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Abstract 

Within traditional Signal Detection Theory (SDT) experiments decision noise is very rarely 

considered, with researchers clinging to the assumption that the decision criterion has no 

associated variability. This assumption is incorrect. Furthermore, two factors contribute to 

criterion fluctuation: task difficulty and the type of knowledge of results (KR) delivered to the 

observer. The accepted standard in SDT experiments is to provide veridical trial-by-trial 

feedback (TTKRe). This type of KR may adversely affect observer performance when the 

decision task is difficult, as the KR may appear highly inconsistent to the observer. The present 

study hypothesised that providing KR relative to the optimal criterion location (TTKRi) would 

minimise criterion fluctuation. The present Criterion Variance Model (CVM) assumes that the 

decision criterion in SDT is subject to fluctuation. Two hypotheses were derived to test the 

model: a) contrary to the assumption of SDT, the decision criterion in a signal detection task is a 

variable rather than a fixed value on the decision axis, and is present within binary 

discrimination tasks; and b) There will be an interaction effect between the type of TTKR 

provided and the difficulty level of the task. Specifically, TTKRi will enable more accurate 

decision making than TTKRe, but only for a difficult decision task. Forty-four observers took 

part in a simple binary decision task, discriminating whether a presented tone was high or low in 

frequency (Hz). All tones were easily discriminable from each other; thus, the experiment was 

free from sensory noise. Task difficulty was manipulated by varying the degree of overlap 

between the high and low distributions, from which the high and low tones were sampled.  As 

predicted by the CVM, performance in a difficult decision task was affected by the type of KR 

provided. Observers who received TTKRe performed less well than observers who received 

TTKRi in the more difficult version of the task. Despite mean criterion location measures across 

groups approaching zero – the optimal location – criterion fluctuation was evident when 

observer error distributions were analysed. Furthermore, the degree of criterion fluctuation was 

large, and was associated with the level of task difficulty. A major caveat was the lack of a no 

KR condition. Consequently, the degree to which observers utilised the KR could not be fully 

assessed. Additionally, the number of tones may have been too small, possibly encouraging 

observers not to use the KR provided in a consistent manner. Further research should 

incorporate a no KR condition and increase the number of tonal stimuli while ensuring the tones 

are still separated by 3 or 4 JNDs. Despite these design issues, the results highlight the potential 

detrimental effects of veridical KR on performance, particularly under conditions of high 

uncertainty.  

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 
 

Acknowledgements .................................................................................................................... iii 

Abstract ......................................................................................................................................... v 

Table of Contents ...................................................................................................................... vii 

Table of Appendices .................................................................................................................... ix 

List of Figures ............................................................................................................................... x 

List of Tables ............................................................................................................................ xiii 

 

Introduction and Overview ......................................................................................................... 1 

Chapter I: An Overview of Signal Detection Theory ............................................................... 4 

SDT Fundamentals ......................................................................................................................... 4 

The Sensory Stage .......................................................................................................................... 6 

 Distinctions between Sensitivity Measures and ROC Functions ................................................ 11 

The Decision Stage ...................................................................................................................... 12 

 

Chapter II: Criticisms of SDT and the Issue of Criterion Variance ..................................... 17 

The Evidence for Criterion Variance ........................................................................................... 17 

Models of Criterion Variance ...................................................................................................... 20 

 

Chapter III: The Role of Knowledge of Results in Criterion Variance ................................ 28 

Evidence for Knowledge of Results and the Effects on Criteria ................................................. 28 

The Interaction of KR and Task Difficulty, and the Introduction of Optimal KR ....................... 31 

 

Chapter IV: The Present Research .......................................................................................... 34 

Method ......................................................................................................................................... 40 

Pilot Investigation ................................................................................................................ 40 

Main Study ........................................................................................................................... 41 

Observers ........................................................................................................................ 41 

Apparatus and Stimuli..................................................................................................... 41 



viii 
 

Design ............................................................................................................................. 42 

Procedure ........................................................................................................................ 43 

 

Chapter V: Results .................................................................................................................... 45 

Observer Performance ................................................................................................................. 45 

Hypothesis 1 (Criterion Fluctuation) ........................................................................................... 48 

Hypothesis 2 (Interaction) ........................................................................................................... 55 

Post Hoc Tests ............................................................................................................................. 56 

Auto-Correlation Analysis ........................................................................................................... 57 

 

Chapter VI: Discussion ............................................................................................................. 59 

Supplementary Analysis .............................................................................................................. 63 

Limitations  .................................................................................................................................. 64 

Conclusions and Future Directions.............................................................................................. 65 

 

References .................................................................................................................................. 68 

Appendices ................................................................................................................................. 73 

 



ix 
 

Table of Appendices 

 

Appendix A:  Glossary of Signal Detection Equations ............................................................ 75 

Appendix B:  Tonal Frequencies .............................................................................................. 77 

Appendix C:  Information Sheet .............................................................................................. 79 

Appendix D:  Consent Form ..................................................................................................... 83 

Appendix E:  Instructions......................................................................................................... 85 

Appendix F:  ANOVA Tables and Calculation of Eta Squared............................................... 89 

Appendix G:  Auto-Correlation Tables .................................................................................... 91 

Appendix H:  Response Distributions and Error Plots ............................................................. 95 

 

  



x 
 

List of Figures 

 
Figure 1:  Varying frequencies of x produce two overlapping Gaussian distributions with 

equal variances. The area beneath the point where the two distributions cross 

reflects the area where x could be a noise + signal variables, or simply noise alone

 ............................................................................................................................  6 

 
Figure 2:  (a) the degree of overlap is significant resulting in an attenuated distance between 

the means, and an increase in task difficulty; (b) the degree of overlap is reduced 

resulting in an increased distance between the means, and a decrease in task 

difficulty. ............................................................................................................  7 

 
Figure 3:  A cut point has been assumed along the decision axis at z = 1. For this value of x 

the HR is the area under the signal density marked with diagonal stripes, whereas 

the FAR is the area under the noise density shaded in grey. In this example d′ = 1..

 ............................................................................................................................  8 

 
Figure 4:  The ROC curve has been plotted for all values along the decision axis for both d′ = 

1 and d′ = 3 conditions. As sensitivity decreases the bow becomes shallower and 

recedes toward the chance line – the positive diagonal ....................................  10 

 
Figure 5:  The zROC curve has been plotted using the z(HR) and the z(FAR), producing a 

linear plot. The distance between the chance line and the plotted line for any value 

of z is equal to d′ ...............................................................................................  10 

 
Figure 6:  The criterion splits the decision axis into ‘S’ and ‘N’ responses. Any stimulus 

magnitude equal to or falling to the left of k will produce an ‘N’ response, while 

any stimulus falling to the right of k will produce an ‘S’ response. .................  13 

 

Figure 7:  Varying the criterion location yields different  values. Criterion (a) assumes a lax 

position where   = 0.63; criterion (b) is optimal where   = 1; and criterion (c) 

assumes a strict position where   = 1.58. Bias can also be measured using c. 

Measures of c have also been provided (see Eq. 11). .......................................  14 

 
Figure 8:  Plotting the HR and FAR relative to the criterion location produces a point on the 

ROC curve that illustrates the degree of observer response bias. Criterion (a) 

reflects a lax position whereas criterion (c) reflects a strict position. Criterion (b) is 



xi 
 

located at the optimal point. This ROC curve presented here is the result of 

normally distributed signal and noise densities with equal variances...............  15 

 

Figure 9:  Examples of binary (a) and rating (b) style tasks with regard to criterion and 

associated variability around the mean criterion position. Rating style tasks have 

multiple criteria, thus more variance is evident. ...............................................  18 

 
Figure 10:  The interactive prediction for the current research. In a hard decision task TTKRi is 

expected to improve observer accuracy compared to that of TTKRe. However, in an 

easy decision task the type of KR is expected to have little, or no, effect. .......  36 

 
Figure 11:  Probability distributions for the present research, showing degrees of overlap for 

both levels of difficulty. N = noise distribution; S1 = signal distribution d′= 1; S3 = 

signal distribution d′= 3.. ..................................................................................  38 

 
Figure 12:  Theoretical ROC functions for both levels of difficulty; a) d′th = 1; b) d′th = 3... 39 

 
Figure 13:  Trial sequence and corresponding times.. .........................................................  42 

 
Figure 14:  a) Theoretical ROC for d′th = 1 condition depicting events and ideal mean d′ob 

values. Although the groups had a mean c close to optimal, there is a noticeable 

difference between the events and ideal KR group; b) Theoretical ROC for d′th = 3 

condition depicting events and ideal mean d′ob values. In the easy version of the 

task, the criterion adopted was near optimal. As predicted by the CVM there is little 

difference in average performance for events and ideal KR... ..........................  46 

 
Figure 15:  a)  Accuracy measure, d′ob, across KR groups for both d′th = 1(easy) and d′th = 3 

(hard) conditions. Performance was better in the hard ideal KR condition, 

compared to that of the events KR condition; b) Accuracy measures, A′, across KR 

groups for both d′th = 1 (easy) and d′th = 3 (hard) conditions. Performance again 

was better in the hard ideal KR condition, compared to that of the events KR 

condition ...........................................................................................................  47 

 
Figure 16:  Example of an ideal error distribution, with the optimum criterion located between 

tones 7 and 8. If the criterion is fixed then high errors should only fall to the left of 



xii 
 

the criterion, whereas low errors should only fall to the right. Errors should also 

reduce in frequency for tones further away from the optimum criterion .........  48 

 
Figure 17:  a) Distribution of errors for Observer 2;  b) Distribution of errors for Observer 38. 

Both distributions reflect errors made using TTKRe under hard conditions. The 

optimum criterion is located between tones 8 and 9...... ..................................  50 

 
Figure 18:  a) Distribution of errors for Observer 27; b) Distribution of errors for Observer 24. 

Both distributions reflect errors made using TTKRi under hard conditions. The 

optimum criterion is located between tones 8 and 9...... ..................................  51 

 
Figure 19:  a) Distribution of errors for Observer 29; b) Distribution of errors for Observer 44. 

Both distributions reflect errors made using TTKRe under easy conditions. The 

optimum criterion is located between tones 10 and 11.....................................  52 

 
Figure 20:  a) Distribution of errors for Observer 23; b) Distribution of errors for Observer 42. 

Both distributions reflect errors made using TTKRi under easy conditions. The 

optimum criterion is located between tones 10 and 11.....................................  53 

 
Figure 21:  a) Distribution of errors for Observer 38. This error distribution was generated 

using TTKRe under hard conditions; b) Distribution of errors for Observer 27. This 

error distribution was generated using TTKRi under hard conditions. The optimum 

criterion is located between tones 8 and 9....... .................................................  55



xiii 
 

List of Tables 

 

Table 1:  Mean values for dependent measures across independent variables ................. 45 

 
Table 2:  ACF values for all observers across all conditions ............................................ 58 

 



xiv 
 

 



1 

 

Introduction and Overview 

Signal Detection Theory (SDT) has been successfully applied to various disciplines within 

the field of psychology, most prominently within psychophysics. However, despite the many 

applied fields that have availed themselves of the techniques SDT has to offer, one principle 

remains the same, that it is a psychophysical approach to measuring accuracy in the presence 

of uncertainty (MacMillan & Creelman, 2005).  

Though psychology has enjoyed much success with the application, it is curious that it took 

some time for psychology to become aware of the theory. During the early 20
th

 century 

detection theory was mostly a product of communications and engineering, with it playing a 

pivotal role in the development of RADAR (Radio Detection and Ranging). Through the 

emission of electromagnetic waves, target objects (signals) could be detected; however, one 

inherent problem with the system was that external noise and unwanted signals corrupted the 

information as it was sent back to the receiver. This interference affects the signal to noise 

ratio. The higher the ratio, the more reliable the system is in detecting the target signal. The 

fundamental tenet is that signals must be detected against a background of noise, and in 

some instances the signal is barely detectable (Petterson, Birdsall, & Fox, 1954; Pierce, 

1980). 

Within psychology the basic tenets remain the same; that is, target stimuli must be detected 

against a background of noise. However, many of the fundamental aspects within SDT had 

been laid long before its formalisation. Detection and threshold (e.g., Thurston, 1927a) 

theories were commonplace within psychophysics, concerned primarily with the ability of an 

observer to detect signals against noise, and formed the foundation upon which SDT was 

built. Consequently, it is not surprising that SDT share some similarities with earlier 

detection theories, as many of the fundamental assumptions were retained within the SDT 

framework (Green & Swets, 1966; McNicol, 1972). Though SDT was first applied to vision 

experiments during this period (Tanner & Swets, 1954), its formalisation as a psychological 

theory was not in place until 1966 with Green and Swets‟ publication Signal Detection 

Theory and Psychophysics.  

Since Green and Swets‟ (1966) seminal publication research has proliferated within 

psychology. Many decisions must be made under conditions where complete certainty does 

not exist. Rules govern our decision processes in the hope of making consistently accurate 

judgements, but they can also lead to erroneous decisions. Many applied fields typify this 

paradox, for example, radiography, recognition memory, or psychopathology diagnostics. 

However, what SDT seeks to assess is the ability of an observer to make accurate decisions 

about events where the evidence available to do so is incomplete. Prior to the development 
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of SDT, the ability of an observer to discriminate between signal and noise events was 

assessed without too much concern for how the observer‟s mere willingness to respond 

„signal‟ or „noise‟ biased the decision. SDT is a theory that provides a way of assessing this 

potential response bias independent of the observer‟s true degree of sensitivity. In simpler 

terms, an observer‟s response bias is essentially independent of sensitivity (the ability of an 

observer to detect a signal; Green & Swets, 1966), and concerns the propensity of an 

observer to favour signal or noise responses irrespective of what the true state of the event is 

(an observer may be biased to responding noise even though the events are signals). How 

observers do this is by using a cut point, called a criterion, to base their decisions upon. This 

criterion delineates the conditions under which an event is considered either a signal or a 

noise, and is the basis upon which an observer‟s decision rules are derived. 

SDT assumes that the criterion the observer uses to decide whether a signal or a noise event 

has occurred is always fixed somewhere along the decision axis - the range of possible 

events that could occur. This assumed stability precluded any perceived role the criterion 

may have had in observer‟s sensitivity; it was assumed that because it was fixed it could not 

have been adversely affecting the observer‟s performance. However, research (e.g., Larkin, 

1971; McNicol, 1975) unequivocally points to the fact that the criterion is not fixed during a 

detection task. Moreover, this „criterion variance‟ impinges upon sensitivity estimates 

(McNicol, 1972); the greater the fluctuation in the criterion placement the greater the 

observer‟s sensitivity is underestimated. The principle is that shifting the criterion is not 

conducive to consistency in decision making because the decision rules are frequently 

changing, and this ultimately affects performance in detection tasks. Furthermore, there is 

reason to believe that the degree of criterion fluctuation is some function of task difficulty. 

Task difficulty is associated with increased levels of uncertainty in the environment, 

essentially making decisions harder to make. If there is more room for error, there is more 

chance that the criterion will shift. Effectively, as task difficulty increases, so might the 

degree of criterion variance.  

The intuitive solution to this problem is to offer feedback, or knowledge of results, to help 

the observer make their decisions. Typically the observer is told when they have made 

correct and incorrect decisions. Informing the observer when errors have been made is 

assumed to minimise criterion fluctuation. Paradoxically, feedback may further reduce 

decisional accuracy, by increasing criterion variability through influencing the observer‟s 

response bias. Consequently, the criterion is relocated each time the observer is told they are 

incorrect. Furthermore, research (e.g., Larkin, 1971) has illustrated that this occurs on a trial 

by trial basis, meaning that the criterion may be undergoing shifts each time an event occurs. 

If this is so then there are implications for SDT studies that rely on feedback to train 
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observers to adopt certain criterion locations. Furthermore, the more difficult the detection 

task, the more variance the criterion may undergo when feedback is delivered. Feedback is a 

source of evidence which relays back to the observer the veridical state of the events. 

Uncertainty affects the feedback for the events in a way analogous to lowering the signal to 

noise ratio, and makes it difficult to detect true signals. By implication the reliability of the 

feedback under uncertain conditions is also compromised. Essentially, the feedback conveys 

this uncertainty, is incomplete, and affects the decision process.  

Despite the effect that feedback can have on detection performance, historically SDT has 

never deemed feedback problematic, and continues to employ feedback in many SDT 

applications. For the reasons stated above, it might be better to treat feedback as an 

independent variable in SDT experiments. Furthermore, the effect it has on the criterion 

maybe to create additional variance, meaning the criterion also must be regarded as a 

variable. When these variables are free, they can create spurious results. Additionally, they 

can interact with other variables, such as task difficulty, to further exacerbate this effect.  

The conditions under which such interactive effects happen need investigating. 

The present study attempted to show first, that criterion fluctuation does exist and produces 

spurious estimates of discriminability. Second, that the degree of criterion variability is 

influenced by both knowledge of results on each trial and by the difficulty level of the task. 

Both task difficulty and type of feedback were treated as independent variables. There was 

no sensory component to the task, as all stimuli were 100% discriminable from each other. 

The task was concerned with how feedback, particularly under conditions of uncertainty, 

affected the observer‟s accuracy to discriminate between two classes of events. Thus, a 

simple binary discrimination task was used. The quality of the feedback was manipulated in 

order to demonstrate that different types of feedback provide different results under difficult 

conditions. The interaction between task difficulty and feedback has far reaching 

implications in many rule governed fields as it highlights the pivotal role feedback plays in 

decision accuracy. In fact, any field that requires decisions to be made in the face of 

uncertainty will have to assess the type of feedback that is used.  A better understanding of 

the role of feedback is imperative in improving decisional accuracy and consistency. 
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Chapter I 

An Overview of Signal Detection Theory 

The primary focus of the present research is that of the decision criterion and the effects 

decision noise has on its stability. This overview of SDT will use as a focus a simple 

discrimination task. The observer must decide whether a signal or noise event has occurred 

when provided with an amount of information that does not allow these decisions to be made 

with certainty. Inherently, some decision errors are bound to occur.  

Perceptual judgement and decision tasks are said to have two fundamental processes 

associated with them: a sensory stage (detecting the events) and a decision response stage 

(Larkin, 1971; McNicol, 1975). Additionally, Green and Swets (1966) posit three 

fundamental elements of any binary decision task: (1) two possible states of the world, (2) 

the evidence received, and (3) the decision proper. In classical research the two possible 

states are signal + noise and noise alone. In more applied research it may be whether a 

tumour is present on an MRI, or whether a previously learned face or a new face was 

presented in a recognition task (MacMillan & Creelman, 2005). In the present study, the 

evidence presented is a clearly audible pure tone that has been sampled from one of two 

overlapping distributions of tones: high or low tones.  

The following chapter provides an overview of the critical aspects of SDT as they apply to 

the present research.  

SDT Fundamentals 

In the traditional sense, a signal defines any target stimulus or event that had to be detected 

against a background of interference, usually called noise. The signal to noise ratio (SNR) 

maps the relative strength of the signal against the background noise. When the SNR is high, 

the signal should be relatively easy to detect; as SNR decreases, discriminating the signal 

from noise becomes more difficult.  

Within psychology the most basic conceptualisation of the detection task involves an 

observer detecting whether a tone was present against a background of white noise. This type 

of design is known as the yes/no task, and simply requires the observer to decide on each 

trial whether a signal was present. Variations on this design include old/new faces 

(recognition memory), or high/low tone pitches (Green & Swets, 1966; MacMillan & 

Creelman, 2005).  SDT also employs two alternative designs. The rating scale task is a 

refinement of the simple yes/no design, allowing observers to rate on a graded scale how 

confident they were that a signal was present. These ratings provide more information about 
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the response than a simple yes/no procedure. The ratings can be used to produce a function 

referred to as a receiver operating characteristic curve, discussed later (Green & Swets, 

1966). Finally, the two-alternative, forced-choice task (2AFC) is similar to the yes/no design, 

except this time the observer is presented with two stimulus intervals, one of which contains 

the signal. After presentation the observer must decide which interval contained the signal 

(McNicol, 1972). In principle, the number of alternatives is unlimited, though it is the 2AFC 

task that is almost always used. 

