
certain quartic fields of the form Q(8) (vVY), Y € Z(8)). Finally we
shall complete the development of the bound for IAiI which was stated

and partially proved in section two of this chapter.

We begin with a theorem which leads to the definition of periodic

relative minima.
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THEOREM 2.22

Suppose there exist ‘%n’An € M(w) with m#n such that Mm(w) =Mn(w) .

Then the following results hold .

(a) For all k € Z we have Em, ik =En,n+k' Therefore given

=R

R K € Mm(w) we can choose Rn,n +k € Mn(w) such that R B

m,m+ n,n+k

(Note however that given an lﬂﬂ,m e and an Rn i e cannot assume that

’

they are equal although we certainly must have Rm,m T Rn,n+k) :
(b) We can choose Aq’ q € 7" such that Mo(w) =Mq (w).

(c) M(w) has an infinite complete chain of relative minima such
that Mk(w) =Mk+q(w)’ Y 1§62

PROOF

(a) The relative minima of Mj (w) satisfy

: < [Re

Jsj'll < IR.

J,jl=1 < |R.’j+1l € . (12)

J

Now if Mm(w) =Mn(w) then Mm(w), Mn(w) must have identical relative

minima. It therefore follows from (12) that we must have
Em,m+k=En,n+k’ vk €Z.

(b) Assume n > m. Since Am,A0 exist so does Rm,O =A0/Am. We
can therefore choose Rn,n-m such that Rn,n-m=Rm, g- (Take k=-m in

part (a)). Set A =A R = Aan

and set q=n-m. We therefore
n-m ‘n n,n-m

,0
_ 0 +
have Aq—Aan’Owrch qe€ Z . Now
MO(w) =M(w)/A0 =M(w)/Am Rm,O = Mm(w) /Rm,O
and

M () =M(w) /A, =MOW) /AR o =M /R g

Since Mm(w) =Mn(w) it follows that M0 (w) =Mq w).

(c) Choose any Al’ AZ’” g Aq_1 € M(wW). We show that the required

chain can be generated inductively from the finite chain AO’ Al" - Aq'

We begin by extending this initial chain into a half chain which

satisfies Mk(w) =Mk+q(w) , V I 2 0.
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Suppose that the chain Ao . Al’ =¥, Aj X e ’Aj «q satisfies
Mk(w) =Mk (w) for k=0,1,...,j. Since Aj ’Aj+1 exist we see that
Ry=4m

.. _=R.. =A.. R. that is A. =A., R..
we can choose R3+q RJ Set AJ +q+l = N+q i+’ j+q+l T+ ]

It is now easily shown that Mj +1 (w) —MJ. wql (w). (See part (b) where

/A exists. Now M (w) = M (w) and so by part (a) we see that

we showed that M0 (w) =Mq (w)). The process outlined can be repeated

indefinitely thereby producing the required infinite half chain.

This half chain can then be extended into the required infinite

complete chain by using a similar process to define Aj yj=-1,-2,...

=A. A. choose
j*q,j*q-1 J+q-1/ j*q’

. . .=R. . d set A. . =A.R. = A.R.
RJ.J-l RJ“q,J'*Q'lan >¢ j-1 75 73,3-1 75 j+q,ivq- 1)

(Briefly, for j=0, -1, -2,... take R.
/

In view of this theorem we make the following definition.

DEFINITION 2.11

We shall say that M(w) has periodic relative minima if and only if

Mo(w) =Mq(w) for some q € e

A chain of relative minima AO’ A Aq’ q € 7% which satisfies

1200
MO(w) =Mq(w), MO(w) #Mk(w) for 0 < k < q will be called a period
of relative minima. The integer q will be called the Zength of the

period. /

Theorem 2.22 effectively shows that M(w) has periodic relative
minima if and only if I\%(w) =Mn(w) for some m,n € Z,m#n. Thus the
definition of periodic relative minima is not as restrictive as it may
initially appear. Furthermore periodicity is clearly always pure
periodicity. Note that the phrase 'periodic relative minima' is
slightly misleading. It is of course the ratios Rk k+1/A and the
modules Mk(w) which are actually periodic. Finally note that if M(w)
has periodic relative minima then the proof of theorem 2.22c shows that

the calculation of a complete chain of relative minima is effectively
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achieved by the calculation of a period of relative minima. (However
see theorem 2.29 for a more straightforward way of generating a complete
chain from a period). Consequently the modified version of algorithm
2.1 which we develop for periodic relative minima will confine its

attention to the calculation of a period of relative minima.

We now illustrate some of the ideas presented so far in this section.
EXAMPLE 2.5

(a) Recall examples 2.1, 2.3. In example 2.3 we saw that for
w=v1+8, 6§ =/-10 we have M,(W) =M (W).  Thus M(w) has periodic relative
minima.  Furthermore it is not difficult to see that MO (w) #Mk(w) ,
0 <k<6. Thus A

Al" .., A, form a period of relative minima of

0’ 6
length 6. In example 2.1 we noted that a complete chain of relative
minima of M(w) can be generated from this period. This illustrates

the result of theorem 2.22c although the method of generation of a
complete chain in example 2.1 differs from the method given in the proof

of theorem 2.22c. (However the method of generation in example 2.1 is

the simpler of the two and we shall generalise it in theorem 2.29).

(b) Let 8§ = /-10, w = /(3+28)/7. with the aid of algorithm 2.1

we find
Ay = (1,1)
Al = (L) +W
A, = (-146) (1,1) + (1+6)W
Ay = 6(1,1) + (5-6)W

and it is relatively easy to check that M:,) w) = M0 (w). Thus
AO’ Al’ AZ’ A3 is a period of relative minima of M(w) of length 3. (Note
that Q(8) (w) = Q(v-10) (v35) and A; = 6(1,1) + (/35, -/35) corresponds to

the real quadratic unit 6+ v35).

Since |w| = 1 we have

ALD = wa, = (5+6) (1,1) +6W
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is also a relative minimum of M(w). However

il

(7/(3+26))W = W * = AS/Agl) € Mgl) (W)

and it follows that Mgl) W) # M0 (w). Consequently it is not difficult

to check that

(1 = = _ 2
Ayr As By Mg Ay =Aghy, Ag=Aghy, Ag= (A5)

is a period of relative minima of length 6. /

Example 2.5b illustrates the fact that the integer q in definition
2.11 depends on the period under consideration. However it is not
difficult to deduce using the ideas in the proof of theorem 2.22b that
for a given M(w) there exists a period (not unique) of minimal length
and that the length of any other period is a multiple of this minimal
length. In view of these facts it is clear from an efficiency point
of view that the modified version of algorithm 2.1 which we will develop
later in this section should be designed to calculate a period of
minimal length. Consequently we will in future mainly confine our

attention to such minimal periods.

We now develop conditions which w must satisfy if M(w) is to have
periodic relative minima.

THEOREM 2.23
If M(w) has periodic relative minima then w2 € Q(8), w € Q(9).

Thus w can be written as

+

w=W/h,y€Z(), hez
with Y/h not a perfect square in Q(§).
PROOF
Suppose M(w) has periodic relative minima. Then 3 q € 2" such
that M0 (w) =Mq(w) . Therefore we can choose R0 € Mo(w) and Rq € Mq (W)
such that R0 =A1/A0 =Aq+1/Aq=R , Or equivalently A1 Aq= AOAq+1' 1f

q
we now substitute Ak = (ak+8kw,ak-3kw) ,k=0,1,9,g+1 in this equation and
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multiply out then we obtain two equalities. (One from each component).

2 _ 2
alaq-rslsqw -+[alﬁq-ranl)W-aan+l'FBOBQ+1W 'F(aGBQ+1'+ﬂq+130)W

2 . 2_
alaq'+818qw -(alﬁq-+aq81)w4~a0aq+l-+808q+iw (OLOBQ"-I-’mel"'lf'?’o)W

When we add these two equalities and rearrange we obtain
(BB - BB . )W+ (a0 o i) =0 (13)
17g " "0%g*l 17q "07q+l1

Now a080==0. Therefore if Bqu-BOB = 0 then either

qt+l - O"]_d'q ) OLOO"q+1
alaq==0 or Bqu = 0. However it is easily seen that ak’Bk # 0 for
k#0. Thus 818q-BOBq+1,alaq-a0aq+l # 0 and so (13) implies that
w2 € Q(8). Theorem 2.22c plus theorem 2.9 together show that w ¢ Q(8)

and the theorem now follows. //

This theorem shows that our definition of periodicity is more
restrictive than simple continued fraction periodicity. Recall that
simple continued fraction periodicity is effectively defined in terms
of the ratios xk+1==—(pk_l-qk_lx)/(pk-qu) eventually becoming periodic.
(This would generalize to M(w) by defining periodicity in terms of the
second components of the Rk eventually becoming periodic). The ratios
(pk+qu)/(pk_1+qk_1x) become periodic only if x2(€ Q, x € Q, but since
the simple continued fraction algorithm makes no use of these ratios
there is no distinction made between the two types of periodicity.
However algorithm 2.1 makes use of both components of R € Mk(w) and
consequently the two types of periodicity are clearly distinguished with
the more restrictive type being easier to work with. (As well as being

more natural in the present context).

In the rest of this section we shall mainly be dealing with w of
the form /4/h with Y,h as in theorem 2.23. Therefore in the rest of
this section when we write /Y/h it will be assumed that Y,h satisfy the

conditions given in theorem 2.23.
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Our purpose in the next few theorems is to prove the converse of
theorem 2.3, that is to prove that M(vY/h) has periodic relative minima.
We begin by noting that if w = v4/h then the components of
A = (a+Bw,a-Bw) € M(w) are conjugates in the field Q(S) (w) which is a
quadratic extension of Q(8). This result also extends to R € M(w)/B
for B € M(w). We therefore make the following definition.

DEFINITION 2.12

Let w=vY/h and B € M(w), |BB*| #0. We define N (R) for

R € M(w)/B to be the first component of RR*. /

Of course both components of RR* are identical and so we have
N(S (R)(1,1) =RR*. The following results are obvious.

THEOREM 2.24

Let w=/Y/h. Then N, corresponds to the relative norm function

S
from Q(8) (w) to Q(6). In particular for A= (a+Bw,a-Bw), B € M(w) we

have

(8)  Ng(&) = o’ - 8%¥/h € Q(8), hN, (A) € 2(6)

(B Ny = Ng(a)

()  Ny(AB) = Ny(A) Ny(B)

(d) Ng(A/B) = Ny(A)/Ng(B), provided [BB*| # 0 J/
THEOREM 2.25

Let Ak’ k > 0 be a relative minimm cf M(w), w=vY/h. We have

4/2|8
|N5(Ak)| < l H‘;’l + lBr

cV3 n* k
where T € R' depends only on |§| and |w|.
PROOF

From theorem 2.13 we have
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22081, 9]5]|°

k 3 2
c'VS'w‘!BkI [Bkl

and from theorem 2.1 we have

A | = lo Bl < 2[8w] + |Az]

Since IN(S (Ak)] = |Ak| IA]"(’I the result now follows easily. /

The representation of Wk given in the next theorem not only enables
us to prove the required converse of theorem 2.23 but will also be of
considerable importance in the development (later in this section) of
the modified version of algorithm 2.1. It will enable us to reduce

the need for multiprecision arithmetic when |Akl is large and it will
also enable us to recognise the symmetry which certain periods of

relative minima display.

THEOREM 2.26

Let w=vY/h. Then Wk can be represented as

Wy = (8, (1,1) +h g ) /hNg (A)

with 6 hNG(Ak) € Z(8). Furthermore we can choose 6, such that

k’ k

A

PROOF

W =B

r:k*l-lkw Kk- kkw
M ABW 7 oy mByW

( (Kk-‘-lkw) (O’k_ 8kw) ’ (Kk'}‘kw) (ak+6kw) ) /N(S (Ak)

/Ak

(Kkak-BkAkY/h-+(akxk-BkKk)w,

Kkak-BkaY/h-(akkk-BkKk)w)/N6(Ak)

(o -B AT /h) (1,1) + g W) /Ny (Ay)
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If we now set ek = thak - BkAkY then the first result of the theorem is

clear.

To show that we can choose 6, to satisfy the stated bound we recall

k
the discussion following theorem 2.20. There we saw that we can always

replace Wk with Wk+ (r/gk) (1,1), t € I}'< (equivalently replace Bk with

0 +hN(S (Ak)r/gk) thereby obtaining Wk satisfying

k
[wk+wf([ < Z(gk+|6I/c)/gk
Since

|wk +w12| = Zlek/th (Ak) |

the bound now follows. /

THEOREM 2.27

M(w) has periodic relative minima
if and only if

w=/?7h, Y€ Z(8), h € Z+, Y/h not a perfect square in Q(¢).

PROOF

The forward implication is just theorem 2.23. To prove the reverse
implication we show that if w=/Y/h then there exist m,n € Z, m#n such

that Mm(w) =Mn(w) . The result will then follow from theorem 2.22b.

Therefore assume w=/Y/h. By theorem 2.16 we know that M (W) is

representable as
Mk(w) = {(a(1,1)+BWk)/gk: (a,B) W allowable}

From the corollary to theorem 2.16 we see that g, can only assume
finitely many values. Consequently Ok’wk can only assume finitely

many values. Furthermore if 6y is required to satisfy the bound in

theorem 2.26 then W, can only assume finitely many values since
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ek,hN6 (Ak) , 8 are elements of bounded magnitudes in the discrete set
Z(8). Consequently the number of distinct Mk(w) must be finite. How-
ever since w § Q(8) it follows that M(w) has an infinite chain of
relative minima. Therefore we must find Mm(w) =Mn(w) for some m,n € Z

with m#n. /

We now consider some of the properties of and the relationships
that exist between the Ak’ Mk(/WE) corresponding to a period of
relative minima of M(v¥Y/h). In particular we look at units, and the
symmetry exhibited by certain minimal periods of relative minima.
(These points have already been partially illustrated in examples 2.1,
2.3). The results obtained will be used in developing the modified

version of algorithm 2.1 which we will develop in this section.

We begin with the subject of units. In examples 2.1, 2.3 it was
perfectly clear what was meant by the term unit since M(w) was closed
under multiplication and hence formed a ring. More generally we find
that M(+Y/h) is closed under multiplication if and only if h=1.
Consequently we need to define exactly what we mean by the term unit in
order to clarify the situation for h > 1.

DEFINITION 2.13

Let w=vY/h and U € M(w). We say that U is a unit of M(w) if and
only if M(w) =M(w)/U.  Furthermore we say that U corresponds to a unit
of Z(8) (w) if and only if the components of U (which are conjugates in

Q(8) (w)) are units of Z(8) (w). //

Note that requiring M(w) =M(w)/U is equivalent to requiring M(w)
closed under multiplication by U, and U-1 € M(w). It is easily checked

that if U,V are units of M(w) then U-l,U*, UV are also units of M(w).
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EXAMPLE 2.6

(@) Let £ € Z(8) be a root of unity. Then U= (£,E) is a unit of
M(w) which corresponds to the unit £ € Z(§) (w).

(b) Let w=/-1/2, 6§=/-2. Then U=2W=(/-1,-/-1) € Mw).
Clearly U corresponds to the unit v-1 € Z(8) (w). However since
W = (-1/2,-1/2) &€ M(w) it is clear that M(w) is not closed under multi-

plication by U. Consequently U is not a unit of M(w).
(c) Recalling example 2.1 we see that
A6 = (245-208) (1,1) + (88-348)W

is a unit of M(v1+§). Furthemmore Ag corresponds to the unit

(245-2068) + (88-348)vI+s € Z(8) (VI#3). /)

We now give the most important result concerning units of M(w).

THEOREM 2.28

Let w = /Y/h and A,B € M(w) satisfy |AA*|,|BB*| # 0. Then
Mw)/A = M(w)/B
if and only if

A/B,B/A are units of M(w)

Furthermore if U is a unit of M(w) then U corresponds to a unit of
Z(8)(w). In particular if AO ’Al" .. ’Aq is a period of relative minima
of M(w) then Aq/AO is a unit of M(w) which corresponds to a unit of
Z(8) (w).
PROOF
We have
Mw)/A = M(w)/B
if and only if
M(w) = M(w)/(B/A) = M(w)/(A/B)
Since A/B = (1,1)/(B/A) € M(w)/(B/A) = M(w) the first result of the

theorem is clear.
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Suppose U is a unit of M(w). Since U € M(w) we have
U= a(l,1) + BW with o,8 € Z(§). Now NG(U) (1,1) =UU* € M(w) since
U* € M(w) and M(w) is closed under multiplication by U. Consequently
N6 (U) € Z(8). However U'1 is also a unit of M(w) and so we also have
NG(U_l) = INg(U) € Z(8). Thus N.(U) is a Z(8) root of unity and it
therefore follows that the components of U, that is o * Bw, are units of

Z(8) (w).

The final result of the theorem follows from the first two since

My(0) = M_ (). /

In view of this theorem we see that we can obtain a unit of
Z(8) (w) by calculating a period of relative minima of M(w). Unfortunately
in contrast with the standard quadratic/simple continued fraction case,
it is not always possible to choose w such that the unit obtained is
guaranteed to be a fundamental unit of Z(8) (w). In chapter three we

will show how this problem can be overcome.

Of course Aq/A0 is not the only unit of M(w). In fact if
{Ak :k € Z} is a complete chain of relative minima of M(w) satisfying
Mk(w) = Mk+q(w) V k € Z (see theorem 2.22c) then Ak+mq/Ak is also a

unit of M(w) for any k,m € Z.

Although the proof of theorem 2.22c indicates one way of defining
a complete chain from a period it is simpler to use a generalization of
the method used in example 2.1 which is given in our next theorem.
THEOREM 2.29

Let w = ¥/h.

(a) If U is a unit of M(w) and Ak is a relative minimum of M(w)

then UAk is a relative minimum of M(w).
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(b) Suppose AO, Al" okl Aq is a period of relative minima of MW).

A complete chain of relative minima of M(w) is given by

= m - .
Ak'i'mq - Ak{AquO) » M € z: k O,l,...,q 1

PROOF

A generalization of the argument used in example 2.1 proves the

result. /

We leave further discussion of the subject of units until chapter

three where we consider in detail the problem of calculating fundamental

units of Z(68) (vY).

We now move on to consider the symmetry exhibited by certain periods
of relative minima. As a consequence of the results developed we will
be able to reduce the amount of work required to calculate a period of
relative minima. To simplify matters we shall restrict our attention
to minimal periods, that is periods of minimal length, which in practice
are the only periods of interest from an efficiency point of view.
(However it will be fairly obvious that the following results also apply

in a modified form to non-minimal periods).

We begin with a definition.

DEFINITION 2.14

Let M € €XC. Then we define
M* = {R*:R e M}

For simplicity we shall write M*(w), Mi‘;(w) rather than (M(w))*, (Mk(w))* /

Clearly M(w) = M*(w) and it follows that

MEW) = M¥ () /A = MOW) /AL
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The modules Mi(w) are used in our next theorem to describe the symmetry
which occurs for certain periods of relative minima. Note that the
symmetries which occur are very similar to those which occur in the
simple continued fraction expansion of ﬁii, d1 a square-free positive
integer.

THEOREM 2. 30

Let w=/Y/h. We can choose a minimal period of relative minima
AO’Al’ = A.q with Al’A "A[q/Z] arbitrary such that the following
properties hold.

(a) If q is odd then

M, 0 = MG, Ng(A_ ) =ENg(A) (14)
for k=0,1,...,(q-1)/2 where £==N6(Aq/AO) is a Z(8) root of unity.

(b) If q is even then (14) holds for k=0,1,...,q/2-1 and we

can find A(/% such that

(1) 1)y
My a0 = Mo (), Ng(A()) = ENg(A /)

PROOF
Let q be the length of a minimal period of M(w). Thus there

exists Aq such that Mo(w)==Mq(w). Choose A A arbitrarily.

Mas2)

We will show that the required period can be constructed from

AU"A - [ /2] and Aq.

Since A.q/A0 is a unit of M(w) we have from theorem 2.29a that
AEAQ/AO’ k=1,2,...,[q/2] are relative minima of M(w). By consider-
i . L i .
ing magnitudes it is a simple matter to check that Aﬁ:Aq/AO € Eq-k'

(a) Suppose q is odd. We have [q/2]=(q-1)/2 and so setting
= ArA /Ay, k=1 ,2,...,(9-1)/2

completes the construction of a minimal period. Since A.q/A0 is a unit
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of M(w) we have Mq_k(w) =Mi(w) and the norm relationship is obvious once

we recall that N(S (A) = N(S (A*%).

(b) Suppose q is even. We have [q/2] =q/2 and so setting

= A% = =
Ay = A Ay k=1,2,...,0/2:1
@) -3 Rk
Az = A2 fq™o

1)

completes the construction of the required minimal period plus Acg /2" /

Theorem 2.30 guarantees that in any M(Y/Y/h) there exist periods
which we will describe as symmetric minimal periods. Our interest in
such periods lies in the fact that we can take advantage of their
existence when calculating a period of relative minima. Note that the
proof of theorem 2.30 shows that a symmetric minimal period can be
generated from A 10 8-

(q+l)/2 - Atq—l) /2 Aq/A0 (q odd) and Acg}% = Aa/z Aq/A0 (qQ even)

we can take the alternative view that a symmetric minimal period can be

. A . .
0° arbitrary A ’A[q/Z] , plus an appropriate Aq

Since A

generated from A, arbitrary Al’ AZ’ . A[q/Z] , plus an appropriately

0’
(1) -
chosen A(q+1)/2 (qQ odd) or Aq/2 (q even). Thus if as we calculate a

chain AO’ Al’ ceey Ak we can easily locate the appropriate A(q+1)/2
(q odd) or A(g}% (q even) when we reach k= [q/2] then we can expect to
approximately halve the amount of work involved in calculating a minimal
period.

EXAMPLE 2.7

(a) Recall example 2.3. Instead of calculating a period

directly we can proceed as follows.

Calculate AO, Al’ A2, A3

(This can be verified algebraically as noted in example 2.3. However

at which point we note that M3 W) =M§ (w).

we shall develop a simpler testing procedure in theorem 2.32). Thus

A3/A§ is a unit of M(w) and so the chain AO’ Al’AZ AS can be extended
b
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into a period of length 6 by setting
= A* E =A% E = s
Ay = A3 (AL/AD), Ag=AT(As/AT), Ag=Ag/AS

If we take A(l) =A_ then the symmetries in theorem 2.30b clearly hold.

5 3
(€ =N<S (A6) =1). The fact that this period is minimal can be deduced

from the fact that IN(S (Ak/AO)| #1 for 0 < k < 6. (See example 2.1
for the N(S (Ak)) .

Of particular interest is the fact that we can take Agl) =A3.
More generally we have found that in practice we have always been able

to take A(l) =A when q is even. However we have been unable to

a/z  "q/2

prove this will always be the case.

(b) Let §=/-35, Y=-3+55, h=1, w=/Y/h. Algorithm 2.1

produces the following results.

TABLE 2. 151 Relative minima of M(V-3+58)

k o By N(S (Ak)
0 il 0 |
1 (15+38) /2 2 (-21+568)/2
2 (27-368) /2 (1-8)/2 (-19+8)/2
3 -43-48 (-17+8)/2 -8+6
4 (-255-78)/2 (-37+58)/2 (21-568)/2
5 62-258 (-25-98)/2 -1
Clearly A5 is a unit of M(w) and we have MO(w) =M(w) =M5 (Ww). Thus
A ,A ,...,A. is a period which is easily seen to be minimal. However

0’°°1’ 5
this minimal period does not satisfy all the conditions in theorem 2.30a.

