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Abstract 
 

Cell shape is an important feature of bacterial cells. It is involved in critical aspects of bacterial cell 

biology such as motility, growth, and the evasion of predators. Despite this, how cell shape has evolved in 

bacteria is unclear. For most rod-shaped bacteria, the maintenance of cell shape depends primarily on the 

bacterial actin-like protein, MreB. In this study, we show that the deletion of MreB from the rod-shaped 

model organism Pseudomonas fluorescens SBW25 results in the formation of aberrant spherical cells that 

have increased size and reduced fitness. This new MreB-null strain (ΔmreB) is susceptible to mechanical 

damage and grows poorly due to cell division defects. Furthermore, synthesized peptidoglycan (PG) chains 

were shorter and cell wall assembly was disorganised in this strain. A 1,000-generation evolution 

experiment comprised of multiple independent lineages produced spherical cells that have a reduced cell 

size and improved fitness. Mutations in the PG synthesis protein PBP1a were found across multiple 

lineages. Genetic reconstructions demonstrated that these mutations have a loss-of-function effect that 

reduced PG cross-linking and restored the ordered assembly of the cell wall, thereby reducing cell size 

and improving fitness in MreB-null cells. In one lineage, a five-gene deletion that included the gene coding 

for the outer membrane channel OprD was found to be beneficial. This deletion reduced cell size, 

improved fitness, and restored orderly cell wall construction. The mechanism responsible for this is 

unknown, but it may be related to modifications in septum localisation via the Min system. Finally, we 

show using phylogenetic analysis that PBP loss is a general trend in bacteria that evolved to become 

spherical, hinting at a plausible strategy for the evolution of the spherical cell shape from rod-shaped 

progenitors. 
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Chapter 1  

Introduction 

Bacteria are commonly classified into three basic categories: rods, spirals, and spheres. Many of 

the best-known bacteria fall within these categories: Escherichia coli and Bacillus subtilis are simple rods; 

Helicobacter pylori is a common spiral; and Staphylococcus aureus is a typical coccus. Although this simple 

approach of grouping bacteria into basic shapes can be a convenient way to describe commonly studied 

species, it is far from an accurate account of the true diversity of bacterial cell shapes. To cite a few 

examples found in key text such as Bergey’s Manual of Determinative Bacteriology (Holt et al., 1994), 

bacteria can be oblongs or spheroids (Pneumococcus), star-shaped (Stella), or curved rods (Caulobacter 

and Vibrio). Furthermore, bacteria can modify their shapes by making specialised structures, such as 

extensions that act as appendages in Caulobacter (Mignolet, Panis and Viollier, 2018); or by switching 

between different forms in response to changing environments as seen in Mycoplasma (Feldner, Bredt 

and Kahane, 1983). If we also consider variations in cell size, then the range of bacterial types becomes 

even more staggering.  

This thesis presents new insights into the genetic, molecular, and morphological consequences of 

evolving a rod-like organism into a spherical organism. In order to put this work into its historical and 

scientific context, I will review in this chapter the phylogeny of cell shape, then discuss the mechanisms 

responsible for the formation of cell shape (i.e. the structure and synthesis of the bacterial cell envelope). 

Following this, I will discuss the current understanding of the bacterial cytoskeleton, particularly MreB 

which is the main cytoskeletal determinant of the rod-like shape in bacteria. This overview will give a 

better understanding of the motivation for this study and provide a foundation for understanding the 

methods and results discussed in this thesis.  
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1.1. Evidence for the existence of rods first, then spheres 

Bacteria are currently believed to have started out as rod-shaped cells. The primitive progenitors 

of bacteria were likely irregularly-shaped constructs resembling L-forms, but the first bacteria likely began 

development as rod-shaped cells upon the formation of the peptidoglycan (PG) cell wall (Errington, 2013). 

This argument is supported by the widespread distribution of rods in the bacterial domain, suggesting 

that this shape developed early in the course of bacterial evolution. Siefert & Fox (1998) showed that the 

deepest branches of a 16s rRNA phylogenetic tree of 180 species were made up of exclusively rod-shaped 

or filamentous species (Figure 1). Interestingly, as the tree branched out, many of the emerging clusters 

became mixed, having both rod-like and spherical species. Importantly, they noticed that when a branch 

has adopted a spherical shape, it no longer reverts to a rod-like shape, continuing to evolve with a 

spherical cell shape instead. This led Siefert & Fox (1998) to support the idea that the first bacteria were 

most likely rod-shaped, and that spherical cells evolved from these rods as an end-state morphology – an 

observation presented earlier by Stackebrandt & Woese (1979) and by Woese et al. (1982). 

 



3 
 

 

 

Figure 1 Phylogenetic tree of bacterial morphologies based on 16s rRNA sequences. The morphologies of 
each branch are represented as solid lines for lineages with purely rod-shaped cells, dotted lines for purely 
spherical cells, and dashed lines for lineages with both rod-like and spherical cells. Phylogenetic mapping 
based on 16S rRNA gene sequences show the deepest branches of the tree to be all rod-like, suggesting 
that the last common ancestor and the oldest lineages of bacteria had exclusively rod-like shapes, with 
round phenotypes occurring only later in evolutionary time. Adapted from Siefert & Fox (1998). 
 

 Tamames et al. (2001) also supported the idea that first bacteria were rod-shaped by analysing a 

cluster of genes involved in division and cell wall synthesis, also known as the dcw cluster. They found that 

gene order in the dcw cluster was better conserved in rods than in spheres, suggesting that rods were the 

first to acquire these genes, and that they likely formed first. These arguments support the notion that 

the first bacterial were indeed rod-shaped. 
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1.2. Cell shape has a selective value 

The maintenance of characteristic cell shapes in bacteria implies that cell shape is not a mere 

coincidence, but an actively-regulated physical property that has selective value. Young (2007) argues that 

bacteria use cell shape to improve survival in the face of different selection pressures, the most basic of 

which being nutrient acquisition. Although variables like nutrient gradients and the ability to move 

towards food sources can influence a cell’s ability to find nutrients, it is ultimately diffusion that delivers 

these nutrients from the external environment into the cell (Koch, 1996). This imposes a limit on how 

large a bacterial cell can become since it would need a large surface-to-volume ratio to support its needs. 

This is also the reason why many bacterial species have rod-shaped, filamentous, or vibroid cells as shapes 

that remain thin and instead increase in length provide a larger surface-to-volume ratio than spheres 

(Koch, 1996).  

Another factor that can be strongly influenced by shape is motility. Mitchell (2002) demonstrated 

that energy costs for active movement can vary by as much as 1x105 power (ergs) in cells that change in 

shape or size at sub-micron scales. The effect of shape on motility is further illustrated in E. coli cells that 

move more slowly when compared to a filamenting-mutant phenotype (Maki et al., 2000) or swim in a 

different direction when shape is mechanically altered (Takeuchi et al., 2005) (Figure 2). Different shapes 

have also been hypothesized to allow bacteria to swim better in various environments. An interesting 

example is Helicobacter pylori, a human pathogen with a characteristic corkscrew appearance. It has been 

shown that H. pylori uses its shape to travel through the thick mucus layer of the stomach epithelium to 

allow colonization, and that loss of this shape actually reduces their ability to colonise the stomach 

(Montecucco and Rappuoli, 2001).  
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Figure 2 Artificially imposed cell shapes affect the motility of genetically identical E. coli cells. Time-lapse 
microscopy captured (A) crescent-shaped cells swimming in a straight line, and (B) tightly wound spiral-
shaped cells swimming in a counter clockwise circle. Adapted from (Takeuchi et al., 2005). 
 

Cell shape can also influence survival by affecting other selective pressures such as predation, 

surface attachment, and passive dispersal (Young, 2006; Yang, Blair and Salama, 2016). In aqueous 

environments, bacterial predators such as heterotrophic nanoflagellates are estimated to graze between 

25% to 100% of phytoplankton, including bacteria, in one day (Sherr and Sherr, 1994, 2002), imposing a 

substantial selective pressure on bacteria. It is estimated that approximately 50% of bacterial mortality in 

open oceans can be attributed to grazing by protists (Fuhrman and Noble, 1995). To survive, bacteria 

exhibit morphological plasticity that helps them evade predation (Pernthaler, 2005). Bacterial capture can 

be affected by irregularities in size and shape – filamentous bacteria can become too large for ingestion, 

exceptionally tiny cells may escape capture more easily, and the formation of strong surface attachments 

and biofilms may help reduce predation pressure (Jürgens and Matz, 2002; Pernthaler, 2005). In deep 

aquifers, most bacteria that are recovered are cocci or coccoid rods (Weiss et al., 1995). Using artificial 

geological media and gravity filtration, Weiss et al. (1995) demonstrated that smaller, coccoid cells are 

able to move more rapidly through geological strata than rod-shaped cells, possibly showing a benefit to 

why rod-shaped cells would gain an advantage in becoming spherical. An insightful discussion of the 

different functional consequences of cell shape is elaborated further by Yang, Blair and Salama (2016), 

and is summarised in Table 1.  
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Table 1 Cell shape variation and functional consequences in bacteria (Yang, Blair and Salama, 2016). 
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The examples discussed above demonstrate that cell shape is a critical characteristic of bacterial 

morphology, one that is actively made and maintained throughout the cell cycle for adaptive purposes. In 

the following section, I will discuss the characteristics of the bacterial cell envelope which plays an 

important role in determining cell shape.  

 

1.3. The bacterial cell envelope 

The bacterial envelope is made up of three main parts: the cell membrane, the PG layer, and the 

outer membrane which is present in many bacteria. I will first discuss the characteristics of the inner and 

outer membranes to provide context, then focus on the PG layer which provides the mechanical basis of 

cell shape. 

 

1.3.1. The cytoplasmic or inner membrane 

The cytoplasmic or inner membrane (IM) is a lipid bilayer that acts as a boundary separating the 

internal space of the cell from its external environment (Figure 3). It holds important structures such as 

channels, transporters, receptors, and enzymes involved in the synthesis of other components of the 

membrane (Akiyama, 2009). Among these are lipoproteins and transmembrane α-helical proteins 

involved in cell signaling (Dufresne and Paradis-Bleau, 2015). It is also involved in metabolic processes that 

occur in the periplasm or the space between the inner and outer membranes of the cell (Silhavy, Kahne 

and Walker, 2010).  
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1.3.2. The outer membrane 

Bacteria can be classified as either Gram-positive or Gram-negative, based on their ability to retain 

the Gram stain in their cell wall (Gram, 1884). Gram-negative bacteria possess a second membrane bilayer 

beyond the PG cell wall called the outer membrane (OM). The OM is a selectively-permeable layer, 

allowing select substances to enter the cell either through passive diffusion, or active transport using β-

barrel proteins or porins (Dufresne and Paradis-Bleau, 2015). The OM is an asymmetrical layer – the inner 

layer is formed by glycerophospholipids whereas the outer layer consists of lipopolysaccharides (LPS). This 

unique structure gives Gram-negative bacteria the ability to resist damage from large polar molecules and 

lipophilic compounds (Henderson et al., 2016). In addition, the OM also plays a role in growth and 

metabolism, protection from antibiotics, and even in triggering the innate immune response in humans, 

making it an important component of the bacterial cell envelope (Henderson et al., 2016). Some proteins 

embedded in the OM are even thought to influence cell shape by linking the OM and the PG layer (De Mot 

and Vanderleyden, 1994; Koebnik and Krämer, 1995). Examples are Omp and Lpp, major outer membrane 

proteins which, in E. coli, produce spherical cells when their coding genes are deleted (Sonntag et al., 

1978; Typas et al., 2010). 

 

1.3.3. PG cell wall 

Beyond the cytoplasmic membrane is the PG cell wall. Gram-positive cell walls are thick layers of 

PG that contain teichoic and lipoteichoic acid components; whereas Gram-negative cell walls are made 

up of a thin layer of PG inserted between an outer and inner membrane (Figure 3).  
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Figure 3 Gram-positive and Gram-negative cell walls. The Gram-positive cell wall is composed of multiple 
layers of PG formed outside the cytoplasmic membrane. Teichoic acids link the layers of PG together, and 
lipoteichoic acids link the PG to the cytoplasmic membrane. The Gram-negative cell wall is composed of 
an inner and outer membrane, and a thin layer of PG found in the periplasmic space formed between the 
two membranes. Embedded in the outer membrane are porins, lipopolysaccharides, and lipoproteins. 
Porins are channels that allow small hydrophilic molecules to pass across the outer membrane; whereas 
lipoproteins link the outer membrane to the PG layer. Adapted from Cabeen and Jacobs-Wagner (2007). 
 

Bacterial cell shape is a characteristic attributed to the structure of PG, and to the enzymes that 

continually build and remodel it (Young, 2003). Most bacteria have a cell wall that provides shape and 

protection against osmotic pressure. This integral structure is composed of glycan chains linked together 

by peptide bridges, which together make up PG. The basic glycan chains are composed of two precursors: 

N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). These are connected by a β-1,4 glycosidic 

bond which form long alternating strands of NAG and NAM (Figure 4A). Each NAG is connected to a short 

peptide chain that extends from it at a right angle. These peptide chains are cross-linked to other peptide 

chains from flanking glycan strands through the action of transpeptidases (Figure 4B) (Casey et al., 2008). 

Together, these components form a strong mesh that provides structure and protects against osmotic 

lysis (Cabeen and Jacobs-Wagner, 2005).  
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Figure 4 Chemical composition of PG. A) The basic PG subunits NAG and NAM. B) Representation of PG 
mesh showing glycan chains linked by pentapeptide cross-bridges. Adapted from Cava and Pedro (2014). 
 

The cell wall was first believed to be purely rigid since PG removed from E. coli retains the native 

shape of normal living cells (Weidel, Frank and Martin, 1960; Weidel and Pelzer, 1964). However, it is now 

understood to be a flexible structure. Using low-angle laser light scattering, the cell wall of E. coli was 

observed to have the ability to expand up to 300% when affected by physical stress (Koch and Woeste, 

1992). This observation is supported by Yao et al. (1999) who used atomic force microscopy to provide 

direct physical evidence of PG elasticity, and by Boulbitch, Quinn and Pink (2000) who derived equations 

that theoretically demonstrate the elasticity of PG.  

In E. coli and B. subtilis, cell wall disruption can result in the formation of spheroplasts – round, 

osmotically sensitive cells (Weiss, 2013). Some bacteria also produce or can be induced to produce natural 

spheroplast variants which are also sensitive to osmotic effects (Errington et al., 2016). This demonstrates 

that the cell wall confers a protective function against osmotic stress (Errington, 2017). Altogether, these 

observations describe a flexible yet strong cell wall – one that is able to adapt to osmotic stress and 

withstand internal pressures to maintain cell shape. 
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1.4. PG synthesis 

The synthesis and assembly of the PG cell wall is a critical aspect of bacterial biology. Having been 

under investigation for more than 50 years, we now have a good understanding of the major players 

involved in cell wall construction, mostly from studies using the model organisms E. coli and B. subtilis. 

However, recent advances have prompted a rethink of the behaviour of some of the major enzymes 

involved in this process, which I will discuss below.    

PG construction begins with the synthesis of the precursor UDP-NAM-pentapeptide by the Mur 

proteins in the cytoplasm (Lovering, Safadi and Strynadka, 2012). This is ligated to a carrier lipid by the 

membrane-associated enzyme MraY, generating lipid I, which is then ligated to a NAG residue generating 

lipid II (Scheffers and Tol, 2015). Following this, lipid II is translocated or flipped from the cytoplasm to the 

outer face of the membrane for integration into the existing PG network (Lovering, Safadi and Strynadka, 

2012). Upon translocation, lipid II is polymerised into glycan strands via a transglycosylation reaction, 

which are subsequently cross-linked to other glycan strands via a transpeptidation reaction (Sauvage et 

al., 2008). 

The final steps of assembly and modification are performed by enzymes called Penicillin Binding 

Proteins (PBPs). PBPs derive their name from their affinity to penicillins or beta-lactam antibiotics 

(Tomasz, 1979; Popham and Young, 2003). PBPs are classified into two categories: high molecular mass 

(HMM) PBPs, and the low molecular mass (LMM) PBPs. HMM PBPs have two major domains that are 

responsible for the polymerization and insertion of new PG strands into the pre-existing cell wall (Goffin 

and Ghuysen, 1998; Born, Breukink and Vollmer, 2006; Macheboeuf et al., 2006; Lovering et al., 2007). 

HMM PBPs can be further classified as either Class A or Class B PBPs, depending on the structure and 

function of their N-terminal domain. The N-terminal domain of Class A PBPs have transglycosylation or 

glycosyltransferase activity, elongating uncross-linked glycan chains. In Class B PBPs, the N-terminal 

domain plays a role in interacting with other proteins involved in the cell cycle (Holtje, 1998; Den 

Blaauwen et al., 2008; Zapun, Vernet and Pinho, 2008). In both types of PBPs, the C-terminal penicillin-
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binding domain performs transpeptidation, which cross-links adjacent glycan chains. Monofunctional 

enzymes (MGTs) that have glycosyltransferase domains similar to those in class A PBPs have also been 

identified, but their exact function is unknown (Reed et al., 2011). LMM PBPs (also known as Class C PBPs) 

are monofunctional enzymes involved in cell separation, PG maturation, or PG recycling. For example, 

LMM PBPs in E. coli such as PBP5, PBP6, and PBP6b make stem peptides unavailable for cross-linking by 

cleaving the last D-alanine of stem pentapeptides (Typas et al., 2012; Cava et al., 2013). Other examples 

include PBPs such as PBP4 and PBP7 that perform endopeptidase activities by cleaving cross-links between 

PG strands (Vollmer and Höltje, 2004; Vollmer et al., 2008). 

Transglycosylation reactions were historically attributed to the function of only Class A PBPs 

(Sauvage et al., 2008). However, this view was challenged by experiments in B. subtilis and Enterococcus 

spp. which showed that cells can grow (although poorly) in the absence of all Class A PBPs, suggesting the 

presence of another enzyme could be performing transglycosylation reactions (Mcpherson and Popham, 

2003; Arbeloa et al., 2004; Rice et al., 2009). Recently, it was discovered that RodA has transglycosylation 

activity (Meeske et al., 2016), and that growth defects of a B. subtilis strain lacking all aPBPs can be rescued 

by the overexpression of RodA (Meeske et al., 2016; Emami et al., 2017). Furthermore, RodA was also 

demonstrated to have TG activity in E. coli (Cho et al., 2016). 

Until recently, the most widely accepted model of cell wall construction posits that MreB guides 

the transglycosylation reactions of Class A PBPs, as well as the transpeptidation reactions of both Class A 

and B PBPs, directing the pattern of PG polymerisation and assembly (Typas et al., 2012). MreB is a 

cytoskeletal element found in most rod-shaped bacteria, which performs a critical role in directional PG 

assembly during cell elongation (Errington, 2015). However, Cho et al. (2016) recently discovered that 

MreB and Class A PBPs operate in independent complexes and do not form distinct assemblies as 

previously believed. It was discovered that Class A PBPs had both a fast and diffusive motion, as well as a 

much slower movement speed (Lee et al., 2016; Zhao et al., 2017). This was interpreted by Zhao et al., 

(2017) as short periods of fast diffusion spaced apart by temporary pauses. In addition, it was found that 
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MreB strongly interacts with Rod proteins in E. coli, which in turn interacts with PBP2, a Class B PBP 

(Morgenstein et al., 2015). This complex (MreB-RodAZ-bPBP) is thus referred to as the “Rod complex” 

(Zhao et al., 2017). 

Based on these recent discoveries led Zhao et al. (2017) to propose a new scheme of PG synthesis 

called the “Break before Make” model (Figure 5). In this model, endopeptidases first cleave crosslinks in 

mature PG. From this break, the Rod complex generates a new PG template which is cross-linked to the 

existing cell wall through the action of Class B PBPs. Class A PBPs then generate additional strands that 

are crosslinked with the existing cell wall on one side, and with the PG strand generated by the Rod-

complex on the other. The interaction between Class A PBPs and the Rod-complex is unknown and 

remains an open question in this model. This model reconciles previous models of PG synthesis with 

current discoveries and gives us a better understanding of the general pattern of cell wall construction in 

bacteria. 
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Figure 5 “Break before Make” model of PG synthesis. The process begins with Rod and MreB-associated 
lytic enzymes cleaving crosslinks in mature PG. From this, the Rod/SEDS complex generates a PG template 
that is cross-linked to the cell wall by bPBPs. Additional strands are generated by the TGase domain of 
aPBPs, which are then cross-linked with new PG on one side with mature PG on the other through the 
action of its TPase domain. The interaction of Class A PBPs with the Rod complex is undefined. Crosslinked 
pentapeptides are formed when a new PG strand containing a pentapeptide is crosslinked with another 
one (labelled with asterisks). PBP-independent 3,3 crosslinks are also represented, which are present only 
at low abundance under normal growth conditions. Adapted from Zhao et al. (2017). 
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1.5. Bacterial cytoskeleton 

To spatially-organise and direct key cellular processes such as cell division, chromosome 

segregation, and intracellular transport, eukaryotic cells use cytoskeletal elements composed of three 

main structures: tubulin microtubules, intermediate filaments (IF), and actin microfilaments. Until the 

1990s, the cytoskeleton was believed to have existed only in eukaryotes. Bacteria were simply thought to 

be unorganised bags with components randomly moving around inside (Ingerson-Mahar and Gitai, 2012). 

However, we now know that bacteria do indeed form highly organised internal structures that are 

coordinated by the action of bacterial cytoskeletal elements (Ingerson-Mahar and Gitai, 2012; 

Govindarajan and Amster-Choder, 2016). Bacterial homologues of the 3 eukaryotic cytoskeletal elements 

are now known to exist in bacteria (Matthew T Cabeen and Jacobs-Wagner, 2010) and understanding how 

these function independently is important for understanding how they might function when one is 

disrupted. I will describe their more or less independent functions below before moving on to the 

challenges involved in evolving cell shape.  

 

1.5.1. Tubulin-like proteins 

Tubulin is a dynamic, GTP-dependent microfilament that functions as a track for motor proteins 

in eukaryotes (Löwe and Amos, 2009). The most well-known homologue of tubulin in bacteria is FtsZ, a 

highly-conserved protein in free-living bacteria. FtsZ forms a contractile structure called the Z-ring that is 

composed of long filaments that use GTP hydrolysis to bend and pull the membrane inwards for septum 

formation (Li et al., 2007; Erickson, Anderson and Osawa, 2010). Importantly, it also acts as a scaffold for 

other proteins that are necessary for cell division (Weihs et al., 2018). 

Other tubulin homologues in bacteria include TubZ in Bacillus thuringiensis (Larsen et al., 2007), 

and RepX in B. subtilis which may have plasmid-partitioning functions (Matthew T. Cabeen and Jacobs-

Wagner, 2010); and BtubA and BtubB in Prosthecobacter, whose functions are still unknown (Ingerson-

Mahar and Gitai, 2012). 
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1.5.2. IF-like proteins 

IF proteins form strong rods or fibres of dimeric α-helical coils that resist mechanical stresses in 

eukaryotic cells (Köster et al., 2015). In bacteria, probably the best example of an IF-like protein is 

crescentin, or CresS. Similar to eukaryotic IFs, CresS has a coiled coil structure and self-assembles in a 

nucleotide-independent manner (Löwe and Amos, 2009). It is responsible for the bent-shape of 

Caulobacter crescentus (Figure 6). The deletion of CresS causes C. crescentus to lose its characteristic 

shape to become a straight rod (Ingerson-Mahar and Gitai, 2012). 

Other examples of IF-like proteins have been found in bacteria, but their functions are not yet 

well understood. Examples of which are RsmP from Corynebacterium glutamicum and Ccrp from 

Bdellovibrio bacteriovorus (Ingerson-Mahar and Gitai, 2012). Similar to CresS, FilP from Streptomyces 

coelicolor also has a coiled coil structure that has been suggested to play a role in hyphal formation 

(Matthew T Cabeen and Jacobs-Wagner, 2010). 

 

 

Figure 6 Crescentin (CreS) causes C. crescentus to grow with a bent shape by reducing strain on one side 
of the cell. Adapted from Typas et al. (2012). 
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1.5.3. Actin-like proteins 

Actin-like proteins are present in all domains of life (Petek and Mullins, 2014). Actin-like proteins 

have a characteristic structure of four distinct domains stabilised by an ADP molecule. These proteins 

polymerise in the presence of ATP, and form either globular (G-actin) or filamentous (F-actin) structures 

(Ingerson-Mahar and Gitai, 2012).  

In eukaryotes, actin is known to polymerise and undergo a treadmilling action wherein monomers 

are added to one end of the filament and removed from the opposite end (Naoz et al., 2008). Similar 

characteristics are seen in bacterial actin homologues like MamK, ParM, and other plasmid-segregating 

homologues (Ozyamak, Kollman and Komeili, 2013). MamK forms filaments that organise magnetic 

vesicles, or magnetosomes, in Magnetospirillum magneticum (Pradel et al., 2006; Bennet et al., 2015). 

ParM is a plasmid-encoded actin-like protein involved in plasmid partitioning (Cabeen and Jacobs-Wagner, 

2010). 

In contrast, MreB, the major actin homologue responsible for determining cell shape in bacteria, 

has been demonstrated to have no intrinsic polarity and does not undergo treadmilling (Domínguez-

Escobar et al., 2011; van den Ent et al., 2014; Schoenemann and Margolin, 2017), forming instead 

antiparallel double filaments. The structure and function of MreB will be further discussed in 1.6. 

 

1.6. MreB – the major rod-shape determining protein 

MreB is a highly conserved protein among most rod-shaped bacteria (Jones, Carballido-López and 

Errington, 2001) and has a very similar structure to eukaryotic actin (van den Ent, Amos and Löwe, 2001). 

MreB is a force-generating filament. Using a theoretical model, Lan et al. (2007) proposed that MreB 

modifies newly-synthesized PG strands by pre-stretching them prior to cell wall insertion. Evidence 

showing MreB has a direct influence on cell integrity was later provided by S. Wang et al. (2010) who 

showed using an optical trap experiment that in E. coli, approximately 50% of cell rigidity comes from 

MreB itself, showing that this actin-like protein contributes as much to mechanical integrity as the cell 
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wall. In contrast, to its role in providing bending stiffness, MreB does not provide longitudinal stiffness to 

cells (Tuson et al., 2012).  

 

1.6.1. MreB coordinates PG synthesis 

The formation and maintenance of the rod shape is conferred by the Mre proteins, MreB, MreC, 

and MreD (Wachi et al., 1989); RodZ (Alyahya et al., 2009; Bendezú et al., 2009); and the RodA-Pbp2 pair 

(Cho et al., 2016). This complex, collectively called the Rod complex (or elongasome) is well-conserved in 

rod-shaped bacteria, and typically not found in cocci (Alyahya et al., 2009; Carballido-Lopez, 2012). For 

this reason, the Rod complex is considered as the major determinant of the rod shape in bacteria (Jones, 

Carballido-López and Errington, 2001; Carballido-López, 2006) 

Importantly, the spatial coordination of the Rod complex is conferred by MreB (Jones, Carballido-

López and Errington, 2001; van den Ent, Amos and Löwe, 2001). The loss or depolymerization of MreB 

causes deformities in rod-shaped cells which ultimately grow as spheres (Jones, Carballido-López and 

Errington, 2001; Gitai, 2005; Bendezú et al., 2009). MreB’s sub-cellular localisation has been the subject 

of debate over the last two decades. Early works using fluorescent techniques indicated that MreB exists 

as helical filaments inside the cell (Defeu Soufo and Graumann, 2004; Figge, Divakaruni and Gober, 2004; 

Vats and Rothfield, 2007). This was supported by the observation that MreB-associated proteins involved 

in cell wall construction had a similar localisation pattern to MreB (Shih, Le and Rothfield, 2003; Leaver 

and Errington, 2005; Kawai, Daniel and Errington, 2009). This understanding was later challenged by a 

high-resolution electron cryotomography study stating that MreB filaments cannot be found inside 

bacteria (Swulius et al., 2011). This was followed by a study showing that the helical patterns produced 

by a YFP-tagged MreB was an artefact of the fused YFP tag, and not a native characteristic of MreB (Swulius 

and Jensen, 2012).  

Recent studies once again suggested the MreB does indeed form filaments around the cell (Salje 

et al., 2011; Olshausen et al., 2013; Reimold et al., 2013; van den Ent et al., 2014). These were used by 
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Errington (2015) to propose a revised model for MreB under the assumption that MreB does indeed form 

filaments that migrate with PG strand insertion, but with greater emphasis on the orientation of the 

filaments relative to cell shape. In this model, MreB filaments coordinate PG synthesis in a snake-like 

manner therefore driving the elongation of the smooth cylinder. In irregular rods, MreB filaments are 

observed as shorter structures, the result of the irregular cell shape interfering with filament formation. 

