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Abstract

Geographical epidemiology encapsulates those problems that aim to understand space
and/or space time trends in the disease(s) of interest, a goal clearly important in both pub-
lic health and economic contexts. The increasing availability of point-location, coordinate
data for studies in geographical epidemiology calls for a greater scrutiny of statistical point
process theory with respect to these applications. Though the statistical analysis of pla-
nar point patterns is now theoretically well-established, there remain many aspects which
warrant further research, especially from a practical perspective. The need becomes even
greater when we consider the relative youth of methods for the analysis of spatiotemporal
observations, where non-trivial variation and even dependence throughout the space-time
continuum can exist.

This work aims to address these issues by careful review, theoretical refinement, empirical
testing, and real-world analyses of certain statistical tools used in point process problems in
geographical epidemiology. We scrutinise the kernel-smoothed density-ratio estimator of the
so called relative risk function, a particularly flexible approach given the anticipated spatial
heterogeneity of the observations over a given geographical region. This discussion introduces
the adaptive (i.e. variable bandwidth) risk function, as well as novel asymptotic methods for
computation of tolerance contours designed to identify sub-regions of statistically significant
fluctuations in risk.

More sophisticated statistical methodology is warranted in certain situations, where it
may be assumed that both ‘global’ heterogeneity and ‘local’ correlation drives the space
and/or space-time disease dispersion. A comprehensive review of the stochastic log-Gaussian
Cox process, in both purely spatial and spatiotemporal contexts, is conducted. A suite of
novel numerical experiments investigate the performance of convenient, yet ad hoc, minimum
contrast parameter estimation techniques for the dependence structure of the latent Gaussian
process.

The computer code arising from the review and refinement of the above methodologies
was instrumental in the release of two separate software packages. These are available in the
R environment, and also showcased here. A number of additional collaborations with applied
researchers around the world serve to further highlight the contributions made throughout
the course of this research project and the importance of sound statistical methods in geo-

graphical epidemiology.
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Chapter 1

Introduction

The field of epidemiology is concerned with the study of disease incidence and prevalence
within a given human or animal population. It is not only intuitively sensible, but often
essential, to examine the spatial and temporal variation present in cases of a given disease
in order to best understand its aetiology. Statisticians and epidemiologists are often close
collaborators, as the complexities involved in the modelling of space-time data call for a
reliance on sound statistical methods, knowledge of how to best construct and fit the models,
and an understanding of the allowances and limitations associated with the methodology in
use.

This chapter aims to give an overview of the area shared by statistics and geographical
epidemiology. Section 1.1 presents some motivating examples and discusses the two data
formats most commonly encountered in the applications of interest and issues associated
with both. A general background on the statistical theory of point processes as required for
the core chapters is provided in Section 1.2. The objectives and structure of the thesis itself

are outlined in Section 1.3.

1.1 Data in geographical epidemiology

Geographical epidemiology involves the presence of data collected within finite geographical
regions, with information on the time of observation contributing to a spatiotemporal (as
opposed to purely spatial) analysis where available. Additional covariate information asso-
ciated with individual records or specific subsets of the region or observation dates, may

also be collected.

1.1.1 TIllustrative examples

To motivate the subsequent thesis, we present here some interesting historical examples of
epidemiological analyses where the statistical emphasis has been on the spatial or spatiotem-
poral aspects of the disease(s) of interest. Some hypothetical questions are also posed to
further encourage this statistical viewpoint, and additional remarks are provided in Section
1.1.2.
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Figure 1.1: Snow’s recorded locations of cholera deaths (-) and water pumps (x) during the
1854 outbreak in London.

Snow’s cholera

One of the first detailed academic examples in geographical epidemiology is that of John
Snow’s famous discovery of the source of an outbreak of cholera in mid-nineteenth century
London (subsequently published in Snow, 1855). Snow, a physician skeptical of the then-
held belief that poor air quality was to blame for such illnesses, proceeded to record the
spatial locations of the infected individuals’ homes. A version of his original map is shown
in Figure 1.1.

With the benefit of hindsight, we may challenge any appearance of ‘unusually large’
groupings of cholera cases in this image unless we assume the London population is uniformly
distributed over the area of interest. Would comparing a map of a sample of uninfected
individuals shed any light on why the observations have assumed this spatial pattern?

In any case, Snow concluded that the source of the outbreak was a contaminated drinking
water pump on Broad Street due to the concentration of cases in its immediate vicinity,
which is indeed clearly visible on the map. Though conflicting with the previous notions
concerning cholera transmission, the pump was decommissioned, effectively stopping the

outbreak. John Snow is widely considered to be one of the founding fathers of epidemiology,
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Figure 1.2: Standardised mortality ratio (SMR) of respiratory cancer by county in Ohio,
USA, for the year 1985.

and a memorial to his work in the form of a Victorian pump with its handle removed sits

at the same site today.

Ohio cancer mortality

This example comprises recorded deaths due to respiratory cancer in each of the 88 counties
of the U.S. state of Ohio in 1985. Part of a far larger spatiotemporal data set spanning the 21
years beginning 1968 to end 1988, the mortality counts can also be broken down into groups
specified by age, sex and race (a good description of these data as well as references to earlier
analyses may be found in Lawson, 2006). Figure 1.2 shows the standardised mortality ratio
(SMR) by county, given in each case by the quotient of the observed and expected number
of mortalities.

Naturally, the SMR and resulting image (hence our interpretation of the variation in
spatial mortality rates) is dependent on the determination of the expected counts. In our
case, this has been straightforwardly determined as the overall mortality rate (i.e. total Ohio

deaths divided by total Ohio population), subsequently multiplied by the at-risk population
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Figure 1.3: Spatial locations of Burkitt’s lymphoma occurrences in the Western Nile district
of Uganda, Africa, for the years 1961, 1968 and 1975.

counts within each county. Would accounting for risk factors associated with respiratory
cancer or other covariates in estimation of the expected number of mortalities dramatically

change our interpretation of the spatial risk of this disease over Ohio?

Burkitt’s lymphoma in Uganda

Burkitt’s lymphoma, so named after the researcher who first described the disease during
the 1950s, is a particular type of cancer affecting the human lymphatic system. This data
set consists of the recorded locations of cases of Burkitt’s lymphoma in the Western Nile
district of Uganda, Africa, over the years 1961-1975. It is a popular example in geographical
epidemiology; see Williams et al. (1978) and references therein for the earliest analyses.
Figure 1.3 displays three particular years of the data set. There are a number of cau-
tionary notes that should be made about the data (in its current form) prior to concluding
any space-time trends. For example, though the total number of cases has increased over
the three illustrated years from 5 (1961) to 12 (1968) to 15 (1975), does this indicate a true
increase in prevalence or has reporting simply become more thorough? Do spatial group-
ings suggest actual heightened risk of contraction, or do they simply reflect the natural

heterogeneity in the underlying population over the study region?

1.1.2 Preliminary discussion

As we have just seen, we may classify the types of data commonly encountered in geo-
graphical epidemiology into two broad categories. Aggregated or areal count data deals with
information restricted to well-defined sub-regions of the geographical area under scrutiny,
such as states in a country or postal zones/census tracts in a city. The (spatial) resolution
of the data does not increase further than the level of these sub-regions. The second type of

data frequently observed is typically labelled point location or case-event data. In contrast



to aggregated counts, point location data provides the specific coordinates of the disease
cases within the overall study region.

There are general goals in the analysis of spatial/spatiotemporal disease data that are
encountered in both situations. The foundation for many studies is an expression of relative
risk of disease contraction over the study region of interest. This summary measure is derived
based on the observed cases with respect to some distribution of the at-risk, uninfected
population, often referred to as controls. As encountered in the Ohio cancer example, relative
risk is most commonly computed as a morbidity or mortality ratio, whereby values greater
than 1 would indicate an increase or excess in the estimated risk of infection within a given
sub-region (aggregated counts) or specific location (case-events). Indeed, the purpose of
Chapter 2 is to examine in detail and improve nonparametric estimation of relative risk
surfaces for case-event data.

Understandably, there are both advantages and disadvantages associated with these two
data formats. In human epidemiology, specific event locations are typically recorded as
street addresses which have the potential to be misleading with respect to studying disease
aetiology. For example, it is quite possible that infection occurred not at home, but at the
workplace. Alternatively, the location at which the event was recorded could be different
to the location of infection following a move. These difficulties notwithstanding, case-event
data (if verified/validated by some means to a satisfactory extent) allows for a detailed
mapping of the space/space-time disease trends and can be of great use in epidemiological
problems. Statistical methods used to analyse this data format fall into the category of point
process modelling.

Aggregated count data can avoid some of the problems associated with the uncertainty
in ‘exact’ recorded locations, at the expense of other potential drawbacks. This kind of
count data is usually far easier to obtain than specific case coordinates, and can indeed be
the only feasible option for data acquisition if we are dealing with, for example, occurrence
of a disease over an entire country. However, the discontinuity of estimated statistics, such
as the relative risk, between the disjoint sub-regions is unnatural. How can we expect
the rate of disease occurrence to change ‘instantly’ upon crossing from one sub-region to
another? Nevertheless, statistical techniques that can create and are equipped to deal with
aggregate data (an important part, for example, of small area estimation methodology —
a good review can be found by Ghosh and Rao, 1994) can yield informative results about
diseases spread over large regions, time spans and populations. Of course, counts in defined
sub-regions can be obtained from case event data, another part of small area estimation. It
is generally not recommended, however, to perform this style of ‘binning’ when we do have
coordinate-specific data available due to the obvious loss of spatial information.

For up-to-date notes on these issues, as well as discussions on some existing approaches
to spatial data collection, small area estimation, and analysis from an applied perspective,
the reader is referred to texts such as Waller and Gotway (2004) and Lawson (2006).

This work focuses purely on case-event situations where the data are observed as a point
pattern within a geographical region. The benefits associated with the increase in detail
have in turn led to an increased availability of these kinds of datasets as more resources are

geared towards this type of collection. Though now theoretically well-established, applied



statistical modelling of spatial and in particular spatiotemporal point patterns remains a
relatively young field, previously hindered by the lack of suitable methodology as well as the
often high computational requirements. It is therefore important that the methodology and
available practical tools continue to evolve and improve, so that epidemiologists and other

researchers may gain the most from their data.

1.2 Point processes

The term point process is used in reference to the underlying stochastic mechanism, function,
or phenomenon that has generated the finite (i.e. countable) point pattern we observe. The
assumptions we make about the process have an important impact on how we model the
problem at hand as well as interpretation of the results. It is therefore necessary that we
cover some fundamental aspects of spatial point process theory in order to be best equipped
to tackle the kind of case-event applications we are likely to encounter in geographical
epidemiology.

This section offers an overview of terms and methods for spatial point processes, to
the extent necessary for the digestion of the remainder of the thesis. Though we focus on
a ‘purely spatial’ discussion here, the ideas extend naturally to space-time data and this
will be clarified as required in Chapter 3. The vast majority of spatial and spatiotemporal
point process problems in epidemiology deal only with ‘x-y’ planar coordinates and where
necessary we restrict attention to two-dimensional (2D) data. That is, although we may
theoretically work in a general dimension d, we will concentrate on the case where d = 2.
It is also worth noting that some authors prefer to use the term ‘planar’ for d = 2 data and
reserve the label ‘spatial’ for the situation d = 3 in order to clearly distinguish between the
two (e.g. Illian et al., 2008). We do not make this distinction, however, and will continue to
refer to our 2D point patterns as ‘spatial’ as the specific case of d = 3 is not considered in
this work.

Finally, we mention that much of the historical literature on point processes is heavily
technical. Here, we are concerned more with the applied aspects with respect to geographical
epidemiology, and focus on refinement of issues associated with the implementation of the
methodology. The following discussions represent a review of point process theory most
relevant for our purposes. Where necessary, the reader is directed to some useful and

accessible textbook references for additional theoretical rigor.

1.2.1 Complete spatial randomness

A natural starting place in the analysis of many applications involving point process data is
to ask the question “are we observing a completely random phenomenon?” In other words,
it is of interest to determine whether or not there exists structure in the observed points
that is unlikely to occur under complete spatial randomness (CSR).

Suppose we observe n points within the finite region R € R? with Lebesgue measure |R|
(when d = 2, this simply refers to the area of the study region). CSR would imply (a) that

the observed points are an independent random sample from the uniform distribution on R,
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Figure 1.4: Three hypothetical examples of 2D point patterns.

and (b) that n follows a Poisson distribution with mean A\|R| (Diggle, 2003). The parameter
A is referred to the intensity of the point process and is interpreted as the expected number
of points per unit area. The intensity (or intensity function A\(x); x € R) is frequently the
core focus of point process analyses and will be discussed in greater detail in the following
section.

Consider as illustrative examples the three artificially generated point patterns in Figure
1.4, labelled A, B and C. Patterns A and C were specifically generated to violate the
condition of CSR. Pattern B was generated under the condition of CSR.

e Suppose these patterns were observed in practice. In pattern A, there appears to be
at least one obvious large grouping of observations. Is any grouping perhaps more
prominent than what we would expect for a consignment of points randomly scattered
throughout the region? In terms of the point intensity, we seem to be observing

heterogeneity.

e It could reasonably be argued that pattern B exhibits a closer resemblance to com-
plete randomness, with groupings and separations of points not appearing to be ‘too

extreme’. In terms of the intensity, we seem to be observing uniformity or homogeneity.

o Point pattern C does not contain any obvious point groupings. But on the other hand,
there seems to be an unusual systematic structure in the pattern unlikely to arise
for uniformly distributed points. In terms of the intensity, we seem to be observing

reqularity.

A visual interpretation of a given pattern is of course by itself a rather naive judgement
of CSR. Much of the early literature on point process analysis deals with the development of
statistical tests under a null hypothesis of complete randomness. Tests based on interpoint
distances, nearest neighbour distances and point-to-nearest-event distances, for example, all
compare what we expect to see of these types of distances under CSR with what we ac-
tually have observed. A significant departure from this expectation, usually achieved with
exceedance of Monte-Carlo CSR significance ‘envelopes’ by our observed distance measures,
would hence constitute sufficient evidence to reject our randomness assumption. Alternative
tests that do not require evaluation of location-to-location distances investigate the distri-

bution of event counts within S disjoint sub-regions of equal area. Use of quadrat counts



offers a simple and fast alternative to distance-based methods at the cost of the requirement
to specify an arbitrary grid resolution and a loss of detail.

Good descriptions of these and some other simple preliminary tests of a given point
pattern for CSR can be found in e.g. Diggle (2003) and Illian et al. (2008). Generally
speaking, examples of point processes in epidemiology exhibit the type of inhomogeneity
we noted in pattern A; patterns B and especially C' are rarely, if ever, encountered in this
field. Our focus remains on the more complicated aspect of modelling, and prediction based
on, these patterns. Any testing for CSR is automatically absorbed into estimation of the
intensity function and examination of second-order properties (this will become clearer in
Section 1.2.3).

1.2.2 The intensity function

The fundamental first order property describing the mean structure of a point process is
known as the intensity function. The intensity of a particular point process is key in dictating
the structure and appearance of the observed points. For this reason, a large part of inference
based on spatial point processes deals with (sensible) estimation of the intensity. Let N(B)
denote the number of points or events within the window B, and dx a small circular region

centered at location @. Formally, the intensity function \(-) is then expressed as

{E[NM}; xR (1.1)

AMz) = 5

62| —0
We interpret A(x) (as mentioned in the previous section) as the expected number of points
per unit area when situated at x. If |dz| represents an infinitely small area then \(x)|dx|
denotes the probability that there is a point within this subset of the space. Also note that

E[N(R)] = / Ax) de. (1.2)
R

From (1.2) we see that scaling of (1.1) by N(R)~! provides the continuous probability
density function with support on R. This highlights an assumption underpinning much
of the conventional theory on point process modelling: simplicity (the term used by Illian
et al., 2008). Also referred to as an orderly point process by Diggle (2003), such a process is
one where there is zero probability of observing more than one point at a specific location .
In practice, this can be violated due to, for example, too coarse a coordinate grid resolution
when recording events.

Though the intensity function is the standard for point process analyses as it incorporates
information on the size of the data set, the density functions are useful when, for example,
we wish to compare two different point patterns ‘on equal playing fields’. Densities are used
in Chapter 2.

Poisson processes

The homogeneous Poisson process is generally considered the foundation for the theory of

point process modelling. It is the ideal theoretical representation of CSR, and the simplest



stochastic mechanism for generation of the observations (Diggle, 2003). Repeated from

Section 1.2.1, this implies for & € R we observe
a constant intensity A\(x) = A; N(R) ~ POl (/ AMz) dw) ; and
R

the N(R) events are independent,

where we use the term ‘independent’ in the sense that the placement of a given point is not
affected by the specific placement of any others. With no change in the latter two features,
we may straightforwardly generalise these conditions to the inhomogeneous or heterogeneous
Poisson process whereby a non-constant intensity \(x) exists.

It is worth noting that a stationary spatial point process is one which possesses a constant
mean and covariance structure across space. The homogeneous Poisson process, with an
unchanging intensity and consistent independence amongst points, is therefore considered
stationary. The inhomogeneous Poisson process is clearly nonstationary — the constant
independence remains but the mean (i.e. the intensity) now varies according to location
x. These terms become particularly important when we consider the more complicated
processes below.

A natural estimator of the constant or ‘overall’ intensity measure is p = N(R)/|R|. This
quantity is useful under both stationarity (where our estimate of the true intensity is simply
A= p) and nonstationarity, though we obviously lose local information on the distribution
if the point process is indeed inhomogeneous. For estimation of a non-constant intensity
A(z) there exist both parametric (e.g. regression) and nonparametric (e.g. smoothing) ap-
proaches. The restrictive nature of fully parametric methods, coupled with the high het-
erogeneity often observed in epidemiological problems make the flexibility afforded by non-
parametric approaches very appealing. One particularly useful method is known as kernel
density/intensity estimation. There exist a number of difficulties with this estimation tech-
nique in practice however, and we therefore defer the detailed discussion on two-dimensional

kernel density estimation until Chapters 2 and 3, where it will be used extensively.

Cox processes

Through an inhomogeneous Poisson process we may observe point patterns like A, where
some degree of point aggregation is present. However, the fundamental aspect of Poisson
processes is the presence of a fixed, unknown true intensity function A(x) — should subse-
quent, additional patterns be generated, they would follow the precisely defined intensity
structure.

In some applications, the inherent independence between the individual observations in a
Poisson process is not necessarily an intuitively sensible treatment of the process(es) at hand.
It may well be more appropriate to consider the observations to be correlated depending on
some measure of distance to other points, in the sense that positive correlation would produce
clustered patterns; negative correlation would induce repulsion. As such, this implies we are
no longer constrained by a single, fixed planar structure in terms of point generation.

This quite different modelling ideology can be obtained if we assume the underlying in-



tensity is itself stochastic. The models which take this form are occasionally referred to as
doubly stochastic, as the occurrence of events now takes two steps: only after the intensity
function has been generated can the points themselves be generated. The idea of a stochas-
tically occurring intensity function is intuitively sensible in geographical epidemiology. As
alluded to above, without special conditions on the population of interest it may even be un-
reasonable to think of the dispersion of a disease as following a fixed, pre-defined, underlying
structure — even if that structure is highly heterogeneous.

One particular class of doubly stochastic models of great use in geographical epidemiology
is that of the Cox process (Cox, 1955). Cox processes provide the user with a powerful
framework with which to model a variety of patterns, in particular those which exhibit the
type of clustering as seen in example pattern A.

For {z,y} € R? let A(x) denote a non-negative d-dimensional random field with mean

and covariance functions
p(x) = E[A(x)) and C(x,y) = Cov[A(x), A(y)]

respectively. Then conditional upon A(x) = A(x), the observed events are an inhomogeneous
Poisson process with intensity function A\(x) as defined above. For our purposes in d = 2,
this infinite process becomes finite when we restrict attention to the measurable geographical
study region such that {z,y} € R C R2.

If the underlying stochastic process is second-order stationary, i.e. u = p(x) and C(x,y) =
C(||z —y||) where ||-|| denotes Euclidian distance, then the resulting point process will also
be stationary. This does not mean that any subsequently generated point patterns must ex-
hibit CSR. Suppose we have a stationary Cox process with a certain non-trivial correlation
structure generating our intensity functions. Given a realisation of the stochastic process,
the subsequent point pattern will thus be inhomogeneous Poisson, hence (conditionally)
nonstationary. Cox processes relinquish the specification of the locations of point clusters
(i.e. they are now random), instead using dependence between generated points specified by
C to govern the appearance of the pattern.

This clarifies the important distinction between (unconditional) Poisson processes and
doubly stochastic processes. If we are able to uncover any statistical evidence of dependence
(i.e. correlation) among the observations in a particular point pattern, then an a priori
assumption that the data have arisen from a Poisson process could well be violated. However,
it is understandably extremely difficult to formally distinguish between (finite) Poisson and
Cox processes. In fact, it is impossible to do so given only a single realisation, unless rather
restrictive assumptions are made e.g. concerning the rate of change of the mean intensity
function. A good discussion on disentangling heterogeneity (i.e. variation in intensity) and
clustering (arising from correlation) can be found in Section 9.6 of Diggle (2003). This will

also be highlighted when we discuss second-order properties in Section 1.2.3.

Inhibitive processes

Cox and Poisson processes are arguably those which most sensibly and conveniently model

problems such as examples A and B. Though it is perfectly possible for an inhomogeneous
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Poisson process to, for example, produce patterns like C, it may be unreasonable given the
application to assume unrestricted independence. We may make use of a more appropriate

category of models to deal with observed regularity.

The most basic class of these processes are labelled simple inhibition processes. The only
departure from CSR for these processes is the imposition of some minimal allowable distance
between two points. The intensity of such processes is often expressed in terms of a packing
intensily, explained as the expected proportion of R covered by non-overlapping balls with
a diameter equal to the specified minimum distance. A simple inhibition rule can, however,
be rather restrictive. We may introduce more flexibility into this setup by considering types
of Markov point processes, characterised generally by a likelihood ratio function compared
with a Poisson process with a constant unit intensity. Models such as Gibbs and Strauss

point processes have been shown to be particularly useful in practice.

In general, processes that exhibit such inhibition among the observed events are not
particularly common in geographical epidemiology, where we would expect events to have
a proclivity to cluster. Repulsion in point patterns is more often observed in fields such as
ecology, where for example we might be observing two rival species of plant attempting to
co-exist in the same area. It is for this reason Cox and Poisson processes are the focus of
this thesis; here we are not directly concerned with inference based on patterns behaving
as in example C. For more on regular point patterns and associated modelling strategies
the reader is directed to the Diggle (2003) and Illian et al. (2008) textbooks as a good

introduction.

1.2.3 Second-order characteristics

The intensity function describes a point process at one location @ € R. Second-order
properties by definition study the relationship between distinct pairs of points, and are hence
essential in helping to gauge the nature of covariance structures in observed patterns. For
this reason, many generally regard examination of estimated second-order summary statistics

as one of the most important activities carried out when investigating point processes.

A practical examination of second-order properties of a general point process is very
difficult. This pursuit is greatly eased by assuming, in addition to simplicity, the important
aspects of stationarity and isotropy. Stationarity and isotropy imply that the properties
of the process at hand are invariant under translation and rotation of the points respec-
tively. Though upon first glance this may seem somewhat restrictive, it does not in any
way eliminate the possibility of generating highly heterogeneous point patterns based on
e.g. a Cox process, and renders a mathematical examination (hence a statistical summary)

of second-order properties far more accessible than would otherwise be the case.

Here, we will briefly discuss the second-order characteristics most relevant for the pur-
poses of this thesis. Fortunately, the theoretical properties and the corresponding estimators
of interest are intuitively sensible, and are therefore relatively straightforward to conceptu-

alise from an applied perspective.
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Second-order product-density

At the heart of much of the theory is the idea of the second-order density (or intensity).

With dx and dy representing infinitesimal regions containing locations & and y respectively,

then E [N (6x)N(dy)]
o [EINGRNGY)
Ao(x,y) = |5m’1|1§2|ﬁo{ REAIRT }

whereby A2 (x, y)|dx||dy| is interpreted as the probability that there contains a point in each

; x,y €R; x #y, (1.3)

of dx and dy. For a stationary, isotropic process A2 (x, y) reduces to Ao(||x — yl||) where ||-||
represents the Euclidian vector norm. That is, the second-order intensity depends only on
the distance between the two locations, as opposed to their specific positions. For a Poisson
process, independence dictates that \o(x,y) = A(x)A(y).

The second-order product-density is the fundamental building block for the K- and pair
correlation functions below and as such, all three quantities are closely related. Coverage of

5\2, the estimator of As, is therefore absorbed into the following discussions.

K-function and variants

A particularly useful second-order statistic for describing the nature of a given point pattern
is that of the K-function, credited to Ripley (1977). Ripley’s K-function characterises the
pattern at hand in terms of the count of points within an area a specified distance r from
the position of an arbitrary observation (in practice, ‘arbitrary’ refers to any event in the

pattern selected at random). Theoretically, for a simplistic, stationary and isotropic process,

K(r)=2mp 2 / ' tAo(t) dt, (1.4)
0

which clarifies the relationship between K and the second-order product-density (recall that

p is the overall intensity measure defined in Section 1.2.2). We may also note from (1.4) that

the K-function is closely related to the cumulative distribution function of the interpoint

distances.

The K-function is popular due to the ease with which it may be estimated and the
intuitive fashion with which we may interpret the results. Let X be a point pattern of
size n observed within R, with overall estimated intensity measure A = n/|R|. Then the
K-function can be estimated with

u#tv
K@) =A7IRIT" Y 1(llu—v|| < rwr(w,v);  0<7 < rmax, (1.5)

u,veX

where we may straightforwardly interpret the quantity \K (r) as ‘the expected number
of further observations of X falling within a disc of radius r randomly positioned at an
event in R’ In (1.5), 1 denotes the indicator function, 7rp.x i some upper bound on
the distances able to be evaluated by the function (discussed further in a moment), and
wr (u,v) is an edge-correction factor necessary due to the finiteness of the study region.
Edge-correction is a common problem in spatial statistics due to the fact that working in a

restricted subset of space, there may well exist unobserved points outside of the region that

12



would otherwise impact the estimation of desired quantities. Edge-correcting is generally an
appropriate reweighting step designed to compensate for this loss of information. Though
there exist several different approaches to defining w in (1.5), we will make use of the
correction specifically geared towards stationary and isotropic processes and also introduced
in Ripley (1977). Working in d = 2, let ¢(a,b) denote the perimeter of the disc centered at
a and with radius b. Then

o Afe(w flu—vf) "R}
27||u — v

wr(u,v) (1.6)
i.e. wg is the the reciprocal of the proportion of the circumference of the circle centered at
u and intersecting v that falls within R. As such, it is an intuitively sensible technique:
interpoint distances resulting from observations near the boundary of R will be given a
weight > 1 in (1.5), while pairs of points a suitable distance from the edges will have
wr(u,v) = 1.

Ripley (1977) shows that (1.5) is approximately unbiased for suitably small . The issue
of edge-correction due to observations falling within a restricted interval implies, however,
we must specify a maximum allowable distance .y for K. Obviously, we cannot count the
number of points within some distance t of the location s € R if this distance is excessively
large in the sense that the intersection of R with the perimeter of the disc at s possessing
a radius of ¢ constitutes the empty set. This leads naturally to defining ry,.x to be the
maximum distance possible such that every coordinate within the study region is still able
to locate another interior position ry,x units away. In practice though, the evaluation of
the K-function estimator at such large distances is rarely of use and is ill-advised due to an

obvious increase in sampling variability as r — oo.

We may use plots of K to examine a given point pattern as a diagnostic of sorts for indi-
cations of attraction or repulsion at specific distances given by r. Consider a realised pattern
from the homogeneous Poisson process with intensity A. Clearly, the expected number of
points within a disc of radius r from an arbitrary point will be equal to Arr2. Plots of K for
any pattern at suitable distances r can therefore be compared to 772, the ‘theoretical’ curve;
sufficiently extreme departures from which would suggest the presence of residual attraction
(K(r) > mr?) or repulsion (K (r) < mr?). Determining what would constitute a significant
departure from the theoretical trend can be aided by empirical tolerance envelopes. These
are typically made up of e.g. the 0.025th and 0.975th quantiles of K (r) values computed
from N iterated point patterns generated under the assumption of a homogeneous Poisson
process within the same window R with constant intensity equal to the overall intensity
measure of X, namely . To highlight this functionality, we calculate K for the point pat-
terns shown in Figure 1.4, and display these in Figure 1.5 along with the theoretical line.

Also included are empirical tolerance envelopes computed as described here with N = 100.

e As we would expect, there is clear evidence of clustering in pattern A, with positive
exceedances of the envelopes at almost all evaluated distances. This suggests that the
assumption that the points in A were generated from a homogeneous Poisson process

is invalid due to the detection of positive dependence.
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Figure 1.5: Estimates of Ripley’s K-function for the three point patterns A, B and C.

e Pattern B, on the other hand, has shown no evidence against the homogeneous Poisson

process assumption. There are no visible breaches of the tolerance envelopes.

e The apparent repulsion evident from a visual inspection of pattern C' is supported by
the exceedance of the lower limit of the empirical envelopes based on the theoretical
Poisson process curve. Note that unlike the attractive process, detection of repulsion

at larger distances is understandably more difficult.

The fact that the K results for patterns A and C do not agree with those of the the-
oretical appearance of a homogeneous Poisson process is unsurprising. It is important to
remember, however, that this suggests correlation between the points only in the case we
assume (perhaps naaively) that the intensities are constant. This highlights the aforemen-
tioned fact that from a single realised point pattern, it is not possible to determine if we
are dealing with, say, a (finite) Cox process or an (unconditional) inhomogeneous Poisson
process on R.

In an effort to aid in the detection of additional dependence if we assume (and account
for) an underlying inhomogeneous intensity function in two dimensions, Ripley’s K-function
was extended to the inhomogeneous K-function by Baddeley et al. (2000). The validity
of Kinhom is contingent upon the observed point pattern exhibiting second-order intensity
reweighted stationarity, a definition coined by the same authors which requires that the
quantity gihom(,y) = % = Ginhom(r) where r = ||& — y||. That is, that ginhom
depends only on the distance between @ and y, and that the intensity function A is bounded
away from zero. This is important as it implies that together, A and g completely define the
second-order (co-varying) nature of the process with an inhomogeneous intensity and allows
for the definition of (1.4) to be naturally extended to

Kinhom(r) = 277/ tGinhom (1) dt. (1.7)
0

The corresponding estimator is given by

u#v

5 - 1(JJu —v|| < r)wgr(w,v)

Kinhom(r) = |R| ! Z S\(U)S\(’U) 5 0 S r S Tmax, (18)
u,veX
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where now A(-) is a suitable estimate of the non-constant intensity. Note that both (1.7) and
(1.8) reduce to their stationary counterparts in equations (1.4) and (1.5) if we experience
a constant intensity. Once the intensity has been estimated, the interpretation of plots of
K’inhom remain the same as for K , in that significant departures from the theoretical 71?2
would suggest dependence in excess of the assumed A(-).

A transformation of Ripley’s K-function and also commonly used in practice is the L-
function suggested by Besag (1977), whereby L(r) = y/ K (r)/x in the case of d = 2. Though
obviously representing the same information as the K-function, we compare the results of
L with a straight line; under a Poisson assumption L(r) = r. It is argued that deviations
from this straight line are easier to detect and interpret in the sense of the second-order

behaviour of the process than deviations from the parabolic curve K (r) = 7r?. Analogously,

[A/inhom (T) = Kinhom (T‘)/Tl'.

Pair correlation function

Where the K-function is related to the cumulative distribution function of the interpoint
distances, the pair correlation function (PCF) is related to the density function of the
interpoint distances. As the name would suggest, the PCF ¢ defines the strength of the
correlation (if any) between pairs of locations on R? for a given point process. Theoretically,
for a simplistic, stationary and isotropic process with a homogeneous intensity,

Aa(r)

g(z,y) =g(r) = VI (1.9)

Assume the presence of the 2D point pattern X defined above. Then (1.9) may be estimated
with

Ao () 1

. 2

r)=—/——-= = rr(llu —v|| —r)wr(u,v); 0 <7 < rmax, 1.10
g(r) S QMQTlRlu;X (Il | = r)wr(u,v) a (1.10)

where k is a univariate smoothing kernel. This is typically elected to be the Epanechnikov
density where rp(u) = 2h71(1 — u?/h*)1(—h < u < h). As such, the smoothing parameter
h is critical to the quality of the resulting estimate.

In fact, we have already met the PCF by introducing the inhomogeneous K-function
(1.7). As second-order intensity reweighted stationarity implies that ginnhom (€, y) need only
depend upon r = ||z —y|| even if we assume an underlying inhomogeneous intensity function,
we may estimate ginhom With
u#v

) rn(llu = o] = rjwr(u,v)

! = - ; 0 <7< rmax, (1.11)
A(u)A(v)

- 27| R| w

ginhom (T)
2weX

where, once again, A(-) is now an estimate of the non-constant intensity.
The interpretation of the PCF is fairly straightforward, and is aided by thinking about its
direct relationship with the second-order product-density (1.9). Poisson processes by defini-

tion exhibit independence among the observed points and thus with other Poisson processes.

15



Doubly stochastic processes such as the Cox process do not meet this independence assump-
tion when the specified covariance structure C is non-trivial in the sense that the position of
any given observation impacts the placement of any other point(s). Formally speaking, the
probability pa(x,y) that we observe a point in each of the infinitesimal sub-regions jx and

dy in R is
pa(z,y) = Ng(r)|oz|ldy]  and  pa(z,y) = M@)A(Y)ginhom (1) 02| 6y]

for simplistic, stationary and isotropic processes assuming homogeneous and inhomogeneous
intensities over R respectively. In order for the latter specification to hold, the process must
also be second-order intensity reweighted stationary.

As such, the PCF can be viewed as a ‘correlation factor’ required to correctly calculate
p2. The independence assumption of Poisson processes means that g(r) = 1 for all distances,
coinciding with the multiplicative theorem of probability theory. Clearly, this will not be
the case if the process does exhibit dependence i.e. we will observe 0 < g(r) < 1 at small
distances if there exists repulsion; g(r) > 1 for attraction. Some applications have a hard-
core distance g such that g(u) = 0 for u < wyg, indicating a zero probability of another
observation u units away; this however is of limited interest in our applications. Finally,
we note that is generally assumed in practice that g(r) — 1 as » — oo, and that this
collection of comments are clearly also valid for ginnhom(r) when we impose second-order
intensity reweighted stationarity.

In the same way that plots of K and K’inhom can be compared to the theoretical mr?,
we may therefore compare plots of § and Giphom to the horizontal line at 1; the theoretical
value of the PCF in the absence of any dependence. Assuming a homogeneous underlying
intensity in the same way as the K-function example, Figure 1.6 shows plots of § for patterns
A, B and C. Also included are 95% empirical tolerance envelopes computed in the same

way as earlier.
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Figure 1.6: Estimates of the PCF based on a homogeneous underlying intensity for the three
point patterns A, B and C.

Naturally, the same information is gleaned from Figure 1.6 as from Figure 1.5 in terms
of indications of dependence. Where pattern B does not suggest any significant deviation
under the assumption of a homogeneous Poisson process, the plots corresponding to patterns

A and C do. We note an obvious positive breach of the envelopes for the former, indicating

16



attraction. Negative breaches are visible for the latter, supporting the notion of repulsion.
Note also that the extremity of the exceedances reduces to nil as the distances become large.

We have spent the time to discuss in detail these important second-order characteristics
and their estimators, in particular the ability to search for dependence in a given point pat-
tern, due to the important role they play in quantifying said dependence for more intensive

spatial and spatiotemporal modelling. This is investigated further in Chapter 3.

1.2.4 Higher-order properties

The second-order product-density naturally extends to the kth order, whereby

A1, T ) = E[N(6z1) x N(6xa) x ... x N((Sa:k)]} (112

lim
5m1,|6m2,...,|6mk—>0{ ‘6ZB1| X |($(132| X ... X |5(17k‘

for infinitesimal disjoint areas {dx1,dxa,...,0xr} € R. This describes the distribution of
the configuration of k points within the study region, such that Ag(x1,xa,. .., xk) X |dx1| X
[0a2] X ... X |dxy| equals the probability of observing a point in each of the k areas.

The value of exploring second-order characteristics when analysing point patterns is
clear. However, first- and second-order properties do not by themselves uniquely define a
particular process; examples have been provided in the literature in which different processes
have yielded identical intensities and /or K- and g (PCF) functions (Baddeley and Silverman,
1984; Diggle, 2003; Tscheschel and Stoyan, 2006). Finer details of point processes can be
explored by examining third- and higher-order characteristics. Understandably, the available
techniques and interpretation of estimated quantities become less straightforward.

For most practical intents and purposes however, the exploration of first- and second-
order properties is sufficient in order to gain insight into the structure and behaviour of the
point process(es) at hand, and this is where our applied focus will remain. For more on
higher-order statistical analysis of point patterns, as well as some additional references, see
e.g. Mgller and Waagepetersen (2004); Illian et al. (2008).

1.3 Thesis aims and structure

This work seeks to investigate the role of statistical methods for investigating two-dimensional
point process problems in epidemiology. The relative youth of this type of continuous space
and space-time modelling (particularly the latter) means there are a number of issues re-
quiring attention in order to maximise the benefits associated with these types of detailed
analyses. The complexities of the methodology also suggest an effort be made to streamline
and condense the most relevant and advantageous theoretical advancements for accessibility
by epidemiologists and other applied researchers. To these ends, the work in this thesis

revolves around three core Aims:

1. To identify, collate, summarise, test, and refine or improve where possi-
ble, areas of statistical methodology currently used to analyse spatial and

spatiotemporal point patterns.
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2. To aid in bridging the gap between powerful yet theoretically complex

models and applied researchers.
3. To trial advancements made on real-world data.

The current chapter, Introduction, has provided a historical review of the kinds of applica-
tions and methodologies most frequently encountered in geographical epidemiology, thereby
motivating the the remainder of the dissertation. This is structured as follows. Chapter
2, Spatial Relative Risk, begins with an investigation into one of the most common initial
exploratory analyses: the dispersion of spatially recorded disease cases in relation to the un-
infected, at-risk population. In so doing, the first detailed appraisal of a particular variable
smoothing approach for the kernel-estimated density-ratio is conducted.

Chapter 3, Spatial and Spatiotemporal Modelling with the Log-Gaussian Cox Process,
delves deeper into the a priori assumptions made about the genesis of the observed data.
This allows access to a sophisticated and highly flexible modelling framework for both spa-
tial and spatiotemporal point patterns. Only recently detailed in the literature, there is
much which remains unknown about its practical performance. Of particular interest is the
gauging of the quality of estimation techniques for critically important parameters of these
models. Both Chapters 2 and 3 seek to address Aim 1.

The assessment and development of this material requires a considerable programming
effort. The associated computational implementations were the first step in the development
of two separate software packages, detailed in Chapter 4: Software Releases. The sizeable
collection of functions reflect the methodology examined in Chapters 2 and 3; the package
corresponding to the latter was developed in close collaboration with researchers at Lancaster
University, United Kingdom. Addressing Aim 2, the R-language releases are available in
the public domain at http://cran.r-project.org/ — the online Comprehensive R Archive
Network (CRAN).

It is important to not only examine the methodology, but to ensure to a certain extent
that any identified theoretical benefits can be realised in practice when dealing with real-
world data. Aim 3 is addressed throughout the aforementioned chapters by the inclusion
and interpretation of analyses on non-synthetic data sets. In addition to these included
examples, researchers from several other institutions have expressed interest in the sub-
ject material at hand. Chapter 5, Collaborative Applications and Case Studies, describes
and carries out some analyses (both collaborative and independent) drawn from the non-
statistical literature which have made use of work detailed in this thesis. Finally, a review

and summary are provided in the Conclusion (Chapter 6).
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Chapter 2

Spatial Relative Risk

It is sensible to consider the spatial element in epidemiological applications. Intuitively, we
can expect the incidence and prevalence of disease to vary over a given geographical region,
due to an inhomogeneous population dispersion. The observed complexity of these disper-
sions in terms of their heterogeneity can leave purely parametric approaches inadequate for
dealing with this type of variation. Many studies in geographical epidemiology, particularly
those concerning point process data, therefore make use of kernel density estimation (KDE)
for analysing spatial disease trends (see for example Kelsall and Diggle, 1995b; Sabel et al.,
2000; Prince et al., 2001; Danese et al., 2008; Clough et al., 2009, among many others).
This methodology affords the user an unmatched degree of flexibility, though not without
cost. Several issues arise that must be addressed should we wish to implement KDE to
model spatial disease risk, and if improperly dealt with they can have adverse effects on
both the theoretical and practical results. Also worthy of consideration is the bias/variance
trade-off problem ubiquitous in smoothing methods. These issues, combined with the in-
creasing popularity of this approach in the epidemiological literature, mean an examination
(and refinement) of the specific methods in an effort to provide a better understanding of
their performance with respect to these types of applications is warranted. In addition, it is
important to motivate a more data-driven or unified approach to these analyses, in contrast

to ad hoc decisions being made on a problem-by-problem basis.

The goal in this chapter is to therefore provide a comprehensive discussion on the use of
KDE with a view to estimating the variation in disease risk for point process data. Section
2.1 describes the bivariate (2-dimensional) kernel density estimator, for both a fixed and
a spatially adaptive smoothing parameter. Section 2.2 defines the density-ratio estimator
of relative risk and discusses. Practical issues such as bandwidth selection are examined
in Section 2.3. A novel method for highlighting sub-regions of statistically significant risk
based on asymptotic theory is outlined in Section 2.4, and we study the empirical perfor-
mance of the relative risk function on several synthetic scenarios in Section 2.5. Section 2.6
illustrates the methodology with two real-world examples, and closing comments are given
in Section 2.7. Advancements made in this chapter, namely the use of adaptive smoothing
for the density-ratio, its theoretical properties, corresponding asymptotic tolerance contours,

and some additional empirical results, have been published in Davies and Hazelton (2010)
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(Statistics in Medicine). This naturally followed on from a similar investigation utilising
only a fixed bandwidth conducted during this author’s Honours year (pre-Ph.D.), published

in the Biometrical Journal (see Hazelton and Davies, 2009).

2.1 Bivariate kernel density estimation

Kernel density estimation (KDE) is a nonparametric method that allows each observation
to contribute to the final density estimate following specification of a kernel function and
a smoothing parameter (also known as a bandwidth or window width). In contrast to, for
example, a relatively crude histogram, a kernel estimate provides the researcher with a
smooth density for continuous data. The fundamental ideas of KDE have changed little since
the seminal papers of Rosenblatt (1956), Parzen (1962) and Cacoullos (1966). One important
extension to the methodology was made by Breiman et al. (1977), where a variable smoothing
parameter is used (in place of an otherwise constant amount of smoothing specified by
the bandwidth) for each observation. Defining a particular version of the observation-wise
variable bandwidth approach, Abramson (1982) demonstrated that under certain conditions,
his adaptive kernel density estimator yielded a significantly lower level of bias than the fized-
bandwidth estimator; a theoretical benefit echoed in e.g. Hall and Marron (1988). More
recently, Diggle, Rowlingson and Su (2005) showed an improvement in integrated square
error (ISE) by using this adaptive method over the fixed when estimating intensity functions
in a simulation study.

There exist several alternative options for variable bandwidth or adaptive KDE. Of note
is the idea of local kernel estimators, where, in contrast to the methods in Breiman et al.
(1977) and Abramson (1982), the smoothing parameter is varied not at each observation,
but for each location at which the density itself is estimated. It can be shown (see for
example the relevant summary in Section 2.10 of Wand and Jones, 1995) that there are
theoretical benefits to local variable kernel methods over the fixed if the bandwidths are
chosen ‘optimally’ according to some appropriate criterion. One particularly well-known
local smoothing technique which attempts to achieve this is that of the nearest neighbour
method (Loftsgaarden and Quesenberry, 1965), where information on the distances from
the point of estimation to the kth closest observation is used in order to compute the final
result. However, aside from the need to find an appropriate value for k, a consequence of
the fact that the bandwidths are now a function of estimation location means that the final
result does not necessarily integrate to 1, in which case a bona-fide density would not be
achieved. It has also been noted that there can be sudden changes in the nearest neighbour
distances when altering the point of estimation, resulting in a potential lack of smoothness
(see again Wand and Jones, 1995).

In light of these issues, and the potentially significant bias reductions mentioned earlier,
we will consider only Abramson’s (1982) method in this chapter. Hereinafter, all mentions
of the ‘adaptive’ approach thus refer to Abramson’s variable bandwidth calculator. Further
reading on KDE and smoothing methods in general can be found in comprehensive texts such
as Silverman (1986), Scott (1992), Wand and Jones (1995), Simonoff (1996) and Bowman
and Azzalini (1997). Also of note is the paper by Jones (1990), which provides a detailed
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discussion on the differences between observation-wise variable bandwidth estimators and

specific location-wise estimators in the univariate setting.

2.1.1 Estimator

Consider n > 0 independent, identically distributed (iid) bivariate observations X, X,
..., X,. The true density thereof, f, is estimated by f with

. 1 & 1 z—X;
& =2 2 e (i) 21

where K, the kernel function, is ideally chosen to be a radially symmetric probability density
function (PDF). The degree of smoothing is controlled by the bandwidth, indicated in (2.1)
by the function h(-).

A fixed-bandwidth kernel estimate of a density, that is, an estimate utilising a constant
amount of smoothing for all observations, is equivalent to setting h(u) = hx, some fixed
scalar value, for all u. For adaptive smoothing under Abramson (1982), h(w) is set to

h(w) = A (2.2)

vf

where As(u) = f(u)~ 2, hg is a global smoothing parameter we will call the global bandwidth
and v = exp {% >, log [f(Xi)_%} } The presence of the geometric mean term ¢ in (2.2)
frees the bandwidth factors from dependence on the scale of the recorded data, and allows
hg to be considered on the same scale as hr in a corresponding fixed-bandwidth density
estimate. Noteworthy is the fact that the components that make up (2.2) are directly
related to the density we are attempting to estimate.

In real-world applications, however, the true density f is unknown. It is therefore stan-
dard practice to replace all instances of f in (2.2) with a pilot estimate thereof which we
will represent as fﬁ- In our case, fﬁ is a fixed kernel density estimate with the bandwidth
hy = h (veferred to as the pilot bandwidth).

To be thorough, we re-express (2.2) to reflect this pilot estimation:

. hoj\f(u)

h(u) T7 (2.3)

where S\f(u) = fi(u)~7 and V= exp {% >, log [f;l(Xi)—%} }
In the interests of clarity, we introduce new notation to distinguish fixed-bandwidth

bivariate kernel density estimates from adaptive. Fixed estimates of f will be denoted by

fﬁxa adaptive by fadv-

2.1.2 Theoretical properties

We may gain insight into the behaviour of the kernel density estimator, for both fixed and
adaptive smoothing regimens, via theoretical properties obtained from large-sample approx-

imations. Prior to deriving these properties let us clarify some notation and assume the
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satisfaction of certain conditions. As in the previous section, boldface characters represent
2-dimensional vectors i.e. & = [z1, 72] . We use D, (x) to denote the 2x 1 vector of first-order
partial derivatives at location @ for an appropriate function v and H, (x) the corresponding
2 x 2 Hessian matrix. The order notation o(-) for the real-valued sequences sy and s, where
s1 = o(s2) indicates that lim, ,o0|s1/52] = 0, and s; = O(s2) that lim, o |s1/s2| < oc.
Furthermore, we assume that the ‘target’ density f is continuously differentiable up to some

required order p, and that K satisfies

/K(u) du =1, /uK(u) du =0, and /u{K(u) du =k, #0, (2.4)

with the final condition assuming r > 1 and also holding for us. Note that if K is a radially
symmetric PDF with compact support, all of the conditions in (2.4) are satisfied. Unless
otherwise stated, the definitions provided in this section hold throughout the remainder of

the chapter.

We begin with the fixed-bandwidth estimator, with smoothing parameter hz. This ap-
proach has received more attention in the literature than the adaptive, and good theoretical
summaries are available in texts such as Silverman (1986) and Wand and Jones (1995). For

the bias of fgy at a given coordinate z, we write

A~

Bias[fax(2)] = E[fax(2)] — f(2)
_ 1 7Y — f(z
-/ thK( ) i@y - f(2) (25)

To find an approximate expression for the bias of the fixed estimator using (2.5), we
perform the change of variable y = z — hxt and invoke the multivariate form Taylor’s

theorem:
Bias| ()] = [ K(©)f(z ~ hrt)dt - £()
= [ K@)~ heDy(2) T+ GHTH (2]t + o(h3) dt - (2)
=f(2) / K(t)dt — hyD} / tK(t)dt + %h%.—trace [Hf(z) / tt' K(t) dt}

— f(2) + o(h%)

1
zihéthracc[’Hf(z)}. (2.6)
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Much the same approach is used to find an asymptotic approximation to the variance:

2
Varlfoc(l =ir [ 8 (222 s ay - LElfun(a)?

i
nh

:nhl%r /K(t)2f(z — hyt)dt % (£(=)+ Bias[fﬁx(z>])2
1 2 —1lp—

:nfsz/K(t) f(z)dt +o(n *h7?)
1

R(K)f(2), (2.7)

N
nhs

where R(K) = [ K(t)?dt.

The same properties for the adaptive kernel estimator are more difficult to find due to
the pilot density estimation stage in calculating the variable bandwidths at each observation.
Through what Silverman (1986) describes as “extremely tedious algebra”, following use of

an algebraic manipulation software package he gives

4
h()

= mAf(z)]u +O(hg) (28)

Bias[ fadv (2)]
where Af(z) is a bounded, well-defined, yet complicated function of f and its derivatives.
Hall and Marron (1988) do provide some commentary on evaluation of this quantity by hand,
paying particular attention to the univariate setting. They note however that this would
require laborious repeated integration-by-parts and, given the limited practical interest of

the explicit result, we do not pursue it further here.

We note that the bias of fudy is reduced from O(hZ) in the fixed setting to O(hg) in
the adaptive. See Abramson (1982) and Hall and Marron (1988) for further theoretical
details on this interesting fact. This is a primary motivator for exploring the adaptive

kernel density-ratios in the following section.

An approximation to the variance of fadv can be found by drawing on results in Hall and
Marron (1988). Firstly, we define the quantities

V)

Di=f—E[f] and Dy= faav—f

where f is the ‘ideal” adaptive estimator; that is, implementation of (2.1) using (2.2) directly
(no pilot estimation). Theorem 3.2 of Hall and Marron (1988) then states that the variables
((1,¢2) n1/2h0’y]71(D17 D») follow a bivariate normal distribution with zero mean vector

and

Var[)] ~ f2 / K(w)?du;  Varl] = / L(w?’du;  and

Covler, Gl ~ 51 / K (u)L(w) du;

where L(u) = 2K (u) + u' Dg(u). Assuming certain conditions on the kernel function,
such as those in (2.4), symmetry, and that K is continuously differentiable (at least twice)

throughout its support, Hall and Marron (1988) also note that in the 2-dimensional setting,
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fKL: fKQ. Now:

fadv :fadv _f+f_E[f] +E[v]

v

=D; + Dy + E|[f]

= Var|faay] =Var[D;] + Var[Dy] 4+ 2Cov[D;, D]
2

%Lfg (Var[¢1] + Var[¢z] + 2Cov[(1, (2])
nhg

znfg [fQ/K2+if2/L2+2(;f2/KL>}.

Var|faav (2)] & ng (2)° {2/K(y)2dy+ le/L(y)Qdy} : (2.9)

So finally,

We note in closing that these statistics for both the fixed and adaptive kernel estimators
reflect the bias-variance trade-off ubiquitous in smoothing problems: the greater the amount

of smoothing (the bandwidth) the lower the variance but higher the bias, and vice-versa.

2.2 The relative risk function

In this section we introduce the density-ratio estimator of so-called relative risk. This tech-
nique has become popular, particularly in epidemiological applications, owing to ease of
implementation and interpretation. Due to the high spatial heterogeneity often observed
in the target populations in these problems, kernel smoothing provides a high degree of
flexibility in appropriately capturing this spatial variation. Specifically, the aim here is to
extend the methodology to use adaptive kernel smoothing and study any advantages and/or
disadvantages over the fixed-smoothing estimator; the only option considered in the external

literature to date.

To avoid confusion, it is worth mentioning that in epidemiological circles the definition
of ‘relative risk’ often refers to a ratio of infected entity values between groups according to
their exposure to a certain risk factor (see for example the definitions in Dawson and Trapp,
2004). As we shall see below, however, the kernel-smoothed density-ratio is defined as a ratio
of infected to non-infected density estimates; technically resulting in what epidemiologists
would refer to as a location-wise odds ratio. The term ‘relative risk’ with respect to the
kernel density-ratio was coined by the original authors of the relevant statistical papers
(references follow) and has been used since; we will remain with the statistical terminology

in the following discussions.

2.2.1 Definition

Consider now the presence of two point patterns, X = {x1, @2, ..., ©,,} and Y = {yq,
Yo, -+ -5 Y, }, Doth observed in some finite observation window W C R?. Assuming that X

and Y have arisen from independent Poisson point processes with density functions f and
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g respectively, the relative risk function (Bithell, 1990, 1991) is defined as
r(z) = ==, zeW. (2.10)

Kelsall and Diggle (1995a) replace the numerator and denominator in (2.10) with kernel
density estimates fﬁx and gy respectively. In addition, the authors advocate the use of
the log-risk function p = log[r] to symmetrise treatment of the two densities. We seek to
investigate the use of fadv and §aqv instead, in light of the potential bias reductions observed
in the individual density estimates as per (2.8). Thus, we study and compare the relative

risk function estimators

A~ fﬁx(z) A fadv(z)
Pax(z) = log | = and Padv(2) =log | % . 2.11
4 [gﬁx(z) wav(2) Jadv(2) (211)

These constructions are particularly useful in geographical epidemiology, as they allow
the researchers to compare the spatial distributions of observed disease cases as X with the
at-risk population Y (dubbed controls), both scaled by their respective sample sizes. Signif-
icant departures from uniformity can therefore point to an excess disease contraction ‘risk’,

or lack thereof, in specific areas of W after taking into account the underlying distribution.

Generally regarded as an exploratory data analysis tool, the interpretation of these
kernel-smoothed risk surfaces has important consequences in practice. Should significant
sub-regions of risk be identified, this has the potential to drive important health policy de-
cisions. For example, Kelsall and Diggle (1995a) investigated the relative risk of laryngeal
cancer in relation to proximity to a disused industrial incinerator in an area of Lancashire,
England. Prince et al. (2001) studied the variation in risk of primary biliary cirrhosis in
northeastern England in an effort to better target health resources. Sanson et al. (2011)
used the kernel-smoothed relative risk methodology to compare the performance of different
models of foot-and-mouth disease prediction in Irish farms. Many other examples exist in
the literature. It is therefore critical that we aim to achieve the best possible estimates of
spatial relative risk in these applications such that any conclusions drawn from the analyses

reflect as closely as possible the true variation across the study region.

2.2.2 Properties

As always, an understanding of the fundamental properties of any estimator is important.
Using the asymptotic approximations discussed for the kernel estimator in Section 2.1.2, we
may approximate the same properties for the log-relative risk functions in (2.11). For the
fixed estimator, the bias and variance terms are already available (see Kelsall and Diggle,
1995a), and can be shown to be

Bias [pax(2)] ~ 22 {

trace[?—tf(z)]hi-(l) trace[H, (Z)]hg-‘@) } 7 (2.12)

f(2) - 9(z)
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and

. 1 1
Var [phx(2)] = R(K) {mh?;-(l)f(Z) + n2h2]—‘(2)g(z) } ; (2.13)
where hr() and hr(y) denote the fixed bandwidths used for the case and control density
estimates respectively.

We must now derive the same properties for the adaptive risk function, and do so follow-
ing the same approach as that used to find (2.12) and (2.13) by first-order Taylor expansion
of the log function. Let €,(x) = [Paqv(x) — v(x)]/v(x) for some density v, and let hg(;) and
ho(2) be the global bandwidths for the fadv and §aqyv respectively. Assuming that n;, and ns
are large (as required for the validity of the asymptotic expansions), these error terms will

be small. Therefore,

paav(z) =log[f(2)] —log[9(=)]
=log [f(2)] +log[1 + ¢f(2)] — log[g(2)] — log[1 + ¢4(2)]
=p(2) + €1(2) — €4(2) + Op(€”)

where €2 represents squared epsilon terms regardless of density. Now, using (2.8) and ignor-

ing the higher-order terms of hg(1) and hg(g),

Bias [paav(2)] = E [Paav(2)] — p(2) = Elef(2)] - Eleg(2)]
Elfadv(2)] = f(2) _ Elgaav(2)] — g(2)

Q

f(2) 9(2)
k4 Af(z)hg(l) Ag(z)ho(g)
21 { IER T P A
and similarly, using (2.9),
Var [paay(2)] A Varles (2)] + Varle,(2)]
~ Var[fadv(z)} Var[gadv(z)}
f(2)? 9(2)?

