Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigation of the immunostimulatory effects of some New Zealand honeys and characterization of an active component

A Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology in FOOD TECHNOLOGY at Massey University, Albany New Zealand

Swapna Gannabathula

June 2010

Abstract

Medicinal use of honey has re-emerged recently indicating that honey accelerates wound healing activity. Honey has been shown to stimulate TNF- α production from monocytes and macrophages which is apparently correlated with a high molecular weight fraction, and not lipopolysaccharide (LPS, an immunostimulatory endotoxin) levels. Cytokine production by honey has been attributed to the endotoxin content. The aim of this study was to investigate the ability of Comvita sourced honeys to elicit a TNF- α cytokine response from acute monocytic leukemia (THP-1) cells as well as identify the responsible component.

Five honey samples were used together with sugar and methylglyoxal controls. The samples were incubated with THP-1 cells, with and without LPS. After incubation, the cell culture supernatants were collected and TNF- α was measured by the enzyme-linked immune sorbent assay (ELISA). The most active honey samples were further heat-treated to remove enzyme/protein/peptide-like stimulation; the samples were treated with polymixin B (PmB) to remove LPS-like stimulation and not protein fraction. The samples were then filtered by molecular weight centrifugal filters to separate constituents according to their size and the fractions were re-analysed.

All five honey samples in the absence of LPS stimulated TNF- α release from THP-1 cells, whereas untreated, sugar- and methylglyoxal-treated cells did not. The cytokine production was partially inhibited by heating, but mostly by PmB. In the filtered honey samples, the activity was observed in the >30 kDa fraction. These results suggest that the activity may be associated with one or more components which are partially heat-labile, LPS-like stimulated with a high molecular weight.

Further, honey samples were analyzed for the concentration of LPS present. The tests revealed that the cytokine stimulation was higher than would be expected from the concentration of LPS present in the honey. The possibility that this component was a plant-derived β -glucan, which is known to have LPS-like activity and can interfere with detection of LPS in the LAL assay, was investigated. Subsequent analyses confirmed the presence of arabinogalactan, a large complex carbohydrate.

The data presented in this study suggests that arabinogalactans in honey may stimulate inflammatory responses and the release of cytokines that are crucial in regulating wound-healing. This heralds a significant advancement in the usage and understanding of medicinal honey.

Acknowledgements

I would particularly like to take this opportunity to convey my sincere gratitude and appreciation to the following people and institutions for their advice, support, help and encouragement throughout the tenure of my study.

First of all, I thank God for guarding safety, good health and showing me the right way throughout my life.

Sincere and appreciate acknowledgements to my supervisor, Dr. Doug Rosendale, for offering me this opportunity, his advice, and support throughout the course of this study. His constant inspiration, enthusiasm, strong motivation and guidance in the subject area were appreciated. Not only did he give me prompt advice and answers to my questions, but he also enabled me to be able to think about aspect of the work from different angles.

I would like to express equally important appreciative acknowledgments to my supervisors, Professor Margot Skinner and Dr. Tony Mutukumira, for their continuous support, guidance, encouragement, and kind co-operation throughout my study. I am very much thankful to Dr.Tony Mutukumira for giving me the opportunity to study at the Institute of Food, Nutrition and Human Health, Massey University. A special thanks to Professor. Margot Skinner for her kind helps as I wrote my thesis.

Thanks to Dr Ralf Schlothauer and Dr Jonathan Stephens, from Comvita New Zealand Limited, for creating and directing the programme, for providing me honey samples and their support, guidance, enthusiasm, strong motivation, and proof reading of my thesis.

I am thankful to Dr. Jeff Greenwood, Edward Walker and Judie Farr, for their kind help, assistance in learning cell culture techniques and ELISAs.

I would like to express my thanks to Dr. Paul Loong from ESR and Dr. Ian Sims from IRL for their work outlined in Chapter 5.

I would like to acknowledge Graham Fletcher, Graeme Summers and Cristina Cruz for their valuable guidance, friendly attitude, answering my silly questions, suggesting to me the right path and support not only throughout this study but also outside of it.

My personal thanks to, Jill Chantarachoti, Sravani Gupta, Jessicah Win, Sabrina Tian, Sean Chen and Andrew Boey, for their kind help, co-operation and patience and, it was great to share daily moments with them and Monday morning teas.