These filaments then go on to provide a corrective remodelling to the cell wall leading to the resumption 

of an orderly assembly of the cell wall (Figure 7). 

 

 

Figure 7 Revised model for the role of MreB in shape determination. (A) In a regularly-shaped cylinder, 
MreB filaments (solid and dashed green lines) elongate in response to the uniform cylindrical shape. PG-
synthetic complexes are recruited (orange circles) to create new PG strands (blue shading) in directions 
that guided by the MreB filaments (as shown by the arrows). This activity is also the driving force behind 
the movement of MreB filaments. Two MreB filaments are shown, but multiple non-overlapping filaments 
can form in these cells. (B) In a cell with abnormal morphology, MreB can only form short filaments due 
to sites of incompatible geometry (indicated in red). Even then, short filaments are thought to correct 
aberrant geometry, thereby restoring a regular cylindrical cell shape. In both figures, solid and dashed 
lines represent the front and rear views, respectively, of the bacterial cell. Adapted from Errington (2015). 
 



20 
 

More recently, the laboratory of Ethan Garner presented an updated view of how MreB filaments 

orient to form and maintain the rod shape in bacteria (Hussain et al., 2018). Using total internal reflection 

microscopy, Hussain et al. (2018) demonstrated that MreB filaments are able to sense the shape of 

bacteria, orienting along surfaces with the greatest negative curvature (Figure 8A). This allows MreB 

filaments to find the correct orientation and move around the circumference of rod-shaped cells. In 

contrast, MreB filaments move in all directions in spherical bacteria. They further found that MreB allows 

spherical bacteria to regenerate a rod shape by locating small surface bulges wherein MreB filaments can 

move in an oriented way, allowing the formation of the rod shape (Figure 8B). The group concludes that 

MreB thus creates the rod shape by directing cell wall synthesis by sensing and reinforcing differences in 

cell curvature. 

 

Figure 8 Model for MreB filament orientation. (1) In a rod-shaped cell, MreB filaments to orient along a 
single curved axis. (2) The direction of MreB motion follows this curved axis, (3) which directs the insertion 
of new cell wall material around cell, reinforcing the rod shape. B) (1) MreB motion is isotropic in spherical 
cells, following no specific axis. (2) the presence of an outward bulge creates a curved axis (red line) that 
initiates rod shape formation. (3) MreB filaments that reach the curved axis preferentially align to and 
rotate around the neck of the bulge, creating an area with aligned MreB motion which propagates rod-
shape formation (yellow area). Adapted from (Hussain et al., 2018). 
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1.6.2. MreB can influence the cell division machinery 

Aside from coordinating cell elongation, MreB is also known to interact with FtsZ for correct 

septum synthesis, thereby linking it to the cell division machinery. To understand this relationship, it is 

necessary to first discuss the cell division machinery. 

Cell division in model organisms such as E. coli and B. subtilis begins with the polymerization of 

FtsZ, forming a contractile Z-ring at the centre of the cell via a treadmilling-action (Schoenemann and 

Margolin, 2017). There, it coordinates with other proteins to initiate and guide cell division (Harry, 

Monahan and Thompson, 2006; Adams and Errington, 2009; de Boer, 2010). Z-ring formation is a 

coordinated process. Studies have revealed that approximately 70% of FtsZ localizes into helical patterns 

at any given time (Stricker et al., 2002; Anderson, Gueiros-Filho and Erickson, 2004), as a result of 

restricted diffusion (Niu and Yu, 2008). These patches are dynamic, migrating continuously and searching 

for new septation sites (Thanedar and Margolin, 2004). Aside from its role as a cell division coordinator, 

FtsZ also provides a contractile force that bends the inner membrane (Erickson, Anderson and Osawa, 

2010). This bending is initially resisted by the rigid cell wall but is eventually overcome by the recruitment 

of proteins that remodel the cell wall (Erickson, Anderson and Osawa, 2010).  

In line with this, Fenton & Gerdes (2013) demonstrated that MreB is recruited to the Z-ring and 

interacts with FtsZ in E. coli for the transfer of cell-wall biosynthetic enzymes from lateral growth activity 

to septal PG synthesis. Interestingly, they showed that the recruitment of a mutated form of MreB into 

the Z-ring results in elongated cells that are unable to divide, having Z-rings that have no PG synthesis 

activity. Furthermore, they observed that PBP2 and PBP1B foci that are normally present in the septum 

of dividing WT E. coli cells (in addition to their localisation to MreB) are not seen in cells that had the 

mutated form of MreB. In their model, Fenton & Gerdes (2013) propose that the recruitment of PBP2 and 

PBP1B from the elongasome to the cell division complex (divisome) through the action of MreB, plays an 

essential role in septal and/ or pre-septal PG synthesis. Thus, this shows that in rod-shaped bacteria, MreB 

is not only important to cell elongation, but to cell division as well.  
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1.6.3. Loss of MreB or MreB-like proteins lead to shape defects and cell death 

Although MreB is regarded as the main rod-shape determining gene, it is not the only protein 

performing this function. In B. subtilis, two other proteins resembling MreB have been found – these are 

MreBH and Mbl. The deletion of each of these proteins produces slightly different effects, but in general, 

these lead to cells with shape defects that are only viable upon the addition of supplemental magnesium 

(Figure 9) (Carballido-López and Errington, 2003; Formstone and Errington, 2005; Kawai, Daniel and 

Errington, 2009). In Spiroplasma and Haloplasma, even more (five to seven) MreB homologues have been 

found. The exact function of these homologues are unknown, but their phylogeny led Ku, Lo and Kuo, 

(2014) to conclude that these multiple MreB homologues are the result of independent ancient 

duplications. In bacteria that have only one MreB homologue, such as E. coli (Turner et al., 2013) and C. 

crescentus (Figge, Divakaruni and Gober, 2004), MreB is essential. The loss or deletion of MreB in these 

organisms causes a loss in shape, ultimately leading to cell death. 

 

 

Figure 9 Morphological effects of mreB loss in B. subtilis. I–P. Cells were grown to exponential phase at 
37°C in minimal medium supplemented with 10 mM Mg2+ then transferred onto minimal medium 
supplemented with decreasing levels of Mg2+. Images were taken after 90 min of growth. Adapted from 
Kawai, Daniel and Errington (2009). 
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1.6.4. MreB loss may be an early first step to evolving spherical bacterial cells 

As previously discussed, phylogenetic analysis has shown that spherical-shaped bacteria arose 

from rod-shaped precursors multiple times during the course of evolution (Siefert and Fox, 1998). 

Consistent with this, rod-shaped bacteria can be made to have a spherical morphology by the loss or 

perturbation of the mreBCD genes (Pichoff and Lutkenhaus, 2007). All three mre genes are important for 

maintaining the rod-shape in bacteria – loss of which leads to the formation of a spherical cell shape (Shi 

et al., 2018). However, MreB is particularly interesting and important because aside from maintaining the 

rod-like shape, it is also absent in most spherical bacteria, unlike MreC and MreD which are present in 

extant spherical species such as Streptococcus pneumoniae and Staphylococcus aureus (Land and Winkler, 

2011; Tavares et al., 2015). Furthermore, loss of MreB results in cell death in model rod-shaped bacteria 

such as E. coli (Shi et al., 2017), C. crescentus (Takacs et al., 2010), and Pseudomonas aeruginosa 

(Robertson et al., 2007), that are grown in standard culture media. 
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1.7. Rationale and objectives of the study 

P. fluorescens SBW25 is a plant-associated pseudomonad that was isolated from the phyllosphere 

of a sugar beet grown in Oxfordshire in 1989 (Rainey and Bailey, 1996). Since then, it has been used as a 

model organism for numerous studies with varying interests, including responses to bacteriophage and 

antibiotic exposure (Escobar-Paramo, Gougat-Barbera and Hochberg, 2012; Scanlan and Buckling, 2012; 

Ramsayer, Kaltz and Hochberg, 2013), biofilm formation and multicellularity (Hammerschmidt et al., 

2014), and niche construction (Spiers and Rainey, 2005; Loudon et al., 2016; Koza et al., 2017).  

In 2002, Spiers et al. discovered in a transposon mutagenesis experiment that the disruption of 

the mreB gene in P. fluorescens SBW25, results in the formation of spherical cells. Similar to other studies, 

this mreB-null strain (hereafter, ∆mreB) showed slow/ poor growth. However, this new ∆mreB strain 

remained viable in standard lysogeny broth (LB), unlike in the closely related pseudomonad, P. 

aeruginosa. This provided the opportunity to study how a previously rod-shaped bacterium would grow 

in response to the loss of mreB. Furthermore, this provides the framework for an experimental evolution 

experiment which can be used to study how ∆mreB would evolve in response to its new phenotype. 

Experimental evolution is a powerful tool that has been used to understand how organisms can adapt to 

new environments under specific conditions (Barrick and Lenski, 2013; Rainey et al., 2017; Ho and Zhang, 

2018), and P. fluorescens SBW25 has proven to be well-suited to this experimental design as it has already 

been used to study a variety of topics in the past (Rainey and Travisano, 1998; Beaumont et al., 2009; Lind 

et al., 2015). Following the discovery that P. fluorescens SBW25 is able to survive the loss of MreB, Dr. 

Monica Gerth separated the ∆mreB strain into 10 lines which were successfully propagated for ~1,000 

generations in an evolution experiment. These 10 lines were sequenced by Dr. Heather Hendrickson at 

two timepoints (500 and 1,000 generations) in order to identify the major mutations that have swept 

through these populations. These works preceded the results presented in this thesis. Therefore, the main 

aim of my project is to characterise the evolutionary strategies that a formerly rod-shaped bacterium can 

use to adapt to a new spherical cell shape. The specific objectives are described below: 
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1. The first objective of my thesis is to characterise the effects of MreB loss in P. fluorescens SBW25. 

To do this, I will study the morphology (cell shape, size, integrity); growth characteristics (growth 

dynamics, relative fitness); and the PG cell well chemistry and architecture of both the P. fluorescens 

SBW25 wild-type (WT) and ΔmreB strains. This will allow me to determine how ΔmreB is affected 

by the radical change in cell shape caused by the loss of MreB. This also establishes a baseline for 

understanding the results of the evolution experiment. 

 

2. My next objective is to study the effects of MreB-loss over time in the 10 lines from the evolution 

experiment. I will analyse the morphology, growth characteristics, PG chemistry and assembly of 

the evolved lines at different time points to determine how well these lines are able to adapt to 

their new spherical cell shape. 

 

 

3. Finally, I will characterise the major mutations identified in the evolved lines. Prior sequencing work 

has identified mutations that may be allowing P. fluorescens SBW25 to compensate for the loss of 

MreB. By investigating the effects that these mutations cause in the WT and ancestral ΔmreB 

strains, I will be able to determine if these are indeed beneficial and elucidate the mechanisms that 

are driving this effect.  
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Chapter 2  

Materials and Methods 

 

2.1. Media, bacterial strains, and growth conditions 

P. fluorescens SBW25 cultures were grown at 28°C in 30 mL blue cap plastic vials containing 5 mL 

of Lysogeny Broth (LB: 10 g tryptone, 5 g yeast extract, 10 g NaCl in H2O up to 1 L), shaken at 150 rpm. 

Escherichia coli and S. aureus cultures were likewise grown in shaken LB but incubated at 37°C. Agar plates 

were prepared by adding 1.5% w/v agar to the broth media prior to autoclaving, cooling, then plating. 

When required, antibiotics were dissolved in H2O added to the medium at the following concentrations: 

ampicillin (Ap), 100 μg/mL; gentamicin (Gm), 25 μg/mL; kanamycin (Km), 50 μg/mL; spectinomycin (Sp), 

100 μg/mL; and tetracycline (Tc), 10 μg/mL. Nitrofurantoin (NF) was dissolved in dimethyl sulfoxide 

(DMSO) to a final concentration of 100 μg/mL. All bacterial strains used in this work are stored at -80°C in 

glycerol saline solution (8.5 g NaCl, 300 mL H20, glycerol to 1 L); and are listed in Table 2. Glycerol-saline 

solutions were prepared for long-term storage of bacteria. Strains were inoculated in shaken LB containing 

appropriate antibiotic(s) and grown at the necessary temperatures overnight. The following day, 1 ml of 

the bacterial culture was added to 800 µl of glycerol-saline, mixed, then stored at -80°C.  

Table 2 Bacterial strains and plasmids used in this work 

Strain Relevant characteristics Reference 

P. fluorescens   

SBW25 Wild-type strain isolated from sugar beet Bailey et al., 1995 

ΔmreB Ancestral MreB deletion mutant This work 

lacO_pLICTRY;  
 

pLICTRY plasmid encoding LacI_CFP and TetR_YFP Akarsh Mathrani and 
Heather Hendrickson 
(unpublished work) 

EL1.50 Evolved Line 1 – 50 generations This work 

EL2.50 Evolved Line 2 – 50 generations This work 

EL3.50 Evolved Line 3 – 50 generations This work 

EL4.50 Evolved Line 4 – 50 generations This work 

EL5.50 Evolved Line 5 – 50 generations This work 

EL6.50 Evolved Line 6 – 50 generations This work 

EL7.50 Evolved Line 7 – 50 generations This work 
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EL8.50 Evolved Line 8 – 50 generations This work 

EL9.50 Evolved Line 9 – 50 generations This work 

EL10.50 Evolved Line 10 – 50 generations This work 

EL1.250 Evolved Line 1 – 250 generations This work 

EL2.250 Evolved Line 2 – 250 generations This work 

EL3.250 Evolved Line 3 – 250 generations This work 

EL4.250 Evolved Line 4 – 250 generations This work 

EL5.250 Evolved Line 5 – 250 generations This work 

EL6.250 Evolved Line 6 – 250 generations This work 

EL7.250 Evolved Line 7 – 250 generations This work 

EL8.250 Evolved Line 8 – 250 generations This work 

EL9.250 Evolved Line 9 – 250 generations This work 

EL10.250 Evolved Line 10 – 250 generations This work 

EL1.500 Evolved Line 1 – 500 generations This work 

EL2.500 Evolved Line 2 – 500 generations This work 

EL3.500 Evolved Line 3 – 500 generations This work 

EL4.500 Evolved Line 4 – 500 generations This work 

EL5.500 Evolved Line 5 – 500 generations This work 

EL6.500 Evolved Line 6 – 500 generations This work 

EL7.500 Evolved Line 7 – 500 generations This work 

EL8.500 Evolved Line 8 – 500 generations This work 

EL9.500 Evolved Line 9 – 500 generations This work 

EL10.500 Evolved Line 10 – 500 generations This work 

EL1.1,000 Evolved Line 1 – 250 generations This work 

EL2.1,000 Evolved Line 2 – 250 generations This work 

EL3.1,000 Evolved Line 3 – 250 generations This work 

EL4.1,000 Evolved Line 4 – 250 generations This work 

EL5.1,000 Evolved Line 5 – 250 generations This work 

EL6.1,000 Evolved Line 6 – 250 generations This work 

EL7.1,000 Evolved Line 7 – 250 generations This work 

EL8.1,000 Evolved Line 8 – 250 generations This work 

EL9.1,000 Evolved Line 9 – 250 generations This work 

EL10.1,000 Evolved Line 10 – 250 generations This work 

WT-GFP miniTn7(Gm)PrrnB P1 gfp-a Created for this work based 
on Lambertsen, Sternberg 
and Molin (2004) 

WTRL1 PFLU0406 D484N in WT SBW25 This work 

WTRL4 PFLU0406 T362P in WT SBW25 This work 

WTRL7 ΔPFLU4921-4925 in WT SBW25 This work 

WTRL10 Tn7-PFLU4165 in WT SBW25 This work 

ΔmreB.RL1 PFLU0406 D484N in ΔmreB This work 

ΔmreB.RL4 PFLU0406 T362P in ΔmreB This work 

ΔmreB.RL7 ΔPFLU4921-4925 in ΔmreB This work 

ΔmreB.RL10 Tn7-PFLU4165 in ΔmreB This work 

E. coli   

TOP10 F-mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 
ΔlacX74 recA1 araD139 Δ(ara-leu)7697 
galU galK rpsL (StrR) endA1 nupG 

Invitrogen 
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Plasmids   

pCR8/GW/TOPO Cloning vector, Spr Invitrogen 

pRK2013 Helper plasmid, Tra+, Kmr Ditta et al., 1980 

pUIC3 Universal IVET construct, AprR TcR Mahan, Slauch and 
Mekalanos, 1993 

pUX-BF13 Helper plasmid for transposition of mini-Tn7 
element, Apr 

Bao et al., 1991 

 

2.2. Measurement of bacterial growth kinetics 

P. fluorescens SBW25, the evolved lines, and reconstructed mutants were initially grown in 5 mL 

shaken LB at 28°C overnight. The following day, 10 µl of the overnight culture was mixed with 990 µl of 

fresh media to prepare a 1:100 dilution. A 200 µl aliquot of the cell suspension was then transferred into 

a well of a 96-well microplate. Three replicates were prepared for each strain. Growth kinetics of were 

monitored at 28°C using a Synergy 2 plate reader controlled by the Gen5 software (Bio-Tek). Absorbance 

at 600 nm was measured at 5 minutes intervals for a period of 48 or 72 hours. The plate was shaken for 

10 seconds prior to each read. 

 

2.3. PCR methods and cloning techniques 

Gene of interest were amplified by PCR following standard methods. A deoxyribonucleotide 

triphosphate stock solution was prepared from a dNTP set (Bioline) containing four 100 mM of dNTP 

solutions to generate a final concentration of 10 mM for each dNTP.  Taq DNA polymerase (Invitrogen) 

was used for PCR amplification. The calculated melting temperature ™ of primers was used to determine 

the annealing temperature for each pair of primers. Reaction conditions and preparation of a typical 50 

µl of PCR reaction is shown below (Table 3). PCR reactions were carried out using a gradient thermal Palm-

Cycler™ (Corbett Life Science) (Table 4). 
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Table 3 Reagents in 50 µl of PCR reaction volume 

 Volume (µl)  Final Concentration 

10 Buffer 5.0 1x 

MgCl2 (50 mM) 1.5 1.5 mM 

dNTP (10 mM) 1.0 0.2 mM 

Forward Primer (10 µM) 1.0 0.2 mM 

Reverse Primer (10 µM) 1.0 0.2 mM 

Taq DNA Polymerase (5 U/µL) 0.2 1 U 

Template DNA 5.0 1 to 5 ng 

MilliQ H20 35.3 -- 

Total volume 50.0 -- 

 

Table 4 PCR reaction conditions 

 Temperature (°C) Time Cycles 

Initial Denaturation 94 3 min 1x 

Denaturation 94 45 s  
30x Annealing 56 45 s 

Elongation 72 1 min/kb 

Final elongation 72 10 min 1x 

Hold 4 -- -- 

 

 

2.3.1. Agarose gel electrophoresis 

DNA fragments were separated on 1% agarose gels made with TBE buffer (Life Technologies) 

stained with 1X SYBR Safe™ DNA stain (Invitrogen). Before loading onto the gel, samples were mixed with 

6x DNA loading dye (Fermentas) at a ratio of 1:5. Gels were run at 120 volts for 40-60 minutes. A 1 kb DNA 

ladder was used for estimating DNA fragment sizes. Separated DNA bands were visualised using a UV 

Transilluminator (UVP) and photographed using the DigiDoc-It Imaging System controlled by the Doc-It LS 

Analysis Software (UVP). Desired bands were removed from the gel and purified using a QIAquick Gel 

Extraction kit (Qiagen), following the manufacturer’s recommendations. 
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2.3.2. Plasmid extraction, restriction enzyme digestion, and DNA ligation 

Plasmid DNA was extracted from overnight cultures using the QIAprep Spin Miniprep Kit (Qiagen), 

following the manufacturer’s instructions. DNA was eluted in 30 to 50 µl of MilliQ H2O. Restriction enzyme 

digestion was performed using restriction enzymes from New England Biolabs in appropriate NEB buffers 

at 37°C for at least 2 hours. DNA vectors and inserts were mixed at a ratio of 1:3 together with 1 µl of T4 

DNA ligase (Invitrogen) and 2µl of 5x ligation buffer. The mixture was brought up to a final volume of 10 

µl with MilliQ water. Ligation reactions were incubated at 16°C overnight. 

 

2.3.3. Construction of the ancestral ΔmreB strain 

The construction of the ancestral ΔmreB strain was performed by Dr. Monica Gerth using gene 

splicing by overlap extension (SOE) PCR and a two-step allelic exchange (Horton et al., 2013) in P. 

fluorescens SWB25. A knock-out construct was made by first amplifying ~1000 bp nucleotide regions 

flanking the mreB gene using the primer pairs shown below. Introduced BamHI sites are underlined. 

• PF1 5’-GGATCCGAACTCGTCCATGTTGGTCTTG-3’ and 

• PR1 5’-GCTAATCAGCAAATGCGGGAAAGGGACCCTAGGCAAC-3’; 

• PF2 5’-AGGGTCCCTTTCCCGCATTTGCTGATTAGCCCATGTTTC-3’ and 

• PR2 5’-GGATCCGCTGGCCGGAATCGTGGATCAC – 3’ 

The flanking sequences were fused together via PCR using primers PF1 and PR2, and the resulting 

deletion fragment was TA-cloned into pCR8/GW/TOPO (Invitrogen) using the pCR8/GW/TOPO Cloning Kit 

(Invitrogen). The desired DNA insert was then removed from the pCR8/GW/TOPO vector via restriction 

digestion, checked by sequencing, then subcloned into the destination vector, pUIC3. Tri-parental 

conjugation was then used to introduce deletion constructs into P. fluorescens SBW25. This process is 

described in the following section. 
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2.3.4. Tri-parental conjugation 

Recipient P. fluorescens SBW25 strains were grown overnight at 28°C. At the same time, E. coli 

DH5α λpir carrying the donor vector, pUIC3; and E. coli carrying pRK2013, a helper plasmid for mobilization 

of non-self-transmissible plasmids, were also grown overnight at 37°C. The following day, 0.5 mL of the 

recipient culture was heat shocked at 45°C for 20 minutes. Meanwhile, 0.5 mL of the donor and helper 

cell cultures were pelleted at 13,000 rpm for 1 minute, then mixed together in 0.5 mL of LB. After heat-

shock, all cultures were spun down at 13,000 rpm for 1 minute then combined and resuspended in 100 

μL LB. This resuspension was then transferred and spread onto an LB agar plate. The culture was incubated 

overnight at 28°C. After incubation, the bacterial lawn was washed from the plate and resuspended in 3 

mL of sterile water. Following this, 100 μL aliquots were plated onto LB plates containing NF and Tc to 

select for transconjugants. These plates were incubated for two days at 28°C. Individual colonies were 

selected and further purified via cycloserine enrichment, as described in the next section. 

 

2.3.5. Cycloserine enrichment 

Cycloserine enrichment was used to isolate transconjugants from the tri-parental conjugation 

step. Transconjugant P. fluorescens colonies were inoculated in 400 mL LB (with shaking) and grown 

overnight at 28°C without antibiotics to allow the loss of the chromosomally-integrated pUIC3 construct 

via homologous recombination.  The next day, 400 μL of the overnight culture were transferred into 20 

mL of LB containing Tc (10 μg/mL), and incubated (with shaking) at 28°C. After 2 hours, D-cycloserine was 

added to a final concentration of 800 μg/mL. This was allowed to incubate for an additional 5 hours. 

Cycloserine was added to kill actively growing tetracycline-resistant P. fluorescens cells, which selected 

for cells that had undergone a second round of homologous recombination, resulting in the loss of either 

the original pUIC3 construct or the target gene. After this step, a 1 mL aliquot of the suspension was 

removed, and cells were harvested by centrifugation at 13,000 rpm for 1 minute. Cells were washed and 

diluted in sterile water. The resulting cell suspension was plated onto LB plates containing Xgal (60 μg/ml) 
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and incubated for two days at 28°C. White colonies were selected and gene mutations were verified by 

PCR. 

 

2.3.6. Gene complementation 

The reconstruction of the PFLU0406 mutations and the deletion of PFLU4921-4925 was 

performed by Dr. Xue-Xian Zhang and Dr. Yunhao Liu using splicing by overlap extension (SOE) PCR Primer 

design, as described above. The csrA amplification in P. fluorescens SBW25 was made using gene 

complementation. Gene complementation was performed by cloning the PCR-amplified coding region of 

csrA into the multiple cloning site of pUC18-mini-Tn7T-LAC which contains an IPTG-inducible Ptac promoter 

(Choi et al., 2005). The resulting plasmid was introduced into P. fluorescens SBW25 by electroporation 

with the helper plasmid pUX-BF13 which carries the Tn7 transposon genes tnsABCDE (Bao et al., 1991). 

 

2.3.7. Construction of GFP-labeled P. fluorescens SBW25 

The P. fluorescens WT strain was genetically tagged with a mini-Tn7 transposon expressing GFP 

and a gentamicin resistance marker (miniTn7(Gm)PrrnB P1 gfp-a) (Lambertsen, Sternberg and Molin, 2004). 

The mini-Tn7 transposon system inserts as a single copy into the attTn7 site located just downstream of 

glmS which encodes an enzyme required for PG cell wall synthesis. The Tn7 transposon was transferred 

from E. coli pRK2013 by conjugation with help from the transposase plasmid, pUX-BF13 (Lambertsen, 

Sternberg and Molin, 2004). 

 

2.4. Experimental evolution 

Ten replicate populations of the ancestral ΔmreB strain were grown in 5 mL aliquots of LB broth 

at 28 °C with shaking at 180 rpm. Every 24 h, 5 μL was transferred to fresh media. Every 5 days samples 

of each population were collected and stored at -80°C in 15% (v/v) glycerol. 
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2.5. Competitive fitness assay using flow cytometry 

Competitive fitness was measured relative to the P. fluorescens SBW25 WT+GFP strain. Prior to 

the competition assay, competing strains were grown in 5 mL of shaken LB at 28°C overnight. The 

following day, 200 uL from each strain were mixed in 5 mL of fresh pre-warmed LB, then grown for 4h. 

This was done to ensure that the strains were in the same physiological state for the competition 

experiment. The initial ratio of WT+GFP and the competing strain was determined by counting 50,000 

cells using flow cytometry (BD FACS Canto). GFP fluorescence was detected using the 488 nm laser and 

the 530/30 bandwidth filter. Suitable dilutions of the initial population were plated on LBA agar plates to 

determine viable counts. The mix of WT+GFP and the competing strain was diluted 1000-fold in LB and 

incubated for 24 hours in shaken LB at 28°C. The final ratio and viable counts of the competing strains 

were determined using the same protocol. The number of generations for the competition experiment 

was determined following the formula ln(final population/initial population)/ln(2). Selection coefficients 

were calculated using the regression model s = [ln(R(t)/R(0))]/[t], where R is the ratio of WT+GFP to the 

competing strain, and t is the number of generations. Control experiments with WT vs. WT+GFP were 

performed to compensate for the fitness cost of the miniTn7 insert with the GFP marker. The competition 

assay was performed at least three time for each strain. 

 

2.6. Mutation Detection 

Genome sequencing of the strains used in this study was done by Dr. Heather Hendrickson. In 

order to detect mutations in the experimental lines, total DNA was extracted from the ancestral ΔmreB 

strain and from each of the 10 populations at 1,000 generations. Samples were submitted for 100 bp 

single-end Illumina DNA sequencing (AGRF). An average of 6,802,957 single reads were obtained per 

sample and these were aligned to the reference stain (NC_012660.1) to give approximately 100-fold 

coverage according to an alignment in Geneious (version 9.0.5 R9 http://www.geneious.com). Major 

mutations were then called if they were observed with a frequency of 0.75 or more in Geneious. 
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2.7. Microscopy and Image analysis 

Scanning electron microscopy was done by Niki Minards at the Manawatu Microscopy and 

Imaging Centre (MMIC), Massey University, Palmerston North. Cells were grown in LB and harvested in 

log phase. Cells were fixed in modified Karnovsky’s fixative then placed between two membrane filters 

(0.4 μm, Isopore, Merck Millipore LTD) in an aluminium clamp. Following three washes of Phosphate-

Buffered Saline (PBS) buffer (ThermoFisher Scientific), the cells were dehydrated in ethanol, placed in 

liquid CO2, then dried in a critical-point drying chamber. The samples were mounted onto aluminium stubs 

and sputter coated with gold (BAL-TEC SCD 005 sputter coater) and viewed in a FEI Quanta 200 scanning 

electron microscope at an accelerating voltage of 20 kV. 

