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Abstract

The purpose of �sheries management is to achieve a sustainable development of the activity,

so that future generations can also bene�t from the resource. However, the optimal harvest-

ing strategy usually maximizes an economically important objective function formed by the

harvester which can lead to the extinction of the resource population. Therefore, sustain-

ability has been far more di¢ cult to achieve than is commonly thought; �sh populations are

becoming increasingly limited and catches are declining due to overexploitation.

The aim of this research is to determine an optimal harvesting strategy which ful�lls the

economic objective of the harvester while maintaining the population density over a pre-

speci�ed minimum viable level throughout the harvest. We develop and investigate the har-

vesting model in both deterministic and stochastic settings. We �rst employ the Expected

Net Present Value approach and determine the optimal harvesting policy using various op-

timization techniques including optimal control theory and dynamic programming. Next we

use real options theory, model �sh harvesting as a real option, and compute the value of the

harvesting opportunity which also yields the optimal harvesting strategy. We further extend

the stochastic problem to include price elasticity of demand and present results for di¤erent

values of the coe¢ cient of elasticity.
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Chapter 1

Introduction

Fisheries management is a complex process and requires the integration of resource biology

and ecology with socioeconomic and institutional factors a¤ecting the behaviour of harvesters

and policy-makers (ecologists). According to the Food and Agriculture Organization of the

United Nations (FAO, 2007), in the year 2005, about 50% of the �sh stock under observation

experienced overexploitation or depletion. These statistics re-iterate the fact that �sheries

need to be managed with an e¤ective and carefully-de�ned objective in order to prevent

over�shing and to allow the depleted stock to replenish.

1.1 Harvesting: deterministic viewpoint

There are several con�icting objectives at play in �sheries management. As pointed out by

Hilborn & Walters (1992), excluding recreational �shing, these objectives can be classi�ed

as: biological and economic, and both can be explained on the basis of classic deterministic

models, as described below.

Biological objective

The traditional objective for biologists has been the Maximum Sustainable Yield (or MSY ).

The concept of MSY can be illustrated most simply via a biological population undergoing

1
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deterministic growth as
dx

dt
= F (x); (1.1)

where x = x(t) denotes the biomass of the �sh population at time t and F (x) is the biological

net growth rate. For the logistic growth, the function F (x) is given by

F (x) = rx
�
1� x

K

�
;

where K > 0 is the environmental carrying capacity and r > 0 is the intrinsic growth rate

(Clark, 1990 provides a rigorous treatment of logistic growth function along with its solution).

For logistic growth, Equation (1.1) transforms to

dx(t)

dt
= rx(t)

�
1� x(t)

K

�
: (1.2)

Equation (1.2) can be integrated using separation of variables as follows:Z
dx(t)

rx(t)
�
1� x(t)

K

� =

Z
dt

)
Z

dx(t)

x(t) (K � x(t)) =

Z
r

K
dt;

and the solution is obtained as

x(t) =
K

1 +
�
K�x(0)
x(0)

�
e�rt

: (1.3)

Furthermore, Equation (1.2) possesses two equilibrium points: 0 and K; where 0 corresponds

to unstable equilibrium and K corresponds to asymptotically stable equilibrium. When the

stock level is below K; dxdt > 0 and the population rises towards K. When the stock level is

above K; dxdt < 0 and the population declines towards K: The growth rate F (x) is maximum

at x = K=2 and the maximum value for F (x) is rK=4, which is obtained by substituting

x = K=2 in Equation (1.2).

Figure 1.1 shows the logistic growth curve F (x) and Figure 1.2 illustrates the solution for

the logistic growth equation; the population increases (or decreases) asymptotically towards

its carrying capacity K depending on the initial level.
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Figure 1.1: Logistic growth curve, F (x): the growth rate is maximum when the population level is at

half its carrying capacity.
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Figure 1.2: Logistic solution curve: the stock approaches its carrying capacity K asymptotically. If

the initial population level x(0) is below K then the stock increases towards K, whereas, if x(0) is

above K then the stock decreases towards K.
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When the population is harvested at a rate h(t), the growth equation (1.1) takes the form

dx

dt
= F (x)� h(t; x): (1.4)

If the population is harvested at a constant rate (or yield) h then the logistic growth model

(1.2) becomes
dx

dt
= rx

�
1� x

K

�
� h: (1.5)

There are two equilibria for Equation (1.5), given by

xmax =
K+

q
K2� 4hK

r

2 > K
2

xmin =
K�

q
K2� 4hK

r

2 < K
2

9>>=>>; ; provided that h <
rK

4
: (1.6)

Figure 1.3 illustrates the population growth under a constant harvesting rate h; where we

have plotted three scenarios for the harvest rate: h < rK
4 ; h =

rK
4 ; and h >

rK
4 . We now

investigate the behaviour of the equilibrium points xmax and xmin given by (1.6) for h < rK
4 .

� If at any time the population level x(t) < xmin then dx
dt < 0 and the population will

become zero (the species would become extinct) in �nite time.

� If at any time the population level x(t) is such that xmin < x(t) < xmax then the

population will approach the stable equilibrium xmax:

� If at any time the population level x(t) > xmax then dx
dt < 0 and the population will

decline towards xmax:

The above analysis shows that xmin is an unstable equilibrium point while xmax is a stable

equilibrium point.

If h = rK
4 then xmax = xmin =

K
2 ; thus there is only one equilibrium point in this case; F (x)

is also at its maximum, equal to rK
4 . The equilibrium point K=2 is semistable and there are

again three possibilities:

� If at any time the population level x(t) < K=2 then the population becomes zero.

� If at any time the population level x(t) = K=2 then the population always stays at that

level.
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� If at any time the population level x(t) > K=2 then the population declines towards

K=2:

If h > rK
4 then dx

dt < 0; always, and the population will become zero in �nite time.

Population, x [tonnes]

R
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e 
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ro
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F(

x)
   

 [t
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ne
s/

ye
ar

]

h < rK/4

h > rK/4

h = rK/4

x
min

x
maxK/2

Figure 1.3: The population growth under a constant rate of harvest, h. There are two non-zero

equilibria when h < rK=4: xmin (unstable equilibrium) and xmax (stable equilibrium); the �sh-stock

collapses if it falls below xmin. There is one semi-stable non-zero equilibrium when h = rK=4; that

is at x = K=2; here the biological growth is at its maximum, equal to rK=4: There is no non-zero

equilibrium when h > rK=4; dx=dt < 0 always and the resource stock eventually becomes extinct.

Harvesting at rate rK4 ; when the resource stock is at exactly half its carrying capacity
�
K
2

�
and

at its maximum growth rate
�
rK
4

�
, allows the population to remain at that level inde�nitely

since dx
dt = 0. This particular yield value is the MSY , denoted by hMSY : Thus,

hMSY = maxF (x) =
rK

4
:

The foregoing mathematical analysis re�ects the viewpoint of most biologists who consider a

resource to be overexploited when the population size has been reduced to a level below the

population level at MSY .
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In general, the rate of harvest h(t) depends on the capability of the �shing �eet. This includes

�shing gear, boats, and crew, to name a basic few. These components have to be combined

and there are several factors that can be considered (Clark, 1985). In this thesis we will focus

on the following two:

� E¤ort E(t): The number of standardized �shing vessels �shing at a given time, with

unit SFU (Standardized Fishing Unit).

� Catchability q: The ratio of �sh caught per SFU per unit time, with unit (SFU)�1(unit

of time)�1. This represents environmental factors that limit (or enhance) the ability to

harvest the resource.