Words cannot describe my heartiest gratitude towards my husband Subrahmanyeswarlu Gannabathula. This thesis would not have been possible without the advice, love, companionship, support, encouragement and guidance from him. His lively, optimism, faithfulness and his passion for study, understanding and patiently kept telling me it could be done, and whose hard work can be seen on every page. Subbu you are one in a million and came into my life as light, happiness and without you I could not have been what I am and where I am now.

Comvita New Zealand Limited and the New Zealand Foundation for Research Science and Technology for providing me with a scholarship, research funding, arranging research facilities, and conference travel grant; the New Zealand Institute for Plant & Food Research Limited for providing research facilities; the Institute of Food, Nutrition and Human Health, Massey University for providing the Master candidature registration and travel grant.

Last but not least I am really indebted to my parents Jhansi Rani Maraoni (Mom) Ramdas Maraoni (Dad) and my daughters Yashaswini Gannabathula and Harika Gannabathula for their love, companionship, help, and continuous support through the whole process of this study. The words of encouragement, moral support and valuable guidance from my parents made it possible to complete my study.

To my Husband Subrahmanyeswarlu, and daughters, Yashaswini and Harika May you live a long and happy life, With all my love

List of Contents

Abstract	ii
Acknowledgements	iv
List of Contents	vii
List of Figures	xiv
List of Tables	xviii
List of Abbreviations	xix
Chapter 1 Introduction and literature review	1
1.0 Introduction	1
1.1 Honey	1
1.2 Past review on honey	2
1.2.1 Composition of honey	2
1.2.2 Production of honey	4
1.2.3 Microorganisms in honey	4
1.2.3.1 Sources of microbial contamination	5
1.2.4 Varieties of honey	6
1.2.4.1 Floral origin	6
1.2.4.2 Geographical origin	7
1.3 Properties of honey	7
1.3.1 The antibacterial activity of honey	8
1.3.1.1 Osmotic effects	8
1.3.1.2 Hydrogen peroxide	9
1.3.1.3 Methylglyoxal	

1.3.1.4 Acidity	10
1.3.1.5 Phytochemicals	11
1.3.1.6 Antimicrobial peptides	11
1.3.2 Antifungal activity of honey	12
1.3.3 Anti-oxidant activity of honey	12
1.3.4 Wound healing activity of honey	13
1.3.4.1 Historical usage of honey	14
1.3.4.2 Wound healing compounds in honey	15
1.3.4.3 Clearing infections	16
1.3.4.4 Deodorizing and debriding	16
1.3.4.5 Ant-inflammatory activity of honey	17
1.3.4.6 Wound healing with stimulation/immunomodulation	
1.3.4.7 Honey wound healing clinical trials	19
1.4 Infection and immunity	19
1.4.1Wound healing	21
1.4.2 Anti-inflammatory cytokines	21
1.4.3 Pro-inflammatory cytokines	21
1.4.4 Tissue re-growth	22
1.5 Aims of this project	23
Chapter 2 Materials and methods	24
2.1 Materials	24
2.1.1 Chemicals and reagents	24
2.1.2 Other materials	25
2.1.3 Cell line	

2.2 Solutions and media
2.3 Honey samples
2.4 General Methods
2.4.1 Preparation of honey samples
2.4.2 Preparation of artificial honey (AH)
2.4.3 Treatment of honey samples
2.4.3.1 Size fractionation of honey samples
2.4.3.2 Heat treatment of honey samples and LPS
2.4.3.3 Treatment of honey samples with PmB
2.5 <i>In vitro</i> analysis
2.5.1 Culturing of THP-1 cells
2.5.2 Preparation of cells for frozen storage
2.5.3 Thawing cells
2.5.4 Cytotoxicity of honey samples
2.6 <i>In vitro</i> assay for immunostimulation
2.6.1 THP-1 cells differentiation
2.6.2 Optimization LPS dose
2.6.3 Optimization of capture and detection antibodies for ELISA
2.7 Treatment of honey samples for <i>in vitro</i> cell-based assay
2.7.1 Effect of honey with and without LPS on TNF- α production in THP-1 cells37
2.7.2 Effect of PmB treated honey samples with and without added LPS
2.7.3 Effect of heat treated honey samples with and without added LPS
2.7.4 Effect of combined treatments (heat and PmB) of honey samples with and without LPS
2.7.5 Effect of irradiated honey samples with and without LPS

