Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. SEED PRODUCTION IN BIRDSFOOT TREFOIL (Lotus corniculatus L.)

A thesis presented in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Seed Technology at Massey University Palmerston North New Zealand

• . . *

QINGFENG LI

This thesis reports the results of three years' research on seed production of birdsfoot trefoil (Lotus corniculatus L.). Previous work by other researchers has suggested that a protracted flowering period is a major factor limiting seed production in this legume. The research programme was begun in 1986 with an investigation of the cause(s) of this protracted flowering period. By carefully examining the growth and flowering behaviour of tagged shoots formed at different timeS of the year, it was identified that the protracted flowering pattern in this plant is caused by the continuous production of shoots with the capacity to flower. The continuous development of new shoots replacing older flowering shoots was the main cause of the long flowering period. Results of the first year's research also showed that seed yield is primarily determined by the number of inflorescences produced. In turn, inflorescence numbers are primarily dependent on the number of shoots available at the time of flowering. It was suggested by the results that manipulation of the number and branching of shoots should be an important management strategy for improving seed production in this plant.

The second stage of the study involved a number of hand removal and cutting treatments designed to investigate the possible effects of shoot removal on plant growth and seed production. Hand removal of crown shoots affected branching behaviour in this plant. Removal of young crown shoots at different growth stages resulted in a range of plant structural forms which influenced seed production potential. Cutting treatments, the major effect of which was to remove a section of shoot from the top, showed no obvious beneficial effects on seed yield in birdsfoot trefoil.

In the third stage studies were extended to investigate a more practical situation in which plant growth regulating chemicals (paclobutrazol (PP333), ethofumesate (Nortron) and fatty alcohols (Fatol Super)) were used to manipulate shoot growth and development. Research at this stage involved both widely spaced individual plants and plants grown in a sward to simulate commercially practised situations. Results showed that PP333 is a promising pre-peak flowering shoot manipulator which acts by promoting branching. Nearly a 40% increase in seed yield was consistently obtained in two years' experiments when this chemical were applied during the time from the pre-bud stage to the early flowering stage. Nortron showed its value in sward situations when applied at early plant development stage. However, Nortron was of limited value when it was used as a post-peak flowering shoot manipulator because of its injurious effect on plant growth and flowering. Fatol Super showed some potential as a postpeak flowering shoot manipulator, particularly when applied to spaced plants, but was less effective in sward situations. This reduces its value for use in the narrow row or sward seed production systems currently practiced in New Zealand for birdsfoot trefoil.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Murr**Q**y J. Hill, my chief supervisor and Director of the Seed Technology Centre, for his wise supervision throughout the work and patience in reading and correcting this manuscript.

I am also greatly indebted to Professor R.G. Thomas and Dr. Alex. Chu, my co-supervisors, for their warm encouragement, guidance with the field work and constructive criticism and patient correction of this manuscript.

My sincere thanks are also extended to:

Dr. John G. Hampton and Dr. Peter Coolpear for their wise advice, warm encouragement and constructive criticism of this work.

Mr. M. Hare and Dr. P. Rolston for allowing me to use DSIR's Aorangi property and for their kind encouragement, wise suggestions and constructive criticism: of this work.

Ray and Karen Johnstone, Craig McGill, Mrs Dulcie Humphrey and the students in the Seed Technology Centre for their understanding and help in so many ways.

The Miss E.L. Hellaby Indigenous Grasslands Research Trust and the Helen E. Akers Scholarship for financial support.

All my friends for their help and encouragement.

Finally, my deepest gratitude to my parents and my daughter, whose love, emotional support and encouragement have been invaluable to me. My thanks are also indebted to my wife, Chunying, for her devoted support and encouragement.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF PLATES	xiii
LIST OF APPENDICES	xiv

GENERAL INTRODUCTION

CHAPTER 1: LITERATURE REVIEW

1.1	Origin	and distribution	6
1.2	Agronon	nic value	7
1.3	Descrip	otion of the plant	15
	1.3.1	Below ground parts	15
	1.3.2	Above ground parts	16
1.4	Reprodu	active structures	18
	1.4.1	Flower	18
	1.4.2	Pod	19
	1.4.3	Seed	20
1.5	Growth	and development of the plant	21
	1.5.1	Vegetative growth	21
	1.5.2	Reproductive growth	22