The ratio of yield (or catch) to e¤ort, i.e. h(t)
E(t) , is an indication of the number of �sh caught

by the �eet, i.e. qx(t). Consequently,

h(t) = qE(t)x(t): (1.7)

Substituting for h(t) from Equation (1.7) into Equation (1.4) we obtain the growth dynamics

under harvesting as
dx

dt
= F (x)� qE(t)x(t): (1.8)

For logistic growth, Equation (1.8) becomes

dx(t)

dt
= rx(t)

�
1� x(t)

K

�
� qE(t)x(t): (1.9)

The model given by Equation (1.9) is known as the Schaefer model after the biologist M.

B. Schaefer (Schaefer, 1957) who �rst proposed it as a realistic representation of �sh growth

under harvesting.

As discussed in Eide et al. (2003), some empirical works (such as those on Northeast Arctic

cod harvest) employ the Cobb-Douglas function:

h = qE�x� ;

where � denotes the e¤ort-output elasticity giving % increase of catch h with 1% increase of

�shing e¤ort; � denotes stock-output elasticity giving % increase of catch h with 1% increase

of stock biomass. For cod �sheries, � � 0 and 0 � � � 1.
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Considering E to be a constant in the Schaefer model, Equation (1.9) gives a non-zero equi-

librium point at

xeqm = K

�
1� qE

r

�
where E <

r

q
.

If E > r
q then xeqm < 0 and the population is driven to extinction. The equilibrium harvest,

denoted by hSY ; is called the sustainable yield and is given by the harvest at the equilibrium

point x = xeqm, i.e.
hSY = qExeqm = qKE

�
1� qE

r

�
: (1.10)

The e¤ort maximizing the sustainable yield hSY is obtained as EMSY =
r
2q ; the Maximum

Sustainable Yield is again hMSY = hSY jE=EMSY
= rK

4 . Figure 1.4 illustrates the plot of the

sustainable yield hSY versus the e¤ort E. It is a parabolic curve, given by hSY = qEK� q2E2K
r

with the MSY at
�
r
2q ;

rK
4

�
. The sustainable yield increases with e¤ort up to the point of

Maximum Sustainable Yield, E = r=2q, falling thereafter as �shing e¤ort increases. However,

the rise in E above r=2q does not cause an immediate drop in the sustainable yield hSY . The

decline in hSY (as observed in the graph) is due to the long-run e¤ect of the increased e¤ort

which results in decreased �sh population and, consequently, diminished harvest.

Effort, E [SFU]

Su
st

ai
na

bl
e 

yi
el

d,
 h

sy
   

 [t
on

ne
s/y

ea
r]

r/2q at MSY

Figure 1.4: Sustainable yield hSY versus e¤ort E; hSY increases with E while E � EMSY , a further

increase in E results in a drop in hSY :
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The logistic growth model, F (x) = rx
�
1� x

K

�
, is a pure compensation model (Clark, 1990),

that is, F (x)x is a decreasing function of x; here Equation (1.8) exhibits a unique non-zero

stable equilibrium. Models for which F (x)
x is an increasing function of x; at least for certain

values of x, are known as depensation models. In this case, Equation (1.8) exhibits multiple

equilibria; there exists an unstable equilibrium population level, such that, if the stock level

falls below this unstable equilibrium point then the population declines to zero. However,

there is a possibility to revive the stock to a sustainable level by reducing e¤ort substantially.

The depensation models which exhibit irreversibility in population growth are called critical

depensation models. These models are characterized by a critical population threshold, such

that, if the stock falls below this threshold then it undergoes an irreversible decline (to zero)

and cannot be recovered even if harvesting is ceased. This critical threshold is called the

minimum viable population level. A good description of depensation models can be found in

Levy et al. (2006) and Clark (1990).

Economic objective

The incorporation of economic considerations into resource harvesting models leads to the

subject called bioeconomics. One of the �rst economic models was developed by the Canadian

economist Gordon (1954), based on Schaefer�s model; that model introduces the concept of

economic over�shing in open-access �sheries. An open-access �shery is one in which there is

no regulation and �shing is uncontrolled. Gordon�s model establishes that the net revenues

(or Sustainable Economic Rent) derived from �shing are a function of Total Sustainable

Revenues (TSR) and Total Costs (TC), given by

Sustainable Economic Rent = TSR� TC

or alternatively; Sustainable Economic Rent = phSY � cE; (1.11)

where p is the (constant) price per unit harvest, hSY is the sustainable yield and c is the

(constant) cost per unit e¤ort. The cost per unit e¤ort includes �xed costs, variable costs

and opportunity costs of labour and capital. Fixed costs are independent of �shing opera-

tions (depreciation, administration and insurance costs), whereas variable costs are incurred

when �shers go �shing (fuel, bait, food and beverages, etc.). Opportunity costs are the net

bene�ts that could have been achieved in the next best economic activity, i.e. other regional
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�sheries, capital investment or alternative employment, and thus must be integrated into cost

estimations.

Gordon assumes an economic equilibrium, in addition to a biological equilibrium, to ob-

tain the long-term yield of the �shery. This equilibrium occurs when TSR equals TC and

thus Sustainable Economic Rent is zero; implying that there will be no stimulus for entry

or exit to the �shery. The yield thus established provides a simultaneous equilibrium in both

an economic and a biological sense, leading to bioeconomic (bionomic) equilibrium (BE).

The name bionomic is due to both biological and economic parameters present in the model.

The stock level xBE corresponding to the bionomic equilibrium is obtained by equating the

Sustainable Economic Rent in Equation (1.11) to zero, to give

xBE =
c

pq
:

Since the biomass is at equilibrium, the corresponding bionomic e¤ort EBE can be determined

by equating the growth rate (given by Equation (1.9)) to zero and using x(t) = xBE ; this

yields

EBE =
r

q

�
1� c

pqK

�
:

It follows that if the �shing cost to price ratio is such that c
p > qK; the �shery will not be

exploited at all.

The Maximum Economic Yield, denoted by hMEY ; is the sustainable yield maximizing the

Sustainable Economic Rent: We now derive an expression for hMEY : Substituting for hSY

from Equation (1.10) into Equation (1.11) we get

TSR� TC = pqEK

�
1� qE

r

�
� cE: (1.12)

From Equation (1.12), the maximum Sustainable Economic Rent occurs at �shing e¤ort

EMEY =
r

2q

�
1� c

pqK

�
=
EBE
2

:
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Now Maximum Economic Yield is the sustainable yield with e¤ort equal to EMEY (maximiz-

ing Sustainable Economic Rent). Substituting E in Equation (1.10) with EMEY we obtain

the Maximum Economic Yield as

hMEY = hSY jE=EMEY
= qEMEYK

�
1� qEMEY

r

�
:

Hence the long-term sustainable biomass and yield of the �shery can be built by specifying

the corresponding levels of �shing e¤orts: EBE , EMSY , and EMEY .

The plot of TSR versus e¤ort E is a parabolic curve, given by TSR = pqKE
�
1� qE

r

�
; and

the plot of TC (= cE) versus E is a straight line (see Figure 1.5). Where they intersect is

the bionomic equilibrium e¤ort, EBE . The e¤ort at MSY is also shown in the middle of the

E axis
�
EMSY =

r
2q

�
, as well as the e¤ort at MEY

�
EBE
2

�
.

E f fo r t, E [S F U ]

TS
R;

 T
C

[$
]

T S R > T C

T S R < T C

B E

T S R = T C

T S R
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T S R  T C
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m a x i m u m
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Figure 1.5: The evolution of total sustainable revenue TSR and total costs TC with e¤ort E. The

intersection of TSR curve and TC line corresponds to bionomic equilibrium, BE.