To be more precise we do not have M3 (W) =M§ (W), nor do we have

N(S (AS) =gN 5 (Az) where £ is a Z(8) root of unity. (Note however that
|N<S (A3)| = [N 5 (Az) |). Consequently no period "midpoint' was recognised

during the calculation of the chain AO’ Al" s AS’ that is there was no

occurrence of Mk +1(w) =Ml’2(w) .

Of course the problem is that algorithm 2.1 only produces one

Ak (<] Ek‘ Consequently
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A CAx A = ((-61+136)/2) (1,1) + ((3+36)/2)W

3 25

was not produced for consideration. It is a simple matter to check

that the minimal period AO’ Al’AZ’ A(l) A,, A_ exhibits the symmetry

3 4’5
described in theorem 2.30a. (€= N6 (AS) =-1).

As a final point we note that Agl)/A3=3/((1+d)/2), | (1+8)/2] =3

and 9 factors nonuniquely in Z(8) as

9=3.3 = ((1+8)/2) ((1-8)/2)

Example 2.7 clearly indicates the need for a more systematic

approach to the problem of locating the midpoint of a symmetric minimal

period. The next theorem suggests the basic outline for such a
procedure.

THEOREM 2.31

Let w=/Y/h and suppose A_, A.,..., Ak is a chain of relative minima

0’ 1 ’
of M(w) satisfying

M(’“ R # M2, MO Yy # M2 00, 5=0,1,2,. k-1

j+l
where AJ(T% runs through all elements of Ej+1‘
(a) If
3 Ak+1 € Ek+1 such that Mk+1 (w) =M1*;(w)
then A0 A1 k plus Aq = (Ak +1/A]’;)A0 generate a minimal period of

odd length q =2k+1 as described in the proof of theorem 2.30a.

(b) If (15) does not hold and
A AL (1) 1€ Exsq (A, arbitrary) such that (l) 1 (W) =M, (W)

then A A . Ak o+l plus Aq= (A]EE/ALI)AO generate a minimal
period of even length q =2k + 2 as described in the proof of theorem

2.30b.

(15)

(16)
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PROOF

= * * 1 =
(@) SetU Ak+1/Ak' By theorem 2.29a we have UAj’ j=0,1,...,k

are relative minima of M(w). Now
|UA6[ > IUA{| = JR. . |UA]:[ - |Ak+1|

It is therefore easily deduced that UA3.*€ Er-j where r =2k+l1. In
particular UA6 = (Akﬂ/Al’;)A0 € Er and so we can choose Ar = (Ak +1/Al"E)AO.
Clearly M0 (w) =Mr(w). To complete the proof we need only show that

r =q where q is the length of a minimal period. Clearly q|r and so q

is odd. Now theorem 2.30a shows that M(w) has a symmetric minimal

period
1) 1) (1) 1)
AO’Al ""’A(q—l)/Z’ A(q+1)/2""’ Aq
. 1 : 1 | : .
with quzl)/z arbitrary and ngzn/z (w) = (ngzl)/z (w))*. Since

(q-1)/2 £ (r-1)/2 =k we can choose Agcllzl)/z = A(q—l)/Z' Thus there

: 1)
exists A(q+1) /2

then the conditions in the theorem are contradicted. Therefore

(1) = M* :
such that M(q+1)/2(w) = M(q_l)/z(w). Now if (q-1)/2<k

(q-1)/2 = k and q =2k+1 =r.

(b) The proof of this part is similar to part (a). The assumption

that (15) does not hold is included to avoid an incorrect conclusion

when A0 , A1

conclude that AO, Al’ A2 is a minimal period). The only other difference

is that in the second half of the proof we must consider the case q

is a minimal period. (Part (b) would otherwise incorrectly

even as well as q odd. /

In view of this theorem (plus the obvious correspondence between

(m) (m) . . .

Ak+1 € M(w) and Rk = Mk(w)) it is fairly easily seen that the
following modified version of algorithm 2.1 will calculate a chain
A0 R A1 5. -

reached.

. € M(w) and stop when the midpoint of a minimal period is



105
(1) Choose A0 and set k=0
(ii) Calculate all Rk € Mk(w) up to Z(8) root of unity factors.
(1) R(@) m)
Denote these Rk by Rk ! Rk ,...,Rk
(It suffices to consider the distinct Rk up to Z(8) root of
unity factors since if ngl) = g Rk (equivalently A]EH = Ak +1)

: , (1) o =
with £ a Z(8) root of unity then +l(w) Mk+1(w)).

(ii1) Test to see if any Rﬁj), j=1,2,...,n gives
MU ) =Mz ()

If any test is positive then stop - the midpoint of a minimal
period of odd length has been found. (This step effectively

tests for an occurrence of (15).

(1v) Test to see if any ngj), j=1,2,...,n gives
j = (1)
M) = M1 60)*

If any test is positive then stop - the midpoint of a minimal
period of even length has been found. (This step
effectively tests for an occurrence of (16). The fixed
right hand side of the module equation reflects the fact that
Ak+1 in (16) can be selected arbitrarily).

=1 A

(v) Set A, increment k, go to (ii).

k+1 k’

Of course the above procedure is only a brief outline of what will
eventually become algorithm 2.2, that is the modified version of
algorithm 2.1 for calculating periodic relative minima. In the
following paragraphs we discuss the necessary finer details of
algorithm 2.2 which have not already been covered in the discussion of

algorithm 2.1.
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Note that although algorithm 2.1A only produces one Rk € Mk(w) it
clearly considers and then at step 11 discards the remaining ngj)
required in step (ii) above. Furthermore we generally find n=1 in
step (ii) and it is unusual to find n>2. Thus step (ii) involves very

little work that is extra to that already required by algorithm 2.1A.

The main point left to consider is the development of a simple
method for the testing required in (iii) and (iv), that is a method for
testing whether or not Mm(w) = M’J!‘ (w).

THEOREM 2. 32

Let w=vY/h and suppose Aj ,Am are relative minima of M(w) with
Mj w), Mm(w) represented as in theorem 2.16 and WJ. ,Wm represented as in

theorem 2.26. Then
= M*
Mm (w) Mj (w)

if and only if

(a) N:S(Am) - £N6 (Aj) where £ is a Z(§) root of unity
(b) &n = &;
(c) G = Oj

= [}
(d) grn(em+ej)/hN6(Am) A€ Im
_l .

(e) wm+omk/gm + £ wj € Im
PROOF

Suppose Mm(w) = M; (w). Since Am/A;.’ is a unit of M(w) we have

= * = 3 '

' N{S (Am/Aj) NG(Aln)/NG (Aj) is a Z(8) root of unity. Now a
representation of MJ’? (w) can be obtained from a representation of Mj (w)
by simply replacing Wj with WJ".‘. (The representation is not standard
in the sense of theorem 2.16 since Wa? =AJ’!‘/B3.*, A* =ch. (1,1) + (-Bj)w,

J

Bj = Kj (1,1) + (-AJ.)W and so aj(-)\j) s ('Bj)Kj =-gj). Since

(cr'n/gm) (1,1) € Mm(w) = M;."(w) we have (ol;lfgm) 1, = (a(1,1) + ng) /gj with
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(o, B) Wj allowable. Let o= (a+b8)/c. Now (1,1), WJ. are linearly
independent and so it follows that =0, or;l/gm=a/ gj . The imaginary
components of this equality give -1/Cgm = b/c:gj ) Consequently
gmlgj . A similar argument gives gj Igm and so g =gj. It then
follows easily that 0m=oj. To prove (d) we note that
-1 . .

* = M* *

wm,wj € Mm(w) Mj (w) and so wm+g WJ. € Mm(w). (¢ is as defined by

(@a)). Now

Wo+ETTHE = (8, (1,1) +hg W)/hNg(A) + (85(1,1) - hg;W)/EhN (AS)

J

((6,%8;)/hN5 (A1)

= 1 ' 1
and so (em+ej3/hN6 (Am) A/ 2 with X € It (The representation of
Mrn (w) which can be derived from Mj (w) via the relationship Mm(w) =M3‘ W)
is standard if and only if £=-1. Consequently the relationship between
Wm, Wi.* is not quite what we might initially expect given the result of

theorem 2.20 which only considered standard representations). Finally

we note that

(Up(1,1) *o M) /g = (up(1,1) + 0, (E W+ AL, D /g ) g,

S =i .
(Yt o Mg +E wj)/gm-a (wj(l,l)ijj)/gj

Now (4 (1,1) +o W )/g, (b;(1,1)+ GW)/g, € M (w) = M(w) and it
therefore follows that ((wm+0m:\/gm+ E-le)/gm) (1,1) € Mm(w) which

gives (e).

The reverse implication is straight forward. Briefly, if
R = (a(l1,1) + me)/gm € Mm(w) then using the notation of theorem 2.16

plus (a) - (e) we have (note that (a),(d) give Wm= -g‘]w35 2 (A/gm) (1,1))

R

(my & * M0, * My¥y) (1, 1) + (g, *+my0, )W) /2,

(myg, +myoy +mak +my (4 + 0 Mgy +€710.)) (1,1) /g5
o TR *
—m3£ wj E I'I'l4 (IDJ (1 31)+ GJWJ)/EJ :

€ M; (w)
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Similarly R= (a(1,1) + BW;.‘)/gJ. 5 M;.'(w) implies R € Mm(w). /

Note that if Aj =Am then conditions (a), (b), (c) are automatically
e . o n "
satisfied while condition (d) reduces to ngem/hNd (Am) A EIm

and condition (e) reduces to Zwm+om>\/gm€ Ir;1'

We now consider how best to use conditions (a) - (e) to carry out the
testing required in steps (iii), (iv) of the procedure following theorem
2.31. Note that the calculation of an (J) (w) representation is a non-
trivial matter. Consequently we use condition (a) as follows to

(J)

eliminate as many cases as possible before any (w) representation is
calculated. Begin by relabelling the RIEj) if possible so that N(S (R]EI))
is a root of unity and then relabel the ngj), j=2,...,n so that
NG(RlEj)/RIED) is a root of unity for j =1, ,m but not for
j=m+l,...,n. If (15) is to occur then we must have N (R]EJ)) N (AIEJ)/
a Z(8) root of unity. Therefore depending on NG (ng )) we will

have either 0 or m possibilities which require further consideration.

(That is conditions (b) - (e) must be considered which requires the

calculation of an Mg% (w) representation). If (16) is to occur then we
() /o (1)y - (G) (1) :
must have N(S (Ak+ Ak+1) N(S (Rk /Rk ) a Z(8) root of unity and so there

are m possibilities which require further consideration. Note that the
RIEJ ) , J=m+l,...,n are not considered again after the relabelling

process and so they can be discarded.

In spite of the apparent complexity of the testing outlined in the
previous paragraph the situation is quite simple in practice. In
general we find that after relabelling we have m=1 and N(S (RIEI)) is not
a root of unity. (In fact we often find n=1 so we do not even have
to consider relabelling). Thus in general the only case which requires
any consideration is the possibility l\( )(w) = (Mlgl) (w))*. Consequently

the testing for a midpoint normally only requires a trivial amount of
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work which is extra to that already required by algorithm 2.1. The
only situation where the required testing would involve a significant
amount of work is where m>1 since we would then have to calculate at
least two M(J) (w) representations. Fortunately such occurrences appear

to be rare. (Indeed we have not found any).

We now collect together the ideas and results presented in this
section to form algorithm 2.2. We begin by making the necessary
modifications to algorithms 2.1A, 2.1B. The resulting algorithms 2.2A,
2.2B form the major parts of algorithm 2.2.

ALGORITHM 2.2A

Given a standard representation of Mk(w) we calculate all Rke Mk(w)
up to Z(8) root of unity factors as follows.
1-10 are the same as in algorithm 2.1A

11 If r> mR,or r=mR and r* >mR* go to 13

12.1 If rr*<mRmR* then set n=1, mR=1, mR*=r*,

b(8) =gk(mR+l)/|wk 1% 2|» 80 to 12.3
12.2 Reset n =n+l

12.3 Set n(n) =m m,o (n) _ B, () _ (n(n}(l 1) + n(“3w

]
k,1 ™8k PO F Vs Ty 5 K78y

13-23 are the same as in algorithm 2.1A

24 Stop /

ALGORITHM 2.2B

Given a standard representation of M (w) and RkJ) = (n(J) (L) +

IEJ %Wk) /gk we calculate a standard representation of (J) (w) as follows.
1 is the same as in algorithm 2.1B

) srn(3) =) - (3) (J)
2 Set ﬂl nk 2 3 nz ]( ]( Z/gk’ ns nk 1’ Tl4 (Okn 'Pkn )/gk

3-30 are the same as in algorithm 2.1B



distinguish the various representations and the calculation of 8

ol

&

35

34

() -

Set hN 5 (Al((l%

() -

) = NRODRN A

()
Set 831 “8k+17 T+l = %k+10 Ykl

=V

set 6] =hN; (A]EQ) (Wiea1 ,1*Wia1,2)/2

Stop

Thus the only changes are the addition of superscripts to

() .
wk+1 Wk+1
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/

hN(S (A]gL %) which are required to perform the tests listed in theorem 2.32.

Note that it is more convenient to work with the Z(§) integer hN 5 (Ak)

rather than Nd (Ak) which is not necessarily integral when h > 1.

ALGORITHM 2.2

Let w=/Y/h.

A symmetric minimal period of relative minima of

M(w) can be calculated as follows.

10

11

If |w| 21 set AO= (1,1), hNd (AO) =h, W

Set A, =W, h

0

Ng (Ag) ==Y, Wy=-W

Set g0=1, w0=0, 90=0, Oy =w

Set k=0

Use algorithm 2.2A to calculate RIEJ) s =128 .,V (fthat S

1

0

=W, go to 3

all Rk € Mk(w) up to Z(8) root of unity factors)

1t [N’

If N(S(ngj)) = £ occurs then relabel so that N‘5 (ngl)) = £

#1 go to 8

Discard all RIEJ)’ j>1 for which Nd(RIEJ)/RIEI)) # 51’ relabel the

remaining RIEJ) and reset n accordingly

For j=1,2,...,n use algorithm 2.2B to calculate the representation

of M]g)l(WJ corresponding to ngj)

If NG(RIEI)) # £ go to 13

For j=1,2,...

,h perform step 12
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13

14

15

16

17

18
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£ M]EH(W) = M]’z(w) then set q=2k+1, AIE-J& =R1£j)Ak, go to 17

sor 1) - 1V,

For j=1,2,...,n perform step 15
(Naay = @) . () - rG)
If Mk+1(h) (Mi+l(w))* then set q =2k+2, Ak+1 = Rk_ Ak’ go to 17

Set Ak+1 = Aﬁi%, Mk+1(w) Mﬁii(w), increment k by 1, go to 5

If q is odd then AO’Al’ Ak’Ak+1 define a symmetric minimal
period as described in theorem 2.3la
(1)
else AO,A .. Ak Ak+1 +1 define a symmetric
minimal period as described in theorem 2.31b

Stop

Explanatory Notes

(D £,81 in steps 7, 8, 10 denote arbitrary Z(§) roots of unity.

(2) Steps 6, 7, 8 perform initial testing for a period midpoint
using condition (a) of theorem 2.32 as described in the
paragraphs following that theorem. Note |N6(R£J))| =|N6(R£}))|

and so we must havelNG(Ril))I =1 if N6(R£J)) = £ 1is to occur.

(3) The tests required in step 12 are given by (b), (c), (d), (e) of
theorem 2.32 and the tests required in step 15 are given by

(d), (e) of theorem 2.32. //

Before illustrating algorithm 2.2 with several examples we look at

some important practical aspects of implementing the algorithm. In

the paragraph following algorithm 2.1 we noted that the precision of

calculation required by the algorithm depends on the maximum magnitude

of the relative minima which we wish to calculate. Consequently we

noted that multiprecision arithmetic would be required for the

calculation of relative minima of large magnitude. There are two areas
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in which the precision of the calculation is important. Firstly the

calculation of W, ,B

k+1 k+1°’"k+1°

In the following paragraphs we show that for algorithm 2.2 we can avoid

and secondly the calculation of Ak+1,a

the need for multiprecision arithmetic in the calculation of W (To

k+1°
be more precise we shall show that the precision required depends on
|Y|, h, || rather than IAk+1|)' Furthermore we can reduce the amount of

computation required to calculate Ak+1’ak+1’8k+1 when |Ak+l| is large.

The need for multiprecision arithmetic in the calculation of Wk+1
can be eliminated by making the following simple modifications to
algorithm 2.2. Firstly we assume that the calculations in steps 31
and 32 of algorithm 2.2B involve rounding the final result to the nearest
Z(8) integer. Secondly we add the following calculation to step 16 of

algorithm 2.2

Reset Wk+1 = (Bk+1(l,1)-+hgk+1W)/hN6[Ak+1)

Now theorems 2.25, 2.26 show that 6 }1N6(A ) are '"'small" Z(6)

k+1’ k+1
integers (bounded independent of k but depending on Y,h,§) and we have
|a-B| 2 1 when a,B € Z(8),a#R. It is therefore not difficult to see
that we only require a fairly low level of precision in our calculations
(depending on |Y|,h,|§|) in order for the above modifications to ensure

that the calculated values of 6 hN(S (Ak+1)’ Wk+1 are always correct

k+1’
to within rounding error regardless of how large k grows. (Standard
precision (that is approximately 10S) is more than sufficient for the
examples which we will consider). In effect the algorithm becomes
self correcting and we are able to calculate RO’Rl"“’Rk for
arbitrarily large k.

Note that in making these modifications we are simply using the
basic idea behind the simple continued fraction algorithm for quadratic
surds. (See algorithm 1.2. For a generalization see Hendy and Jeans

119811).
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This basic idea is that we represent algebraic numbers (such as Wk+1)
in terms of integral coefficients (ek+1’gk+1J1N6(Ak+1) for Wk+1)
which can be calculated exactly at each stage of the algorithm. Note
that we could have followed this basic idea more closely by rewriting
the calculation of Wk+1 in terms of calculating ek+1JlN6(Ak+1) from
ek,}1N6(Ak), etc using only Z(8) arithmetic. However this proves to be
a less efficient alternative to the modifications noted in the previous

paragraph and so is not pursued.

Thus the only section of algorithm 2.2 which may still require

multiprecision arithmetic is the calculation of Ak+1’ak+1’8 (That

k+1°
is steps 12,13,15,17 of algorithm 2.2). In some cases we only require
a standard precision approximation to Ak+1 (for example, class number
calculations) and in such cases the algorithm has no need at all for
multiprecision arithmetic. However if we wish to calculate the

coefficients ak+1’8k+1 or a high precision approximation to Ak+1 then we

cannot avoid the use of multiprecision arithmetic when lAk+1| is large.

Although the method for calculating ak+1’8k+1 (from Ak+1) given in
step 6 of algorithm 2.1 is quite satisfactory for small relative minima
we can use an alternative method for large relative minima which uses

only Z(8) arithmetic. We derive this method as follows. The equation

Ak+1 =RkAk is equivalent to
g (1,1) + By W = (g 3 (1,1) +my W) /gy (g (1,1) + B0
Substituting Wk = (ek(l,l) +hng)/hN5 (Ak) and expanding gives
a1 = (g (NSCAIY 1+ 28 ) + By 281 V) /DN (A ) gy

(Bk(hNG(Ak)nk,li-nk’zek)-*aknk,zhgk}/hNé(Ak)gk

17)

Bk+1

This provides a more efficient method for calculating o when

Kk+178k+1
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|Ak+1| is large. The reasons for this are as follows. The method
based on (17) only requires simple multiprecision integer arithmetic,
that is addition of multiprecision integers and multiplication/division
of multiprecision integers by standard precision integers. The amount
of work involved is therefore a linear function of the precision.
However the method used in algorithm 2.1 requires multiplication/
division of multiprecision reals and the amount of work involved is

therefore a quadratic function of the precision.

Once the midpoint of a period has been found we can calculate the
coefficients of the remaining relative minima (step 17 of algorithm

2.2) by using the following formms. Let A = a(1,1) +BW, B = «(1,1) +AW.

Then
A/B = AB*/Ng(B)
= ((ax-BAY/h) (1,1) + (-ar+B)W) Ny (B) (18)
and
AB = (ax+BAY/h)(1,1) + (aA+Bk)W

Often we are only interested in calculating the coefficients of Aq.
(See chapter three). In such cases we only require one calculation
of the form (18) to give ao_, Bq once the mid point of a period has been

q
reached.

The coefficient % also leads to a simple but generally satisfactory
approximation to A when lAkI is large. Note that |Ak-2ak(1,1)|==|Ail.
Thus Zak is a good approximation to the first component of Ak while

NG(Ak)/Zak is a good approximation to the second component of Ak when

lAkl is large.
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Thus although we cannot always avoid the use of multiprecision
arithmetic when |A1| is large we can use the procedures outlined in
the above paragraphs to reduce the amount of calculation involved

thereby making the algorithm more efficient.

We now illustrate the use of algorithm 2.2 with several examples.

EXAMPLE 2.8
We rework example 2.1, 2.3 using algorithm 2.2. We have

§ = v-10, Y = 1+8, h=1, w=/Y/h. The initialization steps give

A0 =(1,1) and
g0=1,w0=0,00=0,80= hNé(AO) =1,WO=W
For k =0 we obtain the following results. Algorithm 2.2A gives

Rél) = (4+6) (1,1) + W,

Since ING(Rél))I ~ 4.3 and n=1 we can move straight to step 9 of
algorithm 2.2 where we calculate a representation of Mgl) (w) which is

defined by

gD =1, 9 =0, oW =5, 61 = 56, nn alD) = 36

(that is wgl) = ((3-8) (1,1) +W)/(-3-8))

Now NG(R(gl)) is not a root of unity so Mgl) w) # MB’(W) . We therefore

set
AD = gDa = 4y, 1) + W

and then test to see if Mgl) w) = (Mgl) (w))*. Since
x = 2gM oD mn aM) ~ 11+ 636 ¢ 13

1

iif: §irS) Elea Ehae M:El) @) i (Mgl) w))*.
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We therefore increment k to 1 and calculate
(1) = (-1-8)(1,1) + 3,

|N6 (Rgl))l ~ 1.15, n = 1 so we move to the calculation of a

representation of Mgl) (w) which gives

g =1, y{V =0, oV = 5, oY = (1-26), nN AfV) =5

(that is wgl) ((1-28) (1,1) +W)/5)

Since NG (Rgl)) is not a root of unity we set

@ _ {@
AZ - Rl Al

(-9-26)(1,1) + (-6)W

and then note that

26{D oD /nng (D) = .a- 85 ¢ 1y
which shows Mgl) (w) # (Mgl) (w))*.

We now set k=2 and calculate

Rz(l) 8(1,1) + 2,

|N6 (Rgl))l = .4, n=1. A representation of Mgl) (w) is defined by

gD =2, 4D =0, oM =5, 6 -0, N, ALV = -2

(that is wgl) = (0+2W)/(-2) =-W)
N (Rz(l)) is not a root of unity so set
Am R(l)Az = (-2-56)(1,1) + (-6-28)W

Since 6( ) - 0, w(l) = 0 it is obvious that conditions (d), (e) of
theorem 2.32 are satisfied and so we have Mgl) w) = (M:,El) (w))*. Thus

the midpoint of a minimal period of length q =6 has been found.
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To complete the calculation of a symmetric minimal period we set

A

= (1) (1)* = * =A*
g8 =g TRy B F Mgy Aomilen /

4 2 16

This example illustrates two points which are typical of the
cases with which we have dealt. The first point is that we generally
find n=1 at step 5 of algorithm 2.2. The second point is that we
frequently find 8k+1 = wk+1 =0, NG (Ak+1) = $2 at the midpoint of an
even length period. Thus the amount of calculation involved in
recognizing the midpoint is indeed trivial in the cases which we have

dealt with.