Experimental paradigms typically manipulate signals through increasing or decreasing their 

strength, thus altering the SNR. Trials may present stimuli that incorporate both signal + 

noise, or just noise alone. Stimuli then can represent two possible states of the world: noise 

(n), and signal + noise (s). After the stimulus presentation, the observer must then make the 

best possible decision (either „S‟ or „N‟), which often reflects a statistical decision based on 

the likelihood that a presented stimulus favours state s or n
1
 (McNicol, 1972).   

Though in the traditional psychophysical sense, noise literally referred to background static, 

or white noise (McNicol, 1972), noise can also refer to any form of distraction or extraneous 

stimuli (e.g., lures in a face recognition task) that serve to mask the strength of the signal. 

This occurs at the sensory stage; typically noise of this kind is referred to as external noise, 

and alters the discriminability of the target. Because it can reduce the effective strength of 

the signal, it may create perceptual errors that cause observers to misinterpret a stimulus. For 

this reason it is also referred to as sensory noise – noise associated with the perception of the 

target. This type of noise affects the observer‟s sensitivity – the ability of the observer to 

discriminate a signal from noise (Green & Swets, 1966; McNicol, 1972). Though traditional 

psychophysical enquiry was particularly concerned with the sensory stage, as mentioned 

earlier often sensory noise was investigated without any concern for how the observer‟s 

decisions affected it. Consequently, the decision stage also needs investigating, and is the 

area under investigation in the present study. 

Within the decision stage, the source of noise is internal noise. This reflects the fact that the 

internal system is inherently noisy. Neuronal firing rate, general brain activity, and cognitive 

processes provide a noisy background against which observers try to make accurate internal 

representations of the stimulus just observed (McNicol, 1972). A decision must be made 

based upon this representation. However, cognitive load and all manner of variables 

associated with an individual‟s makeup can alter this representation. These representations 

affect the decision rule that the observer uses in order to make a judgement, and affect the 

                                                             
1
 SDT convention states that lower case letters (e.g., s, n) refer to both the state of the world, or a 

stimulus event associated with that state, whereas upper case letters refer to response alternatives, e.g., 

S = responded „signal‟; N = responded „noise‟.  



6 

 

accuracy of the decisions when the representation has been distorted. For this reason internal 

noise can also be regarded as decision noise – noise associated with making a decision about 

a particular stimulus. This type of noise can affect the observer‟s response bias – the 

tendency to favour a particular response, or state of the world. 

The Sensory Stage 

Decisions are incumbent upon the perceived stimulus event. Conceptually, stimuli occupy 

some value along a sensory continuum, typically called the decision axis. Alternatively, 

stimuli are sometimes referred to as decision, or evidence, variables (hereafter denoted x; 

Kadlec, 1999; Stanislaw & Todorov, 1999). The implication is that stimuli vary by some 

magnitude, whether it is loudness, familiarity, length, etc., generally increasing in magnitude 

along the decision axis.  

Above the sensory continuum there exists a psychological decision space (Rosner & 

Kochanski, 2009), from which stimuli can adopt any number of values within the continuum 

range. When noise and signal stimuli are sampled from the decision space they are assumed 

to have been sampled from either a signal or noise distribution. Decision variables, like 

many random variables, are represented as distributions upon the decision space rather than 

discrete points on the continuum (McNicol, 1975). A simplifying assumption is that these 

distributions are normally distributed with equal variances - N(0,1). For convenience this 

assumption is accepted throughout the following chapters, and all examples refer to the equal 

variances case, as it directly applies to the research at hand.   

In an ideal world the two distributions would not overlap; thus x would be truly 

representative of each hypothetical state. However, these distributions do not neatly reside at 

opposite ends of the continuum. Consequently, the distributions overlap, ultimately 

rendering some decision variables ambiguous as certain magnitudes of x will invariably 

reflect either a signal or a signal + noise state (Figure 1; Stanislaw & Tororov, 1999).  

 

Signal Noise 

Decision Variable (x) 

Figure 1: Varying frequencies of x 
produce two overlapping Gaussian 
distributions with equal variances. The 
area beneath the point where the two 
distributions cross reflects the area 
where x could be a noise + signal 
variables, or simply noise alone. 
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More simply, when the distributions overlap this alters the SNR, and ultimately uncertainty 

is increased which means that, for example, events that appear to be signals may actually be 

noise. It is assumed in detection theory that the noise distribution remains fixed at one 

location (commonly standardised as  = 0,  = 1), while the mean of the signal distribution 

can be moved along the decision axis, varying the degree of overlap. The more the densities 

overlap, the closer their means become (Figure 2). The degree of separation between the 

means reflects both a source of sensory noise, and an index of sensitivity.  

 

 

 

 

Sensitivity is summarised as the distance between the means of the two distributions and 

estimated by a measure called d′ (pronounced dee-prime; McNicol 1972): 

n

nsd


 
'         (Eq. 1

2, 3
) 

d′ is a standardised unit that measures the distance of the signal mean from the noise mean. 

In Figure 2a the signal mean is one standard deviation above the noise mean, thus d′ = 1, 

whereas in Figure 2b the signal mean is three standard deviations away, so d′ = 3. d′ is a 

parametric statistic; though non-parametric measures do exist, such as d′e and A′ (MacMillan 

& Creelman, 2005; McNicol, 1972). When d′ is high, the SNR is also high. Sensitivity can 

also be estimated by measuring the area under the ROC curve, a topic that will be explored 

shortly. Typically, under equal variances, both parametric and non-parametric sensitivity 

indices produce similar results, yet differ when this assumption is violated. d′ is robust under 

the equal variance assumption; therefore, it is retained for the purpose of the present 

                                                             
2
 d′ is similar to a standardised z score, if the equal variance assumption is met then the denominator 

of the equation can be cancelled out. 
3 A glossary of SDT equations can be found in Appendix A. 

b 

  s    n   n  s 

a 

Figure 2: (a) the degree of overlap is significant resulting in an attenuated distance between the means, and a 
increase in task difficulty; (b) the degree of overlap is reduced resulting in an increased distance between the 
means, and a decrease in task difficulty. 
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investigation. Measures for the unequal variances case are beyond the scope of the present 

research, and as previously mentioned all examples assume equal variances.  

Detection tasks also yield two other important statistics: the hit rate (HR) and the false alarm 

rate (FAR). Hits refer to the number of correctly identified signals, while false alarms refer 

to the number of noise events incorrectly identified as signals. These can be summarised as: 

 )(/)( sNSnHR         (Eq. 2a) 

 )(/)( nNSnFAR         (Eq. 2b)  

where n(S) is the number of signal responses, and N(s) is the number of signal events. 

Alternatively, N(n) is the number of noise events.  

Essentially, the HR and FAR are estimates of probabilities associated with increasing values 

of x. The HR assumes the area under the signal distribution to the right of k (Figure 3, 

diagonal stripes), while the FAR assumes the area under the noise distribution to the right of 

k (Figure 3, shaded grey). In this example k refers to the criterion, the cut point at which the 

decision switches from noise to signal. The criterion will be more fully explained in the next 

section. 

 

 

 

Starting at the right of the decision axis and moving left, the HR and FAR probabilities are 

cumulative for decreasing values of x. They can be expressed as conditional probabilities: 

 )|( sSPHR          (Eq. 3a) 

 )|( nSPFAR         (Eq. 3b) 

Figure 3: A cut point has been assumed along the decision axis at z = 1. For this value of x the HR is the area 
under the signal density marked with diagonal stripes, whereas the FAR is the area under the noise density shaded 
in grey. In this example d′ = 1. 
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where P(S|s) is the probability that a signal response (S) will be made given a  signal event (s) 

has occurred. Alternatively, P(S|n) is the probability that a signal response will be made 

given that a noise event has occurred (n). Furthermore, the HR and FAR can be converted 

into standardised z scores
4
. The z(HR) and the z(FAR) can then be used to calculate d′ 

(MacMillan & Creelman, 2005): 

 )()(' FARzHRzd         (Eq. 4) 

Graphically, sensitivity can be expressed by plotting the HR and FAR values for any given 

point along the decision axis while holding d′ constant (Verde, MacMillan, & Rotello, 2006). 

These points will produce a curved plot called a Receiver-Operating Characteristic (ROC 

curve. Green & Swets, 1966; MacMillan & Creelman, 2005; see Figure 4, on the next page). 

Theoretically, stimuli are continuous and can potentially adopt any value, thus an infinite 

number of HR and FAR points can be plotted for a fixed level of sensitivity. This implies 

continuous underlying sensory distributions
5
, and ROC plots under these assumptions 

produce smooth curves. In actual practice this is not the case, and values of x represent 

discrete values of magnitude. The present study uses ROC curves where the discrete points 

are joined by straight lines, as the underlying distributions are discrete probability 

distributions.  

The ROC curve is an isosensitivity curve. All points on the curve (except points 0,0, and 1,1) 

yield the same d′ value. Shifting of the criterion along the decision axis from right to left can 

be used to generate the ROC curves. Theoretically, d′ is independent of the criterion; the 

latter‟s value is determined by a place on the ROC curve. Thus, an observer‟s criterion 

position may fall below the negative diagonal (a “strict” position), or above (a “lax” 

position). The great strength of SDT is that it provides independent estimates of an 

observer‟s sensitivity and response bias.  

Figure 4 (on the next page) illustrates that as sensitivity increases (d′ = 3), the bow of the 

ROC pushes up into the left hand corner. When sensitivity decreases (d′ = 1), the bow 

become shallower, and recedes toward the chance line – the positive diagonal (i.e., d′ = 0; 

chance performance). The HR and FAR therefore change in response to sensitivity. Ideally 

the HR would be 1 and the FAR would be 0 (MacMillan & Creelman, 2005), yet this is not 

possible due to the overlap in the distributions of signal and noise events.  

 

                                                             
4
 Use the standard equation for standardised z: x-µ/σ. 

5 For the purpose of illustration the convention of assuming continuous densities has been adopted. 

Thus, smooth ROC curves are depicted.  
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Alternatively, plotting the z(HR) and z(FAR) produces a linear transformation referred to as 

the zROC curve (Figure 5). zROC curves are useful in making predictions about how much 

the FAR increases when the HR increases. Under the equal variances assumption the line 

increases as a function of the signal and noise variances. If both variances are equal at 1 then 

slope of the zROC curve will increase at unity; i.e., have a slope of 1. Furthermore, the 

distance between the chance line and any point on the line with unit slope is a measure of d′ 

(McMillan & Creelman, 2005).  

 

Finally, the area under the ROC curve (AUC) is a measure of sensitivity, and is equal to the 

proportion of correct responses obtained by an unbiased observer in a 2AFC task (Verde et 

al., 2006). As the AUC diminishes, so does sensitivity. The AUC can be measured by a 
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Figure 4: The ROC curve has been 
plotted for all values along the decision 
axis for both d′ = 1 and d′ = 3 
conditions. As sensitivity decreases the 
bow becomes shallower and recedes 
toward the chance line – the positive 
diagonal.  

 

d′ = 3 

d′ = 1 

d′ = 1 d′ = 3 

Figure 5: The zROC curve has been 
plotted using the z(HR) and the z(FAR), 
producing a linear plot. The distance 
between the chance line and the plotted 
line for any value of z is equal to d′.  
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variety of statistics, most commonly by Az, Ag, and A′ (MacMillan & Creelman, 2005; Verde 

et al., 2006). Az is a parametric measure of the proportion based upon the standard normal 

curve, where: 

)2/( az dA 
       

 

This equation applies mostly to the equal variances cases. However, a non-parametric 

equivalent is Ag, which is the same as McNicol‟s (1972) P(A) measure, and approximates the 

AUC using geometric shapes created by casting lines down from each ROC curve point to 

the FAR axis, and then summing the trapezoid areas. The equation is expressed:  

   ))((
2

1
11 iiiig HRHRFARFARA

    
 

Alternatively, another non-parametric measure can be used when only a single HR and FAR 

point is known. A′ is a conservative estimate of the area under the curve which estimates the 

smallest possible AUC for that point: 

)1(4

)1)((

2

1

FARHR

FARHRFARHR
A






 

)1(4

)1)((

2

1

HRFAR

HRFARHRFAR
A




  

Distinctions between Sensitivity Measures and ROC Functions 

Essentially, the ROC function is generated by plotting all the HR and FAR values that 

correspond to the decreasing value of x. The points are thus generated from a fixed cut-off 

(criterion) point at specific x values. The curve then corresponds to the degree of overlap 

between the two distributions. This represents the second, and perhaps most contentious, 

assumption of SDT. Because the criterion is assumed not to fluctuate, this produces a curve 

that would be obtained by the ideal observer – the observer whose criterion is fixed at one 

location. Such an ROC curve is referred to an implied or theoretical ROC curve (MacMillan 

& Creelman, 2005). The curve reflects the theoretical index of sensitivity, d′th, and indicates 

the sensitivity that would be obtained by the optimum, unbiased observer. In the present 

study the ROC curve and the corresponding d′ values (shown in Figure 12, p. 39) are optimal 

estimates (thus d′th) for the unbiased observer based on the discrete probability functions 

created for this present study.  

For this reason it is assumed that given any fixed stimulus condition (e.g., d′ = 1, or d′ = 3), 

the real observer also adopts a fixed criterion position for the decision task, though it may 

If HR ≥ FAR 

If HR ≤ FAR 

(Eq. 5)
 

(Eq. 6)
 

(Eq. 7a)
 

(Eq. 7b)
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not always be optimal. If the observer assumes a conservative criterion (biased to responding 

„N‟), fixing the criterion at this point will still produce a point that falls on the theoretical 

ROC curve. This is because response bias is independent of sensitivity, and no matter where 

the observer locates the criterion, as long as it is fixed their performance will mirror that of 

the ideal observer. An empirical ROC curve (MacMillan & Creelman, 2005) can be 

constructed by asking the observer to relocate their criterion to an alternative fixed position. 

Assuming a fixed position has been adopted, the observed point generated from the HR and 

FAR should fall on the theoretical ROC curve. 

A second distinction can be made through the calculation of d′ using the observed HR and 

FAR of the observer, by converting these values into z scores. In such a case sensitivity is 

expressed as d′ob – the observed discrimination. This is calculated by using the HR and FAR 

obtained within the experiment and produces a datum point that can be plotted and compared 

to the theoretical ROC curve. Furthermore, the observed discriminability of the observer can 

be compared with that of the ideal observer by using the statistic,  (eta; Green & Swets, 

1966): 

2)'/'( thob dd        (Eq. 8) 

In summary, the sensory stage is primarily concerned with how well an observer can detect a 

particular stimulus. Sensitivity is described as the distance between the means of the two 

overlapping distributions. The distance is measured using d′. The smaller the d′ value, the 

more the distributions overlap, indicating the task of discriminating s from n is relatively 

difficult. Furthermore, graphical representations of sensitivity have also been introduced 

(e.g., ROC and zROC curves). Their shape informs us of the sensitivity, but also hints at the 

shapes of the underlying sensory distributions. Such plots are generated by passing a 

criterion along the decision axis. Finally, a distinction was drawn regarding the differences in 

sensitivity when it is calculated using theoretical versus observed HR and FARs. The role of 

the criterion in the observer‟s decision procedure is the focus of the following section.  

The Decision Stage 

Decisions are inherently statistical (more specifically, probabilistic) in nature, and are based 

upon perceived events. We almost always refer to the likelihood or probability that an event 

occurred without giving much thought to the mathematical constituents. In the present 

research stimuli can be randomly drawn from one of two states. Each variable has attached 

to it its own probability of occurring. These probabilities are referred to as a priori 

probabilities (Green & Swets, 1966) – the probability of a variable being drawn from one of 

the two states prior to the event occurring. The a priori probabilities are represented as P(s) 
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or P(n); recall that s is a signal event, and n is a noise event; therefore, these probabilities are 

the probabilities that a signal or noise event will occur. 

The observer is presented with some evidence and must use it to decide whether it represents 

evidence for an s or n event occurring. Such evidence can supplement the a priori 

probabilities to better the decision process. This results in conditional a posteriori 

probabilities - the probability of each state variable occurring conditional upon the event that 

has just occurred (Green & Swets, 1966). For the probability that an observer responds „S‟, 

given a particular stimulus event, the a posteriori probabilities become P(S | s) and P(S | n) – 

the estimated HR and FAR. Decisions can be summarised as a conditional probability that 

take into consideration both a priori and a posteriori probabilities. When formulated it is 

expressed by Bayes‟ theorem:   

)(

)|()(
)|(

sP

SsPSP
sSP        (Eq. 9) 

Ultimately, decisions reflect the propensity for an observer to respond in a particular way, 

given the evidence available. Detection theory suggests a method for assessing how biased 

an observer is when faced with a decision task – i.e., do they favour one state over the other?  

Recall that in SDT it is assumed that the observer will select a fixed location along the 

decision axis to place their criterion. The criterion (k
6
) reflects a subjective cut off point that 

the observer adopts in order to decide when a stimulus is sufficiently high in magnitude to 

warrant an „S‟ response (Stanislaw & Todorov, 1999). Typically the decision rule will take 

the form x ≤ k = „N‟ and x > k = „S‟. Consequently, any stimulus equal to or falling to the 

left of k will prompt an „N‟ response, while all stimuli to the right will produce an „S‟ 

response (Figure 6). 

  

 

                                                             
6 The symbol k has been adopted for the value of the criterion so as not to confuse it with the response 

bias measure, c.  

Figure 6: The criterion splits the 

decision axis into „S‟ and „N‟ responses. 

Any stimulus magnitude equal to or 

falling to the left of k will produce an „N‟ 

response, while any stimulus falling to 

the right of k will produce an „S‟ 

response. 

 

S N 

x > k x < k   k 
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Ideally, k would be positioned where the HR is maximised, and the FAR minimised. This 

position is known as the optimal criterion (Green & Swets, 1966; McNicol, 1972), and is the 

point where the two distributions cross over. In Figure 6 the criterion is to the left of where 

the distributions cross, meaning that the criterion is biased to some degree. Any criterion 

provides two pieces of information: (a) the position where the observer decides the stimulus 

reaches sufficient magnitude to respond „S‟; and (b) the probability of the observer 

responding a particular way – the response bias. A common measure of response bias is the 

likelihood ratio (), if continuous variables are assumed. This can be investigated by taking 

the probability densities of the s and n distributions where k cuts the two distributions. The 

densities at the criterion point are denoted f(x) (MacMillan & Creelman, 2005) for each 

distribution. The likelihood ratio is expressed mathematically as: 

)|(

)|(
)(

nxf

sxf
xl          (Eq. 10) 

for s and n distributions that are normally distributed with equal variances.  

If   = 1 then the observer is considered to be unbiased. In this instance k has been placed 

right in the middle of the two distributions where they cross over – the optimal criterion 

location (see Figure 7, criterion b). As the criterion is moved leftward – becoming more lax 

(criterion a) – the value of  decreases and reflects a bias toward „S‟ responses ( = 0.63). 

Conversely, if  is shifted rightward – becoming stricter (criterion c) – its value increases 

and reflects a bias toward „N‟ responses ( = 1.58).  