~ t s 2.15
~S(K) mhﬁ(l) + ’ﬂzh%(Z) (2.15)

where

S(K) = 2/K(z)2dz + i/L(z)Q dz

and L is as defined for (2.9).

Two important points are immediately apparent. Firstly, consider the situation where
we have either a common fixed bandwidth for case and control density estimates in pay; i.e.
hzuy = hz@) = hzF, or a common global bandwidth for the separate estimates in paqy; i.e.
ho(1y = ho2) = ho. Assume also that for the adaptive version we use a common scaling
parameter vy = 7, = Y,. Then, in areas of W where f = g, we can expect the bias to
diminish in both fixed and adaptive relative risk functions; see (2.12) and (2.14). While this

was mentioned by Kelsall and Diggle (1995a) for the fixed version, it is useful to observe
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much the same result for the adaptive estimator. The common bandwidth multiplier -,
is computed as a ‘pooled’ geometric mean term in the sense that case and control marks
are ignored. Letting P = X UY be the pooled data set, one easy option is to set v, =
exp{(n1+n2) 'Y cp log[@y, (u)~%/2]}, where @ is the pooled pilot kernel density estimate
with fixed bandwidth h,. The v, term would then replace v and 7y, in the individual
case/control kernel estimates, with (2.14) and (2.15) affected in an obvious fashion.

The second point arises upon inspection of the asymptotic variances in (2.13) and (2.15).
By a convenient cancellation of squared density terms in the second line of (2.15), we note
approximate variance stabilisation resulting for the adaptive risk function. The same cannot
be said for the fixed version, where volatility exists due to explicit z terms in the right-
hand side of (2.13). The fact that Var [pgy] is made up of the terms 1/f(z) and 1/g(z) is

particularly serious, as it implies potentially extreme variance in areas of sparse data.

2.3 Practical considerations

There are a number of key issues that must be addressed when implementing kernel-
smoothed relative risk functions in practice. Here we aim to discuss sensible approaches
to dealing with them, but it is important to realise that there will always be a certain limit
to generalising techniques for approaching smoothing problems. Indeed, ad hoc solutions
will to a certain extent remain in real-world applications; though it is helpful to be able to

characterise and identify, where possible, known behaviour of the methodology in question.

2.3.1 Bandwidths

Though there exist several feasible approaches for calculating bandwidths (termed band-
width selectors) based on some optimisation criterion for kernel density estimation, specific
selectors for kernel relative risk functions per se are scarce. A thorough review of bandwidth
selectors for density estimation is unsuitable for this chapter; though fundamental issues,
particularly with respect to the risk function, are discussed here. The interested reader is

directed to texts such as Wand and Jones (1995) for further investigation.

Assignment

Before we are able to consider the method of smoothing parameter calculation, bandwidth
assignment must be decided upon. That is, in the fixed context we can elect to calculate two
distinct values (one for the case density, the other for the control), or a single bandwidth,
common to both. For implementation of p,qy, up to four distinct values can be chosen, as
specification of pilot and global bandwidths for both case and control density estimates is
required.

Outside of the established large-sample approximations to the bias and variance terms
of the risk function, there is little to guide the user in deciding upon sensible bandwidth
assignment. What is clear from Section 2.2.2 is that the potential bias cancellations arising
from assigning a common bandwidth in the fixed setting, or a common global bandwidth in

the adaptive, is too valuable to ignore.
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We therefore proceed by imposing these conditions upon the bandwidth assignment.
This leaves the issue of assigning pilot bandwidths when utilising adaptive smoothing. Being
abstracted away from the final density estimate, it is natural to expect varying the pilots
to have less of an impact than the globals. To date, there exists no evidence for or against
choosing a common pilot bandwidth. Considering the global bandwidths are elected to be
the same for cases and controls, it may be sensible to calculate the pilots separately for each
group. It could be argued that these different pilot bandwidths can help preserve detail
specific to each density estimate for subsequent calculation of the variable bandwidths. This
intuitive reasoning is the basis for choosing, in later sections, separate pilots for the adaptive

relative risk function.

Selection methods

The aim of bandwidth selectors for the kernel estimator is to use the observed data to yield
a bandwidth which produces a kernel estimate as ‘close’ to the true density as possible. A
useful and hence typically employed criterion for density estimation is to therefore minimise

the mean integrated squared error (MISE), which for the risk function can be expressed as

E/ [Prix(@; hr) — p(x))? da and E/ [Padv (; ho) — p(x))® da. (2.16)

Note that under our bandwidth assignment conditions, we ideally would require an ap-
proach that will minimise these quantities for a common hz and a common hg between case
and control densities in the fixed and adaptive settings respectively.

One available method that can achieve this based on leave-one-out least-squares cross-
validation (LSCV) was introduced by Kelsall and Diggle (1995a), and involves minimisation

with respect to some bandwidth h of

i=1

SV

where { % denotes the kernel estimate of x (where y is either a density or risk function)
constructed without the ith observation, p (and f ,§) can indicate either the fixed or adaptive
estimators, and h either hx or hy depending on which estimator we are employing. The
authors also note that if the p and p terms are replaced by the density 7 and v in (2.16),
then (2.17) reduces to the MISE-minimising least-squares cross-validation method for a
standalone kernel density estimate for corresponding data mq,mao, ..., m,, which we will

similarly denote as LSCV,,:

LSCV, (h) = /ﬁ(:z:; h)?da — 2571 07 (m; h). (2.18)

i=1
A related approach specific to choosing a common bandwidth for the risk function es-
timator was discussed in Hazelton (2008). We do not consider this method in the current
work, for several reasons. Firstly, it was designed in terms of the fixed-bandwidth risk func-

tion estimator only, cancelling identical edge-correction factors (see the following section)
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in the ratio. This cannot be achieved in the adaptive setting, which is the primary interest
in this chapter. Secondly, the selector was derived for use with the raw density ratio, not
the log-risk function estimator as we will use here. Finally, Hazelton’s (2008) selector is
designed to minimise a MISE weighted by the control density, making direct comparison of
it with approaches based on (2.16) less straightforward.

Least-squares cross-validation can be a somewhat troubling approach in the context of
density estimation, however. Studies on the asymptotics of LSCV (2.18) showed a high level
of variability in the estimated smoothing parameters (assuming certain regularity conditions
— see Hall and Marron, 1987; Scott and Terrell, 1987). This variability can be mitigated by
introducing additional bias in the objective function, leading to approaches such as biased
cross-validation (BCV). However, both LSCV and BCV indicate rather poor rates of con-
vergence, in the order of only o(n~'/1°), to the theoretically optimal bandwidth (i.e. that
which minimises the theoretical expression for the MISE of a kernel density estimate). In
addition, BCV is well-defined for individual densities, but appropriate analogues for 7 or p
are not readily available. These findings are summarised clearly in Section 3.8 of Wand and
Jones (1995).

Though based on sound theoretical measures of discrepancy of the estimated relative
risk function with its true counterpart, Kelsall & Diggle’s (and Hazelton’s) ‘jointly optimal’
LSCV selectors appear to be extremely unreliable in practice. The problems arise due to
the simple fact we are dealing with a ratio of two kernel estimates, and in the case of (2.17),
this ratio is repeated in the last two terms on the right-hand side of the equation. Instability
occurs most often when there exist ‘sufficiently isolated” (in light of the bandwidth) obser-
vations in either or both of the case and control datasets. When the estimate is evaluated
at these locations, small denominator terms can lead to explosions in the cross-validation
objective function.

This, coupled with the natural variability in leave-one-out LSCV, means employing (2.17)
in practice is rather difficult. Indeed, Kelsall and Diggle (1995a) themselves note that during
their simulation study, the bandwidth chosen by LSCV, would occasionally be so inappro-

«

priate as to “...give rise to an extremely high ISE”. They go on to label these instances
as “...a breakdown of the methodology”. This author’s own (unpublished) experiences (cf.
Davies, 2007) agree with these statements, and note that even when a clear minimum in
the CV objective function was identified, there would be a tendency for the corresponding
bandwidth to produce severely undersmoothed estimates.

An illustrative example of these deficiencies is warranted. Consider the 62 cases of
childhood leukaemia and lymphoma collected in the North Humberside region of the U.K.,
between 1974 and 1986. Along with 141 controls randomly selected from the birth register,
these data were first presented and analysed by Cuzick and Edwards (1990). Figure 2.1 shows
the cases and controls inside the geographical study region, as well as the LSCV, objective
function values for a fine sequence of bandwidths between 10 and 50, using fixed smoothing.
These values are displayed on both the raw and log-scales to assist in visualisation due to
the extreme variability of the results.

Immediately we note there is concerning instability for the smaller bandwidth values.

This is due to the leave-one-out operations resulting in the aforementioned minuscule den-
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Figure 2.1: Humberside case-control observations (left), along with the LSCV, function
values for a sequence of bandwidths (center), and the same LSCV, function values on the
log-scale (right).

sity magnitude at isolated observations. Some of these values are missing, owing to the
internal computations being unable to cope with the scale of the returned results. As the
bandwidth is increased, stability improves. However, the LSCV, results remain monotonic
decreasing as the amount of smoothing becomes larger. An inspection of the function for
smoothing parameters >> 50 (not shown) further reveals no clear minimum, and as the
bandwidth approaches excessively large values (i.e. completely unsuitable given the scale of
the observations and area of the study region), issues with edge-correction (see the following

section) re-introduce further instability and incomputable quantities.

While there are indeed examples where (2.17) will indicate a clear local minimum and
thus ‘successfully’ select a bandwidth, the behaviour observed with the Humberside data is
unfortunately not uncommon. Even when synthetically generated data are considered (as
later in Section 2.5), the same problems often occur, making implementation of LSCV,, in

a comprehensive simulation study rather difficult.

The difficulties discussed in terms of practical implementation of LSCV, mean we do not
consider this specific method further. As an alternative solution to the bandwidth selection
problem, we may use one of the many selectors defined for single density estimation and
simply apply it to the pooled case-control observations P = X UY. This opens up a
wider range of options for data-driven bandwidth calculation, but the appropriateness of
this ‘shortcut’ is questionable. For instance, if n; << ns, then this pooling approach could
result in a bandwidth based too heavily on the features of the control data. However, if care
is taken, pooling can be effective and convenient. In spite of the drawbacks associated with
LSCV methodology, note that LSCV,, is more stable (in terms of identification of a clear
local minimum) than LSCV ,, primarily due to the lack of division by leave-one-out density

values. We therefore consider using the value of hcy given by
hcov,w = arg min LSCV ,(h)
where

LSCV,,(h) = / (@i )2 dz — 2(ny +m2) S @ (s ), (2.19)
xeP
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is used to denote the pooled-data density estimate, and Y~ represents the estimate
X constructed without the observation w. The selected h is then used as the common

bandwidth in the estimates f and g.

The susceptibility of leave-one-out CV to undersmoothing is still concerning. Let us
consider once more the potential bias cancellations that drive the common bandwidth as-
signment decision — meaning we may be inclined to choose slightly larger bandwidths for risk
function estimation in an effort to reduce variance. This makes it feasible to consider a band-
width selector based on the mazimal smoothing principle (Terrell, 1990). This bandwidth
(also known as the oversmoothing bandwidth) is given by
(d+ 8)(d+6)/27rd/2R(K) T

M= U enr [(d+ 8)/2d(d + 2)

(2.20)

where d is the dimension of our data (d = 2 for our purposes), R(K) is as defined for
(2.7), and U is, in the formal definition, the standard deviation of our data (as we are
smoothing isotropically, any estimate of U must be scalar). Though it is acknowledged that
this approach can produce smoothing parameter estimates that are too large for standalone
density estimation, the aforementioned variance control for the risk function estimator could
be beneficial. By again using the pooled approach to bandwidth calculation, it is possible to
implement this method for choosing the common hz or hg values for pgyx or pagv respectively.

Therefore, we will also consider using (2.20) based on P as follows:

6257 R(K)]®
192n*

hos = Urqr [

which, when setting R(K) = (47)~! for the Gaussian kernel, is

1
625 %
hos = — 2.21
os = Uiqr [76871*} ) (2.21)
where n* = (/niny and the scaling value Uiqr = [IQR(x(1)) + IQR(x(2)]/2.68. Here,

with x(;) and x(3) we denote the vectors of coordinates on the horizontal and vertical axes
respectively, where £ € P. Thus, Uiqr is interpreted as the mean of the interquartile
ranges on the two axes, divided by 1.34 (the factor which converts the interquartile range to
a robust estimator of the standard deviation for normally distributed data). Finally we note
that the use of n* rather than (n; 4+ n2) in (2.21) owes to the earlier comments of caution
in the event of noticeable differences between the case and control sample sizes when using
P for bandwidth calculation. To prevent the oversmoothing (OS) bandwidths from being
too heavily influenced by the larger sample size (typically the controls in epidemiological
applications) the geometric mean of the two sample sizes, n*, is used in place of the pooled
total. This gears the ‘effective’ sample size to lie in between n; and ny when ny # no, with
n* —min(ny, ng) < max(ng,ng) — n*.

These bandwidth selectors are considered in choosing a common smoothing parameter
for estimation of the relative risk function later in this chapter, where assignment specifics

using OS and the various forms of single-density LSCV are mentioned. It remains a fact
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that more sophisticated methods for selection of a jointly optimal bandwidth for the density-
ratio are extremely difficult to identify. Omne possible option is to pursue Bayesian ideas,
though historically these methods do not perform very well in KDE problems (Brewer,
1998, 2000). Alternative pursuits may involve modifications to the minimisation criterion,
such as a consideration of different weighted mean integrated squared errors (WMISE) as
in Hazelton (2008), or the possibility of investigating asymptotic mean integrated squared
error (AMISE) expressions. However, and as we will see in Section 2.5, it seems the OS
bandwidth selector does perform competitively when compared to the more formal LSCV

methods in practice.

2.3.2 Edge-correction

Up until this point, we have conveniently ignored the fact that X and Y have both been
observed within the finite window W. This fact, however, has important consequences for
kernel estimation of the densities on W, as it is possible there exist points just outside the
region that were simply not collected. Consider the presence of points near the boundary
of the region. Then, dependent on the bandwidth(s), it is likely that a portion of the
kernel weight assigned to these observations will fall outside W, resulting in potentially
severe negative bias around the edges. To remedy this issue, we employ an edge-correction
technique which reduces this bias to an asymptotically negligible level.

A relatively simple fix, this methodology was examined for the fixed bandwidth setting
in Diggle (1985) and Kelsall and Diggle (1995a), and in the adaptive setting by Marshall and

Hazelton (2010). These methods rescale the density estimates by division at each coordinate

z e W by
ahiey(2) = /W %Z)QK <“;L(_z)z> dz. (2.22)

It is easily recognised that (2.22) is simply the proportion of the appropriate bandwidth-
scaled kernel at location z that falls within W. Strictly speaking, this means the correction
need only be used for locations close to the boundaries, as g (,) 2 1 for interior locations.
Recall also that h(z) = hr in the fixed version.

To demonstrate how this correction factor achieves the desired result, consider the third
line of equation (2.6) where we derive the asymptotic bias for fﬁx using a multivariate Taylor

expansion. With respect to W, this line would now read

Bias[ fax(2)] =/(2) /W K(t)dt — h].-D}r /W tK(t)dt + %h%—trace [’Hf (2) /W it K (t) dt}

— f(2) + o(h%). (2.23)

Due to the change of variable y = z — hxt and the finiteness of W, it is now not possible
to use the conditions in (2.4) for all z, the first of which sets the leading integral in the
right-hand side of (2.23) to one, allowing the cancellation of the f(z) terms. Division by
(2.22) normalises this integral, rendering the bias once again asymptotically manageable.
Much the same operations occur in the adaptive setting. Of course, the division of the

other terms in these Taylor expansions by gj(») means the bias is still larger (that is, of a
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lower order) at boundary locations than in the interior. Further bias elimination is possible
with more complicated edge-correction techniques based on implementing special classes of
boundary kernels. However, numerical results in Marshall and Hazelton (2010) showed this
methodology to have a minimal impact in practice at best.

Understandably, the variance terms are also affected by edge-correction. This is im-
portant, as it will in turn affect the derivation of the theoretical risk function tolerance
contours in Section 2.4. Recall again that as per our bandwidth assignment we assume
common fixed hz and global hy bandwidths for the fixed and adaptive settings respectively.
For the variance of pgy in (2.13), we must replace R(K) with

1 r—z 2
RW}Z(K) = W /WK ( I ) dx, (2.24)
such that ) . . .
Var [px(z)] = Rw,=(K)h 5 {nlf(z) + 29 (2) } (2.25)

Correcting the variance of p.q, is slightly more complicated as we must now account
for the different sets of variable bandwidths resulting from the separate case and control

datasets. To that end, the uncorrected variance in equation (2.15) changes to

2 S‘fr (K) Sg (K)
A 'V( z W,z
Va Padv,q\Z)| =~ —= . + : 2.26
I‘[ d ,q( )] h% n1 N9 ( )

where we assume the presence of the pooled geometric mean term -, and

1)~ i) * (2% (55) o= 3 (55) ]
(2.27)

for a given pilot density . It is also important to note that edge-correction must be employed

at all stages of estimation, including the pilot density when smoothing adaptively. This is to
prevent the variable bandwidths resulting from equation (2.3) being too heavily influenced
by boundary bias in the pilot estimate.

Indeed, any operations involving a kernel density estimate where the observations are
restricted to a finite region should be edge-corrected. This includes the LSCV bandwidth
selection methods detailed in Section 2.3.1. Numerical experience with these selectors indi-
cates that not correcting for boundary bias can often lead to very different suggestions of
the optimal bandwidth.

Henceforth it is assumed without further mention that all fixed and adaptive density
and therefore risk function estimates, including those appearing in bandwidth selectors,

have been edge-corrected as per (2.22).

2.3.3 Kernel function

It is widely acknowledged that the choice of kernel function K is very much a secondary

matter in these problems, with a relatively minimal impact upon the performance of the
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kernel estimator itself (e.g. Silverman, 1986; Wand and Jones, 1995; Bowman and Azzalini,
1997). Of particular interest are the investigations in Wand and Jones (1995) which clearly
demonstrate the small differences in estimation efficiency of substantially different kernel

shapes.

Due to satisfaction of the conditions (2.4) for convenient expression of the asymptotic
properties, it is generally recommended to let K be a radially symmetric probability density
function with the mode being centered at the origin. This also ensures the resulting estimate
will itself be a bona-fide density. Several options exist in this case. In the analysis of spatial
point patterns (i.e. with d = 2), the most common choices in practice tend to be the Gaussian

K¢, Epanechnikov Kg, and biweight Kp functions, with

Ka(w) = (2m) lexp [—;uﬁu} 7

2rt(1-wu'u) fu'u<l

0 otherwise

and

3r~ ! (1 — u—'—u)2 ifulu<l1
0 otherwise

There do exist certain theoretical benefits, such as exact calculation of edge-correction
factors, for kernels with compact support like Kg and Kg. Nevertheless, the aforementioned
texts advocate choosing the kernel function based on reasons other than mathematical per-
formance of the estimator, such as computational convenience or even aesthetics, due to the

almost indistinguishable differences in estimate quality between different Ks.

For this reason, many researchers have opted for K¢g in applications, particularly in
geographical epidemiology. In addition to satisfying the conditions on the kernel function
necessary for validation of the theoretical properties of the various estimators examined in
Sections 2.1 and 2.2, the Gaussian kernel has the appealing property of unbounded support
which is useful in areas of W where data are sparse. This ensures that the final density
estimate will be defined everywhere in W, where a bounded kernel can easily result in an
estimate that is discontinuous within the study region. As well as the perhaps minor issue of
being decidedly unaesthetic, a discontinuous estimate can more importantly result in obvious
problems involving subsequent inference to do with the density. Indeed, mere estimation
of a relative risk function where the case and control densities are undefined (and which
could well be undefined in different subregions of W if smoothing is adaptive) would prove
troublesome. We therefore consider only the Gaussian kernel in this chapter (namely the
implementations in Sections 2.5 and 2.6) as well as the collaborative applications in Sections
5.1-5.3.
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2.3.4 Trimming

The final issue that must be considered applies only to the adaptive setting, in that the
bandwidths given by equation (2.3) require some minor, yet important, adjustments post-
calculation. Hall et al. (1995) show that the significant bias reductions possible with this
smoothing regimen can be almost entirely eliminated should the density estimate at any
given location be influenced too heavily by isolated data points. At these locations, the pilot
density can be very small and our A values (hence our h(-) values) become unacceptably
large, creating a problem we will refer to as bandwidth inflation. In addition to the major
concern of losing any advantageous drops in estimator bias (when compared to the fixed
setting), bandwidth inflation can have obvious adverse effects on the estimated density if
excessively large bandwidths lead to individual kernels spanning the entire finite study region
and beyond. These detrimental impacts will flow directly through to any subsequent relative

risk function estimate.

Hall et al. (1995) demonstrate that the attractive asymptotics which the adaptive esti-
mator is capable of possessing can still be achieved with a relatively simple fix. This involves
specifying some maximum threshold with respect to the magnitude of the calculated vari-
able bandwidths, also known as bandwidth trimming. Note that the nature of this trimming
criterion can be defined in a number of different ways; some alternative suggestions can be
found in the work referenced above and appropriate references therein. Importantly, Hall
et al. (1995) indicate that, provided any ‘sensible’ method of trimming is employed (i.e.
one that does not too greatly restrict the maximum allowable bandwidth), the beneficial

asymptotic bias levels of the adaptive estimator will still be realised.

To eliminate any of these unreasonably large bandwidths, we define hy; = median(h)
and use the following criterion when adaptively estimating some density v from a sample of

size n:

h(- D) e{ Alsw) 3 A(57) < Bhar (2.28)

Bhyr  otherwise

where h represents the n x 1 vector of variable bandwidths originally resulting from (2.3).
Specifically, we use some constant § times the median of the untrimmed adaptive bandwidths
(at the locations of each observation) to disallow values greater than that quantity. Use of
a robust statistic in such a trimming technique is intuitively sensible given it is extreme
values that we are attempting to avoid. As [ is increased, we move toward the completely
untrimmed estimator, and the adverse effects of bandwidth inflation return. If 3 is too
small, the theoretical benefits of the adaptive smoothing scheme cannot be realised due to
excessive restriction of the larger bandwidths required for isolated observations. As a general

rule-of-thumb, this author’s experience leads to the recommendation of setting 4 < 8 < 8.

In practice, we have found working with 5 = 5 still allows for generously sized values in
our set of adaptive bandwidths but limits any adverse effects due to bandwidth inflation.
Therefore, as well as assuming edge-correction, we will also assume without further mention
that this trimming criterion (2.28) with § = 5 has been employed for all subsequent adaptive

density and relative risk function estimates.
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2.4 Asymptotic tolerance contours

It is often of interest to be able to assess the statistical significance of peaks and/or troughs
in an estimated risk function. In other words, we wish to highlight subregions of W where
we have observed abnormally large (or small) risk estimates after adjusting for the underly-
ing population dispersion. Formally, the appropriate hypotheses in testing for statistically

significant risk elevation would be expressed as

0 (2.20)
0; zeW,

where tests for unusually low risk or double-sided tests would be expressed with ‘<’ and ‘#’
in Hp respectively.

Naturally, these anomalies can only be identified if we understand the variation possible
in the fixed or adaptive risk function estimate p. In turn, a corresponding map of p-values
with respect to the hypotheses can be calculated over W, which the researcher may then use
to superimpose upon an image of p so-called tolerance contours at pre-defined significance
levels a.

Until now, the only existing approach to calculating the p-value surface was via Monte-
Carlo (MC) methods (Kelsall and Diggle, 1995a). First, the case and control location data
are pooled, then n; points are resampled without replacement to represent the simulated
cases and the remaining no points used as the simulated controls. The fixed and adaptive
kernel estimators are then applied on these simulated datasets for each of N iterations
providing simulated log-risk values {p5(2), p5(2), ..., p(z)}. For each point z, we therefore
have the originally observed value and N simulated, so the p-value based on significantly
elevated risk at location z is obtained by the expression [1 + Y, 1(p(z) < p;(2))]/(N + 1),
where 1(+) is the indicator function. The MC approach is easy to understand and implement.
However there is an obvious computational cost that can be excessive, prohibitively so for
the adaptive smoothing methodology. This motivates the need for an approach to p-value
surface (and hence tolerance contour) calculation that is more accessible in both fixed and
adaptive settings.

Fundamental theory of kernel density estimation (e.g. Parzen, 1962) states that given
z the density estimate D(z) (fixed or adaptive) of target v will be asymptotically normally
distributed, provided certain natural assumptions hold about the elected bandwidth(s) (i.e.
positivity, finiteness, tending to zero as the sample size increases). Given a sufficiently large
sample size, this means we are able to make use of the approximations to the variances
of the fixed and adaptive (log) relative risk functions to define a normally distributed test
statistic at location z, leading naturally to a p-value surface over W (a move supported in the
adaptive setting by findings in Hall and Marron, 1988). Not requiring multiple evaluations
of the kernel-smoothed density-ratio, this asymptotic approach (abbreviated to ASY) to
constructing the desired tolerance contours can be expected to require only a fraction of the
computation time of the MC contours. Thus, a feasible option for highlighting statistically
significant fluctuations in the adaptive risk function is now available.

Straightforwardly, we standardise the estimated risk functions in order to obtain the field
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of test statistics. Specifically, for both fixed and adaptive estimators, the test statistic Z is
found by

In the fixed-bandwidth setting this means

Zon(z) = Pex(2) (2.30)

R ()25 ([ (2] 4 mag(2)] )

Under the null hypothesis in (2.29), the constant risk function indicates identical case and
control densities, leading to a natural cancellation of the leading bias terms. By approxi-
mating the unknown terms in the denominator of (2.30) with a kernel density estimate @gx
based on the pooled case-control data P, the test statistics can be evaluated in practice
with ) s
Zin(z) = Pix(2)hroni”(2) 5 (2.31)
Ry = ()2 {ny " +n5 "}

Here, we assume for simplicity that the pooled kernel estimate wgy is constructed with the
same fixed bandwidth as for the individual case and control density estimates making up
Prix, namely hxr. There exists however no strict reason why this must be so; indeed one may
even use an adaptive kernel estimate for this component.

This is extended for the adaptive estimator in the same way as above. The corresponding
test statistics, assuming common global bandwidths and geometric mean scalers (hg and
respectively), avoid the problem of having to compute an additional, pooled density estimate
due to the variance stabilisation noted in (2.15). The same standardisation yields

Zoae(2) = - Padv(2)ho ey (2.32)
Yo { S (K07 + S (K}

Assuming sufficiently large sample sizes, Zax(z) ~ N(0,1) and Z,q,(2z) ~ N(0,1). We
therefore obtain our p-value surface map on z € W by the standard normal quantiles.
This novel method of p-value surface and tolerance contour calculation is examined in

practice in Section 2.6.

2.5 Simulation study

However theoretically appealing the adaptive approach to estimation of a risk function may
be, it is possible that there are practical drawbacks to the method, such as excessive noise
introduced at the pilot estimation stage. For this reason, it is of interest to compare the
widely employed fixed bandwidth technique with the adaptive in settings where the true risk
functions are known, and measure discrepancies between these and kernel estimates thereof
based on correspondingly generated data.

We compare the performance of the fixed and adaptive kernel relative risk estimators

in ten synthetic problem scenarios, all defined on the unit square such that W = [0, 1] x
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[0,1]. For each scenario, the ‘true’ control density ¢ is defined in terms of normal mixtures,
and scaled to integrate to unity over W. A corresponding ‘true’ relative risk surface r
is then defined using a particular formulation involving exponential functions. Additional
scaling takes place for r to ensure [, g(u)r(u)du = 1. At each iteration, ny controls are
sampled randomly from g. Case ‘candidates’ are sampled from ¢ and accepted /rejected with
probabilities proportional to r, until the desired number n; is reached. Figures 2.2 and 2.3
display filled contour plots of the control densities and corresponding log-risk functions for
Problems 1 to 5 and Problems 6 to 10 respectively; the specific formulations are provided in
Table 2.1. In this table, ¢w (a,bl) represents the bivariate Gaussian density edge-corrected
to W, centered at a and with standard deviation b (I refers to the 2 x 2 identity matrix).

The problem scenarios have been designed in an effort to loosely reflect what we may be
likely to observe in epidemiological applications in practice and are ordered in terms of the
maximum level of relative risk, least to most extreme. Problem 1 is considered a ‘baseline’
situation: both the control density and risk function are perfectly uniform; raw risk range
is [1, 1]. Problem 2 indicates a single risk mode on the northern border, arising from a
wider dispersion of controls; raw risk ranging from 0.95 to 1.50. In Problem 3 we observe a
mildly bimodal yet relatively diffuse dispersion of raw risk ranging from 0.42 to 1.67. From
a multimodal control density a smaller, sharper increase in risk (raw interval of [0.86, 2.22])
contained within a diffuse risk ‘hotspot’ is visible in Problem 4. Problem 5 has an underlying
control population characterised by an elongated ‘bump’ and a smaller circular density on
the upper border. There exists a small, sharp peak in risk within the latter area, with the
raw risk ranging from a low 0.35 to 2.88. The control density of Problem 6 is a single mode
in the center of W, with the risk surface exhibiting three smaller modes of equal size located
in the tail regions of g; risk interval of [0.61, 3.66]. Problem 7 exhibits several areas of point
groupings surrounding a larger off-central mode and a corresponding risk interval of [0.94,
3.92]. A wide, dispersed mode along the upper border contains three concentrated risk peaks
in close proximity for Problem 8 with a raw risk range of [0.92, 4.23]. Three even higher, yet
more separated hotspots of risk are observed in Problem 9; raw risk interval [0.93, 5.99]. The
final problem, Problem 10, is designed in contrast to Problem 1 to have an extreme maximum
risk value. The control density remains uniform, but the risk surface now includes a tight
peak in the center of W risk interval is [0.94, 9.45]. Though less likely to occur in practice,

the results of this scenario will nevertheless be interesting in comparison to the others.

Based on each of 100 iterations for each problem, the methodology is examined using two
fixed-bandwidth and one adaptive-bandwidth kernel estimator of the relative risk function.
Two sample sizes are used: ni; = 100,15 = 100 and nq; = 500, no = 1000. The first estimator
we label FIXCV, with the common fixed bandwidth computed using the LSCV single-density
criterion on the pooled data set. That is, hx = hcy . based on the criterion (2.19). The
second, FIXOS, has the bandwidth fixed at the particular oversmoothing criterion discussed
in Section 2.3.1, again based on the pooled case-control observations: hr = hog as detailed
by equation (2.21). The adaptive estimates (labelled ADAPT) arise from distinct pilot
bandwidths based on the case and control data separately, using the standalone-density
LSCV approach. Specifically, /~1f = hcv,r and Bg = hcv,g, using (2.18). The common
global bandwidth is set equal to the pooled-data calculated OS bandwidth i.e. hg = hos.
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Problem | Target definition
1 g(u) =1
r(u)=1
2 g(u) = 0.1+ 0.3¢w (u — [0.3,0.9]7,0.21) + 0.3¢w (u — [0.5,0.8] 7, 0.2I)
+0.3¢w (u — [0.7,0.6]7,0.21)
r(u) o< 1+ 0.2exp (—100||u — [0.4,0.9] T [|?) + 0.5exp (—100||u — [0.3,0.9] "||?)
3 g(u) = 0.1+ 0.3¢w (u — [0.5,0.5] 7, 0.11) + 0.3¢w (u — [0.7,0.6] 7, 0.1I)
+0.3¢w (u — [0.8,0.9]7,0.21)
r(u) o< 0.1 + 0.2exp (—50]|w — [0.4,0.5] "[|?) + 0.3exp (—25/|u — [0.7,0.6] " ||?)
4 g(u) = 0.1+ 0.2¢w (u — [0.5,0.5] 7, 0.11) + 0.2¢w (u — [0.5,0.7] 7, 0.11)
+0.2¢w (u — [0.2,0.7)7,0.11) + 0.3¢w (u — [0.8,0.2] 7,0.21)
r(u) oc 1+ exp (—50[|u — [0.4,0.5] T||?) + exp (—500||u — [0.5,0.5] T [|?)
5 g(u) = 0.1+ 0.1¢w (u — [0.1,0.1] 7, 0.11) + 0.2¢w (u — [0.2,0.2]7,0.11)
+0.2¢w (u — [0.3,0.3]7,0.11) + 0.2¢y (u — [0.4,0.4] 7, 0.11)
+0.2¢w (u — [0.5,0.9]7,0.11)
r(u) o< 0.2 + exp (—50]|w — [0.1,0.1] T[|?) + exp (—50[|u — [0.2,0.3] T|[?)
+1.75exp (—1000||w — [0.6,0.9] " [|?)
6 g(u) = 0.1+ 0.9¢w (u — [0.5,0.5]T,0.21)
r(u) o 0.2 + exp (—62.5||u — [0.2,0.7] T[|?) + exp (—50]|u — [0.8,0.2] T[|?)
+exp (—62.5]|u —[0.7,0.8] T||?)
7 g(u) = 0.1 4 0.5¢w (u — [0.6,0.7]7,0.2I) + 0.1¢w (u — [0.2,0.9]7,0.11)
+0.1¢w (u — [0.1,0.6]7,0.11) + 0.1¢w (u — [0.3,0.3] 7,0.11)
+0.1¢w (u — [0.8,0.2] T, 0.11)
r(u) o< 0.2 + 0.1exp (—500|u — [0.2,0.9] T||?) + 0.7exp (—500||u — [0.1,0.6] T[|?)
+0.2exp (—500]|w — [0.3,0.3]"[|?) + 0.1exp (—500||u — [0.8,0.2] T [|?)
8 g(u) = 0.1+ 0.1¢w (u — [0.1,0.9]7,0.21) + 0.1¢w (u — [0.3,0.9]7,0.21)
+0.2¢w (u — [0.5,0.8] 7, 0.21) + 0.1¢w (uw — [0.7,0.9] 7, 0.21)
+0.1¢w (u —[0.9,0.9]7,0.21) + 0.3¢w (u — [0.5,0.1] 7,0.11)
r(u) o< 1+ 2exp (—500|]u — [0.2,0.9]"[|?) + 3exp (—500||u — [0.1,0.6] " [|?)
+4exp (—500[|u — [0.3,0.3] T|?)
9 g(u) = 0.1 4 0.2¢w (u — [0.1,0.5] 7, 0.11) + 0.2¢y (u — [0.3,0.5] 7, 0.11)
+0.5¢w (u — [0.7,0.6] 7, 0.21)
r(u) o< 1+ 8exp (—5000]|w — [0.8,0.8] T|[?) + 5exp (—500||w — [0.9,0.5] "||?)
+6exp (—500(|u — [0.8,0.3] T|?)
10 g(u) =1

r(u) o< 0.1 + exp (—500[|u — [0.5,0.5] T ||?)

Table 2.1: Definitions of control densities g and risk functions r for the synthetic problem

scenarios.
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Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Figure 2.2: Filled contour plots of the synthetic control densities and log-risk functions for
Problems 1 to 5.
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Figure 2.3: Filled contour plots of the synthetic control densities and log-risk functions for
Problems 6 to 10.

42



b ]-40 o

l0g(ISE)
6
1
]
i

FIXCV FIXOS ADAPT

Figure 2.4: Problem 1 log-scaled ISE measure for sample sizes n; = 100, no = 100 (white)
and ny = 500, ny = 1000 (grey).

The reader is referred back to the comments on bandwidth assignment for reasoning behind

these decisions.

The ‘quality’ or ‘performance’ of each of FIXCV, FIXOS and ADAPT in terms of the
proximity to the true risk surface for each iterated data set is measured in two ways. We
compute the integrated squared error (ISE) [i,[p(x) — p(x)]* dz as well as a weighted inte-
grated squared error (WISE) given by [i, p()?[p(x) — p()]? dzz. Though the ISE measures
overall proximity to the actual surface with equal importance given to all areas of W, the
purpose of the WISE is to amplify the error in areas where the risk is more extreme. In
other words, WISE prevents the measure of quality being too heavily influenced by areas
where there is no activity in the surface. This is particularly important in examining the
scenarios where the risk is mostly uniform, as in these cases the preference in terms of over-
all equal error would simply be to ‘flatten’ the estimated surface, perhaps smoothing over
and ignoring a small yet clear risk increase. The ISE and WISE statistics are displayed on
the log-scale as boxplots in Figures 2.4-2.13 for Problems 1 to 10 respectively (for obvious
reasons, only the ISE is available for Problem 1).

Inspection of the errors for Problem 1 (Figure 2.4) shows a clear disadvantage for FIXCV,
which is to be expected. The perfectly uniform risk surface calls for large bandwidths, pun-
ishing undersmoothing occurring from least-squares cross-validation. FIXOS and ADAPT
are closer in terms if ISE, but ADAPT seems to return lower errors on average for both sam-
ple sizes. It appears the adaptive approach, which as we recall is in fact using the FIXOS
bandwidth as the common hg, is still managing to provide the greater amount of smoothing
required here.

Much the same message is conveyed in the results for Problem 2 in Figure 2.5. The
relatively mild increase in risk is again inadequately expressed in FIXCV, with FIXOS and
ADAPT again the best performers. ADAPT consistently provides the lowest median errors
for both ISE and WISE. The WISE results are particularly encouraging, as they indicate the
extra smoothing hypothesised to be beneficial for ADAPT in Problem 1 is not so excessive
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Figure 2.5: Problem 2 log-scaled ISE (left) and WISE measures (right) for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.6: Problem 3 log-scaled ISE (left) and WISE measures (right) for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.7: Problem 4 log-scaled ISE (left) and WISE measures (right) for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.8: Problem 5 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.9: Problem 6 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.10: Problem 7 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.11: Problem 8 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).
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Figure 2.12: Problem 9 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).

47



7.0

6.0 6.5

log(ISE)
55

5.0

45

---{ o @@ oo

b= I}

[+

log(WISE)

45 5.0 55

4.0

3.5

[

00 ® OOD @D |-

oo )»4“D:|~4<{©0

a--{]J--

3.0

4.0
|

FIXCV FIXOS ADAPT FIXCV FIXOS ADAPT

Figure 2.13: Problem 10 log-scaled ISE (left) and WISE (right) measures for sample sizes
ny = 100, ny = 100 (white) and ny = 500, ny = 1000 (grey).

as to miss the actual fluctuations altogether.

Even more distinct are the results for Problem 3 (Figure 2.6). The ISE and WISE
measures are very similar, with FIXCV performing badly in comparison to the other two
considered risk function estimators. ADAPT is clearly the best performer.

Problem 4 in Figure 2.7 reveals ADAPT once again providing superior error measures
to the fixed-bandwidth estimates. FIXOS comes close in second place with undersmoothing
continuing to plague FIXCV. It is difficult to discern any clear differences between the ISE
and WISE boxplots for this scenario, though as the extremity of maximum risk continues
to rise as we proceed through the different problems, we can expect WISE to begin to play
a bigger role in interpreting the estimator quality.

Problem 5 (Figure 2.8) shows plot similar to those for Problem 3 in terms of the quality
of ADAPT in comparison to FIXOS and FIXCV. This particular scenario could be rather
difficult for fixed-bandwidth approaches to handle, due to the presence of both a diffuse,
elogated risk increase as well as a concentrated, circular risk hotspot. The adaptive estimator
is naturally more flexible than the fixed, and it appears to work well in this example in terms
of best describing the appearance of the surface.

Boxplots corresponding to Problem 6, shown in Figure 2.9, once more point to strongest
performance of ADAPT, followed by FIXOS then FIXCV. The improvement of ADAPT is
not as noticeable as in Problem 5, most likely owing to the fact that the three modes of
risk are of almost identical appearance. Unfortunately for the fixed bandwidth estimator, it
could be argued that this is less likely to occur in real-world applications.

Problem 7 with a maximum risk of 3.92, is where we begin to notice a change in the
pattern of ISE measures (Figure 2.10). FIXCV remains the worst performer, but FIXOS
now seems marginally better than ADAPT. This is most likely due to the ‘flatness’ of risk
over most of W, where the adaptive estimator may still be attempting to capture detail.
This highlights the importance of the WISE statistic where ADAPT once more shows the

smallest median error, especially for the larger sample size. This indicates although FIXOS
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has, to a certain extent, stabilised the uniform areas of the region, it has not performed as
well as ADAPT in reaching the true height of the peaks in risk that are indeed present.

We note precisely this behaviour once more in Figure 2.11, where the results for Problem
8 are displayed. Like Problem 7, this scenario shows a mostly uninteresting risk surface,
albeit with three tight, tall peaks in the upper right quadrant. FIXOS appears superior in
terms of ISE, but the WISE results clearly show lack of ability of FIXOS to capture the
actual level of risk for which ADAPT is better equipped to handle. FIXCV stays behind
the other two estimates in quality.

Problem 9 shows some interesting plots in Figure 2.12. There seems to be a mild improve-
ment of ADAPT over FIXOS, with FIXCV trailing behind in ISE. For the WISE, however,
FIXCV shows some extremely competitive results, providing the best median error for the
larger sample size. It seems the very small bandwidths issued by LSCV,, which punished
FIXCV in ISE have done well in reaching the tall peaks in this scenario (maximum raw risk
of 5.99). ADAPT has still outperformed FIXOS in WISE, but it would seem there has been
a minor trade-off in both attempting to reach the height of the hotspots and smooth over
the rest of W as required.

Recall the final scenario, Problem 10, provides a contrasting example to Problem 1 with
a uniform control density and a corresponding risk surface with one obvious peak reaching
9.45 on the raw risk scale. The results in Figure 2.13 are somewhat difficult to interpret.
The small sample sizes show ADAPT struggling to perform well in ISE when compared to
the fixed-bandwidth approaches. However, this trend is reversed when we use the larger
n1 and no. It is possible that in this particular scenario we require more data in order for
the asymptotic benefits of ADAPT to be observed. That being noted, the WISE results do
show ADAPT as superior, mildly so for the small sample size and stronger for the large.

Broadly speaking, the simulation study has shown favourable performance of the adaptive
kernel estimator of the relative risk function for point process data over the fixed-bandwidth
version used to date. Intuitively, this makes sense. The high level of heterogeneity commonly
observed in epidemiological applications means it is to our benefit in order to be able to
observe more detail in heavily populated areas and not lend too much density height to
isolated observations (i.e. where there is less information). Nevertheless, it is encouraging to
see the theoretical benefits of Abramson’s (1982) smoothing scheme do appear to be realised

in practice.

2.6 Examples

This section implements the relative risk methodology described in this chapter using real-
world examples. It also provides an opportunity to examine the behaviour of the tolerance

contour calculation approaches.

2.6.1 Chorley-Ribble cancer data

The first example comprises the locations of 58 ‘cases’ of laryngeal cancer encountered in

Section 1.1 coupled with 971 ‘controls’ of lung cancer in the Chorley-Ribble health regions
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Figure 2.14: Laryngeal cancer cases (left) and lung cancer controls (right) for the Chorley-
Ribble dataset.

of southeastern England. Cases and controls are displayed side-by-side in Figure 2.14. As
mentioned earlier, a larger version of these data was first presented and analysed by Diggle
(1990).

Due to the poor performance of FIXCV in the simulation study we compute only the
ADAPT and FIXOS edge-corrected log-risk function estimates (the different case/control
pilot bandwidths for ADAPT are now set to half of the OS-computed figures for the case
and control data separately). Shown in Figure 2.15 are two copies of these plots, one
with MC (Monte-Carlo) tolerance contours, the other with ASY (asymptotic) contours.
These contours were computed with respect to (2.29) i.e. an ‘upper-tailed’ test searching for
significant risk elevations.

Some comments are warranted. Although the range of ADAPT log-risk appears approx-
imately the same as the FIXOS surface, we would expect taller peaks to be generated in
ADAPT, due to the reduced smoothing applied to dense groupings of observations. FIXOS
has helped to stabilise the variability resulting from a surface based on a smaller bandwidth
in the fixed setting, at the expense of potentially smoothing too greatly over any ‘hotspots’
of interest.

This can be seen in the included tolerance contours. It seems that the ADAPT risk
surface has had more ‘success’ in flagging significant subregions than FIXOS. This has most
likely been a result of both taller peaks in the case density estimate, as well as the asymptotic
variance stabilisation. The lack of responsiveness in terms of flagging hotspots by FIXOS is
what we would expect with a greater amount of smoothing limiting the magnitude of risk
fluctuations. Indeed, there were no significant ASY contours for the FIXOS surface.

A comparison of ASY vs. MC methods for tolerance contour calculation shows the relative
stability of the asymptotic approach. In both ADAPT and FIXOS MC contours, sub-regions
on the western border were suggested as being significant. However, examining Figure 2.14,

we note there are no observed cases in these areas. Over all four images, the most ‘agreed
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Figure 2.15: Chorley-Ribble log-risk function estimates utilising the ADAPT and FIXOS
smoothing regimens, with MC tolerance contours (top row) and ASY tolerance contours
(bottom row) superimposed at significance levels of 0.05 (solid line) and 0.1 (dashed line).
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Figure 2.16: PBC cases (left) and population controls (right) for the PBC dataset.

upon’ sub-region of potential significance is located on the center of the southern border.
At any rate, conclusions based on ASY vs. MC must be reached with care in this example,
given ny = 58 only. Finally, we note that the vast improvement in computational expense
of the ASY p-value surfaces is undeniable; there being no need for repeated evaluations of

the risk function leads to total execution time in a matter of seconds, as opposed to hours.

2.6.2 Primary biliary cirrhosis in northeastern England

These data were first presented and analyzed in Prince et al. (2001). We have the spatial
coordinates of 761 cases of primary biliary cirrhosis (PBC) along with 3020 controls randomly
selected from the underlying population using weighted postal zones, collected within several
adjacent health regions in northeastern England (Figure 2.16). As in the previous example,
the ADAPT and FIXOS risk surfaces are computed with ASY and MC contours for the
PBC data; these are displayed in Figure 2.17.

Immediately we note the differences in appearance between the fixed and adaptive sur-
faces over the study region. As would be expected from the methodology, ADAPT has
provided more detail. Again, due to a lack of spatial adaptability, FIXOS has been unable
to capture the same level of detail in the heavily populated areas. In addition to this, note
the scale of the estimates of log-risk. In contrast to ADAPT’s range of about -4 to 1, the
FIXOS lower estimates reach below -30 on the log-scale, indicating (entirely implausibly)
almost complete protection from PBC in those western areas. ADAPT, with its larger

bandwidths in sparsely populated sub-regions, has avoided these extremities.
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Figure 2.17: PBC log-risk function estimates utilising the ADAPT and FIXOS smoothing
regimens, with MC tolerance contours (top row) and ASY tolerance contours (bottom row)
superimposed at significance levels of 0.05 (solid line) and 0.1 (dashed line).
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Examination of the tolerance contours shows that all are in agreement over a general area
of increased risk on the eastern border (this supports the original findings in Prince et al.,
2001). In line with the difference between the surface estimates, the ASY and MC contours
for ADAPT have been a little more detailed in the specific appearance of the significant
area(s). Interestingly, a small group of cases in the north of the study region has been flagged
by the ASY contours as a significant hotspot. This may warrant further investigation in
terms of the application itself, though the exploratory nature of this methodology means
contours must be interpreted as only an indication, rather than definitive proof. Once more,

the reduction in computational requirements for ASY as opposed to MC was impressive.

2.7 Closing remarks

The investigation of spatial relative risk for both aggregated count and case-event (point
process) data is a useful, straightforward and therefore common first step in the analysis
of problems in geographical epidemiology. When we observe point process data it is often
convenient to employ the flexible method of kernel density estimation to provide a smooth
and continuous estimate of said risk (or log-risk) through a density-ratio function.

The use of a variable bandwidth in this approach has been very scarce in the literature,
especially in comparison to the fixed bandwidth technique. This is in spite of known the-
oretical benefits in using e.g. Abramson’s (1982) adaptive calculation prescription, and the
fact that several works have noted spatial adaptability in the amount of smoothing is intu-
itively sensible for modelling geographical dispersions of human and animal populations (e.g.
Benschop et al., 2008). It is reasonable to conjecture that this gap in the literature is due,
at least in part, to the fact that the fixed estimator is relatively straightforward to imple-
ment, with comparatively little guidance until now as to how one should go about variable
smoothing in the density-ratio.

This chapter has therefore sought to study in detail and improve the kernel-smoothed
density-ratio estimator of relative risk when we have observed point locations. Through
detailing some asymptotic properties of the adaptive risk function, we found that in addition
to the original discovery of bias reduction, we are likely to experience approximate variance
stabilisation not available in the fixed bandwidth setting. This is a particularly pleasant
feature, as it helps provide numerical stability in subsequent analyses involving the surface
estimate.

Though the adaptive estimator is somewhat more computationally expensive than the
fixed, this is only likely to become a tangible problem if repeated evaluations of the estimator
are required. One such example would be the calculation of Monte-Carlo tolerance contours,
used in an effort to identify areas of statistically significant fluctuations in risk. We therefore
exploited the asymptotic normality of kernel density estimates, coupled with the derived
expressions for the approximate variance of the estimator, to develop a computationally
inexpensive approach to calculation of the corresponding p-value surfaces. As well as a huge
improvement in computational expense, the asymptotic tolerance contours also appeared
to be slightly more resistant to artefactual oddities (such as signalling significance in areas
with little or no data) than the MC approach.
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These interesting discoveries, however, still depend on the all-important assignment and
selection of initial smoothing parameters (fixed, global and pilot). Though it is acknowl-
edged that the choices made in the preceding work are somewhat ad hoc, there is at present
little to guide the researcher in the ‘best’ selection methods. Indeed, aside from having high
computational requirements (especially for the adaptive estimator) the ‘jointly optimal’ se-
lectors that do exist perform rather poorly in provision of a sensible smoothing parameter
in practice. Furthermore, the fact that the relatively ‘cheap and dirty’ oversmoothing tech-
nique we employed seemed to do quite well in terms of integrated squared error indicates
there is still much to be learned concerning adequate methodology for common case/control
bandwidth optimisation.

Overall, however, we may conclude from the work here that use of Abramson’s adaptive
smoothing regimen for kernel estimation of the case and control densities in the relative
risk function shows considerable promise, due to certain resultant theoretical and practical
benefits. This is particularly true when we expect to see the type of spatial heterogeneity

often encountered in epidemiological applications.

95






Chapter 3

Spatial and Spatiotemporal
Modelling with the

Log-Gaussian Cox Process

Modelling spatial point patterns, or a sequence of spatially and temporally dependent point
patterns, is a complicated endeavour. In the previous chapter, we considered a common ex-
ploratory tool often used in epidemiology for the comparison of two spatial point patterns.
This focused on refining implementation of the relative risk function, with less emphasis
on how the points came to be ‘generated’. The essence of interpreting such a risk sur-
face is contingent upon the individual intensity functions being fixed, i.e. unconditionally
inhomogeneous Poisson.

As we observed in Chapter 1, the notion of an unchanging, ‘true’ intensity function may
not necessarily be intuitively sensible in epidemiological applications. This especially applies
to spatiotemporal data sets, where we would expect the spatial intensity to vary dynamically
over time.

In this chapter, we turn our attention to one particularly useful Cox process for inves-
tigating spatial and spatiotemporal point patterns, where we expect to experience some
form of clustering. Though technically a little more challenging, this class of models is both
powerful and flexible in terms of the scope of problems to which it can be applied and the
modifications that can be made to the general framework to suit the researcher’s data and
goals. Nevertheless, there are a number of unresolved issues pertaining to implementation
of such processes for epidemiological modelling.

Section 3.1 introduces the log-Gaussian Cox process and specifies its fundamental prop-
erties for both purely spatial and spatiotemporal applications, as well as discussing the in-
clusion of multiplicative deterministic components; useful for epidemiological applications.
Perhaps the most pressing issue in the practical implementation of this methodology, that of
appropriate parameter estimation for the nature of the assumed dependence, is discussed in
Section 3.2. Section 3.3 details how the fast-Fourier transform is exploited in order to gain

a significant computational improvement in practice, as well as the Markov-Chain Monte-
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Carlo techniques required for conditional simulation of a log-Gaussian Cox process. Section
3.4 provides spatial and spatiotemporal analyses of two real-world problems using the re-
viewed methods. A comprehensive collection of simulations in Section 3.5 provide valuable
insight into how well the most widely employed parameter estimation technique performs
in practice, and also examine the sensitivity of anomaly-detection methods to variation in
the estimated parameters. A selection of potential theoretical refinements are discussed in
Section 3.6, and we summarise findings and conclude in Section 3.7.

This thorough review of the LGCP serves not only to motivate the novel numerical exper-
iments in Section 3.5, but also as an invaluable step in the first R-language implementation

of the methodology. The corresponding software package is discussed later on in Chapter 4.

3.1 Definitions and properties

The key aspect of the Cox process, from Chapter 1, is the fact that the underlying intensity
function which we assume to have generated the observed points is itself driven by some
stochastic mechanism. In the case of the log-Gaussian Cox process (LGCP), the basis of this
mechanism is a Gaussian random field with a given covariance structure. Here we discuss the
model in both spatial and spatiotemporal contexts, and present some of the most important

theoretical properties thereof.

3.1.1 Spatial

The introduction of the spatial LGCP in a statistical setting is accredited to Mgller et al.
(1998). The intensity we observe, A\(x), is a realisation of the intensity-generating mechanism
A(x) (denoted with ‘«—’), such that

Ax) + A(x) = exp[Y()]; x € R?, (3.1)

where ) is a real-valued Gaussian random field. Naturally, properties of the LGCP are found
with respect to properties of ). To distinguish between the intensity function conditional
upon a realisation of the random field, A(x), and the properties of the stochastic mechanism
itself, A(x), we will use pA to denote its kth-order product density. Using the moment

generating function of the normal distribution, we have

k
pf\k)(wl,mg, ooz =E [H A(x;)
i=1

fofirn)

_ exp{ 5 v+ 700

i=1

k—1 k
k >1 Z Z OX m1 UA(mJ)T)\(wlijvd))\)} (32)

i=1 j=i+1
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where p(z) = E[Y(x)] (the mean of the Gaussian field at x), o3(x) = Var[Y(z)], and
r is the correlation function of ) controlled by a parameter ¢, such that Cov(xy,xs) =
ox(x1)ox(x2)r(x1, 25 ¢)). The mean structure of the LGCP is therefore found with

0'2 i
V(@) = exp { (o) + A2 (33)

and the second-order characteristics with

o3 (1) + o3 (x2)
2

pP (@1, 22) = exp {m:cl) + (@) + + ox(@1)or (@) (@1, @5 m)} :

21)p5 (2)exp {ox (21)o (x2)r (1, 22; 63)} (3.4)

1
3

Recall definition (1.9) of the pair correlation function in Section 1.2.3. The above result
(3.4) therefore leads to a pleasantly simple form of the PCF for the LGCP, namely

gr (1, @2) = exp {ox(z1)ox(z2)r(T1, 25 02} - (3.5)

Imposing the conditions of stationarity and isotropy upon the Gaussian field ) can
serve to greatly simplify theoretical investigations into the LGCP, make available certain
methods for fitting the models, and offer considerable computational benefits. For most
practical intents and purposes (especially the kinds of epidemiological applications we will
consider momentarily), these conditions are not overly restrictive. We will therefore assume
stationarity and isotropy throughout the remainder of this chapter.

Stationarity and isotropy of Y implies uy(x) = uy, oi(x) = 03, and r(x1, T2;0)) =
r(u; ¢x) where u = ||@y — @2||. This simplifies (3.2), thereby implying p) = pg\l)(m) =
exp {px + 303}, pg\Q)(u) = plexp {o3r(u;¢x)} and gx(u) = exp {o3r(u; ¢x)}. From these
statements it is clear that a particular LGCP will be stationary and isotropic if and only if
is stationary and isotropic. Estimators for these properties are naturally based on data Xy
collected within a finite spatial region so that our process is defined on £ € W C R?. The
estimates Py, ﬁg?) and therefore §) can be computed precisely as outlined in Section 1.2.3.
In addition, we may straightforwardly compute Ky, the estimate of Ripley’s K-function.