EXAMPLE 2.9
We now rework example 2.7b using algorithm 2.2. We have
§ = v-35, Y = -3+5§, h=1, w = ¥Y/h. The initialization steps give

AO = (1,1) and

gy = L, Yo = (1 9y = (1+8)/2, 80 =0, hNG(AOJ =1

The calculations for k =0 give the following results.

i}

R(Y = ((15+36)/2) (1,1) + Wy, n=1, N, R{M)| ~ 18.1

gV =1, 4 20, oM = (145)/2, 6V = (3145672, nN, (AD) = (-21450) /2
A = ((15+36)/2) (1,1) + 20

A =2g§1) egl)/hNd(Agl)) ~ .34 -.408 ¢ 1}

We therefore increment k to 1 where we find

(1)
Rl

RD = (-3)(1,1) + ((1+6)/2)W,

((-1+6)/2) (1,1) + 30,
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Thus n = 2. Since |N6(R§1))| s~ .55 we go to step 8. Since
(2) (1) .
Né(R1 /R1 ) = .94 - 337
(2)
R1

is clearly not a Z(8) root of unity we discard and reset n = 1.

M{M (W) is defined by
giM= 3, y{1) =1, {1 = (5461 /2, 6{1)= (-7+8)/2,n N (ALM) = (-19+6) /2
since Ny (R1Y) is not a root of wnity we set
Al = ((27-36)/2)(1,1) + ((1-6) /)W
and then note M{™) (W) # ({1 (w))* since

r = 28 Me{/nN (A1) ~ 2.55- 185 ¢ 13

For k = 2 we again find n = 2.

R = (((-7-6)/2)(1,1) +3W,) /3

2
Rg )

Since |N5(R§1))|

(((-7+#6)/2) (1,1) + ((1-6)/2)W,)/3

1 we check to see if NG(jo)) is a root of unity.
(1) ()% o .
NS(RZ )~ .94 - .056, Nﬁ(R2 ) = -1
Consequently steps 7, 8 of algorithm 2.2 effectively result in the

(1)

5 plus the resetting of n = 1 and the resetting of

discarding of R
R = (((-7+6)/2) (1,1) + ((1-6)/2)W,) /3
Mgl)(w) is defined by

(1)— 3, ¢31J a1 cgl) = (5+6)/2, 61 = (7-8)/2, hNG(Agl))= (19-8) /2

NowaéRgl)) = -1 so we must test to see if Mgl)(w) = Mg(w). Since

£ =-1, g(IJ =g2, (1)"¢2, (1)'-02, e§1)==-ez it is easily seen that
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the conditions of theorem 2.32 are satisfied and so we do indeed have
Mgl)(w) = M;(w). We have therefore found the midpoint of a minimal

period of length q=5. We therefore set
A = ((-61+136)/2) (1,1) + ((3+36)/2)¥W

and then complete the calculation of a symmetric minimal period by

setting

A = Agl)/A*, Ay =AT A /
This example also illustrates points that are typical of the cases
we have considered. Firstly the occurrence of 6k+1 = —ek at the
midpoint of a period of odd length is fairly common. Secondly if
n > 1 in step 5 of algorithm 2.2 then we have always found that step 8
reduces n to 1. Finally we have generally found that for a given value
of k either |N6(R£1))| # 1 or we are at the midpoint of an odd length
period. We do not suggest that this will always be the case but we do
note the simplicity and effectiveness of the test in step 6 of algorithm

2n.

These examples are sufficient to illustrate the typical sort of
calculations required and results obtained by algorithm 2.2. Note that
in the next chapter we will make further use of algorithm 2.2 (and a
modification of algorithm 2.2) to calculate units in certain types of
quartic fields. (Of course this was the main reason for studying the
subject of relative minima of Z(§) modules). These unit calculations
will therefore give further illustration of the performance of algorithm

En2.

Apart from the completion of the proof of the bound for |A;| which

was stated in section two we have now developed the general theory of
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relative minima of M(w) sufficiently far for our purposes. (However
in section two of the next chapter we will develop several specific
results concerning modules of the form M(¥Y) which are relevant to the

problem of calculating units in quartic fields of the form Q(8) (vY)).

We therefore close this section with the promised proof of the
bound for |A]"E| .

THEOREM 2.33

Let w € €\{0} and let Ay k > 0 be a relative minimum of M(w).

Then

x| < 2/2(8]/c Bni(lg,| -1/2)

PROOF

Case (a) We begin with the special case where w=/Y/h. Since

M(w) has periodic relative minima we can find Aq’ q >0 such that Aq/A0

is a unit of M(w). Therefore by theorem 2.29b we have
- n
Ak+nq Ak(Aq/AO) ,n€2Z
is also a relative minimm of M(w). Since Aq/A0 is a unit we have

|N6 (Ak +nq)| = |N6 (Ak)l and theorem 2.25 therefore gives
1
INg& | < /218 [wl/ e ¥Ent + /gy, |

Now as n + = we have |Bk+nq| S IAk+nq|/2|w| > o, We therefore

conclude
Ny | s 4VZ[8] W]/ c ¥5n? (19)

and the result follows once we note that |A§| = ING (A |/|Ak| and that

Al

v

2| - |AF

21w (|8, | - Ax1/2]w])

\

2|wl (|8 | - 1/2)
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since IA;I < |w| fior k & 0.

Case (b) We now use case (a) to prove the general case where w is
any non-zero complex number. Let Ak =A]£1) : Algz) POOC ,A]EH) denote the
complete set of elements of Ek. Throughout this proof we will use the
following convention. If A denotes the element a(l,1) + BW € M(w) then
A(x) for x € C\{O} will denote the element a(1,1) +B(x,-x) € M(x).

(Note that A(w) =A). We first prove a lemma which will be required
later in the proof.

Letma We can find r € R® such that for any x € C\{0} satisfying

|x-w| < r we have
v C € M) such that C#(0,0), C#AU), j=1,2,...,n
either [C(X)| > [A ()| or [C'()] > |A ()]

(Note that since Ak is a relative minimum this result is trivially true

for x=w. We want to prove that the result remains true for all x in

some open set containing w, that is in all modules M(x) ''close' to

Mw)).

Proof  Suppose the result is false. Then V m € 2% we can find

Cp € MW, x_ € C\{0} such that
xgwl < Um, Ix | > [W]/2,C,# 0,00, ¢ #AD), 5=1,2,...,n (20)
ICa )| < IA DL 1G G| < [AG) | (21)
Now [A (x )| = |8, x |, |A;{xm)[ = Jog-8 x|, |x | < [w| + 1 and so

A G, ARG < Jog | + 8,1 (W] +D)

Therefore if Crn a(m) (1,1) + e(“‘)w then we have

™|

16,0 ) +Chx ) 172 < fog | + 18] (Iw] +1)

8™ = Jc () -G ) 1/2]x | < oy | + |8 | (W] + 1))/ |
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Since Ixml > |w|/2 it follows that Ia(m)l, |B(m)| are bounded independent
of m. Now Z(8) is discrete and it is therefore clear that there can
only be finitely many distinct values of Cm' Consequently Cm==C occurs
for infinitely many m. Note that (20) implies C # (0,0), C # Aéj),
j=1,2,...,n. However X > Wasm>e and so (21) implies |C| < lAkl’
|c*| < |A;|. Since A, is a relative minimum this implies either

C = (0,0) or |C| = |Ak|, |c*| = |Ai|. That is either C = (0,0) or

C-= Aﬁj) for some j € {1,2,...,n}. This is a contradiction and so the

lemma is proved.

Now to the proof of the general case. Fix r € R* for which the
lemma applies. Note that the set of all numbers of the form /4/h is
dense in €. Therefore v m € Z* we can choose x € C\{0} such that x

is of the form vY/h and |x_-w| < r/m.

For any particular value of m we can choose Aég)(xm) with

2 € {1,2,...,n} such that

(2) (J) -
INgA (0D < [N ), 5=1,2,...,m
In view of the manner in which Aig)(xm) is chosen and the fact that the
lemma applies it is easily checked that A{g)(xm) is a relative minimum

of M(xm). Since Xm is a number of the form vY/h it follows that (19)

in case (a) applies to Aﬁz)(xm), that is
N, A (x 0| < avZ]8|[x_|/c V3 i

Now consider what happens as m + . We have X W and
|N6(A£J)(xm))| > N, A | = IN(AD| forj=1,2,...,n. It is now
easily seen that
1
lNG(Ak)I < &/Z|8| |w|/c V3 n*

and the rest of the proof is the same as in case (a). /
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SECTION FIVE
COMPARISONS AND CONCLUSIONS

In this section we briefly compare the work in the first four
sections of this chapter with some of the existing relevant literature.
In particular we note a generalization of the nearest integer continued
fraction algorithm (algorithm 1.3) which applies in Euclidean complex
quadratic fields, and an algorithm by Amara [1981] for calculating the
class group and fundamental unit of a quadratic extension of a complex
quadratic field for the case where the ccmplex quadratic field has class
number one. These two algorithms appear to be the only ones in the
literature which deal specifically with some of the ideas which we have
considered in this chapter. These comparisons will be extended in
chapter three section two where we consider algorithms for calculating
fundamental units of certain quartic fields. We then finish this section

with several final camments concerning our work in this chapter.

The literature contains a number of works which consider
generalizations of the simple continued fraction algorithm and related
ideas. (Brentjes [1981] provides a survey of many of these works and
gives a fairly extensive list of references to the relevant literature).
The approaches used in generalizing‘the simple continued fraction

algorithm fall into two main groups.

In the first group we find the algorithms which we can think of as
generalizing the form of the simple continued fraction algorithm, that
is successive approximations are calculated as a simple integral linear
combination of previously obtained approximations. See for example
the Jacobi-Perron algorithm (see Bernstein [1971]), and Szekeres [1970].

These algorithms tend to be fairly simple from a computational point
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of view and have varied success in achieving the desired generalizations
of the properties of the simple continued fraction algorithm. (As
described say in Szekeres [1970,ppl114,115]). In general these
algorithms deal with real numbers and are therefore not particularly
relevant to the work in this chapter. However there is a complex
continued fraction algorithm which is relevant and we shall describe

and briefly discuss it later in this section. (Szekeres has also
indicated (verbally) that his algorithm can be applied in certain

complex cases. However no details or results are yet available).

The second group of algorithms is based on the general idea of a
relative minimm. (Usually defined in terms of the conjugates which
correspond to some algebraic mumber field). Note the different approach
in comparison to the first group. Here the objects of real interest,
that is the relative minima, are defined first and an appropriate
algorithm for their calculation is then developed. See for example
Berwick [1913], Billevi& [1956], and of course Voronoi [1896]. Many
others have further developed the work of these authors, for example
Rudman and Steiner [1978] (Berwick), Steiner and Rudman [1976] (Billevil),
and Williams et al [1980] (Voronoi). Apart from Voronoi these algorithms
tend to have a more restricted outlook in comparison to the first group.
This is because they generally apply to Z modules whose basis elements
form an integral basis of an algebraic number field and their sole
purpose is to calculate a fundamental system of units for this field.

Our algorithm therefore takes a slightly more general approach than
much of the existing literature. (Our main reason for taking the more
general approach was to highlight the close correspondence between the
work in this chapter and the simple continued fraction algorithm. In
the simple continued fraction case we approximate real numbers by using

ratios of elements of the discrete set Z and in this chapter we
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approximate complex numbers using ratios of elements of the discrete
set Z(8)). In general we find that these relative minima algorithms
are either specific to cubic fields (see especially Williams et al
[1980]) or of a more general nature applying to arbitrary degree fields.
Of course these general algorithms apply to integral bases of quartic
fields of the form Q(8) (vY/h) (the underlying field in section four) but
nothing of a particularly specific nature such as the idea of minimal
symmetric periods is developed. (Although Williams [1980] has
considered a similar sort of idea in cubic fields). However there is
one algorithm due to Amara [1981] which is specific to fields of the
form Q(8) (V) where Y € Z(8) and Q(8) has class number one. We shall
discuss this algorithm immediately following the discussion of the
previously mentioned complex continued fraction which begins in the

next paragraph.

The ideas noted below concerning complex continued fractions have
been dealt with to varying degrees by A. Hurwitz [1887], J. Hurwitz
[1902], Arwin [1926], Stein [1927], and Lakein [1971,1974,1975] amongst

others. Let
d=-1,-2,-3,-7, or -11 (22)
Then Q(8) is Euclidean and so given any w € € we can find @ € Z(§)

such that [0-w| < 1.

ALGORITIM 2.3

Let w € C and assume d takes one of the values in (22). Then we

can obtain the Z(S§)CF (Z(8) continued fraction) expansion
W= (tpl,toz,...), ©, €Z(8),w, #0 for k22

as follows.
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1 Set W) =W, k=1
Z Set @, = {wk}
3 If <Ok = Wy then stop
4 Set Wy, = (W -9) 1
< A
5 Increment k by 1, go to 2 //

Convergents pk/Tk (qukEZ(G)) are defined in the standard way and
since ]wk_wk1 < 1 it follows that the p, /7, converge to w. Indeed
most of the standard continued fraction results apply. (For example,
P Tk-1 _pk—lfk = (-1)k, w has a finite Z(§)CF if and only if w € Q(§),
etc.). Note that if w € R then ©, € Z, that is the Z(8)CF for w and
the nearest integer continued fraction (algorithm 1.3) for w are

identical.

A Z(S8)CF is said to be periodic if and only if 3 m,r € z* such

that L gwm o where £ is a Z(8) root of unity. As usual m,r are

+
assumed to be minimal and the terms preperiod, period have the obvious
meaning. The expansion of a Q(8) quadratic surd (that is an algebraic

nunber of degree two over Q(8)) can be obtained using the obvious

generalization of algorithm 1.2 and we have the result
w € C has a periodic Z(8)CF

if and only if
w is a Q(8) quadratic surd.

Consequently if w is a Q(8) quadratic surd then we can obtain a unit of
the quartic field Q(8) (w) from the Z(8)CF expansion of w. We shall

comment further on this point in chapter three section two.



127

The following points become evident when we compare the Z(&8)CF
algorithm (algorithm 2.3 or the obvious generalization of algorithm 1.2)
with our relative minima algorithm (algorithm 2.1 or 2.2). Firstly the
two algorithms are not equivalent. In general we find that the
convergents of the Z(§)CF expansion of w correspond to a subsequence of
a half chain of relative minima of M(w). Thus the Z(S8)CF algorithm
tends to miss some of the ''best approximations' to w. (A relative
minimum is of course essentially a generalized best approximation).

Of course this is not unexpected in view of the fact that the Z(S)CF
algorithm is a generalization of the nearest integer continued fraction
algorithm rather than the simple continued fraction algorithm. (See
the following paragraph for further details along these lines with
respect to variations of the Z(§)CF algorithm). A second point to note
is that the Z(6)CF algorithm is clearly much simpler from a
computational point of view. However note that algorithms 2.1, 2.2
are also fairly simple as far as calculation is concerned when d takes
one of the values in (22). This is because the search for Rk usually
only involves testing 3 or 4 values of B at most (fewer for the smaller
magnitude values of d), and the frequent occurrence of nk,Z = 1 means
that the calculation of an Mk+1(w) representation is generally fairly
trivial. Thirdly we note that both algorithms can be used to find
units of Q(8) (W) when w is a Q(S8) quadratic surd and we shall expand

on this point in chapter three. A final point to note is that our
algorithm has one distinct advantage in that it is defined with respect
to all complex quadratic fields rather than just those that are

Euclidean.

We finish this discussion of complex continued fractions by noting
that it is possible to define many variations of algorithm 2.3 by

replacing step 2 with wk = f(wk) where
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f:€+2(8), |[f(x)x| <1 VxE€EC

Variations of this sort have been considered by J. Hurwitz [1902],
Stein [1927], and Lakein [1971,1974,1975] and these algorithms have
similar properties to the Z(S§)CF algorithm. We also find that for a
given w € € it is often possible to choose f so that the convergents of
the resulting continued fraction expansion of w agree with the relative
minima of M(w). However examples such as w=/28, § =v/-11 show that
this cannot always be done. In fact any complex continued fraction
algorithm will fail to find infinitely many of the relative minima of
M(wp for this particular value of w. In other words no complex
continued fraction can be guaranteed to produce all (or even all but
finitely many) of the best approximations to w. This is obviously a

further point in favour of our algorithm.

This completes our discussion of complex continued fractions for
the present. As has been noted at several points in this section we
shall expand on this discussion with respect to calculation of units in

chapter three section two.

Amara [1981] gives an algorithm for calculating the class number
and fundamental unit of a quartic field of the form Q(8) (vY) where
Y € Z(8) and Q(8) is a complex quadratic field having class number one,

that is
d=-1, -2, -3, -7, -11, -19, -43, -67, or -163

(See chapter three section one for more detail concerning this type of
quartic field). We shall see that some of Amara's basic ideas are
essentially the same as those involved in the development of algorithm
2.2. We begin by briefly describing Amara's work. For quartic

fields of the form described above we have
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Z(8) (/) = Z(8)[1,A], A € 2(8) (/1) (23)

Let B'" denote the conjugate of B € Q(8) (VY) defined by the conjugate

(V)" = -¥Y of /Y. A reduced ideal of Z(68) (vY) is an ideal of the form
J = Z2(8)[1,A-u], T,u € Z(6) (24)
satisfying
vVBE€J, |t] ¢« max {B],|B"|}

Z(8) (vY) has finitely many reduced ideals (|t| in (24) is bounded).
With each reduced ideal Amara associates a number H € J referred to as

an "elemént de conversion''. The successor ideal of J is defined to be
s(J) = H'/1)Jd

which is also a reduced ideal. For any reduced ideal there is a cycle

of ideals

J .,Jn with J = S(Jk) and J{J = s(Jn) (25)

02 J10- k+1

The finitely many reduced ideals of Z(§) (VY) are therefore divided into
a nunber of disjoint cycles and this number is the class number of

Q(8) (vY). Furthermore a fundamental unit of Z(8) (v/Y) is given by

%

o

-—II:I:
==

Hn
U= . — (26)
"n

where Hk is the "elemént de conversion' of Jk = Z(G)[Tk,A-uk].

Amara's "elemént de conversion'' is essentially a relative minimum
of the corresponding ideal. The similarities between the above ideas
and algorithm 2.2 are seen most clearly if we consider a case where we
can take A = /Y in (23). (Chapter three section one will show

precisely when this occurs). If we take
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Jo = 2(&) (/M) = 2(6) [1,/7]

and compare the resulting cycle (25) with the results of applying

algorithm 2.2 to M(¥Y) we find q = n +1,

Ty = 2(8) Ng (A, )8 +¥]
and up to a root of unity factor we have

H = oNg (Aq_kJ +B(8, i + /)

where

= a(1,1) +BW

Ri-k,q-k-1 K

(Recall that 8 = 1 when h(d) = 1). Finally up to a root of unity
factor we have that the unit defined by (26) corresponds to Aa. Thus
the differences are largely superficial, that is notation, a scale
factor, and the fact that the cycle and the period run in opposite
directions. The calculations required by the two approaches appear
to be essentially the same although Amara does not take advantage of
the symmetry which is present. (This would be particularly simple to
do when Q(8) is Euclidean since Amara shows that in such cases each

reduced ideal has a unique standard form).

Thus there is a close connection between some of the basic ideas
of Amara's work and our work with the main overlap in application of
the two algorithms being in the calculation of units of certain quartic
fields. (We shall comment further on this point in chapter three
section two ). Apart from this overlap the two algorithms have

obviously differing aims.

We finish our comments on Amara's work by noting that Amara does

not address the case where h(d) > 1. Consequently we can view our
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work as being in some respects a generalization of Amara's work. More
correctly we might suggest that our work in this chapter provides a
possible avenue for generalizing Amara's work. However it is not our

intention to pursue this final point in the present work.

We now finish this section and chapter with several concluding
remarks concerning the work in this chapter. We note a number of
areas which require further investigation (although we shall not do
this in the present work) and then comment on how well we have
succeeded in achieving the aims of this chapter as stated in the

introductory paragraph.

There are several major points in this chapter which we have
either been unable to resolve to our satisfaction or not considered in
any depth. The first and most annoying of these points concerns the
form of the midpoint of a period of even length. In theorem 2.31 we

have only been able to prove that in such cases we will find

Ak+1’A1£P1 (A, arbitrary) such that (H(w) = ML W)

However as noted in example 2.7a we have found in practice that we can
always take (11 = Ak+1' We have been unable to resolve this point
and further investigation will hopefully produce either the appropriate
proof or a counter example. (Amara [1981, Lemme I.3] effectively
proves the result for certain special cases when h(d) =1). While

this point is annoying from an aesthetic point of view it does not in
fact cause any real problem from a practical point of view. This is
because the amount of work required by algorithm 2.2 to take care of
the possibility that in some cases we might not be able to take

Aﬁii = Ak+1 is relatively small. Of more importance from a practical

point of view is the fact that the amount of work required by
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algorithms 2.1A, 2.2A depends on |§|. Consequently for large |§| the
calculation of an R.k becomes more costly. The main reason for this
dependence on |8| is of course the fact that we have simply employed
an exhaustive search technique to check through the possible B
coefficients. It would therefore be appropriate to consider possible
ways of streamlining this search especially for larger values of |§].
One question which we have not considered in this chapter is the
possibility of generalizing (8) of chapter one. We have been unable to
make any significant headway in this area and the development of an
appropriate generalization (if indeed one exists) certainly deserves
close attention. A final major point which deserves further
consideration is the more general form of periodicity mentioned follow-
ing theorem 72.23. We have not considered this point in any detail
although it does appear that results of a more theoretical nature are
relatively straight forward to develop. However there appear to be
problems in developing an algorithm which has the same practical

advantages that algorithm 2.2 has over algorithm 2.1.

In the introductory paragraph of this chapter we stated our
objective was to generalize the ideas of chapter one sections four and
three. We also indicated a more specific objective of developing an
algorithm capable of calculating fundamental units of quadratic
extensions of complex quadratic fields. In general we have been
reasanably successful in developing appropriate generalizations of the
ideas and results of chapter one sections four and three. The previous
paragraph indicates the main areas where we have been less successful
than we would have liked. On the final question of whether or not the
work in this chapter has produced an algorithm capable of calculating
fundamental units of quadratic extensions of complex quadratic fields
we simply note that the answering of this question forms a major part

of the following chapter.



133

CHAPTER THREE

UNITS OF CERTAIN QUARTIC EXTENSIONS OF Q HAVING A QUADRATIC
SUBFIELD

Quartic extensions of the rational field can be divided into two
groups according to the presence or absence of a quadratic subfield.
In this chapter we consider only those quartic extensions of Q which
have a quadratic subfield. In section one we look at results concern-
ing the integers of such fields. In particular we express the integers
of the quartic extension in terms of the integers of the quadratic
subfield. We also look at the unit group structure of these quartic
fields and classify them accordingly into four types. In sections two
and three we shall develop algorithms for calculating a fundamental
system of units in two of these four types of field. These algorithms

rely heavily on the work of chapter two, in particular section feur.