 

       

 

-3 -2 -1 0 1 2 3 4

z
Figure 7: Varying the criterion location yields different  values. Criterion (a) assumes a lax position where   = 

0.63; criterion (b) is optimal where   = 1; and criterion (c) assumes a strict position where   = 1.58. Bias can also 
be measured using c. Measures of c have also been provided (see Eq. 11). 
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A more intuitive method for investigating response bias is to again begin by converting the 

HR and FAR into z scores. Criterion location (c) measures the distance between where the 

observer has located their criterion in relation to the optimal criterion. Using Figure 7, the 

optimum criterion ( = 1) is set at z = 0.5. Criterion (a) is situated at z = -0.5, 1 S.D. below 

the optimum criterion, thus c = -1. c is mathematically expressed as (MacMillan & Creelman, 

2005): 

)]()([
2

1
FARzHRzc        (Eq. 11) 

where 

 czHRz s  )()(         (Eq. 12a) 

 czFARz n  )()(         (Eq. 12b) 

The optimal criterion position is c = 0 ( 10  c ) for the unbiased observer, and 

deviations from this point represent the degree of response bias. As c shifts left of the 

optimal point it becomes negative and represents a bias towards „S‟ responses (criterion a: c 

= -1), whereas if c is moved to the right it assumes a positive number and reflects a bias 

toward „N‟ responses (criterion c: c = 1). Furthermore, plotting an observer‟s HR and FAR 

can also illustrate the degree of response bias. ROC curves identify the optimal criterion by 

the negative diagonal line (see Figure 8). If the observer‟s point falls on this line then an 

optimal criterion has been adopted (criterion b). If the point falls either side of optimal this 

reflects a response bias. The ROC plot below indicates the relative points for the three 

criteria in Figure 7. Note how a lax criterion (shifting k left) produces a point to the right of 

the negative diagonal (criterion a) on the ROC curve. The reverse occurs for a strict criterion 

(criterion c). 
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Figure 8: Plotting the HR and FAR 
relative to the criterion location 
produces a point on the ROC curve that 
illustrates the degree of observer 
response bias. Criterion (a) reflects a lax 
position whereas criterion (c) reflects a 
strict position. Criterion (b) is located at 
the optimal point.. This ROC curve 

presented here is the result of normally 
distributed signal and noise densities 
with equal variances. 
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This section has reviewed the role of the criterion in response bias. Two statistics are 

commonly used to measure response bias: c and . SDT assumes that once a criterion is 

adopted it remains fixed for the duration of the experimental session. As will be shown in the 

following sections, this assumption has been met with much criticism, and reflects one of the 

major issues under investigation in the present research. The following sections review the 

criticisms levelled at SDT for assuming that the criterion remains fixed (no variability along 

the decision axis).  
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Chapter II 

Criticisms of SDT and the Issue of Criterion Variance 

SDT explicitly takes into account the decision processes involved when an observer is 

involved in a discrimination task. The basic theory makes two simplifying assumptions:  

(a) the perceptual impressions of the stimuli over trials can be represented by Gaussian 

signal and signal + noise distributions having equal variances;  

(b) within any condition a criterion is placed somewhere along the decision axis, 

occupying a fixed and unvarying position that splits the decision space into 

responses based upon stimulus strength. 

Both assumptions have been contested; however, it is with assumption (b) that this present 

study concerns itself.  

The Evidence for Criterion Variance  

The fixed criterion assumption has been contested since the early 1960s (e.g., Speeth & 

Matthews, 1961), yet it was not until Tanner (1961) investigated the implications of non-zero 

criterion variance in signal detection that researchers started to investigate the issue more 

systematically. Until then, criterion variance was dealt with by ignoring it, or assimilating 

the criterion noise with perceptual noise (McNicol, 1975; Mueller & Weidemann, 2008). 

This practice was particularly common within simple yes/no designs (Triesman & Faulkner, 

1985). Effectively, no specific attention was given to decision noise at all. Rating tasks have 

received much more attention with regard to criterion fluctuation and indeed the vast 

majority of the literature focuses on such tasks.  

The reason for this is that in a rating task the observer is effectively adopting multiple 

criteria. Rather than asking observers to make a simple binary judgement, they categorically 

rate their confidence about their decision. For example, an observer may be asked to rate an 

event into the following categories: certain signal; probable signal; probable noise; certain 

noise (McNicol, 1972). Any number of categories could theoretically be used. The criteria 

act as boundaries between the adjacent categories (see Figure 9b, on the next page); the more 

categories there are, the more criteria there are, and the harder it becomes to maintain the 

criteria locations. 

The traditional SDT assumption is that the criterion has zero variance, and is a specific type 

of probability function called a Dirac delta function (Rosner & Kochanski, 2009). SDT 

typically represent this function as a single vertical line in the decision space (e.g., see Figure 

6), reflecting the mean of the criterion density, thus: 
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)()0,;( 2   xxf       (Eq. 13) 

Under the Dirac assumption the z(FAR) and z(HR) are calculated:  

s

sc
HRz




)(        (Eq. 14a
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FARz




)(        (Eq. 14b) 

The calculation simply standardises the distance of the criterion from the distributional mean, 

with the denominator only incorporating the standard deviation of the sensory distribution. 

This means the computation of d′ is free from any criterion variation. However, criterion 

variance, like any other random variable, can be conceptualised as a Gaussian random 

variable (see Figure 9 below; McNicol, 1972; Wickelgren, 1968).  

      

 

 

Like all variables the criterion shifts around, and thus variance is created. The effect of 

criterion variance can be examined by allowing for the variance of the criterion to be 

accounted for in the computation of z(HR) and z(FAR). Such expressions are commonly 

referred to as Thurstone‟s Law of Categorical Judgement (Thurstone, 1927b, McNicol, 

1972), and allow for non-zero criterion variance; where  

22
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        (Eq. 15a) 
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
        (Eq. 15b) 

and σ
2

c is criterion variance. 

                                                             
7  Under the equal variance assumption, the denominator can be cancelled out. 
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Figure 9: Examples of binary (a) and rating (b) style tasks with regard to criterion and associated variability around the 
mean criterion position. Rating style tasks have multiple criteria, thus more variance is evident.  
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This additional variance must then be accommodated in the calculation of d′, where 
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The inclusion of the criterion variance value in the denominators of Equation 16 has the 

effect of spuriously reducing the d′ value, effectively compromising estimates of sensitivity. 

Such effects are most readily recorded within rating tasks where multiple criteria produce 

greater variance. However, the effects are still present within binary tasks, as this present 

study will illustrate. Rosner and Kochanski (2009) evaluated the validity of the existing 

Thurstonian equation and found it to be flawed. The law is based upon the assumption that 

multiple criteria hold a serial order that remains unchanged (for example see Figure 9b). This 

is referred to as the absolute order constraint (Triesman & Faulkner, 1985) and supposes 

that criteria maintain their distance apart and vary when changes are made. Thus, each 

criterion mean acts as a boundary for the adjacent rating category, holding its general 

position but not overlapping with the adjacent distribution.  

Rosner and Kochanski (2009) found that Thurstone‟s law, when applied to rating tasks, 

produced negative theoretical probabilities. The law seemingly violates a fundamental 

principle of independent samples. If the criteria were independent then they are decreasingly 

likely to move together in an ordered fashion; rather they would vary independently, 

interchange locations, and overlap. Triesman and Faulkner (1985) provided some evidence 

for interchanging criteria location, though their results were not conclusive. Rosner and 

Kochanski quantified this effect, leading to a corrected version of the law that better suits 

rating style detection tasks (for a comprehensive review see Rosner & Kochanski, 2009).  

However, the pertinent issue is that the addition of criterion variance can inflate the 

variances of both the signal and noise distributions, effectively pushing the distributions 

closer together, and altering the degree of overlap (McNicol, 1972), thereby distorting results.  

For example, Benjamin, Diaz, and Wee (2009) have illustrated how criterion variance can 

distort zROC functions in recognition memory. Criterion variance, when coupled with 

unequal variances in the underlying sensory distributions, has an interactive effect. If σ
2
s > 1 

then an increase in criterion variance will increase the slope. Conversely if σ
2
s < 1 then an 

increase in criterion variance will decrease the slope.  

Lopez-Bascuas (2008) also documents distortions to linear ROC plots in the presence of 

increased criterion variance using speech and non-speech signal densities. While the non-

speech signals appeared to conform to the Gaussian assumption, speech signals produced 

(Eq. 16) 
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aberrant ROC curvees, indicating non-Gaussian densities. However, it was hypothesised that 

non-zero criterion variances could account for this. Linear ROC curve transformations 

departed from linearity quite significantly, confirming the presence of criterion variation. 

Varying deflections in the lines also suggested that the criterion variance was not equal for 

all criterion locations in the rating task. Analogous to signal and noise densities, several 

independent criteria may not possess equal variances.  

It has generally been accepted that trying to separate criterion noise from sensory noise is a 

difficult task (McNicol, 1972). Rosner and Kochanski‟s (2009) corrected law of categorical 

judgment may allow researchers to measure the amount of noise added by criterion variation, 

yet the assimilation of criterion and sensory noise does not address the source of the internal 

noise. Rather it measures the net effect on the estimates of the observer‟s sensitivity.  Yet 

seeing that the addition of criterion variance can create spurious results, it is necessary to 

identify the mechanism through which this noise is introduced into the system. Specficially, 

what is happening in order to create this variance? Several models and hypotheses have been 

forwarded to account for criterion variance. 

Models of Criterion Variance 

Larkin (1971) provided one of the early models of criterion variance. Given the inherent 

probabilistic nature of decisions, the model conceptualised criterion variance as a “random 

walk” - an error correction model (McNicol, 1975) that suggests observers slowly shift their 

criterion after errors are made in such a way that reduces the probability of the same error 

occurring again. Larkin demonstrated that the probabilities associated with the sensory 

stimuli affected the decision stage, but not the sensory stage (see Chapter 1; recall that 

decisions relate to the probability of a stimulus event occurring). By manipulating the 

probabilities of the sensory stimuli (the frequency with which a stimulus is presented during 

the course of the experiment), criterion shifts were induced, affecting only the selection of 

the response alternative, and leaving the sensory stage unaffected. When uncertainty exists 

about which event has occurred (either signal or noise), observers shift their criterion, trying 

to eliminate uncertainty.   

Essentially, this creates a source of noise over and above sensory noise, that is, decision 

noise. As the criterion is shifted in response to stimuli frequencies, the criterion‟s variance 

generates a distribution around the mean criterion position. The parameters of the criterion‟s 

distribution are then conditional upon the event probabilities, meaning that the event 

probabilities can be used to estimate the criterion distribution and predict the most likely 

response (Larkin, 1971).  
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It has been accepted within the SDT literature that rating tasks produce greater total criterion 

variance as a result of maintaining multiple criteria. The number of categories that an 

observer uses is directly related to the number of criteria that must be maintained. 

Maintaining several criteria creates increased cognitive load, which ultimately affects 

performance by destabilising the criteria. Though Clark and Mehl (1973) hypothesised that 

rating style tasks can produce lower d′ values, they eschewed any suggestion that increased 

cognitive load precipitated criterion variance. However, recent research has shown that 

cognitive factors do impinge upon decision-making (e.g., Benjamin et al., 2009).  

Triesman and Faulkner (1984a, 1984b) provide a model of criterion variance that synthesises 

both statistical and cognitive elements. The theory rests on sequential dependencies – the 

mapping of past experiences and signal frequencies, such that the position of the criterion on 

trial n+1 is dependent on information gained from trial n. This represents a largely 

probabilistic approach to criterion setting, but also requires past events and altered criterion 

values being recorded as memory traces. The development of the model involved the review 

of three existing models for sequential effects.  

The Linear Additive Learning (LAL) model assumes that an observer will pick a reference 

criterion location, and alter the criterion relative to this point as a function of the response on 

the previous trial. During the inter-trial intervals the criterion has a natural tendency to drift 

or decay back to this reference point at a constant rate. The Exponential Additive Learning 

(EAL) model works in much the same way as the LAL model, the only difference being that 

criterion decay is exponential rather than constant. The additive models simply use the value 

of the criterion at any one time to reflect the effect of past events. The criterion is shifted due 

to responses on previous trials; thus, it is shifted to maximise certain responses given the past 

events. The third model is the Independent Trace (IT) model.  The fundamental premise of 

this model is similar to that of the learrning models described above insofar as the criterion 

decays back toward the reference point at a constant rate, yet the IT model posits that each 

shift is individually recorded. This implies that each criterion shift can be linked to a series 

of memory traces; recorded events that trace the movement of the criterion (see Triesman & 

Faulkner, 1984a, for complete review). 

The basic difference between the models is the way the past events are represented. The 

additive models simply use the value of the criterion at any one time to reflect the effect of 

past events, whereas the IT model places emphasis on the memory traces that have lead to 

the current position.  

It makes intuitive sense that a system would utilise all sources of available information to 

enhance decisions, and for this reason the IT model set the foundation from which Triesman 
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and Faulkner (1984a) developed their model. The result was a theory of criterion setting that 

uses sequential dependencies to maintain the criterion at the optimal level. The model uses a 

long-term criterion setting process, and short-term processes that adjust the criteria. It 

incorporates two stages: (a) establishing a reference criterion and stabilising it at a reference 

location; and (b) using systems that make fine adjustments in response to 

environmental/experiential changes. These two short-term systems are referred to as the 

tracking and stabilising system.  

The tracking system adjusts to changes in the external world. For example, recent detections 

will tend to relax the criterion, though increasing the risk for false alarms. Conversely, recent 

rejections will cause the criterion to become stricter, causing the system to adopt a more 

conservative approach. The stabilising system, like the tracking system, uses incoming 

information to refine the location, yet in a somewhat historical fashion. It does so by 

recalling the number of detections made over past encounters. For example, if a sustained 

series of signal responses is observed the criterion is regarded as too lax and is moved 

rightward (moving the criterion rightward along the decision axis causes the criterion to 

become stricter, moving the criterion leftward relaxes the criterion); a sustained series of 

noise responses causes the criterion to relax. Memories of past events, and past criterion 

locations are essential resources and reflect independent sources of information that 

influence each criterion shift. 

These mechanisms push the criterion closer to an optimal position (Schoeffler, 1965), 

stabilising it as best as possible until further evidence suggests a move is necessary. The 

model states that signal frequency, past experience, and memory all contribute to criterion 

shifts. Additionally, the two short-term processes may function in unison. Triesman and 

Faulkner (1984a, 1984b) have illustrated that these internal processes serve as adaptive 

behaviours that attune our decision processes to changes in the environment, and occur over 

and above that of sensory effects. Our environment is dynamic and continually changing – 

signals come and go. Thus, vigilance and monitoring are effective strategies which aide the 

decision process, and facilitate the response of the criterion to such dynamic factors.  

Brown and Steyvers (2005) investigated the effects of dynamic factors on criterion shifts. 

Using a lexical decision task, targets and distracters were manipulated such that their 

difficulty varied over trials within the same condition. This is analogous to altering the 

degree of overlap between the signal and noise distributions continuously, resulting in no 

fixed level of difficulty within a condition. Ultimately, this forces observers to alter their 

behaviour within the condition, and is known as a context effect. More specifically they 

looked at a type of context effect called a mirror effect. In SDT, the mirror effect defines 
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changes in both the HR and FAR as task difficulty alters. Assuming a fixed, optimal criterion, 

as the distracter distribution (noise) is moved closer toward the target distribution (signal), 

the shift will alter the FAR, but leave the HR unchanged (recall the FAR is the area under the 

noise curve to the right of the criterion location). However, mirror effects imply that the HR 

must also change when a change in difficulty is made. How this occurs is that when the noise 

distribution is shifted, the original criterion location no longer sits at the point where the two 

distributions cross; that is, it was no longer optimal. The original criterion thus becomes 

redundant, and must be relocated to the new optimal position. Consequently, this relocation 

alters the HR, demonstrating that changes in HR are accounted for by this shift in criterion 

placement.  

In dynamic settings where task difficulty is frequently changing, the criterion must also shift 

in response to these changes. Brown and Steyvers (2005) were interested in how quickly 

these changes occur. Larkin (1971) asserted that the criterion shifts slowly in response to 

error, and accordingly Brown and Steyvers‟ study hypothesised that there would be a lag in 

criterion shift as the observer adjusts to the change. This may be somewhat analogous to the 

stabilising system proposed by Triesman and Faulkner (1984a). For example, if the noise 

distribution was moved closer to the signal, the observer, whose criterion is stabilised at its 

original optimal point, would start to respond „S‟ more often due to a lax criterion position. 

As the observer tracks their responses, a series of „S‟ responses would be noted, suggesting 

that the criterion may be overly lax. The result would typically be a shift rightward to a more 

optimal position. Evidently, no additional feedback (e.g., indicating when the observer was 

correct or not) was delivered to the observers, generating reliance on purely environmental 

cues (e.g., past responses, sequential dependencies) in the updating of their criterion. Brown 

and Steyvers detected a lag of approximately 14 trials in the updating of the criterion. 

However, they did not explore the mechanism that might possibly underlie the shift, 

although they allude to the criterion-setting model of Triesman and Faulkner (1984a, 1984b). 

Sequential dependencies offer a plausible process through which the observer updates the 

criterion in response to environmental cues.  

One caveat in regard to Brown and Steyvers‟ (2005) study is the assumption that the 

observers were able to maintain an optimal criterion. How this was possible is not discussed, 

though it seems unlikely that it would have been fixed at optimal, if fixed at all. If sequential 

dependencies were at play then there would be a drift back and forth from the reference 

criterion. Given that no additional feedback was employed, it seems likely that this is how 

the observers were maintaining their criterion, and how they updated it. This point is not 

addressed in their report. Furthermore, if Brown and Steyvers are to draw parallels with the 

research of Triesman and Faulkner (1984b), then they have to relinquish the optimality 
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assumption. However, the lag parameter is useful in this instance as a measure of criterion 

change in response to environmental factors, for example, how many rejections or detections 

are needed before the criterion is shifted, and provides converging evidence for the cognitive 

processes underpinning criterion variation. Interestingly, Brown and Steyvers conclude that 

the lag in shifts can potentially be remedied by the addition of feedback. However, as the 

present study shows, the type of feedback provided must be taken into account. 

One of the most succinct models of criterion variance has been compiled by Mueller and 

Weidemann (2008). The model centres on the principle that signal and noise prior 

probabilities affect the decision processes, and not sensory aspects, a principle first 

introduced by Larkin (1971). Sensory variables are mediated by the either the strength of the 

signal, or by the degree of overlap between the distributions; therefore, the stimulus 

probabilities can be manipulated without affecting either of these sensory components 

(Mueller and Weidemann, 2008). Furthermore, if the fixed criterion assumption holds, then 

manipulating the stimulus probabilities would preclude an effect on the decision process, as 

no criterion fluctuation would be induced. Under such conditions the empirical ROC curve 

would be identical to the theoretical ROC curve, resulting in the observed HR and FAR 

values falling on the theoretical ROC curve (see Chapter 1). 

Balakrishnan (1998a, 1998b, 1999) cites violations of the assumption that ROC plots 

generated using altered stimulus probabilities produce similar curves. He argues that they do 

in fact change shape under such conditions, yet attributes the distortion to changes in the 

perceptual distributions, not decision noise. He used rating-style tasks under varying 

stimulus probabilities to generate ROC curves. While there is some evidence to suggest that 

rating-type tasks induce additional criterion shifts in response to signal probability, 

Balakrishnan (1999) found that rating-based measures show no shift in criterion when 

stimulus probabilities were manipulated. His evidence relied on a function called Urk – 

which measures the divergence between the cumulative density probabilities for both the 

signal and noise distributions at criterion point k (Balakrishnan, 1998b). When the respective 

HR and FAR points are plotted a ROC-type curve is generated that peaks at the central 

confidence point – the optimal criterion location. As stimulus frequency is manipulated, the 

peak is assumed to shift as a function of criterion fluctuation. However, Balakrishnan 

observed no such shifts in the peak. This led him to hypothesise that confidence criteria do 

not change in response to stimulus probability manipulations, remain fixed at an equal-

likelihood point, and therefore, the distortions must be sourced at the sensory stage, not at 

the decision stage (Balakrishnan & MacDonald, 2002). However, both Larkin (1971) and 

Triesman and Faulkner (1984b, 1984b, 1985) demonstrate that decision criteria do shift in 



25 

 

response to stimulus probability, and leave sensitivity intact; the complete antithesis of what 

Balakrishnan is postulating.  

Mueller and Weidemann (2008) attribute the violations that Balakrishnan (1998a, 1998b, 

1999) had observed to two factors: decision noise and the confidence rating procedure. They 

dichotomise decision noise into classification noise – the mapping of internally represented 

percepts to binary decisions; and confidence noise – the mapping of internally represented 

percepts to classification responses. The effects of each type of noise may differentially 

affect the ROC functions, with exacerbated distortions occurring when confidence noise is 

greater than classification noise. They further hypothesised that the lack of evidence for 

criterion shifts in the Balakrishnan studies can be addressed by the presence of increased 

confidence noise, which, when greater than classification noise, can mask shifts in the peak 

Urk function. Their model posits that both stimulus probability and type of decision noise can 

affect criterion placement.  