The LGCP is of particular interest from the point of view of epidemiological applications
for several important reasons. Firstly, the behaviour/appearance of any generated intensity
is essentially only constrained in terms of the functional form of . This means we are able to
generate, model and capture a wide variety of point patterns without, for example, restricting
point clusters to be of a certain shape; flexibility which is appealing in the current setting for
obvious reasons. Secondly, note that the LGCP is completely specified by relatively simple
formulee for the first- and second-order characteristics, limiting the number of parameters
that will require estimation in practice. Thirdly, because the distribution of the Gaussian
field and hence the LGCP is known given these specifications, the need for edge-correction
(due to the fact that in practice we are restricted to W) is conveniently obviated when we
wish to simulate therefrom. Finally, and as we shall see in the following sections, the LGCP
can be extended in an intuitive fashion to deal with space-time point processes, as well as

modified to take into account some underlying, yet fixed, heterogeneity.
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3.1.2 Spatiotemporal

The spatially varying intensity conditional upon a realisation of the Gaussian process yields
the expected number of points per unit area over the plane. This becomes a spatiotemporal
intensity ¢ when the observations are time-dependent; the expected number of points at

location  and time ¢ such that
P(x,t) + U(z,t) = exp[Z(z,t)]; xcR? teRT, (3.6)

for a spatiotemporal Gaussian field Z. This model, stochastic in both space and time (for
nonnegative reals denoted with RT), was suggested by Brix and Diggle (2001) and builds
directly upon the earlier spatial work by Mgller et al. (1998). As such, the same appealing
features remain: a powerful and flexible modelling framework with relatively tractable first-
and second-order properties.

Before we delve further into this extension, it is necessary to clarify the behaviour of
Z. Where in the purely spatial case we need only be concerned with spatial correlation
(specified by r), it is clear that in the spatiotemporal version we must be able to handle co-
variance between distinct points in the space-time continuum i.e. R? x RT. One particularly
important feature that we will assume is present is that of a separable correlation structure.
This dictates that the correlation between two points in space-time can be straightforwardly
factorised into ‘purely spatial’ and ‘purely temporal’ components, the result of which is to
greatly increase mathematical accessibility to moment-based methods for parameter estima-
tion (Section 3.2), and to render computationally feasible the only current methods available

to perform conditional simulation (Section 3.3). We assume hereinafter that
Corr [Z(wlﬂ tl)) Z(m27 t2)] = 7’((131, T2, ¢¢)T(t1a t27 9),

where 7 denotes the spatial correlation function, controlled by the parameter ¢, and 7
is the temporal correlation function controlled by 6. Stationarity and isotropy imply this
expression can be further simplified to r(u; ¢y )7(v;0), where u = |1, @2|| and v =t — t1;
to > t1.

Though the goal is to consider a continuous space-time model, in many applications we
only observe events in discrete time. Formally, the intensity at time ¢ is therefore expressed

as

U () :/ exp{Z(x,u)} du

to

~ (t—tg)exp{Z(x,t)}, (3.7)

where ¢y is some previous timestamp to < t. Note that the approximation (3.7) is only
valid if we are able to assume the time between successive observations is appropriate such
that the spatial intensity may be considered approximately constant between timestamps.
In turn, it is this approximation which allows inference for the spatiotemporal LGCP as per
Brix and Diggle (2001).

Assuming spatiotemporal stationarity and isotropy, and the initial specification of sepa-
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rability, we have for the spatial margin

o2
pyt = At X exp {uw + 2111} , (3.8)

where gy = E[Z(-,-)], 07, = Var[Z(-,-)], and At refers to the amount of time elapsed since
the previous time point where data have been observed in the same way as (¢t —to) in (3.7).
Also, for pairwise distances u = ||x1 — 2|,
2
pgp)t(u) = pi7texp {0'12/)7"(1,6; gi)w)} , (3.9)
implying the PCF g(u) = pff)t (u)/pf“ = exp {air(u; gbw)} yielding the same result as

earlier.

In contrast to the spatial-only setting, estimators for (3.8) and (3.9) which lead to the
useful intensity, K-function and PCF estimates, must now however be able to take into
account our temporally marked data. Suppose we have observed data Xy = {Xw1 U
XwoU.. .UXw r} where W is the defined spatial region and Xy, represents only those data
occurring at (or corresponding to) time ¢ for some measurable maximum 7. We therefore
assume the observation of data at equal, unit time intervals At = 1 for all ¢ in the sense
that now ¢ € Z* where Z" denotes the set of positive integers. A natural estimator for py ;
is then N(X

Po = Py = W (3.10)
where A (X) represents the total number of observations in the pattern X. Our stationarity
assumption is thus highlighted by the above expression which naturally yields a constant

per-unit-space, per-unit-time intensity estimate.

Second-order property estimators of the spatial margin are averaged over time; using
(1.10),

T T F£T

N 9q-1

gy(u) = [27rTu|W|p12p] Z Z kn(|ler — xa|| — w)ww (21, T2); 0 < u < Umax,
t=1x,x26X W,

(3.11)

where Umax = Tmax, With mmax, w, and k;, defined as in Section 1.2.3. Similarly, we suggest

T T AT
Ky(u)=@WD™5.2Y " Y 1l — ol S www (@1, 22); 0 < 4 < Unax
t=1 a1, x2€ X w,¢

(3.12)
as an alternative second-order characterisation. It is also possible to use the union of all
observations regardless of time, Xy, and use the spatial-only estimators in order to obtain
these properties. This was pursued in Mgller and Diaz-Avalos (2010) who used a different
type of Cox process to model the spatiotemporal spread of fires (see Section 3.1.4). In
comparison to temporal averaging we do not recommend the union-technique, however,
due to the potential loss of finer spatial information specific to data observed at distinct,

individual times.
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Where the spatial behaviour can be described by examining the aforementioned second-
order characteristics, we must also consider the temporal margin. This aspect concerns the
covariance between the expected total number of cases of disease at two points in time.
Recall that the functions r and 7 describe the spatial and temporal correlation structure of
the Gaussian field Z respectively, and let v = |t3 — 1] such that 0 < v < (T —1). Our equal
unit time interval and stationarity assumptions allow us to consider the temporal covariance
in terms of the integer lag by first considering some arbitrary time point ¢. Following Brix
and Diggle (2001) we have

C(vi0) = C(t,t — 3 0)
= Cov [N (Xw, ), N(Xw,—v)]
= EN(Xw,e ) N (Xw,e—0)] — EIN (X, ) JEN (X wi—0)]
= EEN(Xw, ) N (Xw,—)|¥(, 1), ¥ (-, t = v)]]
EEN(Xw,) [V, ONEEN (Xw,e—0) (-, t —v)]]

/W /WEwt 1)y (x2)] dey day — /W E[¢(x)] de /WE[wt,,,(:c)] dx
= / Elexp{Z(x1,t) + Z(x2,t — v)} dzy day — / Pyt () d:l:/ py.i—v(x) de
wJw W w

:/ Efexp{Z(0,0) + Z(u, »)}] dzy das — [pu|W])?
w JWwW

= / / exp{2pty + o [1 + r(u; ¢y)7 (5 0)]} day das — exp [2py + o3| W2
wJw
(3.13)

The final result is obtained through the use of the joint moment-generating function for
the spatiotemporal Gaussian field at two time points separated by a lag of v. A natural

estimator for C is through the empirical autocovariance function, defined simply as
T T
Cw)=n@)™" Y Z [(t2 — 1) = VIN (X w0 )N (X i)} — [ W], (3.14)
t1= :

where n(v) = 22:1 Zg:tl 1[t2 — t1 = v] denotes the number of pairs contributing to the
summation.

3.1.3 The LGCP in epidemiology: deterministic components

The previous discussion has defined the spatial and spatiotemporal intensities purely in
terms of the random fields Y and Z respectively. This implies that any/all heterogeneity
observed in the functions is due purely to the dependence structure of the process at hand.
In other words, it is only the correlation between points, arising from spatial and temporal
distances, which dictates the appearance of the patterns observed. Patterns which, in the
absence of any correlation, would exhibit CSR due to the assumption of stationarity.

As mentioned in both Chapters 1 and 2, the idea that the underlying populations are

uniformly distributed over the study region is rather unlikely in epidemiological applications,
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if not entirely unreasonable. Thus, thinking about an observed disease dispersion specific to a
certain population as being entirely down to pointwise correlation may well be inappropriate.
Spatial disease variation will, to a certain extent, reflect the geographical distribution of the
at-risk population. A disease could also, for example, be more prevalent in winter, leading
to overall seasonal changes in the expected number of cases observed throughout a given

year.

A very natural approach to tackling this issue is to include within the LGCP framework
deterministic components which specify the assumed underlying trends. This changes the
role the Gaussian fields play in modelling our problems. Now, ‘global’ variation in space
and/or space-time distributions is captured by the deterministic component(s), leaving the
stochastic component to describe the residual ‘local’ or ‘small-scale’ correlation (obviously
far more difficult to model deterministically). By straightforwardly combining knowledge of
the overall variation with a flexible random quantity for finer details the global descriptors
fail to capture, we are left with an intuitively sensible model for applications where we
expect natural inhomogeneity, while still being sensitive to natural local fluctuations from

these global trends.

Spatial

We modify the spatial LGCP from Section 3.1.1 to include a multiplicative deterministic
term, such that
AMz) = G (x)exp{V(x)}; x €W CR? (3.15)

where ()(-) represents the global spatial intensity. For identifiability, we specify that the
mean of the LGCP must be equal to one, implying

Elexp{Y(-)}] = exp {m + ?} =1; = —%. (3.16)

We retain the notation r(||x1 — @2||; &) = r(u; @) to describe the spatial stationary and

isotropic correlation structure of the residual stochastic process.

With the mean of Y specified, the first- and second-order properties (3.3) and (3.4) of
the LGCP are altered in an obvious fashion. From (3.16) we therefore have that py(z) =
E[A(z)] = (\(x); the estimator for which depends solely on the specification of . Further-

more,

PO (@1, ) = Ca(@1)Cr(m2)exp{odr(u; ¢2) ). (3.17)

Clearly, the estimators for the pair correlation and K-functions must now take ¢ into
account and to do this we utilise the inhomogeneous versions of these functions described
in Section 1.2.3. Specifically, where without a deterministic intensity component we would
use (1.5) and (1.10) to estimate the K- and pair correlation functions respectively; in the

current setting we should employ (1.8) and (1.11), with ¢, positioned in the denominator.

63



Spatiotemporal
The spatiotemporal LGCP follows in a similar fashion:
P(x,t) = Cp(x)n(t)exp{ Z(x,t)}; xecWcCR? tezt, (3.18)

where (y denotes the global spatial intensity, n describes global temporal trends in dis-
ease counts, and Z is the Gaussian field describing residual space-time correlation. Spa-
tiotemporal correlation in Z is again specified to be separable; Corr[Z(x1,t1), Z(x2,t2)] =
r(x1, T2; Pyp)T(t1,12;0) = 1(u; o) T(v30); u=||z1 — 22|, 0 <V < (T —1).

Identifiability is achieved following Diggle, Rowlingson and Su (2005). We set p, =
—O.5ofp and (y is scaled to integrate to one, so that n may now provide the expected

number of cases at each timestamp. For a set point in time ¢ € {1,...,T} we have that

py.i(x) = E[(z,1)] = Cy()n(t) and
P (@1, ) = Cyl@r)Co @) () exp{odr(us dy)} (3.19)

This leads to the pair correlation and K-functions being estimated through the inhomoge-

neous versions of the time-averaged estimators (3.11) and (3.12), namely

Go(w) = 2aTulW[ ™" in(ﬂ” fclz;ém wn (|| — 22| — w)ww (1, 22) 0cu<u
t=1 T, x2EX w1 Qﬂ(ml)cw (.’132) -
(3.20)
and
T T AT
5 1(|Jzr — 2| < w)ww (@1, ®2)
Ky(u) = (T|W]) 1277 Z © 0 < U < Upax
P o e Koy Gy (1) Gy (w2)
(3.21)

Note that with the heterogeneous deterministic spatial trend, provided we assume stationary
and isotropic (and separated) spatial correlation, (3.17) and (3.19) indicate the validity
of using (1.8), (1.11), (3.20) and (3.21) due to the satisfaction of second-order intensity-
reweighted stationarity as per Baddeley et al. (2000).

In terms of temporal covariance, equation (3.13) becomes

Clt,t —v;0) =n(t)n(t —v) [/W /W Cw(wl)@,(asg)exp{air(u; Gy)T(v;0)} dacy dg — 1
(3.22)
for lags v > 0.

Our empirical estimator is straightforwardly adapted from (3.14) to give
Clt,t —v) =N Xwo)NXwi—) —nt)nt—v);  v>0. (3.23)
Note that although we have stationarity in the temporal covariance of the Gaussian

random field, the inclusion of the deterministic component 1 renders the temporal covariance

structure of ¥ nonstationary, unless 7 is itself constant.
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3.1.4 An alternative model

We focus specifically on the spatial and spatiotemporal log-Gaussian Cox process in this
epidemiologically motivated work due to its impressive flexibility in terms of the wide variety
of intensities and point patterns which it is capable of naturally describing. There exists an
alternative Cox process worth briefly mentioning here, due to its modelling potential with
respect to the applications of interest.

The spatial and spatiotemporal shot-noise Cox process (SNCP), credited to Mgller (2003)
and Mgller and Diaz-Avalos (2010) respectively, represents a general class of cluster-oriented
processes which assume that observed ‘children’ points are born (i.e. randomly scattered)
from ‘parent’ points (the distribution of which is also stochastic). Restricting attention
to two dimensions, realisations of this process give intensities {(x) (spatial) and &(x,t)
(spatiotemporal), where

()« E(@) = ) whR(zy) (3.24)

yed

and, assuming a discrete time measure/indexer,

oo

&(x,t) + E(x,t) = Z Z Vy,mS (T, Yy, t,m); {x,y} €R? {t,m}€Z. (3.25)

m=—00 ycdy,

The spatial processes ® and ®,,, possessing in practice uniform intensities w and wy,,
determine the locations of the parent nodes, or mothers y. With cluster intensity v, or
Vy,m- the offspring arise according to the dispersion density R or S. The domain Z denotes
the full set of integers.

The SNCP is a useful and intuitive approach to problems where we expect this kind of
mother-offspring behaviour and, like the LGCP, has relatively tractable first- and second-
order properties. Similar benefits in terms of theoretical accessibility are noticed if we assume
stationarity, isotropy, and, in the spatiotemporal case, separability, of the dispersion kernels.
We may also include deterministic components in much the same way as in Section 3.1.3.

Possible examples where a SNCP could be considered appropriate include observing the
distribution of saplings or seeds of a certain species around adult plants, or modelling forest
fire occurrences with respect to ignition locations (as studied in Mgller and Diaz-Avalos,
2010). For applications in geographical epidemiology the idea of disease cases arising in
the proximity of specific outbreak sources may well be sensible, though there exist prob-
lems with the SNCP revolving around the need to specify a particular dispersion kernel.
Though clusters of varying forms may be generated via ‘overlapping’ kernels, the notion
of constraining these individual ‘infection areas’ around each mother point to be a certain
shape (e.g. Gaussian, rectangular) may be rather unnatural. We must also expect the choice
of dispersion density to affect the local properties of the model. This constitutes a lack of
flexibility for diseases in which the range of infection is small.

Another noteworthy issue is the fact that edge-correction, not a problem for a LGCP
restricted to a finite interval, cannot be ignored for the SNCP. This can be observed from
the definitions in (3.24) and (3.25) as well as being intuitively obvious. If we have observed

offspring within the finite interval, it is quite possible that some of these observations have
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been generated by mother points outside the interval. A simulation of such a process must
therefore attempt to account for this potential influence by exterior mothers and we do so
by defining an appropriately extended (yet still finite and measurable) space or space-time
window in which to allow parent generation. The extended interval is generally computed
with respect to the effective range of R or S.

Though the SNCP constitutes an interesting alternative to modelling these types of

heterogeneous point patterns, we remain focused on the LGCP for the above reasons.

3.2 Minimum contrast parameter estimation

In practice, the parameters controlling the dependence structure of an assumed Cox process
must be estimated. By our definitions, we have in the purely spatial case ¢ and o3, with
Oy ai and 0 for the spatiotemporal model. The convenience of generally requiring only
a relatively small number of correlation parameters is one of the appealing features of the
LGCP, though this can to a certain extent be viewed as a double-edged sword. The fact that
this small collection of parameters fully defines rather complex correlation structures means
we must expect each of these parameters to exert considerable influence over the behaviour
of resulting patterns. In turn, even slightly misspecified parameter estimates (in reference
to the ‘true’ process values) could have the potential to adversely affect conclusions based
on a given LGCP analysis.

The extent of this influence, if any, is difficult to gauge, and will be examined through
novel empirical results in Section 3.5. Here we focus on defining the most common approach
used to date for parameter estimation in the case of the log-Gaussian Cox process in order
to further motivate the need to understand the scope of variation in and subsequent quality

of the estimates themselves.

3.2.1 Correlation structures

So far, we have only encountered the separate spatial and temporal correlation structures
as generalised functions dependent on the parameters of interest as r and 7 respectively.
Stationarity and isotropy dictate that both are able to be defined in terms of a scalar lag
in either space or time, and we assume that the strength of either correlation diminishes as
the lag increases. This means that the same style of functions are appropriate for either r
or T.

Defining a universal correlation function which may represent r or 7 as b(s; ), where s
represents the scalar lag and « the parameter (¢ or ¢, for r, and 6 for 7), Table 3.1 gives
a few possible forms which b may take. Figure 3.1 provides a visual of these functions for
varying values of a.

The images give a good idea of how we can expect the correlation to behave should we
choose one of these functional forms for 7 or 7. The parameter a can clearly be interpreted
as a ‘scale’ value; increasing « increases the effective range of correlation.

The ‘raw’ spatial correlation 7 is multiplied by the variance of Y (or Z), namely o3 (or
O'i), and then exponentiated to obtain the PCF for the LGCP as per (3.5). Since this value
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b(s; alpha)

b(s; alpha)

Figure 3.1: Correlation functions from Table 3.1 plotted with o € {0.05,0.1,0.2,0.4}; a
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Table 3.1: Some examples of stationary, isotropic correlation functions.
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Figure 3.2: Log-pair correlation functions ¢ using as r the functional forms in Table 3.1,
plotted with o2 € {0.5,1,2,4} and a fixed scale a = 0.1.

must also be estimated, it is of interest to visually examine the impact of altering the variance
of the Gaussian field on the behaviour of the PCF (assuming a fixed scale parameter).

Recall that g(u; 02, o) = exp{o?r(s;a)}, where o2

may now represent 0/2\ or 05) and « either
@ or ¢y depending on whether we are working in the spatial or spatiotemporal settings
respectively. Thus, the functions plotted in Figure 3.1 are equivalent to log[g(u; o2, )] with
o? =1.

Figure 3.2 displays the log-PCFs corresponding to the different correlation functions in
Table 3.1, this time for a varying 02 and a fixed a. As before, the range of s is kept constant
to aid in a visual comparison. It is clear that increasing o? results in ‘amplification’ of the
correlation over the range controlled by «.

It is important to note that these six examples are by no means the only options available
to us in terms of defining the correlation structure(s) of the LGCP. Commentary on these
and other options, including examples of subsequently generated Gaussian random fields,
and what may be considered an ‘appropriate’ parametric PCF, can be found in Mgller et al.

(1998).

3.2.2 Concept of minimum contrast

The minimum contrast approach is advocated in the seminal works of Mgller et al. (1998)
and Brix and Diggle (2001) as the best available option for estimation of the correlation
parameters of the LGCP (as well as the SNCP in Mpgller, 2003; Mgller and Diaz-Avalos,
2010). As such, it has been employed in the applied modelling of real-world data such
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as in Moller et al. (1998), Diggle, Rowlingson and Su (2005) and Mgller and Diaz-Avalos
(2010). It is therefore of interest to define and examine this technique in the present work;
a systematic empirical examination of its performance will be carried out in Section 3.5.

Minimum contrast estimation is used due to the fact that direct likelihood-based infer-
ence for the parameters of interest is generally not possible. Such an approach requires
direct derivation of the density function for the observed point configuration; a function not
analytically tractable in most cases (see for example the comments in Section 7 of Mgller
et al., 1998). However, and as we shall discuss further in the following two sections, the intu-
itiveness of the minimum contrast procedure is offset by the numerous subjective decisions
that must be made in order to implement the criterion in practice.

In Section 3.2.1 we viewed several possible parametric forms of correlation structures
that could be considered appropriate for our purposes. From Section 3.1, recall the various
nonparametric definitions of the second-order properties of the LGCP and its modifications.
Thus, a natural approach to estimation of the parameters of interest is to minimise some
discrepancy between a particular nonparametric function and the elected parametric form
thereof.

Let £ denote a vector of parameters upon which the function J is dependent and allow
J to represent a nonparametric estimate of J based on the observed data. The minimum
contrast ‘optimal’ estimates of &, é , are found by the combination of values in ¢ which
minimise

Mo© = [ ) {ol ) = o1} s = Su Sl {ol )] — ol 1}
S0 seS
(3.26)

where sp and spax are the lower and upper lag limits of the contrast criterion, w(-) denotes
some scalar weight associated with each lag s, v[-] represents some transformation (if any)
of its argument, and the approximation to M ; is obtained simply by summing over a (fine)
sequence of lags S = {sg, 51, - - ., Smax | €qually spaced so that Sgi = Sat+1— Sa; Sas Sat+1 € S.

Minimum contrast is popular due to its ease of computation and intuitively sensible
fashion in which we may interpret the criterion. Consider as an example the intensity
surface A(-) on the R? unit square, which is a single realisation of a stationary and isotropic
spatial LGCP with py = 1000, 0% = 2, ¢ = 0.1 and a Gaussian correlation structure so
gxn(u) = exp{2exp[—(10u)?]}. A spatial point pattern according to this intensity of size
n ~ POI(py) observations is generated. The intensity surface and associated data set are
displayed in Figure 3.3.

We now use (3.26) in an attempt to estimate the parameters of the process based on
the observed point pattern. No deterministic global trend is assumed for this illustrative
example; any heterogeneity in the ‘observed data’ is entirely due to dependence between
individual points. We use (1.5) and (1.10) to nonparametrically estimate the K- and pair
correlation functions respectively. For the latter, we set v[-] = log[] and (s9 = 0) < s <
(Smax = 0.25) in the minimum contrast function, and choose h for the kernel s, according
to the guidelines in Stoyan and Stoyan (1994). The theoretical K-function is obtained using
the relationship (1.4), and v[-] = ¥+ with (sp = 0) < s < (Smax = 0.25). There exists no

additional information to support using weights, so in both cases we set w(-) = 1. These
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Figure 3.3: A realisation of a LGCP with a Gaussian correlation structure (left) and a
subsequently generated point pattern (right).

choices are explained further in the following section.

Figure 3.4 shows the nonparametric estimates of K (s)'/4 and log[j(s)], along with the
identically transformed theoretical versions of these functions defined using the minimum
contrast optimal parameters é = {6/2\, sz>>\} We note a visually pleasing fit, with the para-
metric functions closely tracking the trends described by the data. However, the estimated
parameters seem slightly disappointing: use of the K-function has provided {1.13,0.079};
the PCF has yielded {1.15,0.081}. We will investigate the issues of minimum contrast esti-
mate proximity to the true values, as well as whether use of either K or g provides superior

estimates over the other, in Section 3.5.

Estimation of 4, for spatiotemporal data, is performed in much the same way by minimis-
ing the squared discrepancy between (3.13) and (3.14) for a finite sequence of temporal lags.
When including deterministic components as defined at (3.15), the comparison is between
the quantities (3.22) and (3.23) which are assumed to be nonstationary in time, and the

contrast criterion is

Vmax 1

Me0)=Y Y [é(t,t— V) —C(t,t — y;e)r, (3.27)

v=1 t=v+1

for some user-specified value of vy,.x < T which may be viewed in the same way as Spmax
above. Inspection of the theoretical version of the temporal covariance shows it is dependent
upon the spatial correlation parameters; these must therefore be estimated first and are

subsequently plugged in to the temporal minimum contrast procedure.
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Figure 3.4: Nonparametric estimates of the transformed K- and pair correlation functions
for the synthetic data, along with the parametric curves corresponding to the minimum
contrast parameters €.

3.2.3 Practical issues

Focusing for the moment on (3.26), there clearly exist undeniable criticisms concerning the
arbitrariness of minimum contrast. How do we choose appropriate contrast limits sg and
Smax! How should we weight using w(-), if at all? Are the transformations via v[-] important?
If performing a contrast procedure using the PCF, how do we choose the bandwidth A?

These are extremely difficult questions to answer. Indeed, universally preferable options
may not exist. The convenience and relative computational simplicity of minimum contrast
has driven the popularity of this method for estimation of Cox process parameters, and it
could well be the case that any deficiencies in terms of accuracy and precision of the resulting
estimates can safely be considered negligible in practice. This ‘allowable scope’ in quality,
however, is not well understood, and the importance of sound parameter estimates cannot
be ignored.

Some theoretical efforts have been made in the literature to better understand the
minimum contrast methods in the stationary Cox process setting. Guan and Sherman
(2007) study this approach with respect to the K-function for the LGCP, providing both
theoretical and empirical indicators of performance. Ignoring edge-correction, they show
that, assuming certain regularity conditions, the corresponding minimum contrast esti-
mates are consistent and asymptotically normally distributed. These results are echoed
in a related article by Waagepetersen and Guan (2009) who studied mainly Neyman-Scott
processes (a special type of SNCP or ‘Poisson cluster process’; see for example Diggle,
2003; Mgller and Waagepetersen, 2004). Expressing the minimum contrast criterion as
Jome w(s)[K(s)¢ — K(s)]*ds, Guan and Sherman (2007) argued that a sensible way to
choose $pmax and ¢ when w(-) = 1 is to find the combination which minimises their derived
asymptotic variance of the corresponding parameter estimates. This approach is of limited

use in practice, however. Firstly, the expression for the variance depends upon the value of
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the true parameters, meaning implementation with respect to a real-world problem would
require pilot estimates of the unknown parameters. Secondly, the authors remark that the
performance of the minimum contrast criterion in terms of proximity of the parameter esti-
mates to the true values appeared to be quite sensitive to the choice of these pilot estimates.
Thirdly, a simulation study indicated any improvement given by this method of choosing
Smax and c in the ‘ideal’ scenario where the true parameter values were used as the pilots
was not substantial when compared to subjective choices of syax and ¢ based on past em-
pirical evidence of various authors (discussed in a moment). Guan and Sherman (2007) also
suggested an alternative sub-sampling approach which can aid in choosing the form of the
weight function w and spax, setting ¢ = 1. Again, any practical improvements over the
vanilla ad hoc minimum contrast rules were difficult to place. Finally, it is not clear if these
findings could be applied in a similar fashion if using the pair correlation function rather
than K, or if edge-correction would have a significant impact on their results. Although
Guan (2009) investigated use of the PCF against K and concluded that use of the PCF pro-
vided in general more stable parameter estimates, this study was carried out with respect

to Neyman-Scott processes, not the LGCP.

For these reasons, and our practical interest in the quality of minimum contrast estimates,
we will not pursue the above techniques further. Our applications involving minimum con-
trast will calibrate as needed the various components of the criterion based largely on the
past numerical experiences of applied researchers, as well as our own experience. Specifi-
cally, Diggle (2003) cites empirical evidence to advocate setting v[-] = /- and w(-) = 1 when
using the K-function to estimate spatial correlation parameters for Cox processes where
one has observed point aggregation. This is due to the natural alleviation of weight passed
to evaluations at large s where we experience greater variance fluctuations. Diggle (2003)
also suggests alternatively setting v[-] = - and using w to weight the discrepancy measure
by the inverse (approximate) variance of the K-function (which Guan and Sherman, 2007,
used their sub-sampling method to achieve). This author’s preference is to use the former
approach in order to avoid additional problems such as numerical instability associated with

the variance approximation.

Use of the log-transform for the PCF i.e. v[:] = log[] was first used in Mgller et al.
(1998) and subsequently in Diggle, Rowlingson and Su (2005) owing to its stabilisation of
extreme values (e.g. those observed for small s in the nonparametric estimator). There
exists little if any evidence to suggest using anything other than w(-) = 1 when performing
minimum contrast with the PCF, and as with the K-function, we prefer to reserve use of
w for only those specialised situations in which we possess additional metadata which may
assist steering parameter estimation. Implementation of (3.26) with the PCF also requires
specification of the bandwidth h for the Epanechnikov smoothing kernel s in §. Much of
the literature which has dealt with estimation of the PCF has cited the empirical guidelines
given by Stoyan and Stoyan (1994) who suggest setting h = a/\/W i.e. some
constant a divided by the square root of the overall intensity measure (as per the definitions
in Section 1.2.2), where 0.1 < a < 0.2. This author’s early empirical experimentations have
presented only small differences in the arrived parameter estimates for a varying a within

this range, and we therefore elect to set a = 0.15 in all subsequent implementations. Guan
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(2007) did suggest a least-squares cross-validation method for selection of h in the PCF,
further developed in Guan (2009). Again, however, these were evaluated with respect to
Poisson cluster processes, not LGCPs. Empirical results in Guan (2007) showed similar
performance to bandwidths selected using Stoyan & Stoyan’s (1994) guidelines when dense
point clustering was observed. This, coupled with the additional computational expense
associated with the LSCV selector, means we do not consider it further in our studies.

The contrast limits are the final consideration. It is natural to set sg = 0 but there is
an important distinction between the K and PCF versions of (3.26) in that the K-function
can be evaluated at zero but the PCF cannot. As a result, for the PCF minimum contrast
procedures we follow Mgller et al. (1998) and set so as the smallest interpoint distance in
the observed data so that so = min(||x; — x;||); ¢ # j. Note that an inappropriate choice
of 59 (e.g. a value too close to zero) can have adverse affects on the performance of M, even
with the log-transformation present. The upper limit sy,.x can be considered less important
provided the transformation function is employed sensibly such as above. Of course, we are
restricted by the limits imposed by the edge-correction in the nonparametric estimators,
but we are generally not interested in the second-order properties at such large distances
anyway, particularly for clustered point patterns. A good rule of thumb, which is supported
by comments in Diggle (2003), is to set Smax = min(zw, yw )/4 where zy and yy represent
the maximum width and height of the observation region W respectively. Note also that
this is the default approach employed in the comprehensive spatial point pattern software
package spatstat in R (Baddeley and Turner, 2005). Alternatively this can be determined
by trial-and-error, by inspecting plots of the nonparametric trend of the PCF for different
Smax and setting this upper contrast limit at a lag where the dependence appears to drop
to a negligible level (i.e. zero on the log-scale).

More emphasis has been placed in the preceding discussion of minimum contrast estima-
tion on the spatial margin, for several reasons. Firstly, we have two equally natural options
to estimate the second-order behaviour of the spatial aspect, namely g and K, though the
single most intuitively sensible option for gauging dependence in time is arguably the tempo-
ral covariance function. Secondly, there tend to be more issues such as the PCF bandwidth
h, and edge-correction over W, which require consideration. Thirdly, and perhaps most
importantly, estimation of the temporal correlation parameter 6 depends itself on the esti-
mated values of afp and ¢,. If these are poorly estimated, the adverse effect on 6 could be
severe. We revisit minimum parameter estimation in Sections 3.4 and 3.5 for both real-world

and synthetic data.

3.2.4 Numerical likelihood-based alternatives

Mpgller et al. (1998) also note that it is possible to use a Monte-Carlo-estimated likelihood
function to obtain estimates of the required quantities, but favour minimum contrast due
to potentially restrictive multimodality in the latter. Brix and Diggle (2001) support this
decision, and add that any theoretical shortcomings of minimum contrast are mitigated

when we expect to deal with large data sets.

We pay particular attention to the minimum contrast technique for estimation of the Cox
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process parameters here due to its prevalence in the applied literature. Further technicalities
concerning likelihood-based methods can be found in Mgller and Waagepetersen (2004); for
a short summary including useful references the reader is also directed to Section 7.2 of Illian
et al. (2008).

3.3 Computational considerations

The following discussion focuses on the computational aspects most relevant to working with
the LGCP. In particular, we follow Appendix E in Mgller and Waagepetersen (2004) and
detail how the discrete Fourier transform (DFT) is considered in order to exploit massive
reductions in computational costs via the fast-Fourier transform (FFT) when simulation of
the specified Gaussian fields is required. The aim is to augment Mgller and Waagepetersen’s
(2004) impressive yet theory-dominated instructions with the provision of a more conceptual
description appropriate for the nature of this thesis. We also review the Metropolis-adjusted
Langevin algorithm (MALA) in the context of the LGCP; the Markov-chain Monte-Carlo

technique necessary for simulation of our models conditional upon observed data.

3.3.1 General simulation: the fast-Fourier transform

As we encountered in Section 3.1.2, it is necessary to discretise the temporal margin in order
to theoretically analyse the LGCP. In practice, the spatial margin must also be discretised
in order to implement the methodology. This is achieved by partitioning the finite spatial
study region W into a suitably fine set of disjoint cells. Note therefore that the following
discussion holds for both fields ) (purely spatial) and Z (spatiotemporal), when the latter
is evaluated at a single time point ¢t. We will work only with the former symbol here.
Though we would generally expect W to be an irregular polygon on R2?, the simplest
discretisation strategy remains to construct a M x N grid over the encapsulating rectangle
Aw; M, N > 2. Represent the maximum ranges spanning W (and hence Ay ) along the
x- and y-axes with R,(Aw ), and R, (Aw) respectively. Defining A, = R, (Aw)/(M — 1)
and A, = R, (Aw)/(N — 1) to be the horizontal and vertical grid spacings respectively, we

re-define Ay, in terms of a lattice; the discretised interval I. This is given as
I = [(Zmin + Dom, Ymin + Ayn) :m € {0,...,M —1},n € {0,..., N — 1}], (3.28)

where obviously R,(I) = R,;(Aw) and R,(I) = R,(Aw), and Zmin, Ymin are the lowest
(bottom left) coordinates of Ay .

Considering the fact that important calculations such as finding inter-cell distances and
determining region inclusion are defined in terms of the cell centroids, it is useful to also

explicitly state these as

cmn) :[[xmin + (m —0.5)Ag, Ymin + (n — 0.5)A,] :
me{l,....M—1},ne{l,...,N —1}]. (3.29)

In fact, it is this grid design coupled with the absence of edge-effect concerns in the LGCP,
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Figure 3.5: A rectangular grid approximating an irregular spatial region.

which enables us to access the FFT methods described in a moment.
From (3.28), simulation of the spatially continuous Gaussian field ) will therefore ap-
proximately translate to the simulation of a high-dimensional Gaussian variable with a

non-trivial correlation structure Y (u); u € C, such that
Y ~ N(u Sy), (3.30)

where, according to our assumptions about the process, p is the [(M —1) x (N —1)] x 1 vector
of the stationary process mean p, and Xy is the [(M —1)(N—1)]x [(M —1)(N —1)] covariance
matrix. The covariance matrix is computed from the [(M — 1)(N — 1)] x [(M — 1)(N — 1)]
cell-centroid-wise matrix of Euclidian distances D, whereby

Dli,j] = ||c® — cW;

i—t,j—=j=[(mn):me{l,.... M—1},ne{l,...,N -1},

sot,7€{l,...,(M —1)(N — 1)}, thus allowing
Sy i, j] = o*r(Dli, 51; 6), (3.31)

where r is the stationary, isotropic correlation function (possibly one of those described in
Section 3.2.1). The stationary scalar mean, variance and correlation parameters, p, o and
¢ respectively, can represent either uy, Ji, O\ O [ly, 0:‘;}, ¢y depending on whether we are
examining a spatial or spatiotemporal data set as per our earlier expositions in Sections
3.1.1 and 3.1.2. Note also that i — ¢ signifies the fact that a unique scalar cell indexer 4
translates to a unique combination of the cell centroid coordinates <.

Consider Figure 3.5, which shows some irregular spatial region upon which we have
superimposed I constructed as an evenly-spaced rectangular grid with M = N = 30 (coarse

for illustrative purposes). We therefore have an overall grid approximation of 29 x 29 cells;
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of interest are obviously those which fall inside the geographical region (green). These are
the cells whose centroids C are inside the irregular polygon i.e. C("™™ € W for interior
cell indices m and n from the sets in (3.29). Nevertheless, we repeat that it is easiest (and
necessary for the FFT) to consider all cells over the encapsulating rectangle.

Immediately the computational ramifications of modelling our problems as a function of
a correlated Gaussian field become apparent. Direct simulation from such a process for even
inappropriately coarse grids carries massive computational requirements; for example in the
case of the illustrative cell assignment of 29 x 29 we must already consider eigendecomposition
of an 841 x 841 covariance matrix. Using standard methods (e.g. Cholesky decompositions)
the associated costs are so high that many computer languages capable of this level of
mathematical operation will struggle to run implemented programs based on (3.30) directly.
On the latest desktop machines R, for example, will cite inadequate memory allocation and
refuse to even begin evaluation for grids little finer than the above size.

Moller et al. (1998) suggested a clever solution to this problem from work in Wood and
Chan (1994) using the two-dimensional discrete Fourier transform and the subsequent ad-
vantages of associated quick-evaluation algorithms termed fast-Fourier transforms (FFT).
Briefly, the FFT makes use of specialised complex number transformations which in our con-
text allows the derivation of eigenvalues of block circulant matrices at a dramatically reduced
cost of computational resources (for simulation involving component-dependent multivariate
Gaussian variables, the eigendecomposition of the covariance matrix is required).

Albeit symmetrical, the covariance matrix ¥y is however in its current form not block
circulant. To satisfy this requirement of the FFT, circulant embedding is performed using an
extended rectangular grid which must be at least twice the size in both axes as the original
lattice. This is achieved as follows. First define the extended grid resolution as Meyxt X Next,
with Mext > (2M — 1), Next > (2N — 1) so we have

Iext = [(Tmin + Do, Ymin + Ayn) :m € {0,. .., Moy — 1},n € {0,..., Nexy — 1}]  (3.32)
and

™ =[[Zmin + (M — 0.5) Ay, Ymin + (1 — 0.5)A, ] :
m e {l,..., Moy —1},m € {1,..., Nexs — 1}]. (3.33)

The approximation is now given as Yext(u), w0 € Coxt;

Yoxt ~ N(Hexta EYext)’ (334)

where piexy and Xy, are defined as in (3.30), except now increased in size to correspond
to the extended interval Ioy;. Our example lattice in Figure 3.5 is extended the minimum
allowable lengths such that Iy is a 59 x 59 grid with 58 x 58 cells. This is re-plotted in
Figure 3.6.

Secondly, we must define the extended cell-centroid-wise Euclidian distance matrix. This
is not, however, computed with ‘raw’ Euclidian distances between distinct centroids of the

extended lattice. To satisfy the circulant requirement of the covariance matrix, the distances
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Figure 3.6: The extended rectangular grid in preparation for circulant embedding of cell-wise
distances.

upon which this is defined must correspond to wrapping the extended lattice on a torus and
only thereafter computing the shortest Euclidian distances. Consequently, the definition of
Deyy differs from the definition of D for (3.31) in the sense that

Dexclis 5] = {min [absyn (4, 5), Ru(Loxe) — absy (4, §)]

Nl=

“Fmin [absy, (i, §), Ry (Text) — absy (i, j)]Q} : (3.35)

— CC(Xt m| and %)

oxt,m denotes the horizonal centroid coordinate

where abs,, (4,7) = \

cxt ,m

of the cell in Iy indexed by ¢ — 2; subscript n the vertical, so finally,
EYext[iaj] :Uzr(Dext[iaj];qs); Zv] € {17"~7<Mext - 1)(Next - 1)} (336)

Figure 3.7 displays the difference between simply evaluating the ‘raw’ Euclidian distances
on Ikt (left panel) and smallest Euclidian distance around the torus (right) for two arbitrar-
ily chosen centroids. Note therefore that Dey is correctly defined in terms of the minimum
Euclidian distance on the torus-wrapped extended lattice by selecting the shortest of the
two for each centroid pair. Figure 3.8 shows the extended lattice in Figure 3.6 wrapped on a
ring torus in abstract space. The distinction between ‘abstract space’ and R? is made here
to clarify the fact that it is not the physical surface area on this ‘inflated’ torus that is used
to compute inter-cell differences; to obtain the distances highlighted in Figure 3.7 we are
essentially working on a uniformly ‘deflated’ torus.

Thirdly, though it may seem somewhat counter-intuitive to increase the dimension of

our computationally costly problem, by definition (3.36) Xy, , is now block circulant, and
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Figure 3.7: Comparing raw (left) and torus (right) Euclidian distance calculation between
two distinct cell centroids on the extended lattice.

Figure 3.8: The extended lattice with irregular polygon wrapped on a torus in abstract
space.
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its spectral decomposition can therefore be computed efficiently using the FFT. It turns out

that the required eigenvalues can be derived using only the first row of Xy, ,, meaning we

xt 7

must only initially compute and consider a (Mgyt — 1) X (Next — 1) matrix rather than, at
the very least, the original (M — 1)(N — 1) x (M — 1)(N — 1) covariance matrix 3y .

To elaborate a little further, let F, (L>0) denote the normalised L x L DFT matrix,

such that
exp{—i2mmn/L}

\/E )

where 7 is the complex imaginary unit. Now, let y. , represent the first row of Xy,

Fr[m,n] =

m,n € {0,...,L— 1}, (3.37)

arranged, as mentioned above, as a (Mext — 1) X (Next — 1) matrix. Then the (Mex, — 1) X
(Next — 1) matrix of eigenvalues, 1~\, which corresponds to the full, extended, torus-wrapped

covariance matrix ¥y, _,, can be computed quickly by

xt 7

]\ = \/(Mext - 1)(Next - 1)FMcxrlichtFchrlv (3~38)

where Fp denotes the complex conjugate of (3.37). To then produce a realisation of the
Gaussian field on the extended lattice, Yoyt as per (3.34), the steps are as follows. First,
compute the ‘dummy’ matrix H, such that

H=Fy

ext —

1WUFN...—1, (3.39)

where U is a trivial (Mext — 1) X (Next — 1) matrix containing independent standard normal

variables. Transform H into H by the one-to-one operation
H = H o A®V/2, (3.40)

where we use A9? to denote the element-wise power of the matrix A to the scalar a, and o

the Hadamard product. Finally, the realisation on the extended lattice is found with
Y:?Xt = FMcxtleFchtfl + Hext) (341)

and then any cells in Yyt which correspond possess centroids falling outside of W are
discarded to in order to obtain the realised field within the study region of interest. Note
that use of FFT methods occurs implicitly in the computer implementation of (3.38), (3.39)
and (3.41).

Some additional notes are warranted. The validity of these DFT steps is contingent
upon the covariance matrix ¥y, , being positive semidefinite i.e. that its eigenvalues are non-
negative, due to the step in (3.40). Mgller et al. (1998) note that positive semidefiniteness is
not guaranteed in practice, though this has rarely, if ever, been a problem provided suitably-
sized values of Mcy¢ and Ney are used. Indeed, the issue of negative eigenvalues has not
arisen in this author’s experience. It is also a well-known fact (we defer to Wood and
Chan, 1994, for details) that the FFT quick-evaluation algorithms perform at their best in
terms of computational speed and efficiency when the grid cell resolutions are powers of two.
In most applications, this author has found that setting (M — 1) = (N — 1) = 26 = 64 or
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(M —1) = (N—1) =27 = 128 provides an acceptable balance between aesthetically pleasing
images and computational expense. Of course, the grid resolution must be fine enough to
adequately capture the scale of dependence controlled predominantly by ¢; it could well be

the case that even higher values of M and N are required for a given application.

From a programming perspective, the need for computationally efficient functions is
critical with respect to practical implementation of the spatial and spatiotemporal LGCP.
This is especially true when we consider the iterative nature of corresponding methods
for conditional simulation (discussed in the following section). Where multiple generations
of high-dimensional Gaussian random fields are required, the circulant embedding/FFT

methodology is, quite simply, essential.

3.3.2 Conditional simulation: the Metropolis-adjusted Langevin al-

gorithm

The preceding discussion focused on how circulant embedding of the covariance matrix
for a discretised approximation to a spatially continuous Gaussian field can result in a
significant decrease in computational requirements for simulation of said field via the FFT.
By “simulation of [the] field”, we refer to the fact that, given a correlation function r and
values or estimates of the parameters y, o and ¢, we may subsequently generate a realisation

of the Gaussian variable with this specific covariance structure.

Alone, this is termed unconditional simulation, owing to the fact that the realisations
of the process have been generated entirely at random i.e. without any need to take into
account observed data. Clearly, if we assume the spatial or spatiotemporal intensities of a
given point pattern (or at least a component thereof) is defined in terms of a LGCP, then the
observed data must play a crucial role in quantifying the assumed process. This conditional
simulation of LGCPs, hence Gaussian fields, is of course not at all straightforward due to

their stochastic nature.

Conditional simulation of the LGCP is therefore also referred to as prediction: based on
data we aim to predict the specific form of the stochastic intensity process instrumental in
their generation. Though the conditional distribution of the stochastic process given the
data is analytically intractable (Mgller et al., 1998), using Bayes’ theorem it is possible to
express this function up to a constant of proportionality. This motivates a Bayesian approach
whereby characteristics of the posterior can be estimated through long-run averages of a
suitably designed Markov chain. It is assumed the reader is familiar with the basic premise
of Bayesian analysis and Markov chain Monte Carlo (MCMC); a brief introduction of the

methods and terminology relevant for our purposes is given here.

At the heart of MCMC is the random walk Metropolis-Hastings (MH) algorithm (Metropo-
lis et al., 1953; Hastings, 1970). Suppose we have some objective variable of interest, V',
which we wish to simulate based on the target density thereof, f. Given that the current

position, or state, of the chain is V®), we

1. Generate a candidate V' ~ q[-|V®); h).
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2. Take
y(E+D) _{ Vv’ with probability p(V’VV(t))

V() otherwise.
where F(@)alyles 1
o x)qly|x;
p(ey) = 1A Fe oty ) (3.42)

3. Repeat 1. and 2. until the desired length of the chain is reached.

Here, p is called the acceptance probability and q is referred to as the candidate or proposal
distribution. A candidate for the next transition is generated according to this distribution,
which is conditional upon the current state of the chain and controlled by a tuning parameter
h > 0. Alternatively we may write the algorithm as having ¢(-|[V®);h) = V() + ¢, where
¢ ~ q.(h) and g.(h) is some standardised error distribution independent of V).

Thus, the MH algorithm is useful when we are able to evaluate the target density f up to
a constant of proportionality but not directly, due to the cancellation which naturally occurs
in computation of p. By subsequently obtaining multiple instances of variables V ~ f it is
possible to therefore draw conclusions about the general posterior distribution of f.

The Metropolis-adjusted Langevin algorithm (MALA), also known as the Langevin-Hastings
algorithm, was first suggested in statistics in a discussion paper by Besag (1994); a de-
tailed study by Roberts and Tweedie (1997) followed. The MALA is essentially a more
sophisticated random walk MH algorithm, where gradient information on the target vari-
able is exploited in order to assist steering the suggested candidates toward higher areas
of the target density. To denote this dependence of ¢ on the gradient function, we write
q[- VB h, V(VD)], where V(x) = dlog[f(z)]/0x. This, for the MALA, takes the specific
form g[- [V h, V(VI)] = VO 4050V (V®) + VVhe;, where € ~ g.(-). Note that the stan-
dardised error distribution ¢ for the MALA in this form does not need to account for the
tuning parameter h as it already scales the deterministic part of the candidate generating
function. Following re-specification of ¢, progression of the MALA then follows the same
steps as above.

Mpgller et al. (1998) advocate use of the MALA over a vanilla random walk for conditional
simulation of spatial LGCPs due to superior convergence rates of the chains as a result of
including the gradient information. This was echoed in Brix and Diggle (2001) for the
spatiotemporal LGCP. Superior behaviour in terms of mixing characteristics of the MALA
chain for the LGCP was also apparent in Christensen et al. (2001) and Christensen and
Waagepetersen (2002). Below we summarise the quantities necessary to implement the
MALA in both spatial and spatiotemporal settings. Further details are can be found in the
above papers, as well as in Chapter 10 of Mgller and Waagepetersen (2004).

Spatial

The variable of interest is the Gaussian random field Y (m,n) for cell centroids (m,n) € C
as per (3.29). To take advantage of the FFT, we extend our field of interest to Yext(m,n);
(m,n) € Cex (3.33). Take @ to be the matrix which diagonalises Xy, , and for ease of
notation set d = (Mext — 1)(Next — 1). Then, it is possible to express Yoyt as a d x 1 vector
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Yext such that
Vext = QT + pux (3.43)

where I' ~ N4(0, I), N4 denotes the d-dimensional standard normal distribution, and I the
d-dimensional identity matrix. In addition to a slight reduction in computational complex-
ity, Moller et al. (1998) note that working with I rather than Y, directly when constructing
the Markov chain appeared to improve its mixing, leading to an accelerated drop in autocor-
relation between successively accepted draws from the target density. It is also important
to note that obtaining Y.y from T' via (3.43) is a relatively trivial operation when employ-
ing the Fourier transforms; indeed Q need not be computed explicitly. Once Ye has been
recovered, this is easily mapped back to the original lattice Ioyt, and stored in a relevant
(Moxt — 1) X (Next — 1) matrix. The lack of concern over edge effects means we simply
discard all cells whose centroids Cey & W, and we are left with an appropriate realisation

of the Gaussian field, conditional upon the data, within the study region of interest.

Note that the posterior of concern is conditional upon the observed point pattern, in the
sense we are interested in f(v|X) (the conditional density of I'|X). Mgller et al. (1998)

provide the relevant formula.

log [f(7]X)] = constant + Z {gjext (m,n)N(m,n)

(m7n)ecext

— exP|[Jext (M, n) A(m, n)}} — 0.5||’y||2, (3.44)

where fext is obtained from the particular v via (3.43), A(m,n) denotes the total number
of observations falling inside the cell referenced by its centroid at (m,n), and A represents
the area of each cell i.e. A=A, x A, as per (3.32).

Denote the d x 1 vector of cell counts corresponding to the order of ey by Nexta and

the cell area vector by Auy. The gradient of (3.44) is then the d x 1 vector given with

_ dlogl/ (7] X))

V({v) o

= Q ['AN/CXt - eXp{gcxt} o Acxt] -7, (345)
recall o represents the Hadamard product. It is important to note that in (3.44) we set

N(m,n) = A(m,n) = 0if (m,n) ¢ W; resulting in the vectors Ny and Aey in (3.45) being

altered accordingly.

Now suppose 7*) is the current state of the chain. For the LGCP, ¢, = Ny4(0, I), which

translates to the proposed candidate, 7/, being generated as
Y =T~ gl W50, V()] = Na(r™ + 0509 (v®), ). (3.46)

Note that the h therefore represents the (stationary) variance of the mutually independent
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multivariate Gaussian distribution. The move from v*) to 4’ is accepted with probability

) — F(1X)gy P h, V()]
SO X[y |y ®; b, V()]
([ X)exp{—|7¥) —+ — 0.5RV (¥)[|?/(2h)}
FY® | X )exp{—||y" —y*) — 0.5V (v*¥))[[2/(2h)}

p(y'

(3.47)

using the definitions in (3.44) and (3.45).

To begin the chain, we must specify an initial state, 4(?). In spite of better performance
of the MALA over the random walk in terms of accelerated convergence, Christensen et al.
(2003) demonstrated the apparent increased sensitivity of the MALA chain to the choice
of the initial state. They concluded that, for the LGCP, electing v(9) = T ~ N4(0, 1)
provided the most stable performance; this author’s experience supports their findings.

Setting h is a little more difficult. However, there exists evidence in the literature to
support choosing this variance of the proposal distribution to achieve an overall acceptance
rate of around 0.574 to provide the fastest rates of convergence (Roberts and Rosenthal,
1998). The optimal value of h will differ according to various aspects of the problem such as
d and chain length, and is typically set following examination of some shorter preliminary
runs of the algorithm.

Should we include a multiplicative deterministic intensity ¢y in our model as described
in Section 3.1.3, this changes the specific form of the target density and gradient functions.
The target (3.44) becomes

log [f(71X)] = constant + " 3 [log{¢x(m, n)} + G(m, n) N (m, n)

(m,n)ECext
- G el )l A(m) | <03l (345
and (3.45) becomes
ol X
V(’Y) = Og[‘};:ﬂ)] = Q [A[ext Cext A © exp{yext} o Aext} -7, (349)

where Eext, , is the vectorised version of (x(m,n) with order corresponding to Jext. Like
N (m,n) and A(m,n), C(m,n) and the relevant entries of (o, are set to zero for m,n ¢ W.

The acceptance probability retains the same form as in (3.47).

Spatiotemporal

Dealing with a spatiotemporal LGCP MALA means we must consider multiple spatial in-
tensities at each iteration, rather than just single realisations as above, due to the effect of
the temporal correlation on the spatial variation. Under the modelling assumptions made
in Section 3.1.2, Brix and Diggle (2001) simulate I'; ~ Ng(0, I) such that

Zext,l - er + Haps Zext,j QF + ,ud}[l - T(l 9)] + T(l 9) ext,j—15 ] € {2a 3) o aT}y
(3.50)
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recall that 7 is the temporal correlation function and unit time intervals dictate the form of
the subsequent s at times j > 1. We use Z to denote the spatially discretised Z; Zext’t is
the d x 1 vector giving the torus-wrapped Gaussian field on the extended spatial lattice at
time t.

In disease surveillance, the goal is typically to simulate the intensity at the latest time
point for which data have been observed, given data up until this time i.e. Zext,T given
Xi.7. However, and as Brix and Diggle (2001) are quick to point out, the nature of the
model dictates it is easier to simulate ZCX'C,LT given X 1.7; owing to the fact that we only
know the likelihood function up to a constant of proportionality for this situation, and not
Zexe,7| X 17

In practice, for large data sets, the simulation of 7" spatial intensities at each iteration of
the chain presents another computational efficiency problem. This is avoided by considering
only the most recent s times with data; a sensible solution given that we would expect the
distant past to have an ever-diminishing impact on the state of the intensity at the present.
Let U =T —s+1. We are only interested in, and hence only simulate, Zext,U:T given X ¢.p.
The value of s is chosen according to the strength of temporal correlation for the application
at hand, which we recall is controlled by 6. We will think along these lines for the remainder
of the definitions, which means the simulation design in (3.50) changes with I'y = I’y and
je{U+1,U+2,...,T}

The log-target in the spatiotemporal setting is given by Brix and Diggle (2001) as

T

log[f (yor| X ver)] = constant + > > " Gt 1 (m, n) Ny (m,m)
t=U (m,n)€Coxt
T

exp[ﬂext,t(m»”)}A(m,n)} Z {2[1—||’:'t(||12,9)2]}

t=U+1
—0.5|]w]%, (3.51)

where N;(m,n) denotes the number of observations falling in the cell with centroid (m,n)
at time ¢.
As earlier, let ./\~/'ext7t represent the d x 1 vector of cell counts at time ¢ with order corre-

sponding to Fext- We express the gradient as the d x s array with

V(yw.r) = { [aiJIng('YU:Tle:T)} s |:83Tl()gf('7U:T|XU:T):| } ;

where

O[T —1]

9 T-1 i )
T%lng('YU:TlXU:T) =1[t < T] Z {Q [7(1;0)(Nexct,r41—i — exP[Fext, 7+t —i) © Aext)] }
i—t

— 1 =7(1;0))] 1y, (3.52)

and using similar notation as for (3.40), a®® here refers to the elementwise power of the vector
a to the scalar b. In both (3.51) and (3.52), the Fext s are obtained with the corresponding

s via (3.50), and the terms involving (m,n) are again set to zero for those (m,n) ¢ W.
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Conceptually, it is easiest to think of V(yy.7) as some list object with s components, each
a vector of length d describing the gradient at each spatial cell for each of the timestamps
{U,...,T}.

Candidates for each transition in the MALA are generated in much the same way as in the
purely spatial case. They are now treated as ‘blocks’ of s consecutive spatial intensities such
that the candidate 7{;.;- can be viewed as a d x s matrix, with each column corresponding
to a single spatial intensity on Iy ;. Assuming yl(Jk)T is the current state of the chain, and

that the gradient term is an appropriately constructed d x s matrix, we have
I (k) (k)
Y.r =Tua ~ Na(vyr + 050V (vrp), hI). (3.53)

The move fyl(]k)T — (. is accepted with the now familiar probability

k
;o _ SObal Xva)en{-lhgr = 1ia = 05V GoIP/ @Y
p(’YU:Tv'-YU:T) - (k) , (k) (k) 9 . ( . )
| Xvr)esp{=nir — 0 — 0-5hY (yrp) 17/ (2h))

An initial state follows the same guidelines mentioned earlier, in the sense that 'y,(JO:)T

is given with %»(0) ~ Ny(0,I) for i € {U,...,T}. The tuning parameter h in subsequent
candidate generation is again chosen to achieve an overall approximate acceptance rate of
0.574.