Phase contrast and fluorescent images were taken using the BX61 upright microscope (Olympus) 

using the Cell^P and Cellsens programs (Olympus). Fluorescent images were captured for the 

lacO_pLICTRY strain  which had a CFP-labelled origin of replication, and for strains labelled with 4′,6-

diamidino-2-phenylindole (DAPI; ThermoFisher Scientific) and BODIPY-FL 3-amino-d-alanine (BADA; Hsu 

et al., (2017)). Images were first saved in TIFF format.  

To measure cell shapes, phase contrast images were converted from grayscale to a binary format 

(Figure 10) using ImageJ 1.51n (Fiji), following the workflow below: 

 

Images are converted to grayscale, if necessary:  

• Image> Type> 8 bit 

The image threshold is determined manually to ensure cells are selected properly and are separated from 

the background:  

• Image> Adjust> Threshold 

Pixel noise is reduced initially using automated commands: 

• Process> Binary> Open 

• Process> Noise> Remove Outliers 
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Large areas containing pixel noise or noise that has not been removed automatically can be further 

cleaned up by selecting the affected area then filling with the background colour: 

• Edit> Fill 

Cells are always set black against a white background. If the colours are reversed, the image is inverted:  

• Edit> Invert 

 

Ensuring the removal of all unnecessary pixels is necessary for proper analysis in CMEIAS, as 

described below. Images are then saved in TIFF format. 

 

Figure 10 Result of binary conversion from a raw tiff file following the protocol described above. The 
creation of a binary image with no noise is critical for cell shape measurements using CMEIAS. 
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2.7.1. Cell Shape Quantification using CMEIAS 

The Center for Microbial Ecology Image Analysis Software (CMEIAS) by Liu et al. (2001) was used 

to measure the cell shape of the strains used in this study. Prior to analysis, a calibration step was 

performed to set the correct scale for measurement. First, a phase contrast image with a correct scale bar 

was opened in CMEIAS. A line tool was used to measure the native scale bar, using the command: 

[Settings> Calibrate Spatial Measurements]. Once the measurement was made, the value of the scale bar 

in micrometres was entered. This sets the calibration for the current session. To save the calibration for 

later use, the measurement can be saved as a calibration file using: [Settings> Save Spatial Calibration].  

After setting the spatial calibration, cell measurements were set to be recorded with an accuracy of 6 

decimal places. This is performed in: [Settings> Preferences> Measurement Features]. 

To perform image analysis, converted TIFF images were first opened in CMEIAS. Cells were 

identified using the Find Objects button or using: [Analysis> Object Analysis> Find Objects]. This opens the 

“Find Objects Using the Brightness Threshold” window. Since the images have already been processed in 

ImageJ, “None” is selected. If the image was prepared in ImageJ correctly, cells will be identified and 

labelled automatically. It is important to note that stray pixels in the image will cause CMEIAS to crash. 

Finally, cell shape metrics were acquired using: [Analysis> Object Analysis> Object Analysis]. Results were 

then copied and saved in an Excel worksheet (Microsoft). 

Measurements from at least 100 cells were collected for each strain. The information is collated 

in Excel (Microsoft). The filenames of the images used were noted and the Object Numbers were used as 

specific cell identifiers. The important metrics used for analysis were “Compactness” for measuring cell 

roundness, and “Length” and “Width” for computing the cell volume, as described below: 

 

The basic equation for the volume of a cylinder was used to compute the volume of rod-shaped cells: 

volcylinder = π x radius2 x height       (1) 

which was then interpreted as: 



37 
 

volcylinder = π x (width/2)2 x length      (2) 

The volume of the cell poles was computed separately, so length was modified to remove the radius of 

the hemispherical cell poles: 

volcylinder = π x (width/2)2 x (length - width)     (3) 

The volume of the cell poles was computed separately using the basic equation for the volume of a sphere: 

volsphere = 4/3 x π x radius3       (4) 

which was then interpreted as: 

volsphere = 4/3 x π x (width/2)3       (5) 

Finally, the volume of rod-shaped cells was computed using the combination of equations 3 and 5: 

volrod shaped cells = (π x (width/2)2 x (length - width)) + (4/3 x π x (width/2)3) (6) 

The cell volume of spherical cells was computed using the basic equation for spheroid objects: 

volspheroid = 4/3 x π x a2 x c       (7) 

where a is the radius along the long axis; and c is the radius along the short axis. 

This was then interpreted as:  

volspherical cells = 4/3 x π x (length/2)2 x width     (8) 

 

2.7.2. Cell shape (compactness vs volume) charts 

Cell shape charts were prepared from the binary images that were previously processed in ImageJ. 

First, binary images were imported into Adobe Illustrator. Outlines of the cells were created by selecting 

the imported image, then running [Image Trace], followed by the [Embed] command. The selection was 

ungrouped, then the background and other unnecessary layers were deleted. This created individual 

objects in Adobe Illustrator, representing each cell. For clarity, illustrator objects will still be referred to as 

cells. Cells were arranged according to the object identifier assigned by CMEIAS. The long axis of the cells 

was then oriented along the horizontal axis.  
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Using the collated cell measurements in Excel, a dot plot was created with cell volume in the Y-

axis and compactness in the X-axis. This dot plot was imported into Adobe Illustrator and used as the 

refence for positioning each cell in the cell shape chart. Cells were then moved to their corresponding 

locations in the dot plot. Strains were arranged in separate layers for easy modification. Special attention 

was given to ensure that the scale of the imported cell outlines was maintained in all the cell shape charts.  

 

2.8. PG isolation and UPLC analysis 

To isolate the PG cell wall, cultures were initially grown from frozen stocks overnight in 5 mL 

shaken LB at 28°C. Overnight cultures were transferred 1:100 into 250 mL of LB then grown under the 

same conditions until it reached mid-exponential phase at an OD600 of 0.2 to 0.4. As the 250 mL cultures 

were growing, a boiling water bath was prepared on a hot plate. The water bath held 50 mL Falcon Tubes 

containing 6 mL of 6% sodium dodecyl sulfate (SDS). A small magnetic stirring bar was added to each 

Falcon Tube to continually mix the SDS solution in the water bath, then secured with tube caps.  

As the SDS solutions are mixing, cells from the 250 mL cultures are harvested at 5,000 x g for 10 

minutes at room temperature. Pellets are resuspended in 3 mL LB, then immediately pipetted into the 50 

mL Falcon Tubes containing the boiling SDS solution. Slow and careful (drop by drop) addition of the 

concentrated cells into the SDS solution yields a clear solution (SDS lysate) with a final concentration of 

4% SDS. Tubes are capped, then the SDS lysates are allowed to stir in the boiling water bath for 3 hours.  

As the water bath is boiling, water levels are regularly checked to ensure even heating and mixing of the 

SDS lysates, which prevents unnecessary damage to the PG structure. After 3 hours, the heat is turned 

off, but the lysates are kept on the hot plate to continue mixing overnight.  

One Falcon Tube prepared in this manner is used for the isolation of PG from one replicate sample 

for each strain. Multiple replicates are prepared for each strain. Improper PG isolates (i.e. SDS lysates that 

do not become clear, indicating incomplete cell lysis) are discarded. The PG isolated were sent to the 

laboratory of Felipe Cava at Umea University for PG analysis using Ultra Performance Liquid 
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Chromatography (UPLC). UPLC analyses of muropeptides were performed at an absorbance of 202-208 

nm in a 30-minute run (Alvarez et al., 2016). Muropeptide identities were determined based on published 

peak identities (Desmarais et al., 2015; Alvarez et al., 2016; Espaillat et al., 2016).  

 

2.9. Fluorescent D-amino acid staining 

Short-pulse experiments were performed using the Fluorescent D-Amino Acid, BADA (Hsu et al., 

2017), following the protocol of Michael Van Nieuwenhze’s lab (Kuru et al., 2015). A stock solution of 

BADA was prepared by diluting BADA in Dimethyl sulfoxide (DMSO) to a concentration of 100 mM. From 

this, 1 µL was added to a 1.7 mL Eppendorf tube then prewarmed to 28°C. Next, 1mL of exponential 

culture with an OD600 of ~0.4 was typically pelleted at 10,000 x g in a microcentrifuge at room temperature 

for 1 minute. The ΔmreB strain which was sensitive to mechanical stress was spun at a lower setting (2,000 

x g) for 1 minute to minimise cell death. The pellet was resuspended in 100 µl of prewarmed LB medium 

then added to the prewarmed, FDAA-containing Eppendorf tube to get a final FDAA concentration of 1 

mM and a DMSO concentration of 1% (vol/vol) in LB medium. 

Next, the tube was incubated with shaking at 28°C for 20% of the strain’s generation time. 

Following this, 230 µl of ice-cold 100% ethanol was added to get a final ethanol concentration of 70% 

(vol/vol). Add an additional 1 ml of ice cold 70% ethanol was added to contribute to the removal of the 

excess dye. Cells were fixed on ice for 15 min then washed with 1 ml of 1 × PBS three times to remove 

excess FDAA. Finally, cells were resuspended in 20–100 µl of PBS which was then used for microscopy. 

Cells suspended in PBS that were not immediately analysed were resuspended in 20–100 µl of PBS + 10% 

(vol/vol) DMSO and stored at -20°C. 

 

2.10. Molecular modelling of PBP1A 

The nucleotide sequence of PFLU0406 was obtained from NCBI BLAST and The Pseudomonas 

Genome Database and submitted to I-TASSER (Iterative Threading ASSEmbly Refinement) to create a 
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molecular model of the PBP1a protein in P. fluorescens SBW25. Briefly, I-TASSER identifies and retrieves 

structural templates of similar proteins from the Protein Database (PDB) library using an online service 

(Local Meta-Threading Server – LOMETS) for protein structure prediction. Matching protein fragments 

were extracted then reassembled into base models using replica-exchange Monte Carlo simulations. 

Structures were built by ab initio modelling for unaligned regions, or when no matching template is found. 

Simulation decoys were made, and probable models were identified by a clustering algorithm (SPICKER) 

before being remodelled. Final models were made by a protein structure construction algorithm (REMO). 

Biological functions were then determined by cross-referencing the predicted protein models to 

independent libraries looking at proteins of known enzyme classification (EC) number, gene ontology (GO) 

vocabulary, and ligand-binding sites. The protein model with the best prediction value (C-score) was then 

used for visualisation and further analysis. These steps are summarised below (Figure 11). 

 

 

Figure 11 A schematic representation of the I-TASSER protocol for protein structure and function 
predictions. Adapted from Roy, Kucukural and Zhang (2010). 
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The protein model selected from the I-TASSER results was downloaded as a .pdb file and opened 

in the Visual Molecular Dynamics (VMD) program. Once the molecule has been loaded in VMD, the 

following steps were performed to create the visualisations of PBP1a presented in this paper. 

1. Change background to white: 

Graphics> Colors> Categories: Display> Names: Background> Colors: 8 white 

2. Change representation to New Cartoon: 

Graphics> Representations> Drawing Method: New Cartoon 

3. Change colour to grey and make transparent: 

Selected Atoms: all> Coloring Method: ColorID: 2 gray> Material: Glass2 

4. Overlay functional domains: 

Create Rep> Selected Atoms: residue # to #> Coloring Method: ColorID: user select> Material: 

Opaque 

5. Highlight residues of interest: 

Create Rep> Selected Atoms: residue # to #> Drawing Method: VDW> Coloring Method: ColorID: 

user select> Material: Opaque 

6. Confirm residue identity using the Sequence Viewer tool: 

Extension> Analysis> Sequence Viewer 

 

For comparison, the published crystal structure of Acinetobacter baumannii PBP1a in complex 

with Aztreonam was also visualised (PBP1a from A. baumannii shares a 73% sequence identity (E value = 

0.0) to the PBP1a of P. fluorescens SBW25). Sequences were aligned, and locations of the mutations in the 

evolved lines were mapped in the corresponding regions. The PDB file was downloaded from the RCSB 

Protein Data Bank (www.rcsb.org) using PDB ID 3UE0. 
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2.1. Molecular phylogenetic analysis 

The evolutionary history of 31 species (30 paired rod and spherical bacteria rooted to one archaeal 

representative) was inferred using 16S rRNA sequences mined from the Ribosomal Database Project 

(https://rdp.cme.msu.edu) and constructed using the Maximum Likelihood method based on the Tamura-

Nei model. The tree with the highest log likelihood (-14554.96) is shown. Initial tree(s) for the heuristic 

search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then 

selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. All positions containing gaps and missing data were 

eliminated. There were a total of 1108 positions in the final dataset. Evolutionary analyses were 

performed using MEGA X (Kumar et al., 2018). To analyse the presence of MreB and PBP homologues in 

these 31 species, homologues were found using Protein BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

using the protein sequences of E. coli str. K-12 substr. MG1655.  
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Chapter 3  

Characterisation of ΔmreB and WT 

 

3.1. Introduction 

MreB is an important cell shape determining protein for most rod-shaped bacteria (White and 

Gober, 2012). Knockout studies have shown that the deletion of MreB causes rod-like bacteria to lose 

their shape and regress into spherical cells (Jones, Carballido-López and Errington, 2001; Cabeen and 

Jacobs-Wagner, 2005; Formstone and Errington, 2005; Kruse, Bork-Jensen and Gerdes, 2005). Using 

typical media under normal laboratory conditions, the deletion of MreB in these model organisms like E. 

coli, B. subtilis, and C. crescentus has always led to severe morphological defects which ultimately lead to 

cell death. In B. subtilis, MreB was shown to be important for the maintenance of cell width and cell 

viability as the deletion of mreB resulted in a lytic phenotype composed of severely swollen cells 

(Formstone and Errington, 2005). Only with the addition of high concentrations of magnesium were the 

effects of mreB deletion reversed and normal growth achieved (Formstone and Errington, 2005). 

Altogether, these processes point to the existence of mechanisms that guide and direct PG synthesis, and 

therefore shape, in bacterial cells.  

In this chapter, I will present the phenotypic effects of MreB loss in P. fluorescens SBW25. My 

objective is to determine whether the characteristics seen in the ΔmreB strain are indeed due to the loss 

of MreB. To answer this, I will study the morphology, particularly cell shape, physical integrity, and PG cell 

wall construction of ΔmreB, and relate the findings to previously reported results. I will investigate the 

effect of supplemental Mg2+ which has been shown to rescue defects caused by the loss of MreB. I will 

determine if cell division defects are present, which have also been attributed to MreB-loss. And finally, 

by studying the characteristics of ectopically-producing MreB strains, I will be able to verify if the 

phenotype observed in ΔmreB is indeed a result of MreB-loss. 
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3.2. Results and Discussion 

 

3.2.1. ΔmreB cells are spherical and highly variable in size 

The hallmark characteristic of MreB loss in other rod-like bacteria such as E. coli and B. subtilis is 

the formation of spherical or bulging cells that ultimately die (Jones, Carballido-López and Errington, 2001; 

Kruse et al., 2003). Similar changes in cell shape were seen in P. fluorescens SBW25 – phase contrast and 

scanning electron microscopy (SEM) reveal that ΔmreB cells are spherical to ovoid, and display a high 

variability in cell size compared to the rod-like WT strain (Figure 12).  

 

 

Figure 12 Phase contrast and scanning electron micrographs of WT and ΔmreB. WT cells are typical rod-
shaped cells with tapered ends. ΔmreB cells are large and spherical to ovoid. SEM images are false-
coloured. Scale bar = 5µm. 
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To measure the differences in cell shape between WT and ΔmreB, cell outlines were derived using 

Fiji – ImageJ (Schindelin et al., 2012; Schneider, Rasband and Eliceiri, 2012) and quantified using the image 

analysis software CMEIAS (J Liu et al., 2001; Dazzo et al., 2013). Among the many measurements taken by 

CMEIAS, a metric called “compactness” was determined to be effective in categorising cells by shape, 

based on a principal component analysis (Figure 13) of all the measurements taken by CMEIAS. 

Compactness ranges from 0 to 1 – a convenient measure for comparing cells with different shapes. Cells 

with a value of 1.0 appear perfectly spherical whilst cells with a compactness value of 0.7 and below are 

typically rod-shaped. Other metrics (i.e. cell volume and surface area) were later computed from the 

length and width values recorded by CMEIAS.  

 

Figure 13 Principal component analysis (PCA) shows cell shape metrics from CMEIAS clustering together. 
Ratio of width to length (WLR), roundness, compactness, and aspect ratio can all be used to separate cells 
based on shape. (i.e. distinguishing rods from spheres). In this study, compactness was ultimately used as 
the primary way to classify cells based on shape as it uses an intuitive scale that ranges from 0 for 
elongated cells to 1 for spherical cells. Furthermore, it takes into account Feret diameter, a measurement 
commonly used to analyse cell size from photomicrographs (Hvichia et al., 2016). This data was kindly 
provided by Dr. Olin Silander using PCA analysis in R (Team and R Development Core Team, 2016). 
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WT cells range in compactness from ~0.40 for dividing cells to ~0.70 for single short rods. These 

cells display a strong linear relationship between volume and compactness (R2 = 0.64), where cells 

decrease in compactness as they become longer (Figure 14). This reflects the linear growth of dividing 

rod-shaped cells. WT cells range in volume from ~1.20 µm3 to ~6.00 µm3, averaging 3.27 µm3 (SD ± 0.94 

µm3; n = 100).  

In contrast, the ΔmreB cells range in compactness from ~0.7 to ~1.0, having cells that are almost 

perfectly spherical. Cells that have initiated septation have lower compactness values than those that 

have not, demonstrating that dividing cells still undergo elongation during cell division. Dividing ΔmreB 

cells show only a very weak correlation between compactness and cell volume (R2 = 0.08) (Figure 14), 

suggesting that ΔmreB cells initiate cell division more erratically than WT. However, it is notable that all 

dividing cells have compactness measures of less than 0.9, with 89% which falling below a compactness 

of 0.85. This implies that ΔmreB cells need to have a compactness of ~0.85 for cell division to be initiated. 

The ΔmreB cells are also more variable in size, ranging from ~1.10 µm3 to ~90 µm3, averaging 20.65 µm3 

(SD ± 16.17 µm3; n = 100) (Figure 14). 

 

 

Figure 14 Cell volume vs compactness. In rod-shaped WT cells, a strong inverse relationship is seen 
between compactness cell volume. This relationship is not as strong in ΔmreB. 
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The surface area-to-volume (SA/V) ratios were also computed based on the length and width of 

the cells. It shows WT cells having a SA/V of 3.49 (SD ± 0.21; n = 100) (Figure 15). For comparison, this 

SA/V is similar to the measured SA/V of ~3.5 in E. coli (Harris and Theriot, 2016a). On the other hand, 

ΔmreB shows a significantly lower SA/V of 1.46 (SD ± 0.52; n = 100; p < 0.05, two-sample t-test) resulting 

from the greatly increased width of ΔmreB cells. 

 

 

Figure 15 Morphological characteristics of WT and ΔmreB. A) Compared to WT, ΔmreB cells are wider and 
display a greater variability of length and width. Furthermore, SA/V measurements show a vast decline in 
ΔmreB, whereas WT cells display an SA/V that is typical of rod-shaped bacteria like E. coli. B) WT cells 
typically have a compactness <0.7 and display a strong correlation between cell size and compactness. 
ΔmreB cells are ovoid to spherical, and have large volumes reaching ~90 µm3. 
 

 

Here, I show that MreB loss in P. fluorescens SBW25 likewise leads to the formation of misshapen 

cells. Particularly, ΔmreB exhibited a near-spherical morphology (Figure 14), demonstrating that our strain 

has had a complete loss of all MreB-related shape determining functions as discussed by Jones, Carballido-

López and Errington, 2001. Similar spherical morphologies were observed in E. coli right before cells 

started to lyse (Kruse, Bork-Jensen and Gerdes, 2005). MreB makes rod-shaped cells by conferring a 

mechanical force to the cell (Jiang et al., 2011), and by coordinating the function of cell wall synthesis 

enzymes responsible for lateral growth (Kawai, Daniel and Errington, 2009; White, Kitich and Gober, 

2010). The loss of MreB, either by depletion or inhibition with drugs (i.e. A22), makes cells increase in 
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diameter and stop elongation (Gitai et al., 2005; Takacs et al., 2010). Therefore, the spherical cells in 

ΔmreB are a result of a loss of mechanical support from MreB, and of PG mislocalisation during growth. 

 

3.2.2. ΔmreB grows poorly, has many dead cells, and has decreased fitness 

WT cells grown in shaken LB has a generation time of 45 minutes, entering stationary phase upon 

reaching a maximum OD600 of ~1.6. The ΔmreB strain grows at a slower rate, having a generation time of 

65 mins, entering exponential phase after 12 hours of incubation. ΔmreB enters stationary phase after it 

reaches a maximum OD600 of 0.8 to 1.0 (Figure 16).  

 

 

Figure 16 Growth characteristics of WT and ΔmreB in shaken LB at 28°C. ΔmreB has diminished growth 
characteristics compared to WT including a prolonged lag time, longer generation time, and lower 
maximum OD. 
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Live/Dead assays assessed using microscopy revealed many dead cells in the ΔmreB population 

(Figure 17). Following the standard LIVE/DEAD BacLight Bacterial Viability Kit protocol (pelleting the cells 

at 10,000 x g for 2 minutes), WT cultures only had 6.88% (SD ± 0.58%; n > 100; 3 biological replicates) dead 

cells in exponentially growing populations, whereas ΔmreB had significantly more dead cells at 41.25% 

(SD ± 9.09%; n > 100; 3 biological replicates; p < 0.05, two-sample t-test). Notably, the number of dead 

cells seen in ΔmreB decreased to 21.75% SD ± 1.11% (n > 100; 3 biological replicates) when cells were 

pelleted at a slower rate of 2,000 x g for 2 minutes, indicating that the ΔmreB cells are fragile and are 

more prone to mechanical damage than WT cells. The difference in dead cells for the WT population 

between slow and fast centrifugation was not significant (p = 0.48, two-sample t-test)  

 

 

Figure 17 Live/Dead Viability Assay. Exponentially growing ΔmreB populations have significantly more 
dead cells than WT populations (p < 0.001). ΔmreB shows sensitivity to mechanical stress as more dead 
cells are seen when cells are pelleted at a 10,000 x g than at 2,000 x g. 

 

Despite suffering growth defects, we have shown that the ΔmreB strain remains viable in standard 

growth conditions. To date, no other ΔmreB strain has remained viable in standard media under standard 

growth conditions. The closest candidate would be an ΔmreB strain of B. subtilis, but this only remained 

viable in special media (with additional Mg2+) (Formstone and Errington, 2005). Therefore, this discovery 
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provides an opportunity for investigating the consequences of MreB-loss using P. fluorescens SBW25 as a 

model organism. Despite remaining viable, growth assays have shown ΔmreB to be growing more slowly 

compared to WT SBW25. To investigate further, I measured relative fitness to determine how well ΔmreB 

is doing compared to the ancestral WT population. Fitness is defined as the ability of an organism to 

survive and reproduce in a given environment (Orr, 2009). Specifically, we used relative fitness in order to 

compare the data with the fitness of WT. This is an important measure that is used later in the evolution 

experiment.  

To measure relative fitness, ΔmreB was competed against WT in pairwise competition assays via 

flow cytometry and also via a traditional plate count method for comparison. In order to distinguish ΔmreB 

from WT, a chromosomally-labelled WT+GFP strain was constructed using a mini-Tn7 transposon system 

(Lambertsen, Sternberg and Molin, 2004), and used as the competitor. Competing the WT+GFP strain 

again the WT strain demonstrated that GFP production has no negative effect on the relative fitness of 

WT+GFP. The GFP strain had equal fitness to WT (selection coefficient = 1.00; SD ± 0.01; 3 biological 

replicates) whilst ΔmreB showed a significantly lower fitness of 0.78 (SD ± 0.02; 3 biological replicates; p 

< 0.05, two-sample t-test). A similar effect was seen using a standard plate count method, where ΔmreB 

had a significantly lower fitness of 0.73 (SD ± 0.05; 3 biological replicates; p < 0.05, two-sample t-test) 

compared to the GFP strain (1+ s = 0.94; SD ± 0.04; 3 biological replicates) (Figure 18). 
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Figure 18 Competitive fitness assays show a marked decline in fitness in the ΔmreB strain. This pattern 
was seen using both a traditional plate count method and using flow cytometry (50,000 events). 

 

It is worth noting that recreating the ΔmreB strain proved challenging as mutants were difficult to 

get in later trials. In two attempts, mutants were retrieved but the cells were smaller, and cultures became 

turbid after only an overnight incubation – by comparison, ΔmreB only becomes turbid after two nights. 

This suggests the presence of additional mutations that are compensating for the loss of MreB. I was able 

to create a new ΔmreB strain that had similar cell morphologies to the original strain (verified by 

microscopy and PCR), reinforcing the feasibility of MreB deletion in P. fluorescens SBW25. However, this 

strain had a smaller average cell volume (Figure 19). These results imply that the cells are under a high 

selection pressure, highlighting the deleterious nature of MreB loss. 
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Figure 19 A new ΔmreB strain was created using SOE-PCR and tri-parental conjugation. A) The new ΔmreB 
strain had a smaller average volume compared to the ancestral ΔmreB strain but displayed similar 
compactness values. B) The deletion of MreB was verified by PCR – colony no. 8 (pure colony) with the 
~260bp MreB-deletion fragment was selected as the example shown in (C); microscopic analysis shows 
similar, albeit smaller, morphologies to ancestral ΔmreB. Scale bar = 5µm. 
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3.2.3. ΔmreB has cell division defects 

Using size as a proxy for growth, it has been shown that DNA content is tightly regulated and 

directly scales with cell growth in bacteria (Vargas-Garcia, Ghusinga and Singh, 2018). The relationship 

between DNA content and cell size was found to be a useful indicator for identifying cell division defects 

in E. coli. By labelling the origin and terminus regions of the E. coli chromosome, Kruse et al. (2003)  found 

that chromosome copy numbers increased together with cell size in MreB-null E. coli mutants which were 

unable to divide due to a chromosome segregation defect.  

I wanted to investigate if cell division is likewise compromised in ΔmreB. To study this, I used 

electron microscopy to look for signs of incomplete septa on the cell surface, as observed in other MreB-

null mutants. I then used DAPI staining to observe chromosome segregation. Next, I used flow cytometry 

to see if the large cell sizes of ΔmreB cells correlate with increasing DNA content. Finally, I used a strain of 

P. fluorescens that had a fluorescently-labelled origin of replication to see if chromosome copy numbers 

increase together with cell size. Results are presented below. 

 

3.2.3.1 ΔmreB cells form incomplete septa and show incomplete chromosome segregation 

Features resembling incomplete septa can be seen in ΔmreB, particularly in large cells (Figure 20). 

This phenotype is consistent with cell morphologies seen in other MreB-null strains (Thanedar and 

Margolin, 2004; Kruse, Bork-Jensen and Gerdes, 2005; Shih, Kawagishi and Rothfield, 2005). In E. coli, 

Corbin et al. (2002) found similar structures which proved to be aberrant division planes forming partial 

Z-arcs around the MreB-depleted cells. Other groups showed that these partial septa form as a result of 

FtsZ-mislocalisation caused by the highly variable Min oscillation patterns (Corbin, Yu and Margolin, 2002; 

Huang and Wingreen, 2004; Thanedar and Margolin, 2004; Wu et al., 2015). This indicates that although 

cell division can still proceed in cells that have lost MreB, the process could be hindered by incorrect 

placement of the division plane around the cell (Shih, Kawagishi and Rothfield, 2005).  
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Figure 20 Morphological features resembling incomplete septa are seen in ΔmreB, indicated by yellow 
arrows. 
 