SECTION ONE
QUARTIC FIELDS HAVING A QUADRATIC SUBFIELD, THEIR INTEGERS
AND A CLASSIFICATION

Throughout this chapter we assume that Q(I') is a quartic extension
of Q which has a quadratic subfield Q(8) (see chapter one section two).

DEFINITION 3.1

Let Y € Z(8). We say that

Y is non-square and rational square-free
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if and only if

VY ¢ Z(8) and Y is not divisible by the square of a rational prime.
Such a Y can be written as
+
Y =ajap, a),a, €Z, p€lH)

where a,a, is square-free, (al,A) =1, aZ|A (A is the discriminant of

Q(8)), and p is not divisible by a rational prime. V4

The following result shows that Q(I') can be viewed as a quadratic
extension of Q(§). (See also Nagell [1961, Theorem 2]).
THEOREM 3.1

Let Q(I') be a quartic extension of Q which has a quadratic

subfield. Then
Q(T) = Q(8) (¥Y) = Q(8+/Y)

where Y is a non-square rational square-free Z(§) integer. Further-

more if v ¢ Z then
QM) = QM

PROOF
We have [Q(T) : Q] = [Q(T) : Q(8)][Q(S) : Q] = 4. Clearly T is of

degree 2 over Q(§). We can therefore find «,A € Q(§) such that

F2-+2KF +t A =0

which implies

“k +s/kE-A, s € {-1,1}

-k +6vY, Y € Z(8), 8 €Q(8)

L]
]

Thus Q(T') = Q(8) (+Y) and we can clearly choose Y to be non-square and

rational square-free.
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To show that Q(I') =Q(8+/Y) we need only show that § +vY is not of
degree 1 or 2 over Q. If §+v/Y was of degree 1 or 2 over Q then we
would have 8§+ /Y = a+bve for some a,b,e € Q. However this would then
imply (6+/V-a)2==b2e which when expanded implies v¥ € Q(8). This is a

contradiction and so we conclude that § +vY is of degree 4 over Q.

Finally for Y € Z we have Q(S) = Q(Y) and so

Q) (M) = QM (V) = Q¥Y) /I

Note that we could have required Y in theorem 3.1 to be square-free.
We have not done so for two reasons. Firstly, although rational square
divisors of Y are easily determined it is often quite difficult to
determine non-rational square factors of Y when the class number of
Q(8) satisfies h(d) > 1. Secondly, insisting that Y is square-free does
not necessarily imply that Q(T') has a unique representation of the form
Q(8) (¥/Y). This is because for h(d) > 1 it is possible to have
Q(8) (*Y) =Q(8) (vx) with Y,k distinct square-free Z(8) integers. For

example, if 6 = v~I0 then
(3+26) (5+8)% = 5(3+28)%, 5(2)% = -2(8)°
and so we have
Q(8) (¥3+28) = Q(8) (5) = Q(8) (V-2)

It is therefore not always immediately obvious whether or not two fields
are distinct. However it is not difficult to deduce that

Q(8) () = Q8) (V&) if and only if kY = o, a € Z(8), « # 0.

Viewing Q(T) as a quadratic extension of Q(S) proves most useful in
developing further results. Some of the results developed using this

approach correspond closely with results from the standard quadratic case.
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In the first such result we show that the integers of Q(8) (vY) can be
expressed in terms of the integers of Q(§). (In some cases more
specific results can be found in the literature. For example, see
Hilbert [1894] for the case Q(Z) (¥Y) and Williams [1970] for the case
QU8) (A, dy € 2).
THEOREM 3.2

Suppose Q(T') = Q(8) (/Y) where Y is a non-square rational square-free

Z(8) integer. Let Y = Yle where Ys YZ € Z(8) and Yl satisfies

vBez(@), Y,|8° implies v |8

1 =1, Yz =Y. However we shall see that other

more desirable possibilities often exist). Then the ring of integers of

(For example, we can take Y

Q) (/) is
Z(8) (/) ={ (0+(8/Y,)vV)/2 o € Z(8), B € I(Yy,Y,), ke a2 Y, /Y, (od 4))
where
1(Y;,Y,) = {BE€Z(8) :YZIBZYI}

is an ideal of Z(§).
PROOF

Suppose A € Z(8)(¥Y). Since A € Q(8)(vY) we have A = 8 + A/Y with
8,2 € Q(8). The conjugate of A with respect to the quadratic extension
Q(T) of Q(8) is A* =8 - A/Y. (Note that there is no real conflict
between this usage of A* and the usage of A* in chapter two). Since

A,A*,/Y are algebraic integers it follows that

A+A* = 20, T(A-A%) = 20Y, AA* = 8% - a2y

are Z(8) integers. Let 206 =a, 2\Y =« where a,k € Z(§). Now
AA* = (aZ-KZ/Y) /4 € Z(8) implies YIKZ. Consequently Y1||<, that is

K = Yle with B € Z(§). Since Y||<2 is equivalent to YZIBZYl we have
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B € I(Yl,Yz). Thus
= (a+(8/Y2)/7)/2, a €Z(6), B € 1(Yy,Y,) (1)
and the condition AA* = (az-BzYl/YZJ/4 € Z(8) is equivalent to

of = g%v,/v, (mod 4) (2)

Now suppose that A is of the form in (1) and a,B satisfy the

conditions in (1) and (2). Then A is a root of the monic polynomial
_ . 7 2 u2
f(x) = (x-A) (x-A*) = x -ox+ (o -B Yl/Yz)/4

The conditions in (1), (2) ensure that the coefficients of f(x) are Z($)
integers and so A is an algebraic integer. Since A € Q(8) (VY) it

follows that A € Z(8) (VY).

It remains to show that I(Yl,Yz) is an ideal. Suppose
B,A €I(Y;,Y,). Then (B/YZ)JT, (>\/Y2)‘/§f»€ Z(8) (/7). Consequently
((B+A)/Yz)/7'€ Z(8) (VYY) which implies B+ A € I(Yl,YZ). The remaining
conditions which I(Yl,Yz) must satisfy in order to be an ideal are

trivial to check. //

This result does not of course have the simplicity of the
carresponding result in the standard quadratic case. Furthermore in
view of the above theorem it is not surprising to find that Z(6) (VY)
cannot always be expressed as a Z(8) module. For example MacKenzie and

Scheuneman [1971] have shown that Z(v-14) (Y-7) cannot be expressed as

Z(¥-14) module. In fact such occurrences are quite common when
h(d) > 1. (Note that this problem is not a consequence of our not
insisting that Y be square-free). Clearly a more precise description

of Z(8) (/Y) is not going to be an easy matter to determine.
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Before looking more closely at the general form of Z(§) (vV)
we illustrate theorem 3.2 with an example.
EXAMPLE 3.1
Let § = /10, Y = 12+38 = 3(4+8). Y is clearly rational square-free
and it is easily checked that Y is non-square. (In fact we have
N(Y) = 54 = 2.33 and since N(a) = 3 cannot occur for o € Z(§) we see that

Y is actually square-free). Z(8)(/Y) is determined as follows.

It is a simple matter to check that v B € Z(8), 3|BZ implies 3|B.

We can therefore take Yl =3, YZ =4+3. The implications of congruence
(2) are now determined. First note that Yi = 1(mod4). Therefore

2 = ud S r S ¢

a =B Y1/Y2 (mod 4) implies Yl‘(za = B~ (mod 4)

Now if « € Z(8) then « = 0,1,8,1+8 (mod 2). Thus

2
K

1

0,1, 2, 3+28 (mod 4)

2
YleK

0, 35, 28, & (mod 4)

Clearly Yleaz = 82 (mod 4) requires o=B8=0 (mod 2). It is now not

difficult to deduce that
Z() (YY) = {0t+(8/Y2)/‘7: a € Z(8), B € I(YI’YZ)} (3

We now need to determine I(Yl,Yz). Obviously YZHI) 2Y1 and it is easily
checked that Yzl (2) ZYI’YZI ©) ZYl. It therefore follows that we have

I(Yl,Yz) = Z[2,8]. Note that
I(Yl,‘Yz) <Y = 2[6,4+6]
We can now conclude

Z(8) (V) = {o*(B/Y VY : 0 €Z(8), B € 2[2,6]}
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Note that Z(8) (/Y) is not a Z(8) module. If it was then we would have

7(8) (VY) = Z(8)[A,B] with

A

]

a+ (B/Y,)/T, B=k+ (/Y)Y € 2(8) (/T)

Since 1 € Z(8) (¥Y) there must exist 6, n € Z(8) such that 6A+nB =1,

that is Ba+nk =1. It therefore follows that

2(8) (V)

Z(8)[6A +nB, - kA +aB]

Z(8) [1, (o) - kB) /Y,) VY]

This clearly implies <al-kB> = I(Yl,Yz) = Z2[2,8] which is a

contradiction since Z[2,8] is not principal. /

In general Z(8) (v/Y) is not as easily determined as in the above
example. The main difficulty lies in determining I(Yl,YZ). Exhaustive
testing for a basis of I(Yl,YZ) is obviously a totally impractical
procedure in general and so a more efficient altermative is required.
Checking Y1 possibilities also presents some difficulty in general. We
17 1, Y, = Y.

However this choice is not always desirable when other options exist.

could of course simply avoid this problem by taking Y

In particular if we can take Y, =Y then the form of Z(8) (/Y) is

1
considerably simplified. (See theorem 3.4 below). Finally congruence
(2) also presents some difficulty in that it often doesn't lead to a
simple single condition such as a=8=0 (mod 2) or a=R (mod 2).

However it will prove useful to know exactly when (2) implies

a=B=0 (mod 2) since this leads to the simplified form of Z(6) (VY)

given in (3). In the following paragraphs we take a closer look at the

points mentioned in this paragraph.

We begin by looking at a way of checking a given Yl possibility.

That is we look at a way of determining the truth value of the statement
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v gez(s), v,|8° implies v, |8 (4)

If h(d) =1 then it is easily seen that (4) is true if and only if Yy

is square-free. However if h(d) > 1 holds then (4) is not necessarily
true for Y1 square-free. The following theorem gives a precise
description of those Yl for which (4) is true.

THEOREM 3.3

Let Yl € Z(8). Then the following statements are equivalent.

(@) v BE€Z(®), v,|8° implies Y8

®) <Y, >=P

a
© INODI =By

Pyoe Py Pj distinct prime ideals of Z(§)

1 <2

a dn - . .
P,"... Py s pj distinct rational primes,
aj € {1,2} with a =2 if and only if ijYl and pjTA

PROOF

IR Yl is a unit then (a),(b), (c) are trivially true. Therefore

assume Yl is not a unit.

To prove (a) and (b) are equivalent it clearly suffices to prove

that

(al) V principal ideals I € Z(6),< Yl > |IZ implies < Yl >|1
is equivalent to (b). Now the ideals of Z(§) factor uniquely and so it
is trivial to prove (b) implies (al). We prove (al) implies (b) by
showing that whenever (b) is false we can construct an ideal I such that

2
#¥ B bubk Y1>$I.

b1 b2 b
If (b) is false then we can write <Y,>=P - P % ... p™M p
il il =2 m J
distinct prime ideals, bj € g, by 22. Let
b b
H=(.2...pyhd
2 m

b

Note that H is principal, PI}H, <Yd_>|P11H. Now the ideal P1 is
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either principal, or not self-conjugate, or self-conjugate and not

principal. (See theorem 1.3).

a1l
If P1 is principal then take I = Pll H. Clearly I is principal
and 8, >}M. However since b1 2 2 we have = >|IZ.
il b, -1

1

1 . .
(Pl) H. (P

If P1 is not self-conjugate then take I =P1

is the conjugate ideal of Pl)' Now PlPi is principal and so I is also

principal. Furthermore P1 fPi implies < Yl > { 1. However we clearly

have <Y, >|IZ.

If P1 is self conjugate but not principal then the choice of I is
more involved. From theorem 1.3 we can deduce that Pi = <p>, p a

rational prime, p|A, and

J'<z,1+<s> if p=2,d=3 (mod 4)

[ <p,8> otherwise
Now let

< (d-1)/2,1+6> if p=2, d= 3 (mod 4)
<d/p,§> otherwise
Note that in the otherwise case p does indeed divide d since p|a, ptd

can only occur when p=2 and d=3 (mod 4). A simple calculation now

shows that

<1+6> if p=2, d=3 (mod 4)

P.P
<§> otherwise

Thus PP1 is principal. Furthermore (2,(d-1)/2) =1 when d =3 (mod 4),

and in the otherwise case (d/p,p) = 1 since d is square-free. Thus

by-1 b

=]l
P1 33 P, or equivalently Pl}P. Now let I =P1 Pl y, Then as
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before we have I principal, <Y1 >|I2 but <Yy >}I. This completes the

proof of the equivalence of (a) and (b).

We begin the proof of the equivalence of (b) and (c) by showing
that (b) implies (c). From the description of the prime ideals of

Z(8) given in theorem 1.3 it is easily deduced that if <Y, > is the

1
product of distinct prime ideals then we can rewrite the product in (b)

as

= ' ' '
FARTU O R B3
where (N(PJ.), N(Pg)) =1 for j#%. (Pk+1’pk+2""’Pn are clearly

type (ii) ideals.  (See theorem 1.3 for type (i), (ii), and (iii)

ideals)).  Now N(P,) = p? if P; is a type (i) ideal and N(P;) = p,

otherwise. (pj is some rational prime). Therefore
|N(Y1) | = N(<Y; >)
= N(P,)...N(P) NP, . )% ... N(P.)?
)N ke1) - NP
_ al ak 2 2
= By e Pr” Pray Py
where the p; are distinct rational primes and a € {1,2}. Now if

j 2 k+1 then P.P! = <p.>|<Y,> and (A/p.) =1, that is p.|Y,, p.TA.
] n P.Ps = <py>|<y (8/p;) p;[Yy» Pyt

1f aj =2 then Pj must be a type (i) ideal and so we have

P.=<p.>|<Y, >, (4/p.) =-1, that is p.|Y,,p.tA. Finally if a.=1 it
5 T<P;>l<Yy > (8/py) = -1, p;lvysp;t y if a,

is easily checked that pJ.TYl. Thus |N(Y1)| satisfies the conditions

in (c).

To complete the proof of the theorem we show that (b) false

implies (c) false. Therefore suppose P2|<Y >, P a prime ideal. If

1
P is a type (i) ideal then clearly N(Pz) =p4|N(Y1) and so (c) is false.
If P is a type (ii) ideal then N(P%) =p®|N(Y,). Now if piv, then (c)

is false. However if p]Y1 then we also have that (c) is false. This
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is because p|Y1 implies <p> = PP'|< Y, > which implies p%p: | < Y, > and
SO N(PZP') = pSIN(Yl). Finally if P is a type (iii) ideal then
P <p> [<‘Y1 > and (A/p) = 0. Thus ple(Yl), plYl, p|A and so (c)

is false. /

Thus to check if a given Y1 satisfies (4) we need only look at the
factorization of N(Yl) . Of particular interest when determining the
form of Z($) (/7) is the possibility of choosing Y1 =Y.

THEOREM 3.4

Let Y be a non-square rational square-free Z(§) integer and suppose

that N(Y) satisfies condition (c) of theorem 3.3. Then we can choose

Yl =Y, YZ = 1. Consequently

1(Y;,Y,) = I(Y,1) = Z(8)
and so
Z(8) (/) = {(a+8v1)/2 : a,8 € 2(8), a® = B2 Y (mod 4)}
PROOF
The theorem follows immediately from theorems 3.2, 3.3. /

Note that if h(d) = 1 then we can always express the integers of
Q(r) is this simple form. To do this we choose Y square-free rather
than just rational square-free. (This is relatively easy to do when
h(d) =1). Then as noted prior to theorem 3.3 we have that Y=Y

satisfies (4) and so the result of theorem 3.4 applies.

More generally recall that we have Y = a,a,0. (See definition

3.1). Now theorem 3.3 shows that we cannot have a Y1 iffjaxg s Iv

2 | 2

Consequently if a, > 1 we can try the possibility Yl = Y/a2 = a,p

2

rather than Yl =Y. If both of these possibilities fail then unless

factors of p are easily determined we will normally settle for Y1 =a,.
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(Note that theorem 3.3 shows that (4) is always satisfied for this

choice of Yl).

Theorem 3.4 shows that the determination of I(Yl,YZ) is trivial

when we can take Yl = Y. In the remaining cases the next theorem

indicates a relatively simple method for calculating I(YI’YZ)'

THEOREM 3.5
Let Y = alazp = YlY2 be as in definition 3.1 and theorem 3.2.
Then
I1(1,Y) = Zth,Y,wY,a]
where
n1 n2 nr
h = Py P - P 1'1,j = [{n3+l)/2]
alaZN(DJ = pl pz ...pr
o = alp(d+6)
Furthermore
= Y
I(1,Y) = <¥;> I(Y},Y,)
and so

I(Ylsz) = Z[h/Yl,Yz, wYZ’ (I/Tl]
PROOF
We begin by showing that
S = Z[h,Y’wY,a] E I(l’Y)

Clearly Y,wY € I(1,Y). Since Yp' = alaZN(p)Ih2 it is also clear that
h € 1(1,Y). In fact since Ylkg k € Z requires alaZN(p)lkzit is not
difficult to see that h is the smallest positive rational integer in

I(1,Y). It therefore remains to show that a € I(1,Y). We have

of = Ya p(d(d+1) +2d8)/a,
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Now a, is square-free and 32|A- It therefore follows that
a2|d(d+1),2d. Thus (d(d+1) +2d6)/a2 € Z(8) and so Ylaz, that! 1s

@ '€ ) .

To show that S=1(1,Y) we must show that S contains a basis of

I(1,Y). Note that the minimal nature of h implies
I(1,Y) = Z[h,8], 6 = (e+f8)/c € Z(8)

where f is the minimal positive coefficient of & occurring in I(1,Y)
and 0 < e < hc. (See theorem 1.4). We therefore need to show that
8 €S. Let f1=al(a2,N(p)). We shall show that f1|f and then show

that S contains an integer of the form 6., = (e1+f16) /c. Since

1
S< I(1,Y) this implies fl =f and it is then not difficult to check

that 6 € S.

Since Y|€12 we have alje. (See the comments following theorem

3.4). Thus 31|f- Now a, is square-free and so

(aZ,N(p)) = PyP---Pp» pj distinct rational primes

Clearly pj |A.  This implies <pj > = PJ?, Pj a self conjugate prime
ideal.  Since pj IN(p) we also have Pj| <p>. We therefore have

P?|<Y>. Thus <Y>|<6>2

implies P§|<e>, that is pj|e and so pj|f.
Consequently (az,N(p))|f . Since (al,az) =1 we can now conclude that

£, s

We now show that S contains an integer of the form 61 = (e1+f16)/c.
From theorem 1.5 we see that <Y > = Z[Y,wY] contains an integer of the
form 6, = (a+a1a26)/c. Clearly <Y> c S and so 92 € S. The required
6, will prove to be a linear combination of 6, and a. Note that the
argument in the prcvious paragraph can also be used to prove

fl[ﬁ, Vg€ I(,y). In particular flloc and so
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a = alp(d+6) - fl(k1+k26)/c, (k1+k26)/c € Z2(8)

To prove that the required 8, is a linear combination of o and 82 it
suffices to prove that (alaZ’flkZ) =f1 or equivalently (alaz/fl,kz) =1.

(Note that 6, € I(1,Y) and so f1|E)2 which implies f1|alaz). There-

2
fore with the intention of producing a contradiction we assume

pP| (alaz/fl,kz), p a rational prime. It is easily checked that

plaz, p|a, p‘}fl, pIN(p). Furthermore p|A implies <p> = P’ where P

is a self-conjugate prime ideal. Now if p}d then we must have p = 2,
d=3 (mod 4) and so p|(d-1). Thus p|N(d+6) =d(d-1) and this implies
p|N(a). Since p‘1~fl we have p|N(o¢/f1) - (ki-kgd)/cz. Now we are
assuming p|k2 and it therefore follows that p|k1. Since c=p=2 cannot
occur (c =2 implies A is odd, and p|A) we have p| (k1+k26)/c, that is pja.
In terms of ideals we therefore have P2| <o>.  Now p1~al, pN(p) implies
P1~<alp> and so P2|<d+6>, that is p|(d+8). This is clearly a contradic-

tion and so the proof of S=1I(1,Y) is complete.

The remaining results in the theorem are trivial to prove. //

Thus I(Yl,YZ) can be determined fairly easily by first calculating
h and then reducing the module Z[h/Yl,YZ,wYZ,OL/Yl] to the standard

representation Z[g,o] using the technique illustrated in example 1.1.

We now consider the congruence az = BZYl/Y2 (mod4), a € Z(6),
B € I(Yl,Yz). As was noted earlier in this section we shall confine

our attention to determining when this congruence implies a=R8=0 (mod 2).

THEOREM 3.6

Let v,Y Y, be as in theorem 3.2 and suppose Z[g,c] is the

1’
standard representation of I(Yl,YZ). Then

Y a€Z(8), VBEI(Y,Y,), ol = BZYI/YZ(mod 4) implies a=8=0(mod 2)  (5)
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if and only if
2ol 2 o L 2 yA
a“%g Yl/Yz (mod4),a" #0 Yl/Yz (mod 4), a” # (g+0) Yl/Yz (mod 4) (6)
for a € {0,1,w,1+w}

When (5) is true we have

Z(8) (/) = {a+(B/Y, )V 10 €Z(8), B € I1(Y;,Y,)}

PROOF

Suppose (5) is true. Then given any a € Z(§), B € I(Yl,YZ)
satisfying az = BZYl/Y2 (mod 4) we have a/2, B/2 € Z(§) and az =0 (mod 4).
This implies BZYl/YZEO (mod 4) or equivalently (B/Z)zYl/Y2 € Z2(9).

It follows that B/2 € I(Yl,YZ). Therefore if any of the congruences in
(6) was solvable then one of g/2, o/2, (g+o)/2 would be in I(Yl,YZ).

This 1is clearly false and so (5) implies (6). Furthermore it is easily
seen that the form of Z(8) (v/Y) given in theorem 3.2 reduces to the form

given in this theorem when a/2 € 72(8), B/2 € I(Yl,Yz).

Now suppose (6) is true. Given any o € Z(8), B € I(Yl,YZ) such
that az = BZYl/Y2 (mod 4) we must show that a=8=0 (mod 2).

We have

2«+06, k€ Z(8), 6 € {0,1,w,l+w}

Q
]

™
1]

2h+n, A€ I(Y{,Y,), n € {0,8,0,(g+0)/2}
It is easily checked that az E 82 (mod 4). We also have
BZY /Y, = 4(;\2Y [T X)) 2y /Y
1/ "2 1 "2 i L )

2 2 . . 2 2 . . .
Now Y2|>\ Yl,Y2|n Y, implies YZI (AnY,) " which implies v,|AnY;.  Thus

2

82\(1/\(251'12Y1/Y2 (mod 4) and it now follows that 6 EnzYl/Y2 (mod 4).

Since none of the congruences in (6) is solvable we have n =0 which
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implies 62 =0 (mod 4) and so 6 = 0. This of course implies

a=B=0 (mod 2). /

The above theorem gives a relatively simple test for determining
precisely when (5) holds. However the following partial result is
also most useful.