The inclusion of deterministic components describing ‘global’ spatial and/or temporal
trends, ¢y and 7 as in Section 3.1.3, alters the target density and gradient as we would

expect, with (3.51) becoming

T
log[f (7| X v.r)] = constant + > >~ ¢ {Gext,t(m, ) + 1[Gy (m, n)n()]}N; (m, n)
t=U (m,n)€Ceoxt

— Gy (m, n)n(t)exp[Jext,: (m, n)]| A(m, n)}
T
[ ll?
j;{;l {2[1—7(19)2’]} —0.5[lwl%, (3.55)

and the entries for time ¢ in (3.52) becoming

T-1

o -
gy, 08f (.l Xuar) =1t <7 > {Q[r(1:0) (Next. 71—
1=t
_U(T +t— i)fext,w o eXp[gext,T+t—i] o Aext)} }G[T_i]
— 1 =7(1;0)2 1y, (3.56)

where, as in the purely spatial setting, fextw is the corresponding vector of deterministic
spatial values over Iloy.

A noteworthy comment, pertaining to both purely spatial and spatiotemporal mod-
els, concerns gradient truncation. The MALA can, in some cases, spend lengthy periods

away from the modes of the target density which can in turn adversely affect the mixing
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and convergence of the chain, and therefore our final results (Roberts and Tweedie, 1997;
Moller et al., 1998). This can be avoided, without disturbing the ergodic properties of the
chain, by imposing a constraint on the magnitude of the cell-wise gradient values. The
truncated MALA is obtained by replacing exp[Jext ¢] in (3.45), (3.49), (3.52) and (3.56) by
{a A exp|Jext,t] }, where a represents the d x 1 vector with all entries equal to the scalar
constant a, and A denotes the component-wise minimum. At the time of writing there ap-
pears to be no research concerning ‘optimal’ calculation of a, though this is not necessarily
a major concern in practice. As mentioned in Mgller et al. (1998), truncation is generally
not needed provided sensible specification of the tuning parameter h; typically achieved if

we search for the optimal acceptance rate of 0.574.

3.4 Real-world examples

We now take a break from the theory and demonstrate epidemiological modelling with the
LGCP using two real-world data sets; one purely spatial, the other spatiotemporal. The
examples are here mainly for illustrative purposes, though we do provide conjecture on
possible conclusions. Relative to the existing literature there are novel aspects to both

analyses in terms of the data used and methods employed.

3.4.1 Humberside leukaemia and lymphoma

In the first example, we aim to estimate the intensity of the spatial dispersion of childhood
leukaemia and lymphoma in the North Humberside region of the United Kingdom, based on
62 observations collected between 1974 and 1986; data first presented and analysed by Cuzick
and Edwards (1990). The reader might recall encountering this data set in our discussion
of the difficulties associated with leave-one-out least-squares cross-validation for selection of
jointly optimal bandwidths pertaining to kernel-smoothed density-ratio estimates in Section
2.3.1.

Figure 3.9 displays the study region W and data X, normalised to the unit square. The
relatively small number of observations, coupled with vast, empty areas of the study region
and several clearly isolated points, are what have contributed to the problems associated
with some forms of bandwidth selection in kernel intensity estimation. For this reason, we
will use kernel methods in tandem with the LGCP to help produce a sensible estimate of
the spatially varying intensity function. To the best of this author’s knowledge, this analysis
constitutes the first instance of modelling the Humberside data set using the LGCP.

The intensity A <+ A will be modelled as the product of a deterministic ‘global’ component
and a stochastic ‘local’” component as per (3.15). Our goal is to therefore obtain a sensible
prediction, given the observed data, of A(x) = (\(x)exp[Y (x)]; & € W, where (), is the global
trend describing the underlying spatial heterogeneity, and Y & ) (as per Section 3.3.1) is a
stationary Gaussian field on W with mean pu, variance ai, and controlled by the stationary,
isotropic correlation function r(+; ¢y). As per the the identifiability constraints discussed in
Section 3.1.3, ¢, must integrate to N'(X) over W, and py = Elexp{Y (z)}] = —0%/2. The
estimate will be denoted as A(x) = C(z)exp[Y ()] with the Gaussian field ¥ controlled by
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Figure 3.9: 62 recorded spatial locations of childhood leukaemia and lymphoma in North
Humberside, 1974-1986.

the corresponding minimum contrast parameter estimates fi5, 6%, and czSA.

Though some may view it as unusual to model cancer occurrences using dependence
between individual observations, this component can be interpreted as serving as a surrogate
for unobserved covariates which impact the final form of the intensity (an argument used in
a similar multiplicative decomposition of deterministic and stochastic components in Mgller
and Diaz-Avalos, 2010). Also, there exists evidence to suggest some forms of leukaemia can
be virally contracted (see for example the report by Leonard, 1998), providing an additional
rationale for stochastic modelling of the clusters.

The first step is to specify the form of the deterministic component. As mentioned
above, this spatial trend will be specified nonparametrically using a fixed-bandwidth kernel
intensity estimate, where we elect the fixed version over the adaptive for simplicity. More
importantly, however, this choice is made as too little is known about the relationship be-
tween the global and pilot bandwidths in the adaptive setting and the subsequent impact
on minimum contrast parameter estimation for the LGCP. The smoothing bandwidth hz
is chosen subjectively to be 0.15, a large bandwidth given the scaling of the data. This
oversmoothing is employed owing to the simple fact that { is intended to capture only the
‘global’” heterogeneity, leaving small-scale effects to the partnering LGCP. In fact, through
the novel empirical experiments conducted in Section 3.5, we demonstrate that oversmooth-
ing the multiplicative deterministic spatial trend in this way is likely to produce minimum
contrast estimates of the correlation parameters controlling the Gaussian field closer to the

true values (assuming the specified model) than smoothing parameters based on standard
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Figure 3.10: Fixed-bandwidth kernel intensity estimate of the global spatial variation of the
Humberside data.

bandwidth selectors (e.g. LSCV). Figure 3.10 shows the estimated global trend, 6 A, for the
Humberside data set.

The next order of business is to decide upon a functional form of r. This could,
hypothetically, be chosen according to some a priori knowledge concerning the type of
disease we are considering, as well as the kind of overall structure our model will take.
For this small data set, we opt for the Stable correlation function as described in Section
3.2.1; r(u;dn) = exp[—m}. This indicates the parametric PCF will be expressed by
g(u) = exp{o?exp[—/u/¢,]}, and the theoretical K may be found by the relationship (1.4).

Having elected a correlation function, the next step is to estimate the unknown process
parameters py, o3 and ¢,. The spatial dependence, described by the latter two terms, will
be estimated first via the minimum contrast approach specified by (3.26). Recall in the
relevant discussions in Section 3.2.3 the various decisions made in calibrating M ; and the
supporting arguments. For J = K, we choose v[-] = /-, and when J = g, v[/] = log[-] and
we set h = 0.15//N(X)/|[W]. In both cases, w(:) = 1, 59 = 0 and Syax = 0.05 (owing to
the fact that the correlation parameters only describe a residual dependence structure, we
shorten the interval of interest considerably).

Figure 3.11 shows the result of estimating 0/2\ and ¢, using minimum contrast. Both
versions of the procedure show reasonable agreement of the parametric and nonparametric
functions. Use of the K-function provides 63 = 5.514 and ¢3>\ = 0.0086; use of g yields
6% = 5.826 and ¢y = 0.0069. Tt seems that although the K-function version has indicated
a slightly larger range of dependence through ¢), the PCF estimates have leant towards
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Figure 3.11: Minimum contrast estimation of the spatial correlation parameters for the
Humberside data based on the K-function (left) and PCF (right).

slightly higher concentrations of intensity at cluster locations though 0/2\. It is unclear which
of these combinations is ‘better’ for the Humberside data in terms of proximity to the true
values under our current modelling assumptions. In light of the satisfactory nonparametric
versus parametric trend matches for both versions we will therefore work with their means,
setting 63 = 5.670 and bx = 0.0078 (though it should be noted that this cannot be considered
a universally appropriate step). Our estimate of py, the stationary mean of the Gaussian
field Y, is therefore given by fiy = —6%/2 = —5.670/2 = —2.835.

We now have the ability to simulate as many Gaussian fields, corresponding to the
estimated dependency structure and point intensity of the Humberside data, as we like. Of
interest will be simulation of the Gaussian random processes conditional upon the observed
data, which in turn will allow us to actually estimate the ‘true’ appearance of A over W.

A MALA run as discussed in Section 3.3.2 is thus required. The progression follows
(3.42); the structure of our Humberside LGCP dictates use of (3.48) and (3.49) as the target
density and gradient functions. To take full advantage of the computational concessions via
the FFT, the cell-dimension of the rectangular lattice (M — 1) x (N — 1) over W is 26 x 26
(64 x 64); the overlaying extended lattice is given cell-dimension 27 x 27 (128 x 128). The
MALA chain is instructed to complete 100000 iterations, with a discarded burn-in of 10000
to allow convergence to properly begin, and retaining every 90*" result thereafter to curb
the adverse effects of autocorrelation arising in consecutively realised fields. This provides
us with a thinned chain of length 1000 with which to estimate the intensity (for the reader
less familiar with Bayesian methods, note that burn-in and thinning is considered standard
practice in MCMC execution for the above reasons). After some preliminary runs, the
MALA tuning parameter h was set to 0.058.

Figure 3.12 displays some trace plots and diagnostics associated with our run of the
MALA; a satisfactory acceptance rate of around 60% was reported. Horizontal lines indicate

the posterior mean of each chain. The trace plots show convergence appears to have been
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Figure 3.12: Trace plots and diagnostics for the Humberside MALA run.
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successfully achieved with the chains mixing nicely. Top left we observe ‘gradient means’;
the mean value of the gradient function on Iy associated with the candidate generation
for each retained field. Appropriately centered at (approximately) zero, this is the expected
appearance of the mean gradient value when convergence has been achieved. Top right
displays the mean cell values for each retained field for all locations & ¢ W, which should,
and does, center on roughly fiy = —2.835 (note that the field outside W and away from the
boundary corresponds to unconditional simulation associated with the supplied parameter
estimates; cf. Mgller et al., 1998). Perhaps the most important trace plot is given center
left, and illustrates the integral of each retained, realised intensity function \(z) + A(z) =
Ca(x)explY (x)); € W. Centered appropriately close to V(X)) = 62, this indicates that the
conditionally realised intensities are of the correct scaling, and the algorithm is generating
and accepting appropriate candidates (posterior mean is in fact 64.56). Referring back to
Section 3.3.2 for notation, center right provides the squared vector norms associated with the
generated s prior to backtransformation to y, roughly centered on the number of cells falling
inside W (1915). Recall the generated 7 values are in fact N4(0, I') variables; the collective
sum of the squared components will therefore be Chi-squared with expectation equal to
the number of interior cells. Bottom left we observe that, by computing an autocorrelation
plot of the means of each retained fext, the level of thinning we have employed has all but
eliminated any concerns we may have had arising from consecutively realised fields being
too heavily correlated. Finally, we observe the posterior mean Gaussian field on Iy i.e.
on the torus, bottom right. Modes in the field inside W correspond to where data have
been observed. The aforementioned unconditional simulation occurring outside W is clearly
visible in comparison to the activity inside W.

Figure 3.13 displays our final estimate of the intensity function, 5\, over W, given by
the posterior mean of the conditionally realised and retained exponentiated Gaussian fields
from the run of the MALA. The superimposition upon this plot of the original observations

indicates a plausible prediction.

3.4.2 AEGISS gastrointestinal infections

Our second example concerns the spatiotemporal modelling of the AEGISS (Ascertainment
and Enhancement of Gastrointestinal Infection Surveillance and Statistics) data set. We
perform a similar analysis to that reported in Diggle, Rowlingson and Su (2005). Our
work here differs in that we inspect an updated (i.e. larger) version of the data set and alter
some approaches to estimation of the included deterministic components, naturally affecting
computation of the correlation parameters.

The analysis revolves around sensible estimation of the spatiotemporal intensity, speci-
fied by the model ¥(x,t) < ¥(x,t) = (y(x)n(t)exp[Z(x,t)] as per the definitions in Section
3.1.3; Z ~ Z. The goals in this example extend a little further than the Humberside analy-
sis, however, in that we are not just interested in obtaining an estimate of the intensity. The
specification of our model, as per (3.18), will as mentioned include the deterministic com-
ponents ¢y (global spatial trend) and 7 (global temporal trend). With the spatiotemporal
LGCP exp[Z(z,t)] thus representing residual departures from the underlying heterogeneity,
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Figure 3.13: Posterior mean of the intensity surface A(z) from the Humberside MALA run
with original observations.

the additional objective is to empirically compute exceedance probabilities, which are able
to describe, based on the estimated extremity of said residual departures, any ‘anomalous’
behaviour in the space-time pattern of gastroenteritis. Given the nature of this application
is surveillance of the disease, it is clearly of interest to monitor the disease occurrences
and locate perceived ‘hotspots’ of cases. In other words, we wish to somehow ‘flag’ clus-
ters of observations in a local spatiotemporal window which are sufficiently large enough to
exceed what we would deem ‘normal’ background variation. Again, @(x,t) will represent
a realisation of the model W(x,t) = Cy(@)A(t)exp[Z(x,t)] implemented with the relevant

deterministic and correlation parameter estimates.

Let us first inspect the data. We have in total 10554 spatial observations in Southampton,
U.K., recorded daily over the three-year period 1 January 2001 to 31 December 2003. Again
normalising the spatial observation window to the unit square, Figure 3.14 displays the
margins of spatial disease dispersion and temporal variation in the number of cases (for
visual simplicity the latter plot contains counts averaged over successive weekly periods).
We note clear spatial heterogeneity; presumably a direct reflection of the natural population
dispersion over W. An underlying trend in the counts of cases over time is less obvious,

though some structure does appear present.

To account for these global trends, thereby allowing the stochastic component to describe
the aforementioned ‘local’, residual correlations, we fit deterministic models to represent (y,
and 7. The spatial trend is estimated following Diggle, Rowlingson and Su (2005) using
an adaptive (via the method of Abramson, 1982) kernel density estimate. The bandwidths
ho and h (as per notation in Chapter 2), are computed using the oversmoothing method
discussed in Section 2.3.1, with & = 0.5h¢. For the temporal component we again choose a

nonparameteric approach, fitting a LOWESS smoother (locally weighted polynomial regres-
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Figure 3.14: Spatial (left) and temporal (right) margins of the AEGISS data set.

sion — see Cleveland, 1979, 1981) to the daily count data; the proportion of points affecting
the curve is set to 0.2. Diggle, Rowlingson and Su (2005) originally used harmonic regression
in the form of a generalised linear model for their fit of n, but we found this approach to
perform poorly on the updated data set; hence the choice of LOWESS. Figure 3.15 displays
our estimates é}p and 7 (again averaged over each week to correspond to the earlier plot) for
our model.

Having specified the global trends, we must now estimate the parameters controlling the
residual spatiotemporal correlation. Recall the assumption of separability from Section 3.1.2,
which states that for our Gaussian process Z, hence its finely discretised approximation Z,
Cov|Z(x1,t1), Z(xa,t2)] = o?r(u; ¢y)T(v;0); uw = ||@1 — @2||, 0 < v < (T'—1). That is, for
two distinct points in the space-time continuum, the covariance of Z can be expressed in
separate ‘spatial only’ and ‘temporal only’ correlation functions r and 7 respectively. This
allows straightforward access to minimum contrast estimation procedures for ai, ¢y and 0.

For our AEGISS model we select the Exponential correlation function for both margins
such that r(u; ¢y) = exp[—u/¢y] and 7(v; 0) = exp[—r/6]. For estimation of Ji) and ¢y, we
make use of the inhomogeneous time-averaged estimators of the PCF and K-function given
by (3.20) and (3.21) respectively, and compare them to their theoretical counterparts which
in this case are g(u) = exp{ogexp[—|ul/¢y]} and K (u) = 27 o tg(t) dt.

Figure 3.16 displays the results of the minimum contrast procedure for estimation of
ai and ¢y, again employing the relevant transforms mentioned in Section 3.2.3. Like the
Humberside analysis, the residual nature of the dependence structure means we use a small
upper contrast limit; spmax = 0.025 spatial units. Note that use of an unreasonably large
value for spax when the LGCP merely describes local features has the potential to produce
misleading parameter estimates.

In this case, both versions of the minimum contrast method for estimating 0',3} and ¢y
differ somewhat in terms of their respective ideas of the two parameters. Indeed there is a

mildly disappointing match, in both trend and discrepancy, between the optimal parametric
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Figure 3.17: Minimum contrast procedures for the spatial dependence structure of the
AEGISS data, via the time-averaged K-function (left) and PCF (right), and ‘optimal’ curves
based on the Gaussian and Stable correlation functions.

and nonparametric versions of K (s)%2%. The plots of log[g(s)], however, show a more suitable

parametric versus nonparametric agreement.

One possible option to increase our confidence in the selected parameters (especially
with respect to K) would be to visually explore the fits arising from the use of different
correlation functions for r, but there is no guarantee any ‘better’ matches will be found;
indeed the very definition of a ‘better match’ in this general situation is also extremely
difficult. This is highlighted with additional experimentation using the Gaussian and Stable
correlation functions (cf. Section 3.2.1). Figure 3.17 shows the minimum-contrast-optimal

parametric curves arising from this modification to the spatial dependence structure.

The trend mismatch in the K-function plot remains, suggesting no real practical improve-
ment in model specification should we select the Gaussian or Stable correlation functions
over the Exponential. It does appear in both cases that the Stable curves are more visu-
ally appealing than the Gaussian. It is conceivable that there are additional factors out
of our control which are contributing to the almost linear appearance of the nonparamet-
ric K-function plots for s > 0, in turn resulting in the slightly disappointing parametric
matches for any of the candidate correlation functions. One reasonable conjecture concerns
the resolution of the recorded data; the number of duplicated coordinates which arise when
the temporal marking of the events is ignored may be adversely affecting the validity of the

estimators of the second-order spatial characteristics at certain lags.

At any rate, it is clear that altering the specification of the correlation function for the
AEGISS data has had little if any success in producing nonparametric versus parametric
trend matches that are superior to those originally assumed. For this reason, the findings
discussed above, the illustrative nature of this example, and the fact that we aim to follow
the same modelling strategies used by Diggle, Rowlingson and Su (2005), we will remain

with the Exponential form of the correlation function in this analysis, and incorporate only
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time point.

the results from use of g. That is, we set &7, = 3.751 and q?)w = 0.0054.

Estimation of 6 is performed using (3.27), and our choices of &i and &)w. Figure 3.18
provides a visual of the C (3.22) using the optimal estimate of 6 versus C (3.23). Time
is measured in days, with each time interval equal to a single day. Minimum contrast is
performed over lags up to vpax = 14.

Inspection of Figure 3.18 indicates a satisfactory match between the nonparametric ¢
and optimally selected theoretical C. Our estimate of the temporal correlation parameter
is § = 2.321. Experimentation with varying Vmax (not shown) had minimal impact on the
resulting parameter estimate.

Finding a method of computing the aforementioned exceedance probabilities requires us
once again to consider the interpretation of the various components of our model. Note that
the ‘natural’ or ‘expected’ background variation is captured in this case for the most part
by the deterministic trends (y and 1. We would expect this deterministic spatiotemporal
behaviour of disease occurrences to be affected by small to moderate levels of residual spa-
tiotemporal dependence; accounted for by the stochastic component for which we have just
obtained the requisite parameter estimates. Following Diggle, Rowlingson and Su (2005),
we define an exceedance of the expected levels of variation and correlation in the observed
spatiotemporal intensity of cases to occur when the residual process at location  and time
t positively breaches some pre-defined threshold e, based on the observed data. This is
empirically estimated using the conditional field realisations from the MALA, such that the
probability of exceedance P.(x,t) = P{exp[Z(x,t)] > e|data up to t} is calculated via the
proportion of (retained) fields that have recorded exp[Z(«,t)] > €. Thus, the higher P, (x,t),
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the greater the chance that we have in fact observed ‘abnormally large’ intensity levels (given
historical data), and we may, for example, visually ‘flag’ these localisations on subsequent
plots of either the posterior mean spatial intensity functions over W at each time point as
an animation, or on similar maps of the exceedance probabilities themselves.

Definitions of appropriate thresholds can be subjectively chosen based on past experience,
or, perhaps more sensibly, by targeting sufficiently large exceedance probabilities as the Ph-
quantiles. Using the properties of the log-Gaussian distribution these are easily derived. For
a specific probability p, € = exp|uy+0,®~1(p)] where @~1(-) denotes the quantile function of
the standard normal distribution. Under our assumed model, jiy, = —0.5012#, and we replace
012/) by its minimum contrast estimate, giving ¢ = exp[1.94®~1(p) — 1.88]. The interest is
typically in high exceedance probabilities; P: € {0.99,0.95,0.9}. Via the above formula, the
corresponding thresholds for the AEGISS analysis are ¢ € {13.88,3.71,1.83}.

We are now ready to execute the spatiotemporal LGCP MALA using (3.55) and (3.56).
Predictive distributions are generated for the last 5 days of data; based on 6 and Figure
3.18 we assume in addition that only the previous 5 days impact the intensity at any given
time (as for larger lags it seems we have temporal independence). Thus, we run 5 individual
MALAs, with the target time of interest being T"— 4 up to T = 1095; for predictions at
T — 4, for example, we take into account the data from times 7'— 9 to T'— 5 (as well as
the T'— 4 data themselves). Note that were we to specify a large enough ‘historical’” window
only one MALA would need to be run; the choice of separate MALAs was made here for
computational reasons.

The spatial discretisation is set with (M — 1) x (N — 1) = 64 x 64 and (Mey — 1) X
(Next — 1) = 128 x 128 (finer resolutions are of course possible with an obvious impact on
computational expense). Each MALA is run for 120000 iterations with a burn-in length
of 20000, and thinned by retaining every 100*" spatiotemporal field, yielding a set of 1000
realisations from which to calculate posterior means of the intensities and exceedance prob-
abilities on each of the 5 days of interest. Preliminary runs lead us to select h = 0.004 as an
appropriate tuning parameter for the algorithms.

Inspection of diagnostics in the same way as the Humberside example indicates conver-
gence was successfully achieved. Figure 3.19 shows one such example. These trace plots
from the MALA of the value of the Gaussian field Y at each retained iteration for three
randomly selected cells corresponding to the final day of data T also display good mixing of
the chain.

The product of @, 7] and the posterior means of the exponentiated spatiotemporal fields
obtained from the MALAs for the ‘final’ day of each of the days of interest constitute our
prediction of the intensity 1& Figure 3.20 shows the predicted intensities for the days T'—4 to
T — 1, upon which we have superimposed the observations occurring on that day, as well as
the previous days’ observations (restricted to just the single previous day for visual clarity).
The most recent day of observations, clearly of the most interest from a disease surveillance
perspective, is displayed separately in Figure 3.21.

Immediately noticeable from the posterior intensity plots, like the Humberside example,
is the fact that the highest peaks in the surfaces naturally correspond to the cells which

contain the most recent observations. By including the previous days’ observations on each
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Figure 3.19: Trace plots of the realised, retained values of Z for three distinct, randomly
selected cells (identified simply as ‘blue’; ‘red’, and ‘green’) in the defined AEGISS space-
time window for the MALA at T = 1095.

image, we can see the effect on the ‘current’ intensity — there remain higher intensity levels
where points may not be currently observed, but where they have very recently occurred.
Sensibly, the intensity at 7' — 2 is the ‘flattest’: there happened to be no observations on
that day.

Recall that the exceedance probabilities, the means by which we will attempt to detect
anomalous behaviour in the spatiotemporal occurrence of disease cases, are defined according
to the positive extremity of the predicted residual process conditional upon the observed
data. If, at a given space-time location, the residual process breaches a predefined threshold,
this is classified as an exceedance; the collective proportions of exceedances from the retained
exponentiated fields after a MALA run (or runs) then constitute the spatiotemporal maps of
empirical exceedance probabilities. Another interpretation of this definition is recognition
of the fact that when a ‘sufficiently large’ number of cases are observed in a ‘sufficiently
contained’ spatiotemporal localisation with respect to the assumed global trends, the residual
process attempts to capture this with exceedingly high values.

Figure 3.22 displays the 95" percentile spatial exceedance probabilities (corresponding
to a threshold of é = 3.73) for the AEGISS data for days T'— 4 to T' — 1; the most recent
day T is given in Figure 3.23.

As we would expect, the magnitude of the probabilities reflects the observed data. The
final time point of interest, 7', provides little reason for concern. The highest calculated
exceedance probability is less than around 0.7; in practice we would most likely be interested
in higher probabilities (over, say, 0.9), since this would bolster our confidence in interpreting
such an occurrence as a true ‘anomaly’. However, the choice of an appropriate maximum

limit for the interpretation of larger exceedance probabilities as ‘anomalies’ does remain at
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the discretion of the researcher, and can be application-specific. Inspection of the preceding
time points in Figure 3.22 suggests little else, with the exception of the plot corresponding to
time T'—3. We note two particular cells which have returned high proportions of exceedances.
Interpretation of such a result, however, must be made with care. Diggle, Rowlingson and
Su (2005) sensibly mention that identification of genuine outbreaks or anomalies based on
such a model must of course take into account the neighbouring cells in both space and time.
Only the persistent presence of high exceedance probabilities over multiple time points in
the same spatial area should warrant flagging, and possible intervention, by the relevant
health officials.

3.5 Simulation studies

Here, we begin the novel numerical explorations into key issues concerning modelling and
prediction based on the LGCP. The importance of sensible estimation of the parameters
controlling the dependence structure of the latent Gaussian process is crucial, and it is this
issue which dominates the following three simulation studies.

These studies aim to contribute to the knowledge concerning the performance of the
minimum contrast parameter estimation methods described in Section 3.2, as well as how
variation of the correlation parameters affects subsequent analyses. We begin with Study 1
(Section 3.5.1), shedding light on the difference between using the K-function or the PCF
when estimating the relevant parameters in spatial analyses. Section 3.5.2 expands on this
issue by introducing Study 2, demonstrating how variation of the level of smoothing applied
to a kernel estimate of a ‘global’ spatial trend affects the estimation of the parameters of
the residual stochastic process. Finally, we explore the impact of parameter variation on the
detection of anomalies via exceedance probabilities (as defined and utilised in the AEGISS
example above) in spatiotemporal surveillance in Study 3 (Section 3.5.3). In Studies 1 and

2, we suppress the subscript ) for ease of notation.

3.5.1 Study 1: K or g?

We have available two sensible choices for estimation of the parameters concerning spatial
dependence in an assumed Cox process via either the K-function or pair correlation function
(g9). Some of the simplest and most intuitive forms of the covariance structure are concerned
with two parameters: the variance of the Gaussian field 02 and the scale of dependence, ¢.
We will restrict attention to this setting.

Though representing much the same information, it is unclear whether one performs
better than the other in terms of producing estimates of the required parameters close to the
true, unknown values. This is particularly important in spatiotemporal models; estimation
of the parameter(s) controlling the temporal correlation depend directly on the estimates

arrived at for the spatial component. Illian et al. (2008) note in Section 4.3.2:

“The question which of the two functions, g or K, yields the better minimum

contrast estimates remains unanswered and requires further research...”
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The authors go on to say, without further exposition, that their experience tends to favour
the PCF. We therefore aim to establish some initial numerical results with respect to this
issue.

We define nine stationary, isotropic log-Gaussian Cox processes A(x) = exp[Y (x)], with
Y =~ Y and & € W. All are controlled by the ubiquitous Exponential correlation structure
such that Cov[Y (x1),Y (z2)] = o?exp[—||z1 — x2||/¢]. Working on the unit square W =
[0,1] x [0, 1], we design the Minimum Contrast Scenario (MCS1 through MCS9) covariance
structures by providing three possible values for each of o2 and ¢; small, medium, large in
the sense that o2 € {1,2.5,5} and ¢ € {0.05,0.1,0.25}.

Figure 3.24 shows a single example realisation for each MCS, best displayed using a
correspondingly generated data set (in the Figure, each point pattern has N(W) = 1000).
The impact of varying o2 and ¢ is clear, with larger variance leading to clusters of points that
are more concentrated, and a larger scale leading to patterns that vary in appearance more
slowly due to the longer range of dependence. According to the ordering of the definitions in
this image, it is therefore easy to see why MCS3 has the smallest, most tightly concentrated
clusters (smallest ¢, largest 02) and MCS7 produces the most diffuse patterns (largest ¢,
smallest o?).

For each scenario, 100 intensity functions are generated, each of which subsequently
generates a point pattern of size n € {300,900} (although technically these figures should
represent the expected value of the respective Poisson distributions to determine the actual
sample sizes, we force them to be fixed to remove this source of variation). Minimum contrast
estimation is then performed on the realised data set, using either K or g. We build on
the previous experiences of other authors (e.g. Stoyan and Stoyan, 1994; Diggle, 2003) and
set the upper contrast limit, function transformations and bandwidth for g as outlined in
Section 3.2.3 and as used in the examples in Section 3.4. Minimisation was performed using
the Nelder-Mead optimisation algorithm (Nelder and Mead, 1965).

Results by way of the mean variance and scale parameters 2 and ¢, along with their
empirical standard errors, are reported in Table 3.2. There are several comments that
can be made. Almost all estimates appear to underestimate the true values to a certain
extent. These discrepancies become more pronounced as we increase the range of dependence
through ¢ (e.g. MCS8, MCS9), which is understandable — we would expect the quality
of the parameter estimation to degrade as the window in which we are working becomes
inadequately small in terms of measuring the actual, relatively large, scale. Indeed, this is
supported by conclusions drawn in some earlier works e.g. Heinrich (1993) deals with some
specialised cases; recall also the results in Guan and Sherman (2007): under reasonable
conditions we should expect the minimum contrast procedures to converge to the true values
as the area captured by W and the sample size increases. However, even the small-scale,
low variability estimates (e.g. MCS1, MCS2) exhibit this negative bias, for both K and g.
Though well within what we could expect ‘reasonable variation’ given the standard errors
for the estimates in these scenarios, it is the persistent presence of the underestimation for
both o2 and ¢ which is concerning.

Whether K or g is better at estimation of the required parameters is difficult to gauge

using just Table 3.2. To aid in this, we produce plots of the absolute relative error (ARE)
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Figure 3.24: Examples of the kinds of point patterns produced under MCS1 to MCS9.
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K g

MES " G eld) | 7 sels?) | b seld) | 5 (seld?)

| {$=005, 300 | 0.047 (0.018) | 0.964 (0.223) | 0.043 (0.015) | 1.091 (0.226)
o2 =1} |[900 | 0.042 (0.011) | 1.004 (0.189) | 0.043 (0.010) | 1.034 (0.161)

, {6=0.05 3000044 (0.013) | 2362 (0.601) | 0.043 (0.012) | 2.421 (0.575)
o2 = 2.5} |[900 | 0.041 (0.013) | 2.305 (0.578) | 0.042 (0.012) | 2.311 (0.554)

5 {9=005 [ 300 0043 (0.014) | 3.844 (0.876) | 0.042 (0.013) | 3.906 (0.943)
o2 =5} |900 | 0.044 (0.014) | 3.934 (0.953) | 0.044 (0.013) | 3.973 (1.029)

, {#=01, 300 [ 0.082 (0.034) | 0.925 (0.285) | 0.074 (0.028) | 1.013 (0.272)
0% = 1} 900 | 0.076 (0.022) | 0.947 (0.233) | 0.075 (0.020) | 0.985 (0.224)

s {0=0.1, [ 300 | 0.079 (0.027) | 1.951 (0.485) | 0.074 (0.024) | 2.040 (0.495)
o2 = 2.5} |[900 | 0.074 (0.023) | 2.044 (0.446) | 0.072 (0.021) | 2.087 (0.433)

s {#=0.1, [ 300 | 0.074(0.030) | 3.195 (0.862) | 0.071 (0.027) | 3.277 (0.866)
o2 =5} [900 | 0.073 (0.023) | 3.481 (0.892) | 0.068 (0.021) | 3.607 (1.028)

. {¢$ =0.25, 300 | 0.165 (0.075) | 0.725 (0.263) | 0.137 (0.062) | 0.828 (0.262)
o2 =1} [900 | 0.162 (0.062) | 0.775 (0.280) | 0.150 (0.054) | 0.827 (0.283)

g {#=025 [ 300 | 0.153 (0.054) | 1.625 (0.579) | 0.138 (0.049) | 1.720 (0.598)
o2 = 2.5} |[900 | 0.148 (0.052) | 1.571 (0.454) | 0.138 (0.046) | 1.636 (0.477)

g {9=025 [ 300 | 0.134(0.050) | 2.412 (0.726) | 0.124 (0.048) | 2531 (0.797)
o2 =5} |[900 | 0.128 (0.046) | 2.583 (0.656) | 0.119 (0.044) | 2.685 (0.719)

Table 3.2: Study 1: MCS results, based on the K-function and PCF.

using the mean parameter estimates in the table. Specifically, for each MCS, we compute
AREy (¢) = |¢ — ¢|/¢ and AREy (52) = |62 — 02|/0? for both V = K and V = g. These
quantities are plotted separately for the two sample sizes in Figure 3.25.

As we observed in the table, the discrepancies between the true and mean estimated
parameter values worsen as the scale and variability of the dependence structure increases
alongside the MCS number. Generally speaking, it appears that the K-function produces
better estimates than g of the scale parameter ¢, at the cost of poorer estimates of the

variance parameter o2,

and vice-versa. It is therefore extremely difficult to conclude if,
overall, one function produces more accurate results than the other. Increasing the sample
size has had little impact on the pattern of AREs, though it could be argued that the ‘poorer’
0?2 estimates from K are closer to those obtained from ¢ than before.

These results have demonstrated a tendency for the minimum contrast methods applied
to spatial LGCPs using the K- and pair correlation functions to underestimate the true
values. Now, recall once more the findings in Guan and Sherman (2007), discussed in
Section 3.2.3, where the authors theoretically demonstrated consistency of minimum contrast
parameter estimates using the K-function. It would seem that at the sample sizes employed
here, the discrepancies of the estimates with respect to the true values is still noticeable.
Particularly interesting is Figure 1 in Guan and Sherman (2007). Visually inspecting the
histograms of their estimated ¢ and o2 values (1000 iterations, sample sizes of 400), it
does appear that underestimation (of the mean result) is also present in their work (though
they do not comment on this feature explicitly). This is especially visible in the plots
corresponding to their estimates of o2. Our study mirrors these tendencies, and it would
seem similar behaviour is occurring in the PCF results.

It could be the case that the exhibited discrepancies are of negligible practical concern;
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Figure 3.25: Absolute relative errors (ARE) for the mean parameter estimates produced
from the simulations of MCS1 to MCS9, with respective labelling ‘K1’ to ‘K9’ for the K-
function results, and ‘g1’ to ‘g9’ for the PCF results.

this will be the focus of Study 3 below. The issue of K versus g is unclear, though our results
have indicated conflicting performances depending on which parameter we are focused on.
One possible ‘rule-of-thumb’ strategy, based on Figure 3.25, would be for the researcher
to decide which parameter is of the most interest, choosing K if it is ¢ and g if it is o2.
Alternatively, we might choose to use K to estimate ¢, ignoring the K-chosen o2, but
then use g to estimate o2, ignoring the g-chosen ¢. As always in numerical experiments,
however, it is stressed that appropriate caution should be observed with respect to the drawn

conclusions.

3.5.2 Study 2: Deterministic bandwidth impact on spatial param-

cter estimation

The previous study specifically examined the performance of the popular minimum contrast
approach to parameter estimation for the stationary and isotropic LGCP. However we argued
in Section 3.1.3 that it is more natural to consider the LGCP as a stochastic term describing
‘residual” or local correlation, and involve a multiplicative deterministic quantity to actually
define the global structure of any heterogeneity. We may subsequently take advantage of
the assumption of second-order intensity-reweighted stationarity, and estimate the spatial
residual process parameters o2 and ¢ through straightforward extensions of K and ¢; namely
their ‘inhomogeneous’ counterparts (Baddeley et al., 2000).

As we have also seen, particularly in Chapter 2, kernel smoothing provides a convenient
and flexible method of estimating the underlying spatial intensity functions deterministically.
Pivotal, however, is the choice of bandwidth(s) used to smooth the global trend; this having
an obvious impact on the resulting minimum contrast estimates of the stochastic process

parameters. Too great, and we will overestimate the true level of dependence. Too small,
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and we may miss detecting any correlation whatsoever.

It is unknown just how sensitive the resulting estimates of 02 and ¢ are to the initial
choice of smoothing should we assume our intensity is modelled this way, namely A(x) =
¢(x)exp[Y (x)], where ((x), the global spatial trend, is replaced by f(w) a kernel-smoothed
intensity estimate; & € W, W = [0,1] x [0,1]. Study 2 therefore involves specification of
several synthetic Deterministic Minimum Contrast Scenarios (DMCS) to address this issue.

We begin by designing three different fixed global intensities — with what we deem to
roughly be described as mild, moderate, and strong levels of ‘natural’ inhomogeneity; la-
belled ‘A’, ‘B’ and ‘C’ respectively. These, defined using appropriately scaled normal mix-
tures, are displayed in Figure 3.26 and given algebraically in Table 3.3, where ¢w (a,bl)
denotes the two-dimensional normal density edge-corrected to W and centered at a with

scalar standard deviation b; I is the 2 x 2 identity matrix.

Label | DMCS | ((x) o ...

0.1+ 0.3¢w (z — [0.5,0.5]7,0.1T) + 0.3¢w (x — [0.7,0.6] T, 0.11)
+0.3¢w (z — [0.8,0.9]7,0.2I)

0.1+ 0.1¢w (z — [0.1,0.9]7,0.21) + 0.1¢w (= — [0.3,0.9] T,0.21)

B 3,4 +0.2¢w (x — [0.5,0.8]7,0.21) + 0.1¢w (z — [0.7,0.9] T, 0.21)
+0.1¢w (z — [0.9,0.9]7,0.2I) + 0.3¢w (x — [0.5,0.1]T,0.11)

0.1+ 0.3¢w (z — [0.1,0.5]7,0.11) + 0.2¢w (z — [0.7,0.9] ,0.11)
+0.4¢w (z — [0.9,0.2]T,0.051)

A 1,2

C 5,6

Table 3.3: Definitions of global spatial trends used in Study 2.

It is the product of these global intensity functions and the stochastic component which
will define the intensity for each DMCS, from which each data set will subsequently be gener-
ated. For each global trend, the magnitude of the residual correlation is assigned one of two
possible levels: ‘concentrated’, with 02 = 9 and ¢ = 0.009, and ‘diffused’, with 02 = 2 and
¢ = 0.02 (the Exponential correlation function is again employed as r). We therefore have
six scenarios, with DMCS1 through DMCS6 representing ‘A /Concentrated’, ‘A /Diffused’,
‘B/Concentrated’, ‘B/Diffused’, ‘C/Concentrated’ and ‘C/Diffused’ global/local inhomo-
geneities respectively. It is important to remember that the parameters controlling depen-
dence in the presence of a deterministic intensity as we have defined in Section 3.1.3 and

use in this study must clearly be considered on far smaller, local scales in comparison to

0.8 - 0.8 - 08 -

06 - 06 - 06 -

0.4 - 0.4 - 044

02 02 02 W B

Figure 3.26: Deterministic spatial trends for Study 2.
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intensities whose heterogeneity is due to correlation alone (as originally defined in Section
3.1.1 and used in Study 1). Also, note that we use the terms ‘concentrated’” and ‘diffused’
rather loosely here and that all additional dependence is of course attractive, not repulsive.
‘Concentrated’ refers to the fact we observe short-range, more intense clusters, and ‘diffused’
refers to a longer range yet less intense level of residual correlation.

To give the reader a better idea of the behaviour of these slightly more complicated
scenarios, Figure 3.27 gives single point pattern examples of size N(W) = 1000 for each of
DMCS1 through DMCS6, alongside an example of a point pattern generated using the fixed
heterogeneous spatial trend alone (‘no correlation’).

The study proceeds as follows. For each scenario, 100 realisations of the intensity
function are generated, followed by the generation of corresponding point patterns of size
n € {300,900}. Estimation of the global trends is then performed using a fixed-bandwidth
kernel density estimator with the Gaussian kernel function (for computational reasons and
the complexities of bandwidth assignment the adaptive estimator is not considered here).
This estimation is conducted using a sequence of bandwidths between 0.03 and 0.3, followed
by minimum contrast estimation of o and ¢ using K and g with the same calibrations as
earlier; though sy, is reduced to 0.05 in recognition of the fact the LGCP is now describing
only local features.

Considering the two parameters as coordinates, Table 3.4 gives the pair of mean estimates

52 and ¢ which are nearest to the coordinates of the true values via what we will term the rel-

ative Euclidian distance (RED). This is given as REDy (¢, 52) = \/AREV (62)2 + AREy (¢)2,
where AREy () is as defined in Study 1 (V = K or V = g); thus we identify (¢,,02) =
argmin REDy (¢, 52). Also given is the bandwidth h, used in kernel estimation of the global
trend ¢ which achieved the result. Visually, the results for n = 900 are given in Figures 3.28
(DMCS1 to DMCS3) and 3.29 (DMCS4 to DMCS6).

All scenarios seem to perform relatively well when it comes to estimation of the scale
parameter ¢, though there is considerable underestimation of o2 in the ‘concentrated’ prob-
lems when 02 = 9, where it seems the minimum contrast technique, coupled with the kernel
estimation of the global trend, is simply unable to reach such high levels on our given obser-
vation window. There appears to be little difference in the values of ¢,, 72 and h, between
g and K, though there is a tendency for g to provide slightly smaller values of ¢, with
slightly larger values of 32 when compared with K. Mirroring Study 1, altering the sample
size as we have done has had minimal impact on the estimation of the parameters in these
scenarios.

Perhaps most interesting, however, is the fact that the ‘optimal’ pair of parameter means
in Table 3.4 is consistently achieved with rather large bandwidths. Smoothing parameters
for the Gaussian kernel intensities in the order of 0.2 on the unit square correspond to what
many would describe as oversmoothed estimates; an ‘off-the-shelf’ bandwidth selector such
as least-squares cross-validation (LSCV) almost always produces bandwidths less than 0.1
for the data sets we considered.

Intuitively, this does make sense. Many bandwidth selectors for kernel intensity estima-
tion, like LSCV, are derived with some form of the assumption that we aim to describe all

features of the density from which the points have been generated with the kernel estimate

109



DMCS1 DMCS2

Alno correlation AlConcentrated (phi=0.009 sigma”2=9) A/Diffused (phi=0.02 sigma’2=2)

DMCS3 DMCs4

Bino correlation B/Concentrated (phi=0.009 sigma#2=9) BIDiffused (phi=0.02 sigma’2=2)

Cino correlation DMCS5 DMCS6
C/Concentrated (phi=0.009 sigma”*2=9) C/Diffused (phi=0.02 sigma”2=2)
oo © ° &0
°° o *oaB
oa® ©
8 o
% 8
%o o%
o ®
s ©
°© L

Figure 3.27: Examples of the kinds of point patterns produced under DMCS1 to DMCS6,
alongside uncorrelated realisations based on the global trends ‘A’; ‘B’ and ‘C’ alone.
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DMCS | V | n by (s.c.[b,]) a2 (s.e.[0?]) N
300 || 0.0094 (0.0002) | 5.7853 (0.0971) | 0.19

. |7 [9007| 0.009T (0.0002) | 6.4541 (0.0998) | 0.21
K 300 || 0.0092 (0.0002) | 6.3661 (0.0976) | 0.21

900 || 0.0092 (0.0002) | 6.2515 (0.0762) | 0.20

300 || 0.0197 (0.0005) | 2.1285 (0.0362) | 0.21

, |7 [79007]|0.0199 (0.0004) | 2.098 (0.0339) | 0.20
K 300 || 0.0198 (0.0005) | 1.9169 (0.0469) | 0.18

900 || 0.0204 (0.0004) | 1.9388 (0.0345) | 0.19

300 || 0.0095 (0.0001) | 5.6898 (0.0762) | 0.18

3 9 17900 [ 0.0092 (0.0002) | 6.3714 (0.1037) | 0.20
K 300 || 0.0095 (0.0002) | 6.3532 (0.0763) | 0.21

900 || 0.0094 (0.0001) | 6.3083 (0.0740) | 0.20

300 || 0.0198 (0.0004) | 2.1347 (0.0318) | 0.20

, |7 [900 || 0.0197 (0.0003) | 2.1070 (0.0270) | 0.19
K 300 || 0.0201 (0.0004) | 1.8537 (0.0397) | 0.17

900 || 0.0206 (0.0003) | 1.8992 (0.0250) | 0.18

300 || 0.0093 (0.0002) | 5.4666 (0.0710) | 0.14

s |7 900 [ 0.0092 (0.0002) | 5.8938 (0.0775) | 0.15
K 300 || 0.0094 (0.0002) | 6.1425 (0.0686) | 0.16

900 || 0.0092 (0.0001) | 6.0686 (0.0742) | 0.15

300 || 0.0188 (0.0004) | 2.1596 (0.0372) | 0.14

s | 900 [[0.0199 (0.0003) | 2.1043 (0.0307) | 0.14
K 300 || 0.0205 (0.0005) | 1.9351 (0.0492) | 0.13

900 || 0.0202 (0.0004) | 1.8398 (0.0276) | 0.13

Table 3.4: Study 2: optimal pair of mean parameter estimates which have minimised the
RED to the true values, with parenthesised standard errors, and corresponding deterministic
bandwidth.
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Figure 3.28: Plotting the results of Study 2 for n = 900: DMCS1 to DMCS3. Variability of
each mean is given as +2s.e.; ‘|’ for ¢, > for 2. The pair minimising the RED is marked
with a ‘x’. Points black—grey indicate increasing deterministic bandwidth. The location of
the true parameter values is given with dashed lines.
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itself. However, the global trend ( clearly does not solely describe the behaviour of the point
process under scrutiny in this situation. In an effort to capture both the global heterogeneity
and the dependency imparted by the residual LGCP, stock-standard bandwidth selectors
are therefore very likely to yield inappropriate bandwidths for estimating the global trend
alone, which in turn will adversely affect our minimum contrast estimates describing the
actual levels of dependency present. The notion that we should, to a certain extent, over-
smooth the nonparametric estimate of the deterministic trend for our attractive processes
is reasonable, and nicely illustrated by these results — a ‘general’ idea of the overall, global
trend requires a large bandwidth, leaving the residual LGCP to be responsible for describ-
ing ‘finer’ details. As we move from the mild global heterogeneity described by ‘A’ (DMCS1
and DMCS2) to the stronger natural heterogeneity specified by ‘C’ (DMCS5 and DMCS6)
note that the bandwidth yielding the parameter estimates nearest to the truth does drop off
somewhat from around 0.2 to roughly 0.15. Presumably, the smaller bandwidth is required
to adequately capture the modes of the ‘more heterogeneous’ global intensity. At the end
of the day however, 0.15 is still considered to be a very large level of smoothing for our unit

square W.

Inspection of Figures 3.28 and 3.29 shows similar trends between g and K for each
DMCS. The inability of both minimum contrast using both of these functions to capture
the true variance for the ‘concentrated’ scenarios is clear in the plots of DMCS1, DMCS3
and DMCS5. This is more difficult to explain; it is likely affected by both the corresponding
true ¢ and the size of W. The images also highlight the dangers associated with ‘reckless’
oversmoothing. This will effectively force the global trend to be uniform, and in contrast
to undersmoothing, will therefore leave the residual LGCP responsible for describing all
heterogeneity in the points. In turn, we might expect the resulting correlation parameters

to be overestimated.

This study has demonstrated the impact of varying the bandwidth used to smooth a
kernel estimate of the intensity of a global spatial trend, when the spatial intensity can be
multiplicatively decomposed using this deterministic global trend and a unit-mean LGCP
describing residual correlation. The simulations have revealed little difference between use
of g and K for subsequent minimum contrast estimation of the residual process parame-
ters. In particular, we conclude that there appears to be a preference towards restrained
oversmoothing of the global trend estimate in order to adequately capture the true levels
of dependence when we are dealing with the kind of attractive processes more likely to be

observed in epidemiological applications.

Nevertheless, it should be stressed that this conclusion merely reflects the results from a
set of artificial scenarios. In practice, it is possible that expert epidemiological knowledge can
also justify the choice of bandwidth and in some settings lead to the same conclusion. For
example, the researchers may well have an educated idea of the effective infective range of the
disease under scrutiny. If this is on a small scale relative to the size of W, then they may wish
to use the stochastic component to capture this behaviour as residual correlation, leaving
an oversmoothed deterministic component to appropriately model the fixed heterogeneity

in overall disease prevalence throughout the study region.
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3.5.3 Study 3: Spatiotemporal exceedance probability sensitivity

The previous two simulation studies have examined the performance of the commonly em-
ployed, albeit quite ad hoc, minimum contrast approach to parameter estimation of the
terms defining the correlation structure in the spatial LGCP. They illustrated the degree to
which we can expect the estimates of the spatial parameters to vary, and the rates at which
they do so when additional aspects of the modelling framework, such as the deterministic
kernel-smoothed heterogeneous ‘global’ intensity, are present. Though these results are very
useful on their own, a key question remains: does this degree of parameter estimate vari-
ation actually matter in practice? We pose the question in the context of spatiotemporal
disease surveillance where, as in the AEGISS analysis, the goal is to produce real-time maps
of exceedance probabilities which describe the chances of having observed ‘anomalies’ (i.e.
unusually extreme behaviour) under the assumed model at each space-time location.

To examine this issue, we design three distinct Spatiotemporal Scenarios (STS) each
of which have a ‘true’ form of the space-time stationary, isotropic Gaussian field which,
following the exponentiation that provides the unit-mean ‘residual’ LGCP, constitutes the
sole ingredient for computing the exceedance probabilities; see Section 3.4.2. The true
Gaussian field is set as a single, unconditionally generated realisation with a pre-defined ai,
¢y and 0; using the Exponential correlation function throughout. Spatially constrained to
the unit square W, each STS is split into two versions according to a pre-defined temporal
interval with a maximum number of integer time points 7" and constant mean number of
observations 7 in the sense that n = n(t); t € {1,...,T}. In all cases, the global spatial
trend is ignored (i.e. made uniform such that (y(x) =1 for all x € W).

The two versions of each STS have either 7' = 10,7 = 100 or T" = 100, = 10, i.e.
either a spatiotemporal field defined over 10 distinct time points with a mean number of
100 observations (Poisson distributed) at each time, or a longer-term field over 100 time
points but with only a mean of 10 observations per time. STS1 has ai =4, ¢y, = 0.04,
0 = 4; STS2 has 03, =38, ¢y = 0.1, § = 6; and STS3 has Ji =2, ¢y =0.02, 0 = 2.
The first scenario, STS1, represents data sets exhibiting a moderate level of dependence and
cluster concentration relative to the others: STS2 has the ‘longest-reaching’ dependencies
in terms of the spatial and temporal lags; as well as the most extreme variance. STS3
denotes a considerably ‘weaker’ or ‘shorter’ dependence structure, as well as the smallest
field variance. For each of the six problems (three scenarios times two versions), 10 distinct
data sets were generated and stored; each one of these representing a single instance of a
hypothetically observed data set under each set of conditions for a single realised sample
size determined by the original unconditional spatiotemporal field realisations defining the
STSs themselves.

Phase 1

This simulation study takes the form of two phases, the first of which involves minimum
contrast estimation of the three parameters controlling the stochastic covariance. Inciden-
tally, this phase in itself can be considered interesting; a (limited) opportunity to examine

the accuracy and precision of minimum contrast estimation of the temporal dependence
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parameter 6 being provided. For a given STS and version, and using the corresponding 10
pre-generated data sets, O'i, ¢y and 0 are estimated for each; the former two based on the
time-averaged version of either K or g, the latter on C using the results arrived at for Ufb and
¢ Calibration of the contrast integrals (e.g. function transformation) follows the decisions
made in Section 3.2.3 and also followed in the previous two simulation studies. Table 3.5
gives the mean of the estimated parameters (612/}, (;_Sw and 5) as well as the corresponding

standard errors for each scenario and version.

STS Tin | V| ¢y (selpy)) ay, (sefag]) 6 (s.e.[0])

1 10 100 | | 0.036T (0.0002) | 3.9810 (0.0196) | 1.5673 (0.0094)

(6 =004, || 1V g | 0.0376 (0.0001) | 3.9039 (0.0183) | 1.5294 (0.0087)
> =4, |00 10 | /| 0-0263 (0-0003) | 3.6088 (0.0335) | 4556 (0.0595)
0 =4} ’ g | 0.0287 (0.0002) | 3.1826 (0.0152) | 3.9776 (0.0202)

> 10 100 | 7| 01043 (0.0002) | 52463 (0.0065) | 4.4921 (0.0196)
{6=01, ’ | 0.0956 (0.0002) | 5.4259 (0.0069) | 4.9436 (0.0254)
=8, |00 10 || 0-0522 (0:0003) | 50739 (0.0189) | 6.1134 (0.0405)
0 =6} ’ g | 0.0493 (0.0002) | 5.0622 (0.0162) | 6.1699 (0.0318)

3 10 100 |7 | 00302 (0.0005) | 1.8243 (0.0250) | 0.8185 (0.0067)
(o=002 |V g | 0.0226 (0.0003) | 2.1881 (0.0199) | 0.9411 (0.0062)
o? =2, 100: 10 K | 0.0136 (0.0004) | 2.0677 (0.0732) | 1.6500 (0.0363)
0 = 2) 10— 70,0099 (0.0002) | 2.6932 (0.0094) | 1.9772 (0.0055)

Table 3.5: Study 3, Phase 1: Means and associated standard errors of the minimum contrast-
estimated correlation parameters for both versions of each STS, based on the hypothetically
observed data sets.

An examination of these figures shows generally what we would expect to see given our
design specifications for each STS, though there are some exceptions. Where T' = 10 but
n = 100, note the estimates of the spatial correlation parameters, UZ} and ¢y, tend to be
closer to their true counterparts compared to when T = 100, n = 10. Naturally, the fact
that we have far more spatial data at each possible time dictates these values, based on the
second-order spatial characteristics, should be more reliable than the version where 7' = 100
but 7 is only 10. Unfortunately, this means the estimates of 6 for the T = 10, n = 100
versions suffer for much the same reasons! With far fewer time points in the data sets,
the estimation procedure struggles to accurately capture the the temporal correlation. For
example, note in STS1 for T' = 10, n = 100, the mean estimated spatial parameters are
notably superior than the 7' = 100, n = 10 version (for use of both K and g), but 6 is
drastically underestimated, sitting at around 1.5 (true value is 4). Conversely, inspection of
T = 100, n = 10 gives far superior estimates of 6 at the cost of misspecifying ai and ¢y,
to a greater extent. This story is mirrored in the results for STS2 and once more in STS3,
albeit with some overestimation of the spatial parameters in the latter. Note that STS3
is the scenario which has the weakest range of spatiotemporal correlation, with ¢, = 0.02
and # = 2. Estimation of these ‘finer’ parameters to a similar level of satisfaction as the
earlier scenarios could conceivably require a far larger data set, in both space and time. This
is where the issue of spatial and temporal discretisation levels also comes into play, with

smaller dependency ranges requiring finer discrete approximations in order to be detectable
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in practice. We leave STS3 as-is, and consider this a scenario where the researcher has small-
scale dependence in their space-time data and may therefore be more susceptible to utilising
too coarse a discretisation in conditional simulation, which we perform in the following phase
of this simulation study.

As observed in Study 1 and Study 2, the differences between results based on using either
the K-function or the pair correlation function for estimation of the spatial parameters are
relatively small. It is nevertheless comforting to note that the time-averaged versions of the
relevant nonparametric estimators appear to behave similarly to the ‘spatial only’ estimators.
As a consequence, the differences in estimation of § between K and g is also relatively minor.
One noteworthy point is the fact that in almost all cases, the level of variation associated
with use of g was lower than that of the estimates obtained with K, also noticed in the
previous simulation studies. This is of course of little value, however, if there exists any
considerable bias in the estimates themselves.

Prior to entering Phase 2 of the study, we remark that Phase 1 is essentially a ‘by-
product’ of the procedure necessary for the conditional prediction which follows. To draw
more precise conclusions on the performance of minimum contrast parameter estimation
for the spatiotemporal LGCP, it is of course desirable to use a larger number of data sets.
However, the results observed with the 10 generated sets for each version per STS are
already useful: they are intuitively sensible, and reflect earlier discoveries in the purely
spatial setting. The reason for such a relatively small number of data sets in this simulation
study was made primarily for computational reasons in the operations which follow; these

details will be clarified momentarily.

Phase 2

By now, we have gained a good understanding of the behaviour of minimum contrast param-
eter estimation in terms of the proximity of the estimates to the true values. As mentioned at
the introduction of this study, however, it remains to be seen if these types of discrepancies
impact upon our practical interpretations of the process when we use our observed data to
predict the intensity itself. On its own, this is unfortunately a rather vague challenge. The
computational expense associated with conditional simulation of the spatiotemporal LGCP
(which will in a numerical exercise require multiple MALA runs) dictates that all aspects
of the design of Phase 2 must be carefully considered in order to attain meaningful results
with respect to clearly defined objectives in a computationally feasible way.