Gordon�s basic argument is that in an open-access �shery the e¤ort tends to approach an

equilibrium e¤ort EBE , called the bionomic equilibrium e¤ort, at which TSR = TC. A

brief analysis shows that if E > EBE then TSR < TC (Sustainable Economic Rent is

negative) and if E < EBE then TSR > TC (Sustainable Economic Rent is positive).
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The former case implies that some �sheries are losing money and therefore drop out of the

market, thus decreasing the total e¤ort. Whereas, if E < EBE ; �shing is pro�table which

encourages new �sheries to join the market. Thus there should be a tendency to approach

the bionomic equilibrium. Bionomic equilibrium describes the scenario in which economic

over�shing occurs and the Sustainable Economic Rent is precisely zero. But if �shing e¤ort

were to be reduced, the Sustainable Economic Rent would become positive. The �shing

e¤ort maximizing the Sustainable Economic Rent; EMEY ; is precisely half of the e¤ort

corresponding to bionomic equilibrium, EBE : Figure 1.5 shows EBE to be higher than EMSY :

In practice, EBE can be higher than or lower than EMSY ; depending on �shing costs and �sh

price (Clark, 2006). When EBE > EMSY ; the harvest rate exceeds hMSY and the resulting

population level xBE is below K=2; this situation is referred to as biological over�shing and

leads to the depletion of the resource.

The economic model developed by Gordon is also called the Gordon-Schaefer model as it

takes into account the following assumptions made by Schaefer:

� The population is at equilibrium.

� The catch per unit of e¤ort (CPUE) is a relative index of population abundance:

CPUE = h
E = qx. This implies that, for a �xed �shing e¤ort, an increase in stock

biomass leads to an increase in the catch at the same rate.

� The stock is constrained by a constant carrying capacity of the environment.

� The stock will respond immediately to variations in the magnitude of e¤ort exerted;

time-delays are ruled out.

� Fishing technology is constant; this is re�ected primarily in the catchability-coe¢ cient

q which is assumed to be a constant.

� Unit prices and costs are constant and therefore independent of the level of e¤ort

exerted.
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In addition to the assumptions listed above, Gordon made another assumption as follows:

� TC are proportional to e¤ort and thus a change in the slope of the TC curve will

determine changes in BE and MEY levels.

There are certain limitations to the Gordon-Schaefer model:

� All processes a¤ecting stock productivity (e.g. �sh growth, recruitment and mortality)

are subsumed in the e¤ective relationship between e¤ort and catch. The �sh stock x

in the production function qEx lumps together young recruits and more mature �sh;

factors related to age are not taken into account.

� The catchability coe¢ cient q is not always constant and may di¤er according to the

available resources of the �shing �eet. Improvement in technology and �shing power

determines that q often varies through time.

� CPUE is not always an unbiased index of stock abundance, i.e., the average CPUE

does not always coincide with its estimated value. This is especially relevant for re-

sources with patchy distribution (non-uniform spatial distribution) and without the

capacity of redistribution in the �shing ground once �shing e¤ort is exerted.

� Variations in the spatial distribution of the stock and di¤erential allocation of �shing

e¤ort in the short term are not usually taken into account. The spatial distribution

of the stock is assumed to be homogeneous which results in uniform allocation of the

�shing e¤ort. However, a di¤erential allocation of �shing e¤ort is more realistic as the

resource stock is patchily distributed; biological parameters are extremely dependent

on environmental conditions and change values even within small distances.

� Technological interdependencies can arise from the activity of �shing �eets with di¤erent

�shing power, and even di¤erent e¤ort costs, over a single �sh stock; these are not

accounted for.

� It becomes di¢ cult to distinguish whether population �uctuations are due to �shing

pressure or natural processes. In some �sheries, �shing e¤ort could be exerted at levels

greater than twice the optimum (Clark, 1985).
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Critique of MSY

There is substantial literature in the �eld of MSY and the related economic theory. Re-

call that in an open-access �shery the �shing e¤ort approaches the bionomic equilibrium

e¤ort, EBE ; and the corresponding population level is maintained at xBE ; when biological

over�shing occurs, xBE < K=2 (the population level at MSY ). According to the theory of

bionomic equilibrium, the �shing industry should gain by reducing e¤ort. As the e¤ort is

reduced and the population is allowed to grow from xBE to K
2 , the catch grows accordingly

with lesser e¤ort and the consumer bene�ts by paying less. Reduction of e¤ort, however, is

not possible in an open-access �shery. If an open-access �shery is being harvested at MSY ,

new entrants can join the �shery with a belief that they can either make individual gains

or share the loss with other entrants. Hardin (1968) in his famous essay called this situ-

ation "tragedy of the commons". Such a situation arises not only in �sheries but in any

exploited biological resource where open access is granted. In order to alleviate this problem,

Roughgarden & Smith (1996) recommend a target stock at 3K4 and taxation of revenues from

any �sh caught when the stock is below the target �gure.

Larkin (1977) argued for the abandonment ofMSY by challenging its goal on several grounds:

it focuses on the �shery�s target species ignoring other species and puts the other less pro-

ductive species at a risk of extinction; it is based on the bene�ts of �shing and does not

concentrate on the costs; it does not account for spatial variability in productivity (also

noted by Botsford et al., 1997).

Furthermore, as pointed out by Levy et al. (2006), MSY guidelines are based on average

year stock growth rates and are in�exible since they fail to take into consideration stock

�uctuations, which are sometimes caused by MSY policies themselves. This renders �sh

harvest vulnerable to the "ratchet e¤ect". The ratchet e¤ect occurs when, after a sequence of

relatively stable years in �shing, a few good years (with above average stock growth) provoke

the harvesters to invest more in their �shing capacity (e.g. specialized boats and gear).

However, when the �shing conditions and stock growth return to normal or below normal, the

�shing industry seeks help from the government in terms of additional quotas and increased
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allowable catches . There is no disinvestment of �shing capacity due to subsidies o¤ered by

the government and this encourages overharvesting during poor periods (Ludwig et al., 1993).

Inevitably, over�shing reduces biological populations substantially.

An age-structured model

We now discuss the Beverton-Holt model, which is a deterministic age-structured model intro-

duced by Beverton & Holt (1957). Let x(t) denote the number of �sh at time t and suppose

that a constant recruitment of �sh, R, occurs at time t = � : Recruitment refers to the �sh

that have reached harvestable (mature) age. Thus age-structure enters the model through

recruitment. Assuming the natural �sh mortality to be a constant M , we get the growth

dynamics as

dx

dt
= �Mx;

x(�) = R:

If a variable mortality due to �shing, F (t), is also considered then the growth equation

becomes

dx

dt
= �(M + F (t))x;

along with x(�) = R:

Drawing an analogy with the Gordon-Schaefer model, F (t) = qE: Thus the function F (t) is

now the control variable specifying the intensity of �shing. Let w(t) represent the average

�sh mass at time t. The total biomass at time t is then B(t) = x(t)w(t) and the yield in

biomass is Y (t) = F (t)x(t)w(t) = F (t)B(t).