THEOREM 3.7
(@) LetY €Z(8). Then
Va,B €Z(8), o = 82 (mod 4) implies o =8 = 0(mod 2)
if and only if
(1) d=1 (mod 16) and Y =2,3,(5+8)/2,0r (1+38)/2 (mod 4)

or (ii) d=5 (mod 16) and Y 22,3, (1+6)/2,(5+8)/2, (7+6)/2,8,1+8,
2+8,3+6, (1+38)/2, (3+38)/2, or (5+38)/2 (mod 4)

or (iii) d=9 (mod 16) and Y =2,3,(1+6)/2,or (5+368)/2 (mod 4)

or (iv) d=13 (mod 16) and Y = 2,3, (1+8)/2,(3+8)/2, (5+8)/2,68,1+6,
2+8,3+8, (1+38) /2, (5+38)/2, or (7+38)/2 (mod 4)

or (v) d=2,3(mod4) and Y =§,1+6,2+8,3+8,38,1+38,2+38, or

3+38 (mod 4)

(b) Let Y,Y Y, be as in theorem 3.2 and suppose d,Y satisfy one

1’
of the congruences in part (a). Then

Z(8) () = {a+(B/Y,)VY 1 0 € 2(8), B € I(Y;,Y,)}

PROOF

(@) The proof is straightforward but tedious. There are 96
cases to consider. (16 residues for Y modulo 4 for each of the 6
classes of d). Example 3.1 illustrates the procedure for testing

each case.
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(b) Suppose Y satisfies one of the congruences in part (a).
Let o €2(8), B € I(Y,,Y,) satisfy o =6’y /Y, (mod 4).  Then
&xYZ)ZE BZY (mod 4) and azY E(BYl)Z(mod 4). Therefore by part (a)
we have aYz =B =0 (mod 2) and o = BY, = O(mod2). Thus o =8 =0 (mod 2)

and so (5) holds. The result now follows from theorem 3.6. /

The congruences in theorem 3.7 give sufficient but not necessary
conditions for (5) to be true, that is it is possible to have (5) true
but Y not satisfying one of the congruences of theorem 3.7. (For

=2,Y.,=1). Hence the description of theorem 3.7

example d=-5, Y=Y 1

2
as a partial result.

We have now developed a number of conditions which enable us to
determine when the form of Z(8) (¥Y) given in theorem 3.2 simplifies.
The greatest simplification occurs when two of these conditions hold
simultaneously.

THEOREM 3.8

Let Y be a non-square rational square-free Z(S§) integer. Then
Z(8) (VY) = {a+p/V:a,B € Z(8)}
if and only if

Y satisfies one of the congruences in theorem 3.7

(7)

and N(Y) satisfies condition (c) of theorem 3.3

PROOF

If Y satisfies the conditions in (7) then theorem 3.4, 3.7 show

that Z(8) (/Y) is of the stated form.

Now suppose Y does not satisfy the conditions in (7). If Y does

not satisfy one of the congruences in theorem 3.7 then 3k, € Z(8) not
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both 0 (mod 2) such that B A (mod 4). Clearly (k+Av/Y)/2 € Z(8)(/Y)

is not of the form o +8vY. If N(Y) does not satisfy condition (c) in
theorem 3.3 then the proof of that theorem shows that 3 A € Z(8) such

that YIAZ,Y{}\. Thus (A/Y)VY € Z(8) () is not of the form a+8/Y. /

DEFINITION 3.2

Let Y be a non-square rational square-free Z(§) integer. Then
Z(8) (VY) can be described as being of one or more of the following

forms.
(a) If we can express Z(8) (/Y) as

Z@®) (V") = {a+B/Y:0a,B € Z2(8)}

that is Y satisfies condition (7) in theorem 3.8 then we say that

Z(8) (vVY) is of form 1.

(b) If we can express Z(6) (vY) as
Z(&) (vY) = {(a+B¥Y)/2 : a,B € Z(5), OLZ = BZY (mod 4)}

that is Yl = Y satisfies condition (c) of theorem 3.3 then we say that

Z(8) (VY) is of form 2.

(c) If we can express Z(8) (V/Y) as
Z(8) (V) = {a+(B/Y2)/\?:a €Z(8), B €I(Yy,Y,)}

1° YZ satisfy condition (5) of theorem 3.6 then we say that

Z(8) (/Y) is of form 3.

that is Y, Y

(d) If we can express Z(8) (VY) as

Z(8)(VY) = {(a+(B/Y)VV)/2: 0 € 2(8), B € 1(Yq,Y,),

2
a“ =B Yl/Y2 (mod 4)}

then we say that Z(8)(/Y) is of form 4. /
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Of course all Z(8) (YY) are of fomm 4 (see theorem 3.2) and many are
of one or more of the simpler forms. For example if Y satisfies (7)
then Z(8) (v¥Y) is of forms 1, 2, 3, 4. Note that the form(s) to which
Z(8) (vY) belongs depends on Y and it is possible to have
Z(8) (VY) = Z(8) (¥x) with Z(8) (vY), Z(8)(vk) belonging to distinct sets of
forms. Of course we will normally think of Z(8)(vY) as belonging

principally to the simplest of the forms to which it belongs.

The above results give us sufficient information about Z(8) (vY) for
our purposes. Of course these results do not give us a particularly
precise description of those cases where (5) does not hold. However if
a more precise description of such a case is required then it is not
particularly difficult to carry out a detailed investigation of congru-

ence (2).

The remainder of this section is devoted to the development of a
classification of quartic fields Q(I') of the form Q(&8) (vY) and to the
presentation of some of the basic results concerning the unit group
structure of the various resulting types of field. Note that a more
detailed study of this topic can be found in Nagell [1961]. However

the simplified version which follows is quite sufficient for our purposes.

Quartic fields which have a quadratic subfield can be divided into

two major types.

Type I - those quartic fields which have a complex quadratic subfield.

Type II - those quartic fields which have a real quadratic subfield but

no complex quadratic subfield.

(Our type I quartic fields correspond to Nagell's classes 4, 10 fields
and our type II quartic fields correspond to Nagell's classes 5,6, 7, 8,

9, 11 fields). Later in this section we shall subdivide the type II
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quartic fields into 3 subtypes. However we first look at type I

quartic fields in order to determine their unit group structure.

TYPE I QUARTIC FIELDS

These fields are of the form Q(8) (vY) where Q(8) is a complex
quadratic field and Y is a non-square rational square-free Z(§) integer.
THEOREM 3.9

The units of the type I quartic field Q(T') = Q(8) (/Y) are of the
form

gl yk

£ 1 85 AtmkE R
where Uf is a fundamental unit of Q(T'), that is a unit U for which

|#n|U|| is non-zero and minimal, and £ is a primitive uth root of unity

as described below.
(a) If QI)  Q(2), Q(V/-3) then u=2 and we have £ =-1.

(®) If Q(I) 2 Q(£), QM) P Q(V-3), QI # Q(vZ) then u=4 and we

can take & = <.

() If Q(M) 2Q(-3), Qr) $Q(2), QM #Q(/(1+/-3)/2)
then u=6 and we can take & = (1+/-3)/2.

(d) If Q(I) = Q(vZ) then u=8 and we can take £ =v<%.
(e) If Q(r) = Q(%)(v-3) then u=12 and we can take £ =/(1+/-3)/2.

PROOF

If Y € Z then from theorem 3.1 we have Q(I') = Q(+/). Now VY has
conjugates -/Y, +/Y' and each of these four numbers is non-real since
Y ¢ R. If however Y € Z then from theorem 3.1 we have Q(I') =Q(8+/Y).
The conjugates of & +vY are 8-/Y, -8 +v/Y. These four conjugates are
non-real since § is pure imaginary and & =+/Y is not allowed. Thus in
all cases Q(T') and its conjugate fields are non-real. Dirichlet's
theorem (theorem 1.1) and the notion of the regulator now give the

theorem apart from the specific form of the roots of unity. Results on
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the roots of unity of Q(T) can be found in Nagell [1961, p356]. //

In section two of this chapter we shall show how a fundamental unit

of a type I quartic field can be calculated.

TYPE II QUARTIC FIELDS

These fields are of the form Q(&8) (vY) where Q(8) is a real quadratic
field and Y is a non-square rational square-free Z(§) integer. Further-
more Q(8) (vY) does not have a complex quadratic subfield. Therefore

Y # -kaz where k € Z+, a €Q(8).

Type II quartic fields can be divided into three subtypes according

to the signs of Y and its conjugate Y'.

Type 1la Y,Y' <0
Type IIb YY* <0
Type Ilc Y,Y' >0

We now look briefly at each of these three subtypes.

THEOREM 3.10

The units of the type Ila quartic field Q(T') = Q(8) (VY) are of the

form

Eje(d)k, 1€j<u,k€Z

where €(d) is the fundamental unit of the real quadratic subfield Q(§),
and £ 1is a primitive uth root of unity as follows. If
Q(T) = Q(V~5) (Y/(-5+/5)/2) then u = 10 and we can take
£ = ((1+/5) /2 +/(-5+/5)/2)/2. In all other cases we have u=2, £=-1.
PROOF

Since Y < 0 and'Y#-kaZ(k € Z+, a € Q(8)) it follows that v € Z.

Therefore Q(I') = Q(/Y). We also have Y' < 0. Consequently vY and
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its three conjugates -/Y, #/Y' are all non-real. It therefore follows
from Dirichlet's theorem that the units of Q(I') are of the form ngk
where £ generates the roots of unity in Q(T') and U is a fundamental unit
of Q(I'). The specific details about £ and U can be found in Nagell

[1961, pp356-359]. /

Thus with one exception we see that the units of a type IIa quartic
field are precisely those of the real quadratic subfield. In all cases
a fundamental unit can be calculated using the simple continued fraction

algorithm and so no further comment is necessary.

THEOREM 3.11

The units of the type IIb quartic field Q(I) = Q(&) (VY) are of the

form

k

2) j,kez

) U
where {Ul,Uz} is a fundamental system of units of Q(T'), that is a pair of
units for which

fn|Uy | sn|o(U,) |

tn|U, | sn|o(U,) |
is non-zero and of minimal magnitude where o is a monomorphism from

Q(r) to € with o(U;) #Up, U, .

PROOF

We have YY' < 0. Thus Y,Y' are of opposite sign and so Y € Z.
We therefore have Q(T') = Q(vY). The fact that Y,Y'are of opposite sign
also implies that two of the four conjugates * /Y, */Y' are real while
the other two are pure imaginary. The theorem now follows from

Dirichlet's theorem and the notion of the regulator. //
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In section three of this chapter we shall consider the problem of
calculating a fundamental system of units for a type IIb quartic field.
Note that in practice we can restrict our attention to real type IIb
quartic fields. This is because Q(8) (¥Y), Q(8)(¥X¥') are isomorphic

fields of which one is real and the other is complex when YY' < 0.

THEOREM 3.12

The units of the type Ilc quartic field Q(r) = Q(8) (VY) are of the

form
J KL .
1 U5 U5 kst € L
where {Ul’UZ’US} is a fundamental system of units of Q(T'), that is a

triple of units for which
RnlUll znlol(Ul)l 2n|cz(U1)|

2n|U2| znlol(Uz)I znloz(Uz)I

2n|U3| 2n|01(U3)| anoZ(US)l

is non-zero and of minimal magnitude where 0,50, are any two of the
three non-identity monomorphisms fram Q(T) to C.

PROOF

Since Y,Y' > 0 we have /v, v¥' € R. Therefore Q(T) and its
conjugate fields are all real fields. The result now follows from

Dirichlet's theorem and the notion of the regulator. /

We shall not be presenting any further results concerning type Ilc
quartic fields. However further information on this type of field can
be found in the literature. For example Kuroda [1943] and Kubota [1956]
have considered type IIc quartic fields of the form Q(G)(/ai), d1 a

positive square-free integer. Nagell [1961] gives some general results
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concerning type IIc quartic fields. (Nagell's classes 8, 9, and 11
fields). More recently Levesque [1981] and Frei [1982] have given
fundamental systems of units for certain subclasses of fields of the

form Q(¢6) (/ch").

SECTION TWO

UNITS OF TYPE I QUARTIC FIELDS

In this section we consider the problem of calculating fundamental
units of type I quartic fields, that is fields which are quadratic
extensians of camplex quadratic fields. (See section one of this

chapter). We have previously indicated that the work in chapter two

was largely motivated by the desire to calculate fundamental units of

this type of field. However we shall see that algorithm 2.2 or a
slightly modified version of algorithm 2.2 are only guaranteed to find
a fundamental unit of a type I quartic field Q(8)(vY) when Z(8) (V¥) is
of form 1 or form 2. Thus the work in chapter two has only been
partially successful in achieving one of its main objectives. Of
course the problem lies in the fact that Z(8) (vY) and Z(8)[1,/Y¥] (which
is isomorphic to M(vY)) are significantly different when Z(§) (vY) is
not of form 1 or form 2. When Z(68) (¥Y) is of form 3 or form 4
algorithm 2.2 or its modified version will certainly produce a unit
UE€ Z(8)(¥Y). However U may or may not be fundamental. We will
therefore develop a procedure which will either verify that U is

1/m where £ is

fundamental or locate a fundamental unit of the form (gU)
a root of unity and m € Z+, m > 2. The ideas used are basically those
used in Jeans and Hendy [1978] and Jeans [1978]. This will give a

satisfactory method for finding fundamental units when Z(6) (vY) is of
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form 3 or form 4. However we will also briefly note an alternative
idea for dealing with these cases. Although this idea has not yet
been completely developed it appears likely that this alternative
approach will eventually result in a far more satisfactory method for
calculating fundamental units for the form 3 and form 4 cases. To
illustrate the use of the methods developed in this section we shall
calculate fundamental units for the distinct non-isomorphic type I
quartic fields Q(¥D), D € Z, -99 < D < -1. We then finish this section

by reviewing some of the relevant literature.

Throughout this section we assume that Q(T) = Q(8) (v/Y) is a type I
quartic field, that is Q(§) is a complex quadratic field and Y is a non-
square rational square-free Z(S§) integer. We shall use Uf to denote a
fundamental unit of Q(T') which satisfies |Uf| > 1. Note that if U is

a unit of Q(T) then NG(U) is a Z(8) root of unity.

There is a trivial isomorphism between
S = {(a+B/Y, a-BA) :a,B €Q(H} =CXC

and Q(8) (vY). To simplify the presentation of results in this section
we therefore drop the two dimensional notation of chapter two. Thus
A = (a+B8/Y, o-B/Y) becomes A = o +B/Y, M(¥Y) and Z(8)[1,/Y] are now
identical as are A* (A reverse) and A* (A conjugate), and NG now has

the standard meaning, that is the relative norm function from Q(§) (VY)

to Q(6).

We shall successively develop four algorithms for the calculation
of fundamental units of type I quartic fields Q(T) = Q(8) (vY).
Algorithm 3.j, j=1,2,3,4 will apply to the calculation of Uf when
Z(8) (/Y) is of form j. Since Z(8) (¥Y) can be of more than one form

there will often be several algorithms which could be used to calculate
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Uf for a given Q(T). However in practice it will obviously pay from
an efficiency point of view to use one of the simpler algorithms

(smaller j) whenever possible.

We begin by considering the case where Z(8) (vY) is of form 1. In
chapter two section four we saw that the calculation of a period of
relative minima of M(VY) produces a unit Aq € Z(8) (*Y). (Since
| /Y| > 1 we have A0 =1). When Z(8) (¥Y) is of form 1 we can guarantee
that Aq is fundamental.

THEOREM 3.13

Let Q(I) = Q(8) (¥Y) be a type I quartic field for which Z(8) (+Y)
is of form 1. Then the set of fundamental units of Q(I') having
magnitude greater than 1 is Eq where q is the unique length of a period
of relative minima of M(VY).

PROOF

If'Z(G) (/Y) is of form 1 then Z(8) (vY) and M(/Y) are identical.
Let U, |Uf| > 1 be a fundamental wnit of Q(r). Then U € M(/Y). Now
A € M(VY) implies Ns(A) € Z(8) and so if A # 0 then |N6(A)l > 1.
Since IN(S (Uf)| = 1 it is easily seen that U is a relative minimum of
M(/Y). The fact that Uf is fundamental ensures that M(vY) has a
minimal period of relative minima AO’ Al" o OT Aq = Uf. It is easily
checked that if A(gl) e Aq then Acgl) is also a fundamental unit of Q(T)

and so the theorem is clear. //

EXAMPLE 3.2

(@) Let d = -10, Y = 1+§. We have previously seen (examples 2.1,

2.3, 2.5) that M(v¥Y) has a period of length 6 with
Ag = (245-208) + (88-348)/7

It is a simple matter to check that Y satisfies condition (7) in theorem

3.8 and so Z(8) (vY) is of form 1. Theorem 3.13 therefore allows us to
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conclude that A¢ is a fundamental unit of Q(8) (V/Y).

(b) In the same manner as part (a) we reach the conclusion

A = (62-258) + ((-25-98)/2)/-3+58

is a fundamental unit of Q(§) (v-3+56), &§=v-35. (See example 2.7b). //

We now define algorithm 3.1 which is basically a simplified version

of algorithm 2.2.

ALGORITHM 3.1

Let Q(I') = Q(8) (¥Y) be a type I quartic field for which Z(8) (+Y)
is of form 1. Then a fundamental unit Uf of Q(T) can be calculated

using algorithm 2.2 modified as follows.

(@) We have h=1 and so all steps involving h can be simplified
accordingly. In particular step 2 of algorithm 2.2 can be omitted

since |W| = |/Y| = 1.

(b) Note that as a consequence of the simplified notation now

being used we have
W=w= ﬂ’ *= 'ﬁ
W =vy 1= GprgMINg (A, W = Wy 5= (8, -8 /M/Ng(A)

However the simplified notation causes one problem in that step 19 of

algorithm 2.2B no longer calculates Wi+1. We must therefore add the

calculation

* = * *
Wier = O, 3, a0/ (i 17, 2%
to this step. Step 22 of algorithm 2.2B must also be modified in a

similar manner.
(c) Step 17 of algorithm 2.2 can be reduced to
AOVR q odd
£ a0y qeven V.
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If Z(8)(vY) is not of form 1 then

M(YY) = Z(8)[1,V] § Z(8) (V1)

Consequently the unit Aq obtained from a period of M(vY) may or may not
be fundamental. We now consider how algorithm 2.2 can be modified to
overcome this problem when Z(8) (vY) is of form 2. Note that the result-
ing algorithm 3.2 plus algorithm 3.1 will effectively allow us to
calculate Uf for any type I quartic field Q(8) (¥Y) for which h(d) =1.
(See the comments following theorem 3.4).

THEOREM 3.14

Let Q(I) = Q(8) (/Y) be a type I quartic field for which Z(8) (v/Y) is
of form 2. Let Aq be a unit of M(¥Y) corresponding to a minimal period
and suppose Aq is not fundamental. Then we can find Vf € M(¥Y)

satisfying
(1) N(S(Vf) = 48, £ a Z(8) root of unity

(i1) 2 < |vg| < 2/|A ], |Vg| minimal

Any such V¢ gives Vf/Z as a fundamental unit of Q(I'). Let m € 2*u {0}

satisfy [A | < |Vf| < |A ;- Then

either Vf N}\n’ m < [q/2]

or Ve +A and ING(Am)l <4

PROOF

Since Aq is not fundamental we have Aq = élUIfl, El a Z(8) (VY) root
of unity, Ug a fundamental unit with |Uf| >1, and n 2 2. Clearly

V.=2U, satisfies (i), (ii).

£ s

Given any Vf = a +B/Y € M(/Y) satisfying (i), (ii) we have
NG(Vf/Z) = &, (Vf/2)+(V%/2) = o and so Vf/Z is a unit of Z(8) (vY) which

in view of the minimality of |Vf| is clearly fundamental.
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1 . 1
Suppose Vf~ Am. Then Vf = AH(1 ) with N(S (Arf1 )) = 4¢ and clearly

- (D)« T =
m< q. Now Aq-m Aq(Am )* satisfies NG(Aq-m) 452, 52 a Z2(8) root
of unity, |Aq_m| > ING(Aq-m)| > 2. The minimality of |Vf| now implies

|Arﬁ1)| < IAq-mI , that is m < [q/2].

Finally suppose Vf+ Am. Since Am’ Arn 4 are consecutive magnitude
minima we have |Vi| =2 |Ar"r*1| . Thus
e * * = =
INg(AD | = [A A < [VVE] = [N (V)| = 4

The inequality is strict since Vf'+' A . /

To find Uf when Z(8) (/Y) is of form 2 we basically have to determine

whether or not Vf as described in theorem 3.14 exists. (If it does then

i
fundamental) then we generally have Vf ~ Am, m < [q/2] and so Vf is

take U, = Vf/2 otherwise take Uf=Aq). If Vf exists (that is Aq is not

effectively located by algorithm 2.2. However Vf can be masked from
the view of algorithm 2.2 by the presence of a relative minimum of small
norm, that is Am when ING(Am)I < 4. Consequently calculation of Uf is
not quite as simple as we might hope for.
EXAMPLE 3.3

(@) Let d=-2, y=5+68. We have N(Y) =97, Y=1+28 (mod 4) and it
is easily checked that Z(8)(vY) is of form 2 but not of form 1.
Algorithm 2.2 produces the following period of length 4.
TABLE 3.1 Period for M(v/5+63)

k 0 1 2 3 4

o il 24§ -3-6 -3-568 6+68
B 0 1 -1 -2-§ 348
k

NG(Ak) 1 -3-268 2 | -3-2§ 1

We have A4 = -Ui where Uf = ((-2+38) +8/Y)/2 and Vf = 2Uf satisfies

|A, | < vg| < |A3| , that is V¢ is not a relative minimm. In fact
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Ve = -6A,. Note that lNd(AZ)I =2<4,

(b) Let d=-11, Y=(3+8)/2. It is easily checked that Z(8) (+Y)
is of form 2 but not of form 1. Algorithm 2.2 produces the following

period of length 3.
TABLE 3.2 Period for M(v(3+3)/2)

k 0 1 2 3

o il il (-3+8)/2 146

By 0 1 (-1+8)/2 (3+8)/2

Nd(Ak) i (-1-8)/2 (1+8)/2 o |

5

We have A, =-Ug where Ug = ((1+6)/2 +vY)/2 and |A1| < |Vf| < |A2| :
Thus Vf is not a relative minimum and it is easily checked that Vf#n(A1
for any « € Q(§). /

Recall the standard quadratic case d, =1 (mod 4). There we find that

1
if e(dl) ¢ Z[l,/ch] then s(dl) is still guaranteed to correspond to a

simple continued fraction convergent of /31 provided d S. (See

7 >
theorem 1.9). We can prove a similar result for Vf (that is guarantee
Vf e Arn when Aq is not fundamental) provided |/Y| is sufficiently large
and d #-1, -2, -7.