2.7.6 Effect of size fractioned honey samples alone or with added LPS	43
2.8 Analytical methods	44
2.8.1 Enzyme linked immune sorbent assay (ELISA) for the measurement of t necrosis factor (TNF- α) production	umour 44
2.8.2 Limulus Amebocyte Lysate (LAL) assay	45
2.8.3 Effect of TNF-α production from arabinogalactan (AG)	46
2.8.4 Carbohydrate analysis	47
2.8.4.1 Centrifugal concentration	47
2.8.4.2 Monosaccharide analysis	47
2.8.4.3 Constituent sugar analysis	48
2.8.4.4 Glycosyl linkage analysis	48
2.8.4.5 Proton nuclear magnetic resonance (NMR) spectroscopy	49
2.8.4.6 Size-exclusion chromatography	49
2.9 Data Analysis	49

Chapter 3 The stimulation of tumor necrosis factor alpha (TNF-a) production by active honey 50

3.0 Introduction	50
3.1 Cytotoxic activity of honey samples	50
3.1.1 Introduction	50
3.1.2 Method	51
3.1.3 Results and Discussion	51
3.2 Optimization of TNF-α ELISA	55
3.2.1 Introduction	55
3.2.2 Method	55

3.2.3 Results and Discussion	56
3.3 Optimization of TNF- α cytokine production from THP-1 cells	s57
3.3.1 Differentiation of THP-1 cells with PMA	
3.3.1.1 Introduction	
3.3.1.2 Method	59
3.3.1.3 Results and Discussion	59
3.3.2 Response of differentiated THP-1 cells to LPS	60
3.3.2.1 Introduction	60
3.3.2.2 Method	61
3.3.2.3 Results and Discussion	61
3.4 Effect of honeys on TNF- α production by THP-1 cells	62
3.4.1 Introduction	62
3.4.2 Method	63
3.4.3 Results and Discussion	63
3.5 Conclusion	65

Chapter 4 Characterization of active component(s) in honey that stimulatetumor necrosis factor (TNF)-a production66

4.0 Introduction	66
4.1 Effect of pre-treatment with PmB on activity of honey samples	67
4.1.1 Introduction	67
4.1.2 Method	68
4.1.3 Results and Discussion	68
4.2 Effect of heat treatment on activity of honey samples	70
4.2.1 Introduction	70

4.2.2 Method	70
4.2.3 Results and Discussion	71
4.3 Effect of combined treatments (heat and PmB) on activity of honey sa	mples73
4.3.1 Introduction	73
4.3.2 Method	73
4.3.3 Results and Discussion	73
4.4 Effect on TNF- α production of irradiated honey sample	75
4.4.1 Introduction	75
4.4.2 Method	75
4.4.3 Results and Discussion	76
4.5 Effect of fractioned honey samples	77
4.5.1 Introduction	77
4.5.2 Method	78
4.5.3 Results and Discussion	79
4.6 Conclusion	82
Chapter 5 Chemical characterization and identification of immunostimulatory component of honey	84
5.0 Introduction	84
5.1 Measurement of LPS in honey	85
5.1.1 Introduction	85
5.1.2 Method	85
5.1.3 Results and Discussion	85
5.3. Carbohydrate (polysaccharide) analysis	89
5.3.1 Introduction	

5.3.2 Method	89
5.3.3 Results and Discussion	90
5.3.3.1 Centrifugal concentration	90
5.3.3.2 Constituent sugar analysis	91
5.3.3.3 Glycosyl linkage analysis	92
5.3.3.4 Proton nuclear magnetic resonance (NMR) spectroscopy	94
5.3.3.5 Size-exclusion chromatography	97
5.5 Effect on TNF- α production of the arabinogalactan component of Kanu	ıka honey.98
5.5.1 Introduction	98
5.5.2 Method	99
5.5.3 Results and Discussion	99
5.6 Conclusions	101
Chapter 6 Summary	102
6.1 Summary	103
Chapter 7 Conclusions and Future study	104
7.1 Conclusions	104
7.2 Future study	104
Appendices	106
Appendix I: Publication	106
Appendix II: Data analysis	108
References	116