They formulated an extension to the traditional SDT model called the Decision Noise Model 

(DNM). The model assumes that decision noise can mask criterion shifts – especially if 

confidence noise is greater than classification noise. When decision noise is low, true shifts 

in the criterion can be detected using Urk. They demonstrated that equal levels of confidence 

and classification noise produced identical ROC plots, yet when confidence noise was 

increased the corresponding ROC curve altered, causing the confidence ROC curve to shift. 

Lower levels of decision noise were indeed conducive to detection of criterion shifts using 

Urk. However, when increased decision noise was introduced it appeared to stabilise the peak 

of the Urk function at the medial confidence point. This gave the illusion of a zero shift; thus 

confirming the hypothesis that decisional noise masks shifts in the criterion. 

Mueller and Weidemann (2008) used ROC curves to assess the effects of stimulus frequency 

and decision noise. In their study the theoretical ROC curve was labelled as the distal 

stimulus ROC curve (DS-ROC). This measures the relationship between stimulus intensity 

and the internal representation. Like traditional SDT it maps the overall sensitivity of the 

condition. The empirical ROC curve was called a confidence ROC curve (C-ROC). This 

measures the observer‟s overt response, using rating-based measures similar to the example 

discussed earlier (see p. 17) 

Noise in either stage should create discrepancies in the curves– thus perceptual noise should 

distort the theoretical DS-ROC while decisional noise should affect the C-ROC. Mueller and 

Weidemann (2008) hypothesised that if the C-ROC deviates significantly while the DS-ROC 

remains unchanged across manipulations of probability, then it is decision noise that is at 

play. Furthermore, they analysed the deviations of the C-ROC from DS-ROC curves for both 
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confidence and classification noise. When the equal variance assumption is met, equal 

decisional noise results in identical C-ROC and DS-ROC plots. Even though decision noise 

is present in these instances, the results mimic traditional SDT analysis whereby decision 

noise is incorporated into the measure of sensitivity; thus, the plots are identical. As 

confidence noise was increased the C-ROC function started to change, while the DS-ROC 

curve remained intact. This implies that the observed deviations in the ROC curve are 

attributable to decisional noise, not perceptual noise. These results lend further weight to the 

theories of Larkin (1971) and Triesman and Faulkner (1984a, 1984b).  

Further analysis indicated that had the perceptual distribution been affected by stimulus 

probability manipulations, then the changes in the DS-ROC would have also been mapped 

onto the C-ROC, confounding the degree to which the decision noise was affecting the 

observer. However, such an effect was not observed, leaving the perceptual distributions 

unaffected and isolating decision noise as the only factor accountable for ROC curve 

deviations. The DS-ROC curve remained unchanged across all conditions. The ROC curve 

analysis the authors used met the equal variance assumption, thus, no analysis of the effects 

of decision noise under the unequal variances assumption was conducted. If the variances of 

the signal and noise distributions are unequal, this may also add noise into the system, and 

further distort the ROC curve shape. To address this, Mueller and Weidemann (2008) 

showed that while unequal variances indeed affected the ROC curve, the addition of 

decisional noise induced shifts over and above those created by unequal perceptual 

distributions. More simply, decision noise adds further noise into the system.  

The above results imply that confidence-based tasks induce an inordinate amount of criterion 

variance. Mueller and Weidemann (2008) noted that the standard deviation of the confidence 

criteria was approximately three times as large as that of the classification criteria. This 

suggests that the confidence-based tasks may be less reliable than classification tasks, an 

intriguing notion as the bulk of SDT literature focuses on the confidence/rating task. 

Additionally, confidence ratings appeared to induce a higher proportion of sequential 

dependencies, creating additional noise through cognitive mechanisms. While adjustments to 

the criterion placement potentially benefit the observer, it does so at the expense of 

additional noise as the observer tracks past events. Cognitive processes further impinge on 

the inherent probabilistic nature of decision tasks, perpetuating criterion fluctuation. It 

becomes increasingly clear that many of the discrepancies in the estimation of observer 

performance rest at the decisional stage, and need systematic assessment. Though noise is 

expected to exist within the binary decision context, the inflation in decision noise within 

rating tasks converges with research that reports depressed d′ values for rating style tasks 

(e.g., Clark & Mehl, 1973; Schoeffler, 1965). 
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In light of studies such as those described earlier, criterion variance can no longer be ignored 

in SDT analysis. While the research discussed so far focuses on rating tasks, there is every 

reason to believe that criterion variance has equally deleterious effects in binary decision 

tasks. Even a single criterion density can inflate the variance of the signal and noise densities 

(see Thurstone‟s Law, Chapter 1). Not only is the binary discrimination task the most simple 

to investigate criterion variance, but this kind of task is very frequently used. The present 

study aimed to find out by how much a discriminability estimate such as d′ is affected by 

criterion variance, and under what conditions this variance alters. 

Criterion variation may be mitigated to some extent through the introduction of feedback. 

Brown and Steyvers (2005) alluded to the fact that feedback (indicating correct or incorrect 

decisions) may speed up the lag in updating the criterion; in fact, feedback is commonplace 

within SDT experiments. Despite its pervasiveness within SDT research designs, the effect 

feedback has on estimates of sensitivity has not been investigated in any great depth. The 

present study is one of only a few studies that has systematically evaluated the role of 

feedback (knowledge of results) on criterion variability.  
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Chapter III 

The Role of Knowledge of Results in Criterion Variance 

Intuitively, any form of feedback would serve to enhance one‟s performance, informing of 

error and instigating change. However, some SDT studies have shown that feedback does not 

always improve performance. These counterintuitive findings have led to, albeit limited, 

investigations into the effects of feedback on performance. Feedback involves the observer 

being told whether a correct decision has been made upon their response. Furthermore, 

feedback may be qualitative (e.g., “correct” or “incorrect”), or quantitative (e.g., “that was 

two seconds too fast”; Salmoni, Schmidt, & Walter, 1984). Such feedback is also referred to 

as knowledge of results (KR), which from this point will be the term used. 

Traditionally, a psychophysical task might include KR or not. KR typically was not 

considered as an independent variable; therefore, its potential confounding effects were 

never entertained. In many instances where criterion variability has been suspected, the role 

of KR has not been investigated. Research lends support to the idea that the criterion will 

drift naturally with no KR (see Triesman and Faulkner, 1984a, for a review on criterion drift 

models), yet the additional effects of KR on this drift have not been investigated to any great 

extent. However, Salmoni et al. (1984) suggested that the frequency and precision of the KR 

have an effect on the task, such that altering aspects of the KR may have differential effects 

on the observer. The pressing issue surrounding KR is the type that is provided. Very few 

studies have investigated such effects; consequently the literature is thin. This present 

investigation shows that KR type has differential effects upon estimates of classification 

accuracy through affecting criterion variation. 

Evidence for Knowledge of Results and the Effects on Criteria 

Schoeffler (1965) implicated KR in the suppression of d′ estimates.  The suppression in 

sensitivity is thought to be mediated by KR continually causing shifts in the criterion. 

Schoeffler argues that when an observer is informed that they have made a false alarm, their 

criterion is likely to shift rightward (become stricter) in order to reduce the probability of this 

error occurring again. Conversely, when the observer is informed that they made a miss, they 

are likely to loosen their criterion and become slightly laxer. Larkin‟s (1971) correction 

model bears striking similarities to Schoeffler‟s hypothesis. Therefore, the criterion reacts to 

KR given explicitly much the same way as environmental factors alter the criterion, and 

sequential effects can be induced. Since Schoeffler‟s theory, a modest body of research has 

accumulated that has looked at the effects of KR on task performance. 
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Clark and Greenberg (1971) investigated the effects of KR on recognition memory tasks and 

response criterion (lx). The effects of stress were also under investigation, and whether an 

interactive effect existed with KR in lowering measures of sensitivity. Stress is thought to 

influence criterion placement in its own right. Higher stress levels are assumed to underpin a 

more lax criterion placement, mediated by fear of missing something important. Yet lower 

levels of stress suppose greater confidence, and so a stricter criterion is adopted.   

Clark and Greenberg (1971) used a simple 2x2 design (Stress: high or low; KR: present, 

absent). As hypothesised, KR suppressed d′ across both high and low stress conditions. KR 

also appeared to affect initial criterion placement, with those in the KR condition setting 

stricter criteria but relaxing them over the course of the trials as KR was provided. 

Conversely, those who received no KR set a laxer criterion, only to become stricter over the 

trials. Schoeffler (1965) hypothesised that the criterion would shift to a near optimal position 

with KR, and the evidence here lends support to this assertion. 

Unfortunately, like many methods sections of the day, no explicit mention of the KR was 

made by Clark and Greenberg (1971). This is not surprising, given that KR was seen as a 

fixed aspect of the design itself, needing no special mention. KR is usually provided on a 

trial by trial basis, indicating whether the response made was correct or not. This type of 

qualitative feedback is known as trial-by-trial knowledge of results for events (TTKRe).  

The criterion will tend to move toward a region that reflects the observer‟s decision aim, for 

example, maximise expected values or maximise correct responses (Green & Swets, 1966). 

Once in this region the criterion will fluctuate around a mean position from trial-to-trial 

(McNicol, 1975). However, the degree and magnitude of this fluctuation is problematic, and 

can be shown to correlate with the type of KR provided. The very nature of SDT tasks 

ensures that the evidence presented will not allow all decisions to be made with certainty.  

Therefore, the KR regarding these stimuli will be contradictory in many instances, because 

certain types of evidence can indicate that either a signal or a noise event has occurred. If 

such TTKR is reliably used, it should be apparent that the continual updating of the criterion 

in response to events KR increases the magnitude of fluctuation, thus spuriously lowering 

measures of sensitivity. 

McNicol (1975) investigated the effects of biased KR on absolute judgements of loudness. 

The feedback was biased so that the observers received feedback that pushed their response 

bias toward either a lax or strict position. The study indicated that observers‟ responses 

varied on a trial-by-trial basis in an attempt to follow the feedback. This can be attributed to 

shifts in the criterion location. Therefore, the d′ value was suppressed.  



30 

 

Ryan and Fritz (2007) investigated the effects of KR and erroneous KR on performance in a 

mental timing task. Erroneous KR refers to feedback that is inaccurate to varying degrees; 

therefore, the feedback may be reliable 70%, 60%, or 50%, etc., of the time. Though not a 

traditional SDT task, the authors noted that both reliable KR and erroneous KR affected 

performance, memory, and decision thresholds, with erroneous KR producing further 

decrements in performance. Ryan and Fritz acknowledged that all KR pushed decision 

thresholds to near midpoint (central criterion location) and stabilised performance, 

synonymous with effects seen in previous research (e.g., Clark and Greenberg, 1971; Larkin, 

1971; McNicol, 1975; and Shoeffler, 1965), but noted that erroneous KR induced greater 

fluctuation in the criterion location. 

Both McNicol (1975) and Ryan and Fritz (2007) report shifts in the criterion when KR was 

reliable and events based, that is, the KR was veridical, indicating that a signal had occurred 

when one was presented, and the same for a noise event. Conversely, Han and Dobbins 

(2008) report evidence that fully correct KR had little effect on the criterion location in 

recognition memory. The authors document minimal criterion variance for those observers 

who received KR when compared to those who received no KR at all. In fact the data points 

for both conditions fell on the same ROC curve irrespective of whether KR was present or 

not.  

However, once biased KR was introduced an increase in criterion variance was observed. 

Additionally, changes in the ROC curve shape were observed, suggesting that criterion 

fluctuation was displacing the function. Han and Dobbins (2008) held sensitivity constant so 

as not to confound the decision noise with that of sensory noise. The authors trained the 

observers to adopt either a strict or a lax criterion, and observed criterion shifts in both 

conditions, with ROC curve points falling away from the curve. These changes in ROC 

curve, while indicative of the unequal variances inherent in recognition tasks, also reflect 

variance that can be ascribed to a fluctuating criterion.  

Criterion fluctuation can be reliably attributed to memory processes (e.g., Benjamin et al., 

2009). Additionally, KR can interact with memory traces to induce criterion shifts. Ell, Ing, 

and Maddox (2009) investigated the effects of delayed KR in a rule-based category learning 

task. Essentially, the participants had to learn and maintain criterion locations that helped 

them assign specific patterns to their correct category. KR was provided to enhance learning 

of the appropriate categorisation. The number of criteria to learn and the length of KR delay 

(either immediate or delayed by 5 seconds) were manipulated in the experiment. What Ell et 

al. found was an interaction between number of criteria and KR delay, observing exacerbated 

drift as a function of increased criterion numbers and delayed KR. Working memory was 
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thought to have been taxed, affecting learning through expending all working memory 

capacity.  

TTKRe provides the observer with information regarding which distribution the stimulus was 

sampled from, seeking to train a participant to adopt a specific criterion location. This 

largely assumed component of the research design has far greater implications when TTKR 

is viewed as an independent variable. It may interact with other variables, such as working 

memory and stress, to further attenuate estimates of sensitivity. Despite research starting to 

show that this is the case, TTKRe remains the KR of choice in most SDT applications.  

The Interaction of KR and Task Difficulty, and the Introduction of Optimal KR 

The nature of TTKRe is such that the observer can be presented with apparently discrepant 

information. Due to overlap between the underlying distributions, a stimulus of a certain 

magnitude may at one time be sampled from the signal distribution, whereas a few trials later 

it may be sampled from the noise distribution.  When the observer receives such 

contradictory information this induces criterion fluctuation. Rather counter-intuitively, 

research tends to support the fact that no KR can be better than TTKR (e.g., Han & Dobbins, 

2008; Lee & Zentall, 1966), probably for this very reason. 

While the 1970s established a tentative interest in criterion variability, Podd (1975) realised 

that TTKRe may actually increase criterion variability compared to no KR at all. This is 

because evidence presented on some trials could be indicative of an n or an s event. Podd 

reasoned that providing information relative to the optimum observer would provide better 

qualitative feedback, reducing the amount of criterion variability. Trial by trial ideal 

knowledge of results (TTKRi) informs the observer of what the optimal response would have 

been, and is delivered relative to the optimal criterion position (see chapter 1). Therefore, 

any stimulus that falls to the right of the optimum criterion, no matter which distribution it 

was sampled from, should always be responded as „S‟, whereas all stimuli that fall to the left 

are responded as „N‟. For example, presently the optimal criterion in the d′th = 3 condition is 

located between magnitudes 10 and 11 (see Chapter 4, Figure 11, p. 38). The KR will inform 

the observer that any stimulus at magnitude 11 or greater is „H‟, and any stimulus falling at 

magnitude 10 or less is „L‟. Consequently, observers receive information based on a single 

cut-off point which will maximise the percentage of correct decisions. This type of feedback 

represents a novel approach to providing KR to observers, but requires that an optimal 

decision rule can be derived. 

Unlike conventional SDT methods Podd‟s (1975) investigation used a series of 21 tones, 

each of which was perfectly discriminable from the next (see Chapter 4). The investigation 
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examined the differential effects that TTKRe and TTKRi had on a binary discrimination task, 

requiring the observer to discriminate whether the tone was either a “high” tone or a “low” 

tone. The binary task presents a concise method to assess the effects of KR, eliminating the 

effects of multiple criteria, and more importantly, eliminating the possibility that criterion 

variability could be due to noise at the sensory level. 

TTKRi provides the observer with more consistent feedback compared to TTKRe; for this 

reason it was hypothesised that TTKRi would stabilise the criterion at a near optimal level. 

Podd‟s (1975) results confirmed that TTKRi enhanced performance in the discrimination 

task, pushing the observers‟ criterion closer to that of the optimal criterion. TTKRe reduced 

estimates of accuracy in classifying the tones as high or low, purely as a result of the greater 

criterion fluctuations it induced.  

These results shed new light on the existing SDT literature. What Podd (1975) illustrated 

was that the established standard of using TTKRe in detection tasks may actually confound 

the results. However, a weakness in Podd‟s study was that the observers were trained to 

adopt a sub-optimal criterion. In fact they were trained to perform worse than chance. 

Effectively, when feedback was introduced a major shift from a sub-optimal location to near 

optimal location occurred. What this created was a large shift as the criterion relocated, thus 

confounding the local effect of criterion fluctuation. Consequently, the effects of KR 

incorporated both criterion fluctuations and the initial criterion inertia.  

Richards-Ward (1992) extended upon the research of Podd (1975) by investigating the 

interaction between the two types of KR and task difficulty. In a departure from Podd‟s 

method, Richards-Ward (1992) used visual stimuli by way of line lengths instead of auditory 

tones. The fundamental task was still that of binary discrimination, yet moved the sensory 

component from that of audition to vision. Like Podd‟s research, it was hypothesised that 

TTKRe would produce decrements upon estimates of sensitivity, more so than that of TTKRi, 

and that KR would interact with task difficulty to further affect estimates of sensitivity. 

Task difficulty was manipulated by increasing the degree of overlap between the underlying 

distributions in the model. The d′ value in the easy condition was d′th = 3 (little distribution 

overlap), and d′th = 1 (a lot of distribution overlap). As task difficulty increased, Richards-

Ward (1992) illustrated that both optimal and real observer estimates decreased. This showed 

that the more difficult the task, the more criterion fluctuation can be expected, and the more 

TTKRe can further affect estimates of observer accuracy.  However, though Richards-Ward 

did not train the observers to sub-optimality, they were required to set their criterion as 

maximally lax in the first KR trial. Though not sustained there for long, the requirement 
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induced a large criterion shift. It is unclear what effects that this had on the overall effect of 

KR.  

Richards-Ward (1992) partially replicated the effect of TTKRe lowering estimates of 

observer accuracy, compared to those observers who received TTKRi. The real observer 

ROC curve points did reliably fall away from the ideal observer ROC curve. However, this 

was more pronounced in the easy condition. Surprisingly, an increase in decision accuracy 

was observed in the difficult TTKRe condition, the complete antithesis of what should have 

happened. It seems likely that observers were not following the KR all the time. Had they 

been, this improvement in performance could not have occurred. In the present study, instead 

of training observers to biased positions, they were not trained to adopt any particular 

criterion. Instead it was assumed that observers would take a common-sense approach and 

set a criterion near the middle of the range of tones.  

The two unpublished reports of Podd (1975) and Richards-Ward (1992) contain valuable 

information that has not been introduced into mainstream literature. Their results are 

empirically valuable and provide a means through which previous accounts of reduced 

estimates of sensitivity can be explained. Given the weight of information, the present 

investigation attempts to both refine the methodologies previously used by Podd and 

Richards-Ward, and replicate the findings that types of feedback interact with task difficulty 

to lower estimates of observer discriminability.  

The present research, therefore, is not a traditional psychophysical study where an observer 

discriminates between signal and noise stimuli. Rather it is concerned solely with the 

decision-making abilities of the observer. Consequently, the normal sensory component of 

the SDT task was eliminated, so as to assess only the decisional stage and the effects of the 

fluctuating criterion. The underlying densities in the theoretical model retain Gaussian form 

and equal variances, and remain fixed at one of two overlapping positions, to provide two 

levels of difficulty. These known parameters also allow for the optimal criterion to be 

established, thus allowing for the delivery of ideal KR.  

The modifications made to the present design provide increased empirical robustness, and 

thus allow for more substantiated effects. The specific details of how this will be achieved 

are the topic of the next chapter. 
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Chapter IV 

The Present Research 

The present Criterion Variance Model (CVM) specifically identifies and assesses 

contributors to criterion variance. This model focuses on the criterion variability caused by a 

noisy decision process, and suggests a method for reducing this noise. Failure to eliminate 

the effects of decision noise reduces the apparent accuracy of the decision maker, as outlined 

in Chapter 2
8
.  

Two factors in particular contribute to criterion variability: task difficulty and type of KR. 