Disease surveillance, as described for the AEGISS data in Diggle, Rowlingson and Su
(2005) and Section 3.4.2, is amongst the primary objectives of interest for epidemiological
applications utilising the spatiotemporal LGCP. Flagging of ‘unusual’ space-time clusters of
observations in view of the fitted model is achieved with exceedance probabilities, computed
empirically as the proportion of retained, exponentiated Gaussian fields (from a correspond-
ing MALA run) which exceed a certain user-defined threshold (chosen to be a suitably high
limit such that the researcher is confident in interpreting higher values as a true ‘anomaly’)
at each space-time location. Naturally we should be concerned if, at a given time, the spa-
tial exceedance probability surfaces obtained in practice fail to detect a true anomaly, or

conversely, flag an anomaly where there exists none. When these are interpreted as poten-
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tial disease outbreaks, the consequences of non-detection or false-flagging in terms of public
health as well as economic cost could well be substantial. Do the minimum contrast param-
eter estimates, and the discrepancies they exhibit with reference to the true values, diminish
our ability to arrive at a ‘suitably correct’ representation of exceedances?

Brix and Diggle (2001) and Diggle, Rowlingson and Su (2005) do provide some sensi-
ble conjecture on this issue, albeit without further formal attention. They argue that, in
situations where we have a suitably large data set, uncertainty in the minimum contrast
estimates can safely be ignored when it comes to conditional simulation of a spatiotemporal
LGCP. This statement is made owing to the fact that we use all historical data to estimate
the parameters, yet only the last few time points (user-specified, depending on the perceived
strength of the temporal dependence), with relatively few observations, for prediction of the
‘current’ spatial intensity. We should therefore expect variation in the prediction proce-
dure to dominate (compared to parameter estimation variation); the conditional simulation
algorithm subsequently being relatively insensitive to the choice of initial parameters.

This is a perfectly reasonable notion, but does depend heavily on just how much historical
data we have, as well as the (underlying) expected number of observations per time point.
The fact remains that in both Studies 1 and 2, as well as Phase 1 of the current study, we
have in some cases noticed rather extreme departures of the minimum contrast estimates
from the ‘truth’. Are we to expect that even these kinds of discrepancies will have little
impact on anomaly detection?

This motivates Phase 2, where we use each of the 10 data sets generated from each STS
(and version) to predict the exponentiated spatial Gaussian field at the final time point (as
would be of the most interest in a real-time surveillance setting) using the MALA. MALAs
of length 44000 are run based on (a) use of the true parameter values; (b) use of the K-
function estimated parameters; and (c) use of the parameters estimated with g. In all cases,
there is a burn-in period of 4000 iterations, followed by retention of every 100" iteration.

To compare the estimated intensities arising from the conditional simulations with the
true form of the latent LGCP we first determine, for each scenario and version, which cells
of the (M — 1) x (N — 1) = 64 x 64 grid at the last time point 7' do in fact exceed the
95" percentile threshold. This results in a binary matrix; 1 denoting an exceedance, 0
no exceedance. Label this the ‘true anomaly matrix. For a given STS and version, we
then obtain for each of the 10 data sets a collection of 400 retained posterior exponentiated
spatial Gaussian fields on the same 64 x 64 cells from a MALA of type (a), (b) or (c).
Subsequent exceedance probability surfaces are computed based on the 95" percentile of
the corresponding lognormal distribution (this is dependent in each case on the variance, or
estimated variance, of the Gaussian field itself). The performance of the MALAs is judged
based on those cells with empirical probability greater than 0.5, that is, the cells for which
more than half of the realisations have flagged an exceedance. This results in another binary
structure which is labelled the ‘predicted anomaly matrix’.

The Jaccard similarity coefficient is used to evaluate the agreement between the true and
predicted anomaly matrices. Briefly, for two sets A and B, the Jaccard index is calculated
as the size of their intersection divided by the size of their union; J = |AN B|/|AU B|;

0 < J < 1. In our case, the sets represent the two anomaly matrices; elements are the
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cell-wise ‘exceedance’ (1) or ‘no-exceedance’ (0) flags. By summing the two binary matrices,
J can quickly be computed as the ratio of the number of cells whose value is 2 to the number
of cells whose value is greater than or equal to 1. Thus, a ‘perfect’ match will be found with
J = 1; absolutely no match with 7 = 0. It is important to note that we do not expect to
see any perfect matches, regardless of how well the prediction algorithm executes. Precisely
where cells are flagged in the predicted anomaly matrix depends on a number of variable
components, some of which are extremely difficult to control. The number of observations
per time point, cell resolution with respect to the magnitude of the LGCP parameters, as
well as the convergence and mixing performance of the MALA chain, will all impact the final
exceedance results and magnitudes of the recorded J statistics. As such, we stress that use
of the Jaccard coefficient in this setting should be viewed as a very simple within-scenario,

between-MALA type of quality measure.
Prior to execution, it is worth highlighting the variability in the 95% exceedance thresh-

olds themselves. Dependent upon the variance of the Gaussian field, Ji, discrepancies
between different estimates thereof will flow through to these cutoff values, thereby poten-
tially having an effect on the location and prevalence of flagged exceedances (and therefore
our resulting Jaccard indices). Figure 3.30 illustrates this with respect to the 10 data sets
specific to each STS and version, using the true and mean parameters estimates of Ji in
Table 3.5. All scenarios using the minimum contrast-estimated values of the variance exhibit
on average an increased 95% threshold when compared to the value associated with the true
variance. Furthermore, recall that the LGCP is a ‘residual process’ with unit mean: the
impact on the ‘location’ (stationary mean) parameter fi, = —0.501% is also present. These
issues, in addition to the obvious use of ofb in defining the discretised covariance matrix of
the Gaussian field, therefore means that there exists considerable potential for the precise

magnitude of the supplied 012/) to affect a given MALA.

The computational demands of Phase 2 cannot be emphasised enough. The decisions
regarding the size of the prediction grid (64 x 64); the number of distinct data sets (10);
the number of scenarios (3); the number of versions of each scenario (2); the number of
different model parameterisations or ‘MALA types’ (3); the MALA length and burn-in
(44000 and 4000 respectively); the retention rate (1/100); and the number of previous time
points to consider for prediction at the latest time (‘lag length’ — 5); were all made after
careful examination of the performance of the required operations. The above figures were
decided upon as a fine balance between relatively manageable computational costs and
meaningfulness of the resulting empirics (in terms of variety of scenarios and accuracy and
precision of results, as well as validity of the MCMC methods based on an assessment of
mixing and convergence). Finally, the 3 x2x 3 x 10 = 180 individual 44000-iteration, minus-
5-lagged spatiotemporal MALAs were run, for which several further weeks of execution time
using multiple machines was required.

Results are given in Table 3.6 as the mean Jaccard scores jTRUE, T and jg, obtained
for each of the 10 data sets specific to each STS and version by comparing the correspond-
ing predicted anomaly matrix with the true anomaly matrix. Note the subscripts TRUE,
K and g refer to MALAs (a), (b) and (c) respectively, that is, using the true parameter

values, the individually-derived K-function parameter values and the individually-derived
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Figure 3.30: Cutoff threshold value (95" percentile) by variance O'i (solid, bold line). Values
for STS1 (top), STS2 (middle) and STS3 (bottom), are given for the true variance (solid
line), mean minimum contrast estimate by K (dashed line), and mean minimum contrast
estimate by ¢ (dotted line). Versions 7' = 10;7 = 100 and 7" = 100; 7 = 10 are given in the
left and right columns respectively.
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PCF parameter values.

STS Tin | Jrrue (s.d.[Jrrug)) | Tk (s.d.[Tk]) Ty (s.d.[Ty))
(0 :10.04 10; 100 | 0.1631 (0.1004) | 0.2166 (0.0367) | 0.2094 (0.0429)
‘;2:4‘}1 100; 10 | 0.0566 (0.0312) | 0.0521 (0.0141) | 0.0513 (0.0248)
(¢ :2 01 10; 100 0.5212 (0.0606) 0.5361 (0.0800) | 0.5825 (0.0663)
‘;2:5 100; 10 | 0.3905 (0.0752) | 0.2763 (0.0405) | 0.2622 (0.0365)
(¢ :30.02 10; 100 0.1036 (0.0226) 0.0873 (0.0295) | 0.0976 (0.0267)
‘;2::5 100; 10 | 0.0073 (0.0071) | 0.0078 (0.0105) | 0.0108 (0.0083)

Table 3.6: Study 3, Phase 2: Means and standard deviations of the Jaccard indices for both
versions of each STS, based on MALA prediction of the final time point exceedances.

In general, ‘within scenarios’, there appears to be little effect on the Jaccard scores
of using the minimum contrast-estimated parameters when performing prediction of the
intensity on the final day, regardless of STS or version, in comparison to using the true
parameters. Indeed, some cases even show higher scores for the MALAs corresponding to
the estimated parameters when compared to the MALAs executed using the true values
themselves (for example STS1, version 7' = 10, = 100; STS3, version 7' = 100, = 10).
The fact that we sometimes get better results with estimated parameters may not just be
due to simulation noise. In each case, the generated datasets and associated results are
based on a single realisation of the spatiotemporal Gaussian process — it could be that the
characteristics of these processes (in particular, for anomaly detection) are better described
using the estimated rather than the true parameters. Between the two versions within each
scenario, there are noticeably lower Jaccard scores in the T = 100,77 = 10 setting. This is
understandable: with far fewer observations at the time point of prediction, there are clearly
fewer cells which will be capable of producing intensity levels of a magnitude sufficient to
flag an exceedance.

Between scenarios, the highest Jaccard indices are reserved for those problems with longer
ranges of dependence (e.g. STS2): this is intuitively sensible when we consider the fact that
the larger the range of space-time dependence, the larger the exceedance sub-regions are
likely to be in terms of the number of adjacent cells making up a given hotspot. This in
turn means any generated data will be less ‘sporadically clustered’ in terms of where point
aggregation occurs, there therefore being less chance of observing 0-1, 1-0 ‘disagreements’
between the true and predicted anomaly matrices when computing the Jaccard indices.

The take-home message, however, remains the same: comfortingly, these results have
indicated no substantial drop in overall agreement quality of detected exceedances when
comparing the mean Jaccard scores across the different parameterisations for any of the
scenarios. Thus, in spite of the discrepancies observed in minimum contrast estimation (cf.

Table 3.5), this method of obtaining parameter values appears to be adequate for sensible
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prediction of exceedance probabilities in a disease surveillance setting.

The importance of sample sizes at each time point, as well as the strength of the spa-
tiotemporal correlation in the specific cells flagged as exceedances, is illustrated for STS1,
STS2, and STS3 in Figures 3.31, 3.32, and 3.33 respectively. For both versions of each
scenario, these images provide the true anomaly matrices, as well as the ‘best’ predicted
anomaly matrix defined as the exceedance surface with the highest Jaccard index (generi-
cally labelled as Jmax), for each MALA.

Plots corresponding to STS1 (Figure 3.31) show that although Jrrug was less than
Jx and jg for version T' = 10,7 = 100 in Table 3.6, the highest individual Jaccard score
from use of the true parameter values was greater than the highest individual score for
either of the MALAs using the estimated parameter values. This highlights the fact that
the mean Jaccard indices do not by themselves determine the quality of agreement, and
that a modest degree of variation should be expected due to the restriction on the number
of distinct spatiotemporal data sets which had to be made for computational reasons. In
all MALA predictions for both versions, it is clear from comparison with the appropriate
true anomaly matrix that they fail to locate absolutely all anomalous cells. In reference to
an earlier comment, however, we simply cannot expect near-perfect matches: the specific
positions of cells detected as exceedances will depend on the (stochastically) realised point
patterns themselves, the sample sizes at each timestamp, and the quality of the executed
MALA. However, a visual interpretation of the anomalous sub-regions that are detected
from the MALA runs (how a surveilled process would typically be scrutinised in practice),
provides much the same message about their actual locations, with little (if any) real loss
of information if we compare the best MALA (a) (true parameter values) results with those
for MALAs (b) and (¢) (K and g minimum contrasts respectively). Cell flagging, as we
would expect, is more likely as the size of the anomalous sub-region increases, and so it is
the locations of the ‘larger’ clusters visible in the true anomaly matrices that tend to be
detected.

Images for STS2 (Figure 3.32) show clearly the effect of longer-range dependence in the
spatiotemporal data. The true anomaly matrix for the T = 10,7 = 100 version shows
three clear subregions made up of exceeding cells. The largest contiguous sub-region in the
southwestern quadrant is satisfactorily detected in all three of the different MALA runs, and
the smaller anomalous area in the northwestern quadrant is also identified. The MALAs
seem to have struggled in these particular examples in detecting the ‘weakest’ anomalous
region on the eastern border, though there is some minor identification in MALA (c). This
could change on a case-by-case basis however: one of the other data sets could well have
generated more data in that particular area resulting in a clearer image. The same comments
can be made for the T'= 100,77 = 10 version of STS2: satisfactory detection of the largest
contiguous anomaly, with sporadic anomalies a little more difficult to identify.

STS3 (Figure 3.33), with the shortest range of spatiotemporal dependence, shows the
reader the widespread cellular anomalies, many of which are isolated from any others. Again,
those few anomalous sub-regions made up of multiple adjacent cells are those which the algo-
rithm is more likely to predict; version T' = 10, = 100 shows some visual level of agreement

between the different MALAs. Results for the T" = 100, = 10 version are particularly poor,
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True anomaly matrix

J.max= 0.1137

Predicted anomaly matrix
True parameters
[MALA (a)]
J.max= 0.289 J.max= 0.0744
Predicted anomaly matrix
K-function parameters
[MALA (b)]

J.max= 0.2874 J.max= 0.1053

Predicted anomaly matrix
PCF parameters
[MALA (c)]

Figure 3.31: True and ‘best’ predicted anomaly matrices (based on the surface with the
highest Jaccard score, Jmax, in each case) for both versions of STS1. Cells deemed anomalous
as per the discussion are light, dark cells are those which are not.
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True anomaly matrix

J.max= 0.6022 J.max= 0.5355
Predicted anomaly matrix
True parameters
[MALA (a)]
- H
J.max= 0.6468 J.max= 0.3353
Predicted anomaly matrix
K-function parameters
[MALA (b)]
J.max= 0.6844 J.max= 0.3293

Predicted anomaly matrix
PCF parameters
[MALA (c)]

Figure 3.32: True and ‘best’ predicted anomaly matrices (based on the surface with the
highest Jaccard score, Jmax, in each case) for both versions of STS2. Cells deemed anomalous
as per the discussion are light, dark cells are those which are not.
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True anomaly matrix

J.max= 0.1429 J.max= 0.0211
Predicted anomaly matrix
True parameters
[MALA (a)]
J.max= 0.125 J.max= 0.0314
Predicted anomaly matrix
K-function parameters
[MALA (b)]
J.max= 0.1473 J.max= 0.0259

Predicted anomaly matrix .-
PCF parameters
[MALA (c)] : <

Figure 3.33: True and ‘best’ predicted anomaly matrices (based on the surface with the
highest Jaccard score, Jmax, in each case) for both versions of STS3. Cells deemed anomalous
as per the discussion are light, dark cells are those which are not.
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however. The low timestamp-wise counts, coupled with the weak correlation, have yielded
only a handful of detections, thereby making it extremely difficult to compare the results
of the various MALAs (even with reference to the true anomaly matrix). Naturally, it is
unfair to expect the model to flag exceedances where there exist no data. The relatively
low Jaccard scores in this scenario may also be related to the level of discretisation which
has been employed for conditional simulation (64 x 64). With our study region as the unit
square, this equates to square cells each of approximate size 0.0156 x 0.0156. With ¢, = 0.02
in STS3, not to mention the occasionally even smaller minimum contrast estimates of this
parameter, the given grid resolution may be considered quite coarse, resulting in an inability
to evaluate the correlation levels at influential distances. This in turn seems to have affected
the capability of adequate exceedance detection, highlighting the caution that researchers
must take with respect to definition of the lattice upon which prediction takes place.

From this phased simulation study, we may therefore draw some unique and useful con-
clusions. Phase 1 indicated performance of the minimum contrast approach, on this occasion
making use of the time-averaged versions of K and g, to be consistent with what we had
come to expect from Simulation Studies 1 and 2. Intuitively, better estimates of the spatial
parameters in terms of proximity to the true values tended to occur when we had more
spatial data, and better estimates of the strength of the temporal correlation was apparent
when we utilised a greater ‘historical’ window. Regardless of the observed discrepancies
between true and estimated parameters, however, Phase 2 indicated predictive inference to
be fairly insensitive to this type of variation. Though understandably unable to provide
100% detection rates when compared with the true form of the exceedances for the final
time point, the various MALAs employed showed similar performance to one another in
terms of overall agreement via the Jaccard similarity coefficient. A visual inspection of
the detected anomalies (based on the prediction with the highest Jaccard score out of the
10 data sets for which the MALA was run) supported these results. Though it is obvious
that a number of complex factors influence the exact nature of a predicted anomaly sur-
face, it is clear that more success is achieved in detection of exceedances where there are
larger sub-regions of anomalies comprised of several adjacent exceeding cells. Identification
of anomalies in problems with short-range dependence, coupled with small event counts, is
more difficult; this is also where the issue of too coarse an evaluation grid can easily begin
to adversely affect our results. Nevertheless, the fact that within each scenario and version,
use of minimum contrast-estimated parameters did not appear to significantly hinder iden-
tification of anomalies via empirical exceedance probabilities (when compared to use of the
true values), is encouraging: in spite of the many justifiable criticisms associated with this
method of parameter estimation, the present results indicate little if any loss of information

in an epidemiological surveillance setting.

3.6 Potential theoretical refinements

The relative youth of the LGCP, particularly in the spatiotemporal case, leaves open several
avenues for future theoretical advancements. In this section, we briefly describe and discuss

three such avenues which build on existing ideas in the more general arena of spatial and
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spatiotemporal point process modelling.

3.6.1 Improved ‘ratio estimators’ of second-order characteristics

The first future research direction is the investigation of so called adapted ratio estimators
of the second-order properties of a planar point process based on an observed pattern X.
These ideas, first discussed at length by Stoyan and Stoyan (2000), deal with a modification
to the standard A = N(X)/|W| estimator of the stationary intensity over the compact
region W. The modifications are designed specifically to improve our subsequent estimates
of the homogeneous versions of the K-function and the PCF, which in turn means minimum
contrast parameter estimation for the LGCP might also be improved in these situations.
The following discussion will for simplicity focus on K and ¢ in the purely spatial setting,
though the ideas communicate naturally to their spatiotemporal counterparts.

Consider again the nonparametric estimators of the K-function and PCF given as (1.5)
and (1.10) in Section 1.2.3 and rewritten here.

T#Y
Kw) =32 > 1llz —yll < www(@,y); 0 < u < tay,
z,ycX

and

1 z#Y
Z Hh(”w_yH —u)wW(w,y), 0<u§umax7
yeX

§u) = 2 \2u| W | v
with Umax, ww and k; being the upper evaluation limit, Ripley’s (1977) isotropic edge-
correction factor, and the univariate kernel respectively; all as defined earlier. The supposed
problem with both of these estimators lies in the leading A2 term, the use of which intro-
duces bias and considerable variance when this quantity is simply the negative square of the
A = N(X)/|W| estimate.

Stoyan and Stoyan (2000) study some alternative estimators to A for use in K and g,
which they assess via simulation. Their results do appear to indicate a reduction in the
variance of the resulting estimates when compared to using just 5\, though any reduction in
the bias alone is minimal. These alternatives are referred to as ‘adapted’ intensity estimates,
as they depend upon the distance u at which we are evaluating K or §. Illian et al. (2008)
summarise two of these estimators in Section 4.3.3. The first, used in estimation of the

K-function, is referred to as the volume-weighted estimator, and is given as

v 27 [ yAw (y) dy

(3.57)

where D(x,u) represents the disc centered at @ with radius u, and Jyy (u) is the isotropised
set covariance of the window W (see e.g. Stoyan and Stoyan, 1994; Illian et al., 2008). If
W is a rectangle or disc there exist simple, explicit expressions for 7y ; more complicated
windows require sophisticated methods such as Fourier transforms in order to be practically

feasible (Illian et al., 2008, Appendix B).

The estimator recommended for use in nonparametric computation of the PCF is the
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surface-weighted estimator, with

o) - Becg W ez

, (3.58)

where [[W N ¢(x,u)] denotes the length of the circumference of the disc centered at x with
radius v that falls within W.

We therefore achieve the adapted estimators for K and g by replacing \ above by Ay and
5\5 respectively. These techniques hold potential for further investigation with respect to
parameter estimation for the LGCP, though the computational burden of (3.57) and (3.58)
may prove problematic. Furthermore, it is not necessarily clear how these adapted ratio
estimators could be extended to the situation in which our LGCP modelling framework
includes deterministic components and the inhomogeneous estimators for K and g must be

used.

3.6.2 Multivariate LGCP modelling

In this chapter we have been concerned with the idea of univariate LGCPs. These models
can be generalised to the situation in which we have a marked point process i.e. that the
points which make up our generated data have qualitative or even quantitative measures
associated with them. Mgller et al. (1998) briefly define the dichotomously-marked LGCP in
the spatial setting in Section 5, and further technical definitions related to the multivariate
LGCP can be found in Mgller and Waagepetersen (2004). However, there is much which
remains unclear about the multivariate LGCP, including issues surrounding the specification
of appropriate correlation and cross-correlation (i.e. between-mark dependence) functions,
parameter estimation given observed data, and simulation. Furthermore, the extension to
spatiotemporal data has not yet been considered.

This relative lack of appropriate methodology means a corresponding lack of applications
of this potentially very powerful model in the literature, though one epidemiological example
can be found in Liang et al. (2009). The authors consider the spatial variation in occurrences
of colon and rectal cancer in Minnesota, USA, and use a rather ad hoc Bayesian framework to
aid in their modelling. A similar approach to tackling more complicated problems, however,
would be extremely difficult to implement. One example is the multivariate point pattern
examined in Diggle, Zheng and Duwrr (2005) who analysed four different types of bovine
tuberculosis in Cornwall, UK. The authors used kernel methods to investigate the spatial
variation present by comparing, in a pairwise fashion, the estimated distributions of the
marginal type-specific data sets. It would be extremely interesting to investigate a more
sophisticated approach to this analysis, and the multivariate LGCP is a viable candidate.

A final interesting note can be made with reference to the kernel-smoothed density-ratio
studied at length in Chapter 2. In dealing with case-control data, we may consider this
as a bivariate point process with marks ‘case’ and ‘control’. It stands to reason that the
multivariate LGCP may provide an interesting alternative to kernel smoothing for estimation
of the density-ratio, an issue this author has raised in preliminary correspondence with Dr.

B. M. Taylor and Prof. P. J. Diggle at Lancaster University, UK. Suppose we have a bivariate

128



point process in W such that X = {X, X }. In its simplest form, we would assume the
mark-specific point processes X y and X, and their respective intensity functions f and g
are independent of one another. We could then treat as separate LGCPs f(x) = exp{F(x)}
and g(x) = exp{G(x)} given realised Gaussian fields F and G, @ € W. The subsequent
(log-transformed) LGCP density-ratio py, is given with

g [f@) fy f(@) da

o) = g[g(w)/fwg(w)dm]

~ log [exp{]:(ac)} Jw 9() dw}
exp{G(z)} [y flz)dx

/ exp{g(ac)}dw] —log[ / exp{f(a:)}dac]. (3.59)
w w

= F(x) — G(x) + log

leaving the attractively simple difference between the two realised Gaussian fields as the
fundamental quantity. However, problems lie in sensible estimation of the quantities given
in the right-hand side of (3.59), an issue exacerbated by the complexities of conditional
simulation of the LGCP given observed data. Furthermore, it may not be sensible to assume
complete independence between X ; and X, (and f and g themselves). All this points to the
fact that a deeper investigation into the theory and methods associated with the multivariate
LGCP is indeed warranted.

3.6.3 Nonseparable spatiotemporal correlation structures

A third future research direction is the relaxation of the assumption of a separable correlation
structure made in Section 3.1.2. Recall for the spatiotemporal Gaussian field Z, in addition

to stationarity and isotropy we imposed the condition that
Corr [Z(w1,t1), Z(w2, t2)] = r([|z1 — ®2|[; dy) 7 ([t2 — t1]:6),

i.e. that the dependence could be factorised into purely spatial and temporal components.
The result of this assumption is to greatly ease model-based inference, such as the derivation
of the second-order properties in Section 3.1.2; and accessibility of the methods associated
with spatiotemporal minimum contrast (Section 3.2.2) and conditional simulation (Section
3.3.2).

However, this comes at a cost of flexibility, and without restricting attention to the
LGCP several authors have proposed general classes of nonseparable correlation functions
for spatiotemporal modelling. One particularly interesting piece of work is the article by
Rodrigues and Diggle (2010), who coin the terms positive and negative nonseparability. Let
m(u, ) represent the correlation between two points in space-time separated by spatial and
temporal lags u > 0 and v > 0 respectively. A positively nonseparable correlation structure
occurs when 7(u,v)/m(u,0)7(0,) > 1 for all w > 0 and v > 0, negative nonseparability
when 7(u,v)/m(u,0)7(0,r) < 1. We have separability when 7 (u, v)/m(u,0)w(0,v) = 1.

This characterisation is important as it allows the authors to compare the flexibility of

methods proposed in earlier works. For example, they identify that a class of functions de-
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fined in Gneiting (2002) cannot accommodate negative nonseparability, whereas the models
discussed in De Cesare et al. (2001) cannot accommodate positive nonseparability. This
leads Rodrigues and Diggle (2010) to go on and define a class of covariance/correlation
models that can accommodate both.

To date, this author is unaware of any efforts to implement the spatiotemporal LGCP
with a nonseparable correlation structure. To successfully do so would require a number
of issues to be addressed. For example, an investigation into how one might approach the
problem of parameter estimation under such dependence models is paramount. Also, com-
putational aspects would need to be considered — is use of the FFT still possible to aid in
inversion of the covariance matrix? How would conditional simulation via the MALA be
affected? Finally, one would need to attempt to answer the question of whether or not the
additional complexity of including a nonseparable correlation structure in the spatiotem-
poral LGCP is in fact ‘worth it” in the sense of providing noticeable benefits (for example,

significantly increased accuracy and precision of predictions) in practice.

3.7 Summary and concluding remarks

In many applications dealing with two-dimensional point processes, it can be more intu-
itively sensible to view the underlying intensity function as stochastic (Cox process), rather
than fixed (Poisson process). The corresponding ‘doubly stochastic’ models can be par-
ticularly well-suited to problems in spatial and spatiotemporal disease mapping. In this
chapter we have examined one such model, the log-Gaussian Cox process, from an applied
epidemiological perspective.

Through the LGCP, we are afforded a powerful framework which is capable of modelling
a wide variety of point patterns; a detailed review of the spatial and spatiotemporal ver-
sions occurring in Section 3.1. In its most simple form, the LGCP dictates that the intensity
function is viewed as an exponentiated Gaussian random field; heterogeneity in which is con-
trolled by defined correlation structure; the appeal of the model lying primarily in its obvious
flexibility. Firstly, the model is mathematically tractable (Mgller et al., 1998); theoretical
properties found with relative ease using moment generating functions of the lognormal dis-
tribution. Secondly, the researcher is able to choose from a wide selection of functional forms
of the assumed correlation structure; assumptions of stationarity and isotropy (and in the
spatiotemporal setting, separability) made for theoretical simplicity have few drawbacks for
most practical intents and purposes. Thirdly, the LGCP can be fully defined using parame-
ters gleaned from its first- and second-order properties. Lastly, the LGCP is easily extended
and modified to cope with more complicated intensity specifications, such as the inclusion
of deterministic components to model ‘global’ heterogeneity.

Despite its justified appeal, further investigation into issues related to the fitting and
simulation of such models is warranted, and is ongoing. One of the most pressing problems
is that of sensible estimation of the parameters defining the correlation structure. Section 3.2
discussed the only option that has demonstrated feasibility in practice — minimum contrast
— whereby empirical and theoretical descriptors of second-order characteristics are matched

to one another in order to obtain ‘optimal’ parameter values. Though drawing criticism
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for its ad hoc nature, the few alternative suggestions such as numerical likelihood methods
are unable to match its applied performance. Computational specifics in Section 3.3 began
with a visual walkthrough of circulant embedding and torus-wrapping of the spatially dis-
cretised covariance matrix, intended to be viewed alongside more theoretical discussions on
the procedure. Most importantly, it was noted that the subsequent use of the fast-Fourier
transform is absolutely essential in practice, the high-dimensionality associated with imple-
mentation of the LGCP equating to massive computation and storage requirements. The
discussion ended with a contained review of the Metropolis-adjusted Langevin algorithm for
both spatial and spatiotemporal versions, the MCMC technique designed to provide supe-
rior convergence rates over a vanilla random walk when performing conditional simulation
(prediction) of the Gaussian field. The many intricate details and occasionally complicated
nature of these computational necessities highlight the importance of functional and acces-
sible code, should we wish to see further applied analyses in epidemiology using the LGCP.
Real-world examples were demonstrated in Section 3.4, illustrating the model specification,
fitting, and conditional simulation stages and their performance in both the purely spatial

and spatiotemporal settings.

With the noted concerns over sensible parameter estimation, it was deemed necessary
to contribute to the relatively limited numerical literature focusing on performance of the
minimum contrast procedure. Three novel simulation studies were detailed in Section 3.5,
designed with epidemiological applications in mind. The first aimed to assess the impact
of using either the K-function or the pair correlation function (g) for estimation of spatial
process parameters. It was concluded that there was little discernable difference between
the two methods over the artificial scenarios, though there seemed to be a mild tendency
of the K-function to produce estimates of the spatial dependence scale parameter closer to
the true values, with g providing better estimates of the field variance. These differences
were very small, however; an inspection of the absolute relative errors (true parameter value
versus estimated) showing extremely similar trends when plotted for the different scenarios
for both K and g. The numerical investigations continued by turning our attention to the
importance of the (fixed) bandwidth when a multiplicative spatial deterministic component
as a kernel density estimate is included in the definition of the intensity function with a view
to modelling the global trends, leaving the LGCP to capture local dependence. It was found
that oversmoothing this component was beneficial in terms of finding minimum contrast
parameter estimates closest to the true values describing the residual correlation structure.
Along the same lines, it was important to note that many ‘off-the-shelf” bandwidth selectors
used in kernel density estimation would be likely to undersmooth the estimate in its role as
a purely global, and not a total (global-plus-local), descriptor. Finally, the spatiotemporal
LGCP was scrutinised through the design of phased simulation study. As we had noted,
some discrepancy between the true and estimated parameter values is to be expected from
minimum contrast methods — but it was unclear if the magnitude of these discrepancies
actually matters when we aim to produce exceedance probability surfaces from conditional
predictions of the intensity function. Motivated by real-time disease surveillance, this was
addressed by quantifying the agreement between the true and predicted exceedance surfaces,

each straightforwardly expressed as a binary matrix. Phase 1 of this study performed min-
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imum contrast estimation of the spatiotemporal correlation parameters for the pre-defined
scenarios; our findings reflected what we had come to expect based on results of the previous
two simulation studies. Phase 2 performed a large collection of MALA runs providing the
predicted exceedance surfaces, and it was found, using the Jaccard similarity coefficient, that
there encouragingly did not appear to be any disadvantage in using the minimum contrast-
estimated parameters as opposed to the true values when attempting to detect anomalous
sub-regions.

Much of this chapter has reviewed existing methodology, the aim being to provide a
comprehensive, coherent synthesis of the theoretical and practical aspects of the LGCP most
relevant for epidemiological applications. It is therefore hoped that the preceding content will
serve to motivate further epidemiological analyses using this capable modelling framework,
particularly for spatiotemporal data. An equally important outcome is the collaboratively
developed R package, capable of the discussed operations, which has recently been made

available in the public domain and is explored in the following chapter.
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Chapter 4

Software Releases

Writing self-contained software is a powerful way to distribute statistical innovations and
allow users of the methodology (either novices or veterans of the methods in question) easier
access to these advancements for their own applications. Producing programs for general
consumption presents its own unique challenges. Careful structuring and standardisation of
functions and other quantities such as data objects is required to streamline the package.
Computational efficiency, which might be sacrificed in personal code to a certain extent
for improved readability and editing, must now take highest priority. Comprehensive error
handling, from basic argument checks to dealing with the specifics of internal computations,
requires implementation. Thorough documentation is essential in order to best guide correct
usage and interpretation of results.

In this chapter two generalised software packages are introduced. Written in and for the
statistical programming environment R (R Development Core Team, 2011), these packages
make available to fellow researchers material and advancements in Chapters 2 and 3. In
addition to the manuscripts directly describing them, the development of these programs
has spawned several interesting collaborations and additional research directions, some of
which are covered in Chapter 5. The package discussed in Section 4.2 is developed in

collaboration with researchers at Lancaster University.

4.1 R package sparr

There already exist a number of packages that can perform bivariate kernel density /intensity
estimation in R; see for example spatstat (Baddeley and Turner, 2005), KernSmooth (Wand
and Ripley, 2011), ks (Duong, 2007), and spatialkernel (Zheng and Diggle, 2011). Following
release of sparr, the latest versions of spatstat and spatialkernel have also included functions
to handle the computation of fixed-bandwidth density-ratios. Neither of these, however,
provide the explicit capability to estimate the edge-corrected adaptive relative risk functions
discussed in detail in Chapter 2. Package sparr also possesses the unique functionality needed
for p-value surface computation, via both Monte-Carlo (MC) and the new asymptotic (ASY)
methods.

The R package sparr (spatial relative risk), freely available on the Comprehensive R
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Archive Network (CRAN) at http://cran.r-project.org/web/packages/sparr/index.
html, was developed in an effort to aid in the growing demand for the aforementioned
functionality. This package is specifically detailed in the Journal of Statistical Software
article Davies, Hazelton and Marshall (2011).

4.1.1 Aims and scope

The objective of sparr is to allow researchers to perform fixed and adaptive kernel estimation
of spatial relative risk. The package is designed with applied users (e.g. epidemiologists) in
mind. Below we describe briefly the main components of sparr. The reader is directed to
the package documentation (Appendix A), for specific details, and to refer back to Chapter

2 for theoretical specifics.

e PBC (data set): previously unavailable in R, this object contains the 761 cases along
with 3020 controls for the primary biliary cirrhosis data analysed in Section 2.6.2.
Also provided is the 115-vertex polygon describing the study region (Peter Diggle is
thanked for permission to publish these data in the package).

e bivariate.density: A flexible function to perform kernel density/intensity estima-
tion on bounded regions in R2. Providing edge-corrected fixed and adaptive smoothing
regimens, the user can also control a number of important features such as evaluation
grid resolution, additional coordinates at which to evaluate the estimate, and specifi-
cation of duplicate observations. The data themselves can be passed to this function
in a variety of ways. Detailed information is contained in the returned ‘bivden’ object,

allowing careful inspection and follow-up analysis of the estimate.

e risk: This function performs the quotient operation based on two kernel density
estimates as required for a relative risk surface. The user may opt either to supply two
pre-calculated bivden objects (in which case the operations performed by risk are
trivial), or simply pass in the raw data directly (in which case the kernel estimation
is performed internally). The former option allows more control over the estimation
of the individual densities, whereas the latter sacrifices this control (i.e. imposes a
particular set of default conditions) in favour of ease of access. This function returns
a detailed object of class ‘rrs’ The user can fully retrieve both ‘bivden’ objects used

as case and control density estimates, regardless of the initial choices in running risk.

o tolerance: Compute the asymptotically derived (ASY) or Monte-Carlo (MC) p-value
surfaces for a given risk function, potentially leading to tolerance contours. Though
provided for the sake of completeness, the MC approach is significantly more computa-
tionally expensive than ASY. Indeed, it is not recommended that this method be used
for adaptive risk functions. Large sample sizes, coupled with fine grid resolutions, will
also impact on computational expense. To curb this problem, the option is available
to reduce the resolution of the evaluation grid used for the p-value surface to coarser
levels if necessary. The returned component is a matrix of p-values corresponding to

the elected test (i.e. lower-tailed, upper-tailed, or two-tailed).
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e plot.bivden and plot.rrs: These functions allow the plotting of bivariate density
and risk function estimates i.e. bivden and rrs objects. The exploratory nature of rel-
ative risk functions mean visualisation of the surface(s) is generally always an objective
in a given application. Specific methods for viewing two-dimensional kernel estimates
(let alone risk surfaces) are not a priority in other contributions, where the user is
expected to make use of the generic options available to construct their images. These
functions remove the need for this careful ad hoc tailoring, allowing flexible visualisa-
tion of the aforementioned objects in a number of different ways. Some of these are
showcased in the following section. However, through the detailed return information
of the estimated densities and surfaces, the user retains the choice to manually plot

their objects in any desired fashion.

4.1.2 Example walkthrough and code snippets

The functionality of sparr, as with many software packages, is best illustrated by exam-
ple. In this section we re-create the example in Section 2.6.2 by estimating and displaying
an adaptive relative risk function for the PBC data, along with asymptotically estimated

tolerance contours.

Data

Initially, it is sensible to simply view the raw data. The following code loads the data set

into the current workspace, re-formats the data structures, and yields Figure 4.1.

R> library(sparr)

R> data(PBC)

R> pbc.cases <- split(PBC)[[1]]

R> pbc.controls <- split(PBC)[[2]]

R> plot(pbc.controls,pch=3,main="")

R> box(bty="L");axis(1);axis(2);title(ylab="Northings",xlab="Eastings")
R> points(pbc.cases,col=2)

Inspection reveals, as we would expect, similar case-control dispersions based on the
natural inhomogeneity in the population. Comparing the distribution of cases versus the
distribution of controls, and attempting to identify any apparent differences, is our key

objective.

Bandwidths

Firstly, we must sensibly calculate our isotropic bandwidth(s) for the required kernel smooth-
ing. Recall the decision in Section 2.3.1 to select a common global bandwidth and separate
pilot bandwidths for the case and control density estimates when implementing variable
soothing. Furthermore, recall the poor performance of the single-density leave-one-out least-
squares cross-validation bandwidth selector when compared to Terrell’s (1990) oversmooth-
ing principle in the numerical experiments in Section 2.5. With this in mind, observe the

following code:
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Figure 4.1: Cases (red ‘o’) and controls (black ‘+’) for the PBC data.
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R> 0S.f <- 0S(pbc.cases)
R> 0S.f

[1] 317.4248

R> 0S.g <- 0S(pbc.controls)
R> 0S.g

[1] 330.2433

R> 0S.pool <- 0S(PBC, nstar=sqrt(pbc.cases$n*pbc.controlsén))
R> 0S.pool

[1] 349.8445

These commands calculate the single-density oversmoothing bandwidths for the case,
control and pooled data via the sparr function 0S, which uses the mean of the two axis-
specific interquartile ranges scaled by 1/1.34 to represent an ad hoc robust scalar measure of
standard deviation as required for the computation of the oversmoothing bandwidths. The
argument nstar for 0S.pool corresponds to our discussion in Section 2.3.1, where we set
the ‘effective’ sample size to the geometric mean of the separate case and control sample

sizes to prevent too much influence by the larger of the two.

Density estimation

Estimation of the densities may now take place. We execute

R> pbc.pooled.density <- bivariate.density(PBC,pilotH=0.5%*0S.pool,

R> + globalH=0S.pool,adaptive=T,res=128,WIN=PBC$window, comment=F)

R> pbc.case.density <- bivariate.density(pbc.cases,pilotH=0.5%0S.f,

R> + globalH=0S.pool,adaptive=T,res=128, WIN=PBC$window,

R> + gamma=pbc.pooled.density$gamma, comment=F)

R> pbc.control.density <- bivariate.density(pbc.controls,pilotH=0.5*0S.g,
R> + globalH=0S.pool,adaptive=T,res=128,WIN=PBC$window,

R> + gamma=pbc.pooled.density$gamma, comment=F)

which provides us with the required objects. The object pbc.pooled.density is simply the
density estimate of the pooled data set, i.e. ignoring the case/control marking of the observa-
tions; this is needed for computation of the subsequent p-value surfaces. Global bandwidths
are ordered to be equal to the 0S values computed from the pooled data. Note that the pilot
bandwidths are set to half of the 0S-computed values; the case and control estimates utilise
the separately computed oversmoothing bandwidths for the pilots in alignment with ear-
lier comments (see Section 2.6.2). We also employ a common geometric mean scaling term
computed from the pooled data, -, for the case/control estimates as the argument gamma
(the reader is referred back to Section 2.2.2). Finally note that the grid resolution of our
kernel estimates is set using the argument res=128, this indicates we wish to evaluate the

densities on a 128 x 128 grid, automatically discarding any cells lying outside the irregular
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polygon which defines our study region, specified by WIN. Function progress is commented
upon during execution, we have disabled this through use of the argument comment=F. The
option comment=T is particularly useful when we are dealing with large data sets and/or
very fine grid resolutions.

The objects returned by bivariate.density are given their own class, bivden. We can
inspect basic information concerning our kernel estimates using class-specific versions of the

generic R print and summary commands. For example, printing a bivden object yields
R> pbc.case.density

Bivariate kernel density/intensity estimate

Adaptive isotropic smoothing with (pilot) h = 158.7124
global h = 349.8445 unit(s)

No. of observations: 761

Risk surface and tolerance contour computation

The relative risk function may now be estimated. This is achieved through use of the
function risk which by default computes the log-transformed density ratio as advocated
by e.g. Kelsall and Diggle (1995a). We run this command using our pre-computed case
and control density estimate objects pbc.case.density and pbc.control.density, again
suppressing output with comment=F. By default, risk also produces a pixel image plot of the
resulting risk surface; this has been disabled for the moment (the various plotting options

will be explored once we have computed the asymptotic tolerance contours).

R> pbc.risk <- risk(f=pbc.case.density,g=pbc.control.density,
R> + comment=F,plotit=F)
R> summary (pbc.risk)

Log-Relative risk function.

Estimated log-risk range -4.485437 to 1.207464.
9095 grid cells out of 16384 fall inside study region.

—--Numerator (case) density--

Bivariate kernel density/intensity estimate

Adaptive isotropic smoothing with (pilot) h = 158.7124
global h = 349.8445 unit(s)

No. of observations: 761

Evaluated over 128 by 128 rectangular grid.

Defined study region is a polygon with 115 vertices.

Estimated density range 4.509172e-12 to 5.134165e-07.
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9095 grid cells out of 16384 fall inside study region.

--Denominator (control) density--

Bivariate kernel density/intensity estimate

Adaptive isotropic smoothing with (pilot) h = 165.1216
global h = 349.8445 unit(s)

No. of observations: 3020

Evaluated over 128 by 128 rectangular grid.

Defined study region is a polygon with 115 vertices.

Estimated density range 3.544127e-10 to 3.027201e-07.
9095 grid cells out of 16384 fall inside study region.

The risk function produces an object of class rrs for which print and summary com-
mands are also available. Use of summary.rrs, which subsequently calls summary.bivden
on both objects supplied as £ and g, is shown in the above output. A numerical summary
of pbc.risk shows a maximum density-ratio value of exp(1.207) = 3.343. Can we consider
risk magnitudes at this level ‘unusually extreme’ for our current data set?

Natural sampling variability will clearly produce benign fluctuations in the resulting
spatial risk surface. It is of interest to highlight those sub-regions, if indeed there exist
any, that are sufficiently extreme such that we would label them ‘statistically significant’
in the typical frequentist interpretation of the phrase. In spatial disease risk mapping, the
search for significant positive fluctuations is the more common goal; embellishment of any
‘hotspots’ in the risk of disease contraction is clearly of interest to epidemiologists and public
health officials.

Upon definition of appropriate hypotheses, we discussed in Section 2.4 the derivation
of a p-value surface corresponding to a kernel-smoothed relative risk function. Denoting
our study region with R, suppose we denote our (log) risk function of interest as p(x),
x € R. As also covered in these earlier discussions, hotspot detection would correspond
to the hypotheses Hy : p(x) = 0, Ho : p(x) > 0; diminished risk would imply testing
for Hy : p(x) < 0; a double-sided test dictates Hp : p(x) # 0. Once we have specified
hypotheses and estimated the corresponding p-value surface, any significant sub-regions are
highlighted on a plot of the estimated risk function via tolerance contours at pre-defined
significance levels.

Historically, p-value surfaces were computed via Monte-Carlo methods, namely random
permutations of case/control marks and repeated evaluation of the kernel-smoothed risk
function against which the actual estimated risk function values for each spatial coordi-
nate would be compared. In Chapter 2, we proposed a theoretical alternative, based on the
asymptotic normality of kernel density estimates (e.g. Parzen, 1962) coupled with asymptotic
expressions for the variances of the fixed and adaptive kernel-estimated density-ratios. Nu-
merically stable and computationally cheaper than MC methods, the asymptotic approach
to tolerance contour calculation offers competitive performance, particularly for large data

sets and when employing adaptive smoothing.
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The p-value surfaces are computed in sparr with the function tolerance. To illustrate
the difference in computational expense between the two approaches, ‘MC’ and ‘ASY’, we

evaluate both, using 100 iterations for the former.
R> pbc.tol.mc <- tolerance(pbc.risk,pbc.pooled.density,method="MC",ITER=100)

[1] "Tue Sep 20 22:01:47 2011"

Monte-Carlo iteration no.
10 20 30 40 50 60 70 80 90

[1] "Wed Sep 21 01:54:21 2011"
R> pbc.tol.asy <- tolerance(pbc.risk,pbc.pooled.density,method="ASY")

[1] "Wed Sep 21 09:39:12 2011"

--Adaptive-bandwidth asymptotics--
calculating integrals K2...

__f__

-—g—-

calculating integrals L2...

-

--g--

[1] "Wed Sep 21 09:40:16 2011"

Supply of the pre-calculated rrs object, as well as the relevant pooled kernel density
estimate, is required. Function progress is printed to the console on-the-fly; as for earlier
functions this can be disabled by setting comment=F. Note that for only 100 iterations, the
MC p-value surface required almost four hours to complete within the current workspace
for our adpative PBC example. By comparison, the asymptotic method took a little over a
minute. The comments referring to integrals K2 and L2 correspond to estimation of the
square-bracketed terms in equation (2.9) for the case and control densities £ and g respec-
tively. Returned is a named list including the component P, a matrix of equal dimensions

to the original rectangular evaluation grid, containing the p-values of interest over R.

Visualisation

The final step is to produce plots of our estimated risk function and any statistically signif-
icant sub-regions therein through the use of tolerance contours. To this end, sparr provides
several flexible forms of risk surface visualisation. Arguably, one of the most intuitive is a

pixel image or ‘heatplot’. The following code produces Figure 4.2.

R> par (mfrow=c(1,2))
R> plot(pbc.risk,display="heat",col=heat.colors(10)[10:1],
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Figure 4.2: Heatplots of the adaptive log-relative risk surfaces for the PBC data gener-
ated using sparr, displaying asymptotic and Monte-Carlo tolerance contours (left and right
respectively), superimposed at significance levels of 0.01 (solid line) and 0.05 (dashed).

R> + tolerance.matrix=pbc.tol.asy$P,

R> + tol.opt=list(levels=c(0.01,0.05),1ty=c(1,2)),

R> + main="",xlab="Eastings",ylab="Northings")

R> plot(pbc.risk,display="heat",col=heat.colors(10)[10:1],
R> + tolerance.matrix=pbc.tol.mc$P,

R> + tol.opt=list(levels=c(0.01,0.05),1ty=c(1,2)),

R> + main="",xlab="Eastings",ylab="Northings")

Inspection of the plots shows some distinctions between the theoretically and empirically
computed contours. Note that the plot.rrs function allows the user to directly include the
calculated tolerance contours through the use of the argument tolerance.matrix. The
appearance of the contours can be minimally controlled via a named list argument tol.opt.
Should the user wish more control over their inclusion, they may set tolerance.matrix to
NULL, in which case tol.opt is ignored, and subsequently add to a pre-plotted risk surface the
desired contours using the standard R command contour (package graphics) with argument
add=T.

In this example, the asymptotic method has appeared to amplify the significance of in-
dividual peaks somewhat, flagging a sub-region on the eastern border as well as a smaller
northern area at the 1% level. The Monte-Carlo contours agree with the apparent signifi-

cance of the eastern border sub-region, albeit only at the 5% level, but do not indicate much
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interest in any other areas (although we have only made use of 100 iterations for this method
to spare excessive computation time). In any case, it should be stressed that superimpo-
sition upon a risk surface image of tolerance contours of this sort are intended to provide
a general idea of possible sub-regions of interest as an exploratory tool only, as opposed to
definitive proof of anomalous behaviour. The agreement of the significant eastern-border
area between the two approaches would lead us in this case to conclude that this is an area

that most warrants further investigation by the relevant health officials.

In addition to the standard heatplot, the user can view the risk function as a contour
or perspective plot, setting display="contour" or display="persp". One particularly
unique feature to sparr is the fact that we may also produce an interactive three-dimensional
perspective plot based on the powerful features of the rgl package. Allowing full rotation
and zooming via left and right mouse button holds respectively, it produces images from
which it can be easier to assess the relative magnitudes of peaks and troughs in a particular

surface compared to e.g. from a 2D heat plot.

The following code opens an interactive graphics device, plots the coloured 3D surface,
and adds the asymptotically derived tolerance contours as in the left-hand panel of Figure

4.2. Figure 4.3 shows two screenshots of the interactive plot.

R> asp <- diff(PBC$window$yrange)/diff (PBC$window$xrange)

R> plot(pbc.risk,display="3d",aspect=c(1,asp,1),col=heat.colors(10)[10:1],
R> + tolerance.matrix=pbc.tol.asy$P,

R> + tol.opt=list(levels=c(0.01,0.05),raise=0.025,col="blue"))

approximating 3D boundary...

approximating 3D tolerance contours...

To preserve the correct x:y axis aspect ratio, we must specify our desired relative scale via
the argument aspect=c(x,y,z). This is achieved by firstly finding the correct ratio which
we store as the value asp. Also noteworthy: the tol.opt option raise is only relevant to
display="3d" plots when !is.null(tolerance.matrix). This is a scalar constant which
artificially translates the superimposed 3D contours raise units along the z-axis, used to
prevent segments of the included contours falling ‘below’ the plotted surface (an artefact of

the approximations made during the 3D plotting).

Much the same plotting choices exist for standalone density estimates (i.e. objects of
class bivden as opposed to rrs per se), and greater flexibility than can be fully covered
here is of course available. In fact, in addition to the arguments for plot.bivden and
plot.rrs we have encountered and discussed thus far, there is an additional ... field
reserved for arbitrary arguments depending on which display type we have elected. In the
accompanying package documentation, the user is directed to the R help files for functions
in external packages for proper use of ... in fine-tuning density and risk function plots.
For the four displays "heat", "contour", "persp" and "3d", consultation should be made

to ?plot.im, ?persp, 7contour and 7persp3d respectively.
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Figure 4.3: Two snapshots of the interactive 3D adaptive bandwidth PBC risk function,
with superimposed asymptotic tolerance contours.
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4.1.3 Commentary regarding fast and efficient use

The operations sparr can perform would be computationally expensive if one were to eval-
uate objects such as density estimates and p-value surfaces directly. This is especially true
when using an adaptive bandwidth. For this reason, various coding techniques and some
approximations have replaced what would otherwise be prohibitively slow code. Encoun-
tered in Section 3.3.1 for the LGCP, the fast-Fourier transform (FFT) can also be applied to
kernel density estimation. A good introductory discussion on how this is performed can be
found in Appendix D of Wand and Jones (1995). This is therefore a key tool in accelerating
execution time for the relevant operations in sparr and is accessed using the fixed-bandwidth
kernel intensity estimate function density.ppp from one of sparr’s dependencies, spatstat.
Though a trivial ‘piggyback’ translation for bivariate.density to make in the fixed band-
width case, more thought is required to utilise the advantageous speed of the spatstat code
for adaptive estimation, where we require bandwidths for all possible grid coordinates to
edge-correct (cf. Marshall and Hazelton, 2010). In this situation, bivariate.density cal-
culates these bandwidths and finds the unique values of the 100 integer quantiles thereof.
Each of these unique values is then treated as a fixed bandwidth, and the corresponding
fixed-bandwidth edge-correction factors are extracted from the FFT-calculated objects. A
given coordinate within the study region is then matched to the nearest appropriate integer
quantile value by its bandwidth, and the edge-correction factor corresponding to that band-
width and coordinate is assigned. This approximation is significantly faster than directly
evaluating factors at each distinct coordinate and associated bandwidth, at a negligible cost
of accuracy. Nevertheless, the user can turn off the option to use this fast-Fourier transform

assistance by setting the bivariate.density argument use.ppp.methods=F.

Other approximations of note are made for the integral components of the asymptotic
p-value surfaces in tolerance, again using the fast-Fourier methods of spatstat as well
as approaches constituting only single evaluations of a function subsequently translated to
all possible grid coordinates. See the documentation pages for bivariate.density and

tolerance for further information.

In addition, it is worth noting that a reduction in computation time may be had by
reducing the resolution of the grid over which we estimate the density or p-value surface.
The default resolution is to use a 50x50 grid, which is considered to be a suitable minimum
resolution that provides serviceable estimates and images, while keeping computation costs
at a relatively low level. The user may find that a modest increase in resolution, as in
the preceding PBC example, may be warranted for aesthetic reasons. In the interests of
flexibility it is also possible, via the optional argument reduce for the function tolerance,
to evaluate a p-value surface over a coarser grid than the corresponding risk function den-
sity estimates. This allows tolerance contours to be computed relatively quickly, and then

superimposed over a more aesthetically pleasing image of the risk surface.

Also mentioned is the fact that the complexity of the polygon describing the study region
can, in extreme cases, result in a prohibitive computational cost for density and p-value
surface estimation. A polygon with many thousands of vertices (e.g. one obtained from a

detailed geographical map) will cause delays, particularly when the complex region needs
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to be checked by the function multiple times for calculation of edge-correction factors. A
simple workaround is to reduce order of the polygon by, for example, retaining only every kth
vertex. Analysis can then be performed at a generally negligible cost of accuracy (depending
on the magnitude of k) using the reduced polygon. For imaging, the researchers can easily
display the efficiently computed results using the original geographical map.

It is worth clarifying the aspects of kernel density estimation which directly impact
computational expense. Producing adaptive over fixed estimates will increase this cost.
The size of the data set, opting to edge-correct, as well as grid resolution, also impact on
execution time. Though sparr has sought to minimise this cost as much as possible, it
remains up to the user to find an acceptable balance between the aforementioned issues and

computing time for their projects.

4.1.4 Limitations and future extensions

Package sparr is a freely available collection of R functions which include the most recent
advancements in the applied estimation of relative risk functions based on planar kernel
smoothing. First becoming available the public domain in late 2010, the popularity of the
methodology and an accessible software package is clearly apparent. Since initial release,
this author has corresponded with researchers from a wide variety of backgrounds, from
epidemiologists to archaeologists, seeking advice on sensible usage of the approaches and
interpretation of returned results. Some of these communications have resulted in collabo-
rative projects and are summarised in Chapter 5.

Nevertheless, there remains scope for further extensions to sparr (at the time of writing,
version 0.3-0). The issue of bandwidth selection is a difficult problem with respect to risk
functions, and the somewhat ad hoc approach taken by most authors (present included)
in tackling practical applications of the methodology has shifted the focus of sparr to the
actual analysis and interpretation of a risk function. Though, as mentioned, the package
does provide the functionality of some bandwidth selectors for density estimation (e.g. 0S),
sparr aims to emphasise the importance of user-consideration of the bandwidth choice(s)
for risk functions on a case-by-case basis. This is not to say that the available suite of
bandwidth selectors cannot be expanded should user demand exist. Also, as almost all
practical applications of the methodology use the Gaussian kernel function, this is the only
kernel currently supported for the density estimation in sparr. The infinite tails of this kernel
are useful in areas of a given region with sparse observations, where a bounded kernel can
result in unbounded risk function estimates if we experience zero case and/or control density
levels within the study region. Future versions of this package will, however, endeavour to
expand the available choices for kernel functions.

Finally, we acknowledge that the advancements in this package would not be possi-
ble without several other important contributions to CRAN; these are reflected as sparr’s
package dependencies. Package rgl by Adler and Murdoch (2009) provides the ability to
plot in 3D and interact with the device. The comprehensive spatial point pattern package
spatstat (Baddeley and Turner, 2005) provides functions to enable efficient region handling,
as well as the aforementioned FFT implementation. Lastly, package MASS (Venables and
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Ripley, 2002) provides utility support for internal functions.