Next we describe the economic optimization of the net revenue according to Clark et al. (1973)

and Hannesson (1975). Let p denote the �xed �sh price per unit mass, � the discount rate

and c the cost per unit harvesting. The objective is to maximize the net present value:

1Z
0

e��tF (t) [pB(t)� c] dt:
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The state variable in this case is B(t) and the state equation is

dB

dt
= B(t)

� :
w

w
�M � F (t)

�
:

The constraint on �shing intensity is given by

0 � F (t) � Fmax:

The solution to this problem is of bang-bang type (see Chapter 2 for a description of this

type of solutions). At time t = 0 there is not enough �sh of mature size which renders

�shing unpro�table. Therefore F (t) = 0 and no �shing is carried out until �sh grow big

enough to make harvesting pro�table. Then at some later time, before the biomass reaches

its maximum, �shing commences at maximum intensity. It appears then that introducing

age structure in the bioeconomic models leads to the conclusion that periodic (pulse) �shing

might be a preferable strategy for a �shery.

The independence of stock and recruitment in the Beverton-Holt model is one major unre-

alistic assumption that limits its utility as a bioeconomic model. In practice, estimates of

the weight of the �sh, w(t), as well as the total mortality, M + F (t); are available through

relevant data. However the separate estimates of F (t) and M; requiring data on varying

levels of harvesting, are not easily available.

Other literature

A large body of literature has focused on the optimal harvesting policies when the resource

stock follows deterministic growth (summarized in Clark, 1990). The Schaefer model and

the economic model developed by Gordon, discussed in Section (1.1), are classic examples of

deterministic models based on density-dependent growth.

Considerable research has gone into deterministic models with density-dependent growth and

linear harvesting costs. Under general assumptions, including a pro�t function that is linear in

harvest, the pro�t-maximizing policy is obtained as bang-bang which recommends harvesting
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at maximal rate when the population is above a critical threshold and at zero rate if the

population falls below the critical level (Clark, 1990). Similar conclusions were drawn by

Spence & Starrett (1975) for optimal control problems where the solution approaches some

stationary value for the state variable. The approach to this stationary value could be more

rapid or less rapid depending on the functions and parameters associated with the problem.

For some problems, this approach is most rapid and the corresponding solution path is called

most rapid approach path (mrap). The necessary condition for the existence of amrap solution

is that the objective function should be linear in the time-derivative of the state variable. As

an example, the authors maximized the present value of the pro�t earned by a �rm harvesting

a renewable natural resource stock. Assuming the cost function to be linear in e¤ort, they

found that the solution was a mrap to an optimal equilibrium for the stock level.

The deterministic optimal harvesting problem with linear costs was also investigated by

Clark (1979), Clark & Munro (1975), Reed (1979) and Clark et al. (1979). The computation

of the optimal harvesting policy for an objective function which is linear in state (stock-level)

and control (�shing-e¤ort) is illustrated in Chapter 2.

1.2 Harvesting: stochastic viewpoint

The literature discussed in the previous section concentrates on the optimal harvesting prob-

lem in a deterministic framework. The evolution of natural stocks, however, is seldom de-

terministic; it is subject to stochastic perturbations due to environmental and other factors.

Consequently, management strategies for these natural resources based upon deterministic

population dynamics models are oversimpli�ed. Moreover, in many models, the associated

cost structure assumes the price to be either �xed or a prescribed function and this is not

always realistic. These issues led to research in the area of stochastic growth and price dy-

namics. We now discuss the literature associated with harvesting in a stochastic environment.

The optimal rate of extraction when the resource stock follows stochastic growth has been

studied extensively. The book by Mangel (1985) discusses natural resource optimization
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in a random environment. Reed (1974) considered a discrete-time optimization model and

determined an optimal harvesting policy in a stochastic growth environment. The selling

price was assumed to be �xed, and successive unharvested population levels were assumed

to form a Markov chain. The cost of harvesting consisted of a �xed one-time set-up cost and

a marginal density-dependent harvest cost. An optimal harvesting policy maximizing the

expected net present value of the total pro�t earned over an in�nite time horizon was sought.

It was shown that there existed an optimal policy of type (S; s) with S < s; where S was a

critical threshold for the population. Initiating harvest when the population level was above

S resulted in non-negative revenues, however, the revenues could not cover the set-up cost

unless the stock-level was well above S: The level s was the smallest population level above

S at which the harvesting could be initiated pro�tably. Thus the optimal policy allowed a

harvest in any period if and only if the population level exceeded s; in that case, a harvest

down to level S could be made. If the set up cost was zero then harvesting could be initiated

pro�tably once the population level exceeded S; and therefore S was equal to s.

Gleit (1978) investigated a continuous-time harvesting model based on stochastic growth,

assuming the selling price to be a prescribed function independent of the harvest size. Instead

of directly maximizing pro�t, the present value of the utility received from the pro�t levels

was maximized. It was concluded that, keeping the population level �xed, the optimal harvest

increased with an increase in the variance of the growth rate whilst the expected utility of

the entire pro�t stream decreased.

Ludwig (1979) examined the e¤ect of small amounts of noise in the population growth on

the optimal harvesting policy. The price per unit harvest was assumed to be a �xed constant

and perturbation methods were employed to study the problem. The results obtained in that

paper were supplemented with numerical calculations in Ludwig & Varah (1979).

Lewis (1981) examined a discrete-time model for optimal harvesting with random growth

and stochastic price. Pindyck (1984) discussed the e¤ects of uncertainty in the growth rate

of renewable resources assuming that the price was given endogenously by a downward sloping

market demand curve; three di¤erent growth functions were used for analysis. It was found
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that, depending upon the growth function, the overall e¤ect of an increase in the variance of

stock �uctuations on the extraction rate could be to increase the extraction rate, decrease it,

or leave it unchanged.

In most of the above-mentioned models, the price was considered either to be �xed or to be a

known function, whereas in real-life situations the price evolves randomly. Anderson (1982)

investigated a continuous-time optimal harvesting problem with logistic growth and random

price dynamics; the expected utility of the pro�t was maximized. It was shown that an

increase in the variance of the price results in diminished �shing e¤ort.

Hanson & Ryan (1998) performed a numerical study of the e¤ect of random �uctuations in

price and population growth on the optimal solution, assuming costs to be quadratic in �shing

e¤ort. They introduced random price �uctuations through a multiplicative random process

that included both small continuous-time �uctuations (modelled by a Wiener process) and the

possibility of occasional, large random changes (characterized by Poisson processes). How-

ever, while performing simulations, the coe¢ cients of the Wiener increments were assumed to

be zero. They maximized the expected present value of the �ow of pro�t and found that the

random price �uctuations had a signi�cant impact on the optimal return whilst the optimal

e¤ort levels were relatively una¤ected.

Furthermore, harvesting in the presence of stochastic perturbations may reduce the stock

below a critical level (called minimum viable population level) from which recovery is im-

possible; this phenomenon is called critical depensation (described in Section 1.1). Next we

discuss the literature concerned with minimum viable population level.

Minimum viable population level and threshold harvesting

A survey of the sources of uncertainty in the stock growth together with an assessment of a

minimum viable population size is due to Sha¤er (1981). In that paper, a tentative de�nition

of minimum viable population level was proposed as:
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"A minimum viable population level for any given species in any given habitat is the smallest

isolated population having 99% chance of remaining extant for 1000 years despite the fore-

seeable e¤ects of demographic, environmental and genetic stochasticity, and natural catastro-

phes".