List of Figures

Figure 1.1	Ire 1.1Flow diagrams summarizing the activities performed in a wound when	
	honey is applied	14
Figure 2.1	Summary of honey sample treatments to determine the active	
	component	31
Figure 2.2	Summary of in vitro immunostimulation protocol	34
Figure 2.3	Summary of treatments with and without lipopolysaccharide (LF	PS) in
	in vitro based assays	37
Figure 3.1 (a)	Effect of camptothecin on cell viability	52
Figure 3.1 (b)	Effect of artificial honey on cell viability	52
Figure 3.2	Cytotoxicity effects of 16 honey samples on THP-1 cells	54
Figure 3.3	Cytotoxicity effects of 16 honey samples (0.5 % (w/v)) expresse	d
	relative to negative control (100 %) and positive control (10 μ M	
	camptothecin)	55
Figure 3.4	Optimizing the tumor necrosis factor- α ELISA by varying capture	re and
	detection antibodies using high and low concentrations of tumor	
	necrosis factor-α standard	56
Figure 3.5	The standard curve of tumor necrosis factor- α	57
Figure 3.6	Effects of differentiating THP-1 cells with phorbol 12-myristate	13-
	acetate (PMA) on magnitude of lipopolysaccharide (LPS) -stimu	lated
	TNF- α production	58
Figure 3.7	Structure of phorbol 12-myristate 13-acetate	58

Figure 3.8	3.8 THP-1 cells before and after differentiation with 10 nM phorbol 12-	
	myristate 13-acetate	59
Figure 3.9	Structure of lipopolysaccharide	60
Figure 3.10	Tumor necrosis factor- α production by THP-1 cells in response to	
	lipopolysaccharide dose after differentiation by 3 days exposure to	10
	nM (or) 50 nM phorbol 12-myristate 13-acetate	61
Figure 3.11	Tumor necrosis factor- α production by THP-1 cells in response to	
	varying concentrations of lipopolysaccharide after differentiation b	oy 3
	days exposure to 10 nM phorbol 12-myristate 13-acetate	62
Figure 3.12 (a)	Tumor necrosis factor- α production from differentiated THP-1 cell stimulated by different honey samples, lipopolysaccharide and con	ls trols
		64
Figure 3.12 (b)	Tumor necrosis factor- α production from differentiated THP-1 cell	ls
	stimulated by different honey samples in the absence and presence	of
	lipopolysaccharide	65
Figure 4.1	Tumor necrosis factor- α production from differentiated THP-1 cell	ls
	after treatment with lipopolysaccharide and honey samples with an	ıd
	without pre-treatment with polymixin B	69
Figure 4.2 (a)	Tumor necrosis factor- α production from differentiated THP-1 cell	ls
	after treatment with lipopolysaccharide and final concentration of	
	various honeys before and after heat treatment (80°C)	71
Figure 4.2 (b)	Tumor necrosis factor- α production from differentiated THP-1 cell	ls
	after heat treatment of honey samples with and without	
	lipopolysaccharide	72

Figure 4.3	e 4.3Effect of tumor necrosis factor-α production from differentiated THP-1 cells stimulated with lipopolysaccharide alone, heat treated	
	lipopolysaccharide alone and the final concentration of two	heat
	treated honey samples before and after polymixin B	74
Figure 4.4 (a)	Effect on tumor necrosis factor- α production from differenti	ated THP-
	1 cells after Kanuka blend honey sample was treated with in	creasing
	doses of gamma irradiation	76
Figure 4.4 (b)	Effect on tumor necrosis factor- α production from differenti	ated THP-
	1 cells of Kanuka blend honey sample was treated with diffe	erent doses
	of gamma irradiation in the presence and absence of	
	lipopolysaccharide	77
Figure 4.5	Structure of lipopolysaccharide and proteins	78
Figure 4.6 (a)	Effect of tumor necrosis factor- α production from the difference	entiated
	THP-1 cells after treatment with lipopolysaccharide and Kan	nuka young
	honey sample without fractionation and fractionated honey	sample 79
Figure 4.6 (b)	Effect on tumor necrosis factor- α production from the differ	entiated
	THP-1 cells after treatment with lipopolysaccharide and wit	h Kanuka
	old honey sample without fractionation and fractionated hor	ey sample
		80
Figure 4.6 (a1)	Effect on tumor necrosis- α production of fractions from Kar	uka young
	honey with and without lipopolysaccharide of different mole	ecular
	weight fractions	81
Figure 4.6 (b1)	Effect of tumor necrosis- α production of fractionated Kanuk	a old
	honey with and without lipopolysaccharide of different mole	ecular
	weight fractions	82
Figure 5.1(a)	The correlation between stimulated tumor necrosis factor- α	by original
	honey samples and lipopolysaccharide levels in honey	87