4.2 R package lgcp

The synthesis of the theory and applications of the log-Gaussian Cox process in Chapter 3
for planar point patterns required a substantial volume of code. These efforts constituted
the first functional, generally accessible platform for spatiotemporal modelling and FFT
MALA prediction with the LGCP in the R language, piquing the interest of the researchers
Benjamin M. Taylor, Barry S. Rowlingson and Peter J. Diggle at the Division of Medicine,
Lancaster University, during this author’s visit to various universities in Europe; January
2011. Arguably among the world leaders in applied epidemiological spatial and spatiotempo-
ral point process modelling, Markov-Chain Monte-Carlo expert Taylor with Rowlingson and
Diggle were instrumental in the acceleration and final quality of the package construction.
The R package lgep is motivated primarily by problems in the real-time disease surveil-
lance as in Diggle, Rowlingson and Su (2005) and Sections 3.4.2 and 3.5.3 of this work. As
such, it is the spatiotemporal LGCP where the focus of lgep lies; a corresponding paper
Taylor, Davies, Rowlingson and Diggle (2012) is at the time of writing in press with the
Journal of Statistical Software. The development of the package in terms of re-coding and
refinement of this author’s raw code, as well as authorship of additionally required functions,
package ‘beautification’ and paper fundamentals were primarily the responsibility of Taylor,
hence his lead position in the article author list itself. Davies appears second owing to the
original coding efforts forming the core functionality of the package and ongoing testing and
developmental suggestions. Specifically, this author’s coding contributions featuring in lgcp
focused on the torus-wrapping FFT methodology, MALA simulation, and computation of
exceedance probabilities. Both Taylor and Rowlingson were responsible for the interactive
features of lgep, data-to-disk dumping functions and post-processing options. Diggle, behind
a considerable amount of the relevant literature, provided input (both code and direction),
invaluable to the quality of the released product. Version 0.9-0 is available on CRAN, at
http://cran.r-project.org/web/packages/lgcp/index.html.

4.2.1 Aims and scope

The key objective of lgep is to allow users to model spatiotemporal planar point patterns
using the stationary, isotropic LGCP, and conditionally simulate from (i.e. predict using)
the fits. Considerably larger than sparr, this package provides unique tools for deterministic
component and stochastic process parameter estimation, as well as prediction using the
MALA and exceedance probability calculation. Functionality for data-to-disk dumping and
retrieval is included for large files resulting from MALA runs. Tools for post-processing and
visualisation of results are also available. Below, the most interesting features of lgcp are

summarised.

e stppp: the generic function for converting R data structures (e.g. ppp or 1list) into an
object of a class of the same name (space-time planar point Eattern). All functions in

lgep requiring observed data input make use of the stppp class. The object contains
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information on the spatial locations, the spatial observation window, the times at

which each observation occurred, and the temporal interval limits.

spatialAtRisk and temporalAtRisk: generic conversion functions, and resulting ob-
ject class names, for R objects corresponding to the deterministic ‘global’ space ({y)
and time (n) trends respectively. The reader is referred back to Section 3.1.3 for the-
oretical details. These items are able to be specified in a number of different ways,

including, for example, a spatialAtRisk object from a sparr bivden object.

lambdaEst: function to interactively estimate the deterministic global spatial com-
ponent via fixed-bandwidth estimation. As we shall see in the following section, this
opens a specialised rpanel device, allowing the user to vary the bandwidth and imme-

diately visualise the impact on the resulting density estimate.

muEst: function to estimate the deterministic global temporal trend using a LOWESS

smoother.

ginhomAverage and KinhomAverage: functions to compute the time-averaged inho-
mogeneous pair correlation and K-functions respectively, defined in Section 3.1.3 as
equations (3.20) and (3.21). These are required for e.g. minimum contrast estimation

of the spatial correlation parameters.

spatialparsEst and thetaEst: interactive, visual rpanel estimation of spatial and
temporal correlation parameters respectively. Devices are opened containing plots of
the appropriate nonparametric and theoretical curves; use of a slider handle displays
the impact of varying the parameters affecting the theoretical curve. The object is
to match, as closely as possible, the two lines. This will also be demonstrated in the

following section.

lgcpPredict: execution of a FF'T MALA to obtain samples and summary statistics
from the predictive distribution of interest. The user is afforded control over almost
all aspects of the MCMC chain. This function returns an object with class of the same

name, for which there exist a suite of post-processing functions.

lgcpargs and memcargs: functions governing control over 1gcpPredict. Correlation
parameters are specified by the former, chain characteristics (e.g. burn-in, thinning)
by the latter.

setoutput: a function controlling result computation and storage. For example, if

dumping to disk where, and what, do we wish to return?

meanfield, varfield, rr, serr and intens: examples of post-processing functions
on the returned lgcpPredict object. These return the cell-wise Monte-Carlo mean
and variance of the retained Gaussian fields, the cell-wise mean and standard error of
the exponentiated Gaussian fields, and the estimated mean cell-wise Poisson intensity

respectively.
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e print.lgcpPredict and plot.lgcpPredict: support for the generic R functions
print and plot for objects of class 1gcpPredict. The former displays detailed infor-
mation on the run, the latter plots the Monte-Carlo mean of the exponentiated spatial

Gaussian fields for each stored timestamp.

e plotExceed: a specialised plotting function for exceedance probability surfaces. This
requires specific instruction to compute the exceedance probabilities at the commence-

ment of 1lgcpPredict, and will be illustrated in our example walkthrough.

Note that the first version of the full package documentation (written by B.M. Taylor) can
be obtained at http://cran.r-project.org/web/packages/lgcp/lgep.pdf. There exist
a host of smaller functions in lgep; for simple reference purposes we therefore only provide

the help files for the functions featuring the most in the following section in Appendix B.

4.2.2 Example walkthrough and code snippets

We will now demonstrate the functionality of lgep. To do so, the AEGISS data from the
example in Section 3.4.2 will be used, with the aim of obtaining a spatial exceedance prob-
ability surface for the ‘current’ (i.e. most recent) time point as would be the objective in
real-time surveillance. Rather than replicate the precise steps and decisions made earlier,
to best showcase lgep we will make full use of the package functions for estimation of the

deterministic components ¢y and 7, as well as the correlation parameters O',i, ¢y and 6.

Data specification

In R, call 1library(1lgcp). Suppose we have present the data.frame object AEGISS and W,
a polygonal object of class owin (spatstat) describing the spatial study region. The columns
of AEGISS named x, y and t provide the spatial x-y coordinates of each recorded case of
gastroenteritis, as well as the time (in this example each integer represents a ‘day’ starting

on January 1, 2001) at which it was recorded, respectively. We have

R> nrow(AEGISS)
[1] 10554

R> range (AEGISS$t)
[1] 1 1095

indicating a total of 10554 recorded cases, over the time range [1, 1095].

To view the spatial and temporal margins, thereby resulting in Figure 4.4, call:

R> par (mfrow=c(1,2))

R> AEGISS.ppp <- ppp(x=AEGISS$x,y=AEGISS$y,window=W)

R> plot (AEGISS.ppp,main="",x1im=c(0,1),ylim=c(0,1),pch=".")

R> box(bty="L");axis(1,at=pretty(c(0,1)));axis(2,at=pretty(c(0,1)))
R> title(xlab="Eastings",ylab="Northings")

R> plot(unique (AEGISS$t) ,as.numeric(table (AEGISS$t)),
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Figure 4.4: Plotted spatial coordinates and temporal margins (raw daily counts) of the
AEGISS data from the corresponding R commands.

R> + xlab="day",ylab="Case count",pch=16,cex=0.5)
R> par (mfrow=c(1,1))

Note that unlike Figure 3.14, we have not averaged over successive weekly periods for the
temporal margin here.

The first step is to now convert our data structures into the class accepted by lgep.

R> xyt <- stppp(list(data=cbind (AEGISS$x,AEGISS$y,AEGISS$t),
R> + tlim=range (AEGISS$t),window=W))
R> xyt

Space-time point pattern

planar point pattern: 10554 points

window: polygonal boundary

enclosing rectangle: [0, 1] x [0, 1] units
Time Window : [ 1 , 1095 ]

Deterministic components

Next, we use the interactive fixed-bandwidth edge-corrected kernel density estimation tool

to estimate the deterministic global spatial trend ¢,. We call
R> zeta <- lambdaEst(xyt,axes=T)

which opens or accesses the active graphics device and produces an initial plot of the spatial
density estimate. Simultaneously opened is a device from the rpanel package, linked to
the graphical display. This panel contains a field in which the user may manually enter a
value for the bandwidth; the resulting density estimate is seen in the corresponding plot.

Figure 4.5 shows a screenshot of this functionality for our AEGISS example. The field
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Figure 4.5: Interactive fixed-bandwidth density estimation of the AEGISS spatial data in
Igcp.

bandwidth has the obvious purpose, and additional fields in the panel assist with calculation
and visualisation. The user may scale the selected bandwidth by a factor of adjust, and
include the spatial observations on the plot by checking Plot Data. The slider handle
labelled colour adjustment alters the binning of colour ribbon, a feature that can be
useful when the observed data are highly heterogeneous.

Drawing on the results from the second simulation study in Section 3.5.2, we opt for a
relatively large bandwidth (given the data have been rescaled to fall inside the unit square)
of 0.125; this is the image displayed in Figure 4.5. Clicking 0K closes the panel device and
stores the resulting density estimate, zeta, as a pixel image object (class im). This we

subsequently convert to an object of class spatialAtRisk with
R> zeta.sar <- spatialAtRisk(zeta)

A function for estimating the global temporal trend in terms of the expected number of

observed cases per time point via a LOWESS smoother is included. We execute
R> eta.tar <- muEst(xyt,f=0.2)

where f has the same interpretation as the argument of the same name for the R function
lowess; part of R’s built-in, automatically loaded package stats. Setting smoothing span
to 20%, the function muEst automatically returns an appropriately scaled temporalAtRisk
object; there is no need for explicit conversion here. The fitted global daily trend is su-
perimposed upon the raw daily counts in Figure 4.6; this plot generated by the following

code:

R> plot(unique(xyt$t),as.numeric(table(xyt$t)),
R> + xlab="day",ylab="Case count",pch=16,cex=0.5)
R> times <- xyt$tlim[1]:xyt$tlim[2]

R> lines(times,sapply(times,eta.tar),col=2,1lwd=2)
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Figure 4.6: Showing the estimated global temporal trend 7(t).

In situations where the researcher wishes to assume a constant global temporal trend (i.e. any
heterogeneity in the temporal counts is to be explained by the stochastic component), lgep
provides the function constantInTime which also returns a correctly scaled temporalAtRisk
object.

Specification of zeta.sar and eta.tar does not necessarily have to be performed using
the above tools; they are provided for basic self-contained functionality. As mentioned
in Section 4.2.1, we can supply a variety of different data structures to the functions
spatialAtRisk and temporalAtRisk to obtain the required trends in the correct format.
This provides the user with an extremely flexible framework for modelling the global varia-

tion in the observed spatiotemporal data.

Stochastic component parameter estimation

Once satisfied with the deterministic components, we turn to estimation of the parameters
controlling the stochastic component, namely the residual spatiotemporal LGCP. The sta-
tionary, isotropic exponential function will describe the theoretical correlation structures r
and 7; we require estimates of afp, ¢y and 0 and begin with the spatial parameters.

To use minimum contrast methods (or, equivalently, the interactive features of lgep)
the time-averaged nonparametric estimates of either g (pair correlation function) or K are

needed. This is easily achieved by calling

R> rvals <- seq(0,0.025,length=513)
R> g.mean <- ginhomAverage (xyt,spatial.intensity=zeta.sar,

R> + temporal.intensity=eta.tar,rvals=rvals)

| | 100%
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Returning an average of 1047 curves

R> K.mean <- KinhomAverage (xyt,spatial.intensity=zeta.sar,

R> + temporal.intensity=eta.tar,rvals=rvals)

| | 100%

Returning an average of 1047 curves

The raw data as well as the estimated global trend objects must be passed to the functions
ginhomAverage and KinhomAverage. The sequence of spatial distances at which we are
interested in evaluating these functions is pre-specified by rvals; note the short-range upper
limit owing to the residual, ‘local’ nature of the stochastic component. Some computation
time must be expected, and progress bars are incremented during execution (on this author’s
machine the total execution time of the above code block was roughly 2.5 minutes). We
also note that depending on the raw data xyt, some benign warnings can be issued by R
concerning duplicated spatial coordinates; we have suppressed these in the above output.
Provided the level of duplication is not too extreme, the point process theory on which our
models are based can still be considered (approximately) valid and it is relatively safe in
practice to ignore such warnings. Now, the interactive tools for minimum contrast estimation

of the parameters can be demonstrated.

R> g.sigmaphi <- spatialparsEst(g.mean,sigma.range=c(0.5,3),
R> + phi.range=c(0.0001,0.01))
R> K.sigmaphi <- spatialparsEst(K.mean,sigma.range=c(0.5,3),
R> + phi.range=c(0.0001,0.01))

Like 1ambdaEst, a call to spatialparsEst opens a control window linked to a graphical
display. Shown are the nonparametric and corresponding theoretical curves of either g or
K, depending on which of the outputs from either ginhomAverage or KinhomAverage have
been supplied to spatialparsEst. Both are displayed in Figure 4.7.

The control panel provides three options for the functional form of the spatial correlation:
Exponential, Matérn, or Whittle. The latter two require specification of an additional ‘shape’
parameter, named nu here. Our choice of exponential means we can ignore this (the reader
is directed to the help file 7CovarianceFct of package RandomFields for further details on
these forms). Also provided is the option to view the curves on their respective ‘raw’ scales,
or to transform them according to the preferences indicated for minimum contrast procedures
in Section 3.2.3. In both cases, we choose the transformed version of the curves.

The objective when running these functions is to move the slider handles for sigma
and phi to visually find the theoretical curve which most appropriately matches, to the
satisfaction of the user, the nonparametric counterpart. Inspection of Figure 4.7 shows the
values this author arrived at for both g and K versions of the tool. The selections are
012/) =22 = 4, ¢y = 0.00599 when using g and O‘i = 2.882 = 8.294, ¢y = 0.0021 when
using K. As we would expect, these parameter values are very close to those found when
numerically minimising the discrepancy between these curves in Section 3.4.2; Figure 3.16.
Remaining unimpressed with the K-function match as before, we discard these results and

work with those corresponding to g. Refer back to Section 3.4.2 for further discussion.

153



Parameter Estimation

-corchoice
¢ exponential
© matern
 whittle
rtransform
" none
2 lng
nu 0.5
sigma
z.00
phi
0.00599
[o]:4

Parameter, Estimation

rcorchoic
" exponential
© matern

7 whittle

rtransform
 none

[oRENTS

nu 0.5

sigma

2,68

phi
0.00210

(N

oK

g_inhomir)

K_inhamir)

L]

0.30

005 010 020 025

000

glinhom]

0.005

0010

oS

— Empincal

0.020

Theoratical

0025

Klinhom]
— Empincal —
Thegretical r T
T
e -
—
——
T T T T T T
0.000 0.005 0010 oS 0.020 0025

Figure 4.7: Interactive spatial parameter estimation in lgep, based either on the PCF (top)

or K-function (bottom).
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Figure 4.8: Interactive temporal parameter estimation for #~! in Igep, based on the the
temporal covariance function.

It remains to interactively estimate 6. Currently, the Exponential correlation function
is the only form coded for the temporal correlation 7 in lgecp. Furthermore, recall that our
discussions thus far have defined, for an integer lag v, 7(v) = exp[—v/6] i.e. 0 is a divisive
scaling parameter. Package lgep defines 0 as a multiplicative scaler in all relevant functions.
Therefore if viewed in the context of our earlier theoretical expositions we should consider

the following estimation steps as actually finding 1/6.

R> C.theta <- thetaEst(xyt,spatial.intensity=zeta.sar,
R> + temporal.intensity=eta.tar,sigma=g.sigmaphi$sigma,phi=g.sigmaphi$phi,

R> + theta.range=c(0,2),spatial.covmodel="exponential")

The above code snippet, calling thetaEst, requires the stppp object of our data and
the spatial and temporal global trends. In accordance with the earlier decision to use only
the PCF-selected parameters, these are also passed to the function. A viewable range of
interest for 1/6 is specified, as well as the selected functional form for the spatial correlation.
Opened for the final time is another rpanel controlling the active graphical display, where
the theoretical and nonparametric temporal covariance functions C (3.22) and C (3.23) are
plotted. Figure 4.8 shows the results after a satisfactory visual match using the slider handle
for theta— 67 1.

Note that the values of sigma and phi passed to thetaEst are automatically set as the
values affecting the theoretical curve. The user may enter different values to observe the
impact they have on the behaviour of C, but in searching for a suitable 6, both ¢ and ¢
should be kept fixed at the values which we intend to use for conditional simulation. The
chosen value for §~1 is stored as C.theta upon clicking 0K. We have § = 1/0.48 = 2.083
which again is close to the numerically minimised value in Section 3.4.2; Figure 3.18.

Finally, note that as with computation of the deterministic components, these supplied
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interactive approaches for estimation of oy, ¢4 and 6 do not have to be used, particularly
in the event the researcher has additional information which affects their interpretation of
the behaviour of the stochastic dependence. These tools are provided in lgep primarily for
exploratory purposes; their presence highlights the ad hoc nature of minimum contrast meth-
ods and associated drawbacks. Indeed, their use restricts the option of spatial correlation
functions to those implemented and, being visually based, there is obviously no guarantee

that the results arrived at will be equal to the numerical minimum discrepancy.

Conditional simulation: running the MALA

We wish to predict the true form of the spatiotemporal intensity at the most recent times-
tamp based on the observed data and, additionally, to obtain exceedance probabilities based
on the extremity of the predicted residual correlation. We consider these goals fundamen-
tal in real-time disease surveillance; they are achieved through a run of the spatiotemporal
Metropolis-adjusted Langevin algorithm.

Package lgep provides the first publicly accessible R implementation of the MALA for this
objective. The core function of the package, 1gcpPredict, performs the required operations

and returns an object containing detailed result and chain diagnostic information.
R> args(lgcpPredict)

function (xyt, T, laglength, model.parameters = lgcppars(),
spatial.covmodel = "exponential", covpars = c(), cellwidth = NULL,
gridsize = NULL, spatial.intensity, temporal.intensity,
mcme. control, output.control = setoutput(),
autorotate = FALSE, gradtrunc = NULL)

Naturally, the observed data must be supplied as an object of class stppp for the argu-
ment xyt. The argument T specifies the time point at which we wish to predict the spatial
intensity, and laglength gives the number of previous time points to consider during execu-
tion of the chain. As we assume the temporal correlation between two time points diminishes
as the lag between them increases, it makes little sense to incorporate absolutely all historical
intensities in our prediction of the ‘current’ intensity. Though perfectly possible in theory,
in practice this would result in ever-increasing amounts of storage space and execution time,
to a negligible impact on the final results (see our earlier discussion in Section 3.3.2 and also
Brix and Diggle, 2001). Our minimally required spatial and temporal correlation param-
eters (ai, ¢y and 0) are specified through the lgcppars function to model.parameters.
Defaulting to "exponential", the functional form of the spatial correlation can take any of
those specified for CovarianceFct in RandomFields, though the reader is reminded in this
particular example we are restricted to those used to interactively estimate the parameters
in spatialparsEst. The argument covpars must specify parameters additional to those in
model .parameters, if there exist any for the elected spatial.covmodel. The arguments
cellwidth and gridsize are used to determine the resolution of the rectangular evalua-
tion grid; only one need be provided. Global deterministic trends, the spatialAtRisk and

temporalAtRisk objects, must be passed as spatial.intensity and temporal.intensity
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respectively. Desired characteristics of the Markov chain are given to mcmc.control, the
required form of the which is best demonstrated when we execute lgcpPredict below.
Similarly, control over output including disk storage location and exceedance probability
calculation is specified in output.control. The argument autorotate=TRUE determines if
any efficiency is yielded by rotating the irregular study region, subsequently requiring storage
of fewer cells of the rectangular evaluation grid. Defaulting to FALSE, this can be useful if we
have, for example, a long, thin study region that is diagonally oriented. Finally, the user can
specify the level of gradient truncation through gradtrunc. By default, gradtrunc=NULL
will automatically compute the required quantity by simulating a (relatively) small number
of variables from the target density, evaluating the gradient norm at each, and using the
largest of these values as the truncation.

Prior to commencing the MALA, we must decide upon appropriate thresholds for the
exponentiated Gaussian field. For a given retained field, any spatial locations at the time
point of interest breaching these thresholds will be classified as an ‘exceedance’. These are
found, as in Section 3.4.2, using appropriately high quantiles of the corresponding lognormal

distribution based on the estimated value of O’,i. In this particular example, the commands

R> quans <- ¢(0.9,0.95,0.99)
R> thresholds <- exp(-0.5%g.sigmaphi$sigma 2+g.sigmaphi$sigma*qnorm(quans))
R> thresholds

[1] 1.756114 3.631723 14.192246

provide the thresholds of interest for the 90", 95" and 99" percentiles. The command
R> exceed <- exceedProbs(thresholds)

must then be run; here exceedProbs takes a vector of desired thresholds and returns a
new function (named exceed here) which can in turn be provided with a matrix. For each
of the supplied thresholds, the function exceed then returns a logical matrix of the same
dimensions as its argument after checking the entries thereof against the supplied thresholds;
TRUE is returned for any entry which positively breaches them.

These steps are necessary owing to the fashion in which lgcpPredict constructs and

analyses its Markov chain. We are now ready to execute.

R> aegissMALA <- lgcpPredict (xyt=xyt,

R> + T=xyt$tlim[2],

R> + laglength=5,

R> + model.parameters=1lgcppars (sigma=g.sigmaphi$sigma,phi=g.sigmaphi$phi,
R> + theta=C.theta),

R> + gridsize=64,

R> + spatial.intensity=zeta.sar,

R> + temporal.intensity=eta.tar,

R> + mcmc. control=mcmcpars (mala.length=120000, burnin=20000,retain=100,
R> + MCMCdiag=3,adaptivescheme=constanth(0.004)),
R> + output.control=setoutput (gridfunction=dump2dir (dirname=
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R> + "H:/PhD/Thesis/Chap4/aegissMALA",

R> + forceSave=TRUE, lastonly=T),

R> + gridmeans=MonteCarloAverage ("exceed",
R> + lastonly=T))

R> + )

FFT Grid size: [128 , 128]

WARNING: disk space required for saving is approximately 187.61 Mb
Computing gradient truncation ...

| | 100%
Using gradient truncation of 1232535

Netcdf file: H:/PhD/Thesis/Chap4/aegissMALA/simout.nc created

Initialising MALA ...

MALA successfully initialised ... please wait
| | 100% : Run [119501/120000]

Files written to H:/PhD/Thesis/Chap4/aegissMALA/

The arguments to lgcpPredict are set to our desired values. The time point of interest,
T, is the most recent, given by the maximum limit of the temporal window. The model
parameters ai, ¢y and 6 are given as the results from use of the PCF for estimation.
Setting gridsize to 64 instructs the function to use a 64 x 64 evaluation grid. After passing
in the deterministic global trends, 1gcpPredict must now be told about the chain itself.

Values for memc.control are specified through the secondary function mcmepars, and
we provide the mala.length=120000 iterations, a burnin of 20000 iterations and instruct
to thin by retaining only every 100*" non-burn-in iteration. The argument MCMCdiag is
for diagnostic purposes post-execution; this is given a positive integer value instructing
lgcpPredict to store the individual results from 3 randomly selected cells on the torus.
The tuning parameter controlling candidate generation, h, is specified with the value of
adaptivescheme. Use of constanth(0.004) sets h = 0.004.

As an aside, note that some methodology exists for sensible definitions of variable tun-
ing parameters; code included for this objective variable in lgep by B.M. Taylor. The
approach uses the methods detailed in Andrieu and Thoms (2008) and, rather than using
constanth(...), is specified using andrieuthomsh(...). This work has utilised a fixed h
as in the original LGCP publications by Megller et al. (1998) and Brix and Diggle (2001);
this is where we will remain for the current discussion. The reader is directed to Andrieu
and Thoms (2008), the package documentation for ?andrieuthomsh, and our lgep article
for further details on the alternative.

The function 1gcpPredict is told what to compute, and how to store results, through
output.control=setoutput(...). Not performed by default, we elect to dump results to
disk at the folder location given by gridfunction=dump2dir(...). Additional arguments
to this function tell 1gcpPredict to forceSave (i.e. write) to the hard disk drive regardless
of estimated final file size, rather than prompt the user at the beginning of execution (de-

fault), and to store the results of the lastonly time T, rather than also saving the previous
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laglength timestamp results.

Finally, additional posterior results are instructed to be computed via the setoutput
gridmeans=MonteCarloAverage(...) argument. Standard results such as cell-wise poste-
rior mean and variances of the raw and exponentiated Gaussian field are returned automat-
ically. Our desire for exceedance probabilities must be given here, however. The function
MonteCarloAverage computes the results for a vector of appropriately defined functions;
in this example we require only the results from the earlier-defined function exceed. The
additional argument lastonly has the same effect as in dump2dir.

Commentary and progress bars show the completion status during execution. Note that
lgcpPredict uses the minimum required grid extension for the FFT; an evaluation grid of
(M —1)x (N —1) = 64 x 64 means an extended grid of (Mext — 1) X (Next — 1) = 128 x 128.
If used, the gradient truncation stage completes relatively quickly, with total execution
time dominated by the MALA burn-in and run itself. Should execution be performed on
a remotely accessed machine, it is also prudent to store the returned lgcpPredict object;

this can be achieved with standard R functions such as dput (R package base).
Post-processing and visualisation

By printing the returned object, we gain a useful summary of the run:

R> aegissMALA

lgcpPredict object.

General Information

FFT Gridsize: [ 128 , 128 ]

Data:
Time | 1090 1091 1092 1093 1094 1095
Counts | 13 10 21 0 5 6

Parameters: sigma=2, phi=0.006, theta=0.48
Dump Directory: H:/PhD/Thesis/Chap4/aegissMALA/

Grid Averages:
Function Output Class

exceed array
Time taken: 15.158 hours
MCMC Information

Number Iterations: 120000
Burn-in: 20000
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Figure 4.9: Trace plots of the values of the retained Gaussian field for the three randomly
selected torus cells (left) and an autocorrelation plot of the retained chain values for the
third cell (right).

Thinning: 100
Mean Acceptance: 0.594
Adaptive Scheme: constanth
Last h: 0.004

New information provided here includes the total execution time, in this case around 15
hours, and the mean acceptance rate, 0.594.

Mixing and convergence can be assessed quickly using the command mcmctrace. This
retrieves the values of the Gaussian field from aegissMALA at each iteration for each of the
MCMCdiag=3 randomly selected cells. The result of the following instructions is given in
Figure 4.9.

R> aegiss.diag <- mcmctrace(aegissMALA)
R> plot(aegiss.diag)

R> acf (aegiss.diag$tracel,3],main="cell 3 autocorrelation")

The trace plots show satisfactory mixing and appear to have achieved convergence. To a
certain extent, correlation is exhibited in the resulting values; this is typical of MCMC and of
less concern than if we had not observed the relatively well-behaved trace plots. The level of
correlation has the potential to be far more severe if we had used the (discretised) Gaussian
field Z directly in the iterations rather than the linear transformation I' — refer back to
Section 3.3.2 and Section 8 of Mpgller et al. (1998). Dumping the results to disk, rather
than just working with the returned lgcpPredict object, allows for particularly detailed
diagnostic summaries: with the entire contents of the retained chain available, the user can
perform any number of operations on the posterior realisations in order to gain a better
understanding of the behaviour of the MALA.

The dumped data is given as a ‘netCDF’ (Network Common Data Form) file named

simout.nc in the folder specified in dump2dir. These file types are specially designed to allow
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relatively fast access to large volumes of information and can be accessed via the nedf package
(Pierce, 2011), automatically loaded as a dependency when calling 1ibrary(1gcp). Briefly,
to load the entire retained chain of the raw Gaussian fields into the current workspace, we

call

R> aegiss.ncdf <- open.ncdf("H:/PhD/Thesis/Chap4/aegissMALA/simout.nc")
R> aegiss.chain <- get.var.ncdf (aegiss.ncdf)
R> close.ncdf (aegiss.ncdf)

R> dim(aegiss.chain)
[1] 64 64 1000

which indicates we have an array containing 1000 stored 64 x 64 matrices: the spatial
Gaussian fields for the final time point only (recall lastonly=TRUE) for each of the retained
iterations (of which there are clearly 1000 in total). Had we specified lastonly=FALSE
in dump2dir the array given by aegiss.chain would have an extra dimension of size
laglength+1 to provide the spatial intensities corresponding to the historical window in
addition to the lastonly timestamp. Should we not desire surface-wise inspection of the
whole chain, lgep provides the function extract.lgcpPredict, which allows rapid access to
sub-samples without requiring the importation of the entire data set. Storage of the chain
is also useful should the user decide post-execution that they require summaries in addition
to those specified by MonteCarloAverage as gridmeans in setoutput for output.control
in 1gcpPredict. To this end, the function expectation.lgcpPredict is supplied.

Important summary statistics are returned automatically and do not require dumping of
the chain to disk. Use of the functions meanfield(aegissMALA) and varfield(aegissMALA)
return the matrices representing the cell-wise posterior mean and variance of the Gaussian
field on W respectively for each laglength+1 time points. The functions rr(aegissMALA)
and serr(aegissMALA) return the cell-wise posterior mean and associated standard er-
rors for the exponentiated Gaussian field (the reason for their names is clarified below)
for each relevant time point. The posterior mean intensity, again at each influential time
point T-laglength to T inclusive and obtained by the product of the spatial and temporal
deterministic components with the posterior mean of the residual LGCP, is extracted via
intens (aegissMALA). The spatial x- and y-axis coordinates which were used to approximate
the spatially continuous field are retrieved with xvals (aegissMALA) and yvals (aegissMALA)
respectively.

Plotting the posterior may be done through use of plot.lgcpPredict. We have two
automatic options available: view the cell-wise posterior mean of the exponentiated Gaussian
field m, or view the final intensity estimate ¢y = Q/,nm (we assume for simplicity
the only time of interest is the final time point T=T). Note that the former option can in the
current setting be referred to as the ‘relative risk’ plot in the sense that positive extremity in
the residual process indicates heightened local ‘risk’ of observing a disease case. This should
not be confused with the kernel-smoothed density-ratio estimator of relative risk discussed
in Chapter 2 and dealt with in sparr. Also, note that the user is not restricted to the plotting
methods demonstrated below; with access to each raw, retained Gaussian field, the user can

retrieve and plot their results with any suitable functions in the R language.
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Figure 4.10: Posterior mean plots for the AEGISS data. Left: mean relative risk exp[Zr].

Right: mean Poisson intensity (ynexp[Zr].

The following code snippet produces Figure 4.10, with the argument type distinguishing
between the two options of ‘relative risk’ and ‘Poisson intensity’. By default, this class-
specific version of the generic plot will plot all of the laglength+1 surfaces; a feature
controlled by argument sel. With our earlier specification of laglength=5, setting sel=6
instructs the function to display the surface at the latest time point T. When multiple time
points are plotted, plot.lgcpPredict will also by default prompt the user to update the
graphics device via ask. Viewing only one timestamp, we set ask=FALSE. Denying the
function the ability to provide the observations automatically by setting plotdata=FALSE,

here we add them manually with the standard R function points.

R> par (mfrow=c(1,2))

R> lastday <- xyt[xyt$t==xyt$tlim[2]]

R> plot(aegissMALA,type="relrisk",sel=6,plotdata=FALSE, ask=FALSE,
R> + xlab="Eastings",ylab="Northings")

R> points(lastday,pch=8)

R> plot(aegissMALA,type="intensity",sel=6,plotdata=FALSE, ask=FALSE,
R> + xlab="Eastings",ylab="Northings")

R> points(lastday,pch=8)

R> par (mfrow=c(1,1))

Naturally, peaks in both the the predicted relative risk and overall Poisson intensity surfaces
correspond to where data have currently and/or have very recently, been observed. The effect
of including the multiplicative deterministic components is clear in that the spatial variation
now reflects the underlying global trend and the integral of the function now represents the
scale of the number of daily observations.

Finally, from a disease surveillance perspective, we wish to determine if the peaks in
relative risk we have currently observed constitute any anomalous behaviour in terms of
consistent exceedance by the retained realisations of the pre-computed percentile thresh-

olds. The proportion of exp[Zr]| realisations which breach a given threshold for each spatial
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location inside the study region constitute the exceedance probabilities, and can be auto-

matically plotted in lgep. The following code produces Figure 4.11.

R> par(mfrow=c (length(thresholds),1))

R> plotExceed(aegissMALA, "exceed",ask=FALSE,
R> + xlab="Eastings",ylab="Northings")

R> par(mfrow=c(1,1))

In much the same way as Figures 3.22 and 3.23, we would typically insist upon high
exceedance probabilities (i.e. 0.8 at the very least) before flagging a cell or localisation of
cells as an anomaly. Furthermore, it is reasonable to suggest that a ‘true’ anomaly is far
more likely to persist over time, rather than appearing at one time point and disappearing
the next (Diggle, Rowlingson and Su, 2005), so regular monitoring of such a system over
time would be recommended.

In any case, the exceedance maps in Figure 4.11 do not indicate any real cause for
alarm. Use of the smallest threshold fails to indicate any cells providing a sufficiently
high probability, dictating that the larger thresholds will yield even smaller exceedance
proportions. In other words, the data observed at time T=1095 as well as the recent history
of the observations at the laglength=5 previous time points have fallen within what the

model estimates is ‘normal’ variability.

4.2.3 Some interesting notes on the FFT

As discussed in detail in Section 3.3.1, critical to manageable execution times in lgep is
the fast-Fourier transform. The technique of circulant embedding applied to the covariance
matrix corresponding to the discretised spatial region allows appropriate use of the FFT
for quick diagonalisation. This spectral decomposition of the covariance matrix is necessary
so that we may repeatedly simulate from the high-dimensional Gaussian fields as required
for the MALA in a timely fashion (and work with the linear transformation I' rather than
the field directly — refer back to Section 3.3.2). The command fft, part of the standard R
package stats, computes the unnormalised discrete Fourier transform for a specified array
and allows us to recover (via the inverse transform) the eigenvalues of a positive semidefinite
block circulant matrix in the same way as more computationally expensive decomposition
methods would.

Suppose, for illustrative purposes, we are working on a ridiculously coarse 2 x 2 square
grid. The minimum extended grid size will be 4 x 4. The extended-grid covariance matrix
will therefore have dimension 16 x 16, and have 16 eigenvalues. If the matrix of interpoint
distances have been computed as per the minimum torus distances in Section 3.3.1, then this
extended matrix will be block circulant. As per Appendix E in Mgller and Waagepetersen
(2004), if this matrix is also positive semidefinite, then it represents the covariance matrix
of the circulant Gaussian random field on the extended grid. Suppose this object is stored
as extended.covariance.matrix in the current R workspace. We may find the eigenvalues

using the base R function eigen, which below makes use of the QR decomposition.

R> ext.dim <- dim(extended.covariance.matrix)

R> ext.dim
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Figure 4.11: Exceedance probabilities for the final time point for the AEGISS analysis in
Igcp.
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[1] 16 16

R> eigs <- eigen(extended.covariance.matrix,symmetric=T)$values

R> eigs

[1] 16.805091 5.851589 5.851589 5.851589 5.851589 3.153741 3.153741
3.153741 3.153741 1.675565 1.6755665 1.675565 1.675565 1.612855
1.429238 1.429238

Note that this method has required the entire covariance matrix (strictly speaking, knowl-
edge of one diagonal half thereof due to symmetry), which has itself required the construction
and covariance function evaluation of the extended torus-wrapped distance matrix.

The block circulant nature of the extended matrix means that all the information required
for equivalent results using the FFT are contained in a 4 x 4 matrix formed from the first

row of extended.covariance.matrix only.

R> fast.matrix <- matrix(extended.covariance.matrix[1,],
R> + nrow=sqrt(ext.dim),ncol=sqrt(ext.dim))

R> eigs.fft <- rev(sort(Re(fft(fast.matrix,inverse=T))))
R> eigs.fft

[1] 16.805091 5.851589 5.851589 5.851589 5.851589 3.153741 3.153741
3.153741 3.153741 1.675565 1.6755665 1.675565 1.675565 1.612855
1.429238 1.429238

A quick inspection reveals that using just a fraction of the size of the entire extended
covariance matrix yields identical eigenvalues via this alternative. As an aside, note that
this example was run simply to demonstrate the equivalence of the two functions in the
special case of the positive semidefinite block circulant matrix. In practice for the LGCP,
the eigen method would technically not be evaluated on the extended covariance matrix.
In this situation, however, subsequent inversion of the matrix of eigenvectors (the derivation
of which constitutes the major contributing factor to computational costs), provided by the
call to eigen with respect to the covariance matrix on the original lattice, would have to
occur in order to find the diagonalisation matrix @ (refer back to Section 3.3.2 for details
on this quantity).

For such small dimensions, the difference in computational expense between the two
approaches is of course not noticeable. As the grid resolution becomes finer though, use
of functions such as eigen becomes all but impossible. As a quick example, consider (a
still relatively coarse) 40 x 40 grid; covariance matrix 1600 x 1600. The corresponding
extension would be (at least) of size 80 x 80, with covariance matrix 6400 x 6400, but as
we require only the first row, this dramatically reduces to computation of a certain 80 x 80
array only. Without needing the grid extension if working with eigen, we still however
seek full eigendecomposition of the original 1600 x 1600 covariance matrix. Consider the
following ‘dummy’ example, where matrices (symmetric for use in eigen) of the specified
dimensions are simply filled with randomly generated independent standard normal values

to demonstrate the impact of excessively high dimensionality on the functions of interest.
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R> slow.mat <- toeplitz(rnorm(1600))
R> start <- Sys.time()

R> slow <- eigen(slow.mat,symmetric=T)
R> end <- Sys.time()

R> end-start

Time difference of 7.906 secs

R> fast.mat <- matrix(rnorm(80°2),80,80)
R> start <- Sys.time()

R> fast <- fft(fast.mat,inverse=T)

R> end <- Sys.time()

R> end-start

Time difference of 0.03200006 secs

The improvement in computational expense is clear; this dummy example roughly ex-
hibiting a 250-fold improvement of fft over eigen. Considering the MALA must repeat
these kinds of operations tens of thousands of times, not to mention at much finer resolu-
tions, this speed and efficiency is an invaluable feature of the FFT methodology. Indeed,
working with evaluation grids larger than around 40 x 40, eigen in fact fails to complete,
citing insufficient memory allocations in R. It is also important to remember, as mentioned
in Section 3.3.1, that use of the FFT requires the extended grid in order to be a valid ap-
proach due to certain periodicity conditions that must be met. Without this, the spectral
decomposition would be incorrect; results being contaminated by ‘wrap-around effects’.

The high-dimensionality associated with the discrete approximations to planar Gaussian
fields means the performance of lgep is heavily dependent on the benefits afforded by FFT.
Indeed, much the same code as briefly illustrated here was used by this author in initial
programming efforts concerning the relevant operations for implementation of the MALA

and remains a key component of the package.

4.2.4 Limitations and future extensions

Package lgep provides functionality for model specification, fitting, and prediction using the
sophisticated space-time log-Gaussian Cox process of Brix and Diggle (2001). Primarily
motivated by problems in disease surveillance, emphasis is placed on conditional simulation
based on the observed data which involves implementation of the fast-Fourier-transformed
Metropolis-adjusted Langevin algorithm for high-dimensional, spatiotemporally correlated
Gaussian fields. By collaborating with researchers at Lancaster University, the end result
is a functional, powerful tool with a number of additional features enhancing this author’s
original suite of executable R methods.

This R package depends upon a modest collection of other available packages in order to
operate, some of which have been mentioned already. The important spatial data analysis
packages spatstat (Baddeley and Turner, 2005), sp (Pebesma and Bivand, 2005; Bivand
et al., 2008), and to a slightly lesser extent fields (Furrer et al., 2011), maptools (Lewin-Koh
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and Bivand, 2011) and rgdal (Keitt et al., 2011) provide critical support for spatial region
handling, summary statistic calculations, data set class specifications and other internal
operations. The useful package RandomFields (Schlather, 2011) provides access to a suite
of different spatial covariance functions, and nedf (Pierce, 2011) yields the necessary tools for
handling the aforementioned netCDF file format. Packages rpanel (Bowman et al., 2007),
rgl (Adler and Murdoch, 2009) and tcltk (a standard part of the R installation) provide
graphical assistance such as the interactive visuals observed in the previous section. Further
support for internal functions is provided by iterators (Revolution Analytics, 2011) and the
included-in-installation R package methods.

At the time of writing the version currently released is 0.9-0, which happens to be the
first version submitted to CRAN. As such, there are many sensible directions in which lgcp
could (and at some point, will) be expanded. The explicit capability to carry out analyses
for ‘purely spatial’ data sets with the LGCP, as initially introduced into statistics by Mgller
et al. (1998), is seen as one of the most useful extensions to carry out. Theoretically, it is
also relatively straightforward to include the capability to handle covariates in the structure
of the LGCP, analogous in many ways to random effects models in regression, achieved by
exponentiating not just the Gaussian field itself, but the sum of the Gaussian field and
the product of the covariate value vector with a transposed coeflicient vector at each spatial
location (see e.g. Mgller and Waagepetersen, 2007). This is another interesting feature under
consideration for lgep.

The problem of parameter estimation for the dependency structure remains a tricky one.
At present, the interactive nature of the tools included in lgep highlights the ad hoc nature
of minimum contrast. In many ways, the decision to leave the user to themselves decide how
to specify these parameters is similar to the decision in sparr to only provide a basic level of
bandwidth selectors for the kernel-smoothed density-ratio: a certain level of ‘user-discretion’
will be warranted from one application to the next. Nevertheless, automated functions to
e.g. return the minimum contrast parameters estimates would be useful, and this is planned
for near-future versions.

The relative youth of the LGCP, particularly with respect to spatiotemporal data sets,
is clear. Indeed, the only known application of the spatiotemporal framework to date is of
the AEGISS data in Diggle, Rowlingson and Su (2005); we add to this practical experience
in Section 5.4 with a preliminary exploration of some earthquake data. The rich variety of
spatial and spatiotemporal intensity functions that the LGCP is capable of capturing means
that this model and its modifications deserve greater attention in the applied literature.
Relevant theoretical improvements at this point also require further investigation from an
applied perspective; examples involve the nonseparable correlation structures explored by
Rodrigues and Diggle (2010) and a principled Bayesian approach to parameter estimation
(preliminary correspondence with Lancaster group). This knowledge will continue to evolve,
and by monitoring and contributing to the literature, we aim to enable lgep to provide users
a unique portal to the latest developments in this area of spatial and spatiotemporal point

process modelling.
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Chapter 5

Collaborative Applications and
Case Studies

In this chapter, collaborative applied work with academics and other scientists around the
globe is summarised. These collaborations have made use of the novel statistical research
developed during the course of this project. The first three examples discussed here have
been either published or submitted for publication with appropriate co-authorship in rele-
vant peer-reviewed epidemiological journals; the projects are not replicated in their entirety
and the discussions vary in length. Rather, emphasis of the summaries is placed on this
author’s contributions, namely all or a portion of the statistical strategies implemented
through programming, interpretation of the results, and write-up in the relevant sections of
corresponding articles. The statistical research carried out in the preceding chapters chrono-
logically began with investigations into kernel density estimation and the associated relative
risk function: the three published examples have thus all exploited this methodology.

Section 5.1 covers a study that aims to identify high-risk areas of schistosomiasis in a
particular region of China. Global trends in outbreaks of avian influenza are explored in
Section 5.2, and Section 5.3 details the efforts made to verify the agreement of different
models used to simulate the spread of foot-and-mouth disease throughout Irish farms in
the event of an epidemic. Finally, for something different, Section 5.4 seeks to apply the
spatiotemporal log-Gaussian Cox process to a Japanese earthquake data set. Obviously not
an epidemiological example, it nevertheless allows further experimentation of this model in
an applied setting and clearly demonstrates the flexibility of the LGCP.

Theoretical specifics are not repeated here. The reader is instructed to consult the

relevant sections in Chapter 2 for Sections 5.1-5.3, and Chapter 3 for Section 5.4.

5.1 Schistosomiasis in Guichi, China

Soon after the work on adaptive kernel density estimation of relative risk functions became
publicly available (Davies and Hazelton, 2010), this author was contacted by epidemiologists

based in China investigating the spatial variation of schistosomiasis in the Guichi region of
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the Anhui province. They wished to apply the variable smoothing method to analyse the
risk of the disease within this region, and compare it to their previously obtained results
using the fixed-bandwidth approach.

Assistance was provided in implementation of the methods (using, in fact, our R package
sparr — see Section 4.1) and discussion of the results. The corresponding article, Zhang,

Davies and Jiang (2011), is currently under review with Geospatial Health.

5.1.1 Background

Schistosomiasis, known colloquially as ‘snail fever’, is a parasitic disease which is estimated
to affect over 200 million people worldwide (World Health Organization, 2010). Mainly
prevalent in Africa and Asia, widespread infection can have significant economic and public
health consequences. Carried by certain snail species and released into waterways when
mature larvae, hosts become infected through penetration of the skin by the parasite when in
contact with the affected water. The larvae subsequently develop into adult worms residing
in the blood vessels; females releasing eggs. Eggs that remain trapped in the body trigger
an immune reaction, leading to the visible symptoms. These can range from mild to severe
(e.g. fever, abdominal discomfort, diarrhoea, blood in faeces and urine), and depend upon
the species of parasite, but the illness is generally treatable. Long-term, unchecked infection,
however, can lead to major damage to vital organs and death. It is therefore important that
the prevalence of the disease in affected areas continues to be monitored so that control
measures can be targeted effectively.

A species of the parasite particularly prevalent in China is Schistosomiasis japonicum,
which affects the intestinal tract. China has strategies in place to control and limit the
incidence rates, though this is extremely difficult due to the extensive habitat of the sole
intermediary host (Oncomelania hupensis) coupled with extreme weather events such as
floods. It remains a significant public health problem in this country; see for example
the works by McManus et al. (2005) and Zhou et al. (2007). In Zhang et al. (2009), the
authors used fixed-bandwidth kernel density estimation to estimate the relative risk function
of schistosomiasis based on data collected in Guichi, Anhui province. The current work
analyses the same data with adaptive kernel estimation of spatial relative risk, and draws

comparisons with the previous approach.

5.1.2 Data and methods

The data comprise 83 spatial point locations of S. japonica cases in the Guichi region, which
were recorded using a hand-held Global Positioning System (GPS), alongside 83 controls
randomly selected from the at risk population (see Zhang et al., 2008, 2009, for further
details on these data and their collection).

Figure 5.1 shows the data set and study region, rescaled to the unit square. Also included
are local river systems, namely the Yangtze River bordering the north, and the Qiupu River
which feeds into the Yangtze within the Guichi region itself. Particularly noticeable is the
tendency of the observed cases to fall near the waterways. Is this simply a reflection of

the at-risk population dispersion? A visual inspection may suggest not, though a more
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Figure 5.1: Cases (o) and controls (+) for the Guichi schistosomiasis data, including study
region (solid border line) and local waterways (dashed blue lines).

sophisticated investigation is of course desirable.

Log-transformed kernel-smoothed density-ratio relative risk surfaces were constructed
for these data, using both fixed and adaptive bandwidth versions of the estimator; refer
back to Section 2.2. Bandwidths were assigned as per the guidelines discussed in Section
2.3.1, namely a common case-control fixed bandwidth, or a common case-control global
bandwidth with separately computed pilots in the adaptive version. The single-density
oversmoothing (OS) and least-squares cross-validation (LSCV) selectors were employed, the
latter method only used for pilot bandwidth calculation in the adaptive estimates. Tests for
significantly positive extremities in risk were performed using both Monte-Carlo (MC) and
asymptotic (ASY) methods; refer back to Section 2.4. The former was calculated based on
1000 iterations.

In addition to the risk surfaces computed with the specific choices of bandwidths listed
above and described in Chapter 2, the standard error for the estimated risk functions was
assessed. The issue of estimated risk function variability frequently goes unmentioned in
the literature, despite the critical role it plays in p-value surface and tolerance contour
calculation for a given kernel risk surface. Via the ASY method, the standard error surfaces
are given as the square root of the asymptotic expressions for the (edge-corrected) log-
risk function variance provided in equations (2.25) and (2.26) for the fixed and adaptive
functions respectively. The standard errors corresponding to the MC p-value surfaces are
simply empirically computed as the standard deviation of the collection of re-sampled risk

surface values for each cell.
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Figure 5.2: Initial risk function results for the schistosomiasis data, showing both fixed and
adaptive versions with either MC or ASY upper-test tolerance contours plotted at a 5% level
of significance.

5.1.3 Summary of results

Use X and Y to denote the case and control data sets, and let ‘- OS’ read as “computed
via the OS method on the pooled data set” and ‘“— LSCVz’ read as “computed via the
LSCV method on the data set Z”. For the interpreted results we therefore have hz <OS,
and hg + OS; iLf + LSCVx; iLg + LSCVy, where as per the notation in Chapter 2, hx
denotes the common bandwidth in the fixed setting and hg the common global bandwidth

in the adaptive setting, with case and control pilot bandwidths h ¢ and fzg respectively.

These risk surfaces are displayed in Figure 5.2. There appears to be little difference
between the ASY and MC contours for the fixed-bandwidth risk surface. Two clear areas
of interest are highlighted, one on the northern border where the Qiupu feeds into the
Yangtze, and the other in the southeastern quadrant. The latter sub-region has occurred

where isolated case observations have occurred with no controls present, though the size of
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this significant area is questionable.

The results for the adaptive surface are particularly interesting. The ASY tolerance
contours clearly track the Qiupu for most of its length, reflecting our visual examination of
the observations in Figure 5.1. There are also three much smaller, more distinct sub-regions
flagged on this plot. The appearance of the MC contours for the adaptive surface differ
considerably, with only one clear sub-region at the intersection of the Qiupu and Yangtze
being identified. The ‘enthusiasm’ of the ASY contours to flag significant areas, particularly
for adaptive risk function estimates, can also be observed at some level in our earlier analysis
of the Chorley-Ribble data set in Section 2.6.1. However, it is important to note that the
reliability of the ASY approach for both fixed and adaptive smoothing regimens will likely
suffer when the sample sizes are small: note that a number of large-sample approximations
are made in order to derive valid expressions for the properties of the risk surfaces and
subsequent formulae for the ASY p-value surfaces.

Thus, drawing conclusions based on this analysis alone should be performed with caution.
With only 83 cases and 83 controls, we can conceivably expect relatively high levels of
variability in the numerically derived MC p-value surfaces. Also, as mentioned above, the
collection of theoretical approximations that are made in order to derive the asymptotic
properties on which the ASY p-value surfaces depend require by definition the presence of
‘large’ sample sizes; whether or not our schistosomiasis data set is ‘suitably large’ is difficult
to discern. This can however be aided by examining the standard errors of the computed risk
surfaces. Figure 5.3 shows plots of estimated cell-wise standard error for the risk surfaces
over the Guichi region. For computational reasons, these were evaluated on a coarser grid
than that used in Figure 5.2.

Between ASY and MC standard errors we note less variability, both in terms of size
and spanning range, for ASY. Edge-correction, and the associated approximations, lead
to higher standard errors near the boundary. Indeed, this should (approximately) be the
only contributing factor for changes in the adaptive ASY s.e. surface; recall the asymptotic
variance stabilisation uncovered in Section 2.2.2. This is reflected in the corresponding
image and as such, the adaptive ASY variability is the best performer with the lowest
maximum standard error and smallest span, followed by the fixed ASY s.e. surface. The
empirical standard errors are far more unstable with sub-regions where little data have been
observed understandably exhibiting higher values. Interestingly, the fixed MC s.e. surface
does not reach the high maximum of the adaptive. However, it would appear that even for
the relatively small sample sizes observed in this analysis, reduced variability when testing
for significant risk fluctuations is still present when working with theoretical over empirical
p-value surfaces.

In the corresponding article, we also visually explored the effects of combinations of
halving and doubling the computed values for hx, hg, h ¢ and ﬁg. Generally speaking, the
observed results from this informal ‘sensitivity analysis’ were similar to those for the un-
scaled interpretations discussed above. Competitive performance of ASY over MC in terms
of variability was evident and, in adaptive smoothing, varying the global bandwidth had
a greater impact on the resulting surfaces and tolerance contours than altering the pilots.

Typically, we would expect heavier oversmoothing as opposed to heavier undersmoothing of
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Figure 5.3: Estimated cell-wise standard error (s.e.) surfaces based on the estimated fixed
and adaptive risk functions, computed via both ASY and MC methods.

174



the densities to be ‘the lesser of two evils’, and this was also observed; the excessive insta-
bility in estimates associated with the latter situation making for noisy and unpredictable

behaviour in the resulting p-value surfaces.

5.1.4 Conclusions

A particularly pleasing example of Abramson’s (1982) adaptive smoothing approach in the
context of the kernel-estimated risk function, the asymptotically derived p-value surface
and correspondingly plotted tolerance contours in Figure 5.2 clearly ‘track’ the Qiupu River
within the Guichi region itself, where use of a fixed bandwidth leaves us unable to capture this
detail in the surface. Were we (purely for the sake of argument) unaware of the importance
of the proximity to natural waterways, this kind of result could be very useful. However,
it seems the ASY method is more sensitive in terms of fluctuations in risk estimates and
flagging significant sub-regions when implementing adaptive smoothing for small sample
sizes. If the adaptive method is to be employed for applications where the sample sizes are
considered small, it seems in future it would be prudent to consider using more stringent
significance levels when implementing the asymptotic approach.

Nevertheless, the standard error surfaces indicate the ASY p-value surfaces to be based
on a noticeably lower level of variability for both fixed and adaptive density-ratios when
compared to MC. By definition, the MC method conditions upon the locations of cases and
controls, which can (and in this example, has) allowed a high variance in sparsely populated
areas. Coupled with the massive additional computing requirements of MC p-value surfaces,
ASY is concluded as the preferred method for flagging significant sub-regions.

It is a known fact that contraction by humans of S. japonica in the marshland regions of
China occurs when individuals are exposed to the parasite in affected water systems. This
is reflected nicely in the analysis of the Guichi schistosomiasis data, with all four versions of
the calculated 5% tolerance contours roughly agreeing on a northern area where the Qiupu
meets the Yangtze of statistically significant increases in the risk of infection based on the
kernel-smoothed density-ratio methodology. In addition, a smaller area in the southeastern

quadrant may warrant further investigation.

5.2 Avian influenza — global trends

The geographical epidemiologist who initiated the schistosomiasis work described in the pre-
vious section, Z.J. Zhang, also voiced an interest in the adaptive kernel smoothing method-
ology to estimate the density function of globally collected avian influenza data, with a view
to describing the recent spatial variation of a particular highly pathogenic subtype of the
disease over several recent time periods.

This author contributed to actions and interpretations involving the kernel estimate, as
well as a write-up of this method from a statistical perspective, included as supplementary
material to the corresponding article. Other statistical evaluations, namely the implementa-
tion and interpretation of a spatiotemporal scan statistic, was performed by the collaborating

authors. A relatively short, yet interesting paper — Zhang, Chen, Chen, Davies, Vaillancourt
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and Liu (2012) — is published with The Veterinary Journal.

5.2.1 Background

Avian influenza, ‘bird flu’, is a disease affecting mainly poultry stocks, though certain sub-
types have succeeded in crossing the human-animal species barrier. Subtype H5N1, a highly
pathogenic strain of the influenza A virus, is one such example. In 1997, an outbreak in
China infected the first humans; it was quickly established the handling of or close exposure
to infected birds and their raw innards was a primary risk factor (World Health Organiza-
tion, 2011). Since then, the disease has spread rapidly throughout Asia, Africa, and some
parts of Europe, infecting many avian populations (commercial and wild) as well as several
hundred humans.

The mortality rate in humans is high compared to other forms of influenza; early symp-
toms include high fever, diarrhoea, vomiting, abdominal pain, bleeding from the nose and
gums, and bloody sputum production. Though H5N1 has only affected a relatively small
number of people to date, major public health concerns arise due to the ever-present potential
for a worldwide pandemic and mutation of the virus enabling human-to-human transmission.

This potential for severe detrimental effects on global economies and public heath dictates
it is important that the space-time trends of infection in avian populations continue to be
monitored alongside various control strategies employed to limit the impact of its presence;
a statement particularly true when we note sporadic outbreaks continue to be reported
around the world (Capua and Alexander, 2010). Previous examinations of this type have
dealt mainly with short-term data up to around 2006; see for example the China-specific
study by Oyana et al. (2006) and the worldwide study discussed in Si et al. (2009). Inspection
of more recently recorded data is therefore clearly of interest, and one such data set is the

focus of this analysis.