THEOREM 3.15

Let Q(I‘),Aq,V Am’ £ be the same as in theorem 3.14.

f’

(a) Suppose Vet AL Let T = Vf/Am € Mm(/?) . Then

|

Te = (uptu W ) /g, (uy,1)) W allowable

IA

lu,| s (4+INgAD[)/2]/F] = b(uy)

= (x+s/(x*-4y))/2 (8)

- i 2 =
where s € {-1,1}, x=1, (Wm+WI‘I*1), Y-U%mel‘; 4€gm/N6 (A). If u,=0 then

Tf =¥ (that is E A 1) and
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. j Ty =
either d = -1, Ny(A) = 287, w = (1+8)8", j,n€ z, m=q/2 )
ord = -2, NJ(A) = %2, u =%5, m= q/2
b (9)
ord = -7, NJ(A) = +(328)/2, u, = x(1%8)/2
SVm 1
g '
ul i tNG(Am) » M < [q/z] /

(b) If |[V¥| 24 and d # -1, -2, -7 then Ve~ AL

PROOF

(a) T, is clearly of the stated Mm(ﬂ) form. To prove the bound

f
for |u,| we begin by noting that
2

Te-T = w, (W W*)/g

From theorem 2.26 we have Wrn -Wr’:l = ngﬂ_ /N s (Am) and so

My = Ny (A ) (T-TE)/2/¥
Since |Am| < |V |A b g |V |, N (Tf)N (A) =N (Vf) 4t (see theorem
3.14 and proof) it is easily checked that

D& |T |,ITE| < 4/INg (A, )|

ITel T2l = 4/INg(A )|
and it is then easily deduced that

712 < [T ITE| < 4/IN,(A)] + 1

gl *

This gives the bound for |u2| - The expression for u; is obtained from

the quadratic in ) which can be obtained from the relationship

Ng(Tg) = Ng(Ve/A ).

Now suppose My = 0. Then V = (ul/gm)A and so taking norms we

have 4¢ = (ul/gm)ZNd(Am)' This implies
- Aiga)e T = 228 /u € Q(®)

. - i : =
Since NG(Am)g € Z(8) it follows that o € Z(8). Now if ING(Am)' =1
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then |Aq| < |A | luy/g,| = 2, and so Vel = 2|Aq| which contradicts
(ii) of theorem 3.14. We therefore have 1 < ING (Am)l & 4n. This
implies 1 < |a| < 2. It is easily checked that such an a can only
exist if d=-1, -2,-3, -7,0r -11. Since h(d) =1 in each of these cases
it follows that gm=1. We now have the conditions d=-1, -2, -3, -7, or

-11 and
a,uy € 2(8), 1 < al,luy| < 2, aup =22, ulN,(A) = 4¢
Apart from the restrictions on m the results in (9) now follow easily.
Clearly m < q. If m > [q/2] then
q-m

= y* = A = * =
V = Vqu = (ull\n) Aq = ulAmAq = ulA

is easily seen to satisfy NG W) = 451, £, a Z(8) root of unity, and
2 < |V| < |vg| which contradicts the minimality of |Vfl . Finally if

d=-1, -2 then

Am/% - Arznmé (Am)I (arzn+ Br2r1Y+2amBmﬁ) ma(%)

(N (A) +2 sﬁlv +2a 8 A7) /N (A )

is an element of M(¥Y) since NG(Am) |2. It now follows easily that

Am/A:niS a unit of M(/Y) and so m=q/2.

(b)  Suppose V. + A .  Then part (a) gives luy| <1 since |/7] =4
and |N<S(Am)| < 4. Thus My =0. However part (a) now implies d=-1, -2,

or -7 which is a contradiction. /

We now describe how to modify algorithm 2.2 (giving algorithm 3.2)
so that Uf can be calculated whenever Z(8)(¥Y) is of form 2. We will
of course need appropriately modified versions of algorithms 2.2A, 2.2B.

ALGORITHMS 3.2A, 3.2B

These algorithms are obtained from algorithms 2.2A, 2.2B by making

the modifications noted in (a),(b) of algorithm 3.1. » /
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The major modification required in algorithm 2.2 is the addition of
appropriate procedures which are guaranteed to locate Vf whenever Aq is
not fundamental. As algorithm 3.2 (that is the modified version of
algorithm 2.2) calculates a period of relative minima of M(VY) it will

need to test for three possibilities

(1) Vf ~Am

(ii) Vf + Am, Vf = ulAm (see (9))

(iii) Ve + A, Ve = TA , T = (uruW)/g € M (/V)

Note that possibilities (i), (ii) cannot occur with m=0. In the
interests of efficiency we should carry out the appropriate testing at
the earliest practical point in the algorithm. We therefore test for
possibility (iii) (with m=k) prior to the calculgtion of the

R]Ej) € Mk(/?), and we test for possibility (i) and then possibility (ii)
if d=-7 (both with m=k +1) immediately following the calculation of the
R}Ej) € Mk(ﬁ) (testing each A}Eﬁ = ngj )Ak) . Finally if we reach the
midpoint of an even length period when d =-1, -2 then we test for

possibility (ii) with m=q/2.

To test for possibility (i) we first check to see if |N<S (A]EHH = 4.
In general this simple test is sufficient to reject possibility (i).
However if the possibility is not rejected then we test to see if any
Ag% has norm 4¢&. (Note that we can have o € Z(8), |a| =4, a¥4E).
If we find NG (A]gi) = 4¢ then we can take Vf = (ﬂ since the algorithm
will have already checked for |Vf| < |A]E_J._ %| . From theorem 3.14 we see

that testing for possibility (i) can stop once the midpoint of a period

is recognised since at that point we have k+1 2> q/2.

To test for possibility (ii) when d =-7 we check for the occurence
j . a 1
of NG(AIE_J&) = #(3#68)/2. (Note that this requires |N5(A1£+%)| =2). If

=y A0) = 2 3y
such a norm occurs then V = p Ay where ;= (128)/2, ) = Ng (A 9)" is
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easily seen to satisfy NG (V) =4g, |V| >2. Now the algorithm will have

already tested for |Vf| < |A1E-B| and so if |Vf| < |V| we must have

AG)| < [Vl < (Ul Vel < V] = fuy|1a0)]

Since |u1| = /2 it follows that |Uf| < v2. However in such a case we
have 2Uf=a+8/7, |8],]vY|] < 4 and it is easily checked that 20, would
have been previously located by the testing for possibility (iii) when
k=0. (See below). Thus if such a V is found then we can take Vf =V.

From theorem 3.15 we see that testing for this possibility can stop once

the midpoint of a period is recognised.

To test for possibility (ii) at the midpoint of an even length
period when d =-1, -2 we simply check to see if |N<S (Acg}%ﬂ =2 [If

this is the case then in a similar manner to the previous case we see
1)

S ifd=-1, and Vv rsAl L) EIE 1

. (
that we can take Vf (1+<S)Aq £ a/2

Testing for possibility (iii) is required when lN(S (Ak)l < 4 and
b(u,) = (4+|Ng(A))/2|/Y] 2 1

When this is the case we must test each B8 € Z(8)*n I» |B| < b(pz) to
see if a given by (8) (uz =B,£ any Z(8) root of unity, s=1%1) is a Z(9§)
integer for which T = (a+BW,)/g, € Mk(/?),|TAk| >2, 1 < |T| < 4/|Ng(A) |
(See theorems 3.14, 3.15). Note that there are 12, 8, or 4 tests
required for each B depending on whether or not d=-3, -1, or d#-3, -1.
While this may appear rather time consuming note that b(uz) 2 1 can only
occur when |N6(Ak) |,|/Y] < 4 and that b(u,) < 4/|/Y|. Consequently this
testing is generally not required and when it is required the number of
B which must be considered is small. In particular the 12 and 8 test
cases can only occur for a handful of values of Y. (That is |/Y| < 4
and d=-3,-1). We can also show that it suffices to test for

possibility (iii) for k < [a/2]. To see this suppose V. = TEA,m > [a/2].
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If m 2 q then it is easily checked that |Uf| 2 2 and -Chat 2U will

be located when testing for possibility (iii) with k=0. Therefore
assume m < q. Given any Aq—m we have Vf==TAq_m, T € bhfm(/?) and

N (A, )| = INgA D], Now

- = T*(A*
V= VEA, = THARAD)

is easily seen to satisfy NG(V) = 4&1, €1 a Z(8) root of unity, |V| > 2

. i . i = R
and so the minimality of |Vf| requires |Vf| < |V|. Since Aq-m AﬁnAq
it i1s now easily deduced that

1< [T],|T*] < 4/INg (A ) |

If we now check with the proof of theorem 3.15a it is clear that such a

T will be located in the testing for possibility (iii) when k =q-m< [q/2].

Now suppose the above testing for possibility (iii) produces T
satisfying the required conditions. Unfortunately we cannot conclude
that the unit U = TA /2 is fundamental. If |Uf| is small then it is
possible that we may have found a unit for which |U| 2 |Uf|2. Since
the algorithm will have previously tested for |Vf| < |Ak| (if k> 0) this

can only occur if
2
A ] < IVl < [Ugl IVl = 21U l? < |Tay

that is |Uf| < |T|, IAkl < |vf| = 2|Uf| < 2|T|. Thus if |T| < |Ak|/2
then U is indeed fundamental. However if |T| 2 |Ak|/2 (for example when
k=0) then we must continue the possibility (iii) testing to see if a
smaller magnitude T can be found. Of course if such a T is found then
it is retained in place of the original T value and at the completion of
this testing we will indeed have U = TAk/Z is fundamental. (If k>0
then the algorithm will have previously tested for the possibilities

Vf n-Ak, Vf = ulAk). (Note that although U is fundamental we do not

necessarily have T = Tf. Instead we may have
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2R
k,q

either T , k<q/2, U= Uf = Aq (Tf,Vf not defined)

or T Rk,m’ Vf = Rk,mAk = Am’ k <m (Tf not defined)

or T =TeRy 1» Ve = TeRy nfy

The first case can only occur when |Uf|

TfAm’ k<m

lAq] is small, generally k=0,

q =1. In the second and third cases Vf is simply found earlier than we

might expect, that is in Mk(ﬁ) with k < m).

The required testing for possibility (iii) is now stated more

precisely in the form of an algorithm.

ALGORITHM 3.2C

Given a standard representation of Mk(/V) with ING (Ak)l < 4 and

b(u,) 2 1 (plus the fact that if V. exists then IVfl > |Ak|, Vet A,

Vf # ulAk) then we
either locate T € Mk(/?) for which U = TAk/ 2 is fundamental
or verify that if Vf exists then
Vel > max{|A, |, (4/INgA) DA}

as follows.

1 Set mT

4/ IN;AD ], B = g, mg =1, my =0

2 If d = E8.50 8y (1+/-3)/2 and go to §

3 If d=-lset£d=7landgot05

4 Set £, = -1

\

5 If |B] b(uz) go to 16

1

6 Set £ = gd’ S
- - 2 - 2 - 2-

7 Calculate x = B(Wk*'wi), y = B W HWE 4€8k/N6 (Ak) , 2 = VX -4y

8 Calculate v = (-x+s2)/2 - my Y m, = {-cIm(v)/|8|}

m = {Re(v-myop)/ gk} , O = Mgy +M,0p + MYy
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9 If NG(Ak)NG((OHBWk)/gk) # 4E go to 14

10 Calculate t = |(a+8Wk) /gkl

11 IftlAklsZort<lort>ngotol4

12 Set W =a, u2=B, T = (u1+u2Wk)/gk, ml =t

13 If mT < IAkl/Z then stop

14 If s=1sets =-1and go to 8

15 If £ # 1 multiply & by Ed’ set s =1, and go to 7
16 Increment m, by 1

17 Set B = m:,>gk+m4cxk

18 If |8] < b(u,) goto 6

19 Ifm, >0 reset m, to -m, and go to 22

4 4 4

20 Reset m, to -m4+1

21 If m4|6|/c > b(u,) then stop

) Set mg = -[m4ak/cgk]

23 If m, <0 and m by 1

A gt 4ak/ c =0 then increment m

3

24 ol /

Algorithm 3.2 will initialize T = 0 and so will recognize the fact
that T has been found by testing for T #0. (See steps 2.5, 26 of
algorithm 3.2). gd in step 2, 3, or 4 is an appropriate primitive Z(6)
root of unity and steps 14, 15 control the looping through the required
12, 8, or 4 tests for each RB. Steps 7, 8, 9 give an effective method
for testing whether or not o = (-x+sz)/2 is a Z(8) integer for which
(a,B) 1is Wk allowable. (This method partially reflects the fact that
calculations performed by the algorithm will involve finite precision

approximations to irrational numbers).
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Of course the final point to note concerning the testing described
over the past few pages is that if all testing for possibilities (i),

(i1), (iii) fails then we can conclude that Aq is fundamental.

The ideas presented concerning the form 2 cases are now tied
together by the following algorithm.

ALGORITHM 3.2

Let Q(I) = Q(8) (¥Y) be a type I quartic field for which Z(8) (¥Y) is
of form 2. Then a fundamental unit Uf of Q(I') can be calculated as

follows.

- - =— *=- = =
1 Set Ay = 1, Ng(Aj =1, Wy = /¥, Wg = -/V, gy = 1, ¥y = 0,

0

6, =0, o

. =w, T=0,k=0

0
Zel IE |N5(Ak)|2 4 or |[/Y| 24 go to 3
2.2 Calculate b(n,) = (4+|N5(Ak)|)/2|/7|
2.3 If b(u? <1goto3d

2.4 Apply algorithm 3.2C

2.5 If T #10 set U TAk/Z and stop

f
3 Use algorithm 3.2A to calculate the RéJ) € Mk(/V)

4.1 If |N (Aﬁiiﬂ # 4 go to 5.1

4.2 IfN (A(ii) 4t set U, = Aﬁiifz and stop

£
5.1 Ifd#-7or IN;AID)| #2 go to 6

; 5 Agel g
5.2 IfN (A(ii) +(3+6)/2 set Uf = ulAéii/Z where B = (1£8)/2

is chosen so that “i = tNG(Aéii)' and stop

6-16 are the same as in algorithm 2.2 apart from changing ''2.2B" to
""3,2B" in step 9, and ''go to 5" to ''go to 2.1" in step 16

17 If q is odd set Ug Aﬁ /Ak and stop

1
18 Ifd # -1, -2 or |N6(A£+%)| # 2 go to 20
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19 If d = -1 then set U (1+6)A§11/2 and stop

f
s (1)/2 and stop

else set Uf

1)
s Pys

_ (@ i 1
21 Set A, A(% Mg V1) (}ﬁ) A = Akﬂ,B' (,,i

20 If |N 1)] 2 4 or |/Y] 24 set Ue Aﬁi%/ Aﬁl))* and stop

22 Increment k by 1
23 Calculate b(uz) = (4+|N5(Ak)|)/2|¢7f

24 R b(uz) < 1 set U. = A/B* and stop

f

25 Apply algorithm 3.2C

26 If T # 0 then set Uf = TAk/Z and stop

else set Ug A/B* and stop /

Steps 6-16 are the period midpoint testing steps of algorithm 2.2.
If we reach the midpoint of an odd length period then the current value
of k satisfies k+1 = (q+1)/2 > [q/2]. Consequently all necessary
testing for possibilities (i), (ii), (iii) has been completed without
locating Vf. We can therefore take Uf = Aq. (See step 17). How-
ever if we reach the midpoint of an even length period then we must test
for possibility (ii) if d = -1, -2.  Furthermore at the midpoint of an
even length period we have k+1 = q/2 and so we may still have to test
for possibility (iii) with k=q/2. Steps 18-26 carry out the

necessary testing for these remaining possibilities and set Uf accord-

ingly.

We now briefly illustrate the use of algorithm 3.2.
EXAMPLE 3.4

(@) Let d = -2, Y = 5+66. (See example 3.3a). The main points
of interest in the calculation of Uf for Q(8) (VY) using algorithm 3.2

are as follows.
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We have |/Y| = ¥©7 ~ 3.14 < 4. For k=0 we have |N6(A0)| £ i,
b(uz) ~ 0.8 < 1 and so algorithm 3.2C is not required. Algorithm 3.1A

gives Rél) with

N D) | = N AN RS | = 17 £4

and so Vf +'A1. Midpoint testing is negative and so we reset k = 1.
Since |NGLA1)| > 4 algorithm 3.2C is once again not required. Algorithm

3.1A gives R{l) with
N, A | = NN R | = 2 # 4

and so Vf 4 AZ‘ Midpoint testing is positive (M(l)(/—) aw(l)(¢7))*)
and so q = 4 is even. We therefore arrive at step 18 with d = -

’

|N6(A§1))| = 2 and so we can take

U = Al /2 = ((2-38) - 8/7) /2

Note that in spite of the fact that d = -2, |/Y| < 4 the amount of work

involved in testing for possibilities (i), (ii), (iii) is trivial.

(b) Letd = -11, Y = (3+68)/2 (see example 3.3b). The

calculation of Uf using algorithm 3.2 proceeds as follows.

We have |/Y| = VS~ 1.5 < 4. For k = 0 we have b(u,) =~ 1.67 > 1
and so algorithm 3.2C must be applied. We start with 8 = 1. For
£ =-1, s =1 steps 7, 8 give a = (1+§)/2 and we have

NG(AO)NG((a+BWO)/gO) = -4. Furthermore t = 2.94 and so we set

My = (146)/2, wy = 1, T = ((1+6)/2 +Wy) /gy, nT = 2.94

Since mT 2 |AO|/2 = 1/2 we must continue the testing. The next case
considered is £ = -1, s = -1 and step 8 gives o =-(1+8)/2 (that is we
have found -T*). This case is eventually rejected at step 11 since
t|A0| = tm 1.36 < 2. The remaining cases for 8 = 1 (that is

£ =1, s = t1) give a = %5 and are rejected at step 9. Since no other
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B€E Z(8)' N1, satisfies |B| < b(u,) we return to step 2.5 of algorithm

0
3.2 and set

U = TAO/Z = ((1+8)/2+V/V)/2

Note that |Vf| > |A1| (see example 3.3b) but that V. has been located
when k = 0. This illustrates the final comments proceeding algorithm

325

(c) Letd = -41, Y = 7+48. Z(8)(¥Y) is of form 2 and so we can
calculate U using algorithm 3.2.  Since d # -1, -2, -7 and | VY| = 4
algorithm 3.2 will only need to test for the possibility Vf ~Am. For

k = 17 we find N (Aél)) = 4 and so we can take

u, = Al /2 = ((31888-23056) + (3181 - 9426)/7)/2

f

(d) Letd 4+58. Z(8)(/Y) is of form 2 and we have

-47, Y
|vY| > 4. Algorithm 3.2 locates the midpoint of a period when k = 19.
We have Mgé)(/7§ ﬂw(l)(/V))* where

Az(l) (-51063 - 41138)/2 + (-4842 +1608)/Y
We can therefore take
Ug = 249

ALYalb)

(373536196 - 465080438) + (11410054 - 120800788) /Y  //

Although algorithms 3.1, 3.2 allow us to find Uf for a large
nunber of type I quartic fields there are of course many such fields
for which these algorithms cannot guarantee to find Uf, that is fields
for which Z(8) (v¥Y) can only be expressed in form 3 or form 4. There

are several ways in which we might choose to attack these more difficult

cases.
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One approach to this problem involves generalizing M(vY) and

related ideas to the module
L(VT) = {a+(B/Y2)/7: a € Z(6), B € I(Yl,YZJ}

where Y, Y,, Y, are as in theorem 3.2.  Note that L(/Y) < 2(8) (vY) with
equality whenever Z(8) (vY) is of form 3. It is not difficult to see
that in general the ideas developed for M(v/Y) in chapter two and this
section will extend to L(¥Y). In particular we will find that if

Uf € L(vY) then Uf is a relative minimmm of L(vY) while if Uf g L(VY)

then Vf = 2Uf € L(/Y). Consequently generalizations of algorithms 3.1,

3.2 will enable us to calculate Uf. This idea appears to be
potentially the most efficient approach to the problem of calculating
Uf when Z(68) (v/Y) is of form 3 or form 4. However there are a number

of practical problems which we have not yet solved. Firstly the search
required by the generalized version of algorithm 2.1A is more involved.
It appears that it will be necessary to search through the appropriate

B coefficients in strict order of increasing magnitude in order to avoid
unnecessarily large searches. Secondly the ideals I., Ik which arise
in the representation of Mk(wqj generalize to ideals Hk"Jk in the
representation of Lk(/7) and we have not as yet been able to establish
the precise relationship that exists between Hk’Jk' Consequently the
calculation of a representation of Lk(/Y) is not as simple as we might
hope for. Because of the above reasons we shall not pursue this
approach in this thesis. However this approach does appear most
promising and it is our intention to pursue it at some future point in

time. (Note that one of the main reasons for considering I(Yl,Yz) in

section one was to prepare the way for this future work).

An alternative approach to the problem of calculating Uf is to use

algorithm 3.1 (form 3) or algorithm 3.2 (form 4) to calculate a unit
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U € Z(68) (YY) and then determine Uf from U using the ideas in Jeans and

Hendy [1978] and Jeans [1978].

We shall pursue this alternative approach in the following para-
graphs. This approach does have a number of drawbacks from an
efficiency point of view which will become evident as we proceed.
However the resulting algorithms 3.3, 3.4 are quite satisfactory

provided |U| is not too large.

If /-1 € Q(I) or /-3 € Q(r) then Q(r) is of the form Q(8) (V¥) with
d=-1 or d=-3. Uf for such cases can be found using algorithms 3.1,
3.2 since h(-1) =h(-3) =1. Consequently in developing algorithms 3.3,
3.4 we shall assume v-1, V-3 ¢ Q(I). The effect of this assumption is
to ensure that the only roots of unity in Q(T') are *1 (see theorem 3.9).
This assumption simplifies the development of algorithms 3.3, 3.4.

Since these two algorithms will be virtually identical we shall develop

them both at the same time.

The first step in algorithms 3.3, 3.4 is to check to see if Uf is
"'small". By this we mean select L EIRf, L > 1 and check to see if

|Ugl < L. (If Ug = (u+(s/Y2)/?)/2, [Ug| < L then
18] = [Y, [ {USUE/IA] < [, ] (1) /] 7]
Ia-(B/Yz)/?I " ZIUEI <2

Thus there are finitely many cases to check. An appropriately modified
version of algorithm 3.2C is quite suitable for this purpose). Of
course if Ug is found in this search then we can stop. However in

general no unit is found and so we have the lower bound
[Ugl > L >1

This lower bound is important later in the algorithm but is obtained as
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as a first step in order to most simply deal with the cases where lUfI
is "small".  The choice of L depends on several factors which we shall

discuss at a later point.

The next step is to use algorithm 3.1 (form 3/algorithm 3.3) or
algorithm 3.2 (form 4/algorithm 3.4) to calculate a unit U € Z(§) (vY).

Now

u=ell, mez', g€ (-1,1}

(recall that we are assuming /-1, /-3¢ Q(r)) and so
U = () /™

Since ]Ufl > L we have
m < 2n|U|/¢n L

Therefore to determine whether or not U is fundamental we shall check to

see if any of the finitely many numbers
Vp . - =
(eu)’%, p=2,3,...(p prime), p < b(p) = 2n|U|/en L

is a unit of Z(8)(¥Y). Note that all p pth roots of &U must be
considered when p > 3. Now if none of these pth roots is a unit of
Z(8) (VY) then U is clearly fundamental. If however U1 = (EU)l/pl is a
unit of Z(8) (YY) then clearly U is not fundamental. We therefore

replace U with U,, recalculate b(p) and then apply the above testing

1’
procedure starting at Py Clearly Uf will be obtained in a finite

number of repetitions of this procedure.

This completes the outline of algorithms 3.3, 3.4. We now
consider the finer details. In particular we consider the choice of

L and the method for testing whether or not (gU)l/p is a unit of Z(s) (¥Y).
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The choice of L is influenced by two opposing factors. On the one
hand a larger value of L gives a smaller value of b(p) and this reduces
the number of roots of £U which need to be considered. On the other
hand a larger value of L involves a larger search in the initial step of
algorithms 3.3, 3.4. Note that the best balance between these two
factors really depends on the size of |U|. Since we shall not encounter
any unduly large values of |U| in this thesis we shall simplify matters

by using the somewhat arbitrary choice of L =10.