		1.5.3	Factors influencing growth and	
			development	23
			1.5.3.1 Environmental factors	23
			1.5.3.2 Internal factors	24
	1.6	Seed p	roduction	27
		1.6.1	Pollination	27
		1.6.2	Seed development	28
		1.6.3	Seed yield and yield components	28
		1.6.4	Main obstacles for seed production	30
		1.6.5	Management for high seed yield	31
CHAPTER 2:	CONT	RIBUTIO	N OF VEGETATIVE GROWTH TO	
	REPR	ODUCTIV	E GROWTH	
	2.1	Introd	uction	36
	2.2			
		Materi	als and Methods	37
		Materi Result		37 39
		Result		
		Result 2.3.1	S	39
		Result 2.3.1 2.3.2	s Shoot system	39 39
		Result 2.3.1 2.3.2	s Shoot system Plant general growth	39 39 43
		Result 2.3.1 2.3.2 2.3.3	s Shoot system Plant general growth Shoot dynamics and tissue turnover	39 39 43

- groups to flowering pattern 52
- 2.4 Discussion 56

CHAPTER 3: SEED DEVELOPMENT AND SEED YIELD COMPONENTS

3.1	Introduction	60
3.2	Materials and Methods	61

	3.3	Results	3	63
		3.3.1	Flower and pod development	63
		3.3.2	Changes in seed yield components	63
		3.3.3	Abortion at different stages of	
			flower development	65
		3.3.4	Seed development and the quality of	
			seeds harvested at different times	68
		3.3.5	Seed dormancy and hardseed	
			development	70
	3.4	Discus	sion	71
CHAPTER 4:	SHOO	T MANIP	ULATION TO IMPROVE SEED PRODUCTION	
	4.1	Introd	uction	80
	4.2	Materi	als and Methods	83
	4.3	Result	S	85
		4.3.1	Effect of shoot manipulation on shoot	
			growth and development	85
		4.3.2	Effect of hand removal of shoots on	
			flowering pattern	86
		4.3.3	Effect of hand removal of shoots on	
			seed yield components and seed yield	93
		4.3.4	Effect of flower removal on	
			vegetative growth	97
		4.3.5	Effect of cutting treatment on seed	
			production	99
	4.4	Discu	ssion	101

MANIPULATION ON PLANT GROWTH AND SEED PRODUCTION

	5.1	Introdu	action	105
	5.2	Materia	als and Methods	106
	5.3	Result	5	111
		5.3.1	Effect of PP333 on plant growth and	
			development	111
		5.3.2	Effect of PP333 on flowering pattern	115
		5.3.3	Effect of PP333 on seed yield, yield	
			components and seed quality	117
	5.4	Discus	sion	120
CHAPTER 6:	EFFE	CT OF P	OST-PEAK FLOWERING CHEMICAL	
	MANI	PULATIO	N ON SEED PRODUCTION	
	6.1	Introd	uction	125
	6.2	Materi	als and Methods	126
	6.3	Result	S	128
		6.3.1	Effect on plant general growth	128
		6.3.2	Effect on flowering pattern	131
		6.3.3	Effects on seed yield components	134

- 6.3.4 Effects on seed yield and seed
 - quality 136
- 6.4 Discussion 137

CHAPTER 7: GENERAL DISCUSSION AND SUMMARY 141

BIBLIGRAPHY

APPENDICES

LIST OF TABLES

TABLE		
2.1. Effect of clipping on shoot development	41	
2.2. Node development in different shoot age group	46	
2.3. Monthly increase in shoot internode length in		
different shoot age groups	46	
2.4. Shoot survival, number of shoots per plant and		
components of the shoot population at different tim	nes 48	
2.5. Numbers and percentages of different sized leaves		
on different sized shoots	48	
2.6. First flower appearance position and relative flower	er	
bearing ability of shoots from different age group	s 50	
2.7. Number of florets per inflorescence at		
different positions along a shoot	51	
2.8. Number of florets per inflorescence in different		
shoot age groups at different times	51	
2.9. Contribution of different shoot age groups to		
total inflorescence population	55	
3.1. Germination results in freshly harvested seeds		
and seeds after air drying	69	
3.2. Quality of seeds harvested at different times	70	
3.3. Hardseededness and methods of breaking hard seeds	71	

4.2.	Effect of new shoot removal on the survival	
	of old shoots	86
4.3.	Seed yields in hand removal treatments	93
4.4.	Effects of flower removal on vegetative growth	99
5.1.	Experimental details for PP333 treatments	110
5.2.	Effect of PP333 treatments on shoot length	113
5.3.	Effect of PP333 treatments on plant growth	
	and branching	113
5.4.	Effect of PP333 treatment on dry matter	
	distribution	114
5.5.	Effect of PP333 treatment on photosynthesis	
	and assimilate distribution	114
5.6.	Effect of PP333 treatments on floret and	
	pod numbers	119
5.7.	Seed yields and harvest index of PP333 treatments	
	in spaced plants and in sward plants	119
6.1.	. Experimental details for Nortron and	
	Fatol Super treatments	127
6.2.	. Seed yield components in Nortron and	
	Fatol Super treatments	136
6.3	. Seed yields in Nortron and Fatol Super	
	treatments	136