How a change in task difficulty affects criterion variability has received virtually no attention 

in the literature. One unpublished study (Richards-Ward, 1992) out of the Massey University 

lab did vary task difficulty while examining the effects of KR on performance in a task very 

similar to the present one. This study was briefly discussed in the previous chapter. To recap, 

Richards-Ward (1992) demonstrated TTKRi improved performance compared to TTKRe; 

however, this effect was more pronounced in the easier condition. Furthermore, observer 

performance improved when TTKRe was introduced into the hard condition, despite 

performance being poorer than the observers who received TTKRi. This finding suggested 

that observers were perhaps not consistently using the KR. While Richards-Ward (1992) 

provided some evidence that TTKRi improved performance under difficult conditions, the 

results are equivocal.   The major impetus behind the present research was to replicate and 

extend the findings of Richard-Ward by clearly demonstrating that a) criterion variance 

increases with task difficulty; and b) that different types of KR is required when the decision 

task is difficult if decision noise is to be minimised. 

Task difficulty can be investigated by varying the degree of overlap between the S and N 

distributions (see Figure 11, p. 38). As the overlap increases it becomes increasingly difficult 

to distinguish s and n events. The probability of a value of the evidence variable (x; see 

Chapter 1, p. 6) indicating an s or n event approaches equality with increasing difficulty. So, 

for example, in a relatively easy task where the overlapping distributions are the N and S3 

distributions shown in Figure 11, stimulus frequency 8 has a probability of 0.19 for the N 

distribution, and a probability of 0.01 for the S3 distribution. Clearly, for this value of the 

evidence variable one would maximise correct decisions by responding “N”. However, for 

stimulus frequency 8 in the harder condition (0.15), while the response “N” remains the best, 

there is now a much increased probability that stimulus frequency 8 represents a value 

                                                             
8
 Although most of the literature on criterion variance does not have a direct bearing on the present 

study, it was necessary to describe the methods that have already been taken to investigate criterion 

variance. The present study takes a markedly different approach. 
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sampled from the S1 distribution. The implication of an increase in the S1 probability for 

stimulus frequency 8 is that an observer may response “S” on one trial and be correct 

because it had been sample from the S1 distribution. However, the observer may be incorrect 

on a subsequent trial when provided with exactly the same evidence, because the evidence 

had been sample from the N distribution.  

The above argument holds true for many values of the evidence variable in the difficult 

condition compared to the easy condition. Therefore, the error rate increases, and as the 

observer attempts to maximise the number of correct responses, adjustments to the criterion 

are likely, inducing criterion fluctuation. Both Larkin (1971) and Mueller and Weidemann 

(2008) demonstrated that stimuli probabilities affect the location of the criterion. Clearly, if a 

stimulus has almost an equal chance of being sampled from the N or S distribution, this will 

affect the decision rule that the observer operates by, and increases the difficulty in 

discriminating whether the evidence was a s or n event.  

Intuitively, the introduction of KR is a step that should serve to mitigate the effect of 

criterion variability. TTKRe is frequently used in many SDT designs, often with the implicit 

assumption that the KR will help keep the observer “on track”.  The role of KR as an 

independent variable in its own right has received little attention; accordingly, the CVM 

addresses the possibility that specific types of KR may increase, rather than decrease, 

criterion variance. The nature of TTKRe is that contradictory KR can be provided by relaying 

back to the observer which distribution an event had originated from. This type of KR 

provides evidence for the veridical nature of the event. The inherent problem with such KR 

is that it can be contradictory for the stimuli that have increased probabilities of being 

sampled from both N and S distributions. This confuses the observer who then tries to 

eliminate error by shifting the criterion so as to minimise the chance of making the same 

mistake again (Larkin, 1971). In a difficult discrimination task TTKRe is especially 

ambiguous for the reasons described earlier. In fact, it is possible that this type of KR results 

in a poorer performance than receiving no KR at all.  

The best way to minimise these errors is to provide a decision rule that precludes uncertainty. 

This can be achieved by relaying KR back to the observer relative to the optimal criterion 

(see Chapter 1, p. 14). This type of KR is called TTKRi, and the decision rule is relative to a 

fixed location on the decision axis. Though errors cannot be avoided, TTKRi maximises the 

percentage of correct decisions, which maximises observer performance. This type of KR 

will stabilise the criterion and reduce fluctuation. This means that every time a particular 

event occurs, for example frequency 8, that same event will always be regarded as noise 

irrespective of which distribution it was drawn from, because it falls to the left of the 
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criterion. On this basis TTKRi should improve observer accuracy. Based on the arguments 

for task difficulty and type of KR, the CVM makes two predictions: 

1. Contrary to the assumption of SDT, the decision criterion in a signal detection 

task is a variable rather than a fixed value on the decision axis, and is present 

within binary discrimination tasks (Hypothesis 1); and, 

2. an interaction between the type of TTKR provided and the difficulty level of the 

task. Specifically, TTKRi will enable more accurate decision making than 

TTKRe, but only for a difficult decision task (Hypothesis 2). 

In summary, the CVM predicts that that TTKRe and TTKRi will have approximately equal 

affect on performance in an easy binary decision task. For a hard discrimination task TTKRi 

will enable better performance than TTKRe because the former induces less criterion 

fluctuation than the latter. Figure 10 summarises these predictions. 

 

 

In order to test the model, specific requirements had to be met. The present research departs 

from classical SDT in two significant ways. Primarily, the concern of the research was to 

investigate the decision process in a binary discrimination task, using SDT methods and 

statistics. Second, all tonal stimuli were easily discriminable from each other. The auditory 

stimuli used in Podd‟s (1975) original study were retained, as the tones had already been 

subject to discriminability analysis. 

The underlying distributions in the model are approximations to the standard normal curve, 

calculating probability mass functions for each stimulus magnitude, thus, P(X=x) ~ N(0,1). 

This produced good approximations to Gaussian distributions with equal variances. Each 

sampling distribution (either high or low) consisted of 200 tones spread over 14 discrete 

TTKRe TTKRi

A
cc

u
ra

cy

Type of KR

Hard

Easy

High 

Low 

Figure 10: The interactive predictions for the current research. In a hard decision task TTKRi is expected to improve 
observer accuracy compared to that of TTKRe. However, in an easy decision task the type of KR is expected to have 
little, or no, effect. 
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tonal frequencies with unit standard deviation. The trial sequence consisted of 400 tonal 

presentations (200 “high” and 200 “low”), which were randomly ordered by sampling 

without replacement.  

Discriminability between high and low tones was set at two levels of difficulty (d′th  = 1, d′th 

= 3; see Figure 11, p. 38). In both conditions the “low” distribution was fixed at  = 0,  = 1, 

with the mean lying between tonal frequencies 7 and 8. The degree to which the “high” 

distribution overlapped with the low distribution was manipulated for each condition, and 

quantified by the measure d′. In the d′th = 1 condition the high tone mean sat one standard 

deviation above the low tone mean ( = 1,  = 1), with its mean located between tonal 

frequencies 8 and 9. The d′th = 3 condition saw the high tone mean move three standard 

deviations above the low tone mean ( = 3,  = 1), with its mean located between 

frequencies 13 and 14. Figure 11 illustrates the overlapping distribution for each condition. 

The ROC curves for each condition were generated by passing the criterion from right to left 

along the decision axis for the distributions in Figure 11, and can be seen in Figure 12 (p. 39). 

The ROC curves are therefore the theoretical curves for the ideal observer, and represent the 

maximum level of performance obtainable in the present tasks, given the degree of 

uncertainty introduced by the overlapping high and low tone distributions.  

The area under the ROC curve (AUC) also provides a measure of discriminability 

(MacMillan & Creelman, 2005). The AUC can take on values between 0.5 (chance 

performance and complete distributional overlap) and 1.0 (complete distributional 

separation). The measures used to calculate the AUC for the study‟s theoretical ROC curves 

was the non-parametric Ag (see Equation 6, p. 11; MacMillan & Creelman, 2005).  For the 

two levels of difficulty, Ag for the ideal observer was 0.78 for d′th = 1 condition and 0.98 for 

the d′th = 3 condition
9
.  

Response bias was also assessed by using the measure c (see Equation 11, p. 15). Bias 

measures ideally should meet two standards (McMillan & Creelman, 2005, p. 39): (a) the 

measure should depend monotonically upon the HR and FAR in the same direction, and (b) 

should be independent of the sensitivity index. For these reasons c is a better candidate as a 

measure of bias than β (MacMillan & Creelman, 2005). Where the negative diagonal in the 

ROC space intersects the ROC, c = 0; correspondingly then, the optimum criterion in the d‟th 

= 3 condition is located between frequencies 10 and 11. The d′th = 1 optimum criterion was 

located between frequencies 8 and 9. All TTKRi was given relative to these criterion 

positions.  

                                                             
9 The distributions were modelled on the standard normal curve so a parametric measure could have 

justifiably been used.  
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Method 

Pilot Investigation 

The original design for the present investigation used a d′th = 0.5 as the hard condition. It was 

hoped that by making the task very difficult the criterion would fluctuate maximally under 

such conditions. 

Originally, 100 training trials were completed in order to familiarise the observer with the 

trial sequence. Furthermore, the trials were used to train the observer to adopt an optimal 

criterion position.  An issue with Podd‟s (1975) and Richards-Wards‟ (1992) research was 

that the criterion variability observed may have been confounded with an overall shift in the 

criterion. To alleviate this problem the present study initially trained the observer, using 

TTKRi, to acquire a criterion position near optimal. The hypothesised effect was that when 

TTKRe was delivered, the criterion would become less stable and decay from the optimal 

position, particularly so in the d′th = 0.5 condition. However, during the pilot runs this was 

not the case. 

Observer accuracy improved with the introduction of TTKRe in the d′th = 0.5 condition. It 

appeared that the TTKRi in the difficult condition was difficult to follow because so many of 

the tonal frequencies could have been sampled from either distribution. Therefore, observers 

abandoned using the feedback altogether. In order to combat the contradictions the observers 

appeared to revert back to the decision strategy used during the training.  

Accordingly, it was decided to push out the high distribution in the difficult task a further 0.5 

of a standard deviation, producing a d′th = 1 difficult condition. The KR in this condition was 

a little less likely to appear inconsistent to the observer. However, observers still failed to 

consistently adjust their responses according to the KR provided.  

In an attempt to overcome this problem, the training was reduced to 50 trials, with no 

feedback given at all. Instead, the observers were simply informed that higher tones 

generally indicated the high distribution has been sampled from, and vice versa for the lower 

tones. No KR was provided. In addition, in order to encourage consistent use of the KR, a 

payoff matrix was introduced. Observers were awarded 2c for every correct decision made, 

but penalised 2c for every incorrect decision. Observers then had the potential to earn $8 

over and above their reimbursement for participation. It was hoped that such a measure 

would ensure observers would consistently utilise the KR provided. Additionally, the final 

set of instructions stressed the importance of using the trial-by-trial feedback to obtain the 

best monetary payoff.  
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In summary, for the actual experimental trials training was reduced to 50 trials with no 

feedback, the hard condition relaxed to d′th = 1, and a payoff matrix introduced to encourage 

consistent use of the feedback.  

Main Study 

Observers 

Forty-four observers with normal hearing agreed to participate in this study with informed 

consent. The sample consisted of 26 women (59%) and 18 men (41%) with an age range 

from 19 to 50 years (M = 23.2; SD = 5.5 years). Observers were randomly allocated to one 

of four experimental conditions. The majority of observers were Massey University students, 

mainly recruited by flyers advertising the study. Informed consent was obtained from each 

participant and the investigation was approved as a low risk study by the Massey University 

Human Ethics Committee.  

Apparatus and Stimuli 

The experimental stimuli consisted of 20 discriminable tones. The 20 tones retained for this 

study ranged from 382 Hz to 1187 Hz, separated by 19 equal steps of 42.4 Hz. The 

frequency values were greater than 12 JNDs but less than 16 JNDs apart (50% level), 

ensuring that all tones were easily discriminable from the next (Shower & Biddulph, 1931). 

A table of the tonal frequencies can be found in Appendix B. Tones were set and played at a 

level that the observers found comfortable
10

. 

Tones were computer generated wave files that were programmed into the stimulus 

presentation programme. The tones were generated using a Hann function – also known as a 

„Hanning Window‟. The Hann function is a specific type of tapering window function used 

in signal processing. The function tapers the ends of a sampled region – in this case the tone 

– to bring it smoothly up from and down to zero. The effect is the reduction of unwanted 

noise at the extremes of the sample (Blackman & Tukey, 1959).  

For each trial a tone was either sampled from the „L‟ or „H‟ distribution, and was done so on 

a random basis. No more than three low or high events could occur consecutively in the 

sequence. This reduced the possibility of sequential effects occurring. Trial presentations 

were controlled by a programme into which the trial randomisations were written. The 

programme produced outputs that recorded hits, false alarms, misses, and correct rejections, 

                                                             
10

 Unfortunately sound pressure levels could not be obtained for the headphones. Typically an 

artificial ear is used which measures pressure at the earpiece of the headphones. However, the 

unavailability of the equipment meant that sound pressure information could not be reported.  
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as well as HR and FAR. Additionally, the observers response („H‟ or „L‟) and the KR 

provided („H‟ or „L‟) was available for each trial.  

Verbal instructions were recorded and played back open air so both observers could listen 

simultaneously (two observers were run at a time using separate computers). On screen 

instructions were written in 12 point Arial font. Observers were stationed between 35 – 55cm 

from the screen. All tones were played through Panasonic RP-HT161E-K stereo headphones.  

Design 

The study used a 2x2 factorial between-subjects design. There were four experimental 

conditions into which observers were randomised. Two independent variables were 

manipulated: task difficulty (d‟th = 1 or 3), and type of KR (TTKRe or TTKRi). Recall that 

TTKRe provided feedback in relation to the distribution that a stimulus was sampled from 

(either high or low), whereas TTKRi provided feedback in terms of the ideal observer‟s 

decision rule. TTKRi informed the participant of what the best response for each stimulus 

would have been. Two dependent measures were obtained: d′ob for the observer‟s accuracy 

across all conditions, and A′, which estimates the AUC using a single HR and FAR (see 

Equation 7a and 7b, p. 11).  A measure of response bias was also obtained using c.  

Each trial lasted 3500 ms and consisted of tone presentation (200 ms; including rise-fall 

time), response interval (2000 ms), feedback (300 ms), and inter-trial interval (1000 ms). 

Figure 13 shows the sequence of events for each trial. The response interval duration allowed 

2000ms for a response to be made; if no response was made a “no response” was indicated 

on the output file. As soon as the observer had made a response, the feedback was 

immediately given. Therefore, trials differed in length, with 3500ms being the absolute 

maximum trial length. This trial format was the same for both main and training trials.  

 

 

 

 

 

 

 

Figure 13: Trial sequence and corresponding times. 
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The response box was centred on the computer screen, and consisted of a “high” response 

button (on the left) and a “low” response button (on the right). A green light flashed above 

the response button that should have been selected on that trial. All trials were completed in 

a single session, with two observers being run through the experiment at a time (using 

separate computers). All observers completed 50 training trials before moving on to the main 

block of 400 trials. Observers then received either events or ideal KR relative to the level of 

difficulty they were randomised to (d′th = 1, or 3). Observers were given a short break after 

completing the first 200 trials.  

Procedure 

Observers first read an information sheet (Appendix C) and were encouraged to re-read the 

sheet if necessary. They were then told that the experiment would take no longer than 45 

minutes. They were also informed that they would be reimbursed $10 for their time, and that 

they could withdraw at any stage during the experimental phase; however, payment would 

not be received unless the study was completed. 

All observers had been randomised to a particular condition prior to commencement of the 

trials. Upon arrival the observers signed a consent form (Appendix D) and then were 

assigned to the computer with the appropriate programme loaded on. Instructions were 

present on the screen but the observers were asked to turn their attention to the experimenter 

so that the verbal instructions could be played (see Appendix E, for verbal instructions). The 

verbal instructions introduced the pay off matrix, highlighting the potential to earn an 

additional $8 by earning 2c for every correct decision, but also emphasising that an incorrect 

decision resulted in a 2c penalty. It was again reiterated that using the TTKR would yield the 

best outcome. Once the verbal instructions had finished the observers were asked to put their 

headphones on and read the training instructions on the screen (see Appendix E, for training 

instructions). 

After reading the instructions the observer was instructed to click on the “continue” box on 

the screen, upon which the full range of tones were played. Immediately after the tones had 

played the response box was centred on the screen, with the two feedback boxes filled 

yellow. This colour indicated that the observer had two seconds before the beginning of the 

first trial. The observers then completed the 50 training trials. 

Next, main trial instructions were brought up on the screen (see Appendix E, main trial 

instructions). The main trial instructions introduced the role of the green feedback light and 

further reiterated the KR should be used to enhance decision making. Clicking the “continue” 

box centred the response box on the screen, with the yellow feedback boxes again providing 
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a 2 second warning prior to trial commencement. Observers were then presented with the 

first 200 trials, after which a message box popped up indicating that the observer was half 

way through, and a break was recommended. Breaks were no longer than 5 minutes, after 

which the observers completed the final 200 trials. 

The experimenter then calculated the observer‟s earnings by taking the number of correct 

decisions (Hits + Correct Rejections) and subtracting the number of incorrect decisions 

(False Alarms + Misses). This amount was then added to the $10 already paid for 

participation. Observers were thanked for their time and an offer extended to ask any 

questions about the study, as well as the opportunity to read the final report. 
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Chapter V 

Results 

There were 11 observers in each of the four experimental conditions. Preliminary analyses 

were undertaken to assess whether gender and time of study had any effect on the dependent 

variables. The gender distribution across experimental conditions was relatively even, except 

for the d′th = 1 events condition. Analysis revealed no significant relationship between 

gender and condition (p = .90, Fisher‟s exact test
11

). Furthermore, the time of day (am or pm) 

that the experimental trials were run had no effect on performance, χ
2
 (1) = 0.53, p = 0.47.  

Observer Performance 

Table 1 summarises the mean values for the primary dependent variables, d′ob and A′. Mean 

hit and false alarm rates are also provided along with mean c values.  

 
Table 1: Mean values for dependent measures across independent variables. 

 d' = 1  d' = 3 

  Events Ideal  Events Ideal 

HR 0.67  (0.02) 0.7  (0.03)  0.88  (0.04) 0.88  (0.04) 

FAR 0.36  (0.03) 0.32  (0.03)  0.14  (0.04) 0.14  (0.04) 

d' 0.80  (0.07) 0.99  (0.07)  2.25  (0.3) 2.25  (0.24) 

A' 0.74  (0.01) 0.78  (0.01)  0.93  (0.02) 0.93  (0.02) 

c -0.03  (0.05) -0.02 (0.07)  -0.05  (0.13) -0.05  (0.13) 

              Note: Values in parentheses = SD. 

 

Both d′ob and A′ varied across KR groups in the hard (d′th = 1) condition, whereas they 

remained stable in the easy (d′th = 3) condition, as predicted by the CVM.  The mean 

performance for all groups is shown in Figures 14a and 14b (on next page) relative to the 

theoretical ROC curves.  TTKRe in the hard condition produced an attenuated HR (0.67; SD 

= 0.02), and an increase in the FAR (0.36; SD = 0.03). TTKRi in the hard condition 

produced a near optimal HR (0.7; SD = 0.03) and FAR (0.32; SD = 0.03). The mean d′ob 

value in the TTKRe group (d′ob = 0.8, SD = 0.07) was noticeably lower than the TTKRi  

group (d′ob = 0.99, SD = 0.07).  When observer performance is compared to the ideal 

observer using η (a measure of observer efficiency; Eq. 8, p. 12), the TTKRi group (η = 0.98) 

performed much closer to optimal than the TTKRe group (η = 0.64). 