The testing of the pth roots of &EU can be simplified as follows.

Firstly if (EU)% is a unit of Z(68) (YY) then we must have
}..2 o
N0 = N((EWH)* = (2)° =1

This provides a very simple initial test for the case p=2. Secondly

for p > 3 we have
(en'/P = /P

and so it suffices to consider the case £ = 1. However for p =2 we must

1 1 1
test both U? and (-U)? = ZU? whenever Ng) = 1.

It therefore remains to show how we can test whether or not the
complex number (gU)l/p is a unit of Z(8) (*Y).

THEOREM 3.16

Let Q(I) = Q(8) (/Y) be any type I quartic field with /-1, v~-3 ¢ Q(T)
and Y, as in theorem 3.2. Let U be a unit of Z(8)(vY) and £ € {-1,1].

- Then
u, = u)l/P e, B it of Z(8) (Y
1 , P prime, is a unit of Z($) (vY)
if and only if

a = U, +sU.

1. _ il
L sUTt €2(8), 8 = Y, - UL /AT € 2(5)

(10)
where s € {-1,1} with s = N6(U) ifpBES
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LE U1

notation as
U; = (a+(8/Y,)/)/2, «,8 € Z(8)
It is easily checked that

- * - 1%
o = Up+UJ, 8= Y,(U-UD/AY

Since U,U* = NG(Ul) =s € {-1,1} we have Ui = sUil.
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we have

N,(U) = (N, (U))P = N, (U) = N (50) = N (U)

since p is odd and Nd(g) = 52 =1.

The reverse implication is trivial to check.

Thus (10) gives us a method for testing whether or not (gU)1

is a wnit of Z(8) (VY) then we can write U

1
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using form 4

Finally for p = 3

/

/p

is

a wnit of Z(8)(vY). Of course if Z(8) (¥Y) is of form 3 then (10) can

be modified to

a = [UfsUil)/Z € 2(8), B = Yz(Ul-sUil}/zﬁ € Z(s)

Note that when p =2 we do not know the value of s and so both s =1 and

s =-1 must be tried.

We now collect together the ideas and results presented in the

preceding paragraphs to give the required algorithms 3.3, 3.4.

ALGORITHM 3.3

Let Q(T) = Q(8) (YY) be a type I quartic field with v-1,v-3 €Q(T)

for which Z(8) (¥Y) is of form 3. Then a fundamental unit Uf of Q(I)

can be calculated as follows.
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1 Given L > 1 check to see if |Uf| < L, if U; is found during this

check then stop
2 Use algorithm 3.1 to calculate a unit U € Z(6) (/)
3  Set b(p) = en|U|/enL

4 If 2 2 b(p) setU

e = U and stop

5 If NG(U) = -1 go to 12

6 Calculate x = VU, y = x—l, ol 8 Slas el

7 If o = (x+sy)/2 ¢ Z(8) go to 10

8 If g = Yz(x-sy)/Zﬁ € Z(8) go to 10

9 Reset U = a+(B/Y2)/\7, divide b(p) by 2, go to 4
10 If s=1 set s = -1, and go to 7

11 If £=1 multiply x by 7, set y=x_1, £=-1, s=1, and go to 7
12 Set p=3

13 If p 2 b(p) set Uf=U and stop

14 Set x=U1/p (any pth root of U), y=N6(U)x°1

15 Set u=cos(2n/p) +< sin(27/p), j =1

16 If a=(x+y)/2 € Z(8) go to 19

i7 If B =Y2(x-y)/2ﬂ ¢ 2(¢) go to 19

18 Reset U=a+(B/Y2) vY, divide b(p) by p, go to 13

19 If j < p multiply x by u, set y = NG (U)x-l, increment j by 1, and

go to 16
20 Increment p to the next largest prime, go to 13 /
ALGORITHM 3.4

Let Q(Tr) = Q(8) (/Y) be a type I quartic field with /-1,/-3 € Q(T)

for which Z(8)(¥Y) is of form 4. Then a fundamental unit Uf of Q(T)
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can be calculated using algorithm 3.3 modified as follows.
(a) Replace algorithm 3.1 with algorithm 3.2 in step 2
(b) Delete the divisor 2 from steps 7, 8, 16, 17

(c) Replace the expression for U in steps 9, 18 with

U= (a+(B/Y2)/T)/Z /

Steps 10, 11 ensure that we check the four possibilities /U, s =*1
and v-U, s=#1 in (10). u in step 15 is of course a primitive pth root
of unity and as j varies from 1 to p the multiplication in step 19 cycles

x through the p pth roots of U.

Note that algorithms 3.3, 3.4 as stated implicitly assume that all
calculations are exact. Of course this is impossible to carry out in
practice and we therefore proceed as follows. Calculations are carried
out to sufficient accuracy so as to ensure that a,B in steps 7, 8, 16,
17 are correct to at least 3D. Initial decisions are based on whether
or not a,B € Z(§) to within rounding error. (That is cRe(a),
cIm(a)/|8|, cRe(B), cIm(B)/|8| € Z to within rounding error). This
approach may fail to reject some cases where the number being tested is
not a unit of Z(8)(vY). Therefore to ensure absolute certainty in the
results we must insert a norm test in steps 9 and 18 of algorithms 3.3,

3.4. For example step 9 of algorithm 3.3 becomes

9 If Né(oc+(B/Y2)ﬁ) € {-1,1} reset U = a+ (s/vz)/w?, divide b(p) .by

2, and go to 4

The testing of ul/p requires O(2n|U|/p) precision arithmetic. Thus
for large |U| and small p the calculations required by algorithms 3.3,
3.4 will involve multiprecision arithmetic. On the other hand when p

is large we will have a correspondingly large number of possibilities
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to consider although the precision of calculation required does decrease
as p increases. A final point to note is that algorithms 3.3, 3.4 can
"overshoot" Uf (that is calculate &U?,n1>]) and then backtrack via the
root testing procedure to Uf. These are the main drawbacks of algorithms
3.3, 3.4 although they are not particularly significant problems for the
cases which we shall encounter in this thesis. (In view of these points
it is not difficult to see that the previously mentioned generalization

of M(vY) to L(vY) (when fully developed) should be much more efficient

than algorithms 3.3, 3.4).

We now briefly illustrate the use of algorithms 3.3, 3.4 with

several examples.

EXAMPLE 3.5

(@) Letd=-10, Y =3+28. Since N(Y) =49, 7}Y it is clear
from theorem 3.3 that we must take YZ =Y, Yl =1 in theorem 3.2. Thus
Z(8) (¥Y) is of form 3 or form 4. Using theorem 3.5 we find
I(Yl,YZ) = Z2[7,5+8]. It is then easily checked using theorem 3.6 that
Z(8) (/Y) is of form 4 but not of form 3. We therefore use algorithm 3.4

to calculate Uf. The search in step 1 (L =10) produces

Ug = (1+ ((5+6)/Y,)/7)/2

f

and so we stop.

2D

(b) Letd=-29, Y =6+45. We have N(y) = 500 = 2.5 and so

we must take Yz =Y, Yl =1 in theorem 3.2. We have
I(Yl,Yz) = 7[50,39+5] and it then follows from theorem 3.6 that Z (&) (VY)

is of form 3. We apply algorithm 3.3 to find Uf.

Step 1 fails to produce Uf and so we conclude |Uf| > 10. Step 2

produces the unit

U = (-61103449 +1126323228) + (67292105 +2041932668)vY



182

which has NG(U) = -1. We set b(p) = #n|U|/2n10 =~ 8.8 and then begin
testing the pth roots of £U, p < b(p). Since NG(U) = -1 we see that

U # gui and so we go to step 12. All three cube roots of U are rejected

at step 16 since we find

1, a = 453.393 +52.44168 ¢ Z(8)

j =
j =2, a~-471.266 +46.6938 ¢ Z(8)
j =3, am 17.873+99.13468 ¢ Z(6)

(In step 14 we have taken x to be the pth root of U for which

()sarg(Ul/p)<<2n/p). We therefore set p=5 and test the fifth roots of

U. For j=1 we find

a ~31.000+ 2.0008 € Z(8)

B =~ 86.000 + 24.0005 € Z(6)

A norm calculation confirms that these are indeed the coefficients of a

Z(8) (vY) unit and so we reset
U= (31+26) + ((86+248)/Y,) /¥

We now have b(p) ~ 8.8/5 ~ 1.8. The current value of p is 5 and since

52> 1.8 (step 13) we can take Uf = U and stop. //

We now illustrate the combined use of algorithms 3.1, 3.2, 3.3, 3.4
by calculating Uf for the distinct non-isomorphic quartic fields Q(VvD)

where D is a negative integer lying in the range
-99 <D g -1 (11)

THEOREM 3.17

Any quartic field formed by adjoining the fourth root of a negative

rational number to Q is a type I quartic field of the form
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QYD) = Q(8) (*T)

D = rszts, -r,s,t € Z+, d=rt, § =vd, Y =5sté =D

with r,s,t square-free and relatively prime in pairs and D # -4. Y is

a non-square rational square-free Z(§) integer.

Let D, = (-t)szlrl3 and « = s|r|§. Then Q(8) (¥Y) and Q(8) (¥k) are
conjugate fields.
PROOF

The fact that the field will be of the form Q(¥D) with D a fourth
power free negative rational integer is trivial. We can clearly

represent such a D in the form stated and d=rt is clearly a square-free

negative rational integer. If Y =sté = az,a € Z(8) then
(N(@)? = |r|s’t>. This implies rt=-1, that is
Y = sv71 = (a+bv1)% = a? - b + 2ab/-1, a,b € Z
Thus |a| = |b|] = 1 (s is squarefree) and D = -4 = (113/71)4. Note that

Q(V-3) = Q(v/-1) is a quadratic field.  Therefore if D# -4 we have
that Y is a non-square rational squarefree Z(§) integer and so

QYD) = Q(8) (/Y) is indeed a type I quartic field.

Note that k'Y = (rst)Z and so it follows that
Q(8) (V) = Q(8) (vk™)
(See the comments following theorem 3.1). The final result of the
theorem is now clear. /
We can therefore confine our attention to the fields
u, 2,3 }
Q(¥D), D = rs“t” as in theorem 3.17, |r| 2t (12)

since theorem 3.17 shows that ény other quartic field of the form Q(Va),
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a €Q, a <0 is either equal to or conjugate to one of the fields in (12).

The next result is used to decide which algorithm should be used to

calculate Ug for a given Q(%D).

THEOREM 3.18

Let Q(YD) = Q(8) (vY) be as described in theorem 3.17.

(a) In theorem 3.2 we can take
Y, = sé/(s,4), TZ = (s,A)t
(A is the discriminant of Q(S8)). If
t =(s,0) =1 (13)

then Z(8) (vY) is of form 1 or form 2. (Note (s,d) =(s,rt) =1 and so

(s,8)12).

(b) If
either rt =1 (mod 8) and st = Z (mod 4)
or tt =5 (mod 8) and st =1,2,3 (mod 4) (14)
orrt = 2,3(mod4) and st = 1,3 (mod 4)

then Z(8) (v/Y) is of form 1 or form 3.
()  2(8) (YY) is of form 1
if and only if
Tr,s,t satisfy (13) and (14)
(d) If /-1 €Q(D) thend=rt=-1, D=-sz, Y = s/-1.
(i) If s is odd then Y is square free in Z(/-1).
(ii) If s is even then Y = (1+/71")2(s/2). We have
Q(¥-s?) = Q1) (¥572)

with s/2 square free in Z(v~1) and Z(v/-1)(vs/2) is

of form 2.
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(e) If /-3 €Q(¥D) thend =rt =-3. If |r| 2t (that is r=-3,
t=1) then Y = s/~3 is square free in Z(v/-3). (Note that the case
v-1, /-3 € Q(¥D) occurs when D =-36).

PROOF

(a) The choice of Yl’ YZ is clear in view of theorem 3.3. Since

(13) implies Yz =1 the second result is also clear.

(b) This result follows from theorem 3.7. Note that when

d=1 (mod 4) we have 26 = 2 (mod 4) and 3§ = 2+6 (mod 4).

(c) This result follows from theorem 3.8. (Y1 in (a) 1is best
possible and (14) lists all cases satisfying one of the congruences in
theorem 3.7).

(d) Suppose d#-1. Then Q(8) (*¥) = Q(8) (v¥-1) and it follows that
(-1)Y = az, a €Z2(9). (See comments following theorem 3.1). Thus
(N@)? = |r|s’t> and so |r|t=1, that is d=-1. This is a
contradiction and so the first result of the theorem does indeed hold.

Parts (i), (ii) are easily checked with the aid of theorems 3.3, 3.7.

(e) This case can be proved in a similar manner to part (d). //

This result is not best possible in that it may not recognize
the simplest form for Z(8) (v¥Y). However a better result would be both
tedious to derive and messy to present. Theorem 3.18 will suffice for
our purposes. We therefore take the form of Z(8) (v¥), & = v/7t, Y = sté

to be as follows.

form 1 r,s,t satisfy (13), (14)
form 2 r,s,t satisfy (13)
* (15)
form 3 r,s,t satisfy (14)
form 4 all remaining cases )

U, for Q(¥D), D as in (12), can therefore be calculated as follows.

f
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(1) IfD# -s2 or 2}s then use algorithm 3.j applied to M(¥¥), d =rt

where j is the form of Z(8) (/Y) determined by (15).

@i If b -sz, 2|s then use algorithm 3.2 applied to M(vs/2),d= -1.

(Recall that if v~1 € Q(T) or V-3 € Q(I) then we cannot use algorithms
3.3, 3.4. The condition |r| = t in (12) and the special case for
D= -sz, 2|s ensure that only algorithms 3.1, 3.2 are used when v-1 € Q("D)

or /-3 € Q(¥D)).

A fundamental unit for each D satisfying both (11) and (12) is given
in table 3.3. (A1l other values of D satisfying (11) have a self-
explanatory note). The entries in table--3.3 are as follows. D, d, st
are as in theorem 3.17. The entry j in the form colum indicates that
(15) determines Z(68) (/¥) as being of form j and that algorithm 3.j was
used to calculate Uf. The entry * in the form colum indicates that
D= -52, 2|s and that Uf has been calculated as in (ii) above. The

rational integers a, b,e, f are the coefficients of two Z(68) integers
a = (a+bs)/c, B = (e+fs)/c

and a,B are the coefficients of a Z(¥D) integer

a + /Y form 1
(o + BYY)/2 form 2
A= ( o+ (B/Yz)/i'_ form 3
(a + (8/Y,)/Y)/2 form 4
(a + 8Y/5/2)/2 form *
where YZ = (s,A)t. We have
A if lNG(A)l =1
Uf =

A/A* i |N6(A)| > 1
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TABLE 3.3 Ug for QD), -99 s D < -1
D d st form a b e f NG(A)

-1 =1 11 -1 -1 -1 i

2 -2 11 -1 0 1 -1

-3 -3 1 1 -1 1 1 i

-4 not a quartic field

-5 =5 1 1 2 1 2 0 -1

-6 -6 1 1 1 -4 -4 =2

-7 -7 1 2 3 -1 -1 -1 1

-8 see Dz=-2 (conjugate field)

-9 =1 B 1 1 1 1 g =
-10 =10 1 1 27 1 12 -3 -1
-11 -11 1 1 -9 5 3 3 1
-12 -3 2 1 -2 y 2 2 1
-13 =13 1 1 -86 3 -28 10 -1
-14 =14 1 1 -13 2 -2 2 1
-15 =15 1 2 14 =2 2 =2 1
-16 see D=-1
=17 =17 1 1 -16 -1 =7 1 1
-18 =2 3 1 -3 =2 -2 0 1
-19 =19 1 1 8115 -1395 689 -1103 1
=20 -5 2 4 1 1 2 0 -1
=21 =21 1 1 1 =24 -36 -8 1
=22 =22 1 1 -91167 -267972 -440140 -81146 1
=23 =23 1 2 19 il 17 1 1
=24 -6 2 4 -190 -40 -184 24 1
-25 -1 5 1 0 -3 -1 =1 1
-26 =26 1 1 -125 17 -12 s =
=27 see D=-3 (conjugate field)

-28 -7 2 1 =12 2 =2 2

=29 =29 1 1 -330206 -189709 -411912 -39122 -1
-30 -30 1 1 -7u4879 -21012 -57396 -2218 1
-31 -31 1 2 -4398 338 -754 338 1
-32 see D=-2

-33-33 1 1 67 32 T4 6 1
-34 =34 1 1 -33 8 y y oo
-35-35 1 1 527 65 265 -7 1
-36 -1 6 * 1 -1 1 -1 s
=37 =37 1 1 -571878 -71847 -289258 6356 -1
-38 -38 1 1 24667022 -2994169 1768526 -1992368 -2
-39 -39 1 2 =35 5 -1 3 1
-40 =10 2 4 =26 6 -4 8 -1
41 =41 1 1 -155 8 -29 g =i
-42 42 1 1 1 ~-2700 -4860 -750 1
-43 -43 1 1 -8082321 -1512339 -4970221 -77261 1
-4y -11 2 1 19010 -20340 -13302 -7158 1
-45 -5 3 1 6 -1 1 = -
-46 =46 1 1 =45 -14 -38 -2 1
Uiy < i B 2161346 -4153806 -7106826 -1206918 1
-48 see D=-3

2l - 7 @ -3 -2 -1 ol A
50 -2 5 1 =23 -5 -8 3 -

Cont'd...
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D d st form a b e f NG(A)
-51 -51 1 1 767 217 613 29 1
-52 -13 2 4 3 -3 -4 -2 -1
-53 =53 1 1 -114662 =319 -30658 houyy -1
-54 see D=-24 (conjugate field)

-55 -55 1 2 51 3 19 -1 1
-56 -14 2 4 2 16 32 8 1
-57 =57 1 1 -3647 2408 3740 T4y 1
-58 -58 1 1 621 23 204 -15 -1
-59 -59 1 1 -1674315 -642821 -1686939 -108393 =2
-60 =15 2 1 -8 =2 =4 0 1
-61 =61 1 1 -116682 9525 -10700 6190 -1
-62 =62 1 1 1 16 32 y 1
-63 -7 3 2 -32 -12 -16 0 1
-64 not a quartic field

-65 -65 1 1 8 1 y 0 -1
-66 -66 1 1 1 -16 -32 -4 1
-67 -67 1 1 1771721 -208521 16041 -105033 -2
-68 -17 2 4 8 2 8 0 -1
-69 =69 1 1 5343 -4790 -8451 -1333 3
-70 =70 1 1 -733471199 -111894660 -408164940 -5922834 1
-71 -7 1 2 -67 -127 =277 -29 1
=72 see D=-18 (conjugate field)

=73 =73 1 1 -127749 -28800 -90430 -3350 1
=74 =74 1 1 475 =7 100 -15 -1
=75 =3 5 1 -13 5 -1 3 1
=76 =19 2 1 -4254 1020 46 478 1
=77 =77 1 1 =342 49 21 21 1
-78 =78 1 1 -5313 -60689 -128796 -14297 3
=79 =79 1 2  -225146974 18289410 -1484442Y 10345896  +
-80 see D=-5

-81 see D=-1

-82 -82 1 1 -647 -297 -784 -53 -1
-83 -83 1 1 -172243 41567 48365 14167 =2
-84 -21 2 4 170 -10 58 =22 1
-85 -85 1 1 -8549942 -96399 -2198074 193516 -1
-86 -86 1 1 -75708867722 -10607858429 -40421693626 -567u485420 -2
-87 -87 1 2 62 -2 10 =2 1
-88 =22 2 4 -15145854 10349976 15421928 6269960 1
-89 -89 1 1 -510642 32360 =47277 19911 =2
-90 -10 3 1 =79 36 8 14 1
-91 -91 1 1 81083 33777 92331 5787 1
-92 =23 2 1 -4y -526 -586 -118 1
-93 -93 1 1 2480919 -155458 223542 -93976 -3
-94 -94 1 1 -9117 2 -2066 214 1
-95 -95 1 2 -84961916 26324512 38870144 7936624 1
-96 see D=-6

-97 -97 1 1 9172224 -1153609 -493331 -469763 1
-98 -2 7 1 -97 56 -4 28 1
-99 -11 3 1 35 15 19 1 1

t(=7+8)/2
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If lNG(A)l > 1 then A is the relative minimum at the midpoint of an even

ff
in those cases where the coefficients of Uf are too large for the table.

length period of M(/Y) and U :=Aq. We have only resorted to this format

This completes our own work on units of type I quartic fields. We
finish off this section by noting some of the existing literature which
is relevant to this area of work. We begin with several results which

are specific to certain subtypes of the type I quartic fields.

In chapter two section five we noted two such specific methods, that
is the Z(8)CF algorithm and Amara's [1981] algorithm. Amara's algorithm
applies to type I quartic fields of the form Q(é8) (¥¥) where h(d) =1.

The algorithm is guaranteed to find Uf in all such cases although some of
the more practical details are only developed for Euclidean Q(§). The
Z(8)CF algorithm (and variations) can be used to calculate units of type
I quartic fields Q(§) (¥Y) when Q(8) is Euclidean. Lakein [1971, 1974,
1975] shows that Z(8)CF algorithms are remarkably successful in
calculating Uf when d=-1, -3 but notes that there is little theoretical
work to back up these observations. (The exception being the work by
Stein [1927] on the algorithm of J. Hurwitz [1902] which applies when
d=-1 and is guaranteed to find at worst Ug). Recall that algorithms
3.1, 3.2 are guaranteed to find Uf for any type I quartic field Q(&) (V)
for which h(d) =1 and so the performance of our algorithms compares most
favourably with the Z(§)CF algorithm and Amara's algorithm. Furthermore
the application of our algorithms to the problem of finding fundamental

units extends far beyond the case h(d) =1.

We now note a result from the literature which applies to type I
quartic fields of the form Q(T) = Q(G)(/ai) where d1 is a square free
rational integer. Note that Q(T') has three quadratic subfields

Q(s), Q(VHI), and Q(/ﬁ;) where d2==ddl/(d,d1)2 is a square free integer.
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Since d < 0 we see that dl,d2 are of opposite sign. Thus Q(r) has one
real and two complex quadratic subfields. Without loss of generality
we can assume d; > 0, d, < 0, and |d| < |d2|. Results (a), (b), (c)
below are basically given in Buell et al [1977] although they credit
Kuroda [1943] and Kubota [1953] as being largely responsible for results

(a), (b). (In the following results e(dl), 8y, wy are the obvious

il
integers of Q(/&i) and Uf as usual denotes a fundamental unit of Q(T)

satisfying |Uf| > 1).

(a) If N(s(dl)) = -1 then we can take Uf = e(dl)
(b) If N(e(dl)) = 1 then we can take
. 2
/Ee(dl) if ge(dl) =a, a€ 2(61)
Uf =
e(dl) otherwise
where
i ifd=-1 2 if d=-1
E = 5 g =!
-1 otherwise -d otherwise

If o exists then we have

t(1+¢)a/2 if d=-1
Vﬁa(dl) =

*a/s otherwise

(c) The existence of a in (b) can be determined from the simple

continued fraction expansion of w1’=(a1,a2,...,ar+1). (See
chapter one section three). We have
a exists

if and only if
N(pk_l-qk_lwl) = +g, k-1=1/2

- 3 = - 1
in which case we can take o = p; _1-Qp _1¥;-
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Thus to determine Uf we expand Wy using algorithm 1.2 until the midpoint
of a period is reached. If at this midpoint we have Pk +1 =Pk (even
length period) and N(pk_l-qk_lwl) = +g, that is Qk/Ql = g, then we can

take o = pk-l_qk-lw'l and

(1+2)a/2 d=-1

t a/s otherwise

In all other cases we can take Uf = e(dl).