In a series of papers (Lande et al., 1995; Saether et al., 1996; Lande et al., 1997) the au-

thors considered two optimization criteria, the �rst being to maximize the expected cumu-

lative yield (denoted by Y ) before extinction, and the second to maximize the mean annual

yield, YT , where T denoted the mean time to extinction. They found that, in both cases,

the optimal policy was a generalized form of the bang-bang strategy. The �rst optimization

criterion recommended the carrying capacity as the optimal threshold, irrespective of the

form of expected dynamics and the magnitude of stochastic e¤ects; the second recommended

an optimal threshold depending upon the form of expected dynamics and the magnitude

of stochastic e¤ects. In another publication (Lande et al., 1994), the same authors argued

against economic discounting in the development of optimal strategies for sustainable use of

biological resources.

Theoretical studies of estimates of threshold management policies to be set as targets of �sh-

eries management are due to Mace (1994) and Quinn et al. (1990); a similar study based on

some real data is due to Myers et al. (1994). McDonald et al. (2002) analyzed a harvesting

model assuming the �shing costs to be inversely proportional to the stock level; the unit price

was assumed to be a linear function of harvest rate so that the resulting revenue function was

quadratic in rate of harvest. When the stock was above the minimum viable level, the opti-

mal policy corresponding to stochastic growth was seen to recommend a more conservative

harvest as compared with the optimal policy associated with deterministic growth.

Ludwig (1998) assumed a stochastic model for the resource population and compared various

management strategies in the presence of critical depensation. The conclusion was that

a strategy involving abrupt adjustment in harvest size, in accordance with �uctuations in

the stock density, results in a lower probability of early extinction as compared with other

strategies. This result seems to be in agreement with the bang-bang strategy of maximizing
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the discounted net return from harvesting if the stock was above a critical threshold and not

harvesting at all otherwise, as shown in Clark (1990) and Reed (1979).

1.3 Overview of the thesis

In this thesis, we study a bio-economic model of a �shery that is being harvested continuously

by a sole harvester, assuming that the population consists of a single species of �sh and that

the growth is only density-dependent. The work is based on the Schaefer model as it e¤ectively

incorporates the biological features of �sh population, and has been widely used in literature

to represent density-dependent growth. The world has witnessed many �sheries collapsing

due to over-exploitation. We try to mitigate this problem by maintaining the population

above a minimum viable level throughout the harvesting period. The layout of the thesis is

as follows:

This chapter provides an introduction to �sh harvesting and discusses the key papers as-

sociated with this research. Chapter 2 presents some preliminary concepts from stochastic

calculus and optimization; these are required to formulate and solve the optimal harvesting

problem developed in later chapters. An optimal harvesting problem, linear in the control

variable, is also illustrated.

Chapter 3 investigates a deterministic model for harvesting with constant price per unit

harvest and costs quadratic in �shing e¤ort. The deterministic model is extended to its

stochastic version in Chapter 4. The model with random growth and constant price is treated

separately from the model with random growth and random price dynamics. In Chapters 3

and 4, the (expected) net present value of the total pro�t is maximized.

Chapter 5 formulates the optimal harvesting problem using real options theory. The re-

sults obtained using real options approach are compared with the solutions determined by

employing the net present value approach in Chapters 3 and 4.
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In Chapter 6, we introduce the concept of elasticity and reformulate the stochastic model

(from Chapter 4) to include price elasticity of demand. Finally, Chapter 7 concludes the thesis

with a summary of the work done; some directions for future research are also suggested.

Throughout the study, we perform sensitivity analyses of the optimal solution with respect

to various parameters present in the model. As we will note, the optimization problem being

studied from Chapter 3 onwards cannot be solved analytically and therefore we have to resort

to numerical methods. Appendices A, B and C include the working of the �nite-di¤erence

approximations for the numerical solution of the partial di¤erential equations obtained in this

study. The numerical solution is obtained using Matlab. The code can be made available

by contacting the author.

The emphasis of this thesis is on the pro�t-making aspect of �sheries. It is a thorough study

of the optimal harvesting policy and the pro�t earned by harvesting, focusing on quadratic

costs and conservation of �sh population by constraining the latter to always stay above a

critical threshold. The prime reason for using quadratic costs is that it allows us to derive

an analytical expression for the optimal e¤ort; the resulting solution is di¤erent from the

bang-bang solution which is usually obtained in the case of a linear cost function. Further

justi�cation for this assumption is provided in Chapter 3. The correlation between the �sh

growth and the price is usually ignored when modelling them as random variables; it is either

not considered or equated to zero while performing simulations. We model the correlation

explicitly and include it in the study while analyzing the �nal results. This thesis:

� Draws its basis from the literature discussed in this chapter and the literature associated

with real options (discussed in Chapter 5),

� Extends the work to cover some aspects which have not been explored by the existing

literature in full detail, and

� Presents new research, especially in the �eld of mathematical �nance (real options and

elasticity-modelling) and optimal harvesting.



Chapter 2

Background theory and application
to linear control in harvesting

In this chapter we collect some important material needed for solving the optimal harvesting

problem discussed in the next few chapters. The chapter proceeds as follows: Section 2.1

serves as an introduction to probability theory and stochastic calculus. In Section 2.2 we

discuss the calculus of variations and in Section 2.3 we describe optimal control theory, both

in a deterministic environment. We also solve a deterministic optimal harvesting problem,

with linear harvesting costs, using the above-mentioned approaches. In Section 2.4 we explain

the continuous-time dynamic programming technique in both deterministic and stochastic

settings. Finally, we demonstrate a solution to the stochastic optimal harvesting problem

with the costs linear in �shing e¤ort; the unit price is considered to be �xed and the growth

is random.

2.1 Fundamentals of Stochastic Calculus

In this section we provide an introduction to random variables and stochastic di¤erential

equations. A more rigorous treatment of this subject is provided by Billingsley (1995) and

Chung & AitSahila (2003).

22
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Measure and Probability Theory

A collection I of subsets of a sample space 
 is called a �-algebra (or a �-�eld) if:

(i) �;
 2 I where � is the empty set.

(ii) If A 2 I then A0 2 I where A0 is the complement of A.

(iii) I is closed under countable unions and intersections.

Any element of I is called a measurable set and (
; I) is called a measurable space.

A measure on a �-algebra I is de�ned as a non-negative, extended, real-valued function m

on I satisfying:

(i) m (�) = 0:

(ii) m (A) =
X
n

m(An)

where fAng is a countable collection of pairwise disjoint sets in I such that

A =
S
n
An 2 I:

It can be shown that m (A) is independent of choice of An: If m (
) = 1 then m is called a

probability measure on 
 and (
; I;m) is called a probability space.

A Borel �-algebra is a �-algebra generated by open sets and its elements are called Borel

sets. A function X from (
; I) to (R;B), where B is the Borel �-�eld of real numbers, is

called measurable if for any Borel set B 2 B the set f! : X(!) 2 Bg 2 I. Equivalently, for

all x 2 R, the set f! : X(!) � xg 2 I. This function X is called a random variable on (
; I).

The variance of a random variable X(t) quanti�es the dispersion of X(t) and is de�ned as

var [X(t)] = E [X(t)� E [X(t)]]2 ;

where E denotes the expectation operator. The square root of variance is called volatility ;

it measures the deviation of X(t) from its expected value. The covariance of two random

variables X(t) and Y (t) is de�ned as

cov [X(t); Y (t)] = E [X(t)Y (t)]� E [X(t)] E [Y (t)] :
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The correlation coe¢ cient between X(t) and Y (t) is given by

�XY =
cov [X(t); Y (t)]p

var [X(t)]
p
var [Y (t)]

The correlation coe¢ cient �XY is a dimensionless quantity, lying between [�1; 1] : The mag-

nitude of � speci�es the degree of interdependence between X(t) and Y (t): If � is zero then

X(t) and Y (t) are said to be uncorrelated.