5.2.2 Data, methods, results

Data concerning the spatial locations of H5N1 outbreaks reported in domestic poultry over
the period December 2003 to December 2009 were collected from the World Organisation
for Animal Health (OIE) and the Food and Agriculture Organization of the United Nations
(FAO). These were compiled into a single data set according to region sub-districts; see
Zhang et al. (2010) for specifics. In this analysis, an ‘outbreak’ is simply defined following
Toma et al. (1999) as “the confirmed presence of disease, clinically expressed or not, in at
least one individual in a defined location and during a specified period of time”.

The temporal period over which the data were observed was partitioned into six easily
identifiable sub-periods, labelled epidemic waves (EW); EW1 covered the period December
2003 to June 2004; EW2 July 2004 to May 2005; EW3 June 2005 to October 2006; EW4
November 2006 to September 2007; EW5 October 2007 to October 2008; EW6 November
2008 to December 2009. The EWs are marked in plots (Figure 5.4 replicated directly from
the article) showing the total counts of observed H5N1 outbreaks by day, week and month
over the total temporal period. Clearly visible is the overall downturn in outbreaks, quite

possibly a result of implemented disease containment and control procedures such as animal
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Figure 5.4: Daily, weekly, and monthly H5N1 outbreak counts, showing temporal partition-
ing of the six epidemic waves. Image reproduced with kind permission from Z.J. Zhang.

movement restrictions, quarantining, preemptive culling, and vaccination.

The ‘overall’ spatial distribution of H5N1 outbreaks within each EW was described with
an adaptive kernel density estimate; supplementary details on the theoretical specifics were
included with the online version of the corresponding article. This is a direct reflection of the
methodology described in Chapter 2, most importantly equations (2.1), (2.3), and (2.22).
In addition, likely clusters of observations were flagged using a space-time scan statistic,
a straightforward extension of the well-known spatial scan statistic introduced by Martin
Kulldorff; see Kulldorff (1997). Briefly, the spatiotemporal version (Kulldorff et al., 1998,
2005) as employed here uses a large number of overlapping, variably sized spatiotemporal
windows — cylinders (base width controlling spatial window size, height controlling temporal
window span) — and evaluates the observed and expected (i.e. were no clustering to exist)
number of outbreak points falling within. From this information, a likelihood ratio score
may be computed for each cylinder: the higher the score, the more likely we have observed a
true cluster not occurring due to random variation. The spatiotemporal window which has
maximum evaluated likelihood ratio statistic is elected as the ‘most likely’ (‘primary’) cluster;
non-overlapping windows with smaller, yet still high, scores are identified as ‘secondary’
clusters. To evaluate the statistical significance of a given score, a large number of uniformly

random permutations of the data are generated to coincide with a null hypothesis of ‘no
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clustering’, conditional upon spatial location and temporal totals of the original observations.
The scan statistic is employed on the synthetic data sets and the likelihood scores are
recomputed, against which the ranks of the original scores are compared, yielding empirical
p-values. Though, naturally, spatiotemporal inhomogeneity is expected for the H5N1 data,
the scan statistic provides a useful embellishment on plots of the data of the location of the
‘heaviest’ clusters.

The evaluation of Kulldorff’s space-time scan statistic was performed using the data
within each EW; results superimposed upon maps of the kernel density estimates. There
was little visible difference between use of the daily, weekly, and monthly versions of the
data set; Figure 5.5 gives the EW maps for the weekly data (reproduced from the article).
Outbreak locations are given as green dots. A greyscale pixel image provides the density
estimate for each EW, the higher the density, the darker the shading (in some cases this was
artificially enhanced for better visibility). Cylindrical windows deemed to contain the most
likely clusters are denoted by discs annotated with the corresponding time span; red-solid
for the primary; blue-dashed for secondaries.

We note in EW1 and EW2 the ‘historic’ density peak and associated clustering occur-
ring in eastern/southeastern China; behaviour which persists throughout all EWs. Tt is
understood that H5N1 is now endemic in native wild bird species, leaving the door open for
sporadic infection of domestic poultry populations (Paul et al., 2010).

By EW3 however, the disease had progressed west, producing a second main density
mode at the junction of Asia, Africa and eastern Europe; specific countries include those
surrounding the Black and Mediterranean Seas. This ‘novel mode’ has previously gone
unreported; likely a consequence of other analyses using older data sets. The space-time
scan statistic continues to flag the primary cluster in the proximity of the historic mode,
though secondary clusters are flagged and persist in the proximity of the novel mode from
EW3. In terms of long-term trends, the specific sizes and locations of the highlighted scan
statistic cylinders is less important than their detection shifting from the historic east to

occur in the western areas of the map.

5.2.3 Concluding remarks

Monitoring of space-time trends of highly pathogenic avian influenza subtype H5N1 infec-
tions in poultry is critical to the appropriate fine-tuning of control and eradication strategies.
Previous analyses have identified areas of interest in east and southeast Asia, and while these
affected regions remain important, our investigation has indicated that the western junction
of Africa and eastern Europe also warrants ongoing attention. This is additionally important
when we consider the elements of the new environments in which the disease has become
prevalent (e.g. new breeding grounds, altered climate, new avian species), increasing the
opportunity for further mutations that could potentially spark a new pandemic.

Although the overall number of outbreaks has dropped significantly over time, it is the
persistence of the virus in two major regions of the large study area which is the main
concern. We conclude that the appropriate health officials in the affected and/or adja-

cent countries should continue to monitor the most recent information available and, where
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based H5N1 outbreak data set, also indicating significant clusters as per Kulldorff’s space-
time permutation scan statistic. Image reproduced with kind permission from Z.J. Zhang.
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possible, strengthen or refine existing control/containment systems in place should further
outbreaks continue. Appropriate and thorough preparation for a ‘worst-case scenario’ re-
mains key to effective minimisation of the detrimental impacts on public health and local

economies resulting from a potential pandemic.

5.3 Foot-and-mouth disease model verification, Ireland

This section summarises the work in Sanson, Harvey, Garner, Stevenson, Davies, Hazel-
ton, O’Connor, Dubé, Forde-Folle and Owen (2011), published in the Revue Scientifique et
Technique-Office International des Epizooties (OIE Scientific and Technical Review) where
three different disease control strategy evaluation models (what is meant by this is defined
below) were used to examine the effectiveness of various control strategies for a hypothetical
outbreak of foot-and-mouth disease and corresponding epidemic across a number of different
types of farms in Ireland. This author, along with primary thesis advisor M.L. Hazelton,
contributed to the statistical analysis concerning identification of the spatial areas within
the study region which represented a heightened risk of infection for each evaluation model
and control strategy. Like the case studies in Sections 5.1 and 5.2, these activities drew
on advancements in Chapter 2, and made use of sparr (Section 4.1). The contribution also

included a write-up of the statistical methods included in the article itself.

5.3.1 Project summary

In both previous case studies, references have been made to various types of ‘control strate-
gies’ used by intervening health authorities of the affected regions to limit the spread of a
given disease post-detection. The design of such systems typically involves expertise from
various disciplines and is often based upon knowledge of previous epidemics. The quality
of design, however, is just one of several important aspects concerning these strategies — it
is critical that they can perform well (i.e. significantly hinder, halt, or eradicate the disease
and its spread) should they in fact be needed in practice.

Determining this is a rather difficult goal, however. The best way to assess the per-
formance of control strategies in this way is their implementation with respect to a real
epidemic! In the (thankful) absence of such an event, researchers turn to disease control
strategy evaluation models (shortened to disease models), which are used to evaluate and
compare different kinds of control strategies via realistic depictions of disease spread, with
the ultimate objective of increasing end-user confidence as to their effectiveness in real-world
scenarios (as well as confidence in the evaluation models as the corresponding assessment
tools). This is particularly useful when certain control strategies have not been used in prac-
tice before, or are expensive to implement or controversial in some other way. Frustratingly,
however, this leads to another level of uncertainty — where different control strategy eval-
uation models exist, we would naturally expect some variation in their results concerning
the effectiveness of the control strategies themselves. As a simple hypothetical, evaluation
model ‘A’ might suggest control strategy ‘1’ as the most effective in limiting disease spread

in a given scenario, but evaluation model ‘B’ might prefer, for the same scenario, control
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strategy ‘2.

This particular work made up the final step of a three-stage project of evaluation model
verification and validation with respect to epidemics of veterinary foot-and-mouth disease
(FMD). In the epidemiological terminology, verification is the term used in reference to
ensuring the explicit behaviour of the disease transmission has been accurately and succinctly
represented via the creation of relevant computer programs; walidation is the procedure
of ensuring the disease model caters for, reflects and/or depicts realistic disease process
conditions (see Taylor, 2003).

Three different FMD models in use by the Quadrilateral Group of countries (QUADs:
Australia, New Zealand, Canada and the United States) were examined: AusSpread (Garner
and Beckett, 2005, Australia), InterSpread Plus (Sanson, 1993, New Zealand) and the North
American Animal Disease Spread Model (NAADSM) (Harvey et al., 2007, Canada; USA).
The first two stages of the project, detailed in Dubé et al. (2007), covered initial verification
efforts of the three disease models and compared their predictions based on some relatively
simple synthetic scenarios (termed relative validation). The third stage, detailed here, deals
with relative validation of the models using carefully designed, and subsequently controlled,
hypothesised epidemics of FMD in an approximate circular region in central Ireland encap-
sulating 50,125 farms. The design of these sophisticated outbreak scenarios, in contrast to
the earlier study, used real world data provided by the Irish collaborators concerning the
farms at (potential) risk, including their actual spatial locations, animal types and counts,
livestock movements, marketing specifics, and even local atmospheric conditions to describe

chances of airborne infection.

5.3.2 Study design specifics

AusSpread, InterSpread Plus, and NAADSM were employed to gauge the spread of an
outbreak of FMD based on a ‘primary’ infection at a farm in roughly the middle of the
study region, followed by a 16-day ‘silent spread’ period during which 41 farms became
infected without detection. The first farm detected fell on day 17; at which point four
different control strategies were implemented.

Replicated from the accompanying article, Figure 5.6 shows this initial behaviour within
Ireland, upon which the approximate study region has been superimposed post-copy.

Briefly, the four control strategies employed were: (a) Standard European Union (EU)
stamping-out policy (this involves depopulation and livestock movement limitations); (b)
EU stamping-out policy plus a contiguous cull (0.5km radius) around infected premises;
(¢) EU stamping-out policy plus 3km suppressive ring vaccination (8-day delay); and (d)
EU stamping-out policy plus 3km suppressive ring vaccination (21-day delay; delays in
vaccination are common in practice due to logistical and planning-related issues). In large-
scale epidemic control, a ‘contiguous cull’ refers to the somewhat controversial preemptive
measure of the killing of apparently healthy livestock; ‘ring vaccination’ is typically far more
expensive than a contiguous cull and refers to total vaccination of uninfected livestock within
a specified distance from a given infected premises.

In total, five outbreak scenarios were defined. Scenario 1 involved no control strategies
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Figure 5.6: Map of Ireland, giving the primary infection location (x), silently infected
premises (grey o), and point of first detection (e), as well as the approximate boundary of
the circular study region. Image ©2011 OIE publications; reproduced with permission.
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and the epidemic continued unabated. Scenarios 2-5 initially followed the infection-detection
behaviour illustrated in Figure 5.6, at which point the four control strategies (a) to (d) were
implemented respectively.

To obtain results for these scenarios by using the detailed real-world information men-
tioned above, the Australian, New Zealand, and North American disease control strategy
evaluation models were instructed to generate and analyse each of 40 iterations of hypo-
thetical outbreaks of FMD amongst the 50,125 farms in the defined study region. Monitor-
ing/prediction took place from the date of implementation to the 60-day mark (Scenario 1),
or eradication (Scenarios 2-5). ‘Eradication’ refers to the point at which the model suggested

no new infections would/could subsequently occur.

5.3.3 Analysis and results

Relative validation of the three models was performed with respect to their prediction of
various quantities associated with the generated outbreaks and their corresponding spatial
spread as time progressed. For a given generated FMD epidemic, these quantities included
the total predicted number of infected premises, the total predicted duration of the epidemic
in days, and the area of the spatial sub-region affected (computed via construction of a
convex hull), at eradication.

For each Scenario 2-5, the median value for each of these quantities was compared be-
tween the three disease models using the Kruskal-Wallis one-way analysis of variance (by
ranks) test. Statistically significant results were encountered for the median predicted in-
fected premises counts and epidemic duration, but not for the predicted median area values.
Figure 5.7 replicates the boxplots corresponding to the counts of infected premises at erad-
ication for each scenario and disease model over the 40 iterations.

We note it is the North American model which is primarily influencing the significant
within-scenario, between-model difference result in this case. Variations in the specifically
programmed models are clearly responsible for such differences. For example, NAADSM
only selected non-detected farms to receive livestock movements from infected but not yet
detected farms, thereby increasing the chances of pass-on infection. This is in contrast to the
Australian and New Zealand models, in which both infected and detected farms could still
‘legally’ receive these movements. More importantly for our validation exercise, however,
the relative within-model between-scenario differences remained similar; trends repeated for
the other recorded quantities of epidemic duration and area value. Scenario 4 (use of control
strategy (c)), appeared to provide the most promising absolute results according to all three
disease models.

This author’s specific contributions proceeded as follows. In addition to the above numer-
ical analyses, the novel asymptotic p-value surfaces and corresponding tolerance contours for
kernel-smoothed relative risk functions described in Chapter 2 (Section 2.4) were employed
to discern the actual spatial positions of the statistically significant areas of increased risk
of FMD infection for the Australian, New Zealand, and North American models. Via this
methodology, the ‘risk’ is defined as the (log-transformed) ratio of ‘case’ to ‘non-case’ farms;

the former defined as those in a given iteration for a given scenario and disease model that
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Figure 5.7: Boxplots displaying the predicted counts of infected premises at eradication
relative to the minimum count for each scenario and disease model. Image ©2011 OIE
publications; reproduced with permission.
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were predicted to become infected, the latter those that were not. The relatively high sam-
ple size counts dictated use of the adaptive smoothing regimen was not practically feasible;
the fixed version was therefore employed in all situations (Gaussian kernel function, com-
mon bandwidth of 9.3km). The p-value surfaces were averaged over each of the iterations;
corresponding tolerance contours were plotted upon the study region at the 5% significance

level.

Figure 5.8 shows the averaged tolerance contours for each scenario and disease model.
We note that the three models are fairly consistent in their predicted ‘high-risk’ sub-regions,
with all models in agreement in the approximate size, shape and positioning of a central
hotspot encapsulating the location of the primary infection. In Scenarios 3 and 5 (Figures
5.8(b) and 5.8(d) respectively) the Australian and New Zealand models flagged an additional,
smaller hotspot to the north; only detected in Scenario 2 (Figure 5.8(a)) by the Australian
model. All three models detected this additional hotspot in Scenario 4 (Figure 5.8(c)).

5.3.4 Discussion

The efforts involved in the design, implementation and testing of disease control strategy
evaluation models are considerable. A multidisciplinary task, teams involved typically in-
clude epidemiologists, statisticians, physicians, and policy-makers. Detailed data is required
on various aspects of the disease, population(s) at risk, and local geographical features.
The current examination had to overcome several challenges at both the programming and
simulation stages prior to the collection and dissemination of results (see the corresponding

article for more on this issue).

This work designed complex, realistic scenarios and simulated outbreaks of FMD amongst
a large number of farms of several different types in central Ireland. Various disease con-
trol strategies intervened and, using detailed real-world data, the three disease models
AusSpread, InterSpread Plus and NAADSM, were employed to predict the spread of the
epidemic through space as time progressed. Although some differences were detected when
comparing measures such as the number of infected premises between models, within sce-
narios, the relative within-model, between-scenario differences were consistent. This relative
validation exercise has therefore highlighted the fact that policy and decision-makers would
be likely to arrive at the same conclusions as to the efficacy of the various control strategies
tested, regardless of the choice of disease model implemented to predict the spread of FMD
in the event of a real epidemic in the region. High-risk regions of infection as determined
through use of asymptotic tolerance contours for the fixed-bandwidth kernel-smoothed risk
function were also identified as almost identical for each of AusSpread, InterSpread Plus and
NAADSM.

We therefore conclude that appropriate modelling assumptions appear to have been
made at the programming stage of all three models. Perhaps more importantly, the similar
patterns observed in the results of various features of the iterated epidemics, obtained from
the different disease models when employed as predictive tools, serve to substantially increase

end-user confidence in their practical performance.
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186



5.4 Spatiotemporal mapping of Japanese earthquakes,

1926—-2005: a preliminary exploration

To conclude this set of case-studies applying the methods and novel material described in
the previous chapters, we present an implementation of the type of spatiotemporal log-
Gaussian Cox process introduced by Brix and Diggle (2001) for estimation and prediction
of the space-time intensity of earthquakes over central Japan. While not an epidemiological
application, we nevertheless proceed in an effort to showcase the flexibility of the LGCP and
motivate further practical examinations.

Earthquakes can easily be described as one of the most devastating natural events to
affect human populations. Far from just an immediate threat to safety at the time of
occurrence, subsequent impacts on urban infrastructure, for example, can continue to long-
lasting economic consequences. Recent examples include the earthquakes centered near
Christchurch, New Zealand (2010, 2011), and off the northeastern coast of Japan (2011),
which have resulted in widespread destruction and loss of life. Where possible, spatiotem-
poral monitoring is therefore clearly an important exercise in an effort to best understand
the areas of a particular region which are most prone to experiencing these events.

A selection of global earthquake catalogues exist, which log comprehensive data on the
events. In spatial and spatiotemporal earthquake applications, event locations are typically
provided as the epicenter coordinates, and associated data such as depth and magnitude
are often fundamental components of relevant statistical models. Recording these data in a
reliable fashion is itself a complex task, see for example the discussion concerning the Global
Centroid Moment Tensor (GCMT) catalogue in Ekstrom et al. (2005).

Like applications in geographical epidemiology, statistical methods for point processes
and the spatial (and spatiotemporal) modelling of earthquakes are closely linked. Special
attention is typically given to the effect of a given earthquake precipitating further events; we
will briefly describe two important approaches to this kind of analysis. A general discussion
of statistical techniques used in earthquake modelling can be found in e.g. Vere-Jones et al.
(2005).

Particularly well-known is the epidemic type aftershock sequence (ETAS) model of Ogata
(1988, 1998). This is an adaptation of a so-called space-time Hawkes process (Hawkes,
1971), which the author describes as a ‘self-exciting’ process where the occurrence of events
increases the probability of further events. Parallels can be drawn with the shot-noise Cox
process discussed briefly in Section 3.1.4, as an event in the space-time continuum can
become a ‘mother’ point associated with ‘offspring’ densities. Aiming to produce event-
intensity surfaces, Ogata’s model takes into account earthquake magnitudes as both an
impacting variable on potential offspring events, as well as specification of a ‘magnitude
distribution’ providing the capability to model the magnitude of the offspring earthquakes
themselves. A good summary of the ETAS model can be found in Vere-Jones (2009),
who also notes that statistically significant departures from an ETAS fit are often used as
diagnostic tools in identification of anomalous spatiotemporal localisations of earthquakes.

Another important class of statistical methods for earthquake trend analyses in space

and time are known as stress-release models. In their simplest form, these models aim to
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produce earthquake intensity estimates within a given seismic region which are a function
of time and some unobserved (or partially observed) stress variable. When an earthquake
occurs it induces a ‘stress drop’ in the model, heightening the chance of further events. A
linked stress-release model is obtained when we consider the simple version over a finite
number of contiguous, disjoint spatial regions; the models incorporate the possibility of
‘stress transfers’ between the regions. Like the ETAS model, linked stress-release models
can be used to estimate spatial earthquake intensity functions (within a certain geographical
area) as time progresses. In one sense, the consideration of the spatial intensity over a larger
geographical region as a finite collection of smaller, disjoint spatial areas is similar to the
discretisation that must be carried out in order to practically implement the LGCP. Further
details on these models can be found in e.g. Bebbington and Harte (2001) and Daley and
Vere-Jones (2003).

Attempting to model space-time earthquake intensities via the LGCP nevertheless re-
mains a rather different approach to this kind of problem. As such, it is emphasised that
what follows is labelled a short ‘preliminary exploration’; our perspective in the following
exposé is taken from the point process theory covered in the preceding chapters which has
had an epidemiological slant. A more careful and detailed investigation, preferably in collab-
oration with appropriate geoscientists, is called for in order to draw proper and contextually
valid conclusions based on any analysis of these data. Our focus remains on gauging the
suitability of the LGCP for such an application in terms of the performance of fitting pro-
cedures such as parameter estimation, as well the appraisal of Markov-chain Monte-Carlo

diagnostics obtained from experimentation with conditional simulation.

5.4.1 Data and analysis proposals

The data for this examination comprise the spatial locations of the epicenters of 98 earth-
quakes with a detected magnitude of greater than or equal to 6 on the Richter scale in a
rectangular window over central Japan, and associated timestamps over the 80-year period
1926-2005 inclusive. Briefly summarised in Section 6.10.3 of Illian et al. (2008), the Japan
Meteorological Agency is acknowledged for the availability of these data at http://users.
jyu.fi/~penttine/ppstatistics/data/Earthquakes_Fig_6_21.txt (site hosted by Pro-
fessor Antti Penttinen, University of Jyviskyld, Finland).

Figure 5.9 displays the spatial and temporal margins of the data, the former following

rescaling to latitude-longitude coordinates in degrees, the latter giving annual total counts.

Obvious spatial clustering is noted in the observations, a natural feature of earthquake
data. We would expect certain subregions to receive more events than others according to
e.g. the underlying locations of fault lines, and so the underlying ‘global’ spatial variation
of events in the study region is likely to be non-uniform. In addition, any given earthquake
may provoke others of varying magnitude in the immediate vicinity (a key component of
e.g. the ETAS and stress-release models discussed above). It could therefore be reasonably
expected that smaller-scale ‘local’ positive correlation may be present, in addition to the

aforementioned natural global inhomogeneity.
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Figure 5.9: Spatial (left) and temporal (right) margins of the Japanese earthquake data.
Spatial positioning of Japan’s central land mass (grey shading) is visible in the former plot.

Temporally, it is known that the underlying global trend in terms of the frequency of
events takes many hundred or even thousands of years to alter, and so this trend over the
time span for which we have data may be considered constant (viewing, as per the spatial
point process theory discussed in Chapter 1, the actual realised counts as being Poisson-
distributed — see also the relevant comments in Section 7 of Vere-Jones, 2009). This view
appears to be supported by the plot on the right-hand side of Figure 5.9, in turn suggesting
that the heterogeneous global spatial trend can be considered fixed over the given time
period. Nevertheless, relatively short-term local positive correlation may easily be present

in the raw temporal frequencies.

From these comments on the nature of our observed data, it would seem that the log-
Gaussian Cox process could be an appropriate framework with which to estimate and in-
terpret the spatiotemporal intensity function v;(x) (yielding the expected number of events
at time ¢ and location «) of this relatively recent period of earthquakes over central Japan.
As per the model formulation and notation in Chapter 3, equation (3.18), and the above
conjectures, our goal here is to therefore estimate and perform subsequent inference on
Y (x) = (y(x)nexp[Zi(x)], where (y is the fixed heterogeneous spatial trend and 7 is the
constant-in-time expected number of events associated with each timestamp (year). Recall
also that the quantity Z is a stationary, isotropic spatiotemporal Gaussian field with vari-
ance Ji, mean [l = 70.503}, and separable spatial and temporal correlation functions r
and 7 respectively. This component is used in the attempt to capture the natural ‘residual’
space-time correlation between earthquake occurrences. Appropriate scaling for each of (y,
n and exp|Z;(x)] is imposed so as to achieve the identifiability constraints imposed in Section
3.1.3.

The steps in the following section are similar to those taken in the analysis of the AEGISS

gastrointestinal infection data in Sections 3.4.2 and 4.2.2.
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5.4.2 Model specification, parameter estimation

The fixed-through-time, heterogeneous global spatial trend (y is modelled with a two-
dimensional fixed-bandwidth kernel density estimate; the smoothing parameter set using
the oversmoothing rule (refer back to Section 2.3.1). Note that, based on the results from
simulation Study 2 in Section 3.5.2, a generous amount of smoothing for kernel estimation
of the deterministic spatial component can aid in producing better estimates (i.e. estimates
closer to the true values under the assumed model) of the parameters controlling the stochas-
tic correlation (performed below). The constant expected number of events per time point,
7, is set to 98/80 = 1.225.

Figure 5.10(a) plots our deterministic spatial component (; Figure 5.10(b) superimposes
the assumed value of 1 upon a plot of the temporal frequencies for the study period 1926-
2005. We note a satisfactory representation for both margins in terms of their respective
underlying global trends under the assumed modelling structure.

Next, we define the nature of the correlation structure. For simplicity, and in the absence
of additional information, exponential functional forms are selected (just as in the earlier
analysis of the AEGISS data). Recapping, this dictates that the spatial covariance func-
tion is expressed as aiexp[—u/ ¢y, and that the temporal correlation is simply exp[—v/0],
for scalar spatial and temporal lags u and v respectively. The parameters controlling the
strength of this positive correlation, ¢, and 6, as well as the constant variance of the sta-
tionary and isotropic Gaussian field Z, O'i, thus require estimation.

This is performed using the minimum contrast techniques used throughout Chapter 3,
by matching as closely as possible the appropriate theoretical and empirical descriptors of
the second-order properties of the process. The ‘spatial’ parameters crfp and ¢y must be
estimated first; this is achieved through use of either the time-averaged K-function or the
time-averaged pair correlation function (g). Dependent upon the estimated values of Ui
and ¢y, estimation of the temporal correlation parameter subsequently takes place using
the temporal covariance function C. Refer back to Section 3.1 for details on the explicit
parametric and non-parametric forms of these functions. Minimum contrast proceeds using
the same calibration decisions (such as function transformation and upper contrast limits)
made and justified in Section 3.2.3.

Figure 5.11 gives the transformed non-parametric K, g, as well as C, along with the
theoretical curve corresponding to the optimised parameter combination of O'i and ¢y, for
the former two, and @ for the latter.

Both K and g provide similar estimates of the spatial parameters, with the parametric
versions of the curves closely following the nonparametric trends. For this example, we
simply set the corresponding parameter values to the mean of their K- and pair correlation
function estimates (as in the Humberside analysis; cf. Section 3.4.1). That is, ai} = 4.57
and ¢, = 0.31, leading to the optimal § = 2.16.

5.4.3 Concurrent prediction and future-forecasting

To estimate the form of the spatial intensity at any given time point, we must execute a spa-

tiotemporal Metropolis-adjusted Langevin algorithm to sample from the target distribution
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Figure 5.10: Assumed spatial and temporal global trends for the Japanese earthquake LGCP
during the period 1926-2005.
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of interest, thereby predicting the residual LGCP. Here we must be careful to distinguish
between ‘concurrent’ prediction and ‘future-forecasting’; the former producing estimates of
the intensity based on observed data up to and including the time point of interest, the
latter based only on data up to the time point of interest (for ‘one-step-ahead’ prediction).
Forecasting potentially high-risk areas of future earthquakes is clearly an important, yet
extremely difficult, aspect of earthquake modelling.

We will consider both concurrent prediction and a simple form of one-step-ahead future-
forecasting for our data; interest focused on final year (7" = 2005). A MALA is run (details
follow), from which we can straightforwardly extract the concurrent prediction of the spatial
intensity of earthquakes greater than or equal to magnitude 6 for the year 2005. Then,
assuming 2005 has not yet occurred i.e. it is not possible to yet have observations for this
hypothetical ‘future’ time-point, we extract the (retained) realisations from the MALA run
corresponding to the previous time point, 2004. For each of the retained realisations, we
randomly generate a corresponding one-step-ahead Gaussian field based on the recursive
definition of the spatiotemporal LGCP (see equation (3.50) in Section 3.3.2). The same
summary statistics as can be computed for the concurrent version can thus be evaluated for
the ‘future’ version of predictions, and the entire forecasting operation can be repeated any
number of times.

The MALA is run on a 64 x 64-celled spatial grid for 120000 iterations with a burn-in

0" realisation thereafter. From the specified

period of 20000 iterations, retaining every 10
strength of the temporal correlation, the algorithm is instructed to only make use of data
from a maximum of 5 previous time points to minimise computation and storage costs. The
tuning parameter is set at h = 0.007, achieving a satisfactory acceptance rate in view of
the recommendations in Roberts and Rosenthal (1998). Total execution time was around
10 hours.

A trace plot of the value of the Gaussian field Zr (concurrent prediction) at three ran-
domly selected cells is given in Figure 5.12, along with an autocorrelation plot of the values
from the first cell. This indicates convergence has been achieved, albeit with some mild
correlation between successive realisations, with a stabilised chain and good mixing. This
is particularly encouraging given the relatively small sample sizes over time.

The concurrent prediction of the spatial intensity for the final time point is displayed in
Figure 5.13(a). This is given as the posterior mean of the retained exponentiated Gaussian
fields (i.e. the estimated residual LGCP), as well as the Poisson intensity itself (found by
the product of the deterministic global spatial and temporal components with the estimated
residual LGCP). The hypothetical future-forecast version of these quantities for the same
time point is given in Figure 5.13(b). These results are based 100 repetitions of the empirical
forecasting procedure producing posterior field means for 2005; the grand average of these
posterior means is subsequently taken.

Both the concurrent and future predictions have highlighted sharp peaks in the intensity
surface in the northern and southern areas of the study region. These are the locations which
have ‘most recently’ (and in the case of the concurrent prediction, ‘presently’) experienced
events and, using the assumed form of the spatiotemporal correlation, are where the model

deems the highest chances of observing further events exist. Note that the level of this ‘risk’
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Figure 5.12: Trace plot of the value of the Gaussian field at three random cell-locations:
‘red’, ‘green’ and ‘blue’ (left), and an autocorrelation plot for the ‘blue’ cell (right).

is far higher in the future-forecast version of 2005 — this can be explained by examining the
temporal variation in counts in Figure 5.10(b). Though there were a relatively high number
of earthquakes in 2004 (9), in 2005 there occurred only 1. The concurrent prediction has
taken this into account, but the future-forecast intensity has no such luxury: its prediction
for 2005 has the strongest temporal dependence on the most recent time point (2004), and
has therefore assumed a higher number of events were likely in the following year. The
spatial location of the single event that did occur in 2005 is visible in the plots of the
concurrently predicted intensity; this did not occur in either of the two ‘historical’ hotspots
and a mild peak can be seen on the eastern edge of the region. Without the observed data,
the future-forecast intensity was naturally unable to properly capture the magnitude of this
third peak, an issue which clearly highlights the dangers of [-step-ahead forecasting for this

model, particularly as [ increases beyond 1.

5.4.4 Closing comments, critiques

Originally motivated by applications in disease surveillance, we have investigated the feasi-
bility of applying the spatiotemporal log-Gaussian Cox process to a data set comprised of
earthquakes greater than or equal to a magnitude of 6 over central Japan. The notions of
‘global” variation and ‘local’ correlation can to a certain extent be considered sensible for
earthquake data, and are straightforwardly incorporated into the aforementioned framework
using deterministic and stochastic components.

From a purely methodological standpoint, fitting the model posed little reason for con-
cern with the deterministic global components easily specified. Perhaps more importantly,
the minimum contrast methods used to estimate the strength of the assumed dependence
structure performed well. Both K and g produced similar estimates of the spatial correlation
parameters, producing theoretical curves which satisfactorily matched the trends exhibited

by their nonparametric counterparts. The estimated strength of the temporal correlation,
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(b) Future-forecasting (i.e. assuming no data yet available): empirical mean residual LGCP (left) and Poisson
intensity (right).

Figure 5.13: Estimating the spatial intensity for the Japanese earthquake data (2005).
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derived in part using the estimates of the spatial correlation parameters, also reflected a
sensible parametric versus nonparametric fit.

In terms of conditional simulation, the MALA appeared to behave well for these data.
Diagnostic tracers indicated successful convergence and good mixing; any chain autocorre-
lation can be easily controlled via appropriate thinning. The concurrent prediction for 2005
reflected the most recent and ‘current’ data observed, the residual LGCP driving a large
part of the final appearance of the intensity function. Treating 2005 as a future time point,
the forecasted intensity heavily reflected the spatiotemporal variation and correlation inher-
ent in the most recent time points. As such, it both overestimated the magnitude of the
concurrently predicted intensity and failed to produce a (smaller) peak where an earthquake
did in fact occur. Nevertheless, these results indicated the described forecasting procedure
functioned as one would expect for the LGCP; an assessment of its practical performance
in other spatiotemporal modelling problems may indeed prove worthwhile.

The described approach could easily be refined if need be. One possible extension would
be to consider using covariate information, such as depth and precise magnitude of the
events, to help describe the dependence structure. A collaborative effort with experienced
geoscientists is warranted for the most effective implementation of this modelling framework
with respect to the current problem, and vital to drawing valid contextual conclusions.
For example, to compare the LGCP framework with an ETAS or stress-release modelling

strategy would likely prove a challenging yet interesting research project.

196






Chapter 6

Discussion

An examination of the spatial and spatiotemporal trends inherent in disease prevalence and
incidence within a given population is the key focus of geographical epidemiologists. This
information can yield important insight into the location of the most heavily affected geo-
graphical regions, subsequently enabling the most economically viable and effective targeting
of public-health-related control strategies. The additional detail associated with case-event
or point-location data, as opposed to aggregated sub-region data, is of obvious value in the
statistical modelling of these kinds of problems. This in turn has seen an increase in recent
years of the availability of point-location data with respect to epidemiological applications,

as researchers attempt to fully understand the space-time trends of the disease(s) of interest.

It is therefore the responsibility of biostatisticians to ensure the available (2-dimensional)
point process theory on which most, if not all, of the associated statistical methods (em-
ployed in the data analysis stage of a point-location epidemiological study) are based, con-
tinues to evolve with aforementioned goals in mind. It is additionally important that the
more technically challenging techniques are practically applicable. Their complexity often
warrants collaborative efforts between applied researchers and statisticians, so the methods
employed can interpreted correctly in view of the problem at hand. This inherent need for a
literal translation from statistical theory to valid practical implementation is critical, and so
the biostatistician’s responsibility is not just the development or refinement of new/existing
methodology, but also the translation of said methodologies to applied, real-world problems

and the appraisal of their performance in practice.

It is these italicised issues which have been the focus of this thesis. This chapter concludes
the efforts made to address them by way of a review of the completed work and discussion of
the most interesting findings, as well as problems that have future research potential. Section
6.1 reiterates the three core thesis Aims and details the progress made; novel contributions
best illustrated by the published and submitted peer-reviewed papers associated with the
preceding chapters. The dissertation closes in Section 6.2, leaving the reader with a taste of

things to come.
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6.1 Summary and accomplishments

In general terms, the primary goal of this thesis was to review, appraise, and improve where
possible, statistical methods for analysing 2-dimensional point processes from the point of
view of epidemiological applications. It was envisaged that the work to be undertaken in
pursuit of this primary objective would require working within all three fundamental facets
of statistics: methodological, computational, and applied. Specifically, this author identified
three core Aims in the Introduction (Chapter 1, Section 1.3), which would constitute the

focus of his efforts. Repeated here, these were

1. To identify, collate, summarise, test, and refine or improve where possible,
areas of statistical methodology currently used to analyse spatial and spa-
tiotemporal point patterns (1 associated paper, plus 1 based on work from

Honours year);

2. To aid in bridging the gap between powerful yet theoretically complex

models and applied researchers (2 associated papers); and
3. To trial advancements made on real-world data (3 associated papers);

with the number of credited accepted /submitted publications at the time of writing providing

the reader with an early indication of achievement of the three objectives.

6.1.1 Chapter 1

Although theoretical specifics of the considered models are contained within the required
chapters (2 and 3), several more general aspects of planar point processes had to be identified
and summarised in order for adequate theoretical digestion of the remaining work.
Different types of planar point patterns were illustrated alongside the idea of complete
spatial randomness, and the Poisson and Cox processes were introduced. The fundamental
intensity function, from which the observed points have arisen, was defined. Second-order
properties and some associated summary statistics, used to study the relationship between
distinct pairs of points, were explained. Intricate theoretical details were left to referenced

works; an applied, intuitive emphasis serving to best set up the remainder of the thesis.

6.1.2 Chapter 2

Addressed: Aims 1 and 3

An extremely useful and thus commonly employed strategy to summarise the spatial varia-
tion in disease prevalence over a certain geographical region is the expression of some measure
of the ‘risk’ of infection. This is typically derived as an estimated ratio of the distributions
of infected (case) to non-infected (control) entities (Bithell, 1990, 1991). The flexibility of
kernel density estimation renders it a particularly attractive solution for computation of the
desired quantities. Historically explored in the context of a fixed (constant) scalar smoothing
parameter for the density-ratio (Kelsall and Diggle, 1995a), this chapter sought to further
build upon work in Hazelton and Davies (2009) and investigate the worthiness of using a

particular variable-bandwidth calculator (Abramson, 1982) for the same purpose.
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Chapter 2 described in detail the 2-dimensional kernel density estimator, and associated
density-ratio estimator of relative risk, for both fixed and adaptive isotropic smoothing.
With findings published in Davies and Hazelton (2010), Aim 1 was addressed as a theoretical
exploration took place. Expressing fundamental properties of the adaptive density-ratio
for the first time, approximate variance stabilisation of this estimator was uncovered. A
novel, computationally inexpensive method based on this asymptotic theory for computation
of tolerance contours, which describe statistically significant sub-regions of risk, was also
introduced. This offered an alternative to computationally costly Monte-Carlo approaches.
Finally, Aim 3 was addressed in the context of these methods by way of the analysis of two
separate real-world examples. The adaptive density-ratio and asymptotic tolerance contour
techniques indicated benefits over the older methods, and formed a unique portion of a

correspondingly developed and released R package.

6.1.3 Chapter 3

Addressed: Aims 1 and 3

This chapter discussed in detail the log-Gaussian Cox process, where a stochastic Gaussian
field is used to describe attractive dependence between points. By collating, summarising,
and interpreting the theory associated with this model from an applied, epidemiological
perspective, we have addressed Aim 1 for the LGCP. This involved scrutiny of the material
in Mgller et al. (1998), Brix and Diggle (2001), Mgller and Waagepetersen (2004) and Diggle,
Rowlingson and Su (2005). Discussions were split into spatial and spatiotemporal sections,
with the assumptions of stationarity, isotropy and separability imposed upon the model for
theoretical accessibility. Minimum contrast parameter estimation was defined and examined.
Special attention was also given to circulant embedding and the fast-Fourier transform for
simulation of the process. The Metropolis-adjusted Langevin algorithm was covered in detail
with respect to conditional simulation of both the spatial and spatiotemporal versions of
the LGCP. Aim 3 was addressed through the analysis of two real-world examples, one of
which also detailed the useful notion of exceedance probabilities used to detect anomalous
behaviour within the ever-changing intensity in real-time disease surveillance.

Of particular note were the suite of novel numerical experiments carried out in order to
gain a unique insight into the performance of the LGCP and associated fitting and simulation
techniques in practice. Study 1 revealed little difference between use of the K-function or
pair correlation function in terms of performance of the minimum contrast methods. When a
deterministic spatial component was included in the modelling framework as a kernel density
estimate in Study 2, it was found a clear preference is given to ‘restrained oversmoothing’ of
the 2-dimensional density — this would result in the stochastic process parameter estimates
closest to the true quantities. Finally, a carefully designed set of spatiotemporal LGCP
scenarios were utilised in order to judge the appearance of exceedance probability surfaces
following conditional simulation based on variations of the supplied dependence parameters
in Study 3. It was concluded that although variations of the quality statistic employed did
seem to exist between parameterisations, they did not differ greatly in a broad interpretation

of the locations of anomalous sub-regions: a comforting result given the critical eye with
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which minimum contrast is often (and correctly so) viewed.

This review coupled with the novel simulation studies revealed the model to hold con-
siderable potential for a variety of applications. The ease with which the LGCP can be
extended or modified, e.g. to account for global space-time trends, is a particularly attrac-
tive feature. By shedding new light on the relative robustness of currently employed LGCP
disease surveillance techniques, it was concluded that the LGCP certainly warrants further
attention in epidemiological applications, and efforts should be made to improve accessibility

to the methodology.

6.1.4 Chapter 4

Addressed: Aim 2

This chapter described the software implementation (by way of two separate R packages) of
the methods introduced in Chapters 2 and 3. Both are currently available on the Compre-
hensive R Archive Network.

The first package constituted the efforts surrounding kernel estimation of spatial relative
risk, and was named sparr. Quite simply, it is a direct, coded version of the contents of
Chapter 2 and the associated articles. The flexibility and accessibility of sparr, showcased
in Davies, Hazelton and Marshall (2011), were the main catalysts in initiating the published
collaborations summarised in Chapter 5.

Following a visit to Lancaster University in January, 2011, several researchers became
interested in this author’s implementation of the LGCP and associated functionality in
the R language. These included academics who had played an instrumental role in the
development of the relevant methodology. This precipitated a collaborative effort to polish
the existing code and release the package lgep. A corresponding article is at the time of
writing in press as Taylor, Davies, Rowlingson and Diggle (2012). The primary motivation
for this package is the use of the LGCP for real-time disease surveillance, and the included
functions therefore focus on fitting and conditional simulation of the spatiotemporal version
of the model. This powerful tool, the first of its kind in R, affords the user control over
all aspects of the initiation, execution, summary statistic calculation, and storage of the
Markov chain. Flexible options for retrieval and post-processing of the results, including
visualisation of diagnostics, the intensity itself, and exceedance probability surfaces, are

supplied.

6.1.5 Chapter 5

Addressed: Aim 3
The benefits yielded by having available the software capable of certain statistical methods
are illustrated by the speed with which sparr (released online in late 2010 — earlier than lgep
which was released in late 2011) attracted the attention of researchers working in human
and veterinary epidemiology. Chapter 5 summarised the collaborative works initiated by
these epidemiologists which this author contributed to in terms of statistical support.

The first example dealt with analysing the spatial variation in relative risk of schistoso-

miasis in a particular region of China. Currently submitted for publication as Zhang, Davies
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and Jiang (2011), the aim was to examine the performance of the newly-described adap-
tive bandwidth kernel density-ratio estimator and asymptotic p-value surfaces of Chapter 2
in comparison to the previously employed fixed-bandwidth versions. The second example,
available as Zhang, Chen, Chen, Davies, Vaillancourt and Liu (2012), studied global trends
in a highly pathogenic subtype of avian influenza. Use of Abramson’s (1982) adaptive kernel
density estimator, as well as Kulldorfl’s space-time scan statistic (Kulldorff et al., 1998,
2005), served to identify an emerging ‘hotspot’ of infected poultry cases. The third example
detailed international efforts to ‘verify’ and ‘validate’ three different disease control strategy
evaluation models designed to simulate the spread (and subsequent control) of veterinary
foot-and-mouth, and is published as Sanson, Harvey, Garner, Stevenson, Davies, Hazelton,
O’Connor, Dubé, Forde-Folle and Owen (2011). The final section of Chapter 5 simply aimed,
via a non-epidemiological example, to highlight the flexibility of the LGCP. We provided
an informal preliminary exploration of some Japanese earthquake data, which also provided
an opportunity to experiment with some straightforward ‘future-forecast’ intensity predic-
tion ideas. The spatiotemporal LGCP was shown to fit well, and conditional simulation

functioned satisfactorily.

6.2 Future research, thesis closure

This research has clearly demonstrated the role statistics plays in geographical epidemiology.
In particular, we focused on those applications where we have observed two-dimensional
spatial and /or spatiotemporal point patterns, and examined in detail two distinct approaches
geared toward gaining a deeper insight into the dispersion of disease observations within a
given study region.

Consider the discussions surrounding the kernel-estimated relative risk function. An
issue which crops up fairly often in smoothing problems is selection of some ‘optimal’ degree
of smoothing based on the observed data. Although the adaptive bandwidth density-ratio
was shown to perform competitively with the fixed-bandwidth version in Chapter 2, it was
demonstrated that the instability of leave-one-out least-squares cross-validation rendered the
corresponding method of optimal bandwidth calculation rather unreliable in practice. One
future goal could be the search for feasible, and more numerically stable, jointly optimal
(i.e. in light of the two density estimates — case and control) bandwidth selectors. This
may well involve investigating the performance of any new techniques on the fixed and
adaptive versions of the relative risk function separately, owing to the additional complexity
of requiring both ‘global’ and ‘pilot’ specifications in the latter.

Branching out from Poisson point processes, the discussion of the spatial and relatively
young spatiotemporal log-Gaussian Cox process in Chapter 3 showed the model has the
ability to be able to cope well with epidemiological data. Discussed in detail was the issue
of minimum contrast estimation of the parameters controlling the correlation structure of
the high-dimensional Gaussian field. It would be extremely useful to continue to expand the
methods available for this type of parameter estimation, particularly when we consider the
many different kinds of point patterns that the LGCP is capable of simulating/capturing.

One possible avenue would be to explore Bayesian methods (ideas arising from preliminary
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discussions with the Lancaster group), though any such approach would clearly involve high
computational expense to the point where it may be considered infeasible for that very
reason.

By successfully addressing clearly defined objectives directly related to the needs of
researchers working with space and space-time modelling of point processes, particularly
in epidemiology, this thesis and its contents have resulted in a number of refinements to
existing methodology; a better understanding of the models’ numerical performance; newly
developed and generally accessible computer programs; a host of real-world applications;
and a collection of associated publications. In addition, the work completed has presented

a number of interesting avenues that have strong potential as future research pursuits.
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Appendix A

Package documentation: sparr

Full package documentation for sparr, written solely by this author. The details of cited

works are located together with those in the main body of this thesis in ‘References’.

A.1 ‘Welcome’ help file: sparr-package

sparr-package The sparr Package: SPAtial Relative Risk

Description

Provides functions to estimate fixed and adaptive kernel-smoothed relative risk surfaces

via the density-ratio method and perform subsequent inference.

Details

Package: sparr
Version: 0.3-1

Date: 2011-12-13
License: GPL (>=2)

Kernel smoothing, and the flexibility afforded by this methodology, provides an attrac-
tive approach to estimating complex probability density functions. This is particularly
of interest when exploring problems in geographical epidemiology, the study of disease
dispersion throughout some spatial region, given a population. The so-called ‘relative
risk surface’, constructed as a ratio of estimated case to control densities (Bithell, 1990,
1991), describes the variation in the ‘risk’ of the disease, given the underlying at-risk
population. This is a technique that has been applied successfully for mainly exploratory

purposes in a number of different examples (see for example Sabel et al., 2000; Prince
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et al., 2001; Wheeler, 2007).

This package provides functions for bivariate kernel density estimation (KDE), imple-
menting both fixed and ‘variable’ or ‘adaptive’ (Abramson, 1982) smoothing parameter
options (see the function documentation for more information). A selection of bandwidth
calculators for bivariate KDE and the relative risk function are provided, including one
based on the maximal smoothing principle (Terrell, 1990), and others involving a leave-
one-out least-squares cross-validation (see below). In addition, the ability to construct
asymptotically derived p-value surfaces (‘tolerance’ contours of which signal statisti-
cally significant sub-regions of ‘extremity’ in a risk surface - Hazelton and Davies, 2009;

Davies and Hazelton, 2010), as well as some flexible visualisation tools, are provided.

The content of sparr can be broken up as follows:

Datasets
PBC a case/control planar point pattern (ppp) concerning liver disease in northern Eng-
land. Also available is the case/control dataset chorley of the spatstat package, which

concerns the distribution of laryngeal cancer in an area of Lancashire, England.

Bandwidth calculators

0S estimation of an isotropic smoothing parameter for bivariate KDE, based on the
oversmoothing principle introduced by Terrell (1990).

NS estimation of an isotropic smoothing parameter for bivariate KDE, based on the op-
timal value for a normal density (bivariate normal scale rule - see e.g. Wand and Jones,
1995).

LSCV.density a least-squares cross-validated (LSCV) estimate of an isotropic band-
width for bivariate KDE (see e.g. Bowman and Azzalini, 1997).

LSCV.risk a least-squares cross-validated (LSCV) estimate of a jointly optimal, com-
mon isotropic case-control bandwidth for the kernel-smoothed risk function (see Kelsall
and Diggle, 1995a,b; Hazelton, 2008).

Bivariate functions

KBivN bivariate normal (Gaussian) kernel

KBivQ bivariate quartic (biweight) kernel

bivariate.density kernel density estimate of bivariate data; fixed or adaptive smooth-

ing

Relative risk and p-value surfaces
risk estimation of a (log) relative risk function

tolerance calculation of asymptotic p-value surface
Printing and summarising objects

S3 methods (print.bivden, print.rrs, summary.bivden and summary.rrs) are avail-

able for the bivariate density and risk function objects.
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Visualisation

Most applications of the relative risk function in practice require plotting the relative
risk within the study region (especially for an inspection of tolerance contours). To
this end, sparr provides a number of different ways to achieve attractive and flexible
visualisation. The user may produce a heat plot, a perspective plot, a contour plot, or
an interactive 3D perspective plot (that the user can pan around and zoom - courtesy
of the powerful rgl package; see below) for either an estimated relative risk function or
a bivariate density estimate. These capabilities are available through S3 support of the
plot function; see

plot.bivden for visualising a single bivariate density estimate from bivariate.density,
and

plot.rrs for visualisation of an estimated relative risk function from risk.
Dependencies
The sparr package depends upon some other important contributions to CRAN in or-

der to operate; their uses here are indicated:

spatstat - Fast-fourier transform assistance with fixed and adaptive density estima-

tion, as well as region handling; see Baddeley and Turner (2005).

rgl - Interactive 3D plotting of densities and surfaces; see Adler and Murdoch (2009).
MASS - Utility support for internal functions; see Venables and Ripley (2002).
Citation

To cite use of sparr in publications, the user may refer to the following work:
Davies, T.M., Hazelton, M.L. and Marshall, J.C. (2011), sparr: Analyzing spatial
relative risk using fixed and adaptive kernel density estimation in R, Journal of Statistical
Software 39(1), 1-14.

Author(s)

T.M. Davies, M.L. Hazelton and J.C. Marshall
Institute of Fundamental Sciences - Statistics, Massey University, Palmerston North,
New Zealand.

Maintainer: T.M.D. <t.davies@massey.ac.nz>

Feedback welcomed.

A.2 Conversion to pixel image class im: as.im.bivden,

as.im.rrs
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as.im.bivden Converting a sparr bivariate kernel density estimate or rel-

ative risk surface object into a spatstat pizel image.

Description

as.im methods for classes "bivden" and "rrs"

Usage

## S3 method for class 'bivden'
as.im(X, ...)

## S3 method for class 'rrs'

as.im(X, ...)
Arguments
X An object of class "bivden" resulting from a call to bivariate.den-
sity, or an object of class "rss" resulting from a call to risk.
Ignored.
Value

An object of class im corresponding to the supplied argument. Additional return infor-
mation originally part of X is lost.

Author(s)

T.M. Davies

See Also

im, as.im

Examples

data(chorley)
ch.bivden <- bivariate.density(chorley, ID = "lung", adaptive = FALSE,
+ pilotH = 1.5)

ch.im <- as.im(ch.bivden)

summary (ch.im)
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A.3 Bivariate (2D) kernel density estimation: bivaria-

te.density

bivariate.density Bivariate kernel density estimates

Description

Provides an adaptive or fixed bandwidth kernel density estimate of bivariate data.

Usage

bivariate.density(data, ID = NULL, pilotH, globalH = pilotH,
adaptive = TRUE, edgeCorrect = TRUE, res = 50, WIN = NULL,

counts

yrange

NULL, intensity = FALSE, xrange
NULL, trim = 5, gamma = NULL, atExtraCoords = NULL,

NULL,

use.ppp.methods = TRUE, comment = TRUE)

Arguments

data

ID

pilotH

globalH

adaptive

An object of type data.frame, list, matrix, or ppp giving the ob-
served data from which we wish to calculate the density estimate.
Optional ID information (e.g. a dichotomous indicator for cases and
controls) may also be provided in these four data structures. See ‘De-

tails’ for further information on how to properly specify each one.

If data is a data structure with a third component/column indicating
case (1) or control (0) status, ID must specify which of these groups
we wish to estimate a density for. If ID is NULL (default), a den-
sity is estimated for all present observations, regardless of any status

information.

A single numeric, positive ‘smoothing parameter’ or ‘bandwidth’. W-
hen adaptive is TRUE (default), this value is taken to be the pilot
bandwidth, used to construct the bivariate pilot density required for
adaptive smoothing (see ‘Details’). For a fixed bandwidth kernel den-
sity estimate, pilotH simply represents the fixed amount of smooth-

ing. Currently, all smoothing is isotropic in nature.

A single numeric, positive smoothing multiplier referred to as the
global bandwidth, used to calculate the adaptive bandwidths (see ‘De-
tails’). When adaptive is TRUE, this defaults to be the same as the
pilot bandwidth. Ignored for a fixed density estimate.

Boolean. Whether or not to produce an adaptive (variable bandwidth)
density estimate, with the alternative being a fixed bandwith density
estimate. Defaults to TRUE.
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edgeCorrect

res

WIN

counts

intensity

xrange

yrange

trim

Boolean. Whether or not to perform edge-correction on the density es-
timate according to the methods demonstrated by Diggle (1985) (fixed
bandwidth) and Marshall and Hazelton (2010) (adaptive). This can
have a noticeable effect on computation time in some cases. Defaults
to TRUE. When adaptive = TRUE, the fixed-bandwidth pilot density

is also edge-corrected according to edgeCorrect.

A single, numeric, positive integer indicating the square root of the
desired resolution of the evaluation grid. That is, each of the evalua-
tion grid axes will have length res. Currently, only res*res grids are

supported. Defaults to 50 for computational reasons.

A polygonal object of class owin from the package spatstat giving
the study region or ‘window’. All functions in the package sparr that
require knowledge of the specific study region make use of this class;
no other method of defining the study region is currently supported.
If no window is supplied (default), the function defines (and returns)
it’s own rectangular owin based on xrange and yrange. Ignored if

data is an object of type ppp.

To perform binned kernel estimation, a numeric, positive, integer vec-
tor of giving counts associated with each observed coordinate in data,
if data contains unique observations. If NULL (default), the function
assumes each coordinate in data corresponds to one observation at
that point. Should the data being supplied to bivariate.density
contain duplicated coordinates, the function computes the counts vec-
tor internally (overriding any supplied value for counts), issues a
warning, and continues with binned estimation. Non-integer values

are rounded to the nearest integer.

A boolean value indicating whether or not to return an intensity (in-
terpreted as the the expected number of observations per unit area and
integrating to the number of observations in the study region) func-

tion, rather than a density (integrating to one). Defaults to FALSE.

Required only when no study region is supplied (WIN = NULL) and
data is not an object of class ppp, and ignored otherwise. A vector of
length 2 giving the upper and lower limits of the estimation interval
for the x axis, in which case an evenly spaced set of values of length

res is generated.
As above, but for the y axis.

A numeric value (defaulting to 5) that prevents excessively large band-
widths in adaptive smoothing by trimming the originally computed
bandwidths h by trim times median(h). A value of NA or a nega-
tive numeric value requests no trimming. Ignored when adaptive is
FALSE.
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gamma An optional positive numeric value to use in place of gamma for adap-
tive bandwidth calculation (see ‘Details’). For adaptive relative risk
estimation, this value can sensibly be chosen as common for both case
and control densities (such as the gamma value from the adaptive den-
sity estimate of the ‘pooled’ (full) dataset): see Davies and Hazelton
(2010). If nothing is supplied (default), this value is computed from
the data being used to estimate the density in the defined fashion

(again, see ‘Details’). Ignored for fixed bandwidth estimation.

atExtraCoords It can occasionally be useful to retrieve the values of the estimated den-
sity at specific coordinates that are not the specific observations or the
exact grid coordinates, for further analysis or plotting. atExtraCoords
allows the user to specify an additional object of type data.frame with
2 colums giving the x atExtraCoords[,1] and y atExtraCoords[,2]
coordinates at which to calculate and return the estimated density
and other statistics (see ‘Value’).

use.ppp.methods
Boolean. Whether or not to switch to using methods defined for ob-
jects of class ppp.object from the package spatstat to estimate the
density. This approach is much, much faster than forcing bivariat-
e.density to do the explicit calculations (due to implementation of a
Fast Fourier Transform; see density.ppp) and is highly recommended
for large datasets. To further reduce computation time in the adap-
tive case when use.ppp.methods = TRUE, the variable edge-correction
factors are calculated using the integer percentiles of the varying band-
widths. Defaults to TRUE.

comment Boolean. Whether or not to print function progress (including starting

and ending times) during execution. Defaults to TRUE.