Although our algorithms can be used to calculate Uf for this type

of field it is clear that the above method is far more efficient.

To finish this brief look at the case Q(d)(/d_l) we note two final
points. Firstly lemma 6 of Buell et al [1977] (when corrected) gives
the result that if (d,dz) > 2 or (d,d,) =2, dl}.‘S (mod 4) then o in (b)
above does not exist, that is we can take Uf= e(dl) . (Lemma 6 wrongly
excludes the case (d,d,) =2, d1 =3 (mod 4)). Secondly Nagell [1961,
p361] notes that Ze(dl) =a2, a € 2(61) is impossible when d1 =1 (mod 4)
since <2> is not the square of a Z(dlj ideal. (See theorem 1.3).

This result clearly extends to the case 2|d, d1 =1 (mod4). That is
ge(d)) = -de(d)) =a” is impossible when 2|d, d,=1(mod4).  Thus if

d1 =1 (mod4) and either d=-1 or 2|d then we can take Uf= e(dl).

Results and methods of a more general nature have also been applied
to the problem of calculating fundamental units of certain type I
quartic fields. We note two such methods. Szekeres has indicated
(verbally) that his algorithm (Szekeres [1970]) has been applied to the
problem of calculating units of fields of the form Q(%D), -D € A
However no details are as yet available. Secondly Shanks [1977] in a
brief note concerning a table of Ljunggren [1934] indicates that he is

able to calculate fundamental units of fields of the form Q(WD), D € Z,
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(and also other unspecified fields) by making use of the fact that the
corresponding 'Dedekind zeta functions are expressible in terms of
Epstein zeta functions'.  Further details are not available. Whether
or not these methods are applicable to more general type I quartic fields

is not clear.

Finally we note that the literature contains a number of algorithms
which are designed to calculate units of arbitrary degree fields and
which could therefore be applied to the problem of calculating
fundamental units of type I quartic fields. (See also the comments in
the first few paragraphs of chapter two section five). However in spite
of their apparently general nature we often find that these methods have
had their main application in cubic fields and their value in fields of
higher degree (type I quartic fields in particular) is generally not at
all clear. Note also that such algorithms generally suffer the drawback
of not being able to take advantage of the specific properties of the

various types of fields to which they are applied.

To conclude we note that our algorithms appear to be as successful
as any in calculating fundamental units of type I quartic fields. How-
ever there is of course room for much improvement especially for the
form 3 and form 4 cases. The suggested generalization of M(YY) noted
earlier in this section would be a significant step in this direction
and would result in a far more uniform and efficient approach to the

problem of calculating fundamental units of type I quartic fields.
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SECTION THREE
UNITS OF TYPE IIb QUARTIC FIELDS

We finish this chapter by noting a connection between type IIb
quartic fields and type I quartic fields which enables us to use the
results of the previous section to calculate fundamental systems of
units for type IIb quartic fields. This connection is a generalization
of the special case noted by Parry [1980] which relates the type IIb
quartic field Q(¥D) to the type I quartic field Q(V-4D) where D is a

fourth power-free non-square positive rational integer.

We begin with some notation.

DEFINITION 3.3

Let Q(8) (vY) be any type I or type IIb quartic field. For
A = a+B/Y € Q(8) (Y) we define

A* = a-B/Y
A' =o'+ /T
A*! ___Al*___al_svﬁf //

A*, A', A'* are of course the conjugates of A with respect to the

extension Q(8) (+Y) of Q.

Throughout the rest of this section we shall assume that
Q(r) =Q(8) (VYY) is a type IIb quartic field. (We shall use Q(61)(¢@3
to denote the relevant type I quartic field). Thus Q(8) is a real
quadratic field and Y is a non-square rational square-free Z(§) integer
for which Y,Y' are of opposite sign. Note that Q(8) (vY), Q(8) (/7")
are isomorphic fields. Therefore without loss of generality we can

assume Y > 0, that is Q(8) (/Y) is a real field. Note that for

A = a+B/Y € Q(8) (YY) we therefore have
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A = o +8"T = o - B"/Y' = A* (16)
since a',8' € R and /" = |AT|Z.
In theorem 3.11 we noted the basic structure of the unit group of
Z(8) (/Y). The following theorem which is basically taken from Nagell

[1961] gives a more detailed result.

THEOREM 3.19

Let Q(T) = Q(8) (VY), Y > 0, be a type IIb quartic field. Then

Z(8) (/Y) contains units satisfying

uu* =1 ' (17)
Such units also satisfy

uutr =1, fUr] = U] =1 (18)

There is a unique unit U, € Z(8) (/YY) satisfying (17) which also satisfies

il

U1 > 1, U1 minimal. The units of Z(8) (¥Y) which satisfy (17) are

precisely those units of the form

U=1U11<,k€z

A fundamental system of units for Z(8) (VY) is given by

either {/&(d),U;} if Ve(d) € Q(r) (that is Q(I') = Q(e(d)))

'—‘

(0]

{e(d},/e(d)Ul} e /E(d)Ul € QI

0

=1

{s(d),Ul} otherwise

(e(d) is the fundamental unit of Q(¢)).

PROOF

With the exception of (18) these results are given by Nagell [1961,
section 2.12]. The results in (18) are simple consequences of (16) and

(17). /
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We now give the main result of this section which shows that the
unit U1 in theorem 3.19 can be calculated from a fundamental unit of a
certain type I quartic field. This result is the generalization of the
result in Parry [198C] which was noted at the beginning of this section.

THEOREM 3. 20

Let Q(I) = Q) (VY), Y = (a+b8)/c > 0, be a type IIb quartic field

with U1 the unit described in theorem 3.19. Let

N(Y) = mzdl’ m € Z+, d, €2, d1 square-free, 6, = /ai

Then Q(él) is a complex quadratic field. Let

2 if 4| (2a/c +2mé

K = (2a/c-+2m61)/22, L = {
1 otherwise

0

Then k is a non-square rational square-free 2(61) integer. Let
Ug, lUfI > 1, be a fundamental unit of the type I quartic field Q(Gl)(ﬂa.

Then

uur =0

. 2
QL =Ud, = |Ug|® = U, ne (1,2}

1’

PROOF

Since N(Y) < 0 we have d1 < 0 and so Q(Gl) is indeed a complex
quadratic field. Since c|2 it is clear that « is a Z(Gl) integer.

Note that vk' = /& = /K. By squaring it is easily checked that
Wk = E AT, kT =Y - AT (19)

Using (19) it is not difficult to check that « is rational square-free.
(1f p2|K then p2|Y which contradicts the fact that Y is assumed to be
rational square-free). Furthermore if vk € Q(8;) then /€ Q(87) and
so from (19) we have /Y € Q(8;).  This implies Q(8) (¥Y) = Q(8) (5,)
which contradicts the fact that a type IIb quartic field does not have

a complex quadratic subfield. Thus k is non-square and rational
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square-free and Q(Gl) (vk) is a type I quartic field. Note that

B €Q(8,) (/k) implies B' = B.

a+B/Y € Q(8) (*Y). Then B = AA' satisfies

Suppose A

(a+BVY) (o' +8'vY")

o]
]

N(a) +NB)AN) + oB'Y'+ o' BVY

N(a) +N(B)ms, + _(.E'EE'_Z_M(,E+ A

- (as'ia's) - A

N(o) +N(B)ms, + (B28) ;o (o8 -a'8) , 15

~

N(o) +N(E)ms, + ((aﬁ'*z-a'B) 3 (as'z-:'s) m)g
Now N(a) ,N(B), aB' +a'B € Q, and
aB' -a'B = e8, e € Q, NG = 2|b|6/ce?
Thus (oB' - a'8)/N(k) € Q and it is now clear that
B = 0+A/K> 68, €Q(8;)
that is B € Q((Sl) (vk). Furthermore it is not difficult to check that

B* = 0-\k = (a-8/Y) (a"-B"VY') = A*A'*

(This result is not quite as trivial as it may appear since B, A, A’

belong to distinct quartic fields).

Now suppose B = 6 + Mk € Q(Gl) (vk). Then in a similar manner to

the above we have C = BB' = BB = |B|2 satisfies

)
]

N(8) + NN (k) + ((8At+6')) - (8A -8 \)AN(Y) /Y)VY/%

n+t/Y, n,t € Q(S)



197

that is C € Q(6) (¥¥). Once again it is easily checked that

C* = n-1/Y = (6-A\/k) (8'-A'vk') = B*B'*

We now use the results of the previous two paragraphs to obtain the

main result of the theorem. We have

U= U = U, = (U] € Q) (/D)

Since Uf is a unit of Q(dl)(/E) and U% is a unit of Q(Gl)(/E7) it

follows that U is a unit of Q(8) (VY). Note that

W* = Ug U UFUE* = Ng (Up) (NgUe)' = 1

and that U = |Uf|2 > 1. Therefore by theorem 3.19 we have U:=U?, ne€z,
We also have that lJlUi is a unit of Q(Gl)(/E) and so UlUi = EUﬁ, K@z,

£ a root of unity. Therefore

' — 'n_n
wr = (U, Uy ‘gufl

Since |U'| =1 (see theorem 3.19) and U = |Uf|2 we have kn =2, that is
n € {1,2}. /

The basic procedure for finding a fundamental system of units of
Q(T) is therefore as follows.

ALGORITHM 3.5

A fundamental system of units for the type IIb quartic field
Q) = Q) (), Y = (a+b8)/c > 0 can be found as follows.

1 Calculate €(d) using the simple continued fraction algorithm

(see chapter one section three)
2 Set k = (2a/c+2m61)/22 as in theorem 3.20

3 Use the appropriate algorithm of section two to calculate Uf for

the type I quartic field Q(Gl)(/z)
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4 Calculate U1 for Q(I') (see algorithm 3.5A below)

5 If Ve(d) € Q(T) (see algorithm 3.5B below) then a fundamental
system of units for Q(T) is {vVe(d) ,Ul} and we stop

6 If Ve (H)U1 € Q(T') (see algorithm 3.5C below) then a fundamental

system of units for Q(T') is {e(d),ve (d)Ul} and we stop
7 A fundamental system of units for Q(T) is {e(d) ,Ul}

8 Stop /

It therefore remains to explain steps 4, 5, 6 in greater detail.
To simplify the presentation of the necessary results we shall normally

write integers of Q(8) (vY) in the form
(+8/Y%)/2, o € (), B € I(1,Y), a® = 8%/Y (mod 4)

That is we take Y, = 1,Y, = Y in theorem 3.2 and simplify (B/Yz)ﬁ to

i 2
B/¥Y. However in some cases where 2|a, 2|8 we shall cancel the factor
2. The fact that Z(8)(¥Y) may be of one of the simpler forms given in
definition 3.2 is irrelevant as far as the calculations required by steps

4, 5, 6 are concerned. In fact we shall not even need to know I(1,Y).

The ideas presented below are much the same as those used in
algorithms 3.3, 3.4. We begin with a result which basically corresponds

to theorem 3.16. This result is used in each of steps 4, 5, 6.

THEOREM 3.21

Let Q(I) = Q(8) (¥Y), Y > 0, be a type IIb quartic field with
A= (a+B/VY)/2 € Z(8) (*V), o = (e+f8)/c, B = (m+*nd)/c € Z(8). Then

Hh
]

C(A+A*+A'+A") /2, C(A+A* - (A'+A")) /26

(¢
]

c((A-A%)VY + (A'-A")/Y")/2, n = c((A-A*)/Y - (A'-A") A7) /26

3
]
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PROOF

The result follows easily from definition 3.3 and (16). //

The calculation of U1 required in step 4 of algorithm 3.5 is based
on theorem 3.21 plus the following result.

THEOREM 3. 22

Let Q(T) = Q(8) (vY), Y > 0, be a type IIb quartic field with
1

Uy, 8;, U as in theorem 3.20.  Then Uj = Ui and
either U, = |Uf|, U = s/[;fNGEUf)UiI. s € {-1,1}
or Uy = |ugl?, vy = UfNagUf)Ui
PROOE

The expressions for Uf, U, follow directly from theorems 3.19, 3.20.

1
To prove the result for Ui we first note that for U = Uf U% we have

U =uuL* This result is proved using the same approach as in the

ff°
proof of theorem 3.20. Now Up* = U_E, U Ut = Ndl(Uf) and so
e
- *1 =
U! Ufo UfNSJFUf)Uf

The possibilities for Ui now follow easily since (Ui)2 =U' if

2 2 : 7/
U = |Ug|” = U and U =U if U = |Uf| = U. //

Thus to find U1 we first test

A= |Ug|, A* = [U;| ™", A" =5 fnﬁl(uf)uf

with s = 1 to see if e, f, m, n in theorem 3.21 are rational integers.
If this test is successful then U; = |Ug| and e, f,m,n give the
coefficients of Ul' If the test fails then we try s = -1.  Finally
if both s =1, s = -1 fail to produce U1 then we can conclude that
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U1 = IUf|2 and the coefficients of U1 are obtained by taking
7 -2 -1
A= Ugl®, A = |U| %, A = UfN6£UfJUf

in theorem 3.21. A more precise statement of these ideas is given in
the following algorithm.

ALGORITHM 3.5A

The calculation of U, required in step 4 of algorithm 3.5 can be

1

carried out as follows.

1 Setx=|uf|,y=fﬁ:1(AJT—u;1,s=1

2 If e =c(x+x T+s(y+y))/2 ¢ Z go to 7

3 If f = c(x+x t-s(y+y))/26 € Z go to 7

4 If m= c((x-x 1)/F+s(y-y)AT)/2 & Z go to 7
5  If n=c((xx)A-sy-y)7)/26 € Z go to 7

6 We have U1 = (a+B/Y¥)/2, o = (e+f8)/c, B = (m*né)/c and we stop

a If s =1sets=-1and go to 2

- 2 =
8 Set x = |Uf| , = UfN6£Uf)Uf ) SE= 1, gotoR

The testing of whether or not ve(d) € Q(T) required in step 5 of
algorithm 3.5 is generally much simpler than the calculation of Ul'

THEOREM 3.23

Let Q(T) = Q(8) (¥Y), Y > 0, be a type IIb quartic field. If

/£ € Q(r) then N(e(d)) = -1, N(Y) = -k% with k € Z, and

Ve(d) = 8/VY, B € 7(6)
(Ve(@)* = -ve(d)

(Ve(@)' = si/Ve(d), s € {-1,1}
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PROOF

Suppose ve(d) € Q(I). Then Q(I) = Q(8)(ve(d)). Now as was noted
following theorem 3.1 this implies Ye(d) = 82, B € Z(8). Since N(Y) <0
the conditions which N(e(d)), N(Y) must satisfy are clear. Since
gl = (-B)2 we can choose B so that ve(d) = B//Y and the form of (Ye(d))*

follows trivially. Note that
@' = (VE@)H' = (E@)N*

and so (Ye(d))'" = sve(d)' with s € {-1,1}. Since N(e(d)) = -1 we have

ve(d)' = AN(e(d)/e(d) = </ve(d). /

Thus to check if ve(d) € Q(I') we first check N(e(d)), N(Y). If

these norms satisfy the required conditions then we test
A=m’ A* =_As A ="Z\—' =5‘5/>/ETED

to see if m,n in theorem 3.21 are rational integers. Note that we can
ignore e,f in theorem 3.21 since we will find e = f = 0 regardless of
whether or not ve(d) € Q(T).

ALGORITHM 3.5B

The testing of whether or not ve(d) € Q(T') required in step 5 of

algorithm 3.5 can be carried out as follows.

1 If N(e(d)) =1 or N(Y) # -kz, k € Z then ve(d) € Q(I') and we stop

2 Set x = ve(d), y =</x, s =1
3 If m=cxY+sy/Y') & 7Z goto6
4 If n=cx/YN-sy/N")/8 ¢ Z go to 6

5 We have ve(d) = 8/VY €Q(), B = ((m/2) + (n/2)8)/c and we stop
6 If s =1 then set s = -1 and go to 3

7 We have /e(d) € Q(I) and we stop /
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Note that since theorem 3.21 uses the form A = (a+8/f73/2 the
coefficients in steps 3, 4 will be those of 2B when e(d) = 8/vY € Q(T).

This is the reason for the division by 2 in step S.

The testing of whether or not /E(d)Ul € Q(I') required in step 6 of
algorithm 3.5 is similar to the previous two cases.

THEOREM 3.24

Let Q(I) = Q(8) (*Y), Y > 0, be a type IIb quartic field with U, as

|
in theorem 3.19. If /s(d)Ul € Q(T) then

(E@U)* = Ne(d))e(d /Ve@T;
(#e(d)Ul)' = sye(d)'U!, s € {-1,1}

PROOF
Suppose U = /e(HiUl € Q(r). Nagell [1961, p363] gives the first

result and the second result follows from the relationship

W’ = @) = @'y y

ALGORITHM 3.5C

The testing of whether or not /e(d)Ul € Q(I) required in step 6 of

algorithm 3.5 can be carried out as follows.

1 Set x = /m, y = N(e(d))e(d) /x, z = /m, & =ni
2 If e = c(x+y+s(z+z))/2 ¢ Z go to 7

3 If f = c(x+y-s(z+z))/26€Z go to 7

4 If m=c((x-y)/Y*s(z-2)/Y")/2 €7 go to 7

5 If n=c((x-y)-s(z-2)/Y")/26 ¢ Z go to 7

6 We have /sia)Ul = (a+B//Y)/2 € Q(I), o = (e+fd8)/c, B = (m+nd)/c

and we stop
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% If s =1 then set s = -1 and go to 2
8 We have ‘/e(d)U1 ¢ Q(I) and we stop //

This completes the testing procedures required by algorithm 3.5.
Note that in practice we must adopt the same approach as in algorithms
3.3, 3.4 as far as the calculation of e, f,m,n is concerned. That is
sufficient precision is used so as to ensure that these quantities are
correct to at least 3D and initial decisions are based on whether or
not the results are rational integers to within rounding error. As a

final check we add the following norm tests.

Algorithm 3.5A If x = |U| when step 6 is reached then check that we

have
2w
U Uy = (@-87/M/4 =1

Note that this check is not required when x = |Uf|2

since |Uf|2 is always a unit of Q(T).

Algorithm 3.5B If step 5 is reached then check that we have

g% = Ye @)

Algorithm 3.5C If step 6 is reached check that we have

Ve@U, (VE@T,)* = (2-82/1)/4 = Ne(@)e(d)

Note that the calculations required by algorithm 3.5 involve
O(ln(lUf|e(d))) precision arithmetic and so multiprecision arithmetic

is required when |Uf| or e€(d) is large.

The results of this section are now illustrated in the following
example.
EXAMPLE 3.6

(@) Let Q(I) = Q(¥82). Then Q(T) = Q(8) (¥Y) where & = vBZ,
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Y = 8. We calculate a fundamental system of umits for Q(T') using

algorithm 3.5.

The simple continued fraction algorithm gives €(82) = 9+4§. We

108" v-82.  Thus

Q(s,) (/) = Q(Y~328). Using (15) we determine 2(8y) (vk) as being of

have a=0, c¢=1, N(Y) = -82 and so k = 26

form 4. We therefore use algorithm 3.4 to calculate
Ug = ((18+261) + (1261)/‘42)/2, NnSJEUf) = -1

Algorithm 3.5A is now used to calculate U1 for Q(I'). The possibility

U, = |Uf| is rejected since
e ~13.495¢ Z fors =1
e™~12.079€¢€Z fors = -1

in step 2 of algorithm 3.5A. Consequently |U1| = |Uf|2 and steps 2, 3,

4, 5 give the coefficients of Ul' We have

U = ((326+366) + (984+10868)/v/Y) /2
Since N(Y) # —kz, k € Z algorithm 3.5B concludes ve(82) € Q(I'). We

therefore apply algorithm 3.5C. For s=1 we find e =~ 54.332 ¢ Z.

However for s=-1 we find
e ~ 54,000, f ~6.000, m ~ 164.000, n =~ 18.000

A norm check confirms that this is indeed a unit of Q(T') and so we have
/e(SZ)Ul = ((54+68) + (164+188)/VY)/2 € Q(T)

Thus {e(82), feT§2)_Ul} is a fundamental system of units of Q(T'). (This
system is equivalent to the system {Ul,nfe(SZ)_lUl} given by Ljunggren
[1934, p15]).

(b) Let Q(T) = Q(8) (V) with &
£(221) = (15+6)/2. Now N(Y) = -3500

v221, Y = -6+48. We have

-I’>5.102 and so we set
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8§, = ¥-35 (note that ¢ =2)

Kk = -3+5§ 1

1’

In example 3.2b we saw that for Q(dl)(/zj we can take
Uf = (62-2561)'F((-25-961)XZJ/E
Algorithm 3.5A shows that

U |2 = ((51438+34606) + (376100+253006)/VY) /2

= lU

1 f

Since N(e(221)) = 1 algorithm 3.5B concludes ve(221) ¢ Q(r). Finally
algorithm 3.5C shows that /5(221)U1 ¢ Q(r). Thus {6(221),U1} is a

fundamental system of units for Q(T). /

We finish this section by briefly noting several relevant results
from the literature. Ljunggren [1934] gives a table which contains
the unit Ul for many of the type IIb quartic fields Q(%D) with D € Z+,

1 <D < 100. This unit plus either e(d) or fe(d)“lul (d being the
square- free kernal of D) form a fundamental system of units of Q(YD).
However it is not clear how Ljunggren has calculated many of these
units. Shanks [1977] gives several corrections to Ljunggren's table.
(See also the comments in the final paragraphs of the previous section).
It is not clear if Shanks' method is applicable to more general type

IIb quartic fields.

The Jacobi-Perron Algorithm (see Bernstein [1971]) has limited
success in calculating units of type IIb quartic fields. Works such
as Bernstein [1977] (summarising the work of various authors) and Frei
and Levesque [1979] 1list explicit units for a number of infinite
classes of algebraic fields which include same type IIb quartic fields
of the form Q(¥D),D € 7 (In some cases these units are obtained from
the Jacobi-Perron Algorithm). However this type of result only deals

with a very small subset of the set of type IIb quartic fields.
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We also note that general algorithms such as those of Billevic
(see Steiner and Rudman [1976]) and Berwick (see Rudman and Steiner

[1978]) can be used to calculate units of type IIb quartic fields.

To conclude we note that it is quite probable that a direct
approach to calculating fundamental systems of units of type IIb quartic
fields (rather than via type I quartic fields) will be more efficient.
However we have presented the ideas in this section as an interesting
side issue (and bonus) to the main thrust of this thesis, that is the

calculation of units of type I quartic fields.



ADDENDUM

It has been pointed out by the overseas examiner that
BUCHMANN, J. [1982]
Zahlengeometrische Kettenbruchalgorithmen Zur
Einheitberechnung. Inaugural Dissertation, Zur
Erlangung den Doktorgrades der Mathematisch
Naturwissenschaflichen Fakultdt der Universitdt
zu Kéln, Koln
covers work of a similar nature to that covered in this
thesis. When this work becomes available I intend to make

a comparison of the two works.

Neville Jeans
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