Another factor that affects cell division is the correct partitioning of the nucleoid. In dividing WT 

cells, chromosomes stained with DAPI show clear separation from the septum. In contrast, some dividing 

ΔmreB cells show the presence of bulk DNA in the path of the constricting septum (Figure 21). These 

results suggest that chromosome segregation is defective in ΔmreB. Spherical cells that have trouble 

segregating replicated chromosomes may prevent septa from forming correctly due to the presence of 

DNA. Cambridge et al., (2014) demonstrated using E. coli that the accumulation of multiple chromosomes 

at mid-cell blocks Z-ring formation and cell division. In addition, It has been suggested that MreB plays a 

role in the segregation of ori-proximal regions in C. crescentus (Gitai et al., 2005). This is not the case for 

E. coli nor B. subtilis (Kruse and Gerdes, 2005; Karczmarek et al., 2007). Whether this is true for ΔmreB or 

not has not been tested. In the future, further investigation using a chromosomally-labelled ΔmreB strain 

observed via time-lapse microscopy will help elucidate the relationship between chromosome 

segregation and MreB in P. fluorescens SBW25. 
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Figure 21 DAPI staining of WT and ΔmreB. A) Non-dividing WT cell showing a compact nucleoid in the 
centre of the cell. B) Dividing WT cell showing well-segregated nucleoids in forming daughter cells. C) 
Large dividing ΔmreB cell with the nucleoid blocking the constricting septum. A smaller non-dividing cell 
is also seen with the nucleoid in the centre of the cell. D) Dividing ΔmreB cell showing segregated nucleoids 
in the forming daughter cells. 
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3.2.3.2 ΔmreB has numerous copies of its chromosome 

To test if DNA content scales with cell size in P. fluorescens SBW25, I first analysed WT and ΔmreB 

using flow cytometry. Flow cytometry was used to get large populations of cells, which would help form 

a robust comparison. This was done by staining exponentially growing WT and ΔmreB with the fluorescent 

stain, SYTO16, followed by flow cytometry analysis. SYTO16 is a membrane-permeable DNA-binding stain 

which makes it useful for quantifying DNA in both live and dead cells. Flow cytometry revealed that in 

both WT and ΔmreB, cell size (FSC-A) does indeed scale with DNA content (FITC-A). This is especially 

apparent in ΔmreB, where large cells are seen to have many times the amount of DNA seen in WT (Figure 

22). 

 

Figure 22 Flow cytometry reveals that cell sizes correlate with DNA content in both WT and ΔmreB. Cell 
size was measured using FSC-A, and DNA content was measured using the FITC-A channel which excites 
the nucleic acid stain SYTO16. FSC-A and FITC-A data is derived from the same population for 50,000 cells. 
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Uninterrupted growth has been attributed to cell division defects in ΔmreB E. coli mutants (Fenton 

and Gerdes, 2013). Kafri et al. (2013) previously used DNA content measurements to show that cell growth 

is linked to the cell cycle. Following this, I used chromosome copy number as an indicator of unabated cell 

cycle progression is P. fluorescens SBW25. To simulate the effects of MreB loss, I used the drug A22 (Iwai, 

Nagai and Wachi, 2002) on a strain of P. fluorescens SBW25 that had a fluorescently labelled origin 

(lacO_pLICTRY; Akarsh Mathrani, unpublished results). A22 directly binds and induces a low-affinity state 

to MreB (Bean et al., 2009), and the fluorescently-labelled strain produces a brightly-labelled focus at the 

Tn7 site downstream of the glmS region near ori, allowing me to quantify chromosome copy numbers in 

P. fluorescens SBW25. 

Prior to using the lacO_pLICTRY strain, a time-lapse experiment using WT cells was first done to 

confirm that A22 has the same effect on P. fluorescens SBW25 as it does in E. coli. Results show that A22 

does indeed make the rod-shaped WT cells increasingly shorter and wider, ultimately producing ovoid 

cells. A22 does this by disrupting the polymerisation of MreB (Kawazura et al., 2017). After growing in A22 

for 1 hour, WT cells became wider, developing a bloated morphology. After 2 hours, cells continued to 

become wider, becoming lemon-shaped, a phenotype seen in C. crescentus cells depleted of MreB (Figge, 

Divakaruni and Gober, 2004). After 3 hours, many of the cells have started losing their pointed poles, 

becoming ovoid (Figure 23A). These cells were allowed to continue growing in the presence of A22 

overnight. The following day, the cells were subcultured into fresh LB with A22, and imaged upon reaching 

log phase. Image analysis confirm that these cells are now almost perfectly spherical with a compactness 

of 0.92 (SD ± 0.08; n > 100). This is very similar to the compactness of ΔmreB which measures 0.89 (SD ± 

0.09; n > 100) (Figure 23B). 
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Figure 23 Rod-shaped P. fluorescens SBW25 cells becomes spherical when grown in the presence of A22. 
A. Rod-shaped cells lose control of width and grow into short and wide (ovoid) cells over time. B. 
Subcultured lacO_pLICTRY cells that continue to grow in A22 exhibit a near spherical morphology, with 
compactness values that are very similar to ΔmreB.  
 

Seeing that A22 has the same effect on P. fluorescens SBW25 as in other model bacteria, I then 

grew the fluorescently labelled lacO_pLICTRY strain in LB with A22. The same protocol was observed, cells 

were grown in A22 overnight, then subcultured and grown with A22 to exponential phase the following 

day. Following this, cells were harvested and observed under the microscope. Typically, rod-shaped cells 

(lacO_pLICTRY cells not grown in A22) have between 2 to 4 ori-proximal foci (ave. = 2.4; SD ± 0.77; n > 50). 

In contrast, spherical cells that were grown in A22 showed significantly more foci than their rod-shaped 

counterparts (ave. = 4.26; SD ± 2.25; n = 50; p < 0.05, two-sample t-test) (Figure 24).  
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Figure 24 Rod-shaped lacO_pLICTRY cells with fluorescently labelled ori- typically show an average of 2 
foci (top left). When grown in A22, these cells grow as spheroids with an average of 4 foci. The bottom 
panel shows that the number of foci in these cells increase with cell size. 

 

Furthermore, I found that the number of fluorescent foci in spherical lacO_pLICTRY cells show a 

strong positive correlation with cell size (R2 = 0.74) (Figure 25A), confirming what was previously observed 

using flow cytometry. Smaller cells with cell volumes < 4 µm3 make up more than 60% of the population 

and have between 2 and 4 foci. Larger cells with cell volumes measuring 5-8 µm3 make up around 30% of 

the population and have between 5 to 8 foci. The remainder of the population are comprised of massive 

cells with cells volumes > 8 µm3 with or more foci (Figure 25B). 
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Figure 25 Cell size positively scales with chromosome copy numbers in spherical P. fluorescens SBW25 
cells. A) The number of ori-proximal foci increase with cell size (n = 50). B) Most cells (63%) typically have 
between 2 to 4 foci. About 30% of the population are larger cells that have 5 foci or more. 
 

The accumulation of more than 4 foci (the maximum number of foci seen in rod-shaped cells) 

coupled with a steady increase in cell volume indicate that cells have lost the ability to divide and instead 

keep growing into large cells. This is consistent with observations in MreB-null E. coli (Kruse et al., 2003) 

where chromosome copy numbers increase with cell size, and with the general understanding that DNA 

content increases with cell size in bacteria (Shi et al., 2017; Si et al., 2017). These results show that a cell 
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division defect exists in ΔmreB, and support the idea that MreB loss impairs cell division in bacteria that 

have a native rod-like shape (Fenton and Gerdes, 2013). 

 

3.2.4. Magnesium improves the growth of ΔmreB 

It was previously reported that an ΔmreB mutant can be rescued with the addition of magnesium 

to its growth medium. In B. subtilis, an mreB-depleted strain that would normally swell and burst retained 

its rod-shaped morphology and maintained a WT growth rate when supplemented with 25 mM Mg2+ 

(Formstone and Errington, 2005). This effect was also seen, to a lesser extent, in MreC and MreD mutants 

(Leaver and Errington, 2005). So, I wanted to know if supplementing LB with Mg2+ can improve the growth 

of ΔmreB. By comparing the growth dynamics of ΔmreB cultures grown with or without supplemental 

Mg2+, I found that adding Mg2+ to LB does indeed improve ΔmreB growth, up to a point (Figure 26). 

In ΔmreB, additional magnesium did not revert the spherical cells to a rod-like. However, growth 

improvements were seen with supplemental Mg2+. With an additional 10 mM Mg2+, ΔmreB in LB had a 

shorter lag time and reached a higher maximum OD600 of 1.10. With 20 mM additional Mg2+, ΔmreB 

reached a higher maximum OD600 of 1.05. Additional Mg2+ was no longer beneficial as 30 to 50 mM Mg2+ 

actually slowed the growth of ΔmreB. Additional Mg2+ had no effect on WT (Figure 26). 
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Figure 26 Effects of Mg2+ on growth. Additional Mg2+ has no beneficial effect on WT cells. In ΔmreB, 
additional Mg2+ improves growth at 10-20mM concentrations by shortening lag time and increasing 
maximum OD. Higher amounts of Mg2+ show the opposite effect, slowing growth and lowering 
maximum OD. Error bars represent SD of 3 biological replicates. 

 

It is unclear how supplementary Mg2+ improves growth, but there are three possibilities from the 

literature that come to mind: Mg2+ improves cell wall integrity possibly by cross-linking with PG, Mg2+ 

promotes proper septation and, finally, Mg2+ helps in the coordination of PG synthesis. I will explain 

further in the sections below. 
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The first possibility is that Mg2+ is boosting cell wall integrity, thereby allowing more ΔmreB cells 

to survive and/or grow better. In ΔmreB, as much as 40% of cells die from a standard centrifugation step 

(10,000 x g for 2 minutes), compared to only 20% from a slower setting (2,000 x g for 2 minutes) (Figure 

17). The increase in cell death in ΔmreB could be caused by the lysis of “weakened” cells. An early study 

by Rayman & MacLeod (1975) showed that in the marine Pseudomonad B-16, Mg2+ can prevent cell lysis 

by improving cellular integrity, possibly by cross-linking with PG. They found that the amount of Mg2+ 

needed to prevent lysis doubles when cellular integrity is compromised by the formation of mureinoplasts 

– a state where the outer membrane and periplasmic space are removed. Crosslinks between Mg2+ and 

PG have also been proposed for P. aeruginosa (Asbell and Eagon, 1966). In the halophilic bacterium 

Haloarcula japonica, magnesium is necessary for maintaining the structural integrity of its cell wall 

(Nakamura et al., 1997). Removal of magnesium from the growth medium resulted in cells shedding parts 

of their cell wall, eventually turning into spheres. More recently, the study of Formstone & Errington 

(2005) demonstrated that the lysis of MreB-deficient cells was initiated by cell-to-cell contact – possibly a 

result of cells having a lower resistance to osmotic or mechanical stress. This defect was also mitigated by 

the addition of extra Mg2+.  

The second possibility is that Mg2+ is required for cell division to occur properly. Murray et al. 

(1998) argued that Mg2+ may be a requirement for septation as B. subtilis cells produce filaments if grown 

in low Mg2+, and that extra Mg2+ is able to suppress defects in mutants lacking MreD which has been linked 

to cell division (Varley and Stewart, 1992). From their study, Murray et al. (1998) demonstrated that 

filamenting PBP1a mutants produced normal septation patterns when higher concentrations of Mg2+ are 

used. Furthermore, Vibrio parahaemolyticus cells that had cell division defects as a result of MreB 

overexpression were largely rescued by the addition of 25 mM Mg2+ (Shen W. Chiu, Chen and Wong, 

2008). The link between magnesium and cell division may also apply to P. fluorescens SBW25. In this 

organism, the deletion of MreB is detrimental to growth, producing cells that grow poorly – possibly due 

to a cell division defect. The addition of 10 to 20 mM Mg2+ to ΔmreB improves growth, allowing cells to 
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enter exponential growth sooner and reach a higher maximum OD. It is possible that the loss of MreB 

raises the requirement for Mg2+ during cell division, which is then met by the supplemental Mg2+ added 

to LB. In line with this, WT cells are not affected by extra Mg2+. My results show that 10 mM Mg2+ provides 

the best growth improvement – shortening lag time and allowing the highest amount of growth. This 

beneficial effect decreases as Mg2+ increases, especially beyond 20 mM Mg2+ (Figure 26). It is unknown 

why growth is impaired by higher amounts of Mg2+ (> 20mM Mg2+). 

A third possibility is that Mg2+ may have a positive effect on the coordination of PG synthesis in 

ΔmreB. In V. parahaemolyticus, swelling and growth defects caused by MreB mislocalisation are 

prevented by the addition of 25 mM Mg2+ (Shen W. Chiu, Chen and Wong, 2008). The same is true in B. 

subtilis (Formstone and Errington, 2005). Indeed, the unusually large ΔmreB cells do become significantly 

smaller when grown with 20 mM Mg2+ (4.91 µm3, SD ± 3.50 µm3 vs 20.65 µm3, SD ± 16.17 for ΔmreB; n = 

100 per strain; p < 0.001, two-sample t-test). No change was seen in WT cells. Rayman & MacLeod (1975) 

suggested that the cross-linking of Mg2+ to PG may only be needed if PG levels drop to a certain critical 

amount, possibly explaining why growth improvements were seen in ΔmreB, but not WT. Using the logic 

of the “relative rates” model by (Harris and Theriot, 2016a), the smaller ΔmreB cells seen after the addition 

of Mg2+ could indicate that the rate of cell surface (PG) synthesis has somehow caught up with the rate of 

volume synthesis in these cells. The topic of Mg2+ concentrations has received little attention in the most 

recent literature, but this effect on the survival and size of ΔmreB cells certainly brings the topic back to 

the fore. We did not pursue this interesting result further in this thesis, but it remains of interest to the 

Hendrickson laboratory.  
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3.2.5. Morphological defects are mitigated by ectopic MreB expression 

In B. subtilis, as in P. fluorescens SBW25, mreB is co-expressed in the same operon as mreC 

(Formstone and Errington, 2005), making it important to check if the characteristics of ΔmreB are 

produced only as a result of MreB loss, and not anything else. To verify that the phenotypic traits seen in 

ΔmreB are specific to MreB loss, the mreB gene was inserted and ectopically expressed from the Tn7 site 

near the glmS region of ΔmreB (hereafter, ΔmreB + MreB). The same was done in WT (hereafter, WT + 

MreB), which was used as a control.  Ectopic MreB expression in ΔmreB + MreB completely restored its 

original WT morphology, whilst cell shape remained the same in the WT + MreB strain (Figure 27).  

 

 

Figure 27 ∆mreB cells that are ectopically producing MreB grow as typical rods. WT cells ectopically 
producing extra MreB continue to grow as typical rods. Scale bar = 3µm. 
 

In ΔmreB + MreB, compactness values were the same as WT, but cells were significantly shorter 

(3.86 µm; SD ± 1.07 µm vs 4.51 µm; SD ± 1.73 µm in WT; n = 100 per strain; p < 0.001, two-sample t-test) 

and thinner (0.81 µm; SD ± 0.00 µm vs 1.00 µm; SD ± 0.00 µm in WT; n = 100 per strain; p < 0.001, two-

sample t-test). Interestingly, WT + MreB cells became significantly shorter (3.79 µm; SD ± 0.92 vs 4.51 µm 

for WT; n = 100 per strain; p < 0.001, two-sample t-test), thinner (0.83 µm; SD ± 0.00 vs 1.00 µm for WT; 

n = 100 per strain; p < 0.001, two-sample t-test), and appear significantly “straighter”, having a lower 

average compactness compared to WT (0.50 µm; SD ± 0.00 vs 0.54 µm; SD ± 0.00 in WT; n = 100 per strain; 

p < 0.001, two-sample t-test) (Figure 28).  
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Figure 28 Effects of ectopic MreB production on the cell shape of WT and ∆mreB. In the WT background, 
the production of extra MreB has no effect on cell length, but produces significantly thinner/ narrower 
cells. Ectopic MreB production made WT cells straighter, significantly reducing compactness. In the ∆mreB 
background, ectopic MreB production enabled cells to grow as typical rods having the same compactness 
values as WT, but cells are significantly shorter and thinner compared to WT. Significance represented by 
asterisks. 

 

Aside from altering cell shape, ectopic MreB expression also increased the fitness and the 

proportion of live cells in actively growing ΔmreB + MreB cells to WT levels. This indicates the restoration 

of normal MreB function (Figure 29). In the WT + MreB strain, fitness and live cell counts remained the 

same as in WT. This is similar to observations in E. coli and V. parahaemolyticus, where MreB 

overexpression had no effect on cell viability (Wachi and Matsuhashi, 1989; Shen W. Chiu, Chen and 

Wong, 2008). In contrast, MreB overexpression is lethal in C. crescentus (Gitai, Dye and Shapiro, 2004). 
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Figure 29 Competitive fitness and the count of live cells are restored to WT values in ∆mreB + Tn7 MreB. 
Fitness and live cell counts are unchanged in WT + MreB. 

 

The growth dynamics of ΔmreB + MreB was not identical to WT. However, growth did improve – 

lag time was s 4 hours shorter compared to ∆mreB, and the strain reached had a higher maximum OD600 

of 1.5 (Figure 30). In the WT background, ectopic MreB production caused delayed growth (lag time was 

4 hours longer) but overall growth characteristics remained the same. 

 

 

Figure 30 Growth characteristics of ∆mreB + MreB show a shorter lag time and higher maximum OD 
compared to ∆mreB. WT + MreB has a longer lag time compared to WT, but growth is the same as WT 
overall. Error bars represent SD for 3 biological replicates. 
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The reduction in width observed in the WT background in response to the ectopic expression of 

MreB is surprising as the overexpression of MreB in other bacteria such V. parahaemolyticus, E. coli, and 

S. coelicolor produced the opposite phenotype: branching, filamenting, or bulging cells (Wachi and 

Matsuhashi, 1989; Carballido-López and Errington, 2003; Shen W. Chiu, Chen and Wong, 2008). The 

phenotypes seen in other bacteria were proposed to be a result of MreB interfering with cell division, 

possibly due to a reduction in the activity of a cell division-associated gene, ftsI (PBP3) (Wachi and 

Matsuhashi, 1989). It has also been argued that excess MreB may form extra filaments that could disturb 

the longitudinal axis of cells during cell division, resulting in branched cells (Shen W. Chiu, Chen and Wong, 

2008). Interestingly, the growth characteristics of WT + MreB were altered, showing a prolonged lag time 

of ~4 hours, which could indicate a defect in cell division as seen in E. coli cells that are overexpressing 

MreB (Wachi and Matsuhashi, 1989). This is consistent with the observation of a prolonged lag time in 

bacteria in a state of growth arrest, as seen in S. aureus (Vulin et al., 2018). The exact effect of additional 

MreB in P. fluorescens SBW25 WT cells remains an open question and will benefit from further 

investigation. In contrast, we found that the ectopic expression of MreB in the ∆mreB background showed 

a remarkable rescue of cell shape, as well as improved growth, fitness, and viability. This confirms that 

the defective phenotype seen in ∆mreB can be directly attributed to the loss of MreB, and further affirms 

the known role of MreB as the coordinator of the rod cell shape in bacteria.  

 

3.2.6. Analysing the cell wall of WT and ΔmreB strain 

The phenotypic effects of mreB perturbation or loss in rod-shaped bacteria is remarkable. To 

review, loss of this single gene makes cells much larger on average and highly heterogeneous in dimension 

and size. This also leads to increased DNA copy numbers but whether this result is a symptom of MreB 

loss or of compensation for loss is not immediately clear. There is a tightly interwoven set of connections 

between cell shape, cell size, cell wall structure, and DNA content. In order to begin to understand the 

molecular basis of the changes we have seen, we decided to take advantage of techniques that would 
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allow us to inspect the cell wall in detail: Ultra Performance Liquid Chromatography (UPLC) and 

fluorescent D-amino acid staining of cell walls. These techniques allow us to dissect the biochemical 

components of the cell wall and to determine where cell wall construction is taking place.  

After isolating the PG of the strains used in this study, samples were analysed at Umeå University, 

Sweden using established UPLC techniques (see methods). The data show that the most abundant 

muropeptides for P. fluorescens SBW25 are M4 monomers and cross-linked D44 dimers. Other minor 

peaks were also identified, such as monomers linked to lipoproteins (M3L) and dimers cross-linked by 4-

3 bonds. Major anhydro peaks (D44N and T444N) were identified and used for the calculation of the 

average lengths of the glycan chains. The positions and identities of these PG components are shown 

below (Figure 31). These results are consistent with results from similar studies (Desmarais et al., 2015; 

Espaillat et al., 2016; Torrens et al., 2017), further supporting the utility of UPLC analysis for understanding 

PG chemistry and cell wall characteristics in bacteria. The complete data sets for the UPLC analyses are 

presented in the Appendix. 

 

 

Figure 31 Major muropeptides identified in WT PG using ultra performance liquid chromatography (UPLC). 
The most abundant muropeptides are M4 monomers and D44 dimers. 
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The major components of WT PG are M4 monomers (39.61%; SD ± 0.83%; 3 replicates) and D44 

dimers (34.82%; SD ± 1.37%; 3 replicates) (Figure 32). These two components show little variation across 

3 biological replicates, indicating that the abundance of these components is tightly regulated in WT cells. 

Dividing D44 by M4 makes it easy to interpret the relative abundance of dimers compared to monomers 

in these cells. Values greater than 1 show a higher abundance of dimers, whereas values lower than 1 

indicate a higher abundance of monomers. In WT, D44/M4 is 0.88 (SD ± 0.02; 3 replicates), showing a 

relatively higher abundance of monomers in these cells. The D44/M4 ratio is a useful tool for comparing 

the profiles of different strains. To calculate PG cross-linking, D44 dimers were counted with T444 trimers, 

giving the total amount of cross-linking in these cells. Cross-linking was determined to be 39.20 (SD ± 

0.83%; 3 replicates) in WT. Finally, the average chain length of WT PG was measured using the D44N 

anhydro dimers and T444N anhydro trimers. Average PG chain length in WT was determined to be 26.16 

(SD ± 2.53; 3 replicates) disaccharides.  

In ∆mreB, the number of M4 monomers was significantly lower at 26.92% (SD ± 0.60%; 3 replicates; 

p < 0.05; two-sample t-test) (Figure 32). The amount of D44 remained the same as WT at 34.36% (SD ± 

0.21%; 3 replicates). Together, these values show a significantly higher D44/M4 of 1.28% (SD ± 0.02; 3 

replicates; p < 0.05; two-sample t-test). The average cross-linking percentage showed a significant 

increase, rising to 42.70% (SD ± 0.91%; p < 0.05; 3 replicates; two-sample t-test). The average chain length 

was significantly shorter, dropping to 12.38 disaccharides (SD ± 0.55 disaccharides; 3 replicates; p < 0.05; 

3 replicates; two-sample t-test). 
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Figure 32 Major characteristics of WT and ∆mreB PG. ∆mreB PG has significantly fewer M4 monomers 
producing a higher D44/M4 ratio. ∆mreB PG has more cross-linking whilst having shorter glycan chains 
than WT PG. Asterisks indicate a significant difference in ∆mreB PG value compared to WT. Error bars 
represent SD for 3 biological replicates. 
 

The prominent PG components in WT are M4 and D44. These are the same major muropeptides 

in E. coli and P. aeruginosa, which are similarly Gram-negative rod-shaped species (Desmarais et al., 2015; 

Espaillat et al., 2016; Torrens et al., 2017). Analysis of ∆mreB PG reveals that the loss of MreB leads to a 

significant drop in M4, with no apparent effect on D44. Consequently, this led to a significant increase in 

D44/M4. The high D44/M4 in ∆mreB possibly translates to a stiffer PG, one that is able to expand less in 

response to turgor pressure (Desmarais et al., 2013). The cross-linking percentage of the PG of ∆mreB also 

increased significantly, which would contribute more stiffness to the structure of the cell wall.   

However, ∆mreB had significantly shorter glycan chains measuring 12.38 disaccharides (SD ± 0.55 

disaccharides; 3 replicates; two-sample t-test). This is consistent with the observation that spherical E. coli 

cells with no MreB produce shorter glycan chains (Turner et al., 2018). This, together with the a previous 

observation that spherical B. subtilis cells with a mutated mreC also showed much shorter glycan chains 
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(Hayhurst et al., 2008) led Turner et al. (2018) to propose that the disruption of systems directing PG 

synthesis will generally result in the production of shorter glycan chains. The shorter chains would have 

the opposite effect of making the PG more flexible, making it difficult to infer how these changes would 

affect the overall flexibility of ∆mreB’s PG.  

In addition to possible structural effects on cell wall flexibility, the loss of MreB may also be 

affecting the activity of PBPs. In E. coli, MreB inhibition by A22 result in a significant shortening of the 

average glycan chain length (Varma, de Pedro and Young, 2007; Uehara and Park, 2008). In C. crescentus, 

MreB inactivation also results in a shorter average glycan chain length, and the restoration of MreB activity 

results in an increase in the average glycan chain length (Takacs et al., 2010). In P. fluorescens SBW25, the 

loss of MreB also resulted in shorter PG strands. These results support the argument of Takacs et al., 

(2010) who states that MreB promotes, either directly or indirectly, the transglycosylase or PG elongation 

activity of PBPs. The authors suggest that this can be a result of changes in protein-protein interactions in 

the cell wall building machinery of the cell.  

The short PG strands in ∆mreB may also be playing a role in its slowed growth. In E. coli, PG 

associated with the initiation of septation is made up of relatively long glycan strands measuring >20 

disaccharides in length (Ishidate et al., 1998). In line with this, Ursinus et al. (2004) found that in E. coli, 

PG strands need to be longer than 25 disaccharides to interact with the cell division proteins FtsN. The 

cell division machinery of SBW25 possesses this same protein, FtsN (PFLU0400; NCBI Reference Sequence: 

WP_012721808.1). Perhaps, similar to E. coli, the short glycan strands of ∆mreB may be negatively 

affecting the interaction of the cell division machinery with septal PG, leading to slowed growth.  
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3.2.7. PG characteristics are restored by ectopic MreB expression 

To further elucidate the effects of ectopic MreB expression, the PG of ∆mreB+MreB was isolated 

and characterised by UPLC. Compared to ∆mreB, M4 increased to 33.25% (SD ± 9.83%; 3 replicates), and 

D44 decreased to 27.40% (SD ± 10.90%; 3 replicates) in ∆mreB+MreB (Figure 33). These values were not 

statistically different from those of ∆mreB, despite the increased variance. However, this significantly 

lowered the D44/M4 ratio to 0.80 (SD ± 0.10; p < 0.05; 3 replicates; two-sample t-test), bringing the ratio 

back to WT levels. The amount of cross-linking decreased substantially to 30.37% (SD ± 12.39%; 3 

replicates). Glycan chain length increased to 24.10 disaccharides (SD ± 0.94 disaccharides; 3 replicates). 

The average cross-linking and glycan chain length values of ∆mreB+MreB have no significant difference 

from WT values (p = 0.28; two-sample t-test). 

 

 

Figure 33 Ectopic MreB production in ∆mreB restored PG characteristics to WT levels. M4 and D44 
increased, leading to a significant reduction in D44/M4. Cross-linking decreased, and glycan chains 
significantly increased in length. WT values for each PG component is represented by the grey dashed 
line. Asterisks indicate a significant difference in ∆mreB + MreB PG value compared to WT. 
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 Ectopic MreB expression in WT resulted in significantly lower M4 levels, dropping to 33.31% (SD 

± 1.16%; 3 replicates; p < 0.05, two-sample t-test). D44 decreased slightly to 30.41% (SD ± 2.04%; 3 

replicates); D44/M4 levels increased slightly to 0.91 (SD ± 0.03; 3 replicates); and cross-linking decreased 

slightly to 33.42% (SD ± 3.22%; 3 replicates) (Figure 34). Statistical analysis revealed these changes to have 

no statistical difference from WT values. The most outstanding difference was the shortening of the glycan 

chain length which showed a significant reduction to 16.85 disaccharides (SD ± 0.28 disaccharides; 3 

replicates; p < 0.05; two-sample t-test). 

 

 

Figure 34 Ectopic MreB production in WT significantly reduced the amount of M4 monomers but had no 
effect on the D44/M4 ratio. Cross-linking reduced slightly, but was not significantly different to WT. Glycan 
chains were significantly shorter compared to WT. Asterisks indicate a significant difference in WT + MreB 
PG value compared to WT. Error bars represent SD for 3 biological replicates. 
 

 

 



75 
 

Notably, the ectopic expression of MreB in ∆mreB resulted in the relative percentages of all 

muropeptide components (M4, D44, D44/M4, cross-linking, and chain length) reverting to WT levels. 

There was greater variability, but statistically, PG values were the same as WT, indicating a full restoration 

of WT PG composition. Ectopic MreB expression in the WT background produced significantly fewer M4 

monomers, but this had no impact on D44/M4 and cross-linking meaning PG elasticity was unaffected. 

The biggest change was the reduction of PG length to 16.85 (SD ± 0.28; 3 replicates) disaccharides. The 

mechanism behind this is unknown, and this seems to contradict the idea that MreB promotes PG 

elongation. However, it is worth noting that WT + MreB showed slightly defective growth characteristics 

compared to WT. In E. coli, growth arrest caused cells to have PG strands that are shorter by 25-30%  (de 

Pedro and Cava, 2015). It is possible that the delayed growth of WT + MreB may be related to the 

reduction of its average PG length.  