Figure 5.1 (b)	the correlation between stimulated tumor necrosis factor- α by heat	
	treated honey samples and lipopolysaccharide levels in honey	87
Figure 5.2	Summary of various treatments carried out at Industrial Research	
	Limited to identify the arabinogalactan active component in honey	90
Figure 5.3	Proton nuclear magnetic resonance spectra of five honey samples	94
Figure 5.4	The structural model of β -arabinogalactan-protein from honey	99
Figure 5.5	Effect of tumor necrosis factor- α production from differentiated TI	HP-1
	cells with purified arabinogalactan from honey	100

List of Tables

Table 2.1	New Zealand honey samples analyzed in the study	28
Table 2.2	Phenolic compounds and methylglyoxal present in New Zea Manuka, Kanuka, Rewarewa and Clover honeys	land 29
Table 2.3	Preparation of Tumor necrosis factor- α standard concentrations	36
Table 5.1	Quantification of endotoxin levels in honey samples	86
Table 5.2	Yield of high molecular weight material from honey samples through Vivaspin 15R cartridges	put 91
Table 5.3	Constituent sugars composition high molecular weight fraction honey samples analyzed using the reductive hydrolysis method	s of 91
Table 5.4	Glycosyl linkage composition high molecular weight fractions honey samples analyzed by gas chromatography-mass spectroso (GC-MS) of partially methylated alditol acetates	s of copy 93

List of Abbreviations

NH ₄ OH	Ammonium hydroxide
ATCC	American Type Culture Collection
ANOVA	Analysis of variance
AG	Arabinogalactan
AGP	Arabinogalactan-protein
AH	Artificial honey
BSA	Bovine serum albumin
(CH ₃) ₂ SO	Camptothecin
CO ₂	Carbon dioxide
°C	Degrees Celsius
DMSO	Dimethylsulfoxide
KH ₂ HPO ₄	Dipotassium hydrogen orthophosphate
Na ₂ HPO ₄	Disodium hydrogen orthophosphate anhydrous
ECM	Extra cellular matrix
ESR	Environmental Science Research
ELISA	Enzyme-linked immune sorbent assay
FBS	Fetal bovine serum
GC-MS	Gas chromatography-mass spectrometry
g	Gram or Acceleration due to gravity
>	Greater than
HPAEC	High-performance anion-exchange
	chromatography
h	Hour
THP-1	Human monocytic leukemia cells
HMF	Hydroxymethylfurfural
HRP	Horse radish peroxidase
H_2O_2	Hydrogen peroxide
IRL	Industrial Research Limited
IU	International Unit
IL-1	Interleukin-1

IL-6	Interleukin-6
Kg	Kilogram
KGy	kilo Grays
KDa	Kilo Daltons
<	Less than
L	Litre
LPS	Lipopolysaccharide
Ltd	Limited
LiNO ₃	Lithium nitrate
рН	-Log $[H^+]$
MS	Mass spectroscopy
MHz	Megahertz
MGO	Methylglyoxide
CH ₃ I	Methyl iodide
MeOH	Methanol
ML	Millilitre
μL	Microliter
mg	Milligram
μm	Micrometer
μΜ	Micromolar
mM	Millimolar
mm	Millimetre
min	Minutes
Μ	Molar
ng	Nanogram
nm	Nanomolar
N ₂	Nitrogen
NMR	Nuclear magnetic resonance
ppm	Part per million
%	Percent
% (w/v)	Percent by weight per volume
PMA	Phorbol 12-myristate 13-acetate
PBS	Phosphate Buffered Saline
PBS-T	Phosphate Buffered Saline -Tween 20

PmB	Polymixin B
rpm	Revolution per minute
RPMI	Roswell park memorial institute medium
Complete RPMI	RPMI medium supplemented with 10 % FBS,
	penicillin at 50 IU units/mL and streptomycin
	at 5 µg/mL
SEC	Size-exclusion chromatography
NaN ₃	Sodium azide
NaBD ₄	Sodium borodeuteride
NaH ₂ PO ₄	Sodium dihydrogen phosphate monohydrate
TMB	Tetra methyl benzidine
TFA	Tri fluoro acetic acid
TNF-α	Tumor necrosis factor
USP	United States Pharmacopeia
v/v	Volume per volume
WST-1 reagent	4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5- tetrazolio]-1, 3-benzenedisulfonate