                                                             
11 SPSS output for 2x4 contingency table exact test provides Fisher‟s Test, though it is assumed this is 

the Freeman-Halton extension of the 2x2 Fisher‟s exact test. 
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Figure 14: a)  Theoretical ROC for d′th = 1 condition depicting events and 
ideal mean d′ob values. Although the groups had a mean c close to optimal, 
there is a noticeable difference between the events and ideal KR group; b) 

Theoretical ROC for d′th = 3 condition depicting events and ideal mean d′ob 

values. In the easy version of the task, the criterion adopted was near optimal. 
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This difference is also evident for the A′ values, where the TTKRe group (A′ = 0.74, SD = 

0.01) produced a lower score than the TTKRi group (A′ = 0.78, SD = 0.01). TTKRe and 

TTKRi ROC points further illustrate the differences between groups (see Figures 14a and 

14b). The TTKRi point indicates near optimal performance, whereas the TTKRe point falls 

below the theoretical curve. There existed some variation in c across conditions, though this 

was minimal with all values being close to c = 0, the optimal position. Both easy KR 

conditions provided identical HR (0.88; SD = 0.04) and FAR (0.14; SD = 0.01), yielding 

identical d′ob and A′ values across TTKRe (d′ob = 2.25, SD = 0.3; A′ = 0.93, SD = 0.02) and 

TTKRi (d′ob = 2.25, SD = 0.24; A′ = 0.93, SD = 0.02) groups (η = 0.56 for both KR groups). 

Figures 15a and 15b below graph observer performance across KR groups for each condition. 

The easy condition produced a stable performance across KR groups for both A′ and d′ob. 

Observer accuracy improves in the TTKRi condition within the hard condition for both 

measures. Thus, there was an interaction between task difficulty and type of KR, as predicted 

by the CVM. Each hypothesis is investigated in the following sections. 
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Hypothesis 1(Criterion Fluctuation) 

Hypothesis 1 predicted that the criterion will shift, even in a binary discrimination task. In 

SDT, the value of the criterion (c in the present study), once adopted, is assumed to remain 

fixed. In the present case, the optimal value for the criterion was c = 0. Indeed, as Table 1 (p. 

45) shows, the mean c value for all conditions fell very close to zero, the optimal value. 

However, had decisions been optimally made the ROC points shown in Figures 14a and 14b 

would have coincided with the theoretical ROC curve.  

The suboptimal values can be due to only one thing in the present study – criterion 

fluctuation. To investigate criterion fluctuation, the number of errors each observer made for 

each stimulus value were plotted. The spread and density of the error plots are indicative of 

criterion fluctuation, with increased spread and density indicating greater criterion 

fluctuation. For comparison, cases with similar criterion locations (c) were selected, but 

performance was either poor or good, relative to the condition the cases were drawn from. In 

cases where performance was poor, increased spread in the error distribution was expected, 

despite near optimal c values.  

These error response distributions also provide support for Hypothesis 2 as the degree of 

criterion fluctuation is influenced by the type of KR received and task difficulty. According 

to the CVM theory, TTKRe, particularly in the hard condition, should produce increased 

criterion fluctuation. In assessing the validity of Hypothesis 1 an appeal to Hypothesis 2 is 

unavoidable; however, an assessment of Hypothesis 2 is made in the following section. 

Complete response distributions for select observers in each condition are displayed in 

Appendix H, which also contains the number of correct and incorrect decisions for each 

stimulus.  
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The error distributions present the errors an observer made in deciding whether a particular 

event was drawn from the high or low distribution. Two distributions of errors are generated; 

one for high errors and one for low errors. Low errors indicate that a false alarm occurred – 

deciding that a low tone was actually a high tone. High errors indicate that a miss occurred – 

deciding that a high tone was actually a low tone. Errors will naturally occur in the present 

decision task, even for the optimal observer. However, assuming the criterion has been fixed 

at the optimal location, an error response distribution (see Figure 16 on the next page for an 

example of an error distribution) will have two defining features.  

First, the number of errors committed should remain confined to the area of overlap between 

the high and low distributions. This is because the overlapping area contains all tones that 

could be indicative of either a high or a low state. If an observer consistently used a fixed 

criterion then errors will not occur outside of this region. Furthermore, errors should occur 

more frequently for stimuli in the middle of the area of overlap, as these stimuli occur more 

frequently. Consequently, the distribution of errors would taper off significantly toward the 

ends of the area of overlap. Thus, fewer errors will occur toward the ends of the area of 

overlap because these stimuli occur less frequently. Increases in error frequency toward the 

tail regions, and the presence of errors outside the area of overlap, indicate a criterion that is 

fluctuating. 

Second, the high and low errors create two distributions (one reflecting false alarms, the 

other misses) that span the area of overlap (tones 3 – 15 in the hard condition; tones 8 – 13 

for easy condition). If the criterion is fixed then the high error distribution will be to the left 

of the criterion, and the low error distribution will be to the right of the criterion. Thus, the 

frequency of high errors will be greatest for tones just to the left criterion and will gradually 

decrease for tones further away from the criterion. For low errors the frequency will be 

greatest for tones just right of the criterion. By implication the high and low error 

distributions should not overlap if a fixed criterion is adopted. If there is overlap between the 

high and low error distributions, or if high and low errors are recorded on the opposing side 

of the criterion, then the criterion is fluctuating. This occurs because the criterion is shifted to 

another location, thus decision are based on a different decision rule. This alters the 

frequency of errors and changes the shape of the error distribution because the tones are 

judged by a different standard. For example, moving the criterion leftward (becoming lax) 

reduces the number of tones to the left of the criterion. Consequently, more tone to the right 

are considered high, therefore, more high errors are likely to occur. This would account for 

high errors occurring in lower tone frequency ranges. Illustrative cases of criterion 

fluctuation are presented next. 
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Condition: d′th = 1, events.     Observer 2 (d′ob = 0.93; c = 0.00) provided the highest d′ob 

score in this condition. Observer 38 (d′ob = 0.76; c = -0.06) was one of the poorer performers 

in this condition.  

 

 

Figures 17a and 17b display the errors made by each observer. In both cases the high and 

low error distributions overlap significantly. Furthermore, high error frequencies were 

recorded as far up as tonal frequency 14 (Observer 38), though this was not outside the area 

of overlap. On average, the errors remain confined to the area of overlap in the stimulus 

distributions; however, the frequency of errors was greatly increased toward the end of the 

overlap area for both high and low errors, indicating that the criterion was shifting 

significantly. The frequency of high errors within the higher tonal region was more prevalent 

for Observer 38. Low errors also occurred well into the low range with some frequency for 
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Figure 17: a) Distribution of errors for Observer 2; b) Distribution of errors for Observer 38. 
Both distributions reflect errors made using TTKRe under hard conditions. The optimum criterion 
is located between tones 8 and 9. 
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both observers. These error distributions can only arise from a failure to maintain a 

consistent decision rule. Thus, they show how widely a criterion can fluctuate, even though 

in SDT the criterion estimate c is given by a single value, implying no such fluctuation.  

Condition: d′th = 1, ideal.     Observer 27 (d′ob ≈ 1; c = -0.02) was one of the better 

performers in the TTKRi hard condition. Observer 24 (d′ob = 0.95; c = 0.04) was one of the 

poorer performers in this condition.  

 

 

Figures 18a and 18b display the error distributions for each observer. For both observers the 

spread of errors remain confined to the area of stimulus distribution overlap, with errors less 

frequent toward the ends of the overlap. Observer 27 had an error distribution that best 

approximated what an ideal error distribution should look like. There was very little overlap 

in the high and low errors, sticking predominantly to the relative side of the criterion. There 
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Figure 18: a) Distribution of errors for Observer 27; b) Distribution of errors for Observer 24. 
Both distributions reflect errors made using TTKRi under hard conditions. The optimum 
criterion is located between tones 8 and 9. 
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was some overlap occurring around the criterion point, but the fluctuation did not move that 

far. Observer 24 showed increased errors around the midpoint; however, they were more 

frequent for tones further away from the criterion than Observer 27. The degree of error 

overlap was also greater, though there was some separation.  

Condition: d′th = 3, events.     Observer 29 (d′ob = 2.78; c = -0.02) was the best performance 

in this condition, and indeed across all d′th = 3 conditions. Observer 44 (d′ob = 1.83; c = 0.00) 

was the least accurate.  

 

 

 

Figures19a and 19b display the error distributions for each observer. Increased criterion 

fluctuation is immediately apparent in Figure 19b. Though the high and low errors overlap 

significantly for Observer 29 (Figure 19a), errors remain largely confined to the area of 
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overlap, and were centrally located around the optimal criterion (between tones 10-11). 

However, had the criterion been fixed at optimal, high errors would only occur to the left of 

the criterion, and low errors to the right. Observer 44 had a wider fluctuating criterion, 

evidenced by increased error frequencies for tones toward the tails of the overlap, though 

errors largely remained confined to this area.  

Condition: d′th = 3 ideal.     Observer 23 (d′ob = 2.54; c = -0.07) provided the best performer 

in this condition, with Observer 42 (d′ob = 1.71; c = -0.04) performing less well.   

 

 

Figures 20a and 20b display the error distribution for each observer. The distributions are 

very similar to the observers in the easy TTKRe condition. Observer 23 (Figure 20a) had a 

more attenuated error spread than Observer 42. There was overlap between the high and low 

distributions for Observer 23, but they remain confined to the area of overlap, and the 
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Figure 20: a) Distribution of errors for Observer 23.; b) Distribution of errors for Observer 42. 

Both distributions reflect errors made using TTKRi under easy conditions. The optimum criterion 
is located between tones 10 and 11. 
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frequencies of the errors were located around the optimal criterion. The error distribution for 

Observer 42 illustrates a high degree of criterion fluctuation. In much the same fashion as the 

behaviours of the criterion for Observer 44, the criterion for Observer 42 in Figure 20b shifts 

over a surprisingly wide proportion of the decision axis.  

The similarity of the error distributions and the performances in the easy condition were 

expected. The CVM suggested that under easier conditions criterion fluctuation would be 

minimised, and performance would enhance. What the observers in the easy condition 

illustrate though, is that if noise is entering the system then performance will be affected and 

errors will increase. For example, compare the error distributions and accuracy measures for 

Observer 44 (d′ob = 1.83) and Observer 29 (d′ob = 2.78). The error distributions graphically 

illustrate the role of criterion instability. Lower d′ob values and overall accuracy were 

consistent with an increase in both spread and frequency of errors. These error distributions 

highlight the effect of criterion instability, and how it impacts upon observer accuracy, even 

in a binary discrimination task. 

As mentioned previously, these error distributions provide support for Hypothesis 2, which 

states that task difficulty and type of KR will interact. TTKRi was expected to improve 

performance by limiting the amount of criterion fluctuation. To illustrate the difference 

between TTKRe and TTKRi a comparison was made between the distributions for Observer 

38 (TTKRe, Hard) and Observer 27 (TTKRi, Hard). Figures 21a and 21b (on the next page) 

compare the error distributions.  

The TTKRi distribution (Figure 21b, Observer 27) was less dense and reflects errors 

confined to predominantly the midpoint regions, and errors drop off for tones further away 

from this region. Furthermore the high and low errors remain largely separate. This is 

indicative of a criterion that remained in a relatively central location. In comparison, the 

TTKRe distribution (Figure 17a, Observer 38) was much denser due to high and low errors 

across the whole range of overlap and the frequency of errors increased for tones further 

away from the midpoint. This indicates that the criterion was fluctuating greatly. These 

distributions lend support to the CVM, demonstrating that criterion fluctuation under hard 

conditions can be reduced by the type of KR that is used. In this case TTKRi has reduced the 

amount of criterion fluctuation.  

To summarise these findings, the plots of the error distributions not only indicate that 

criterion fluctuation existed in the present simple decision task, but that decision criteria can 

fluctuate over a very wide range. One can only assume that the decision process in a 

conventional signal detection task will generate similar fluctuations. The next section 

assesses Hypothesis 2, and analyses the interaction between task difficulty and type of KR.  
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Hypothesis 2 (Interaction) 

Hypotheses 2 predicted an interactive effect for type of KR and task difficulty. Specifically, 

TTKRi will enable more accurate decision making than TTKRe, but only for a difficult 

decision task. TTKRi and TTKRe error distributions have already demonstrated that criterion 

fluctuation is reduced when TTKRi is delivered to observers who have to make a hard 

decision.  Furthermore, the interaction is shown graphically in Figures 15a and 15b (p. 47), 

which approximate the prediction made in Figure 10 (p. 36).  Separate ANOVAs, one for d′ob 

and the other for A′, were conducted to assess this interaction. All statistical analysis was 

conducted using Statistical Package for the Social Sciences (SPSS) version 17.0 (SPSS Inc., 

2008). 
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Figure 21: a) Distribution of errors for Observer 38. This error distribution was generated using 
TTKRe under hard conditions; b) Distribution of errors for Observer 27. This error distribution was 
generated using TTKRi under hard conditions. The optimum criterion is located between tones 8 and 9.  
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ANOVA test (d′ob) The interactive effect did not yield a significant result (p ≤ 0.5), 

though the interaction bordered on significance, F(1, 40) = 3.35, p = 0.08, η
 2
= 0.006 (η

2
p = 

0.08) 
12

.  Only the main effect for task difficulty was qualified, F(1, 40) = 524.3, p < 0.05, η
2 

= 0.92 (η
2

p = 0.93), as the main effect for type of KR did not reach significance, F(1, 40) = 

1.68, p = 0.20, η
 2 

= 0.003 (η
2

p = 0.04). 

The lack of a statistically significant result was likely due to inadequate statistical power 

(SP). When this was investigated, the statistical power was insufficient to detect both the 

main effect of KR type (SP = 0.24) and the interactive effect (SP = 0.43). Power for the 

effect of task difficulty (SP ≈ 1) was more than adequate. 

ANOVA test (A′) For the non-parametric measure, A′, the interactive effect between 

task difficulty and type of KR was statistically significant, F(1, 40) = 13.18, p < 0.05, η
 2 

= 

0.01 (η
2
p = 0.25). This interaction qualifies the main effect for type of KR, F(1, 40) = 10.8,  

p < 0.05, η
 2 

= 0.01 (η
2
p = 0.21). As expected task difficulty was significant, F(1, 40) = 

1023.1, p < 0.05, η
 2 

= 0.94 (η
2
p = 0.96). This result indicates that TTKRi enabled better 

performance than TTKRe. Moreover, the beneficial effects of TTKRi are stronger compared 

to TTKRe when the difficulty of the task is increased.  

Post Hoc tests 

Post hoc tests were conducted to evaluate the simple main effects.   

t-tests (d′ob)     Mean differences between KR groups in the hard condition revealed a 

statistically significant difference, t(20) = 6.43, p < 0.05, d
13

 = 2.7. As expected, task 

difficulty yielded a large effect size. The mean differences between the KR groups in the 

easy condition were not significant t(20) = 0.28, p < .79, d = 0.1. This result demonstrates 

that TTKRi enables better performance than TTKRe under difficult conditions, but not under 

the easy condition. These results verify the prediction made by the CVM.  

t-tests (A′)      t-tests using the A′ dependent measure support the results found for d′ob.  

Mean differences between KR groups in the hard condition were statistically significant, t(20) 

= 6.47, p < 0.05, d = 2.4. However, mean differences between KR groups in the easy 

condition were not significant, t(20) = 0.21, p < 0.84, d ≈ 0. These results confirm the 

                                                             
12  SPSS provides partial eta squared as the estimate of effect size; however, because partial eta 

squared can theoretically account for more than 100% of the total variance, eta squared has been 

reported to account for variance. Eta squared was calculated using the SPSS ANOVA output (Levine 

& Hullet, 2002). See Appendix F on how to do this. However, partial eta has also been reported as 

many studies accept it as a measure of effect size. 
13 d is the effect size associated with group mean differences (Cohen, 1988). 
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interactive effect observed in the ANOVA test, and further support the theory that TTKRi 

enhances performance under difficult conditions.  

Auto- Correlation Analysis 

For the CVM theory to be properly tested, observers had to use the KR consistently. Though 

absolute attention cannot be expected, environmental factors may have been implemented by 

observers. In order to investigate such effects an auto-correlation analysis was undertaken.   

Auto-correlation      This type of correlation is a time series analysis in which a series is 

correlated with itself at specific time lags, or delays. The presence of sequential 

dependencies can be investigated using such analysis, and the degree to which previous 

responses relate to impending decisions can be estimated (see Chapter 2 for a brief review on 

sequential dependencies). In the present study each observer‟s response distribution was 

correlated with itself at specific trial lags (k). At a lag of zero (k = 0) the auto-correlation 

function (rk; ACF) will be 1, but will decrease as the trial lag increases. The size of the ACF 

at specific lags indicates the degree to which prior responses influenced the response on the 

current trial. ACFs were recorded for k = 0, k-1,...k-5 lags. However, because significant 

correlations occurred only for k-1, correlations for lags k-2 to k-5 can be found in Appendix 

G.  

Lag k-1 correlations for all observers across all condition are shown in Table 2. Sequential 

dependencies went no further back than one trial. The analysis revealed a minimal presence 

of sequential dependencies for the hard events condition mean ( rk-1 = -0.09), whereas the 

ideal condition had a slightly elevated ACF mean (rk-1 = -0.13). The easy condition produced 

higher ACFs, suggesting a slightly increased reliance on the trial n-1 response for the trial n 

response compared to that of the hard group. The mean ACF between the events and ideal 

groups, rk-1 = -0.024, and rk-1 = -0.023, respectively, did not differ. The analysis indicates 

that sequential dependencies were more evident in the easy condition than in the hard 

condition, suggesting that in the easier condition there was some reliance on previous 

responses. This may indicate that the KR was not was not being followed all the time, 

though other factors may be responsible for the increased ACF values. In any event, the 

small sizes of the ACFs suggest that sequential dependencies had little effect on observer 

performance.  
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Table 2: ACF values for all observers across all conditions. 

 
    TTKRe Hard        

 Ob.13 Ob.28 Ob.9 Ob.2 Ob.38 Ob.8 Ob.21 Ob.20 Ob.19 Ob.4 Ob.37 M SD Range 

ACF 0.00 -0.11 -0.24 -0.06 -0.05 -0.11 -0.19 -0.25 -0.17 0.05 0.09 -0.09 0.11 -0.25 - 0.09 

     TTKRi Hard        

 Ob.27 Ob.24 Ob.32 Ob.14 Ob.26 Ob.5 Ob.7 Ob.10 Ob.40 Ob.34 Ob.41 M SD Range 

ACF -0.02 -0.17 -0.09 -0.07 -0.07 -0.11 -0.22 -0.20 -0.16 -0.29 -0.04 -0.13 0.08 -0.29 - -0.02 

     TTKRe Easy        

 Ob.29 Ob.44 Ob.3 Ob.22 Ob.33 Ob.1 Ob.18 Ob.16 Ob.6 Ob.17 Ob.39 M SD Range 

ACF -0.28 -0.35 -0.28 -0.22 -0.30 -0.19 -0.28 -0.23 -0.15 -0.25 -0.16 -0.24 0.06 -0.35 - -0.15 

     TTKRi Easy        

 Ob.23 Ob.42 Ob.12 Ob.11 Ob.36 Ob.15 Ob.31 Ob.35 Ob.30 Ob.25 Ob.43 M SD Range 

ACF -0.23 -0.28 -0.28 -0.21 -0.31 -0.15 -0.26 -0.26 -0.16 -0.20 -0.16 -0.23 0.06 -0.31 - -0.15 
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Chapter VI 

Discussion 

The CVM assumes that the decision criterion in SDT is not a fixed, unvarying quantity; it is 

subject to fluctuation. The model proposes that two key factors can influence the degree of 

fluctuation: the difficulty level of the task, and the type of KR provided. To test the CVM, 

two hypotheses were derived:  

1. Contrary to the assumption of SDT, the decision criterion in a signal detection task is 

a variable rather than a fixed value on the decision axis, and is present within binary 

discrimination tasks; and 

2. an interaction between the type of TTKR provided and the difficulty level of the task. 

Specifically, TTKRi will enable more accurate decision making than TTKRe, but 

only for a difficult decision task. 

Hypothesis 1 was assessed by examining the spread and density of the error distribution 

plots for specific observers across all four experimental conditions. Despite mean c values 

across all conditions approaching zero, the error distributions demonstrated that criterion 

fluctuation existed. Moreover, the criterion fluctuation existed within both easy and difficult 

tasks.  In most cases the criterion fluctuation varied over large portions of the decision axis. 

This was largely mediated by the task difficulty level and the type of KR. For the ideal 

decision maker, the criterion is fixed at the optimal value, irrespective of task difficulty. 