The variability in these results are likely due to non-native MreB levels, and therefore MreB 

dynamics, in these cells. In E. coli, MreB levels are maintained between 17,000 to 40,000 molecules per 

cell depending on growth rate (Kruse et al., 2003), indicating that MreB production is well-regulated. It is 

not known how much MreB is produced by the Tn7_MreB fusion. Furthermore, it is clear that aberrant 

MreB levels can cause various defects (Wachi and Matsuhashi, 1989; Carballido-López and Errington, 

2003; Shen W. Chiu, Chen and Wong, 2008) so maintaining correct MreB levels is crucial for proper cell 

wall assembly. Adding to this, MreB expression may also be misregulated as factors that control MreB 

production may not be working as intended in the ΔmreB background. For example, In E. coli, the 

regulatory stress-response protein, BolA, controls MreB levels by binding to the promoters of the mreBCD 

operon, thereby regulating MreB production (Freire, Moreira and Arraiano, 2009). By moving MreB 

production elsewhere, this control mechanism would no longer function normally. Interestingly, a protein 

BLAST search of the E. coli BolA protein (GenBank: AAB40191.1) in the P. fluorescens SBW25 showed that 

SBW25 also possesses a BolA homologue (PFLU431; % identity = 45.54; E-value = 8.0E-20). Although a 

direct link between BolA and MreB is yet to be found in Pseudomonas, BolA overexpression coupled with 
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carbon starvation is known to produce small and round cells in Pseudomonas, which is consistent with the 

idea of a regulatory relationship between BolA and cell shape (Koch and Nybroe, 2006).  

In WT + Tn7 MreB, growth was similar to that of WT, but lag phase was prolonged by 4 hours 

(Figure 30). As MreB plays a direct role in coordinating PG synthesis (Jones, Carballido-López and 

Errington, 2001), it is possible that the slight delay in growth may be a result of excess MreB causing an 

imbalance in protein complexes responsible for cell wall synthesis. Similarly, ectopic overexpression of 

MreB in S. coelicolor also impaired growth by inhibiting cell division (Mazza et al., 2006). In their 

discussion, Mazza et al. (2006) argue that this is possibly due to excess MreB recruiting PBPs away from 

their native locations, thereby preventing them from performing their normal cell wall-building functions. 

The exact reason(s) why ΔmreB remains viable in this strain is unclear, but this has given us the 

opportunity to study how a previously rod-shaped bacterium can adapt to a new spherical shape using an 

experimental evolution approach in normal media. The results of which are presented in the next chapter. 
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Chapter 4  

Adaptation of P. fluorescens SBW25 to a new spherical cell shape 

 

4.1. Introduction 

P. fluorescens SBW25 has also been used as a platform for experimental evolution studies that 

look at several topics, including the diversity of evolutionary pathways (Lind et al., 2015), adaptive 

radiation in different environments (Rainey and Travisano, 1998), and stochastic switching between 

phenotypic states (bet hedging) (Beaumont et al., 2009). Experimental evolution is a useful method for 

studying genotypic and phenotypic changes that occur in populations that are maintained in controlled 

environments over many thousands of generations (Kawecki et al., 2012). It gives us the ability to compete 

ancestors against descendants, or test whether evolutionary outcomes depend on the occurrence of a 

previous event from “fossil” records taken from different timepoints in the experiment. Experimental 

evolution is especially advantageous when using microorganisms because of their rapid generation times 

and viability in frozen cultures. Experimental evolution of microbial populations has been a powerful tool 

that has allowed us to discover, investigate, and directly evaluate complex evolutionary dynamics. For 

example, the >60,000 generation (and counting) Lenski Long-Term Evolution Experiment (LTEE), in which 

replicate E. coli populations have been passaged in a simple environment with only glucose for carbon 

and energy, has been instrumental in inspiring numerous studies that have investigated ecological and 

specialisation and genetic adaptation (Barrick and Lenski, 2013; Cooper, 2014). 

Here, we used P. fluorescens SBW25 as a model organism in an adaptive evolution experiment to 

understand how a previously rod-shaped organism can adapt to a new spherical cell shape instigated by 

the loss of MreB. In this study, 10 parallel lines of ΔmreB were grown for 1,000 generations in shaken LB. 

This chapter presents results from the characterisation of these 10 evolved lines. My aim is to identify and 

study the beneficial mutations that rose to high frequencies in the evolved lines. 

 



78 
 

4.2. Results and Discussion 

Having a viable ΔmreB mutant allowed us to study how a rod-shaped organism like P. fluorescens 

SBW25 can adapt to morphological defects caused by the loss of MreB, and by extension, to a new 

spherical cell shape. We used an experimental evolution approach to study this process. Specifically, we 

used shaken cultures in a serial transfer scheme to drive adaptive evolution of ΔmreB populations in 10 

replicate lines. The evolution experiment was performed by Dr. Monica Gerth as part of her postdoctoral 

work with Professor Paul Rainey, but this was not characterised. My aim was to revive these preserved 

populations from different timepoints for characterisation similar to the work performed on the WT and 

ΔmreB strains reported in the previous chapter. 

 

4.2.1. Evolved lines remain spherical but are much smaller 

In order to understand what adaptive changes had taken place during 1,000 generations of 

evolution I first used phase contrast microscopy and observed that the evolved lineages all remained 

spherical in shape at the 1,000-generation timepoint (Figure 35). 

 

Figure 35 All the evolved lines at 1,000 generations grow as spheres. Scale bar = 3µm. 
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Average compactness values were similar to ΔmreB (0.87; SD ± 0.01 evolved lines vs 0.88; SD ± 

0.09 ΔmreB; n = 100 per strain) (Figure 36). However, evolved lines 1, 3, 5, and 9 showed a significant 

decrease in average compactness compared to ΔmreB (n = 100 per line; p < 0.05, two-sample t-test), 

indicating that these cells are more ovoid than the ancestral strain. In addition, all the evolved lines had 

become much smaller than ΔmreB (4.12 µm3; SD ± 0.72 µm3 evolved lines vs 20.65 µm3; SD ± 16.17 µm3 

ΔmreB; n = 100 per strain) (Figure 36). 

 

 

Figure 36 All the evolved lines are growing as spheres, but lines 1, 3, 5, and 9 have significantly lower 
compactness values compared to ∆mreB. The 10 evolved lines reduced in volume, decreasing to WT levels. 
Asterisks represent a significant difference compared to WT values. 
 

4.2.2. Evolved lines are growing as well as WT 

In addition to becoming smaller, all the evolved lines showed improved growth in shaken LB. The 

evolved lines showed similar growth characteristics and reached the same maximum absorbance as WT. 

The improved growth of the evolved lines is reflected in the enhanced fitness values obtained from 

competition experiments against WT (Figure 37).  
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Figure 37 Growth dynamics and fitness of evolved lines. A) The growth characteristics of the 10 evolved 
lines are very similar to WT growth curves. B) Relative fitness also increased back to WT levels, reaching 
between 0.9 and 1.0 relative fitness. 
 

 

4.2.3. Fitness improved early in the evolution experiment 

To investigate how quickly fitness improved in the evolution experiment, relative fitness was 

measured between the a GFP-labelled WT strain and the revived populations at 4 time points: 50, 250, 

500, and 1,000 generations. Each evolved line started with a fitness of 0.78 (SD ± 0.07; 3 replicates), which 

was the fitness of the ancestral ΔmreB strain. It was clear that fitness improved quickly in all the evolved 

lines. At 50 generations, the average fitness of all the evolved lines was 0.92 (SD ± 0.01; 3 replicates) 

(Figure 38). Fitness values across the 10 evolved lines improved further and persisted to the end of the 

experiment. At 250 generations, average fitness increased to 0.98 (SD ± 0.02; 3 replicates). At 500 

generations, average fitness was 0.98 (SD ± 0.02). And finally, at 1,000 generations, average fitness was 

at 0.95 (SD ± 0.02; 3 replicates). 
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Figure 38 Fitness over time. Evolved lines 1 to 10 improved in fitness after growing in LB for 1,000 generations. Vertical axis represents relative fitness; 
horizontal axis represents number of generations. (K) Average fitness of all evolved lines (solid line). The shaded area represents the maximum and minimum 
fitness values from the evolved lines. 
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The fitness measures observed here reveal an interesting point – that MreB loss imposes a strong 

selection pressure on P. fluorescens SBW25. This is seen in the rapid increase in fitness across all lines, 

which jumps from ~0.8 (ancestral ΔmreB fitness) to almost 1.0 (WT fitness) in as little as 250 generations. 

These competition experiments show similar fitness trajectories for all the evolved lines: fitness levels 

reached an intermediate level of improvement (from ~0.8 to ~0.9, relative to WT) at 50 generations, then 

reached almost the same fitness as WT at 250 generations. Fitness levels then remained at similar levels 

all the way to 1,000 generations. At the end of the experiment, the 10 evolved lines had improved in 

fitness and growth dynamics that closely resemble WT growth dynamics. In addition, all the evolved lines 

had smaller cell volumes, whilst retaining a spherical cell shape but with a lower average compactness 

resembling ovococci. These demonstrate that the evolved lines have successfully adapted to a spherical 

cell shape within just 1,000 generations of growth in standard LB.  

 

4.2.4. Identification and characterisation of the identified mutation 

The rapid increase in fitness across the 10 evolved lines suggests that beneficial mutations 

occurred early in the evolution experiment. In order to identify these mutations, the populations of the 

evolved lines were sequenced at 500 and 1,000 generations by Dr. Heather Hendrickson using illumina 

sequencing by AGRF (Australia). The reads were mapped against the reference sequence 

(GCA_000009225.1) and mutations that appeared at a frequency of 0.75 or more in the population are 

outlined in Table 5. 

Among the major mutations seen were unique missense mutations in PFLU0406 which codes for 

the major penicillin-binding protein, PBP1a. This was the most common mutation in lines 1, 3, 4, and 6. 

This mutation was also seen in line 10, however it did not reach fixation, and was seen in only ~37% of the 

population. Aside from these PBP1a mutations, a 5-gene deletion across PFLU4921-4925 was found in line 

7, which includes the outer membrane protein, OprD, was also observed. Due to its links to cell wall 

synthesis and β-lactam resistance, OprD was chosen to be the focus of discussion henceforth. Finally, a 
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common amplification of a group of 14 genes was found in in 9/10 lines, spanning PFLU4164-4177. 

Different combinations of genes flanking this common region were also amplified across the 10 evolved 

lines. We opted to focus on the PFLU4165 (CsrA) amplification for this study. CsrA was selected among 

the genes in the amplified region because of its role in activating metabolic activities such as glycolysis 

and acetate metabolism (Sabnis, Yang and Romeo, 1995; Wei et al., 2000), and because of its potential as 

a general modulator of bacterial gene expression (Romeo, 1998). To study the effects of these mutations, 

they were reconstructed in the WT and the ancestral ΔmreB backgrounds by Dr. Yunhao Liu and Dr Xue-

Xian Zhang, which I later characterised. 

 

Table 5 Mutations in Evolved Lines 

Line Generation PFLU0406 (PBP1a) Nucleotide SNPs Deletion Amplifications 
(# of genes) 

1 500 Position 1450, C → T (74.6%) 
  

1,000 Position 1450, C → T (78.5%) 
 

PFLU4143-4197 (54) 

2 500 
   

1000 
  

PFLU4143-4190 (47) 

3 500 Position 2163, T → G (98.7%) 
  

1,000 Position 2163, T → G (86.6%) 
 

PFLU4164 - 4190 (26) 

4 500 Position 2158, C → T (59.6%) 
  

1,000 Position 1084, T → G (98.1%) 
  

5 500 
   

1,000 
  

PFLU4161 - 4191 (30) 

6 500 Position 2094, G → C (99.1%) 
  

1,000 Position 2094, G → C (100.0%) 
 

PFLU4143 - 4190 (47) 

7 500 
 

PFLU4921- PFLU4925 (~50%) 
 

1,000 
 

PFLU4921- PFLU4925 (100%) PFLU4156 - 4190 (34) 

8 500 
   

1,000 
  

PFLU4150 - 4177 (27) 

9 500 
  

 

1,000 
  

PFLU4157 - 4198 (41) 

10 500 Position 1085, T → G (33.9%) 
  

1,000 Position 1740, C → T (36.9%) 
 

PFLU4161 - 4190 (29) 
    

(Common) 
   

PFLU4164-4177 (13)  
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In the following section, I will present the results of my characterisation of the reconstructed 

strains. I will focus on the following major mutations: 

1. PBP1a mutations, particularly from lines 1 and 4; 

2. OprD-inclusive deletion from Line 7; 

3. CsrA amplification from Line 10. 

 

4.2.4.1. csrA amplification 

In this section, I will characterise the phenotypic effects of a selected amplification from that was 

common across most of the evolved lines. The selected gene was CsrA, a carbon storage regulator linked 

to cell metabolism and gene expression (Altier et al., 2000; Baker et al., 2002). The reconstructions were 

made by adding an IPTG-inducible copy of CsrA into a Tn7 site just downstream of the glmS region near 

ori in both the WT and ΔmreB backgrounds. 

 

4.2.4.1.1. Reconstruction in WT background 

In the WT background, the CsrA amplification produced significantly thinner (0.89 µm; SD ± 0.07 

µm vs 1.00 µm; SD ± 0.06 µm in WT; n = 100 per strain; p < 0.05; two-sample t-test) and shorter cells (2.16 

µm3; SD ± 0.54 µm3 vs 3.27 µm3; SD ± 0.94 µm3 in WT; n = 100 per strain; p < 0.05; two-sample t-test) 

(Figure 39). Growth was negatively affected, prolonging lag time and interrupting exponential phase at 

OD600 0.5. The exponential growth rate resumed after 2 hours, until it reached a maximum absorbance of 

OD600 1.4 (Figure 40). Fitness was also slightly reduced to 0.93 (SD ± 0.02; 3 replicates). 
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Figure 39 A) Reconstruction of the CsrA amplification in WT produced typical rods. WTRL10 produced (B) 
shorter and (C) narrower cells. As a result, cell volumes are lower (D) in WTRL10. Compactness values are 
similar to WT. Scale bar = 3µm. 
 

 

 

Figure 40 Growth and relative fitness of CsrA amplification in the WT background. A) The growth dynamics 
of WTRL10 are negatively impacted by the CsrA amplification – lag time is prolonged and logarithmic 
growth is interrupted. B) Relative fitness is also affected, increasing in variance compared to WT. 
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4.2.4.1.2. Reconstruction in ΔmreB background 

In ΔmreBRL10, the amplification of CsrA exacerbated the morphological and growth defects 

already seen in ΔmreB. The CsrA reconstruction had large cells with an average volume of 19.04 µm3 (SD 

± 16.61 µm3; n = 100) (Figure 41). Growth was similar to ΔmreB at first but slowed after reaching OD600 

0.6, and fitness was reduced to 0.81 (SD ± 0.05; 3 replicates) (Figure 42). 

 

 

Figure 41 A) Reconstruction of the CsrA-amplification in ΔmreB produced spherical cells that resemble 
ΔmreB in shape and size, with some cells becoming significantly larger than ΔmreB. In general, ΔmreBRL10 
cells were slightly (B) longer but had a similar (C) width to ΔmreB. (D) Overall cell volumes are similar to 
ΔmreB. Unusually large cells are shown as outliers. Compactness values are similar to ΔmreB. Scale bar = 
3µm. 

 

 

 



87 
 

 

Figure 42 Growth and relative fitness of CsrA amplification in the ΔmreB background. A) Growth is slower 
and had greater variance. B) Relative fitness is very similar to ΔmreB but again has a much higher variance. 
 

Overall, the amplification of CsrA did not improve the growth and viability of both ΔmreB and WT. 

In the ΔmreB background, cells became even larger and had more variability in fitness. This demonstrates 

that the CsrA mutation is not adaptive to MreB loss. For this reason, ΔmreBRL10 was not subjected to 

UPLC and FDAA analysis. 

The amplification of CsrA proved to be deleterious to P. fluorescens SBW25. In both the WT and 

ΔmreB backgrounds, the reconstructions did not significantly improve fitness, and showed a severe 

growth defect. CsrA has been shown to negatively regulate gluconeogenesis (Romeo et al., 1993) so the 

amplification of CsrA could lead to starvation as LB is a carbon-limited medium, providing only amino acids 

as gluconeogenic carbon sources (Jannière et al., 2007; Sezonov, Joseleau-Petit and D’Ari, 2007). In 

addition, CsrA is a repressor of glycogen biosynthesis (Baker et al., 2002), and in Salmonella, both the 

overexpression and disruption of csrA represses essential enzymes in carbohydrate metabolism (Altier et 

al., 2000). This is consistent with the decreased size and slowed growth of the WT reconstruction strain. 

Consequently, bacteria that undergo carbon starvation experience additional oxidative stress (Shen Wen 

Chiu, Chen and Wong, 2008), which may be contributing to poor growth of the CsrA amplification 

reconstruction mutants. The size effects of CsrA overexpression is confounding as opposite effects were 

seen in WT (which became smaller), and in ΔmreB (which became larger). It seems that CsrA 
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overexpression has complex (perhaps opposite) effects in the WT and ΔmreB backgrounds. Interestingly, 

the overproduction of CsrA in L. pneumophila led to a reduction in cell size (Fettes et al., 2001), whilst the 

interruption of CsrA in E. coli also led to a reduction in size (Romeo et al., 1993).  

In the future, other genes from the amplified region can be tested for adaptive effects in ΔmreB. 

I have identified two promising candidates: PFLU4171 and PFLU4172. These two genes make up the two-

component CusRS system that helps bacteria survive heavy metal (Cu) stress (Outten et al., 2001; Fung et 

al., 2016). PFLU4171 codes for CusR, a cytoplasmic response regulatory protein; and PFLU4172 codes for 

CusS, a membrane-associated histidine sensor kinase. Interestingly, CusR has a good match (E-value = 7.0 

E-09) to CckA, a histidine kinase linked to cell cycle progression and polar morphogenesis in C. crescentus 

(Jacobs et al., 2003; Angelastro, Sliusarenko and Jacobs-Wagner, 2010). Similarly, CusS has a good match 

(2.0 E-05) to PdhS, a histidine kinase linked to cell shape alterations in Brucella (Van der Henst et al., 2012). 

Coincidentally, these two genes are right in the middle of amplified region shared by the 9 evolved lines. 

It is possible that these proteins have a similar action to another kinase, StkP which coordinates peripheral 

and septal cell wall synthesis in S. pneumoniae (Pinho, Kjos and Veening, 2013). Altogether, these results 

demonstrate that the CsrA amplification is not adaptive to MreB-loss, and may have only been amplified 

due to genetic hitchhiking. 
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4.2.4.2. Mutations in PBP1a 

PFLU0406 codes for the major penicillin binding protein, PBP1a. PBP1a is a high molecular weight 

PBP that extends the existing glycan chain of the cell wall (via transglycosylation or GT) and cross-links 

neighbouring peptide side chains to each other (via transpeptidation or TP) (Hong and Walker, 2016). Its 

major role is in building new cell wall material, specifically for lateral growth or cell elongation (Billings et 

al., 2014). PBP1a is known to have a synergistic relationship with the Rod complex to form new PG in 

elongating cells (Cho et al., 2016; Zhao et al., 2017).  

Three domains were identified in this PBP1a protein: the functional GT and TP domains, and a 

poorly-characterised OB domain. The mutations from lines 1, 3, and 6 were found in the TP domain in 

positions 484, 721, and 698, respectively. The line 4 mutation was found in the OB domain in position 362 

(Figure 43).  

 

 

Figure 43 Map of PFLU0406 (PBP1a) showing the location of the mutations identified in evolved lines 1, 
3, 4, and 6. The transglycosylase (TG) domain is in teal; the OB-domain where the L4 mutation was found 
is in green; and the transpeptidase (TP) domain where the L1, L3, and L6 mutations were found is in blue. 
The regions that come together to form the active site in the protein’s 3D structure are shown in yellow. 
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Using the I-TASSER (Iterative Threading ASSEmbly Refinement) protein structure and function 

prediction server (Roy, Kucukural and Zhang, 2010; Yang et al., 2015), I created several predicted models 

of the PBP1a of P. fluorescens SBW25. The model I selected had the best C-score of -1.41 which is a good 

confidence score. C-scores fall within a range of [-5 to 2], where a higher value signifies greater confidence. 

I then used this model to map the locations of the mutations from the evolved lines using the Visual 

Molecular Dynamics (VMD) software (Humphrey, Dalke and Schulten, 1996; Hsin et al., 2008) (Figure 44). 

The PBP1a model shows that the line 1 and line 6 mutations are directly interacting with the TP active 

site, while the mutations in lines 3 and 4 are situated away from the active site. The locations of these 

mutations were verified using a similar model based on the published crystal structure of Acinetobacter 

baumannii PBP1a in complex with the β-lactam Aztreonam (Han et al., 2011) (Figure 44).  
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Figure 44 A 3D model of PBP1a from WT was constructed using I-TASSER and VMD. The protein is shown 
as ribbons and color-coded based on the conserved domains previously described. The positions of the 
mutations in evolved lines 1, 3, 4, and 6 are shown as spheres. The active site is presented as yellow 
spheres. A representative PBP1a model from A. baumannii was also constructed for comparison. Relevant 
structures are color-coded in the same manner. The locations of the mutations are shown in similar 
positions relative to the active site. The drug aztreonam is shown bound to the active site. 
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The mutations in PBP1a occurred independently across multiple evolved lines. Mutations in 

PBP1a were seen at high frequencies in evolved lines 1, 3, 4, and 6; sweeping from ~80% to 100% of the 

population (Table 5 Mutations in Evolved Lines).  A mutation in PBP1a was also seen in line 10, albeit at a 

low frequency of ~30%. The mutations in lines 1, 3, and 6 were all in the TP domain, which is responsible 

for PG cross-linking. Mutations affecting the function of this region could potentially interfere with the 

tightly-regulated synthesis of PG for the cell.  

In a survey of PBP1a homologues from other bacterial species, I found that the PBP1a mutations 

in lines 1, 3, and 6 are all in well-conserved regions of the protein (Figure 45). This highlights the 

importance of these sequences in maintaining protein activity, and indicates that the positions of the 

mutations in lines 1, 3, and 6 are in regions that are essential for protein function. The proximity of the 

line 1 and line 3 mutations to the TP active site suggest that they could be affecting the charge and stability 

of the TP active site. Since the active site of PBP1a is very narrow, ligands must be threaded into it to be 

recognized (Contreras-martel et al., 2006). Any alterations affecting this would thus interfere with PBP1a 

activity (Contreras-martel et al., 2006; Granger et al., 2006; Job et al., 2008). Mutations that affect 

accessibility to, or produce conformational changes around the active site have been shown to drive β-

lactam resistance in S. pneumoniae (Contreras-martel et al., 2006). The position of the line 6 mutation, 

especially, was identified by I-TASSER to be a ligand binding site. This is confirmed by the published crystal 

structure of Acinetobacter baumannii PBP1a (Figure 44) where the drug Aztreonam (ligand) can be seen 

forming a complex with the Line 6 mutation and the active site.  

In contrast, the line 4 mutation is spatially-distant from the active site and is in a highly variable 

region of PBP1a (Figure 45). The line 4 mutation was found in the OB (oligonucleotide/oligosaccharide 

binding) domain. The exact function of the OB domain of PBP1a in P. fluorescens SBW25 is unknown, but 

it has been shown to have ligand binding properties that may be influencing protein activity in A. 

baumannii (Han et al., 2011). Altogether, the data suggest that the perturbation of PBP1a is an adaptive 

response to MreB loss in P. fluorescens SBW25. 
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Figure 45 Protein sequence alignment of the PBP1a of 20 bacterial species using the ConSurf algorithm 
(Ashkenazy et al., 2016). The data shows that mutations in the PBP1a of evolved lines 1, 3, and 6 are in 
well-conserved regions. In contrast, the line 4 mutation is in a highly variable region. 
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4.2.4.2.1. PBP1a mutation reconstruction in WT background 

To investigate the effects of PBP1a mutations on cell shape and fitness, the mutations from line 1 

(TP domain) and line 4 (OB domain) were selected to represent mutations of PBP1a. These were 

reconstructed in the WT background by introducing the mutations in their native positions using SOE PCR, 

thereby creating the strains: WTRL1 and WTRL4. Results from the characterisation of these 

reconstructions are discussed below. 

 

PBP1a mutation reconstruction in WT made cells thinner and shorter   

In the WT background, the PBP1a reconstructions maintained a rod-like shape (Figure 46A) but 

were significantly shorter (Figure 46B) (Line 1: 3.41 ± 0.76 µm, p < 0.001; Line 4: 3.69 ± 0.80 µm, p < 0.001; 

n = 100 per strain; two-sample t-test) compared to WT (4.51 µm; SD ± 1.32 µm; n = 100). These cells were 

also significantly narrower (Figure 46C) (Line 1: 0.89 ± 0.07 µm, p < 0.001; Line 4: 0.94 ± 0.05 µm; n = 100 

per strain; p < 0.001; two-sample t-test) compared to WT (1.00 µm; SD ± 0.06 µm; n = 100) resulting in 

smaller total cell volumes (Figure 46D). The average cell volume of the line 1 reconstruction was of 1.93 

µm3 (SD± 0.52 µm3; n = 100), whilst line 4 was measured at 2.33 µm3 (SD ± 0.49 µm3; n = 100). There was 

no substantial effect on growth.  
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Figure 46 The reconstruction of the line 1 and line 4 mutations in the WT background. A) Microscopy 
shows that the reconstruction mutants have retained a rod-like shape. However, B) these mutants are 
shorter and C) thinner than WT. D) These contribute to lower average cell volumes. E) Compactness 
measurements support the visual observation that these reconstruction mutants have the same shape as 
WT. Scale bar = 3µm. 
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The growth dynamics of both reconstructions closely resemble that of WT. Fitness of the line 1 

reconstruction showed slight variability (0.97 ± 0.03; 3 replicates) but was not statistically different from 

WT. Similarly, the line 4 reconstruction was as fit just as WT (1.00 ± 0.01; 3 replicates) (Figure 47).  

 

 

 

 

Figure 47 Growth and relative fitness effects of the PBP1A reconstructions in the WT background. A) The 
growth dynamics of WTRL1 and WTRL4 are very similar to that of WT. B) Relative fitness likewise similar 
to WT.  
 

PBP1a mutations leave PG composition unaltered in a WT background  

In order to learn about the molecular changes behind these shape changes we subjected the cell 

walls to UPLC analysis. The WT strains with the PBP1A mutations from Line 1 and Line 4 showed only a 

slight change in the M4 and D44 molar fractions of both mutations in the WT. WTRL4 showed a lower 

average D44/M4 ratio of 0.79 (SD ± 0.06; 3 replicates) and a lower average cross-linking percentage of 

36.24% (SD ± 1.75%; 3 replicates), but these changes were not statistically significant compared to (Figure 

48). Both WTRL1 and WTRL4 showed an increase in their average glycan chain length, but statistical 

analysis revealed these changes to be insignificant compared to WT (p = 0.41; and p = 0.78, respectively; 

two-sample t-test). 
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Figure 48 The PG characteristics of WTRL1 and WTRL4 are not significantly different from WT values. 

 

The reconstruction the PBP1 mutations in the WT background produced thinner and shorter cells. 

This is consistent with results in E. coli showing the formation of smaller cells as a result of PBP1a loss 

(Banzhaf et al., 2012). Despite this, the WT reconstruction mutants are able to grow as well, and were 

found to be as fit as WT. We also found that the PG characteristics of these mutants showed no statistical 

difference to those of WT cells. This is consistent with other studies showing that the loss of PBP1a is 

tolerable in organisms such as E. coli and S. pneumoniae that have multiple Class A PBP proteins (Denome 

et al., 1999; Hoskins et al., 1999). These findings reinforce the role of PBP1a in cell elongation and supports 

the idea that the PBP1a mutations found in the evolved lines are causing a loss-of-function effect. 
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4.2.4.2.2. PBP1A mutation Reconstruction in ΔmreB background 

Cells remain spherical but are significantly smaller and have higher fitness 

The PBP1A mutations that were found at high frequency in the evolution experiment were also 

put into the ΔmreB background in order to see how they affected shape, size, and cell wall composition 

without any other mutations that might have been contributing to these features in the population. In 

the ΔmreB background, both reconstruction strains (ΔmreBRL1 and ΔmreBRL4) remained spherical in 

shape showing the same compactness as ΔmreB (Figure 49A). Cell lengths and widths for both strains 

were reduced, leading to significantly lower cell volumes decreasing to 3.86 µm3 (SD ± 2.50 µm3; n = 100; 

p < 0.05; two-sample t-test) for line 1, and 5.51 µm3 (SD ± 3.58 µm3; n = 100; p <0.05; two-sample t-test) 

for line 4 (Figure 49D).  