х

LIST OF FIGURES

FIGURE

PAGE

2.1.	General plant growth showing above-ground	
	growth dry matter changes with time	44
2.2.	Relationship between leaf numbers and node	
	node numbers per shoot	49
2.3.	Flowering pattern on tagged plants and	
	on plants in quadrats	53
2.4.	Flowering duration in each shoot group and total	
	flowering duration of the plants	54
3.1.	Changes in seed yield components during the	
	period of flowering	66
3.2.	Number of flower buds, open florets and pods per	
	inflorescence at different times	66
4.1.	Flowering pattern in hand removal treatments	88
	(STC site, spaced plants)	
4.2.	. Change in floret numbers in hand removal	
	treatments with time (STC site, 1987/88)	94
4.3	. Floret numbers and pod numbers in hand	
	removal treatments (STC site, 1987/88)	95
4.4	. Seed numbers per pod in hand removal	
	treatments (STC site, 1987/88)	96
4.5	. 1,000-seed weights in hand removal	
	treatments (STC site, 1987/88)	96

4.6. Seed yields in hand removal treatments	
(STC site, 1987/88)	98
4.7. Flowering pattern in Cut (H) treatments	
(STC site, 1987/88)	100
4.8. Flowering pattern in Cut (L) treatments	
(STC site, 1987/88)	100
4.9. Flowering pattern in cutting treatments	
(Aorangi site, sward plants, 1987/88)	100
5.1. Flowering patterns in PP333 treatments	
(STC site, spaced plants, 1987/88)	116
5.2. Flowering patterns in PP333 treatments	
(Aorangi site, sward plants, 1987/88)	116
5.3. Flowering patterns in PP333 treatments	116
(STC site, sward plants, 1988/89)	
5.4. Changes in floret numbers in PP333	
treatments with time (STC site, 1987/88)	118
6.1. Flowering patterns in Nortron treatments	
(STC site, spaced plants, 1987/88)	132
6.2. Flowering patterns in Nortron treatments	
(Aorangi site, sward plants, 1987/88)	132
6.3. Flowering patterns in Fatol Super treatments	
(STC site, spaced plants, 1987/88)	133
6.4. Flowering patterns in Fatol Super treatments	
(Aorangi site, sward plants, 1987/88)	133
6.5. Changes in floret numbers in Nortron	
treatments with time (STC site, 1987/88)	135
6.6. Changes in floret numbers in Fatol Super	
treatments with time (STC site, 1987/88)	135

LIST OF PLATES

PLATE	PAGE
1.1. A view of the Lotus corniculatus crop at	
peak flowering (6 January 1988)	6
2.1. Lotus corniculatus plant showing tagging	
to identify months of shoot production	40
2.2. Lotus corniculatus plant showing monthly tagging	
for assessing changes in node numbers and shoot length	40
2.3. Lotus corniculatus L. plant	42
3.1. Flower and pod development sequence	64
3.2.Reproductive abortion at different stages	67
4.1. Plant structure after new shoot removal	
(29 November 1987)	87
4.2(a-e). Plant shoot status in four hand removal	
treatments (photo taken on 6 January 1988)	89
5.1. Effects of PP333 treatment on plant growth	
and branching (29 November 1987)	112
6.1. Effects of Nortron treatment on plant growth	
(29 November 1987)	129
6.2. Effects of Fatol Super treatment on plant	
growth (29 November 1987)	130

LIST OF APPENDICES

APPENDIX		PAGE
Appendix 1.	Daylength change at Palmerston North,	
	New Zealand.	169
Appendix 2.	Monthly temperature change at	
	Palmerston North	170
Appendix 3.	Monthly rainfall at Palmerston North	171
Appendix 4.	Seed yield and yield components (STC, 1986-87)	172
Appendix 5.	Seed yields of cutting treatments on spaced	
	plants and sward plants	172
Appendix 6.	Seed yield and yield components (1987-88)	173
Appendix 7.	Seed quality assessment for seeds harvested	
	from different treatments	174
Appendix 8.	Multiple-regression analysis of seed yield	
	and yield components	175