However, for a real observer, the present results show that the criterion fluctuates, even when 

a relatively easy discrimination task was in use, and where the KR had little or no effect. The 

results demonstrate that not only does criterion variance exist, but the degree to which it 

fluctuates, even within a simple binary task, is significant. 

There was less criterion fluctuation for TTKRi than for TTKRe because the former is 

feedback in terms of the optimum decision rule (that will maximise the percentage of correct 

responses in the present case) while the latter is veridical, telling the observer which 

distribution was actually sampled from. In a difficult discrimination task TTKRi provides 

consistent feedback for each evidence variable, irrespective of which distribution was 

actually sampled. This is not the case for TTKRe. Feedback can seem contradictory to the 

observer in cases where the evidence presented could indicate either that the high 

distribution or the low distribution had been sampled. As the KR delivers feedback relative 

to the true state of the events, the observer continually alters the criterion to avoid making 

similar errors (Larkin, 1971). Paradoxically, this leads to an increase in errors. It was shown 

that TTKRe causes the criterion to shift significantly as the observer attempted to incorporate 
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the KR into their decision rule. Conversely, the type of TTKR provided in an easy 

discrimination task had little or no effect on performance, simply because most evidence 

variables provide strong evidence of either a low or high event. The error rate is lowered and 

criterion fluctuation is minimised.  

Schoeffler (1965) first suggested that TTKRe can be highly contradictory and may influence 

criterion fluctuation, though he produced no evidence in support of this assertion. Schoeffler 

argued that the contradictory nature of veridical KR may suppress estimates of observer 

accuracy. The present study has shown this to be the case. When task difficulty increases, the 

event probabilities increase for both high and low events, and the feedback becomes 

increasingly inconsistent. Both Larkin (1971) and Mueller and Weidemann (2008) 

demonstrated that decision noise is influenced by stimuli probabilities, and affects the 

observer error rate. The present results demonstrated that task difficulty influences criterion 

fluctuation by altering the probabilities associated with the evidence variables, which 

affected the consistency of the TTKRe, and influenced the amount of errors that observers 

made.  

Podd (1975) hypothesised that providing KR relative to the optimal criterion location would 

enhance observer performance. Podd demonstrated an increase in observer performance 

when TTKRi was provided compared to providing TTKRe. Podd derived error plots similar 

to those found in Appendix H, and demonstrated that errors occurred across wide portions of 

the decision axis. When TTKRi was provided these errors were minimised significantly. The 

present results also demonstrate a reduction in errors when TTKRi was provided; however, 

the result was only found when task difficulty increased. Podd (1975) did not manipulate 

task difficulty in his research, though the CVM supported Podd‟s hypothesis.   

In examining the CVM all sensory confounds were eliminated by making all the tonal 

stimuli easily discriminable from one another. This left only decision noise to consider in the 

reduction of observer performance. Variation in the criterion was shown to be considerable 

under certain circumstances. The implication of the present results is that similar decision 

noise will occur in an orthodox SDT task that produces both sensory and decision noise. 

Sensory noise and decision noise exist independently. Typically, orthodox SDT experiments 

ignore decision noise and focus solely on sensory factors. Thus, reductions in observer 

performance are only attributed to sensory factors. However, the present research, and 

indeed many other authors (e.g., Larkin, 1971), have demonstrated that decision noise 

spuriously affects SDT statistics. Furthermore, the amount of decision noise can be 

considerable, even in a simple binary decision task.  
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SDT needs to be modified to take account of decision noise, or a method is required to 

remove the effects of criterion fluctuation, and eliminate the underestimation of observer 

performance. In fact, one method for reducing decision noise does exist. Group Operating 

Characteristic (GOC; Taylor, Boven, & Whitmore, 1991) analysis effectively alleviates the 

problem of unique noise in psychophysical experiments. Unique noise is any extraneous 

source of noise outside of the experimental design, for example, heartbeat, criterion 

variability, and memory.  

The technique is analogous to ROC analysis insofar as relative HR and FAR points are 

plotted for rating categories; however, the HR and FAR points in GOC analysis are 

generated from multiple observations. GOC curves are constructed by replicating a detection 

or recognition experiment multiple times. The experiment can be delivered to one observer 

many times or to a group of observers. In either case, the experiment is replicated several 

times, and the stimuli are rated on the same scale every time. The HR and FAR are 

consequently not calculated from a single rating of the stimuli, but on the sums of the ratings 

for the stimuli across replications (Taylor et al., 1991).  

This technique serves to reduce the amount of unique noise in the system by taking the 

average performance and constructing ROC points from a group of observations. This serves 

to enhance sensitivity measures. Taylor et al. (1991) demonstrated that if the variance of the 

unique noise is large, then GOC analysis will lead to significant improvements in 

performance measures (for a complete review see Taylor et al., 1991).  

However, this does not minimise the natural uncertainty that exists within some decision 

tasks. The present findings address this concern by demonstrating that the rules by which an 

individual operates can limit the amount of noise in the decision process. In many cases it is 

not feasible to replicate studies; thus, the refinement of decisions rules is a major 

contributing factor to the reduction of decision noise. This is not to discount the usefulness 

of GOC analysis. The existence of such a technique would benefit the validity, and accuracy, 

of psychophysical research. It is surprising that the technique is not more widely used.  

Hypothesis 2 predicted an interactive effect between task difficulty and type of KR. 

Specifically, TTKRi will enable more accurate decision making than TTKRe, but only for a 

difficult decision task. Already this hypothesis has received some support through evaluating 

Hypothesis 1, and the statistical analysis further supported the effects of KR and task 

difficulty. Mean accuracy measures (d′ob and A′) differed between KR groups in the difficult 

task condition, as predicted by the CVM. Furthermore, there was no effect for type of KR in 

the easy task condition. Though the interaction effect for d′ob fell slightly short of 

significance (probably due to inadequate statistical power), both measures verified the 
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interactive effect. Post hoc t-tests for the simple main effects corroborated the interaction, 

yielding significant results and large effect sizes for the difficult task condition. The 

statistical analysis supports the hypothesis that task difficulty and type of KR affect observer 

performance.  

As previously mentioned the alterations in event probabilities affect the nature of the KR; 

thus, when difficulty increases veridical KR becomes increasingly inconsistent as many of 

the evidence variables could indicate sampling from either distribution. However, the 

difficult task results make it very clear that a rule-based type of feedback can be much 

superior to veridical feedback. Judging events in relation to a fixed decision rule yielded 

higher performance estimates through minimising the movement of the criterion. TTKRi 

approximated the fixed criterion assumption, but demonstrated that even ideal feedback does 

not completely eliminate criterion fluctuation. 

Prior to the present research, only one study had previously investigated the interaction 

between task difficulty and type of KR. Richards-Ward (1992) demonstrated that type of KR 

had an effect on performance when task difficulty varied. Unfortunately, his results were 

equivocal. While Richards-Ward did demonstrate that TTKRi improved observer 

performance in a hard discrimination task compared to TTKRe, the effect was stronger for 

the easy discrimination task. Furthermore, when TTKRe was provided to observers in the 

difficult task condition their performance improved. The CVM demonstrated that under 

difficult conditions TTKRe was less conducive to observer performance, and observed 

minimal effects in the easy decision task. However, the CVM aligns with Richards-Wards‟ 

(1992) study insofar as TTKRi improved performance compared to TTKRe.   

The major implication the present results have is that the type of TTKR used becomes 

increasingly important as the task becomes more difficult. The KR that is usually provided in 

SDT is veridical (TTKRe). This type of KR is likely to induce more and more criterion 

fluctuation as the difficulty level of the task increases. In difficult signal detection tasks 

(which reflects a low SNR), values of detectability parameters, such as d′, and area under the 

ROC curve, will inherently have relatively small values due to the low SNR. These already 

minimised values can be further reduced by the criterion being free to fluctuate, and are 

affected more than the larger detectability values that accompany an easy task.  

In other words, providing KR in terms of the actual state of affairs has increasingly adverse 

effects on detection parameters as the detection task becomes more difficult. Estimating the 

degree to which decision noise is affecting measures such a d′ is problematic. If the degree of 

criterion fluctuation was constant then this would be possible; however, the present results 

demonstrated that criterion fluctuation was not constant, and varied across levels of difficulty. 
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Thus, TTKRe will not only cause spuriously low estimates of detectability, but the degree of 

suppression depends on task difficulty. It appears that when the SNR is small, detectability 

indices will be more affected than for larger SNRs.  

Paradoxically, where there is no suitable model to produce the ideal decision sequence from, 

so that TTKRi cannot be given, it might be best to provide no feedback at all (Han & 

Dobbins, 2008), especially in difficult detection tasks. The differential effect that TTKR has 

on detection parameters cannot be ignored, despite it being given with a view to simply help 

motivate the observer. Feedback is an independent variable that may confound the outcome 

of a study, especially where the detection task has several levels of difficulty (e.g., see Green 

& Swets, 1966). 

Strong support for the CVM was generated through the verification of both hypotheses. Not 

only does criterion fluctuation exist, but it exists in even the simplest of detection tasks, and 

varies when task difficulty varies. The results also show that a certain type of feedback can 

reduce the amount of criterion fluctuation, but that amount is partly dependent upon the 

difficulty level of the task. 

Supplementary Analysis 

Additional analysis was undertaken to be sure that the effects presently described were 

attributable to the type of KR and task difficulty, and not due to other factors. Another 

assumption made by SDT is that each trial is independent of the previous trial. That is, it is 

assumed that sequential dependencies (Triesman & Faulkner, 1984a) do not exist. To 

investigate whether any sequential effects were present an auto-correlation analysis was done.  

If sequential effects were present it needed to be assessed how, if at all, the different types of 

feedback and task difficulty level affected it.  

Significant correlations were only observed as far back as the immediately preceding trial. 

While on the surface this suggests that sequential dependencies had some role in the decision 

strategy, the size of the correlations were not substantial enough to warrant any meaningful 

contribution. Mueller and Weidemann (2008) report that increases in sequential 

dependencies should occur when rating style tasks are used, and the relative lack of 

sequential dependencies in the present binary case is consistent with this.  

There was some difference in the ACF across conditions. Lower ACFs were observed in the 

hard condition compared to the easy condition, though the difference was small. An auto-

correlation will generally yield a correlation at a lag of one trial, but the correlation decreases 

for further lags. The fact that correlations existed at a lag of one trial was not surprising.  The 

slight increase in the ACF in the easy task compared to the hard task could be expected 
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because the observer sequences are more similar due to the increased probability of an event 

truly supporting the high or low state. Furthermore, there was virtually no difference in the 

ACFs between the KR groups in the easy task condition. The upshot of this analysis is that 

sequential effects were not significant, and did not affect performance or the effects of task 

difficulty and type of KR.  

Limitations 

Data regarding how much the criterion fluctuated with no TTKR would have been useful. 

The lack of a no KR condition was a major limitation in the present study. A no KR 

condition would have provided a baseline from which to assess the degree of criterion 

fluctuation. Furthermore, the extent to which observers consistently used the KR could have 

been assessed. This assessment might have been accomplished by conducting a cross-

correlation analysis, which correlates the observer sequence with the KR sequence. However, 

in the absence of a no KR condition this analysis was not possible. Consequently, estimates 

on the extent to which the KR was utilised were not possible. Such an analysis would have 

been particularly useful in cases where KR non adherence was suspected. 

A few observers obtained perfect or near perfect scores (relative to the ideal observer). 

Where TTKRe has been provided it is unreasonable to accept that an observer can achieve 

this level of performance if the KR was being fully utilised. These cases suggest that the KR 

was not being used consistently. The effect of a few observers performing in this way 

weakened the results, though not enough to cause the CVM predictions to fail. The fact that 

some observers, irrespective of KR type, performed better when the KR was effectively 

disregarded heightens the need to incorporate a no KR condition into the experimental 

design.  

A further issue that may have contributed to these odd cases was the complexity of the task. 

The task was not overly complex, and this may have allowed observers to maintain near 

optimal criterion locations without the aid of the KR. The task used tones that had 12 to 16 

JNDs between each frequency; a large difference in tonal frequency between adjacent tones. 

Consequently, the tones were rather easy to discriminate as high or low tones. One way to 

potentially minimise this effect is to reduce the number of JNDs between adjacent tones.  

The JNDs could be reduced to around 3 and 4, minimising the distance between the tones, 

but still leaving tones discernable from each other (ensuring no discrimination problems 

between adjacent tones). This would increase the number of tones per distribution, making 

the task more complex, and perhaps making the observer more reliant on the KR. The level 
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of task difficulty would remain unchanged, though the increased number of tones within 

each condition may induce observers to more faithfully use the KR.  

There was also reason to suspect that the instructions unduly affected observer performance. 

They stressed that perfect performance was impossible, and that mistakes would be made. 

The observers were instructed to follow the KR as it would yield the most consistent results, 

and the highest earning potential. Yet some observer still chose to adopt a more subjective 

approach, preferring their decision strategy over the KR. The specificity and depth of the 

present instructions compared to previous research (Podd, 1975; Richards-Ward, 1992) was 

greater, and this may have alerted observers to some perceived deception, despite no actual 

deception being used in the experiment.  

The specificity of the instructional content was an attempt to clarify the task requirement. 

Richards-Ward‟s (1992) study also provided evidence of KR non-adherence, and it was with 

this in mind the present study stressed the need to use the KR consistently. However, the 

instructions may have been overly specific, and the repeated pleas to be sure to use the 

feedback may have made some observers suspicious of deception. 

In light of these limitations the inclusion of a no KR condition is paramount. In order to 

verify the effect of type of KR, and the address the degree of KR adherence, a no KR 

condition allows for this by acting as a control. The sample size used to assess the CVM was 

rather small, yielding non significant results in some cases. Finally, less emphasise needs to 

be placed on the instructional content; these need refining. Reversion to the original format 

and content of Podd‟s (1975) simple instructions may facilitate increased adherence, and 

minimise any biases.  

Conclusion and Future Directions 

The type of KR an observer receives impacts upon task performance. TTKR is not 

something one can use or not use as one pleases. It affects performance but does not do so in 

a consistent fashion, and has a greater influence when task difficulty increases. The standard 

of providing TTKRe in SDT experiments, and ignoring the KR as a variable in its own right, 

is called into question. Some strong support was provided for the CVM, though the model 

needs further testing and refinement in order to ensure strong and consistent findings.  

The theories of Sheoffler‟s (1965) and Larkin‟s (1971) suggest that when KR is present the 

criterion will invariably shift toward optimality, and this indeed appeared to be the case. 

Though in order for optimal performance to be obtained the criterion needs to be stabilised at 

one location. Even when the criterion shifts toward the optimum point, there is likely 

movement around that point. Furthermore, shifts are required to reach that position. Thus, 
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the past shifts in the criterion bear upon the performance, and not its final location. The fact 

that criterion fluctuation was so prevalent even within a simple binary task bears heavily on 

SDT research designs. Fluctuation in the criterion translates into estimates of sensitivity or 

discriminability that are lower than they would have been if there was no criterion 

fluctuation.  

This study has illustrated that criterion fluctuation exists, and can be minimised or 

exacerbated depending on the type of feedback provided and the difficulty level of the task.  

The independent existence and generation of decision noise from sensory noise only serves 

to further decrease estimates of observer performance. In traditional psychophysical designs 

where sensory abilities are of primary focus, noise is not only being generated by sensory 

variables, but also decision variables, which further suppress SDT statistics. The roles of KR 

and task difficulty have to be accommodated in order to reduce the amount of noise entering 

at the decision stage, and confounding estimates of sensitivity.  

The CVM model has implications not only for SDT, but any other environment that operates 

on a rule-based system. Choices are made all the time with less than complete information. 

The world we live in is at most times highly unpredictable and confusing, yet we must make 

decisions amidst the uncertainty. Though feedback can enhance our decision making, this is 

not always the case.   

This present study has shown that providing simple correct/incorrect answers is not always 

effective in improving performance. The inherent nature about decision making with less 

than complete information is that errors will occur; they cannot be avoided. The best that we 

can do is to minimise these errors in some way. TTKRi demonstrated that when KR is 

provided according to a fixed rule, the KR is more consistent and performance is improved. 

When uncertainty is high, making decisions based on the optimal rule will result in more 

correct decisions being made than when providing veridical feedback and its tendency to 

induce criterion fluctuation.  

Whether it is the classroom or the hospital, using a consistent decision rule to help minimise 

errors may yield improved results compared to veridical feedback. The idea of using the 

ideal observer in gauging performance and accuracy is not uncommon (e.g., Green and 

Swets, 1966. Geisler (2003) is a more recent example of a model which incorporates an ideal 

observer); however, delivering KR relative to the ideal observer reflects a completely 

different approach to demonstrating criterion variance.   

The CVM is one of few models that have investigated how different types of feedback and 

task difficulty may interact to affect performance. Despite several design issues, the present 
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results highlight the potential detrimental effects of KR on performance, particularly under 

conditions of high uncertainty. Future SDT studies need to remain mindful of such effects. In 

a conventional SDT study, both sensory noise and decision noise are present. The decision 

noise is very rarely considered with researchers clinging to the assumption that the decision 

criterion has no associated variability. This assumption is incorrect. The present study clearly 

shows that matters can be made worse by giving veridical trial-by-trial feedback, especially 

where a signal detection task is inherently difficult.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

References 

Balakrishnan, J. D. (1998a). Measures and interpretations of vigilance performance: 

 evidence against the decision criterion. Human Factors, 40, 601-623. 

Balakrishnan, J. D. (1998b). Some more sensitive measures of sensitivity and response bias. 

 Psychological Methods, 3, 68-90. 

Balakrishnan, J. D. (1999). Decision processes in discrimination: fundamental 

 misrepresentations of signal detection theory. Journal of Experimental Psychology: 

 Human Perception and  Performance, 25, 1189-1206. 

Balakrishnan, J. D., & MacDonald, J. A. (2002). Decision criteria do not shift: Reply to 

 Triesman. Psychonomic Bulletin & Review, 9, 858-865. 

Benjamin, A. S., Diaz, M., & Wee, S. (2009). Signal detection with criterion noise: 

 applications to recognition memory. Psychological Review, 116, 84-115. 

Blackman, R. B., & Tukey, J. W. (1959). "Particular Pairs of Windows." In  The 

 measurement of power spectra, from the point of view of communications 

 engineering. New York: Dover. 

Brown, S., & Steyvers, M. (2005). The dynamics of experimentally induced criterion shifts. 

 Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 587-

 599. 

Clark, W. C., & Greenberg, D. B. (1971). Effect of stress, knowledge of results, and 

 proactive inhibition on verbal recognition memory (d‟) and response criterion (lx). 

 Journal of Personality and Social Psychology, 17, 42-47. 

Clark, W. C., & Mehl, L. (1973). Signal detection theory procedures are not equivalent when 

 thermal stimuli are judged. Journal of Experimental Psychology, 97, 148-153. 

Cohen, J. (1988). Statistical power analysis for the behavioural sciences. (2
nd

 ed.). Lawrence 

 Erlbaum Associates: New Jersey. 

Ell, S., Ing, A. D., & Maddox, W. T. (2009). Criterial noise effects on rule-based category 

 learning: the impact of delayed feedback. Attention, Perception, and Psychophysics, 

 71, 1263-1275. 

Geisler, W. S. (2003) Ideal Observer Analysis. In L. Chalupa and J. Werner (Eds.), 

 The visual neurosciences, 825-837. Boston: MIT press. 

http://www.amazon.com/exec/obidos/ASIN/0486605078/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486605078/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486605078/ref=nosim/weisstein-20


69 

 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: 

 Wiley. 

Han, S., & Dobbins, I. G. (2008). Examining recognition criterion rigidity during testing 

 using a  biased-feedback technique: evidence for adaptive criterion learning. Memory 

 & Cognition, 36, 703-715. 

Kadlec, H. (1999). Statistical properties of d‟ and  estimates of signal detection theory. 

 Psychological Methods, 4, 22-43. 

Larkin, W. (1971). Response mechanisms in detection experiments. Journal of Experimental 

 Psychology, 91, 140-153. 