 

 

Figure 49 The reconstruction of the line 1 and line 4 mutations in ΔmreB produced significantly smaller 
cells. Microscopy shows that the reconstructions strains have retained a spherical morphology (A). 
However, cell length (B) and width (C) was significantly reduced, resulting in significantly smaller cell 
volumes for both reconstructions (D). Compactness values confirm that the reconstruction populations 
still retain a spherical cell shape. Scale bar = 3µm.  
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Both mutations improved the growth of the reconstruction strains, allowing them to grow almost 

as well as WT (Figure 50). Similarly, when these reconstructions were grown in a pair wise competition 

experiment against the GFP-labelled ancestor, both strains showed that the addition of the PBP1A 

mutations improved fitness to 0.98 (SD ± 0.06; 3 replicates) for the line 1 mutation, and 0.96 (SD ± 0.06; 

3 replicates) for the line 4 mutation (Figure 50). 

 

 

Figure 50 Growth and relative fitness effects of the PBP1A reconstructions in the ΔmreB background. A) 
Both line 1 (blue) and line 4 (green) reconstructions in ΔmreB improved growth dynamics to almost WT 
levels. B) Both reconstructions also had near-WT fitness values. 
 

 

PG characteristics are restored to WT values 

While the PBP1a line 1 and line 4 mutations in the WT background showed very little change in 

the chemical composition of the PG, this was not true when these mutations were inserted back into a 

clean ∆mreB background. The addition of the mutations resulted in an increase in their M4 molar fraction 

(from ~27% in ΔmreB to ~36% in both reconstructions), and a decrease in their D44 molar fraction (from 

~34% in ΔmreB to ~26% in both reconstructions) (Figure 51). On their own, these changes were not 

significantly different from the M4 and D44 of ∆mreB. However, these changes resulted in a significant 

decrease in the D44/M4 ratio of ∆mreBRL1 (0.69; SD ± 0.09; p < 0.05, two-sample t-test) and ∆mreBRL4 
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(0.74; SD ± 0.03; p < 0.05, two-sample t-test). Cross-linking was also significantly reduced, dropping to 

~30% in both strains (p < 0.05, two-sample t-test). Finally, the average chain lengths of both strains 

increased to 20.01 ± 0.50% disaccharides in ∆mreBRL1, and 17.5% (SD ± 3.04%) disaccharides in 

∆mreBRL4. The glycan chain length of ∆mreBRL1 was statistically significant (p < 0.05, two-sample t-test), 

however, the increase in cross-linking of ∆mreBRL4 returned a p-value that is just above the significance 

threshold (p = 0.0503, two-sample t-test). In general, the PBP1A line 1 mutation produced a more 

consistent change in PG composition, reverting most values (D44, D44/M4, cross-linking, and chain length) 

back to WT levels. 

 

 

Figure 51 Reconstruction of the L1 and L4 mutations in the ΔmreB background significantly decreased the 
D44/M4 ratio. The amount of PG cross-linking was also significantly reduced. Glycan chain length 
increased in both reconstructions, but only ΔmreBRL1 showed a significant difference. The dashed line 
represents the value of WT readings for the same characteristics. Asterisks represent a significant 
difference compared to ΔmreB. 
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The mutation of PBP1a and increase in mutant alleles in independent lines suggest that 

modification of this protein is beneficial in cells that have lost MreB. To investigate, the PBP1a mutations 

from lines 1 and 4 were reconstructed in the ΔmreB and WT backgrounds. These mutations had little 

effect on WT growth, fitness and PG composition. However, these mutations in the ΔmreB background 

demonstrated large improvements in growth, fitness, and viability proving that these mutations are 

indeed beneficial in cells that have lost MreB. Interestingly, cell sizes decreased in WT, but especially in 

ΔmreB. These phenotypes are consistent with other studies that show a decrease in size in cells that have 

lost PBP1a (Murray, Popham and Setlow, 1998; Claessen et al., 2008; Kawai, Daniel and Errington, 2009; 

Banzhaf et al., 2012). Importantly, Kawai et al. (2009) found that in B. subtilis, ΔmreB cells bulge and lyse 

due to the action of PBP1a. They demonstrated that MreB-loss results in the accumulation of PBP1a that 

leads to bulging and lysis, and that the inactivation of PBP1a suppresses this defect. Kawai et al. (2009) 

made this discovery using a transposon-generated library, wherein MreB-null mutants were rescued by 

the disruption of PBP1a in 5/9 strains. It is interesting that we uncovered the same relationship using a 

natural evolution approach, where 5/10 lines had mutations in PBP1a. 
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4.2.4.2.3. Analysis of PBP1a mutation effects using bioinformatics tools 

To investigate if the phenotypes seen in the PBP1a reconstructions are in fact due to a loss of 

PBP1a function, I used several bioinformatics tools to infer the effects of these mutations on PBP1a. I 

started by running an analysis of the mutations on SIFT (Sorting Intolerant From Tolerant). SIFT is an 

algorithm used to predict if amino acid substitutions can be tolerated, or are deleterious to protein 

function (Ng and Henikoff, 2003). It provides predictions using SIFT confidence scores that range from 0 

to 0.05 for deleterious substitutions (scores closer to 0 = high confidence), and 0.5 to 1.0 for tolerable 

substitutions (scores closer to 1 = high confidence). Results show that all 3 mutations (lines 1, 3, and 6) in 

the TP domain are predicted to be detrimental to PBP1a function, with high confidence scores of 0. On 

the other hand, the line 4 mutation in the OB domain seems to be a tolerable substitution, with a 

confidence score of 1. In addition, protein sequence analysis using MEGA and the Consurf algorithm 

(Ashkenazy et al., 2016) (Figure 52) shows that the mutations in lines 1, 3, and 6 are all in exposed, highly-

conserved regions. The residues affected by the line 1 and 6 mutations specifically have been identified 

as functional residues. Finally, a similar analysis using PolyPhen2 (Adzhubei et al., 2010) (Figure 53) 

provided further support about the possibly damaging effects of the mutations mentioned above. A 

summary of these results is shown in Table 6.  

It is unclear how the line 4 mutation in the OB domain is rescuing cells from the loss of MreB when 

bioinformatic tools are used to predict its effect across unrelated species. However, using the Protein 

Variation Effect Analyzer or PROVEAN tool (Choi and Chan, 2015), I found that the line 4 mutation is 

predicted to be deleterious when analysed in the context of other Pseudomonad species. PROVEAN used 

139 automatically selected sequences to predict the line 4 mutation to have a deleterious effect with a 

score of -2.819 (scores equal to or below -2.5 are considered deleterious). Most of the sequences were 

from Pseudomonads containing OB domains, suggesting that the line 4 mutation is likely deleterious to 

PBP1a function in Pseudomonads. According to Han et al. (2011), the OB domain has ligand binding 

properties, so it is possible that the line 4 mutation may be affecting how PBP1a interacts with PG 
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subunits, perhaps making it difficult for ligand binding to occur, producing a similar loss of function effect. 

Therefore, it is likely that the mutations in PBP1a are deleterious, and that the improved growth of evolved 

lines 1, 3, 4, and 6 is due to the loss of function of PBP1a. 

 

 

Figure 52 Protein sequence analysis using the Consurf algorithm (Ashkenazy et al., 2016) shows that the 
mutations in lines 1, 3, and 6 are all in exposed, highly-conserved regions. In particular, the mutations in 
lines 1 and 6 are predicted to be in functional residues of PBP1a. In contrast, the line 4 mutation is 
predicted to be a buried residue of the protein. 
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Figure 53 Analysis of the PBP1a mutations using Polyphen2 (Adzhubei et al., 2010) confirms that the 
mutations in lines 1, 3, and 6 are damaging to protein function, whereas the mutation in line 4 may be 
benign. PolyPhen2 used 75 automatically selected sequences to predict SNP effects. Sequences were from 
different genera – 70 sequences with OB domains, and 5 without. 

 

 

Table 6 Bioinformatic analysis of the identified mutations in PBP1a, and their effect on function.  

Evo. PBP1a ConSurf Results SIFT PolyPhen Mutation 

Line Mutation Conservation1 Position Functional Score (1-S)2 Score3 Result 

L1 D484N 9/9 Exposed Yes 0 / 1 0.988 / 1 Damaging 

L6 N698K 9/9 Exposed Yes 0 / 1 0.999 / 1 Damaging 

L3 D721A 7/9 Exposed No 0 / 1 1.000 / 1 Damaging 

L4 T362P 1/9 Buried No 1 / 1 0.003 / 1 Benign 
1 ConSurf Conservation Score ranges from 1 (variable) to 9 (highly conserved).  
2 SIFT Score Ranges from 0 to 1. The amino acid substitution is predicted to be damaging is the score is <= 
0.05, and tolerated if the score is > 0.05. 
3 PolyPhen Score ranges from 0 (benign) to 1 (damaging).  
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In summary, the line 1 and line 4 PBP1a mutations produced smaller cells in the both the WT and 

ΔmreB backgrounds. Importantly, both mutations rescued growth and fitness in the ΔmreB background. 

Aside from making the cells smaller, no major defects were observed in the WT background. Protein 

sequence analysis shows that the PBP1a mutations in evolved lines 1, 3, and 6 are in highly conserved 

regions, and bioinformatics analyses using I-TASSER, ConSurf, SIFT, and PolyPhen predict all three 

mutations to have deleterious effects.  The line 4 mutation was found in a variable region called the OB 

domain, and was predicted by the same bioinformatics tools to be a benign mutation. However, this 

mutation was predicted to be deleterious when compared against more than 100 Pseudomonad 

sequences using the PROVEAN tool, suggesting a possible loss-of-function effect to PBP1a in 

Pseudomonads. One possible mechanism is the disruption of the OB domain which has been shown to 

have ligand binding properties that may ultimately affect the activity of PBP1a. Altogether, these results 

suggest that the mutations in PBP1a are decreasing growth (cell volume) possibly due to a perturbation 

or loss of PBP1a function. 

 

4.2.4.3. OprD-inclusive deletion 

The most common mutation in line 7 is a deletion of PFLU4921-4925. This five-gene-cluster is 

composed of three hypothetical proteins; a cold shock protein, CspC; and an outer membrane porin, 

OprD. OprD is an outer membrane protein that functions as an efflux pump that is also involved with the 

passive uptake of small peptides and basic amino acids (Hancock and Brinkman, 2002). In this study, OprD 

was selected as the focus of our analysis because of its link to the maintenance of cell wall integrity. In P. 

aeruginosa, the decrease of OprD expression is responsible for high-level resistance to the β-lactam 

antibiotics, imipenem and carbapenem (Pagès, James and Winterhalter, 2008). This suggests a link to PG 

modification which, as shown above, can be an effective strategy for adapting to a spherical cell shape. In 

order to investigate the phenotypic effects of this deletion, reconstructions were made in the ΔmreB and 

WT backgrounds. The effects of the mutation are described below. 
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4.2.4.3.1. Reconstruction of the five gene deletion in the WT background 

 

Reconstructed cells are thinner, longer, show a filamenting phenotype, but have similar fitness to WT 

In the WT background, the OprD-inclusive deletion produced significantly thinner cells (width = 

0.74 µm; SD ± 0.06 µm; n = 100; p < 0.05; two-sample t-test) with smaller cell volumes (2.47 µm3; SD± 1.18 

µm3; n = 100) (Figure 54). A proportion of the population exhibited a filamenting phenotype, occurring in 

20% (SD ± 4%; n = 100) of the population. Despite this morphological defect, growth was not severely 

affected. Growth dynamics and relative fitness were very similar to that of WT (Figure 55). 

 

 

Figure 54 A) Reconstruction of the line 7 mutation in WT produced a filamenting phenotype in some cells. 
The OprD-inclusive deletion also produced (B) longer but (C) thinner cells. As a result, cell volumes are 
lower (D) in WTRL7. Compactness values are also lower (E) in this strain. Asterisks represent a significant 
difference of WTRL7 compared to WT. Scale bar = 3µm. 
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Figure 55 Growth and relative fitness effects of the OprD-inclusive deletion in the WT background. A) The 
OprD-inclusive deletion has no negative effect on the growth dynamics of WTRL7, shown by the red line. 
B) Similarly, relative fitness is very close to WT-levels. Error bars represent SD for 3 biological replicates. 
 

 

PG has a lower D44/M4 ratio with a shorter average glycan chain length and less cross-linking 

Compared to WT, the M4 and D44 molar percentages of WTRL7 are lower and have more 

variability (37.22%, SD ± 5.90% and 29.18%, SD ± 3.92%, respectively; 3 replicates) (Figure 56). These 

values are not significantly different from WT values. However, these produced a significantly lower 

D44/M4 ratio of 0.79 (SD ± 0.02; 3 replicates; p < 0.05, two-sample t-test). The average cross-linking 

percentage was also reduced to 31.80% (SD ± 2.09%; 3 replicates). Finally, the average glycan chain length 

of WTRL7 was significantly lower, shortening to 15.47 disaccharides (SD ± 1.21 disaccharides; 3 replicates; 

p < 0.05; two-sample t-test) in WTRL7. 
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Figure 56 Variations in the M4 and D44 of WTRL7 produced a significantly lower D44/M4 compared to 
WT. Cross-linking decreased slightly, but the difference was not significant. Glycan chain length was 
significantly shorter in WTRL7. Asterisks represent a significant difference of WTRL7 compared to WT. 
Error bars represent SD for 3 biological replicates. 
 

  

The reconstruction of the OprD-inclusive deletion in the WT background produced significantly thinner 

but longer cells with lower average cell volumes. The PG composition of the reconstruction strain showed 

a significantly lower D44/M4 ratio and shorter glycan chains, with a slightly reduced percentage of cross-

linking. It is unknown how the OprD-inclusive deletion is causing these phenotypes in the WT background. 

Turner et al. (2018) proposed that reduced glycan chain lengths are produced as a result of a disruption 

in systems directing PG synthesis. This hints at a possible modification of PG assembly resulting from the 

deletion of this group of 5-genes. 
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4.2.4.3.2. Reconstruction of the five gene deletion in the ΔmreB background 

Cells are smaller, have higher fitness, and remain spherical but exhibit a filamenting phenotype 

In ΔmreBRL7, cells remained spherical to ovoid in shape (Figure 57A), but cells became 

significantly smaller than ΔmreB, having an average volume of 5.32 µm3 (SD ± 3.18 µm3; n = 100) (Figure 

57D). In addition, 25.61% (SD ± 6.42%; n = 100) of this reconstruction in the ΔmreB background produced 

cells with notable septation defects, producing clumps of spherical cells. Thus, the smaller cells and 

clumping or snaking phenotypes suggest that the OprD-inclusive deletion may be affecting cell division, 

perhaps affecting the placement and rate of synthesis of new division planes. The reconstruction of the 

OprD-inclusive deletion also improved the growth dynamics and relative fitness (0.96; SD ± 0.02; 3 

replicates) in the ΔmreB background (Figure 58). 

 

Figure 57 A) Reconstruction of the line 7 mutation in ΔmreB produced smaller spherical cells with a 
filamenting phenotype seen in some cells. The OprD-inclusive deletion produced (B) shorter and (C) 
narrower cells. As a result, cell volumes are lower (D) in ΔmreBRL7. Compactness values are similar to 
ΔmreB (E). Asterisks represent a significant difference of mreBRL7 compared to WT. Scale bar = 3µm. 
 



110 
 

 

 

Figure 58 Growth and relative fitness effects of the OprD-inclusive deletion in the ΔmreB background. A) 
The growth characteristic of ΔmreBRL7, shown by the red line, closely resembles that of WT. B) The fitness 
of ΔmreBRL7 also increased to near-WT fitness values. Error bars represent SD for 3 biological replicates. 

 

The OprD-inclusive deletion is an adaptive mutation in the ΔmreB background. Reconstruction of 

this 5-gene deletion in ΔmreB significantly improves growth, and fitness. This also had the effect of 

decreasing the D44/M4 of ΔmreBRL7’s PG, meaning the balance between PG flexibility and rigidity is 

restored to WT levels. Cells are also much smaller whilst continuing to grow as spheres. Interestingly, the 

reconstructions in both the WT and ΔmreB backgrounds also produced defective cells with clumping or 

snaking phenotypes, suggesting that septa may be forming but not reaching completion in these cells. The 

exact mechanism responsible for this is unknown. However, an interesting clue can be found in the paper 

by Skurnik et al. (2013). Their report shows that transcription levels of minD are at least 10 times higher 

in an oprD-deficient strain of P. aeruginosa. This hints at a possible scenario wherein the deletion of oprD 

may be altering mechanisms governing septum formation (FtsZ inhibition by the Min system). Cell division 

is a finely tuned process, and cells with imbalanced levels of Min and FtsZ proteins are known to produce 

filamenting phenotypes (Justice, García-Lara and Rothfield, 2000; MacCready and Vecchiarelli, 2018; 

Wehrens et al., 2018), similar to what we see in our reconstructions. If septum formation is indeed 

affected by OprD-loss in P. fluorescens, then this could also be influencing the ability of ΔmreB to divide, 

perhaps allowing it to overcome issues with the formation of incomplete septa described in Chapter 3. 
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PG cross-linking reverted to WT levels with a slight increase in glycan chain length 

In ∆mreBRL7, M4 increased to 31.47% (SD ± 2.30%; 3 replicates), while D44 decreased to 30.09% 

(SD ± 3.37%; 3 replicates) (Figure 59). These changes were not statistically significant. However, these 

resulted in a significant reduction in D44/M4 which decreased to 0.95 (SD ± 0.05; 3 replicates; p < 0.05, 

two-sample t-test). Average glycan cross-linking was likewise reduced to 35.07% (SD ± 4.86%; 3 

replicates). Finally, the average cross-linking percentage in ∆mreBRL7 showed a slight increase to 16.25 

disaccharides (SD ± 2.07 disaccharides; 3 replicates). All values reverted to WT levels, except glycan chain 

length which did increase but was still significantly shorter than WT glycan chain length (p < 0.05, two-

sample t-test). 

 

Figure 59 Variations in the M4 and D44 of ΔmreBRL7 produced a significantly lower D44/M4 compared to 
ΔmreB. Cross-linking decreased slightly, reverting to WT levels. Glycan chain length was slightly longer in 
ΔmreBRL7. The dashed line represents the value of WT readings for the same characteristics. Asterisks 
represent a significant difference of mreBRL7 compared to WT. Error bars represent SD for 3 biological 
replicates. 
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At this point, the link between the OprD-deletion, the Min system, and septum formation is 

inconclusive. PG analysis shows that the D44/M4 ratio has reverted to WT levels, but the other 

components of the cell wall (M4, D44, cross-linking percentage, and glycan chain length) only changed 

slightly. This suggests that the improvement in growth conferred by this deletion cannot be fully 

attributed to changes in systems affecting PG synthesis. It is therefore possible that other mechanisms, 

such as the altered Min dynamics discussed above, are at play. To better understand this topic, it will be 

beneficial to analyse cell division in these cells in the future. This can be done by studying MinD expression 

levels, observing Z-ring formation, or observing chromosome segregation using fluorescent tags in run-

out experiments, for example. Further investigation is also needed to confirm that the phenotypes 

observed are truly due to the deletion of OprD, and not one of the other 4 genes in the 5-gene cluster.  

 

4.2.5. PG synthesis patterns are restored by reconstructed mutations 

Using fluorescent D-amino acids (FDAAs), I studied how the mutations discussed above are 

affecting PG assembly in ΔmreB. FDAAs are metabolic probes that are useful for studying PG insertion 

patters in situ (Banzhaf et al., 2012; Hsu et al., 2017). This technique uses the action of transpeptidases 

(TPs), penicillin-binding proteins (PBPs), and/ or L,D-transpeptidases to insert small fluorescent molecules 

conjugated to a D-amino acid backbone into sites of active PG synthesis in bacteria (Cava et al., 2011; 

Lupoli et al., 2011). The use of FDAAs gives us the ability to perform spatiotemporal tracking of PG 

synthesis and modification (Hsu et al., 2017) and has been an effective tool for investigating PG synthesis 

in real time across a number of bacterial species (Liechti et al., 2016; Bisson-Filho et al., 2017; Hsu et al., 

2017; Zhu et al., 2017). 

I used the green-fluorescent probe BADA (BODIPY-FL 3-amino-D-alanine) to observe the patterns 

of new PG insertion using a short-pulse labeling technique. Briefly, cells were exposed to BADA for 5 to 

10% of their generation time before being fixed, washed, and imaged. The resulting images of cells where 

active sites of PG growth are marked by BADA, allowing us to differentiate old from new PG. Despite 
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getting clear and bright fluorescent signals from many cells, it is worth noting that not all of the cells 

stained well. I believe this can be improved with further optimisation of staining parameters in the future 

(FDAA concentration, staining time, incubation setup).  

In WT, we observe a pattern of PG assembly that is typical of a rod-shaped bacterium. PG insertion 

can be seen throughout the length of the cell, with little activity seen in the polar caps (Figure 60). 

Fluorescent bands are observed running perpendicular to the cell length following a helical pattern, which 

is reminiscent of the movement pattern of MreB in rod-shaped bacteria (Daniel and Errington, 2003; 

Scheffers and Pinho, 2005). In dividing cells, a single bright band or spot can be seen in the center of the 

cell, with less activity along the lateral walls, indicating a focused insertion of new PG material in the 

forming septum, and a shift from lateral to septal growth (Scheffers and Pinho, 2005). In longer cells, 

bright bands could be seen at 25% and 75% of the cell length, corresponding with the location of future 

septal PG Figure 61. 
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Figure 60 The incorporation of FDAAs in WT shows PG assembly along the lateral walls during elongation. 
Perpendicular bands can be seen running along the long axis of the cell, akin to the pattern of the MreB-
associated PG assembly seen in other bacteria. The cell poles are notably dark showing no PG synthesis 
activity. Dividing cells show a bright spot at the septum, highlighting strong PG synthesis activity at the 
septum during cell division. A = phase contrast, B = fluorescent image (GFP), C = combine phase contrast 
+ GFP, D = GFP + cell outline. Scale bar = 2µm.  
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Figure 61 Line scans along the length of the cell show no PG synthesis activity at the poles with dispersed 
activity along the length of the cell. Peaks along the cell length represent directed PG synthesis that runs 
perpendicular to the cell’s long axis. Dividing cells show strong activity at midcell where the septum is 
forming, and at the quarter positions which are the potential future division sites of dividing cells. 
Coloured lines indicate data for 1 cell, and black line indicates the average of all cells in each cell length 
category. 
 

 

In ΔmreB, PG activity is distributed throughout the cell in a non-specific manner. Numerous bright 

spots are seen, often forming clusters that are spread out across the cell (Figure 62). Bright bands can be 

seen in dividing cells, forming either a complete ring around the cell, or partial bands that resemble 

incomplete septa or Z-rings (Thanedar and Margolin, 2004). Even in cells that do form a complete septal 

ring, bright spots can still be seen, indicating the continued insertion of new PG in areas other than the 

septum during cell division. Line scans show none of the peaks seen in WT (Figure 63) showing the absence 

of directional growth. 
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Figure 62 ΔmreB cells show a disorganized pattern of PG assembly. PG assembly is uneven, showing 
scattered bright spots as well as dark areas throughout the cell. This is especially apparent in larger cells 
measuring > 4µm3. A = phase contrast, B = fluorescent image (GFP), C = combine phase contrast + GFP, D 
= GFP + cell outline. Scale bar = 2µm. 
 

 

Figure 63 Line graphs of ΔmreB show a smooth distribution of PG synthesis activity throughout the cell. 
The jagged peaks seen along the length of WT are no longer present, indicating the absence of directional 
PG assembly. Coloured lines indicate data for 1 cell, and black line indicates the average of all cells in each 
cell length category. 
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To understand how the mutations from the evolution experiment (discussed previously) may be 

affecting PG insertion, I performed the same short-pulse labeling experiment on the L1, L4, and L7 

reconstructions in the WT and ΔmreB backgrounds. In the WTRL1 (Figure 64 & Figure 65) and WTRL4 

(Figure 66 & Figure 67) reconstructions, there was no effect change seen in the PG insertion patterns. Cell 

growth is still dispersed along the cell, and helical bands can still be seen running perpendicular to the 

length of the cell.  

 

 

 

Figure 64 PG synthesis in WTRL1 resembles that of WT. Activity is seen throughout the cell length, with 
perpendicular bands visible. Dividing cells show strong activity at the septum with decreased activity along 
the cell length. Scale bar = 2µm. 
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Figure 65 Line scans of WTRL1 cells resemble that of WT. PG synthesis activity is not seen at the poles, 
and dispersed activity is seen along the length of the cell. Sharp peaks along the cell length represent 
directed PG synthesis running perpendicular to the cell’s long axis. Dividing cells with cell lengths longer 
than 4.0 µm show strong activity at midcell where the septum is forming, and at the quarter positions 
which are the potential future division sites of dividing cells. Coloured lines indicate data for individual 
cells, and black line indicates the average of all cells in each cell length category. 
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Figure 66 PG synthesis in WTRL4 resembles that of WT. Activity is seen throughout the cell length, with 
perpendicular bands visible. Dividing cells show strong activity at the septum with decreased activity along 
the cell length. Scale bar = 2 µm. 
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Figure 67 Line scans of WTRL4 cells resemble that of WT. PG synthesis activity is not seen at the poles, 
and dispersed activity is seen along the length of the cell. Sharp peaks along the cell length represent 
directed PG synthesis running perpendicular to the cell’s long axis. Dividing cells show strong activity at 
midcell where the septum is forming, and at the quarter positions which are the potential future division 
sites of dividing cells. Coloured lines indicate data for 1 cell, and black line indicates the average of all cells 
in each cell length category. 
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However, in the ΔmreB background, growth now seems to be focused only at or near the site of 

septal PG formation. Bright bands are only seen running across the dividing daughter cells, with no spots 

or stray bands occurring anywhere else in the cell. This is similar to the growth characteristics of spherical 

bacteria such as S. aureus and S. pneumoniae, where PG insertion occurs mostly at the septum (Stamsås 

et al., 2018). This indicates that in the absence of MreB, both the line 1 (Figure 68 & Figure 69) and line 4 

(Figure 70 & Figure 71) mutations are preventing unrestricted lateral growth, perhaps by interfering with 

or preventing PBP1a activity, thereby allowing new PG material to be inserted only at the division site by 

other PBPs. 

 

 

 

Figure 68 PG synthesis in ΔmreBRL1 shows decreased peripheral growth. The bright spots seen in ΔmreB 
are no longer present, and PG assembly is strongest at and around the septum. Scale bar = 2µm. 
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Figure 69 Line scans of ΔmreBRL1 show reduced peripheral activity and a strong activity at or near the 
center of the cell. Coloured lines indicate data for 1 cell, and black line indicates the average of all cells in 
each cell length category. 
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Figure 70 PG synthesis in ΔmreBRL4 shows decreased peripheral growth. The bright spots seen in ΔmreB 
are no longer present, and PG assembly is strongest at and around the septum. Scale bar = 2µm. 
 

 

Figure 71 Line scans of ΔmreBRL1 show reduced peripheral activity and a strong activity at or near the 
centre of the cell. Coloured lines indicate data for 1 cell, and black line indicates the average of all cells in 
each cell length category. 
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Similar results were seen in the OprD-inclusive deletion from Line 7. In the WT background, the 

PG activity of single cells is similar to that of WT – bright bands can be seen running across cells, 

perpendicular to the cell length, in a helical pattern. In dividing cells, a bright band can be seen running 

around the cell following septum formation (Figure 72). As previously described, a proportion of this 

population produces a snaking or filamenting phenotype with multiple incomplete septa in cells that are 

greater than 5.0µm in length. In these elongated cells, PG activity seems to shift from septum formation 

back to lateral growth before the septum is fully closed. As this happens, PG activity in some parts of the 

cell continue to occur as other parts seem to stop growing (Figure 73).  
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Figure 72 PG synthesis in WTRL7 exhibits typical characteristics of rod-shaped growth. Bright bands are 
seen running perpendicular to the cell length, and dividing cells show activity at the septum and at the 
future sites of septum formation. This population exhibits filamenting phenotypes that show uneven 
patterns of PG synthesis. In these long cells, bright bands can be seen at or near septa and along the length 
of the cell, while other parts appear to have decreased PG activity. Scale bar = 2µm. 
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Figure 73 Line scans of WTRL7 reveal numerous peaks of activity along the length of the cell. This indicates 
that the directional orientation of PG synthesis has become erratic. This is especially apparent in 
filamenting cells. In some filamenting cells, PG assembly can be seen tapering off on one half of the cell 
while remaining active in the other. 
 