A stochastic process X(t) is a collection of time-dependent random variables. Consider a

stochastic process X(t) which can assume values from a countable state space 
. Let It

denote the information available about X(t) up to time t, i.e., It = � (fX(s); 0 � s � tg).

Evidently, It � It+1 for all t. The family of information sets fIt : t 2 [0;1)g, modelling the

�ow of information, is called a �ltration. The stochastic process X(t) is called adapted to

the �ltration It if its values up to and including time t are determined by the information

provided by It. A stochastic process is called non-anticipative if it is independent of the

future, i.e., its value at time t depends only on the information available up to that time.

Throughout this discussion we will assume the stochastic process X(t) to be de�ned on a

probability space (
; I; p) ; where p is a probability measure on 
.

A continuous-time martingale is a stochastic process X(t), adapted to a �ltration It, such

that for all t > 0 the following hold:

(i) X(t) is integrable, i.e., E [jX(t)j] <1.

(ii) E [X(t)jIs] = X(s) for all s < t almost surely (with probability 1).

A stochastic process W (t) is called a Wiener process with respect to a �ltration It if:

(i) W (0) = 0:

(ii) W (t) is continuous over time.

(iii) W (t) is a square integrable martingale with E [(W (t)�W (s))2] = t� s; s � t:

The precise mathematical formulation for a Wiener process was carried out by Norbert Wiener

in the year 1931.
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Next we de�ne Brownian motion. The term derives its origin from the name of the botanist

Robert Brown who, in the nineteenth century, described the random movement of a particle

of pollen suspended in �uid. The random movement was argued to be a consequence of

bombardment of the particle by the molecules in thermal motion. Mathematically, Brownian

motion is de�ned as a stochastic process B(t) with the following properties:

(i) B(0) = 0:

(ii) B(t) is continuous over time.

(iii) The process has independent increments which are normally distributed with mean zero

and variance given by the time lag, i.e.,

(B(t)�B(s)) � N (0; j t� s j) :

Although the de�nitions for a Wiener process and Brownian motion appear to be di¤erent

in some respects, the famous Lévy theorem (stated below) proves that the two processes are

exactly the same (Durrett, 1996).

Theorem 1 If X(t) is a continuous local martingale with X(0) = 0 and var(X(t)) = t then

X(t) is a one-dimensional Brownian motion.

Since a Wiener process satis�es all the requirements mentioned in the Lévy theorem (see

Durrett, 1996 for further explanation), it follows that a Wiener process is a Brownian motion.

Another important characteristic of Brownian motion is the Markov property. A stochastic

process X(t), adapted to a �ltration It, is said to possess the Markov property if

p fX(t+ u) = jjX(s); 0 � s � tg = p fX(t+ u) = jjX(t)g :

Thus the future state of the process is independent of all the past states and depends only

on the current state. Any process satisfying the Markov property is called a Markov process.

Limits of random variables

Consider a sequence of random variables fX1; X2; : : :g, all de�ned on the same probability

space. The sequence can converge to a random variable X in various ways:
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(i) If p
�
lim
n!1

Xn = X
�
= 1 then Xn ! X almost surely :

(ii) If E
�
jXnj2

�
<1; 8 n and lim

n!1
E
�
jXn �Xj2

�
= 0 then the convergence is called Mean-

square convergence (L2 convergence).

(iii) If lim
n!1

p(Xn � a) ! p(X � a) 8a 2 R then the convergence is called Convergence in

distribution.

Kolmogorov�s Strong Law of Large Numbers is a statement about almost sure convergence of

the sequence of the average partial sum of independent and identically distributed random

variables, fX1; X2; : : :g. Let Sn denote the average partial sum consisting of the �rst n terms

of this sequence of random variables. That is,

Sn =

nP
i=1

Xi

n
:

If the expected value of all Xi�s is �nite, say E [X1] = E [X2] = ::: = � <1; then the Strong

Law of Large Numbers states that
lim
n!1

Sn ! �:

The Central Limit Theorem is a statement about convergence in distribution of the sum of

independent and identically distributed random variables fX1; X2; : : :g, each having expected

value E [Xi] = � < 1 and variance V [Xi] = �2 < 1: According to the Central Limit

Theorem, the random variable
1

�
p
n

nX
i=1

(Xi � �);

converges in distribution to a standard normal random variable as n!1. Equivalently,

lim
n!1

p

 
a � 1

�
p
n

nX
i=1

(Xi � �) � b

!
=

bZ
a

1p
2�
e�

x2

2 dx

Mathematical formulation of Brownian motion

To introduce Brownian motion consider a stochastic process w(t); that undergoes up/down

jumps of size �x at discrete time intervals of duration �t = 1
n , where n is some unspeci�ed
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positive integer. These jumps occur with equal probability, i.e. 1
2 , throughout the time

interval 0 � t � T . After k steps, at time t = k(�t), the stochastic process will be at

w(t) = w(k�t) = w((k � 1)�t)��x

= w((k � 2)�t)��x��x;

which �nally gives
w(k�t) = ��x��x � � � ��x; (2.1)

where the right hand side contains k terms and we have assumed that w(0) = 0:

Let {x1; : : : ; xn; : : :g be an in�nite sequence of random variables, each with p(xi = 1) =

p(xi = �1) = 1
2 , where xi speci�es whether the jump was up or down between (i� 1)�t and

i(�t). These random variables are identically distributed with the expected value E [xi] = 0

and Variance V[xi] = 1. Using these x0is; Equation (2.1) becomes

w(k�t) = (�x)

kX
i=1

xi:

We wish to analyze the behaviour of the stochastic process w(t) when the time duration

between two consecutive jumps becomes negligible, i.e. as �t! 0, or equivalently, as n!1:

Since t = k�t = k
n ; n!1 would imply that k !1 ( in order to keep t �nite).

If we choose �x = �t
�
= 1

n

�
,

w(t) � w(k�t) =
1

n

kX
i=1

xi =
k

n

kX
i=1

xi
k
= t

kX
i=1

xi
k
: (2.2)

Now n ! 1 implies k ! 1 and utilizing the Strong Law of Large Numbers along with

E [xi] = 0, Equation (2.2) yields lim
k!1

w(t) = 0, thus lim
n!1

w(t) = 0: Therefore, no genuine

random behaviour in the limit is observed in this case.

Picking �x = 1p
n
instead, we get

w(t) � w(k�t) =
1p
n

kX
i=1

xi =
p
t

kP
i=1

xi
p
k
:

By the Central Limit Theorem we obtain lim
n!1

w(t) �! z
p
t; where z � N(0; 1) (here we

have again used: n ! 1 ) k ! 1). Hence w(t) is a normal random variable with mean 0
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and variance t. Therefore,

p(a � w(t) � b) = p

�
ap
t
� z � bp

t

�
=

bp
tZ

ap
t

1p
2�
e�

z2

2 dz =

bZ
a

1p
2�t

e�
x2

2t dx:

If w(0) = 0 then at time t;

E [w(t)] = 0;

V[w(t)] = E [w2(t)]� (E [w(t)])2 = t for t > 0:

Furthermore, due to the property of independent increments, for t > s we have

E [w(t)w(s)] = E [(w(t)� w(s))w(s) + w(s)2] = E [(w(t)� w(s))w(s)] + E [w2(s)] = 0 + s = s:

In general,
E [w(t)w(s)] = min(s; t):