Lee, W. B., & Zentall, T. R. (1966). Factorial effects in the categorisation of externally 

 distributed stimulus sample. Perception and Psychophysics, 1, 120-124. 

Levine, T. R. & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of 

 effect size in communication research. Human Communication Research, 28, 612-

 625. 

Lopez-Bascuas, L. E. (2008). Signal densities and criterion variance in speech and non-

 speech  perception. The Journal of the Acoustical Society of America, 123, 3733-

 3736. 

MacMillan, N. A., & Creelman, C. D. (2005). Detection theory: a user‟s guide. Cambridge, 

 UK: Cambridge University Press. 

McNicol, D. (1975). Feedback as a source of information and as a source of noise in absolute 

 judgements of loudness. Journal of Experimental Psychology: Human Perception 

 and Performance, 104, 175-182. 

McNicol, D. (1972). A primer of signal detection theory. Sydney: Allen and Unwin. 

Mueller, S. T., & Weidemann, C. T. (2008). Decision noise: an explanation for observed 

 violations of signal detection theory. Psychonomic Bulletin & Review, 15, 465-494. 

Peterson, W. W., Birdsall, T. G., & Fox, W. C. (1954). The theory of signal detectability. 

 IRE Professional Group on Information Theory PGIT, 4, 171-212. 

Pierce, J. R. (1980). An introduction to information theory: symbols, signals, and noise (2
nd

 

 ed.). New York: Dover. 



70 

 

Podd, J. V. (1975). Type I and type II ROC analysis of change in human decision axis. 

 Unpublished Masters Thesis, Victoria University of Wellington, Wellington, New 

 Zealand. 

Richards-Ward, L. A. (1992). The effect of knowledge of results and task difficulty on a 

 binary discrimination task: the problem of criterion variability in signal detection 

 theory.  Unpublished Honours Project, Massey University, Palmerston North, New 

 Zealand. 

Rosner, B. S., & Kochanski, G. (2009). The law of categorical judgement (corrected) and the 

 interpretation of changes in psychophysical performance. Psychological Review, 116, 

 116-128. 

Ryan, L. J., & Fritz, M. A. (2007). Erroneous knowledge of results affects decision and 

 memory processes on timing tasks. Journal of Experimental Psychology: Human 

 Perception and Performance, 33, 1468-1482. 

Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor 

 learning: a review and critical appraisal. Psychological Bulletin, 95, 355-386. 

Schoeffler, M. S. (1965). Theory for psychophysical learning. Journal of the Acoustical 

 Society of America, 37, 1124-1133. 

Shower, E. G., & Biddulph, R. (1931). Differential pitch sensitivity of the ear. Journal of the 

 Acoustical Society of America, 3, 275-287. 

Speeth, S. D., & Mathhews, M. V. (1961). Sequential effects in the signal-detection situation. 

 Journal of the Acoustical Society of America, 33, 1046-1053. 

SPSS for Windows, Rel. 17.0.0. (2008). Chicago: SPSS Inc. 

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. 

 Behaviour Research Methods, Instruments, & Computers, 31, 137-149. 

Tanner, W. P. Jr. (1961). Physiological implications of psychophysical data. Science, 89, 

 752-765. 

Tanner, W. P. Jr., & Swets, J. A. (1954). A decision-making theory of visual detection. 

 Psychological Review, 61, 401-409. 



71 

 

Taylor, A., Boven, R., & Whitmore, J. (1991). Reduction of unique noise in the 

 psychophysics of hearing by group operating characteristic analysis. Psychological 

 Bulletin, 109, 133-146.  

Thurstone, L. L. (1927a). Psychophysical analysis. American Journal of Psychology, 38, 

 368-389. 

Thurstone, L. L. (1927b). A law of comparative judgement. Psychological Review, 34, 273-

 286. 

Triesman, M., & Faulkner, A. (1984a). A theory of criterion setting with an application to 

 sequential dependencies. Psychological Review, 91, 68-111. 

Triesman, M., & Faulkner, A. (1984b). The setting and maintenance of criteria representing 

 levels of confidence. Journal of Experimental Psychology: Human Perception and 

 Performance, 10, 119-139. 

Triesman, M., & Faulkner, A. (1985). Can decision criteria interchange locations? Some 

 positive evidence. Journal of Experimental Psychology: Human Perception and 

 Performance, 11, 187-208. 

Verde, M. F., MacMillan, N. A., & Rotello, C. M. (2006). Measurements of sensitivity based 

 on a single hit rate and false alarm rate: the accuracy, precision, and robustness of d‟, 

 Az, and A‟. Perception and Psychophysics, 68, 643-654. 

Wickelgren, W. A. (1968). Unidimensional strength theory and component analysis of noise 

 in absolute and comparative judgements. Journal of Mathematical Psychology, 5, 

 102-122. 



72 

 

 

 

 

 

 

 

 



73 

 

 

 

 

Appendices



74 

 

 

 

 

 

 

 

 

 

 

 

 

  



75 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 

Glossary of Signal Detection Equations
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Appendix B 

Stimuli: Tonal Frequencies 
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Stimulus Tone Frequency (Hz) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

381.8 

424.4 

466.6 

509.0 

551.4 

593.8 

636.2 

678.6 

721.0 

763.4 

805.8 

848.2 

890.6 

933.0 

975.4 

1017.8 

1060.2 

1102.6 

1145.0 

1187.4 

 

 

Table B.1: Tonal frequencies associated with the 
stimuli from low (tone 1) to high (tone 20). 
Frequencies are in Hz. 

 



79 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 

Information Sheet
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Appendix D 

Consent Form 
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Instructions 



86 

 

Verbal Instructions: Played to participants prior to experiment. 

Hello and Welcome. 

We are investigating the effect of knowledge of results – feedback - on task performance. 

Your task is to make a decision about a tone you hear on each trial, deciding whether you 

think it is high or low. It is impossible to provide a correct answer on every trial because of 

the way the study is set up. The feedback you will receive on each trial is designed to help 

you perform at the best possible level; so please, pay attention to the green feedback light on 

each trial. This feedback light tells you what the correct response was by lighting up the box 

you should have clicked on. To score the maximum number of correct responses it is crucial 

that you use the feedback provided on each trial.  

You are about to run through some training trials. These trials are to familiarise you with the 

pace and format of the trials. First of all you will hear the full range of tones used in the 

experiment. Please listen carefully. As soon as the tones have played you will be presented 

with the response box, which will have two yellow boxes lit up. This indicates that you have 

2 seconds before the training begins. Use the mouse to click on the left box if you think the 

tone is low and on the right box if you think the tone is high. Initially, the trials will seem to 

be going very fast, but after a few trials you will get accustomed to the pace.  

Remember! To maximise the number of correct decisions you make, you must use the 

feedback lights which tell you the correct response for each trial. The investigation is 

primarily concerned with how feedback affects our decisions, so please use the feedback. 

To increase your motivation and to get you to pay attention to the feedback lights, during the 

main trials you will have the potential to earn an additional $8 over and above the $10 you 

will automatically receive for taking part in the study. The way to earn this is to maximise 

your percentage of correct decisions.  For every correct decision you will earn 2c; however, 

for every incorrect decision you will lose 2c. The best way to maximise your earnings is to 

follow the feedback. Try to avoid making personal judgements about the tones, and adhere to 

the feedback, as it will yield the highest earning potential. 

After 200 trials there will be a short break. Take a minute or two to compose yourself at this 

point. Maybe stretch and walk around a little. Upon clicking okay to continue, there will be 

no 2 second warning. Trials start straight off, so please be ready for this. 

To score well, the experiment requires you to remain highly motivated and attentive 

throughout. If for any reason you need to stop, please press the spacebar to pause the trials. 

Once you are ready to commence, click the okay button.  
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Finally, here are a few tips when performing the task. Between trials, return the mouse arrow 

to between the two response buttons. This will allow minimal movement and less time to 

respond. Lastly, follow the feedback. You will not perform perfectly but following the 

feedback allows you to optimise your performance. 

DO YOU HAVE ANY QUESTIONS? 

Training Instructions: Displayed on screen prior to training trials. Words in bold 

appeared bold on screen. 

These training trials will help you become familiar with the pace and format of the 

experimental trials. Please read the following instructions before beginning. 

For the following 50 trials you will hear a series of tones. Your task is to decide whether the 

tone you hear is high or low. Two boxes will appear in the centre of the screen, one for a 

high tone decision and one for a low tone decision. Using your mouse, please click on the 

appropriate box after the tone has been played.  

Upon clicking the “Continue” button below the range of possible tones will immediately 

play. Please be attentive as it is essential that you familiarize yourself with the range. Once 

the tones have played, two yellow boxes will appear in the response box. This indicates that 

the trials will begin in 2 seconds. 

During the trials you will have 2 seconds after the tone is played in which to respond. Once 

you have responded the next trial will immediately begin.  

Once the training trials are complete a box will appear. When this occurs please raise your 

hand to let the examiner know. With the researchers approval you may then continue onto 

the main trials. 

Remember, these trials are simply designed to familiarize you with the pace and format of 

the main trials. Consequently, no feedback is offered during the training. 

Do you have any questions before you start? 

Main Trial Instructions: Displayed on screen prior to main trials. Words in bold appeared 

bold on screen. 

The previous training trials familiarized you with the pace and format of the task. The 

following 400 experimental trials are exactly the same as the training trials; however this 

time the feedback will aid you in optimizing your performance. 

Your goal is to make as many correct decisions as you can. The green feedback light will 
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flash above the response buttons to indicate whether the choice you made was correct. For 

example, if you click on the high button, and the light flashes over the low button, you have 

made an incorrect response.  

It is essential that you understand these tasks are very difficult. Consequently you will not 

correctly categorize every tone on every trial. The feedback is designed to help you achieve 

the best possible outcome, so it is imperative that you take note of it. 

The probability of a high tone, or a low tone, is 50% for each trial. This means that each trial 

is independent, and there is no benefit in trying to guess what tone may be presented next 

based on previous tones you have heard. Rather, utilise the feedback to improve your 

decision making. 

As with the training trials, upon clicking the “continue” button you will be given a 2 second 

warning before the trials begin. Additionally, you will again have 2 seconds to respond after 

hearing the tone. After 200 trials a box will pop up indicating that you are half way through 

the trials, at which point you may rest, stretch, or get up for a couple of minutes. When you 

are ready to proceed click the “okay” button to commence the next series of trials.  

Try and respond on every trial. If for any reason you are uncertain and have to make a guess, 

please try and spread your guesses equally across the high and low responses. And finally, it 

cannot be stressed enough the importance of following the feedback. Remember, the 

feedback light will help you achieve optimal results.  

Do you have any questions before you start? 
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Appendix F 

ANOVA Tables and Calculation of Eta Square
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Table F.1: ANOVA table for d′ob with eta squared calculated. 

Source of Variation df SS MS F η2
 

Between      

   Difficulty 1 20.51 20.51 524.31 0.92 

   Feedback 1 0.066 0.066 1.68 0.003 

   Interaction 1 0.131 0.131 3.35 0.006 

Within (error) 40 1.565 0.039  0.07 

Total 43 22.27    

 

Table F.2: ANOVA table for A′ with eta squared calculated. 

Source of Variation df SS MS F η2
 

Between      

   Difficulty 1 0.311 0.311 1023.17 0.94 

   Feedback 1 0.003 0.003 10.79 0.009 

   Interaction 1 0.004 0.004 13.18 0.01 

Within (error) 40 0.12 0.00  0.04 

Total 43 0.331    

 

The calculation of eta squared 

The default estimate of effect size provided by SPSS is partial eta squared. The issue with 

the estimate is that it effectively accounts for more than 100% of the total variance. Eta 

squared is the preferred alternative, and provides an estimate of the variance accounted for 

by a specific variable. Levine and Hullett (2002) provide the formula for eta squared: 

total

between

SS

SS
2  

Conveniently, eta squared can be calculated from the SPSS output tables. All that is needed 

is the SS for the between groups variables, and the total SS, both of which are provided by 

SPSS. For example, using table C.1, difficulty accounts for 92% of the total variance, where: 

92.0
27.22

51.20
)(2 difficulty  
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Table G.1: Auto-correlations for all observers in condition d′th = 1, events KR. 

Lag Ob.13 Ob.28 Ob.9 Ob.2 Ob.38 Ob.8 Ob.21 Ob.20 Ob.19 Ob.4 Ob.37 M     SD Range 

1 0.00 -0.11 -0.24 -0.06 -0.05 -0.11 -0.19 -0.25 -0.17 0.05 0.09 -0.09 0.11 -0.25 - 0.09 

2 -0.06 0.00 0.02 -0.09 -0.03 -0.01 0.14 -0.01 -0.08 0.00 0.07 -0.01 0.07 -0.09 - 0.14 

3 0.11 0.09 0.04 0.00 0.01 0.06 -0.10 0.00 0.04 0.08 0.11 0.04 0.06 -0.10 - 0.11 

4 0.05 -0.07 0.00 -0.01 0.04 -0.03 0.05 0.05 -0.03 -0.01 -0.08 0.00 0.05 -0.08 - 0.05 

5 0.02 0.13 -0.06 -0.06 -0.06 -0.03 -0.02 -0.05 0.00 0.07 -0.08 -0.01 0.06 -0.08 - 0.13 

 

 

Table G.2: Auto-correlations for all observers in condition d′th = 1, ideal KR. 

Lag Ob.27 Ob.24 Ob.32 Ob.14 Ob.26 Ob.5 Ob.7 Ob.10 Ob.40 Ob.34 Ob.41 M SD Range 

1 -0.02 -0.17 -0.09 -0.07 -0.07 -0.11 -0.22 -0.20 -0.16 -0.29 -0.04 -0.13 0.08 -0.29 - -0.02 

2 0.02 -0.04 0.01 -0.07 -0.07 -0.11 -0.02 -0.01 -0.05 0.03 -0.04 -0.03 0.04 -0.11 - 0.03 

3 0.15 0.08 0.10 0.15 0.14 0.09 0.04 0.01 0.07 -0.01 0.08 0.08 0.05 -0.01 - 0.15 

4 -0.04 -0.09 -0.05 -0.05 0.01 0.01 -0.07 -0.04 -0.04 -0.08 -0.06 -0.05 0.03 -0.09 - 0.01 

5 0.05 0.02 -0.02 0.04 0.03 0.01 -0.04 -0.03 -0.03 0.00 0.01 0.00 0.03 -0.04 - 0.05 
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Table G.3: Auto-correlations for all observers in condition d′th = 3, events KR. 

Lag Ob.29 Ob.44 Ob.3 Ob.22 Ob.33 Ob.1 Ob.18 Ob.16 Ob.6 Ob.17 Ob.39 M SD Range 

1 -0.28 -0.35 -0.28 -0.22 -0.30 -0.19 -0.28 -0.23 -0.15 -0.25 -0.16 -0.24 0.06 -0.35 - -0.15 

2 0.01 0.03 0.01 0.08 0.06 -0.04 0.06 0.03 -0.05 -0.06 -0.05 0.01 0.05 -0.06 - 0.08 

3 0.06 -0.01 0.02 0.03 0.03 0.00 0.08 0.10 0.07 0.10 0.09 0.05 0.04 -0.01 - 0.10 

4 -0.01 0.06 0.04 -0.01 0.02 0.08 -0.01 0.00 0.07 0.05 -0.04 0.02 0.04 -0.04 - 0.07 

5 0.05 -0.02 0.02 0.06 0.00 -0.05 0.05 0.06 0.03 0.01 0.05 0.02 0.04 -0.05 - 0.06 

 

 

 

Table G.4: Auto-correlations for all observers in condition d′th = 3, ideal KR. 

Lag Ob.23 Ob.42 Ob.12 Ob.11 Ob.36 Ob.15 Ob.31 Ob.35 Ob.30 Ob.25 Ob.43 M SD Range 

1 -0.23 -0.28 -0.28 -0.21 -0.31 -0.15 -0.26 -0.26 -0.16 -0.20 -0.16 -0.23 0.06 -0.31 - -0.15 

2 0.03 0.06 0.01 -0.04 0.06 0.01 0.06 -0.19 -0.05 -0.03 0.04 0.00 0.07 -0.19 - 0.06 

3 0.07 0.05 0.05 0.07 0.04 0.11 -0.03 0.07 0.10 0.02 0.00 0.05 0.04 -0.03 - 0.11 

4 0.01 0.02 -0.04 0.02 0.01 0.01 0.05 0.05 -0.01 0.07 0.04 0.02 0.03 -0.04 - 0.07 

5 0.02 -0.04 0.02 -0.02 0.01 0.00 -0.04 -0.05 0.03 0.02 0.04 0.00 0.03 -0.05 - 0.04 
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Appendix H 

Response Distributions and Error Plots 
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Events d’ = 1 

 

Table H.1: Distribution table for Observer 2. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

High 
           2 8 19 24 26 29 17 7 3 1 

       1 3 7 10 11 15 13 1 1 2     

Low 
   1 3 9 18 26 30 25 14 6 3         

           4 9 14 15 12 6 3 1     

     

 

 

Table H.2: Distribution table for Observer 38. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

High 
           2 9 15 28 28 27 15 7 2 1 

       1 3 7 9 15 11 11 3 3 2 1   

Low 
   1 3 9 16 27 28 25 10 3 2 1       

         2 3 11 14 20 15 7 2 1     
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Figure H.1: Error distributions for Observer 2, with relative statistics describing accuracy (d′ and criterion location (c). 

Figure H.2: Error distributions for Observer 38, with relative statistics describing accuracy (d′ and criterion location (c). 
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Ideal d’ = 1 

 

Table H.3: Distribution table for Observer 27. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

High 
               8 34 38 29 18 9 3 1 

       1 3 9 18 22 5 1 1         

Low 
   1 3 9 18 30 38 31 5 1           

               7 25 17 9 3 1     

 

 

 

Table H.4: Distribution table for Observer 24. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

High 
           1 3 12 25 35 28 17 9 3 1 

       1 3 8 15 18 14 4 2 1       

Low 
   1 3 9 17 28 35 32 12 2           

         1 2 4 7 18 16 9 3 1     

9
6

 

  

9
8

 
 



99 

 

 

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Er
ro

rs
 (n

)
Stimulus

Ob.27: d' = 1; c = -0.02

Low

High

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
r
r
o
r
s 

(n
)

Stimulus

Ob.24: d' = 0.95; c = 0.04

Low

High

Figure H.3: Error distributions for Observer 27, with relative statistics describing accuracy (d′) and criterion location (c). 

Figure H.4: Error distributions for Observer 24, with relative statistics describing accuracy (d′) and criterion location (c). 
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Events d’ = 3 

 

Table H.5: Distribution table for Observer 29. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

High 
                   4 14 29 39 37 30 18 9 3 1   

               1 3 5 4 1                 

Low 
   1 3 9 18 30 39 38 27 14 4                   

               1 3 4 5 3 1 2             
 

 

 

Table H.6: Distribution table for Observer 44 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

High 
                 1 7 9 23 30 34 29 19 9 3 1   

               1 2 2 9 7 9 5 1           

Low 
   1 3 9 18 30 37 32 20 9 4   1               

             2 7 10 9 5 3                 
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Figure H.5: Error distributions for Observer 29, with relative statistics describing accuracy (d′) and criterion location (c). 

Figure H.6: Error distributions for Observer 44, with relative statistics describing accuracy (d′) and criterion location (c). 
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Ideal d’ = 3 

 

Table H.7: Distribution table for Observer 23. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

High 
                   3 12 29 38 39 30 18 9 3 1   

               1 3 6 6 1 1               

Low 
   1 3 9 17 30 39 36 26 14 2                   

         1     3 4 4 7 3 1               

 

 

 

Table H.8: Distribution table for Observer 2. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

High 
                   4 13 21 32 34 29 18 8 2 1   

               1 3 4 5 9 7 5 1   1 1     

Low 
   1 3 9 18 28 35 30 20 10 4                   

           1 4 9 10 8 5 3 1               
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Figure H.7: Error distributions for Observer 23, with relative statistics describing accuracy (d′) and criterion location (c). 

Figure H.8: Error distributions for Observer 42, with relative statistics describing accuracy (d′) and criterion location (c). 
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