127 
 

 

 

 

 

 

In ΔmreBRL7, cell growth is mostly restricted to the septum with no stray spots of activity 

happening anywhere else in the cell. Most cells follow this pattern of growth and successfully complete 

cell division to form distinct spherical daughter cells (Figure 74). However, a filamenting phenotype can 

also be seen in a proportion of these spherical cells. As in the WT background, some cells seem to shift 

from cell division back to lateral growth, producing incomplete septa which eventually cause the 

formation of filamenting cells. In these cases, some lateral growth can be seen near the septum, with 

activity being visible in only some parts of the cell (Figure 75).  
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Figure 74 PG synthesis in ΔmreBRL7 shows decreased peripheral growth. The bright spots seen in ΔmreB 
are no longer present, and PG assembly is strongest at and around the septum. Similar to WTRL7, the 
ΔmreBRL7 population also exhibits a filamenting phenotype. In these cells, activity is also unevenly 
distributed throughout the cell. Scale bar = 2µm. 
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Figure 75 Line scans of ΔmreBRL7 show uneven PG synthesis patterns. In filamenting cells, heightened 
activity can be seen at the septum or at quarter positions which represent the future sites of septal 
formation. To perform the line scans, lines are drawn following the longitudinal axis of the filamenting 
cells. 

 

These data suggest than in WTRL7, the snaking phenotype may be a result of the disruption of cell 

division. This supports the idea that the deletion of OprD increases MinD expression levels, thereby 

affecting the placement of septa during cell division. Perhaps this mechanism is causing septal formation 

to be aborted before the cell division is completed in these cells. 
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In this section, I have demonstrated that the fluorescent D-amino acid BADA can be successfully 

used to study the patterns of cell wall assembly in P. fluorescens SBW25. Rod-shaped P. fluorescens SBW25 

cells are characterised by a diffused pattern of active cell wall construction along the length of the cell, 

with bright bands running perpendicular to the cell’s longitudinal axis. This likely represents strong PBP 

activity directed by MreB which coordinates enzymes responsible for cell elongation, adding orientational 

order and strength to the PG structure of WT cells (Turner et al., 2018). In addition, the cell poles of WT 

cells show no fluorescent activity, indicating the absence of active cell wall assembly in these regions.  

Without MreB, cells continue to synthesize PG, allowing size enlargement, but in a less ordered 

manner. Turner et al. (2018) showed that spherical E. coli cells that have lost MreB produce a less ordered 

PG structure, leading to the production of shorter glycan chains due to a lower processivity of glycosidic 

bonds. The same characteristics are seen in ΔmreB – cells enlarge as they continue to grow and build new 

cell wall material, and PG processivity is lower producing shorter glycan chains. The PG structure is also 

less organized as the banded pattern seen in WT is replaced by a clumpy distribution of PG-assembly 

activity (Figure 62). Interestingly, FDAA staining revealed that the L1 and L4 (PBP1a), and L7 (OprD-

inclusive deletion) mutations resulted in the inactivation of the aberrant PG activity seen in ΔmreB. This 

allowed cells to focus PG assembly only at or near the septum, allowing cell division to occur normally, 

resulting in the formation of smaller cells. The growth patterns seen in these reconstruction mutants 

resemble those of other ovococci such as S. pneumoniae suggesting that PG-assembly modification may 

be a key strategy that bacteria use for adapting to a spherical cell shape. 
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4.2.6. Recapitulating spherical cell shape evolution 

So far, I have demonstrated that mutations in PBP1a, and an OprD-inclusive deletion can rescue 

growth and fitness defects associated with MreB loss. This led us to ask if the mutations we observed 

might be recapitulating events in the evolution of extant spherical cells. To investigate, I constructed a 

phylogenetic tree of 30 paired spherical and rod-like species from amongst completely sequenced 

bacterial genomes (Figure 76). PBP homologues were identified using BLAST based on the known PBPs of 

E. coli. I then compared the abundance of Penicillin Binding Proteins (PBPs) and OprD homologs in these 

organisms.  

No interpretation can be made for the OprD homologues as they were too rare for analysis. OprD 

homologs are common in Pseudomonads but are rare in other species (Li et al., 2012). In contrast, a strong 

relationship was seen in the number of PBPs in organisms that have remained rod-like, and in organisms 

that lost MreB (naturally spherical cells). In rods, 39 Class A, and 81 Class B PBPs were seen, amounting to 

120 PBPs across 15 species. In spherical bacteria, only 21 Class A, and 33 Class B PBPs were seen, totalling 

54 PBPs across 15 species. This shows that rods have significantly more PBPs, having 8.00 on average (SD 

± 5.28) than spheres, which only have 3.6 on average (SD ± 2.23) PBPs (p < 0.05; two-sample t-test), 

suggesting that PBP loss may be a general strategy for adaptation to a spherical cell shape upon the loss 

of MreB. This is consistent with the observations of Meeske et al. (2016) who found that SEDS proteins 

and Class B PBPs are more broadly conserved than Class A PBPs, and may be the core PG synthases 

responsible for cell wall elongation and division machineries.  
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Figure 76 Penicillin-Binding Proteins (PBPs) observed in extant spherically-shaped cells. A selection of 26 
paired rod-shaped and spherical cells were analysed for their PBP and OprD homologs. Naturally evolved 
spherical cells were seen to have fewer PBPs than rod-shaped species. OprD homologs were rare. 
 

 

In conclusion, we used an experimental evolution approach to study natural strategies that the 

typically rod-shaped organism P. fluorescens SBW25 might take to adapt to a new spherical cell shape 

caused by the loss of MreB. By sequencing the evolved lines, we identified mutations that were 

responsible for improving their growth and fitness. We demonstrated that mutations in PBP1a, and the 

deletion of a five-gene-cluster that included the outer membrane protein OprD, can rescue growth and 

fitness in ΔmreB. Finally, we demonstrate that naturally-spherical bacteria have fewer PBPs than their 

rod-shaped relatives, suggesting that PBP loss is a natural adaptation strategy for a becoming spherical. 
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Chapter 5  

Model for the adaptation of P. fluorescens SBW25  

to a spherical cell shape 

 

5.1. Introduction 

 

The formation and maintenance of bacterial cell shape is a well-coordinated process involving the 

bacterial cytoskeleton and numerous enzymatic complexes and processes. Recent advances in the 

imaging (e.g. atomic force microscopy by Turner et al., 2018; and single molecule imaging by Lee et al., 

2016) and chemical analysis (e.g. UPLC by Alvarez et al., 2016) of PG have allowed us to refine our 

understanding of cell wall construction and regulation, and therefore cell shape, in bacteria.  

Previously, Holtje (1998) proposed an influential conceptual framework for PG synthesis called 

the “3-for-1” model, or a “Make before Break” model as referred to by Zhao et al., (2017). The model 

assumes that bacteria synthesize three parallel, crosslinked PG strands before breaking any existing bond 

in the PG network to maintain cell wall integrity. Recently, Zhao et al. (2017) proposed an updated model 

called the “Break before Make” model of PG synthesis. In this model, mature PG is first broken by 

endopeptidases before new cell wall material is made and cross-linked to the mature PG mesh by the 

MreB-associated Rod-complex. New strands are then made and cross-linked independently, but 

synergistically, by Class A PBPs. 
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Using the framework of the “Break before Make” model, I present a new model that explains the 

data gathered from the experimental evolution of spherical cells from P. fluorescens SBW25. The model 

begins with rod-shaped (wild type) P. fluorescens SBW25 cells undergoing cell elongation through the 

action of the MreB-associated Rod-complex and PBP1a. In Figure 77A, the Rod-complex is shown 

associating with MreB, and working independently but cooperatively with PBP1a.  After MreB is deleted 

Figure 77B, the directional insertion of new PG is lost. The resulting ΔmreB cells are unable to maintain 

their rod-like shape as the Rod-complex diffuses throughout the cell. At this point, new PG is still 

produced, allowing ΔmreB to grow continuously which causes a defect in cell division. PBP1a also diffuses 

throughout the cell but is attracted to the nicks or gaps in the PG that are made by Rod-associated 

endopeptidases. This leads to localised, inefficient cross-linking seen as hotspots of activity in the FDAA-

labeling experiments (Figure 62). As MreB is no longer present to provide directional movement, newly 

synthesized PG glycan chains become shorter (Figure 32) and, as demonstrated by Turner et al. (2018) 

using spherical E. coli, less organized This is consistent with the observations of Turner et al., (2018) who 

showed using atomic force microscopy that spherical E. coli treated with A22 produce PG with shorter 

average chains that are assembled in a disordered manner. The authors argue that this could lead to the 

formation of larger pores in the peptidoglycan mesh which would cause problems for cellular integrity, 

possibly explaining why ΔmreB is sensitive to mechanical damage (Figure 17). 
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5.2. Results and Discussion 

 

PBP1a mutations 

I propose that the mutations in PBP1a are deleterious to protein function. In Figure 77C, I show 

an ΔmreB cell that has lost PBP1a activity as a result of mutations that interfere with the enzyme’s active 

site. Here, the Rod-complex is dispersed throughout the cell, presumably still synthesizing and assembling 

new PG, albeit very slowly. In E. coli, although the activity of the Rod-complex and PBP1a are spatially 

independent, their transglycosylase activities are functionally coupled such that inactivation of one or the 

other leads to an 80% reduction in the incorporation of new PG (Cho et al., 2016). This is consistent with 

the loss of the activity hotspots in the FDAA experiments (Figure 68 & Figure 70). Without PBP1a, 

peripheral PG assembly decreases considerably, allowing the cell division machinery to create and 

complete Z-ring formation, thereby restoring cell division (Figure 77D). At this point, the cell division 

machinery takes over, concentrating growth at or near the septum. This is similar to the growth 

characteristic of ovococcus  bacteria like Streptococcus pneumoniae which carries out both peripheral and 

septal PG synthesis (Mura et al., 2017). 

 

OprD-inclusive deletion 
 

I propose that the OprD-inclusive deletion is likely altering the dynamics of Min proteins which 

are involved in determining cell division site in bacteria. The Min system is best understood from cell 

division studies using the model bacteria E. coli and B. subtilis (Eswara and Ramamurthi, 2017). In these 

organisms, the continuous chase and release of MinD (and the associated MinC) from the inner membrane 

through the action of MinE results in the continuous movement of Min proteins from one cell pole to the 

other. This oscillation forms a time-averaged minimum concentration of MinC (which inhibits Z-ring 

formation) at midcell, thereby allowing the assembly of the cell division machinery at the cell’s midpoint 

(Lutkenhaus, 2007). Skurnik et al. (2013) previously showed that the transcription levels of minD are at 
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least 10 times higher in a healthy oprD-deficient strain of P. aeruginosa. Higher levels of MinD relative to 

MinE has the effect of lengthening the Min oscillation period, while lower MinD levels has the opposite 

effect of shortening the Min oscillation period (Raskin and de Boer, 1999; Hu, Gogol and Lutkenhaus, 

2002). This suggests a scenario wherein the loss of OprD increases MinD expression, thereby slowing the 

Min oscillation period and allowing septum formation to proceed. This is further supported by the Pereira 

et al. (2016) who demonstrated that FtsZ filaments are able to generate elongated cells from cocci. 

In Figure 77E, both the Rod-complex and PBP1a proteins are still present and are still actively 

synthesizing new PG. This does not seem to pose a problem for smaller cells as reconstruction mutants 

do not have the numerous PG synthesis hotspots seen in large ΔmreB cells (Figure 74). Although PG 

synthesis and growth continue, altered Min dynamics now allow septum formation to proceed, thus 

restoring cell division (Figure 77F). Consistent with this, cells that exhibit a long or filamenting phenotype 

in the OprD-inclusive deletion reconstructions show active PG construction across multiple septa (Figure 

72 & Figure 74), indicating the concurrent assembly of multiple cell division sites (Figure 77G). This is 

reminiscent of the asymmetric cell division pattern of filamenting Vibrio parahaemolyticus swarmer cells 

which position the cell division machinery off-center, based on multi-nodal patterns of the Min system 

(Liao and Rust, 2018; Muraleedharan et al., 2018). This is also similar to the Min-driven positioning of 

aberrant Z-rings in filamenting Myxococcus xanthus cells (Treuner-Lange et al., 2013). 



137 
 

 

Figure 77 Model for the adaptation of P. fluorescens SBW25 to a spherical cell shape. Description on 
following page. 
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A) Rod-shaped WT cells are formed by the directed insertion of new PG to the existing sacculus by the 
action of the MreB-associated rod complex. In this model, the red filament represents MreB, which forms 
a complex with Rod proteins (yellow sphere) and a Class B PBP (blue sphere). Areas of the cell with active 
PG growth is shown in green, whereas areas with little or no PG synthesis are shown in grey. The rod 
complex can form a transient synergistic interaction with PBP1a (green spheres) or can act independently. 
Similarly, PBP1a can act independent of the Rod complex, filling gaps in the PG mesh with new material. 
B) Upon the deletion of MreB, the directional motion of the Rod complex is lost. Cells grow as spheres 
and enlarge. Both the rod complex and the PBP1a diffuse throughout the cell. Both proteins continue to 
perform transglycosylation and transpeptidation reactions which keeps growing the cell. PBP1a is 
recruited into areas where the rod complex continues to break and build the PG mesh, forming hotspots 
of activity. Some areas experience a temporary halt in PG growth, appearing as dark spots. C) The 
mutation in the transpeptidase domain of PBP1a is assumed to inactivate PBP1a, thereby reducing the 
amount of peripheral growth and preventing the formation of activity hotspots. D) This slows the growth 
of the cell, allowing the formation of Z-rings which allow cell division to occur. E) Alternatively, the OprD-
inclusive deletion is proposed to modify the dynamics of the Min system, slowing the oscillation of Min 
proteins, allowing septum formation to occur (F). G) Demonstrates a filamenting phenotype that could 
form as a result of inaccurate Min oscillation, as seen in the OprD-inclusive deletion reconstructions in 
both the WT and ΔmreB backgrounds. 
 

 

 This chapter presents an updated perspective on how a rod-shaped organism like P. fluorescens 

SBW25 can adapt to a new spherical cell shape. By combining the “Break before Make” model of PG cell 

wall synthesis by Zhao et al. (2017) with data obtained in this thesis, I have developed a model that 

explains how the uncoordinated synthesis and construction of the PG cell wall could be causing cell 

division defects as well as the uncontrolled growth of the ΔmreB strain. This model explains how the 

inactivation of PBP1a stops uncoordinated growth, thereby allowing the cell division machinery to take 

over and direct cell growth, which is a growth strategy employed by many extant spherical bacteria. This 

model also presents a possible scenario where modifications to the min system could be beneficial, as it 

enhances the ΔmreB strain’s ability to form complete septa at appropriate locations within its cells, 

thereby promoting cell division and improving overall growth. Finally, this model improves our current 

understanding of cell shape formation by adding a novel evolutionary context to what was previously a 

purely mechanistic and molecular framework of bacterial growth. 
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Chapter 6  

Concluding remarks 

6.1. Background 

Cell shape is an important bacterial characteristic. It can have a direct impact on a cell’s ability to 

acquire nutrients (Koch, 1996; Young, 2007),  swim (Maki et al., 2000; Montecucco and Rappuoli, 2001; 

Mitchell, 2002), and evade predation (Yang, Blair and Salama, 2016). It is currently believed that all 

bacteria evolved from a rod-shaped ancestor which gave rise to the multitude of cell shapes seen today 

(Siefert and Fox, 1998; Errington, 2013). Phylogenetic analysis shows that the deepest branches of the 

bacterial evolutionary tree are exclusively composed of rod-shaped or filamentous species, from which 

the spherical cell shape evolved (Siefert and Fox, 1998).  

Cell shape is determined by the organisation of the PG cell wall (Zhao et al., 2017). Most bacteria 

possess a strong but flexible PG cell wall that provides protection and  structure (Errington, 2017). 

Construction of the PG cell wall involves numerous components such as Mur proteins that synthesise PG 

precursors, transporters that translocate precursors from the cytoplasm to the existing cell wall, and PBPs 

which modify and assemble the PG cell wall  (Lovering, Safadi and Strynadka, 2012; Cho et al., 2016). PG 

construction is also influenced by bacterial cytoskeletal elements which are responsible for the spatio-

temporal organisation of the cell wall (Govindarajan and Amster-Choder, 2016). MreB is recognised as the 

major cytoskeletal element responsible for maintaining the rod shape in bacteria (Jones, Carballido-López 

and Errington, 2001). MreB is present in most rod-shaped species, where it coordinates the spatial activity 

of proteins that make and maintain cell shape (Cho et al., 2016). The loss of MreB is not viable under 

normal growth conditions in model bacteria such as B. subtilis (Kawai, Daniel and Errington, 2009), E. coli 

(Turner et al., 2013), C. crescentus (Figge, Divakaruni and Gober, 2004), and P. aeruginosa (Robertson et 

al., 2007). MreB-loss leads to cell shape defects and ultimately, cell death.  
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The evolutionary strategies that bacteria used to evolve from being rod-shaped to spherical is not 

known. However, it is apparent that this transition involves the loss of MreB as an early first step. In 2002, 

Spiers et al. discovered that the disruption of mreB in P. fluorescens SBW25 produced spherical cells that 

remain viable in standard LB under normal growth conditions. A subsequent deletion of mreB in P. 

fluorescens SBW25 was done by Dr. Monica Gerth to produce a viable ΔmreB strain. This provided the 

framework for an evolution experiment where ΔmreB was separated into 10 distinct lines and evolved for 

~1,000 generations. I continued the investigation by using this body of work to elucidate possible 

strategies that a formerly rod-shape organism can use to adapt to a new spherical cell shape. 

6.2. Findings 

The ΔmreB strain produced characteristic defects associated with MreB loss. The cells of ΔmreB 

were misshapen, had poor growth, and were very susceptible to mechanical stress. Single ΔmreB cells 

were nearly perfectly spherical and were up to 10x larger in size than WT cells. Growth and fitness assays 

showed that ΔmreB has a much longer lag time and generation time, and lower relative fitness compared 

to WT. I found that when ΔmreB cells are harvested following a standard centrifugation step, up to 50% 

of cells would die (Figure 17), indicating that ΔmreB cells are fragile and are more susceptible to 

mechanical damage. The ΔmreB strain also exhibited defects in cell division. Microscopic analysis revealed 

the presence of incomplete septa (Figure 20) and increased chromosome copy numbers (Figure 22 & 

Figure 25) in single, non-dividing cells. This defect in cell division is likely contributing to the slow growth 

of the ΔmreB strain.  

The composition of the PG cell wall is altered in ΔmreB. Analysis of purified PG material via UPLC 

shows that the cell wall of ΔmreB has much fewer monomers and more cross-linking compared to WT 

(Figure 32). This suggests that the PG of ΔmreB has adopted a more inflexible structure which may be 

responsible for its increased susceptibility to physical stress. In addition, the glycan chains of ΔmreB are 

much shorter than the glycan chains of WT (Figure 32), which may be a result of the decreased TG activity 
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of PBPs caused by MreB-loss. Looking at PG assembly patterns, I found that cell wall activity is greatly 

disordered in ΔmreB (Figure 62 & Figure 63), indicating a loss of spatio-temporal coordination of PBP 

activity.  

The growth of ΔmreB is enhanced by supplemental Mg2. When ΔmreB is grown with supplemental 

Mg2+, growth is improved albeit not completely restored (Figure 26). The exact mechanism(s) behind this 

is not known, but previous studies suggest that supplemental Mg2+ is boosting cell wall integrity (Asbell 

and Eagon, 1966; Rayman and MacLeod, 1975; Nakamura et al., 1997) and aiding cell division (Varley and 

Stewart, 1992; Murray, Popham and Setlow, 1998; Chiu, Chen and Wong, 2008) and PG synthesis (Rayman 

and MacLeod, 1975; Formstone and Errington, 2005; Shen W. Chiu, Chen and Wong, 2008; Harris and 

Theriot, 2016b), thereby improving growth and survival. This supports my observation that the loss of 

MreB negatively impacts the physical structure (integrity) of cells, as well as the spatio-temporal 

coordination of PG synthesis in P. fluorescens SBW25. Furthermore, the ectopic production of MreB in the 

ΔmreB strain restored both the native rod-shape of this organism, as well as improved the growth and 

fitness of ΔmreB back to WT levels. Since DNA analysis of ΔmreB did not reveal the presence of any 

mutation that could be compensating for the loss of MreB, these results therefore show that the defects 

discussed above are a direct result of the loss the major rod-shape determining protein, MreB. 

 Following the characterisation of the ΔmreB strain, I then studied the ~1,000 generation evolution 

experiment. I found that as early as 50 generations into the experiment, all of the evolved lines had much 

higher fitness than ΔmreB (Figure 38). This shows that ΔmreB is under a strong selection pressure, further 

highlighting the importance of cell shape in bacteria. At the 1,000-generation timepoint, all of the evolved 

lines have remained spherical (Figure 35 & Figure 36) and had fitness levels that were comparable to that 

of WT SBW25 (Figure 37 & Figure 38). This indicates that mutations compensating for the loss of MreB 

have occurred in all populations, giving us the unique opportunity to identify strategies that rod-shaped 

bacteria can use to survive the loss of MreB, and evolve into a new spherical organism. I selected three of 
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the major mutations identified in the evolved lines for further study. Specifically, I studied the 

amplification of csrA, a gene linked to carbon metabolism and gene expression; mutations in PFLU0406, 

a gene coding for the PBP1a enzyme; and the deletion of a group of 5-genes that includes a gene coding 

for the outer-membrane protein, OprD. 

 The amplification of csrA did not compensate for the loss of MreB. When reconstructed in the WT 

background, cells were smaller (Figure 39), growth was slower and fitness slightly lower (Figure 40), 

showing increased variability. In the ΔmreB background, csrA amplification produced cells that were larger 

and more variable in size (Figure 41). Both growth and relative fitness were comparable to and even more 

variable than the growth and fitness of ΔmreB (Figure 42). Previous studies in other bacteria showed that 

csrA amplification negatively regulates gluconeogenesis (Romeo et al., 1993), which may be subjecting 

the reconstruction mutants to starvation as LB is a carbon-limited medium (Jannière et al., 2007; Sezonov, 

Joseleau-Petit and D’Ari, 2007). Altered csrA expression levels has also been shown to affect glycogen 

biosynthesis (Baker et al., 2002) by repressing enzymes that are needed for carbohydrate metabolism 

(Altier et al., 2000). These could possible lead to slowed growth and a decrease in size in the WT 

background. Similarly, growth becomes slower when csrA is amplified in the ΔmreB background. However, 

it is unclear why cell size increases the ΔmreB background when csrA is amplified. Since csrA amplification 

did not show any compensatory effects in the context of MreB-loss, I did not pursue investigating this 

mutation further. 

 Unique missense mutations in PFLU0406, the gene coding for the PBP1a enzyme, were seen in 

several lines in the evolution experiment. This identifies the modification of PBP1a as a possible strategy 

for adapting to a spherical cell shape. Mutations were found in 2 of the 3 domains of the protein sequence, 

namely, the TP domain responsible for PG cross-linking, and the poorly-characterised OB domain (Figure 

43 & Figure 44). I investigated the effects of 2 of these mutations in PBP1a, one representing the mutation 

in the OB domain, and the other representing the mutations in the TP domain. I found that reconstructing 
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these mutations in both the WT and ΔmreB backgrounds leads to a reduction in cell size (Figure 46 &Figure 

49). Growth in the WT background is unchanged (Figure 47), whereas growth in the ΔmreB background 

becomes greatly improved (Figure 50). PG analysis shows that these mutations do not alter the cell wall 

chemistry in the WT background (Figure 51).  In contrast, PG composition in the ΔmreB background is 

reverted to WT levels (Figure 56). Using bioinformatics tools, I found that the mutations in the TP domain 

are likely damaging to the active site of this domain. The effects of the mutation in the OB domain is less 

clear, but it is possibly affecting the substrate-binding efficiency of PBP1a, particularly in Pseudomonads. 

Finally, analysis of PG construction patterns in the reconstruction mutants reveal no change in the WT 

background (Figure 48), but a major improvement in the ΔmreB background – activity is no longer random, 

instead occurring only at or near the middle of the cell or the septum (Figure 68 & Figure 70). Overall, 

these findings indicate that the deactivation of PBP1a is a vital step towards evolving a spherical cell shape. 

This is further supported by a phylogenetic analysis showing that spherical bacteria have much lower 

numbers of PBPs than rod-shaped bacteria (Figure 76). 

 The third major mutation I analysed was the deletion of a group of 5-genes spanning PFLU4921-

4925. These 5 genes were composed of genes coding for 3 hypothetical proteins, a cold-shock protein, 

and the PFLU4925 gene which codes for the outer-membrane protein, OprD. I focused my analysis on 

PFLU4925 due to its link to the maintenance of cell wall integrity in P. aeruginosa (Pagès, James and 

Winterhalter, 2008), which was also observed in P. fluorescens SBW25. The deletion of PFLU4925 in ΔmreB 

resulted in improved growth and fitness (Figure 58), made cells less susceptible to physical damage, and 

have smaller cell sizes (Figure 57). This deletion had no impact on growth, fitness, and cell integrity in the 

WT background (Figure 55), but it made the cells smaller (Figure 54). Most cells with this deletion exhibit 

a typical division pattern wherein a single cell divides into two cells, but there are also cells in both the 

WT and ΔmreB background that exhibit a snaking or filamentous phenotype that have multiple septa 

(Figure 54). Analysis of PG composition showed a reduction in the D44/M4 ratio in both the WT and ΔmreB 

backgrounds (Figure 56Figure 59), a reduction of glycan chain length in the WT background, and a slight 
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increase in glycan chain length in the ΔmreB background (Figure 59). This demonstrates that the 5-gene 

deletion causes a modification of PG synthesis activity in P. fluorescens SBW25. Remarkably, the PG 

assembly pattern seen in the ΔmreB background is altered by this 5-gene deletion. Instead of appearing 

as random spots of activity, PG assembly is focused mostly at the division plane (Figure 74). In filamenting 

cells, PG synthesis activity seems to shift from cell division back to lateral growth thereby leading to the 

formation of long cells with incomplete septa (Figure 72 & Figure 74). This phenotype suggests that cell 

division is being disrupted in these cells. A previous study by Skurnik et al. (2013) found that the loss of 

oprD in the closely-related P. aeruginosa causes and overexpression of minD. The MinD protein is a key 

component of the min system, an important process related to cell division, which determines septum 

placement in rod-shaped cells. Alterations in the min system cause changes to the spatial regulation of 

developing septa (Justice, García-Lara and Rothfield, 2000; MacCready and Vecchiarelli, 2018; Wehrens 

et al., 2018), which could be causing the uneven PG activity seen in the septa of filamenting SBW25 cells. 

Although the exact mechanism is unknown, it is evident that this 5-gene deletion is a beneficial mutation 

that allows P. fluorescens SBW25 to adapt to the loss of MreB. 

Combining the results above with data from the most recent model for cell shape determination 

(Zhao et al., 2017), I presented a new model that explains how the beneficial mutations identified in this 

study have allowed the ΔmreB strain to improve growth and fitness despite suffering the effects of MreB-

loss. This model combines data from various techniques to show that the loss of MreB (and its associated 

consequences) can be mitigated using one of two strategies. First, the inactivation of PBP1a, a major 

protein involved in cell elongation, stops peripheral growth, making the cell division machinery the main 

system responsible for new PG synthesis and assembly, and therefore, growth. This resembles the pattern 

of cell growth and division of many extant spherical bacteria. Alternatively, the oprD-inclusive deletion is 

proposed to modify the activity of the min system to enhance the ability of the ΔmreB strain to properly 

locate the division plane and form a septum, thereby allowing cell division to occur. This model effectively 
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synthesises new information from this thesis with the current understanding of how cell shape is made 

and maintained in bacteria. 

6.3. Final comments 

This thesis presents new insights on how spherical bacteria may have evolved from a rod-shaped 

ancestor. Using the rod-shaped model organism P. fluorescens SBW25, I have shown that the loss of MreB 

leads to the disordered assembly of the PG cell wall (Figure 62), which causes morphological deformities 

(Figure 20), poor growth and fitness (Figure 16 & Figure 18), as well as cell division defects (Figure 20 & 

Figure 21). Despite suffering numerous deficiencies, this is the first time that an ΔmreB strain has 

remained viable under normal growth conditions, allowing me to identify natural evolutionary strategies 

that bacteria can use to adapt to a new spherical cell shape. How the ΔmreB strain has remained viable is 

unknown. There were no obvious compensatory mutations found in the ancestral ΔmreB strain, so it 

would be interesting to learn how this organism is able to survive this deletion when many other bacteria 

could not. 