The sample paths of Brownian motion are continuous but nowhere di¤erentiable. To see this,

given any interval (a; b) divide it into subintervals a = t1 < t2 < � � � < tn = b. Then

n�1X
k=1

jw(tk+1)� w(tk)j2 � max
k2f1;2;:::;n�1g

(jw(tk+1)� w(tk)j)
n�1X
k=1

jw(tk+1)� w(tk)j: (2.3)

Now E
"
n�1X
k=1

jw(tk+1)� w(tk)j2
#
=

n�1X
k=1

E
�
jw(tk+1)� w(tk)j2

�
= E

�
jw(t2)� w(t1)j2

�
+ E

�
jw(t3)� w(t2)j2

�
+ :::

:::+ E
�
jw(tn)� w(tn�1)j2

�
= t2 � t1 + t3 � t2 + :::+ tn � tn�1

= tn � t1 = b� a:

Therefore in terms of the expected value, as n �!1,
n�1P
k=1

jw(tk+1)�w(tk)j2 �! (b� a) and

max
k2f1;2;:::;n�1g

(jw(tk+1)� w(tk)j) ! 0 (since E [jw(tk+1)� w(tk)j] = 0 8 k): Consequently, the

inequality in (2.3) can hold only if
n�1P
k=1

jw(tk+1)�w(tk)j ! 1. Thus the sample paths of w(t)

have unbounded total variation in any interval.
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Stochastic di¤erential equations

The concept of stochastic di¤erential equations can be understood on the basis of a typical

example which we now present. Consider a stochastic process x(t) which solves the generalized

Brownian motion or Itô process

dx(t) = �(x(t); t)dt+ �(x(t); t)dw(t): (2.4)

In Equation (2.4), �(x(t); t) is called the drift parameter, and �(x(t); t); the di¤usion parame-

ter. Note that over any time interval dt, the change in x(t) (represented by dx(t)) is normally

distributed with expected value E [dx(t)] = �(x(t); t)dt and variance V[dx(t)] = �2(x(t); t)dt.

Equation (2.4) is a di¤erential representation of the Itô process; the same equation can be

represented in the integral form as

x(t) = x(0) +

tZ
0

�(x(s); s)ds+

tZ
0

�(x(s); s)dw(s); (2.5)

where the second integral in Equation (2.5),

tZ
0

�(x(s); s)dw(s); is a stochastic or Itô integral

de�ned by the limiting process

tZ
0

�(x(s); s)dw(s) = lim
�t!0

n�1X
k=1

�(x(tk); tk)�w(tk)

= lim
�t!0

n�1X
k=1

�(x(tk); tk) [w(tk+1)� w(tk)] ; (2.6)

where 0 = t1 < t2 < � � � < tn = t is a uniform partition of the interval [0; t] and�t = tk+1�tk.

For the Itô integral to exist, the two conditions imposed on the di¤usion term are:

� �(x(t); t) is independent of the future or non-anticipative.

� E

24 tZ
0

�2(x(s); s)ds

35 <1:
The limit present in Equation (2.6) is the mean square limit which is de�ned as

E

264
0@ tZ
0

�(x(s); s)dw(s)�
n�1X
k=1

�(x(tk); tk) [w(tk+1)� w(tk)]

1A2
375! 0 as n!1:
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In addition to the Itô integral there is the Stratonovich integral which uses the di¤erence

�w(tk) =
1
2 [w(tk+1)� w(tk�1)]. The work done in this thesis is based on the Itô calculus

and all the stochastic di¤erential equations are de�ned using an Itô process.

Itô�s lemma

Itô�s lemma replaces the chain rule in a stochastic environment. Consider a stochastic process

x(t) satisfying
dx(t) = �(x(t); t)dt+ �(x(t); t)dw(t):

Let �(x(t); t) be any smooth deterministic function. The total di¤erential for the function

�(x(t); t) is given by

d�(x(t); t) =
@�

@t
dt+

@�

@x(t)
dx(t) +

1

2

@2�

@x(t)2
(dx(t))2 + : : :

In ordinary calculus, with deterministic x(t), higher order terms vanish in the limit. To see

what happens when x(t) is random, consider (dx(t))2 as follows:

(dx(t))2 = �2(x(t); t)dt2 + �2(x(t); t)dw2 + 2�(x(t); t)�(x(t); t)dtdw

� �2(x(t); t)dt;

because E
�
dw2(t)

�
= dt; and for in�nitesimally small dt terms in (dt)2 and (dt)

3
2 go to zero

faster than dt. Likewise, (dx)3 will contain terms in higher powers of dt and can be ignored.

Hence Itô�s lemma gives the di¤erential d� as

d�(x(t); t) =
@�

@t
dt+

@�

@x(t)
dx(t) +

1

2

@2�

@x(t)2
(dx(t))2

=

�
@�

@t
+ �(x(t); t)

@�

@x(t)
+
1

2
�2(x(t); t)

@2�

@x(t)2

�
dt+ �(x(t); t)

@�

@x(t)
dw(t):

The extension of Itô�s lemma to a function �(x1(t); x2(t); : : : ; xn(t); t) of time and n Itô

processes, x1(t); x2(t); : : : ; xn(t); contains the correlation coe¢ cients between the n Wiener

increments, dw1(t); dw2(t); :::; dwn(t): Let �ij denote the coe¢ cient of correlation between

the Wiener increments dwi(t) and dwj(t), i.e., E [dwi(t)dwj(t)] = �ijdt: Then d� is given as
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d� =

 
@�

@t
+

nX
i=1

�i(x1; : : : ; xn; t)
@�

@xi
+
1

2

nX
i=1

�2i (x1; : : : ; xn; t)
@2�

@x2i

+
1

2

nX
i6=j

�ij�i(x1; : : : ; xn; t)�j(x1; : : : ; xn; t)
@2�

@xi@xj

1A dt

+

nX
i=1

�i(x1; : : : ; xn; t)
@�

@xi
dwi:

Geometric Brownian motion

A stochastic process x(t) is said to follow a geometric Brownian motion if dx(t)
x(t) (the fractional

change in x(t)) is normally distributed with E
h
dx(t)
x(t)

i
= �dt and V

h
dx(t)
x(t)

i
= �2dt; � and � are

constants. Since these are the changes in the natural logarithm of x(t), i.e. lnx(t), therefore

dx(t) is said to be lognormally distributed. The stochastic di¤erential equation followed by

x(t) is given by

dx(t) = �x(t)dt+ �x(t)dw(t); (2.7)

with the initial condition

x(0) = x0:

In ordinary calculus, Equation (2.7) would imply that d(lnx(t)) = �dt + �dw(t), however,

this is not the case here. If �(x(t)) = lnx(t) then by the Itô�s lemma,

d�(x(t)) =

�
�� 1

2
�2
�
dt+ �dw(t): (2.8)

The solution to Equation (2.8) is

�(x(t)) = �(x(0)) +

�
�� 1

2
�2
�
t+ �w(t): (2.9)

Since x(t) = e�(x(t)), Equation (2.9) gives x(t) as

x(t) = x0e
(�� 1

2
�2)t+�w(t):

The expected value of x(t) is

E [x(t)] = x0e
(�� 1

2
�2)tE [e�w(t)]: (2.10)
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It remains to calculate E [e�w(t)]. From Itô�s lemma, with �(w(t)) = e�w(t); we have

d�(w(t)) =
1

2
�2e�w(t)dt+ �e�w(t)dw(t);

which has solution

�(w(t)) = �(w(0)) +
�2

2

tZ
0

e�w(s)ds+ �

tZ
0

e�w(s)dw(s):

Taking the expectation on both sides we get

E [�(w(t))] = E [�(w(0))] + �2

2
E

24 tZ
0

e�w(s)ds

35+ �E
24 tZ
0

e�w(s)dw(s)

35 : (2.11)

Now
E [�(w(0))] = E [e�w(0)] = 1 (since w(0) = 0).