Details

This function calculates an adaptive or fixed bandwidth bivariate kernel density esti-
mate, using the bivariate Gaussian kernel. Abramson’s method is used for adaptive
smoothing (Abramson, 1982). Suppose our data argument is a data.frame or matrix.
Then for each observation datali,1:2] (i =1, 2, ... n), the bandwidth h[i] is given by

h[il=globalH / ( w(datal[i,1:2]; pilotH) (1/2)*gamma )

where w is the fixed bandwidth pilot density constructed with bandwidth pilotH and
the scaling parameter gamma is the geometric mean of the w™(-1/2) values. A detailed

discussion on this construction is given in Silverman (1986).

If the data argument is a data.frame or a matrix, this must have exactly two columns
containing the x ([,1]) and y ([,2]) data values, or exactly three columns with the third

(rightmost) column giving ID information by way of a numeric, dichotomous indicator.
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Should data be a list, this must have two vector components of equal length named x

and y. The user may specify a third component with the name ID giving the vector of

corresponding ID information (must be of equal length to x and y). Alternatively, data

may be an object of class ppp (see ppp.object). ID information can be stored in such

an object through the argument marks. If data is a ppp object, the value of window of

this object overrides the value of the argument WIN above.

Value

An object of class "bivden". This is effectively a list with the following components:

Zm

kType

pilotH

globalH

hypoH

zSpec

zExtra

WIN

a numeric matrix giving the value of the estimated (edge-corrected if
elected) density at each of the coordinates of the grid. Values corre-
sponding to points on the grid that fall outside the study region WIN

are set to NA

a the sequence of values that were used as x grid coordinates. Will

have length res

a the sequence of values that were used as y grid coordinates. Will

have length res
the kernel function used in estimation. Currently fixed at "gaus"

a numeric vector with length equal to the number of observations,
giving the bandwidths assigned to each observation in the order they
appeared in data. For a fixed bandwidth estimate, this will simply be

the identical value passed to and returned as pilotH

the pilot or fixed bandwidth depending on whether adaptive smooth-

ing is employed or not, respectively

the global bandwidth globalH if adaptive smoothing is employed, NA

for fixed smoothing

the matrix of ‘hypothetical’ bandwidths (with element placement cor-
responding to Zm) for each coordinate of the evaluation grid. That is,
these values are the bandwidths at that grid coordinate if, hypothet-
ically, there was an observation there (along with the original data).
These are used for edge-correction in adaptive densities (Marshall and
Hazelton, 2010). Will be NA for fixed bandwidth estimates

a numeric vector with length equal to the number of observations
used, giving the values of the density at the specific coordinates of the
observations. Order corresponds to the order of the observations in
data

as zSpec for the observations in atExtraCoords, NA if atExtraCoords
is not supplied

the object of class owin used as the study region
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ghz

ghzSpec

ghzExtra

pilotvals

gamma

counts

data

Warning

a numeric matrix of the edge-correction factors for the entire evalu-
ation grid (with placement corresponding to Zm. If edgeCorrect =

FALSE, all edge correction factors are set to and returned as 1

edge-correction factors for the individual observations; order corre-

sponding to data

as ghzSpec for the observations in atExtraCoords; NA if atExtraCo-

ords is not supplied

the values of the pilot density used to compute the adaptive band-
widths. Order corresponds to the order of the observations in data.
NULL when adaptive = FALSE

the value of gamma that was passed to the function, or the geometric
mean term of the reciprocal of the square root of the pilot density
values used to scale the adaptive bandwidths if gamma is not supplied.
NULL when adaptive = FALSE

the counts vector used in estimation of the density/intensity. If all
values in data were unique and counts = NULL, the returned counts

will be a vector of ones equal to the number of coordinates in data

a two-column numeric data frame giving the observations in the orig-
inally supplied data that were used for the density estimation. If
data originally contained duplicated coordinates, the returned data
will contain only the unique coordinates, and should be viewed with

respect to the returned value of counts

Explicit calculation of bivariate kernel density estimates is computationally expensive.

The decision to produce adaptive over fixed bandwidth estimates, the size of the dataset,

the evaluation grid resolution specified by res, the complexity of the study region and

electing to edge-correct all have a direct impact upon the time it will take to estimate the

density. Keeping use.ppp.methods = TRUE can drastically reduce this computational

cost at the expense a degree of accuracy that is generally considered negligible for most

practical purposes.

Author(s)

T.M. Davies

Examples

##Chorley-Ribble laryngeal cancer data ('spatstat' library)

data(chorley)

ch.lar.density <- bivariate.density(data = chorley, ID = "larynx",
pilotH = 1.5, adaptive = FALSE)
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plot(ch.lar.density, col = "lightblue", phi = 30, theta = -30,
ticktype = "detailed", main = "chorley.larynx", display = "persp")

## Not run:

##PBC liver disease data

data (PBC)

pbc.adaptive.density <- bivariate.density(data = PBC$data, ID = 1,
pilotH = 350, WIN = PBC$owin)

#3D plot - may need to adjust size of RGL device. Hold left click
# to pan, hold right to zoom.
plot(pbc.adaptive.density, display = "3d", col = heat.colors(20),

main = "Density of PBC in north-east England", aspect = 1:2)

## End(Not run)

A.4 Single-density LSCV bandwidth: LSCV.density

LSCV.density Leave-one-out least-squares cross-validation (LSCV) for bi-
variate KDE bandwidths

Description

Provides an isotropic LSCV bandwidth estimate for use in 2-dimensional kernel density

estimation (see e.g. Bowman and Azzalini, 1997).

Usage

LSCV.density(data, hlim = NULL, res = 128, edge = TRUE,
WIN = NULL, quick = TRUE, comment = TRUE)

Arguments
data An object of type data.frame, list, matrix, or ppp describing the
observed data from which we wish to calculate the LSCV bandwidth.
See ‘Details’ for further information.
hlim A numeric vector of length 2 giving the interval over which to search

for the bandwidth that minimises the selection criterion. If NULL (de-
fault), the function attempts to automatically select an appropriate
range based on multiples of Stoyan and Stoyan’s (1994) rule-of-thumb.

The user is strongly recommended to supply their own hlim.
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res Single integer giving the square grid resolution over which evaluation

of the selection criterion takes place. Defaults to a 128 by 128 grid.

edge Boolean. Whether or not to employ edge-correction in the calcula-
tions. Defaults to TRUE.

WIN A polygonal owin object giving the study region. Ignored if data is
already a ppp.object.

quick Intended for advanced use; users are recommended not to change the
default TRUE. Setting quick = FALSE forces the function to individ-
ually evaluate the CV objective function at each of seq(hlim[1],
hlim[2], length = 50) bandwidths, returning the corresponding val-

ues. Can be useful for diagnostic purposes.

comment Boolean. Whether or not to print function progress during execution.
Defaults to TRUE.

Details

This function calculates a LSCV smoothing bandwidth for kernel density estimates of
2-dimensional (bivariate) data. If the data argument is a data.frame or a matrix,
this must have exactly two columns containing the x ([,1]1) and y ([,2]) data values.
Should data be a 1ist, this must have two vector components of equal length named x

and y. Alternatively, data may be an object of class ppp (see ppp.object).

Value

A single numeric value of the estimated bandwidth (if quick = FALSE, this value is
named hopt; additionally returned are the objective function values (1scv) and the
index of the minimum value (ind)). The user may need to experiment with adjusting

hlim to find a suitable minimum.

Warning

Leave-one-out LSCV for bandwidth selection in kernel density estimation is notoriously
unstable in practice and has a tendency to produce rather small bandwidths. Satis-
factory bandwidths are not guaranteed for every application. This method can also be

computationally expensive for large data sets and fine evaluation grid resolutions.

Author(s)

T.M. Davies

See Also

spatstat’s function bw.relrisk
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Examples

## Not run:
data(PBC)

##PBC cases
LSCV.density(split(PBC) [[1]],hlim=c(10,400))

##PBC controls
LSCV.density(split(PBC) [[2]],hlim=c(10,400))

## End(Not run)

A.5 Density-ratio LSCV bandwidth: LSCV.risk

LSCV.risk Leave-one-out least-squares cross-validation (LSCV) band-

widths for the relative risk function

Description

Attempts to estimate a jointly optimal, common case-control fixed bandwidth for use in
the kernel-smoothed relative risk function via leave-one-out least-squares cross-validation
(LSCV). The user can choose between two methods described in Kelsall and Diggle
(19954,b) and Hazelton (2008).

Usage

LSCV.risk(cases, controls, hlim = NULL,
method = c("kelsall-diggle", "hazelton"), res = 128,
WIN = NULL, edge = TRUE, comment = TRUE)

Arguments
cases An object of type data.frame, list, matrix, or ppp describing the
observed case data from which we wish to calculate the LSCV band-
width. See ‘Details’ for further information.
controls As for cases, but for the control observations. Both cases and
controls must be of the same object class.
hlim A numeric vector of length 2 giving the interval over which to search

for the common bandwidth which minimises the selection criterion.
If NULL (default), the function attempts to automatically select an
appropriate range based on multiples of Stoyan and Stoyan’s (1994)
rule-of-thumb. The user is strongly recommended to supply their own
hlim.
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method A character vector giving the specific selection criterion to minimise;
see either Kelsall and Diggle (1995a,b) or Hazelton (2008). See also
‘Details’. Defaults to "kelsall-diggle".

res Single integer giving the square grid resolution over which evaluation

of the selection criterion takes place. Defaults to a 128 by 128 grid.

WIN A polygonal owin object giving the study region. Ignored if data is
already a ppp.object.

edge Boolean. Whether or not to employ edge-correction in the calcula-
tions. Defaults to TRUE.

comment Boolean. Whether or not to print function progress during execution.
Defaults to TRUE.

Details

This function calculates a ‘jointly optimal’, common isotropic LSCV bandwidth for the
(Gaussian) kernel-smoothed relative risk function (case-control density-ratio). If the
cases, controls arguments are data.frame or matrix objects, these must each have
exactly two columns containing the x ([,1]) and y ([,2]) data values. Should they be
lists, these must have two vector components of equal length named x and y. Alter-
natively, cases and controls may be objects of class ppp (see ppp.object), and the

argument WIN can be ignored.

It can be shown that choosing a bandwidth that is equal for both case and control
density estimates is preferable to computing ‘separately optimal’ bandwidths (Kelsall
and Diggle, 1995a). Setting method = "kelsall-diggle", LSCV.risk computes the
common bandwidth which minimises the approximate mean integrated squared error of

the log-transformed risk surface (see specifically Kelsall and Diggle, 19955).

Alternatively, the user has the option of computing the common case-control band-
width which minimises a weighted mean integrated squared error of the (raw) relative
risk function (see Hazelton, 2008). Generally, this author has found the Kelsall-Diggle

method to provide more stable performance.
Value
A single numeric value of the estimated bandwidth. The user may need to experiment

with adjusting hlim to find a suitable minimum.

Warning

Leave-one-out LSCV for jointly optimal, common bandwidth selection in the kernel-
smoothed risk function is even more unstable (in terms of high variability) than the

standalone density version. Caution is advised; not all applications will yield a successful
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result (this is termed “a breakdown of the methodology” by Kelsall and Diggle, 1995a).
Undersmoothing has been noted in this author’s personal experience. This method can

also be computationally expensive for large data sets and fine evaluation grid resolutions.

Author(s)

T.M. Davies

See Also

spatstat’s function bw.relrisk

Examples

## Not run:
data(chorley)

LSCV.risk(cases = split(chorley) [[1]], controls = split(chorley) [[2]],
hlim = c(0.1,2))

## End(Not run)

A.6 Bivariate (2D) Gaussian kernel: KBivN

KBivN Standard bivariate normal kernel

Description

Evaluates the standard bivariate normal (Gaussian) kernel function at specified values.

Usage

KBivN(X)

Arguments

X A numeric vector of length 2 or a data frame with 2 columns.

Details

If X is a vector of length 2, then the two components X[1] and X[2] are taken to be
the x and y coordinates respectively. For multiple evaluations at differing coordinates,
X must be a data frame with X[,1] and X[,2] as the corresponding pairs of x and y

coordinates respectively.
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Value
A single numeric value if X is a vector, or nrow(X) values if X is a data frame, giving
the result of the standard bivariate normal kernel at the specified coordinate(s).
Author(s)

T.M. Davies

Examples
KBivN(c(0.1,0.4))
x <= y <- seq(-4,4,length=50)
z <- KBivN(data.frame(cbind(sort(rep(x,50)),rep(y,50))))

persp(x,y,matrix(z,50,50,byrow=TRUE) ,main="bivariate Gaussian kernel",

phi=30,theta=-30)

A.7 Bivariate (2D) quartic (biweight) kernel: KBivQ

KBivQ Standard bivariate quartic (biweight) kernel

Description
Evaluates the standard bivariate quartic (biweight) kernel function at specified values,
for either the spherical or product derivation of the function.

Usage

KBivQ (X, type="spher")

Arguments
X A numeric vector of length 2 or a data frame with 2 columns.
type A character string.
"spher" (default) spherical calculation of the kernel
"prod"  uses the product approach to kernel calculation
Details

If X is a vector of length 2, then the two components X[1] and X[2] are taken to be
the x and y coordinates respectively. For multiple evaluations at differing coordinates,
X must be a data frame with X[,1] and X[,2] as the corresponding pairs of x and y

coordinates respectively.
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Unlike the bivariate Gaussian kernel, it is necessary to specify the method of extending
the univariate quartic kernel to the bivariate case; this can be done in two different
ways, one way resulting in a slightly different kernel to the other. An explanation of

these ‘spherical’ and ‘product’ approaches is given in Wand and Jones (1995).

Value

A single numeric value if X is a vector, or nrow(X) values if X is a data frame, giving
the result of the standard bivariate quartic kernel at the specified coordinate(s) for the

elected function derivation type.

Author(s)

T.M. Davies

Examples

KBivQ(c(0.1,0.4))

x <- y <- seq(-0.9,0.9,length=50)
z.spher <- KBivQ(data.frame(cbind(sort(rep(x,50)), rep(y,50))))
z.prod <- KBivQ(data.frame(cbind(sort(rep(x,50)), rep(y,50))), "prod")

par (mfrow=c(1,2))

contour(x, y, matrix(z.spher, 50, 50, byrow = TRUE),
main = "bivariate quartic kernel (spherical)")
contour(x, y, matrix(z.prod, 50, 50, byrow=TRUE),

main = "bivariate quartic kernel (product)")

A.8 Single-density normal scale rule bandwidth: NS

NS Normal scale rule for bivariate KDE bandwidths

Description

Provides the (isotropic) optimal bandwidth for a bivariate normal density based on a

simple expression.

Usage

NS(data, nstar = NULL, scaler = NA)
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Arguments

data

nstar

scaler

Details

An object of type data.frame, list, matrix, or ppp giving the ob-
served data from which we wish to calculate the NS bandwidth. See

‘Details’ for further information.

A single numeric, positive value to use in place of the number of ob-
servations n in the NS formula. If NULL (default), n will simply be the

number of observations in data.

A single numeric, positive value to use for transforming the result with
respect to the scale of the recorded data (i.e. a scalar representation
of the standard deviation of the data). If NA (default), the scaling
value is set as the mean of the interquartile ranges (IQR) of the z and
y data values divided by 1.34 (Gaussian IQR).

This function calculates a smoothing bandwidth for kernel density estimates of 2-

dimensional data: the optimal value which would minimise the asymptotic mean in-

tegrated squared error of the bivariate normal density function, assuming the standard

Gaussian kernel function. See Wand and Jones (1995) for example. If the data argu-

ment is a data.frame or a matrix, this must have exactly two columns containing the
z ([,1]1) and y ([,2]) data values. Should data be a 1list, this must have two vector

components of equal length named x and y. Alternatively, data may be an object of

class ppp (see ppp.object).

Value

A single numeric value of the estimated bandwidth.

Warning

The NS bandwidth is an approximation, and assumes that the target density is bivariate

normal. This is considered rare in e.g. epidemiological applications. Nevertheless, it

remains a quick and easy ‘rule-of-thumb’ method with which one may obtain a smoothing

parameter in general applications.

Author(s)

T.M. Davies

Examples

data(PBC)

PBC.casedata <- split(PBC)[[1]]
PBC.controldata <- split(PBC) [[2]]

pbc.h <- NS(PBC, nstar = sqrt(PBC.casedata$n * PBC.controldata$n))

222



##Scaling bandwidth for case data using standard deviations
sd.x <- sd(PBC.casedata$x)
sd.y <- sd(PBC.casedata$y)

NS(data = PBC.casedata, scaler = mean(sd.x, sd.y))

A.9 Terrell’s single-density oversmoothing bandwidth:

0S

0s

Mazximal smoothing principle (oversmoothing) for bivariate
KDE bandwidths

Description

Provides an (isotropic) bandwidth estimate for use in bivariate KDE based on the over-

smoothing factor

Usage

0S(data, nstar

Arguments

data

nstar

scaler

Details

introduced by Terrell (1990).

= NULL, scaler = NA)

An object of type data.frame, list, matrix, or ppp giving the ob-
served data from which we wish to calculate the OS bandwidth. See

‘Details’ for further information.

A single numeric, positive value to use in place of the number of ob-
servations n in the OS formula. If NULL (default), n will simply be the

number of observations in data.

A single numeric, positive value to use for transforming the result with
respect to the scale of the recorded data. If NA (default), the scaling
value is set as the mean of the interquartile ranges (IQR) of the z
and y data values divided by 1.34 (Gaussian IQR). This approach was
used in Davies and Hazelton (2010).

This function calculates a smoothing bandwidth for kernel density estimates of bivariate

data, following the maximal smoothing priciple of Terrell (1990). If the data argument

is a data.frame or a matrix, this must have exactly two columns containing the z
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([,11) and y ([,2]) data values. Should data be a list, this must have two vector

components of equal length named x and y. Alternatively, data may be an object of

class ppp (see ppp.object).

Value

A single numeric value of the estimated bandwidth.

Author(s)

T.M. Davies

Examples
data(PBC)
##Using geometric mean of case and control counts as n
nl <- sum(PBC$datal,3])
n2 <- nrow(PBC$data) - nil
0S(data = PBC$datal,1:2], nstar = sqrt(nl * n2))
##Scaling bandwidth for case data using standard deviations
sd.x <- sd(PBC$data[PBC$datal,3]==1,1])

sd.y <- sd(PBC$data[PBC$datal,3]==1,2])

0S(data = PBC$data[PBC$datal,3]==1,1:2], scaler = mean(sd.x, sd.y))

A.10 Primary biliary cirrhosis (PBC) data: PBC

PBC Primary biliary cirrhosis data

Description

Data of the locations of 761 cases of primary biliary cirrhosis in several adjacent health
regions of north-eastern England, along with 3020 controls representing the at-risk pop-
ulation, collected between 1987 and 1994. These data were first presented and analysed
by Prince et al. (2001); subsequent analysis of these data in the spirit of sparr was

performed in Davies and Hazelton (2010). Also included is the polygonal study region.

Usage

data(PBC)
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Format

PBC is a dichotomously marked ppp.object.

Acknowledgements

The authors thank Prof. Peter Diggle at Lancaster University (http://www.lancs.ac.
uk/staff/diggle/) for providing access to these data.

Examples

data(PBC)
summary (PBC)
plot (PBC)

A.11 Plotting density and risk function estimates: plo-

t.bivden, plot.rrs

plot.bivden Plotting a bivariate kernel density estimate object

Description

plot methods for classes "bivden" and "rrs"

Usage

## S3 method for class 'bivden'
plot(x, ..., display = c("heat", "contour", "persp", "3d"),
show.WIN = TRUE)
## S3 method for class 'rrs'
plot(x, ..., display = c("heat", "contour", "persp", "3d"),
show.WIN = TRUE, tolerance.matrix = NULL,
tol.opt = list(raise = 0.01, col = "black", levels = 0.05, 1ty = 1,

+ lwd = 1))
Arguments
X An object of class "bivden" resulting from a call to bivariate.dens-
ity, or an object of class "rss" resulting from a call to risk.
Additional graphical parameters to be passed to the relevant plot com-
mand depending on the value of display.
display One of four possible character strings indicating the kind of plot de-

sired (see 'Details’). Defaults to "heat".
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show.WIN Boolean. Whether or not to draw the study region as an aesthetic

enhancement to the plot of the density/risk surface. Defaults to TRUE.
tolerance.matrix

The matrix of p-values resulting from a call to tolerance and used to
draw the asymptotic tolerance contours. If this argument is supplied,
tolerance contours are automatically superimposed upon a display =
"heat" or display = "3d" plot. Ignored for display = "persp" or
display = "contour" plots. Defaults to NULL.

tol.opt A named list of components that control plotting of the tolerance
contours given by tolerance.matrix. Components col, levels, 1ty
and lwd are vectors of equal length controlling the colour, significance
levels, line type (ignored for display = "3d") and line width of the
plotted contours respectively. The element raise is a single numeric
value and is used only when display = "3d". This vertically (i.e.
with respect to the z axis) translates the contours upon the 3-D surface

(see ‘Details’). A value of 0 requests no translation. Defaults to 0.01.

Details

There are currently four implemented plot types to visualise the estimated density or risk
function. "heat" selects a heatplot, "contour" is simply a contour plot and "persp"
creates a perspective plot. Selection of "3d" uses functions from the rgl package to
open an RGL graphics device and creates a 3-dimensional surface which the user can
interact with using the mouse. To use ... to improve the appearance of the four possible
plot types "heat", "contour", "persp" and "3d", the reader is highly recommended
to consult the relevant documentation in the help pages plot.im, contour, persp and

persp3d respectively.

Adding tolerance contours to a "3d" relative risk plot requires the function to make
some approximations to the vertical positioning of the contours at each corresponding
coordinate. This can lead to some parts of normally visible contours falling ‘under-
neath’ the plotted surface, resulting in partially obscured contours. The element raise
in tol.opt overcomes this issue by artificially raising the visible contours by a fixed
amount. Care should be taken to find an appropriate value for raise for each analysis.

Value

Plots to the relevant graphics device.

Author(s)

T.M. Davies

See Also

bivariate.density, risk, plot.default, plot.im, contour, persp, persp3d,

par, par3d
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Examples

## see Examples in documentation for functions 'bivariate.density',

## 'risk' and 'tolerance'.

A.12 Relative risk function estimation: risk

risk Bivariate relative risk function

Description

Estimates a relative risk function based on the ratio of two bivariate kernel density esti-
mates over identical grids and regions. In geographical epidemiology, the two densities
would represent a set of disease cases (numerator) and a sample of controls illustrating

the at-risk population (denominator).

Usage

risk(f, g, delta = 0, log = TRUE, h = NULL, adaptive = FALSE, res = 50,
WIN = NULL, tolerate = FALSE, plotit = TRUE, comment = TRUE)

Arguments

f Either a pre-calculated object of class "bivden" representing the ‘case’
density estimate, or an object of type data.frame, 1ist, matrix, or
ppp giving the observed case data. If this raw data is provided, a kernel
density estimate is computed internally, with certain options available
to the user in bivariate.density chosen/calculated automatically.

See ‘Details’ for further information.

g As for argument f, but for the controls. Whatever the type, the class
of g must match that of f.

delta A single numeric scaling parameter used for an optional additive con-
stant to the densities; occasionally used for risk surface construction
(see ‘Details’). A negative or zero value for delta requests no additive

constant (default).

log Boolean. Whether or not to return the (natural) log-transformed rel-
ative risk function as recommended by Kelsall and Diggle (1995a).
Defaults to TRUE with the alternative being the raw density ratio.

h Ignored if £ and g are already "bivden" objects. An optional numeric
vector of length 1 OR 2, giving the global bandwidth(s) for internal

estimation of the case and control densities if adaptive = TRUE, or
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adaptive

res

WIN

tolerate

plotit

comment

Details

the fixed bandwidth(s) if adaptive = FALSE. When h is a single nu-
meric value, this is elected as the common global/fixed bandwidth for
case and control densities. When h has length 2, the values h[1] and
h[2] are assigned as the case and control global/fixed bandwidths re-
spectively. By default, a value of h = NULL tells the function to use
the global /fixed smoothing parameters as outlined in ‘Details’ below.
Note that for adaptive estimation, this argument does not affect cal-

culation of the pilot bandwidths.

Ignored if £ and g are already "bivden" objects. A boolean value
specifying whether or not to employ adaptive smoothing for internally
estimating the densities. A value of FALSE (default) elects use of fixed-

bandwidth estimates.

Ignored if £ and g are already "bivden" objects. A numeric value giv-
ing the desired resolution (of one side) of the evaluation grid. Higher
values increase resolution at the expense of computational efficiency.
Defaults to a 50 by 50 grid.

Ignored if £ and g are already "bivden" objects OR objects of class
ppp (in which case the study region is set to the value of the resi-
dent window component). A polygonal object of class owin giving the

relevant study region in which the f and g data was collected.

Ignored if £ and g are already "bivden" objects. A boolean value spec-
ifying whether or not to calculate a corresponding asymptotic p-value
surface (for tolerance contours) for the estimated relative risk func-
tion. If TRUE, the p-value surface tests for elevated risk only (equiv-
alent to setting test = "greater" in tolerance) and is evaluated
over a maximum grid resolution of 50 by 50. Defaults to FALSE for

computational reasons.

Boolean. If TRUE (default), a heatplot of the estimated relative risk
function is produced. If tolerate = TRUE, asymptotic tolerance con-

tours are automatically added to the plot at a significance level of

5%.

Ignored if £ and g are already "bivden" objects. Boolean. Whether
or not to print function progress (including starting and ending date-

times) during execution. Defaults to TRUE.

This function estimates a relative risk function via the density ratio method using fixed

or adaptive bandwidth bivariate kernel density estimates. Both densities must be esti-

mated using the same evaluation grid (and the same study window) in bivariate.den-

sity. In geographical epidemiology, the argument f represents the spatial distribution

of the disease cases, and g the at-risk (control) population.
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The option to supply the raw case and control data is available. If this is done, the
function runs bivariate.density internally, abstracting certain decisions about the
density estimation away from the user. If the user sets adaptive = TRUE (and h remains
at NULL), the smoothing parameters are calculated as per the approach taken in Davies
and Hazelton (2010): a common global bandwidth using the pooled data from 08,
and differing pilot bandwidths using CV.sm on the case and control data separately.
The scaling parameter gamma is common for the case and control density estimates,
set as the gamma component of the pooled estimate. If a fixed relative risk is desired
(adaptive = FALSE) and no specific bandwidths are given via the argument h, the
case and control densities share a common bandwidth computed from the pooled data
using 0S. In supplying raw data to risk, the user must also specify an evaluation grid
resolution (defaulting to 50 by 50) and the study region WIN (unless £ and g are objects
of class ppp, in which case the resident window component overrides WIN). All other

arguments are set to their defaults as in bivariate.density.

If more flexibility is required for estimation of the case and control densities, the user
must supply ‘pre-calculated’ objects of class "bivden" (from bivariate.density) as
the £ and g arguments. This drastically reduces the running time of a call to risk
(as the density estimation step is already complete). However, the option of internally
computing the asymptotic p-value surfaces (via the argument tolerate) is unavailable
in this case; the user must run the tolerance function separately if tolerance contours

are desired.

The relative risk function is defined here as the ratio of the ‘case’ density to the ‘control’
(Bithell, 1990, 1991). Using kernel density estimation to model these densities (Diggle,
1985), we obtain a workable estimate thereof. This function defines the risk function r

in the following fashion:
r = (f + delta*max(g))/(g + delta*max(g))

Note the (optional) additive constants defined by delta times the maximum of each
of the densities in the numerator and denominator respectively (see Bowman and Az-
zalini, 1997).

The log-risk function rho, given by rho = log[r], is argued to be preferable in practice
as it imparts a sense of symmetry in the way the case and control densities are treated
(Kelsall and Diggle, 1995a,b). The option of log-transforming the returned risk function
is therefore selected by default.

Value

An object of class "rrs". This is a marked list with the following components:

rsM a numeric res*res matrix (where res is the grid resolution as specified
in the calls to bivariate.density for calculation of f and g) giving

the values of the risk surface over the evaluation grid. Values cor-
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responding to grid coordinates outside the study region are assigned

NA

f the object of class "bivden" used as the numerator or ‘case’ density
estimate

g the object of class "bivden" used as the denominator or ‘control” den-

sity estimate
log whether or not the returned risk function is on the log-scale

pooled the object of class "bivden" (based on the pooled data) calculated

internally if £ and g were raw data arguments, NA otherwise

P a numeric 50 by 50 matrix of the asymptotic p-value surface if tolera-

te = TRUE and f and g were raw data arguments, NA otherwise

Warning

If raw data is supplied to risk, as opposed to previously computed objects of class
"bivden", the running time of this function will be greater. This is particularly the case
if the user has also selected tolerate = TRUE. In the same fashion as bivariate.dens-
ity and tolerance, setting comment = TRUE can keep the user appraised of the function

progress during run-time.

Author(s)

T.M. Davies, M.L. Hazelton and J.C. Marshall

Examples

data(PBC)
PBC.casedata <- PBC$data[PBC$datal,3]==1,1:2]
PBC.controldata <- PBC$data[PBC$datal,3]==0,1:2]

pbc.h <- 0S(PBC$datal,1:2],

nstar = sqrt(nrow(PBC.casedata) * nrow(PBC.controldata)))

pbc.pool <- bivariate.density(data
adaptive = FALSE, WIN = PBC$owin)

pbc.case <- bivariate.density(data = PBC.casedata, pilotH = pbc.h,
adaptive = FALSE, WIN = PBC$owin)

pbc.con <- bivariate.density(data = PBC.controldata, pilotH = pbc.h,
adaptive = FALSE, WIN = PBC$owin)

PBC$datal,1:2], pilotH = pbc.h,

pbc.rrs <- risk(f = pbc.case, g = pbc.con, plotit = FALSE)

summary (pbc.rrs)
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A.13 Print summary of estimated density: summary.bi-

vden

summary .bivden Summarising a bivariate kernel density estimate object

Description

print and summary methods for class "bivden"

Usage

## S3 method for class 'bivden'
print(x, ...)
## S3 method for class 'bivden'

summary (object, ...)
Arguments
X, object An object of class "bivden".
Ignored.
Author(s)
T.M. Davies

A.14 Print summary of estimated risk function: summar-

y.rrs

summary.rrs Summarising an estimated relative risk function object

Description

print and summary methods for class "rrs"

Usage

## S3 method for class 'rrs'
print(x, ...)
## S3 method for class 'rrs'

summary (object, ...)
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Arguments

X, object

Author(s)

T.M. Davies

An object of class "rrs" resulting from a call to risk.

Ignored.

A.15 Asymptotic and numerical tolerance contours (p-

value surfaces): tolerance

tolerance

Asymptotic p-value surfaces

Description

Calculates pointwise p-values based on asymptotic theory or Monte-Carlo (MC) permu-

tations describing the extremity of risk over a given fixed or adaptive kernel-smoothed

relative risk function.

Usage

tolerance(rs, pooled, test = "upper",
method = "ASY", reduce = 1, ITER = 1000,
exactL2 = TRUE, comment = TRUE)

Arguments

rs

pooled

test

An object of class "rrs" resulting from a call to risk, giving the fixed

or adaptive kernel-smoothed risk function.

An object of class "bivden" resulting from a call to bivariate.dens-
ity (or the component pooled from rs if it was created using raw
data arguments) representing a density estimate based on the ‘pooled’
dataset of both ‘case’ and ‘control’ points. If separate from rs, this
pooled density estimate must follow the same smoothing approach,
evaluation grid and study region window as the densities used to create

rs.

A character string indicating the kind of test desired to yield the p-
values. Must be one of "upper" (default - performs upper tailed tests
examining heightened risk ‘hotspots’), "lower" (lower tailed tests ex-
amining ‘troughs’) or "double" (double-sided tests). See ‘Details’ for

further information.

232



method A character string, either "ASY" (default) or "MC" indicating which
method to use for calculating the p-value surface (asymptotic and
Monte-Carlo approaches respectively). The MC approach is far more
computationally expensive than the asymptotic method (see ‘Warn-
ings’).

reduce A numeric value greater than zero and less than or equal to one giving
the user the option to reduce the resolution of the evaluation grid for
the pointwise p-values by specifying a proportion of the size of the
evaluation grid for the original density estimates. For example, if the
case and control "bivden" objects were calculated using res = 100
and tolerance was called with reduce = 0.5, the p-value surface will
be evaluated over a 50 by 50 grid. A non-integer value resulting from

use of reduce will be ceilinged.

ITER An integer value specifying the number of iterations to be used if
method = "MC" (defaulting to 1000). Non-integer numeric values are
rounded. Ignored when method = "ASY".

exactL2 Ignored if rs (and pooled) are fixed-bandwidth density estimates, or
if method = "MC". A boolean value indicating whether or not to sep-
arately calculate the ‘L2’ integral components for adaptive tolerance
contours. A value of FALSE will approximate these components based
on the ‘K2’ integrals for faster execution (depending on the size of
the evaluation grid, this improvement may be small) at the expense
of a small degree of accuracy. Defaults to TRUE. See the reference for
adaptive p-value surfaces in ‘Details’ for definitions of these integral

components.

comment Boolean. Whether or not to print function progress (including starting

and ending times) during execution. Defaults to TRUE.

Details

This function implements developments in Hazelton and Davies (2009) (fixed) and
Davies and Hazelton (2010) (adaptive) to compute pointwise p-value surfaces based
on asymptotic theory of kernel-smoothed relative risk surfaces. Alternatively, the user
may elect to calculate the p-value surfaces using Monte-Carlo methods (see Kelsall and
Diggle, 1995a). Superimposing upon a plot of the risk surface contours of these p-values
at given significance levels (i.e. ‘tolerance contours’) can be an informative way of ex-
ploring the statistical significance of the extremity of risk across the defined study region.
The asymptotic approach to the p-value calculation is advantageous over a Monte-Carlo
method, which can lead to excessive computation time for adaptive risk surfaces and

large datasets. See the aforementioned references for further comments.

Choosing different options for the argument test simply manipulates the ‘direction’

of the p-values. That is, plotting tolerance contours at a significance level of 0.05 for
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a p-value surface calculated with test = "double" is equivalent to plotting tolerance

contours at significance levels of 0.025 and 0.975 for test = "upper".

Value

A list with four components:

X the equally spaced sequence of length ceiling(reducex*res) giving
the evaluation locations on the x axis (where res is the grid resolution
as specified in the calls to bivariate.density for calculation of the

densities for rs and pooled)
Y as above, for the y axis

Z a numeric ceiling(reducex*res)*ceiling(reduce*res) matrix giv-
ing the values of the risk surface over the evaluation grid. Values cor-
responding to grid coordinates outside the study region are assigned
NA. If method = "MC", this will be a single value of NA

P a ceiling(reduce*res)*ceiling(reduce*res) matrix giving the p-

values corresponding to the evaluation grid in light of the elected test

Warning

Though far less expensive computationally than calculation of Monte-Carlo p-value
surfaces, the asymptotic p-value surfaces (particularly for adaptive relative risk surfaces)
can still take some time to complete. The argument of reduce provides an option
to reduce this computation time by decreasing the resolution of the evaluation grid.
However, the accuracy and appearance of the resulting tolerance contours can be severely
degraded if reduce is assigned too small a value. Care must therfore be taken and
consideration given to the resolution of the original evaluation grid when altering reduce
from its default value. For most practical purposes, we have found a value of reduce

resulting in evaluation of a p-value surface of size 50 by 50 is adequate.

The MC approach is provided as an option here for the sake of completeness only, and
is coded exclusively in R. The computational cost of this approach for the adaptive risk
function is enough to recommend against its use in this case, though it is faster for the
fixed-bandwidth case if just comparing MC execution times between the two smoothing
regimens. Comments on the issue of MC vs ASY are given in Section 3 of Hazelton and
Davies (2009).

Author(s)

T.M. Davies and M.L. Hazelton

Examples

data(chorley)
ch.h <- CV.sm(chorley)
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ch.pool <- bivariate.density(data = chorley, pilotH = ch.h,

adaptive = FALSE)

ch.case <- bivariate.density(data = chorley, ID = "larynx", pilotH = ch.h,
adaptive = FALSE)

ch.con <- bivariate.density(data = chorley, ID = "lung", pilotH = ch.h,
adaptive = FALSE)

##Compute log-risk surface and asymptotic p-value surfaces
ch.rrs <- risk(f = ch.case, g = ch.con)

ch.tol <- tolerance(rs = ch.rrs, pooled = ch.pool)
contour(ch.tol$X, ch.tol$Y, ch.tol$P, levels = 0.05, add = TRUE)

## Not run:

data(PBC)

PBC.casedata <- PBC$data[PBC$datal,3]==1,1:2]
PBC.controldata <- PBC$data[PBC$datal,3]==0,1:2]

pbc.rrs.rawdata <- risk(f = PBC.casedata, g = PBC.controldata,
WIN = PBC$owin, adaptive = TRUE, tolerate = TRUE)

plot(pbc.rrs.rawdata, display = "3d", aspect = 1:2, col = heat.colors(12)[12:1],

tolerance.matrix = pbc.rrs.rawdata$P, tol.opt = list(col = "white", raise = 0.03))

## End(Not run)

A.16 Internal functions: sparr-internal

sparr-internal Internal sparr functions

Description

Internal sparr functions, only meant to be accessed by the user directly in a life-

threatening situation. Email me.

Usage

AREA_BASIC(ndim = 2, lower, upper, minpts = 100, functn, ...)
arealsq(xh,WIN,iter=1000)

assignColors(cols,MAT)
compute.coord(coord,data,h,n,WIN,type,q.opt=1,forAdapt=F,counts)
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dupli.data.frame(data,w,comment)

getNearest (obs,gridx,gridy,WIN,anypoint = FALSE)

getQhz_Adaptive (ARG,kType,WIN,both=T,onlyk2=F)
getQhz_Fixed(Xseq,Yseq,kType,WIN,h,both=T,onlyk2=F)
identical_windows (wl,w2)

idQuan(h,q)
KBivN_OPT(x,WIN=NULL,mu=c(0,0),Sigma=matrix(c(1,0,0,1),2,2),sqg=F,

+ forSimul=F,y=NULL)

KERNEL (X, type,dim=2,Qcomp="spher")
KSPEC(location,data,h,type,counts)
LSCV.density.single(h,data.ppp,res,edge,inside, ERRV=1000000)
LSCV.risk.single(h,cases,controls,method,res,edge,inside,ERRV=1000000)
Lsq(x,uh,WIN)

nearestBC_Vals(framevals,WIN)

rsmc (object,pooled, ITER, corrgrid, comment)
run_ppp(data,xy,h,WIN, counts)

t013d(X,Y,TOL,RHO,levels=c(0.05) ,raise=0.1,col="white",1lwd=2,1ty=1)
tol3d.component (locations,gridx,gridy,gridz,raise)

translateCoord(gridCoord,mvmat,WIN)

Author(s)

T.M. Davies
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Appendix B

Package documentation

(excerpt): lgcp

An excerpt of the current version of the package documentation including the help files of the
most interesting functions and those focused on in Section 4.2. The reader is reminded that
at this point in time, the documentation has been primarily authored by B.M. Taylor and
are included here for reference purposes. Some differences in style and notation compared
to this author’s relevant discussions in Chapter 3 should be expected. The details of cited

works are located together with those in the main body of this thesis in ‘References’.

B.1 Space-time data set object (generic): stppp

stppp stppp function...

Description

stppp function

Usage

stppp(P, ...)

Arguments

P an object

additional arguments
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Detalils

Generic function used in the construction of space-time planar point patterns. An
stppp object is like a ppp object, but with extra ’slots’ for (1) a vector giving the time
at whcih the event occurred and (2) a time-window over which observations occurred.
Observations are assumed to occur in the plane and the observation window is assumed

not to change over time.

Value

method stppp

See Also

stppp, stppp.ppp, stppp.list

B.2 Global spatial variation object (generic): spatialA-
tRisk

spatialAtRisk spatial AtRisk function...

Description

spatial AtRisk function

Usage
spatialAtRisk(X, ...)
Arguments
X an object
additional arguments
Details

Generic function used in the construction of spatialAtRisk objects. The class of spa-
tialAtRisk objects provide a framework for describing the spatial inhomogeneity of the
at-risk population, lambda(s). This is in contrast to the class of temporal AtRisk objects,

which describe the global levels of the population at risk, mu(t).

Unless the user has specified lambda(s) directly by an R function (a mapping the from
the real plane onto the non-negative real numbers, see ?spatial AtRisk.function), then it
is only necessary to describe the population at risk up to a constant of proportionality,

as the routines automatically normalise the lambda provided to integrate to 1.
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For reference purposes, the following is a mathematical description of a log-Gaussian

Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t) be a spatiotemporal Gaussian process, W C R? be an observation window
in space and 1" C R>( be an interval of time of interest. Cases occur at spatio-temporal
positions (x,t) € W x T according to an inhomogeneous spatio-temporal Cox process,
i.e. a Poisson process with a stochastic intensity R(z,t), The number of cases, Xg 1, +,],

arising in any S C W during the interval [t1,t2] C T is then Poisson distributed condi-

tional on R(-),
to
X5,[t, ] ~ Poisson {/S/t R(s,t)dsdt}

Following Brix and Diggle (2001) and Diggle, Rowlingson and Su (2005), the intensity

is decomposed multiplicatively as

R(s,t) = A(s)u(t) exp{Y(s, 1) }-

In the above, the fixed spatial component, A : R? — R>¢, is a known function, propor-

tional to the population at risk at each point in space and scaled so that

[ s =1,

whilst the fixed temporal component, p : R>o — R>o, is also a known function with
pu(t)ot = E[Xw s,

for ¢ in a small interval of time, dt, over which the rate of the process over W can be
considered constant.
Value

method spatial AtRisk

See Also

lgcpPredict, linklgepSim, spatialAtRisk.default, spatial AtRisk.fromXYZ, spatial AtRis-
k.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatial AtRisk.Spa-
tialPolygonsDataFrame, spatial AtRisk.bivden

B.3 Global temporal variation object (generic): tempor-

alAtRisk

temporalAtRisk temporalAtRisk function...
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Description

temporal AtRisk function

Usage

temporalAtRisk(obj, ...)

Arguments
obj an object
additional arguments
Details

Generic function used in the construction of temporal AtRisk objects. A temporal AtRisk
object describes the at risk population globally in an observation time window [t__1,t_ 2].
Therefore, for any t in [t_1,t_ 2], a temporalAtRisk object should be able to return the
global at risk population, mu(t) = E(number of cases in the unit time interval containing
t). This is in contrast to the class of spatialAtRisk objects, which describe the spatial

inhomogeneity in the poopulation at risk, lambda(s).

Note that in the prediction routine, lgcpPredict, and the simulation routine, 1gecpSim,
time discretisation is achieved using as.integer on both observation times and time
limits t_1 and t_2 (which may be stored as non-integer values). The functions that
create temporalAtRisk objects therefore return piecewise cconstant step-functions. that
can be evaluated for any real t in [t_1,t 2], but with the restriction that mu(t_i) =

mu(t_j) whenever as.integer(t_i)==as.integer(t_j).

A temporalAtRisk object may be (1) ’assumed known’, or (2) scaled to a particular
dataset. In the latter case, in the routines available (temporal AtRisk.numeric and tem-
poralAtRisk.function), the stppp dataset of interest should be referenced, in which case
the scaling of mu(t) will be done automatically. Otherwise, for example for simulation
purposes, no scaling of mu(t) occurs, and it is assumed that the mu(t) corresponds to
the expected number of cases during the unit time interval containing t. For reference
purposes, the following is a mathematical description of a log-Gaussian Cox Process, it

is best viewed in the pdf version of the manual.

Let Y(s,t) be a spatiotemporal Gaussian process, W C R? be an observation window
in space and 1" C R>( be an interval of time of interest. Cases occur at spatio-temporal
positions (x,t) € W x T according to an inhomogeneous spatio-temporal Cox process,
i.e. a Poisson process with a stochastic intensity R(z,t), The number of cases, Xg 1, +,],
arising in any S C W during the interval [t1, 3] C T is then Poisson distributed condi-

tional on R(-),
to
X3 [t1,t2] ~ Poisson{/s/t R(s,t)dsdt}
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Following Brix and Diggle (2001) and Diggle, Rowlingson and Su (2005), the intensity

is decomposed multiplicatively as
R(s,t) = A(s)u(t) exp{V(s, 1)}.

In the above, the fixed spatial component, A : R? — Rx, is a known function, propor-

tional to the population at risk at each point in space and scaled so that

[ s =1,

whilst the fixed temporal component, y1 : R>g + R>g, is also a known function with

p(t)ot = E[Xw,st),

for ¢ in a small interval of time, dt, over which the rate of the process over W can be

considered constant.

Value

method temporal AtRisk

See Also

spatial AtRisk, lgecpPredict, lgepSim, temporal AtRisk.numeric, temporal AtRisk.function,
constantInTime, constantInTime.numeric, constantInTime.stppp, print.temporal AtRisk,
plot.temporal AtRisk

B.4 Interactive kernel estimation of global spatial trend:

lambdaEst

lambdaEst lambdaFEst function...

Description

lambdaEst function

Usage

lambdaEst (xyt, weights=c(), edge=TRUE, ...)

241



Arguments

xyt object of class stppp

weights Optional vector of weights to be attached to the points. May include

negative values. See 7density.ppp.
edge Logical flag: if TRUE, apply edge correction. See 7density.ppp.

arguments to be passed to plot

Details

A tool for the visual estimation of lambda(s) via a 2 dimensional smoothing of the case
locations. For parameter estimation, the alternative is to estimate lambda(s) by some
other means, convert it into a spatialAtRisk object and then into a pixel image object
using the build in coercion methods, this im object can then be fed to ginhomAverage,

KinhomAverage or thetaEst for instance.

Value

This is an rpanel function for visual choice of lambda(s), the output is a variable,
varname, with the density *per unit time* the variable varname can be fed to the
function ginhomAverage or KinhomAverage as the argument density (see for example

?ginhomAverage), or into the function thetaEst as the argument spatial.intensity.

See Also

spatial AtRisk, ginhomAverage, KinhomAverage, spatialparsEst, thetaEst, muEst

B.5 Nonparametric estimation of global temporal trend:

muEst

muEst mukEst function...

Description

mukEst function

Usage

muEst (xyt, ...)

Arguments

Xyt an stppp object

additional arguments to be passed to lowess
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Details

Computes a non-parametric estimate of mu(t). For the purposes of performing predic-
tion, the alternatives are: (1) use a parameteric model as in Diggle, Rowlingson and Su
(2005), or (2) a constantInTime model.

Value

object of class temporal AtRisk giving the smoothed mut using the lowess function

See Also

temporal AtRisk, constantInTime, ginhomAverage, KinhomAverage, spatialparsEst, the-
taEst, lambdaEst

B.6 Time-averaged inhomogeneous PCF': ginhomAverage

ginhomAverage ginhomAverage function...

Description

ginhomAverage function

Usage

ginhomAverage (xyt, spatial.intensity, temporal.intensity,
time.window=xyt$tlim, rvals, correction="iso",

suppresswarnings=FALSE)

Arguments

xyt an object of class stppp
spatial.intensity

A spatialAtRisk object
temporal.intensity

A temporalAtRisk object
time.window time interval contained in the interval xyt$tlim over which to compute
average. Useful if there is a lot of data over a lot of time points.
rvals Vector of values for the argument r at which g(r) should be evaluated
(see ?pcfinhom). There is a sensible default.

correction choice of edge correction to use, see ?pcfinhom, default is Ripley

isotropic correction
suppresswarnings

Whether or not to suppress warnings generated by pcfinhom
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Detalils

A function to estimate the inhomogeneous pair correlation function for a spatiotemporal

point process. See equation (8) of Diggle, Rowlingson and Su (2005).

Value

time average of inhomogenous pcf, equation (13) of Brix and Diggle (2001).

See Also

KinhomAverage, spatialparsEst, thetaEst, lambdaEst, muEst

B.7 Time-averaged inhomogeneous K-function: Kinho-

mAverage

KinhomAverage KinhomAverage function...

Description

KinhomAverage function

Usage

KinhomAverage (xyt, spatial.intensity, temporal.intensity,
time.window=xyt$tlim, rvals, correction="iso",

suppresswarnings=FALSE)

Arguments

Xyt an object of class stppp
spatial.intensity

A spatialAtRisk object
temporal.intensity

A temporalAtRisk object

time.window time interval contained in the interval xyt$tlim over which to compute

average. Useful if there is a lot of data over a lot of time points.

rvals Vector of values for the argument r at which the inhmogeneous K func-

tion should be evaluated (see 7Kinhom). There is a sensible default.

correction choice of edge correction to use, see ?Kinhom, default is Ripley’s

isotropic correction
suppresswarnings

Whether or not to suppress warnings generated by Kinhom
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Details

A function to estimate the inhomogeneous K function for a spatiotemporal point pro-
cess. The method of computation is similar to ginhomAverage, see eq (8) of Diggle,

Rowlingson and Su (2005) to see how this is computed.

Value

time average of inhomogenous K function.

See Also

ginhomAverage, spatialparsEst, thetaEst, lambdaEst, muEst

B.8 Interactive spatial minimum contrast estimation:

spatialparsEst
spatialparsEst spatialparsEst function...
Description

spatialparsEst function

Usage

spatialparsEst(gk, sigma.range, phi.range)

Arguments
gk an R object; output from the function KinhomAverage or ginhomAv-
erage
sigma.range range of sigma values to consider
phi.range range of phi values to consider
Details

Having estimated either the pair correlation or K functions using respectively ginhomAv-
erage or KinhomAverage, the spatial parameters sigma and phi can be estimated. This

function provides a visual tool for this estimation procedure.

Value

rpanel function to help choose sigma and phi by eye
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See Also

ginhomAverage, KinhomAverage, thetaEst, lambdaEst, muEst

B.9 Interactive temporal contrast estimation: thetaEst

thetaEst thetaEst function...

Description

thetaEst function

Usage

thetaEst (xyt, spatial.intensity, temporal.intensity, sigma, phi,
theta.range=c(0, 10), N=100, spatial.covmodel="exponential",

covpars=c())

Arguments

Xyt object of class stppp
spatial.intensity
A spatial at risk object OR a bivariate density estimate of lambda, an
object of class im (produced from density.ppp for example),
temporal.intensity
either an object of class temporal AtRisk, or one that can be coerced
into that form. If NULL (default), this is estimated from the data,

seee ?mukst

sigma estimate of parameter sigma

phi estimate of parameter phi

theta.range range of theta values to consider

N number of integration points in computation of C(v,beta) (see Brix

and Diggle (2003), corrigendum to Brix and Diggle (2001))
spatial.covmodel

spatial covariance model

covpars additional covariance parameters

Details

A tool to visually estimate the temporal correlation parameter theta; note that sigma

and phi must have first been estimated.
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Value

An r panel tool for visual estimation of temporal parameter theta NOTE if lambdaEst
has been invoked to estimate lambda, then the returned density should be passed to

thetaEst as the argument spatial.intensity

See Also

ginhomAverage, KinhomAverage, spatialparsEst, lambdaEst, muEst

B.10 Conditional simulation of a space-time LGCP via

the MALA: 1gcpPredict

lgcpPredict lgepPredict function...

Description

lgcpPredict function

Usage

lgcpPredict(xyt, T, laglength, model.parameters=lgcppars(),
spatial.covmodel="exponential", covpars=c(), cellwidth, gridsize,
spatial.intensity, temporal.intensity, mcmc.control,

output.control=setoutput(), autorotate=FALSE, gradtrunc)

Arguments
xyt a spatio-temporal point pattern object, see 7stppp
T time point of interest
laglength specifies lag window, so that data from and including time (T-laglength)

to time T is used in the MALA algorithm
model.parameters

values for parameters, see ?lgcppars
spatial.covmodel

correlation type see ?CovarianceFct
covpars vector of additional parameters for certain classes of covariance func-

tion (eg Matern), these must be supplied in the order given in ?Co-

varianceFct

cellwidth width of grid cells on which to do MALA (grid cells are square). Note
EITHER gridsize OR cellwidthe must be specified.
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gridsize size of output grid required. Note EITHER gridsize OR cellwidthe

must be specified.
spatial.intensity

the fixed spatial component: an object of that can be coerced to one

of class spatial AtRisk
temporal.intensity

the fixed temporal component: either a numeric vector, or a function

that can be coerced into an object of class temporal AtRisk

mcme. control ~ MCMC paramters, see 7mcmcpars
output.control

output choice, see ?setoutput

autorotate logical: whether or not to automatically do MCMC on optimised,
rotated grid.

gradtrunc truncation for gradient vector equal to H parameter Mgller et al.
(1998) pp 473. Set to NULL to estimate this automatically (default).
Set to zero for no gradient truncation. further notes on autorotate
argument: If set to TRUE, and the argument spatial is not NULL,
then the argument spatial must be computed in the original frame of
reference (ie NOT in the rotated frame). Autorotate performs bilinear
interpolation (via interp.im) on an inverse transformed grid; if there
is no computational advantage in doing this, a warning message will
be issued. Note that best accuracy is achieved by manually rotating
xyt and then computing spatial on the transformed xyt and finally
feeding these in as arguments to the function lgcpPredict. By default
autorotate is set to FALSE.

Details
The function lgcpPredict performs spatiotemporal prediction for log-Gaussian Cox
Processes

The following is a mathematical description of a log-Gaussian Cox Process, it is best

viewed in the pdf version of the manual.

Let Y(s,t) be a spatiotemporal Gaussian process, W C R? be an observation window
in space and 7' C R>q be an interval of time of interest. Cases occur at spatio-temporal
positions (x,t) € W x T according to an inhomogeneous spatio-temporal Cox process,
i.e. a Poisson process with a stochastic intensity R(x,t), The number of cases, X3,[t1,t2]>

arising in any S C W during the interval [t1,t2] C T is then Poisson distributed condi-

tional on R(-),
to
X5 [t1,ta] ™~ Poisson{/ / R(s,t)dsdt}
sJt

Following Brix and Diggle (2001) and Diggle, Rowlingson and Su (2005), the intensity

is decomposed multiplicatively as

R(s,t) = A(s)(t) exp{V(s, )}.

248



In the above, the fixed spatial component, A : R? — Rx, is a known function, propor-

tional to the population at risk at each point in space and scaled so that

| s =1,

whilst the fixed temporal component, 1 : R>o — R>o, is also a known function with
u(t)ot = E[Xw,s,

for ¢ in a small interval of time, §t, over which the rate of the process over W can be

considered constant.

NOTE: the xyt stppp object can be recorded in continuous time, but for the
purposes of prediciton, discretisation must take place. For the time dimen-
sion, this is achieved invisibly by as.integer (xyt$t) and as.integer (xyt$tlim).
Therefore, before running an analysis please make sure that this is commen-
surate with the physical inerpretation and requirements of your output. The
spatial discretisation is chosen with the argument cellwidth (or gridsize). If
the chosen discretisation in time and space is too coarse for a given set of
parameters (sigma, phi and theta) then the proper correlation structures

implied by the model will not be captured in the output.

Before calling this function, the user must decide on the time point of interest, the
number of intervals of data to use, the parameters, spatial covariance model, spatial
discretisation, fixed spatial (A(s)) and temporal (u(t)) components, meme parameters,

and whether or not any output is required.

Value

the results of fitting the model in an object of class 1gcpPredict

See Also

KinhomAverage, ginhomAverage, lambdaEst, muEst, spatialparsEst, thetaEst, spa-
tial AtRisk, temporal AtRisk, lgcppars, CovarianceFct, memepars, setoutput print.lgepP-
redict, xvals.lgepPredict, yvals.lgecpPredict, plot.lgcpPredict, meanfield.lgecpPredict,
rr.lgepPredict, serr.lgepPredict, intens.lgecpPredict, varfield.lgepPredict, gridfun.lgepP-
redict, gridav.lgcpPredict, hvals.lgcpPredict, window.lgecpPredict, mcmctrace.lgepPredi-
ct, plotExceed.lgepPredict, quantile.lgepPredict, identify.lgcpPredict, expectation.lgepP-
redict, extract.lgepPredict, showGrid.lgcpPredict, computeGradtrunc

B.11 Plotting posterior means from a MALA run: plo-
t.lgcpPredict
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plot.lgcpPredict plot...

Description

plot.lgepPredict function

Usage

## S3 method for class 'lgcpPredict'
plot(x, type="relrisk", sel=1:x$EY.mean$len,

plotdata=TRUE, ask=TRUE, clipWindow=TRUE, ...)
Arguments
X an object of class lgcpPredict
type Character string: what type of plot to produce. Choices are 'rel-

risk" (=exp(Y)); "serr" (standard error of relative risk); or "intensity"
(=lambda*mu*exp(Y)).

sel vector of integers between 1 and grid$len: which grids to plot. Default
NULL, in which case all grids are plotted.

plotdata whether or not to overlay the data
ask logical; if TRUE the user is asked before each plot
clipWindow whether to plot grid cells outside the observation window

additional arguments passed to image.plot

Details

Simple plotting function for objects of class 1gcpPredict.

Value

plots the Monte Carlo mean of Y obtained via simulation

See Also

lgepPredict
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