Using experimental evolution, I was able to show that a robust spherical mutant can be evolved 

within a relatively short period spanning ~1,000 bacterial generations (Figure 38). I have also identified 

two strategies that bacteria use to adapt to a new spherical cell shape. The first strategy involves the 

possible inactivation of PBP1a, the major enzyme responsible for cell elongation in P. fluorescens SBW25. 

Together with the observation that extant spherical bacteria generally have fewer PBPs than their closely 

related rod-shaped counterparts (Figure 76), the multiple occurrences of mutations in PBP1a observed in 

the evolution experiment (Table 5) strongly identify PBP-loss as a natural evolutionary strategy for 

adapting to a spherical cell shape. Although most of the PBP1a mutations seen in this study are predicted 

to cause a loss of function, this has not yet been shown experimentally. In the future, the deletion or 

direct inactivation of PBP1a in the ΔmreB strain would be beneficial as this would provide direct evidence 

supporting PBP-loss as an adaptive strategy for evolving a spherical cell shape. The second adaptive 
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evolutionary strategy identified in the evolution experiment is the possible modification of the min system 

brought about by the deletion of oprD. At this stage, this is link is likely, as supported by literature (Justice, 

García-Lara and Rothfield, 2000; Skurnik et al., 2013; MacCready and Vecchiarelli, 2018; Wehrens et al., 

2018), but inconclusive. This can be investigated further by specifically deleting oprD in the ΔmreB strain. 

This would demonstrate if oprD-loss is indeed an adaptive mutation. Furthermore, the potential effect of 

oprD-loss on min system dynamics can be investigated by studying the expression levels of the min 

proteins, and by tracing min oscillation patterns and Z-ring formation via fluorescent labelling and single-

cell microscopy. These experiments would provide invaluable evidence that would better explain of how 

the mutations seen in the evolution experiment are helping the ΔmreB strain recover growth and fitness 

and adapt to its new spherical cell shape. 

Clearly, cell shape is an important aspect of bacterial biology. It affects all major processes from 

growth and nutrient acquisition to chromosome segregation and cell division. Despite this, we have very 

limited knowledge of how spherical bacteria came to be. The model I have presented as the final part of 

my discussion effectively combines our current understanding of how cell shape is made and maintained 

in bacteria, with the new discoveries made in this study. I have shown that by modifying spatio-temporal 

mechanisms responsible for PG cell wall synthesis and cell division, bacteria are able to overcome gross 

defects associated with MreB-loss and evolve to become healthy spherical organisms. Therefore, this 

thesis adds important new information that advances our understanding of how spherical bacteria may 

have evolved from a rod-shaped ancestor.  
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Appendix 

Raw UPLC Data and Analysis 
 

UPLC analysis of peptidoglycan isolates 
 

1. P. fluorescens SBW25 Wild Type 
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2. WT + Tn7 MreB 
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3. WT Reconstruction – Line 1 Mutation 
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4. WT Reconstruction - Line 4 Mutation 
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5. WT Reconstruction – Line 7 
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6. ΔmreB (ancestral) 
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7. ΔmreB + Tn7 MreB 
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8. ΔmreB Reconstruction – Line 1 
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9. ΔmreB Reconstruction – Line 4 

 

  



172 
 

10. ΔmreB Reconstruction – Line 7 
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UPLC Summary of Results  

 

 

WT T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 4.50% 5.44% 6.24% 5.39% 0.87% Glycan Length

M4 38.66% 40.13% 40.05% 39.61% 0.83% 23.55 28.61 26.32 26.16 2.53

M2 0.90% 1.04% 1.08% 1.01% 0.10% D44/M4

M3L 0.46% 0.76% 1.04% 0.75% 0.29% 0.86 0.89 0.89 0.88 0.02

D44 33.24% 35.59% 35.63% 34.82% 1.37% Cross-linking

T444 1.49% 0.09% 0.33% 0.64% 0.75% 38.40% 39.14% 40.06% 39.20% 0.01

D43L 2.18% 3.36% 3.77% 3.10% 0.82%

D44N 2.96% 3.49% 3.74% 3.40% 0.40%

T444N 1.29% 0.00% 0.06% 0.45% 0.73%

WT+mreb T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 2.92% 5.00% 3.79% 3.90% 1.05% Glycan Length

M4 32.93% 34.61% 32.39% 33.31% 1.16% 16.75 16.65 17.17 16.85 0.28

M2 1.04% 1.28% 0.96% 1.09% 0.16% D44/M4

M3L 0.39% 0.60% 0.43% 0.47% 0.11% 0.91 0.94 0.89 0.91 0.03

D44 29.90% 32.66% 28.67% 30.41% 2.04% Cross-linking

T444 0.10% 0.16% 0.11% 0.12% 0.03% 32.29% 37.05% 30.92% 33.42% 0.03

D43L 2.17% 4.07% 2.03% 2.76% 1.14%

D44N 4.31% 5.94% 4.20% 4.82% 0.97%

T444N 1.66% 0.07% 1.62% 1.12% 0.91%

5 - WT R.L1 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 4.46% 4.93% 4.43% 4.61% 0.28% Glycan Length

M4 41.31% 39.22% 43.30% 41.28% 2.04% 30.39 24.34 30.73 28.49 3.59

M2 0.96% 0.95% 0.88% 0.93% 0.04% D44/M4

M3L 0.68% 0.76% 0.73% 0.72% 0.04% 0.88 0.88 0.86 0.87 0.01

D44 36.21% 34.37% 37.18% 35.92% 1.43% Cross-linking

T444 0.19% 0.18% 0.20% 0.19% 0.01% 39.92% 38.39% 40.50% 39.60% 0.01

D43L 3.32% 3.66% 2.92% 3.30% 0.37%

D44N 3.22% 4.04% 3.19% 3.48% 0.48%

T444N 0.07% 0.07% 0.07% 0.07% 0.00%

6 - WT R.L4 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 7.34% 3.76% 4.58% 5.23% 1.88% Glycan Length

M4 38.12% 41.85% 45.47% 41.81% 3.68% 30.35 40.98 35.36 35.57 5.31

M2 1.30% 1.69% 1.51% 1.50% 0.20% D44/M4

M3L 1.29% 1.34% 0.32% 0.98% 0.57% 0.87 0.75 0.76 0.79 0.06

D44 33.06% 31.42% 34.77% 33.08% 1.68% Cross-linking

T444 0.12% 0.64% 0.38% 0.38% 0.26% 36.32% 34.45% 37.94% 36.24% 0.02

D43L 3.02% 1.74% 2.40% 2.39% 0.64%

D44N 3.21% 2.39% 2.77% 2.79% 0.41%

T444N 0.09% 0.05% 0.05% 0.06% 0.02%

7 - WT R.L7 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 7.45% 7.83% 7.64% 0.27% Glycan Length

M4 33.04% 41.39% 37.22% 5.90% 14.61 16.33 15.47 1.21

M2 0.04% 0.18% 0.11% 0.09% D44/M4

M3L 0.64% 0.51% 0.57% 0.09% 0.80 0.77 0.79 0.02

D44 26.41% 31.95% 29.18% 3.92% Cross-linking

T444 0.26% 0.58% 0.42% 0.23% 30.32% 33.28% 31.80% 0.02

D43L 3.40% 0.17% 1.78% 2.28%

D44N 5.33% 4.66% 5.00% 0.47%

T444N 1.51% 1.46% 1.49% 0.03%
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Δmreb T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 2.76% 3.12% 2.94% 0.25% Glycan Length

M4 26.49% 27.34% 26.92% 0.60% 11.99 12.77 12.38 0.55

M2 0.96% 0.99% 0.97% 0.02% D44/M4

M3L 0.43% 0.45% 0.44% 0.02% 1.29 1.26 1.28 0.02

D44 34.21% 34.51% 34.36% 0.21% Cross-linking

T444 1.33% 2.03% 1.68% 0.49% 42.06% 43.34% 42.70% 0.01

D43L 5.18% 4.77% 4.97% 0.29%

D44N 6.95% 6.31% 6.63% 0.45%

T444N 1.40% 1.52% 1.46% 0.09%

Δmreb+mreb T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 2.88% 3.43% 2.94% 3.08% 0.31% Glycan Length

M4 22.46% 41.70% 35.60% 33.25% 9.83% 24.08 23.17 25.04 24.10 0.94

M2 1.02% 1.49% 1.45% 1.32% 0.26% D44/M4

M3L 0.28% 0.56% 0.12% 0.32% 0.23% 0.69 0.88 0.84 0.80 0.10

D44 15.46% 36.83% 29.90% 27.40% 10.90% Cross-linking

T444 0.36% 0.50% 0.44% 0.43% 0.07% 16.78% 41.05% 33.27% 30.37% 0.12

D43L 0.60% 3.22% 2.48% 2.10% 1.35%

D44N 3.20% 3.82% 3.57% 3.53% 0.31%

T444N 0.95% 0.49% 0.42% 0.62% 0.29%

8 - Δmreb R.L1 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 4.19% 8.37% 7.19% 6.58% 2.16% Glycan Length

M4 28.89% 42.26% 38.35% 36.50% 6.88% 20.55 19.58 19.90 20.01 0.50

M2 0.21% 1.06% 0.84% 0.71% 0.44% D44/M4

M3L 0.47% 1.05% 0.61% 0.71% 0.30% 0.60 0.70 0.78 0.69 0.09

D44 17.22% 29.63% 29.82% 25.55% 7.22% Cross-linking

T444 4.36% 0.32% 0.45% 1.71% 2.29% 27.06% 32.29% 33.11% 30.82% 0.03

D43L 1.13% 2.01% 2.39% 1.84% 0.65%

D44N 3.65% 4.44% 4.37% 4.15% 0.43%

T444N 1.21% 0.67% 0.66% 0.85% 0.32%

9 - Δmreb R.L4 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 3.13% 3.83% 8.42% 5.13% 2.87% Glycan Length

M4 33.22% 35.00% 41.46% 36.56% 4.33% 16.11 15.41 20.99 17.50 3.04

M2 0.46% 0.65% 1.06% 0.72% 0.31% D44/M4

M3L 0.53% 0.65% 1.01% 0.73% 0.25% 0.77 0.71 0.74 0.74 0.03

D44 25.48% 24.76% 30.81% 27.02% 3.31% Cross-linking

T444 0.40% 0.19% 0.43% 0.34% 0.13% 27.75% 26.51% 33.67% 29.31% 0.04

D43L 1.46% 1.36% 1.98% 1.60% 0.33%

D44N 5.50% 5.62% 4.24% 5.12% 0.76%

T444N 0.71% 0.87% 0.52% 0.70% 0.18%

10 - Δmreb R.L7 T1 T2 T3 ave SD T1 T2 T3 Average SD

M3 11.35% 5.48% 7.23% 8.02% 3.01% Glycan Length

M4 31.96% 28.97% 33.48% 31.47% 2.30% 17.44 17.45 13.85 16.25 2.07

M2 0.24% 0.31% 0.27% 0.27% 0.03% D44/M4

M3L 0.74% 0.37% 0.49% 0.53% 0.19% 1.01 0.90 0.95 0.95 0.05

D44 32.24% 26.21% 31.81% 30.09% 3.37% Cross-linking

T444 0.87% 0.22% 1.44% 0.84% 0.61% 37.50% 29.47% 38.23% 35.07% 0.05

D43L 3.51% 2.82% 3.55% 3.29% 0.41%

D44N 5.33% 4.98% 6.56% 5.62% 0.83%

T444N 0.41% 0.75% 0.66% 0.60% 0.18%
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UPLC statistical analyses 
 

 

M4 D44 D44/M4 Cross-linking Glycan length

WT and WT+MreB WT and WT+MreB WT and WT+MreB WT and WT+MreB WT and WT+MreB

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.333128 Mean 0.348221 0.304118 Mean 0.878791 0.912243 Mean 0.391986 0.334171 Mean 26.15846 16.85477

Variance 6.85E-05 0.000134 Variance 0.000187 0.000418 Variance 0.00027 0.000868 Variance 6.95E-05 0.001035 Variance 6.424769 0.076716

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 3 df 3 df 2 df 2

t Stat 7.661038 t Stat 3.105856 t Stat -1.71718 t Stat 3.01258 t Stat 6.319889

P(T<=t) one-tail 0.00078 P(T<=t) one-tail 0.026526 P(T<=t) one-tail 0.092223 P(T<=t) one-tail 0.04739 P(T<=t) one-tail 0.012067

t Critical one-tail 2.131847 t Critical one-tail 2.353363 t Critical one-tail 2.353363 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.00156 P(T<=t) two-tail 0.053053 P(T<=t) two-tail 0.184447 P(T<=t) two-tail 0.09478 P(T<=t) two-tail 0.024134

t Critical two-tail 2.776445 t Critical two-tail 3.182446 t Critical two-tail 3.182446 t Critical two-tail 4.302653 t Critical two-tail 4.302653

M4 D44 D44/M4 Cross-linking Glycan Length

WT vs WTRL1 WT vs WTRL1 WT vs WTRL1 WT vs WTRL1 WT vs WTRL1

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.412754 Mean 0.348221 0.359215 Mean 0.878791 0.87058 Mean 0.391986 0.396026 Mean 26.15846 28.4854

Variance 6.85E-05 0.000417 Variance 0.000187 0.000204 Variance 0.00027 0.000107 Variance 6.95E-05 0.000118 Variance 6.424769 12.9228

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 3 df 4 df 3 df 4 df 4

t Stat -1.30497 t Stat -0.96355 t Stat 0.732412 t Stat -0.51088 t Stat -0.91629

P(T<=t) one-tail 0.141488 P(T<=t) one-tail 0.194917 P(T<=t) one-tail 0.258475 P(T<=t) one-tail 0.318169 P(T<=t) one-tail 0.205679

t Critical one-tail 2.353363 t Critical one-tail 2.131847 t Critical one-tail 2.353363 t Critical one-tail 2.131847 t Critical one-tail 2.131847

P(T<=t) two-tail 0.282977 P(T<=t) two-tail 0.389835 P(T<=t) two-tail 0.516951 P(T<=t) two-tail 0.636339 P(T<=t) two-tail 0.411359

t Critical two-tail 3.182446 t Critical two-tail 2.776445 t Critical two-tail 3.182446 t Critical two-tail 2.776445 t Critical two-tail 2.776445

M4 D44 D44/M4 Cross-linking Glycan length

WT vs WTRL4 WT vs WTRL4 WT vs WTRL4 WT vs WTRL4 WT vs WTRL4

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.418123 Mean 0.348221 0.33083 Mean 0.878791 0.79425 Mean 0.391986 0.362359 Mean 26.15846 35.56551

Variance 6.85E-05 0.001352 Variance 0.000187 0.000282 Variance 0.00027 0.004048 Variance 6.95E-05 0.000306 Variance 6.424769 28.247

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 4 df 2 df 3 df 3

t Stat -1.01002 t Stat 1.39093 t Stat 2.228304 t Stat 2.649573 t Stat -2.76711

P(T<=t) one-tail 0.209407 P(T<=t) one-tail 0.118312 P(T<=t) one-tail 0.077844 P(T<=t) one-tail 0.038511 P(T<=t) one-tail 0.034868

t Critical one-tail 2.919986 t Critical one-tail 2.131847 t Critical one-tail 2.919986 t Critical one-tail 2.353363 t Critical one-tail 2.353363

P(T<=t) two-tail 0.418813 P(T<=t) two-tail 0.236624 P(T<=t) two-tail 0.155687 P(T<=t) two-tail 0.077022 P(T<=t) two-tail 0.069737

t Critical two-tail 4.302653 t Critical two-tail 2.776445 t Critical two-tail 4.302653 t Critical two-tail 3.182446 t Critical two-tail 3.182446
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M4 D44 D44/M4 Cross-linking Glycan Length

WT vs WTRL7 WT vs WTRL7 WT vs WTRL7 WT vs WTRL7 WT vs WTRL7

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.372184 Mean 0.348221 0.291816 Mean 0.878791 0.785603 Mean 0.391986 0.318031 Mean 26.15846 15.46959

Variance 6.85E-05 0.003487 Variance 0.000187 0.001533 Variance 0.00027 0.000377 Variance 6.95E-05 0.000438 Variance 6.424769 1.471645

Observations 3 2 Observations 3 2 Observations 3 2 Observations 3 2 Observations 3 2

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 1 df 1 df 2 df 1 df 3

t Stat 0.570213 t Stat 1.958937 t Stat 5.582305 t Stat 4.754362 t Stat 6.301307

P(T<=t) one-tail 0.335043 P(T<=t) one-tail 0.150241 P(T<=t) one-tail 0.015312 P(T<=t) one-tail 0.065989 P(T<=t) one-tail 0.004037

t Critical one-tail 6.313752 t Critical one-tail 6.313752 t Critical one-tail 2.919986 t Critical one-tail 6.313752 t Critical one-tail 2.353363

P(T<=t) two-tail 0.670085 P(T<=t) two-tail 0.300483 P(T<=t) two-tail 0.030624 P(T<=t) two-tail 0.131978 P(T<=t) two-tail 0.008075

t Critical two-tail 12.7062 t Critical two-tail 12.7062 t Critical two-tail 4.302653 t Critical two-tail 12.7062 t Critical two-tail 3.182446

M4 D44 D44/M4 Cross-linking Glycan length

WT and Δmreb WT and Δmreb WT and Δmreb WT and Δmreb WT and Δmreb

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.26915 Mean 0.348221 0.343642 Mean 0.878791 1.276995 Mean 0.391986 0.426997 Mean 26.15846 12.37746

Variance 6.85E-05 3.58E-05 Variance 0.000187 4.5E-06 Variance 0.00027 0.000421 Variance 6.95E-05 8.28E-05 Variance 6.424769 0.305933

Observations 3 2 Observations 3 2 Observations 3 2 Observations 3 2 Observations 3 2

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 3 df 2 df 2 df 2 df 2

t Stat 19.88997 t Stat 0.569702 t Stat -22.9659 t Stat -4.35753 t Stat 9.097692

P(T<=t) one-tail 0.000139 P(T<=t) one-tail 0.31317 P(T<=t) one-tail 0.000945 P(T<=t) one-tail 0.024419 P(T<=t) one-tail 0.005934

t Critical one-tail 2.353363 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.000278 P(T<=t) two-tail 0.62634 P(T<=t) two-tail 0.001891 P(T<=t) two-tail 0.048839 P(T<=t) two-tail 0.011867

t Critical two-tail 3.182446 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653

M4 D44 D44/M4 Cross-linking Glycan Length

WT vs ΔmreB+mreB WT vs ΔmreB+mreB WT vs ΔmreB+mreB WT vs ΔmreB+mreB WT vs ΔmreB+mreB

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.332499 Mean 0.348221 0.274002 Mean 0.878791 0.804016 Mean 0.391986 0.303699 Mean 26.15846 24.09574

Variance 6.85E-05 0.009669 Variance 0.000187 0.011887 Variance 0.00027 0.010453 Variance 6.95E-05 0.015361 Variance 6.424769 0.88159

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 2 df 2 df 3

t Stat 1.117183 t Stat 1.169915 t Stat 1.250715 t Stat 1.231039 t Stat 1.321753

P(T<=t) one-tail 0.190058 P(T<=t) one-tail 0.181292 P(T<=t) one-tail 0.168761 P(T<=t) one-tail 0.171715 P(T<=t) one-tail 0.139001

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.353363

P(T<=t) two-tail 0.380117 P(T<=t) two-tail 0.362584 P(T<=t) two-tail 0.337521 P(T<=t) two-tail 0.34343 P(T<=t) two-tail 0.278003

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 3.182446
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M4 D44 D44/M4 Cross-linking Glycan Length

WT vs MREBRL1 WT vs MREBRL1 WT vs MREBRL1 WT vs MREBRL1 WT vs MREBRL1

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.365011 Mean 0.348221 0.255537 Mean 0.878791 0.691478 Mean 0.391986 0.308173 Mean 26.15846 20.00982

Variance 6.85E-05 0.004729 Variance 0.000187 0.005215 Variance 0.00027 0.008301 Variance 6.95E-05 0.001077 Variance 6.424769 0.245405

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 2 df 2 df 2

t Stat 0.778639 t Stat 2.184134 t Stat 3.504364 t Stat 4.28677 t Stat 4.123546

P(T<=t) one-tail 0.258845 P(T<=t) one-tail 0.080298 P(T<=t) one-tail 0.036333 P(T<=t) one-tail 0.025172 P(T<=t) one-tail 0.027042

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.517691 P(T<=t) two-tail 0.160596 P(T<=t) two-tail 0.072665 P(T<=t) two-tail 0.050344 P(T<=t) two-tail 0.054084

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653

M4 D44 D44/M4 Cross-linking Glycan Length

WT vs MREBRL4 WT vs MREBRL4 WT vs MREBRL4 WT vs MREBRL4 WT vs MREBRL4

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.365614 Mean 0.348221 0.270171 Mean 0.878791 0.739158 Mean 0.391986 0.293072 Mean 26.15846 17.50259

Variance 6.85E-05 0.001878 Variance 0.000187 0.001095 Variance 0.00027 0.000899 Variance 6.95E-05 0.001463 Variance 6.424769 9.222098

Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 3 df 3 df 2 df 4

t Stat 1.198767 t Stat 3.776107 t Stat 7.073445 t Stat 4.376289 t Stat 3.79016

P(T<=t) one-tail 0.176695 P(T<=t) one-tail 0.016265 P(T<=t) one-tail 0.002905 P(T<=t) one-tail 0.024225 P(T<=t) one-tail 0.009633

t Critical one-tail 2.919986 t Critical one-tail 2.353363 t Critical one-tail 2.353363 t Critical one-tail 2.919986 t Critical one-tail 2.131847

P(T<=t) two-tail 0.35339 P(T<=t) two-tail 0.03253 P(T<=t) two-tail 0.00581 P(T<=t) two-tail 0.048451 P(T<=t) two-tail 0.019266

t Critical two-tail 4.302653 t Critical two-tail 3.182446 t Critical two-tail 3.182446 t Critical two-tail 4.302653 t Critical two-tail 2.776445

M4 D44 D44/M4 Cross-linking Glycan Length

WT vs MREBRL7 WT vs MREBRL7 WT vs MREBRL7 WT vs MREBRL7 WT vs MREBRL7

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.396148 0.372184 Mean 0.348221 0.291816 Mean 0.878791 0.954575 Mean 0.391986 0.350676 Mean 26.15846 16.24887

Variance 6.85E-05 0.003487 Variance 0.000187 0.001533 Variance 0.00027 0.002733 Variance 6.95E-05 0.002362 Variance 6.424769 4.302776

Observations 3 2 Observations 3 2 Observations 3 3 Observations 3 3 Observations 3 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 1 df 1 df 2 df 2 df 4

t Stat 0.570213 t Stat 1.958937 t Stat -2.39536 t Stat 1.451176 t Stat 5.240417

P(T<=t) one-tail 0.335043 P(T<=t) one-tail 0.150241 P(T<=t) one-tail 0.06944 P(T<=t) one-tail 0.141916 P(T<=t) one-tail 0.003169

t Critical one-tail 6.313752 t Critical one-tail 6.313752 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.131847

P(T<=t) two-tail 0.670085 P(T<=t) two-tail 0.300483 P(T<=t) two-tail 0.138881 P(T<=t) two-tail 0.283831 P(T<=t) two-tail 0.006338

t Critical two-tail 12.7062 t Critical two-tail 12.7062 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 2.776445
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M4 D44 D44/M4 Cross-linking Glycan length

Δmreb and Δmreb+mreb Δmreb and Δmreb+mreb Δmreb and Δmreb+mreb Δmreb and Δmreb+mreb Δmreb and Δmreb+mreb

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.26915 0.332499 Mean 0.343642 0.274002 Mean 1.276995 0.804016 Mean 0.426997 0.303699 Mean 12.37746 24.09574

Variance 3.58E-05 0.009669 Variance 4.5E-06 0.011887 Variance 0.000421 0.010453 Variance 8.28E-05 0.015361 Variance 0.305933 0.88159

Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 2 df 2 df 3

t Stat -1.11275 t Stat 1.106027 t Stat 7.781191 t Stat 1.716177 t Stat -17.5304

P(T<=t) one-tail 0.190817 P(T<=t) one-tail 0.191975 P(T<=t) one-tail 0.008059 P(T<=t) one-tail 0.114133 P(T<=t) one-tail 0.000202

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.353363

P(T<=t) two-tail 0.381633 P(T<=t) two-tail 0.38395 P(T<=t) two-tail 0.016118 P(T<=t) two-tail 0.228267 P(T<=t) two-tail 0.000405

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 3.182446

M4 D44 D44/M4 Cross-linking Glycan Length

ΔmreB vs MREBRL1 ΔmreB vs MREBRL1 ΔmreB vs MREBRL1 ΔmreB vs MREBRL1 ΔmreB vs MREBRL1

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.26915 0.365011 Mean 0.343642 0.270171 Mean 1.276995 20.00982 Mean 0.426997 0.308173 Mean 12.37746 20.00982

Variance 3.58E-05 0.004729 Variance 4.5E-06 0.001095 Variance 0.000421 0.245405 Variance 8.28E-05 0.001077 Variance 0.305933 0.245405

Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 2 df 2 df 2

t Stat -2.40087 t Stat 3.834479 t Stat -65.413 t Stat 5.937374 t Stat -15.7521

P(T<=t) one-tail 0.069185 P(T<=t) one-tail 0.030888 P(T<=t) one-tail 0.000117 P(T<=t) one-tail 0.013607 P(T<=t) one-tail 0.002003

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.13837 P(T<=t) two-tail 0.061777 P(T<=t) two-tail 0.000234 P(T<=t) two-tail 0.027214 P(T<=t) two-tail 0.004006

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 4.302653

M4 D44 D44/M4 Cross-linking Glycan Length

ΔmreB vs MREBRL4 ΔmreB vs MREBRL4 ΔmreB vs MREBRL4 ΔmreB vs MREBRL4 ΔmreB vs MREBRL4

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.26915 0.365614 Mean 0.343642 0.300862 Mean 1.276995 0.739158 Mean 0.426997 0.293072 Mean 12.37746 17.50259

Variance 3.58E-05 0.001878 Variance 4.5E-06 0.001133 Variance 0.000421 0.000899 Variance 8.28E-05 0.001463 Variance 0.305933 9.222098

Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 3 df 2 df 2

t Stat -3.80175 t Stat 2.194977 t Stat 23.81254 t Stat 5.822193 t Stat -2.85302

P(T<=t) one-tail 0.031373 P(T<=t) one-tail 0.079686 P(T<=t) one-tail 8.11E-05 P(T<=t) one-tail 0.014128 P(T<=t) one-tail 0.052017

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.353363 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.062747 P(T<=t) two-tail 0.159372 P(T<=t) two-tail 0.000162 P(T<=t) two-tail 0.028256 P(T<=t) two-tail 0.104033

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 3.182446 t Critical two-tail 4.302653 t Critical two-tail 4.302653

M4 D44 D44/M4 Cross-linking Glycan Length

ΔmreB vs MREBRL7 ΔmreB vs MREBRL7 ΔmreB vs MREBRL7 ΔmreB vs MREBRL7 ΔmreB vs MREBRL7

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0.26915 0.314683 Mean 0.343642 0.300862 Mean 1.276995 0.954575 Mean 0.426997 0.350676 Mean 12.37746 16.24887

Variance 3.58E-05 0.000527 Variance 4.5E-06 0.001133 Variance 0.000421 0.002733 Variance 8.28E-05 0.002362 Variance 0.305933 4.302776

Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3 Observations 2 3

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 2 df 2 df 3 df 2 df 2

t Stat -3.27182 t Stat 2.194977 t Stat 9.628148 t Stat 2.651376 t Stat -3.07291

P(T<=t) one-tail 0.041039 P(T<=t) one-tail 0.079686 P(T<=t) one-tail 0.001189 P(T<=t) one-tail 0.058834 P(T<=t) one-tail 0.045793

t Critical one-tail 2.919986 t Critical one-tail 2.919986 t Critical one-tail 2.353363 t Critical one-tail 2.919986 t Critical one-tail 2.919986

P(T<=t) two-tail 0.082079 P(T<=t) two-tail 0.159372 P(T<=t) two-tail 0.002378 P(T<=t) two-tail 0.117667 P(T<=t) two-tail 0.091585

t Critical two-tail 4.302653 t Critical two-tail 4.302653 t Critical two-tail 3.182446 t Critical two-tail 4.302653 t Critical two-tail 4.302653