Furthermore, using E
�
tR
0

f(w(s); s)dw(s)

�
= 0 for any non-anticipative function f(w(s); s)

(Henderson & Plaschko, 2005, page 31), we obtain

E

24� tZ
0

e�w(s)dw(s)

35 = 0:
Consequently, Equation (2.11) reduces to

E [�(w(t))] = 1 +
�2

2
E

24 tZ
0

e�w(s)ds

35 = 1 + �2

2
E

24 tZ
0

�(w(s))ds

35
= 1 +

�2

2

tZ
0

E [�(w(s))]ds: (2.12)

In Equation (2.12), the expectation is associated with the function �(w(s)) (since w(s) is

a random variable) while the integration is being performed with respect to a deterministic

variable, that is t. Since expectation is a linear operator, we can move the expectation

operator inside the integral sign .

Di¤erentiating both the sides of Equation (2.12) with respect to t leads to

dE [�(w(t))]
dt

=
�2

2
E [�(w(t))]:
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This is an ordinary di¤erential equation with solution

E [�(w(t))] = e
�2t
2 :

Therefore,
E [e�w(t)] = E [�(w(t))] = e

�2t
2 : (2.13)

Substituting E
�
e�w(t)

�
in Equation (2.10) yields the expected value of x(t) as

E [x(t)] = x0e
�t for t � 0:

The variance of x(t) can be calculated as

V[x(t)] = E [x2(t)]� (E [x(t)])2

= E
��
x0e
(�� 1

2
�2)t+�w(t)

�2�
�
�
x0e

�t
�2

= E
h
x20e

2�t��2te2�w(t)
i
� x20e2�t

= x20e
2�t��2tE

h
e2�w(t)

i
� x20e2�t

= x20e
2�t
�
e��

2tE
h
e2�w(t)

i
� 1
�
: (2.14)

From Equation (2.13) we have E
�
e�w(t)

�
= e

�2t
2 : Changing � to 2� yields

E [e2�w(t)] = e2�
2t:

Finally, substituting E [e2�w(t)] in Equation (2.14) gives the variance as

V[x(t)] = x20e
2�t(e�

2t � 1):
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2.2 Optimization concepts: Calculus of Variations

The calculus of variations is a classical technique for solving dynamic optimization problems

(see Kamien & Schwartz, 1991 and Chiang, 2000 for an in-depth treatment of this subject).

The simplest problem of the calculus of variations is a maximization (minimization) problem

where the objective

J(x) =

TZ
0

g(t; x; _x)dt (2.15)

has to be maximized (minimized) with respect to x; subject to

x(0) = x0

x(T ) = xT

9>>=>>; ; (2.16)

where g is a twice di¤erentiable function and dot denotes the derivative with respect to time.

We have used the notation x(t) for a certain state at a certain time t, whereas x without an

argument denotes the entire path: fx(t) : t 2 [0; T ]g when T is �nite; and fx(t) : t 2 [0; T )g

when T is in�nite. Any x satisfying the boundary conditions (2.16) is said to be admissible.

The calculus of variations is based on the analysis of in�nitesimally small variations to an ad-

missible x optimizing the objective function (2.15), and leads to the following Euler-Lagrange

equation satis�ed by all such solutions:

@g

@x
=

d

dt

�
@g

@ _x

�
:

We illustrate a solution to the optimal harvesting problem, with costs linear in harvest rate,

using the calculus of variations approach (as discussed in Clark & Munro, 1975).

Optimal harvesting with linear costs: the calculus of variations approach

Following the approach of Clark and Munro (1975), we consider an open-access �shery ex-

ploited by a single individual (�rm) whose sole motive is to maximize the long-term pro�t.

The harvester�s goal is to obtain the harvest level that maximizes the objective
1Z
0

e��t [p� c(x)]hdt:
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The maximization has to be performed subject to

_x � dx

dt
= f(x)� h; (2.17)

x(0) = x0;

where x = x(t) denotes population, f(x) is the recruitment function (biological growth),

h = h(t) is the rate of harvest, p (constant) is the unit price of the harvested resource and

c(x) is the unit cost of harvesting.

The maximized objective function can be expressed as

J� = max
h

1Z
0

e��t [p� c(x)]hdt: (2.18)

Thus the harvester wishes to control the harvest rate h(t), at each time t; so as to maximize

the discounted net pro�t over an in�nite horizon. The pro�t is discounted with rate � for

the reason that $1 today is worth more than $1 tomorrow, or equivalently, $1 after t units

in the future are worth (1� �)t today (i.e., the present value is (1� �)t). If the discount

is compounded n times per year then t units of time amount to nt discount periods. This

gives the present value of $1 obtained after t units in the future as
�
1� �

n

�nt. By allowing
for continuous compounding, the present value of $1 is obtained as

lim
n�!1

�
1� �

n

�nt
= e��t:

Substituting for h from Equation (2.17) into the integral present in Equation (2.18) gives

J� = max
x

1Z
0

e��t[p� c(x)][f(x)� _x]dt:

Utilizing the necessary Euler-Lagrange condition from the calculus of variations, @g@x =
d
dt

�
@g
@ _x

�
,

we obtain the following implicit equation for the population x:

f 0(x)� c0(x)f(x)

p� c(x) = �; (2.19)

where prime denotes di¤erentiation with respect to x.

Equation (2.19) can be rewritten as

@

@x
[(p� c(x))f(x)] = �[p� c(x)]: (2.20)
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Using Equation (2.20), the optimal population level x�(maximizing the discounted net pro�t)

can in principle be obtained by solving

@

@x�
[(p� c(x�))f(x�)] = �[p� c(x�)]: (2.21)

The �nal solution x� can be inserted into the growth equation (2.17) to obtain the optimal

harvest rate h� = f(x�). In general, however, Equation (2.21) might be non-linear in x� and

possess more than one distinct root, in which case x� may not be uniquely determined.

The case of Logistic growth

Assuming the growth for the resource as f(x) = rx
�
1� x

K

�
, the harvest rate as h = qEx,

and the cost function as c(x) = c
qx ; where c is the constant cost per unit e¤ort, the maximized

objective (2.18) becomes

J� = max
h

1Z
0

e��t
�
p� c

qx

�
hdt = max

E

1Z
0

e��t (pqx� c)Edt; (2.22)

subject to
_x = rx

�
1� x

K

�
� qEx; (2.23)

x(0) = x0:

Utilizing Equation (2.23), e¤ort E can be determined as

E =
rx
�
1� x

K

�
� _x

qx
: (2.24)

Substituting E from Equation (2.24) into the integrand present in Equation (2.22) leads to

the following maximized objective:

J� = max
x

1Z
0

e��t
�
p� c

qx

�h
rx
�
1� x

K

�
� _x
i
dt:

Application of the Euler-Lagrange condition produces a quadratic equation in x that can be

solved to give the optimal population level as

x� =
K

4

24�1 + c

pKq
� �

r

�
+

s�
1 +

c

pKq
� �

r

�2
+

8c�

pKqr

35 : (2.25)
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The optimal harvesting policy is to drive the population level towards x� as quickly as possible.

Once the stock level reaches x�; the rate of harvest is kept equal to the biological growth rate

so that the population stays at x�; _x(t) is zero in this case and the optimal e¤ort is obtained

from Equation (2.24) as E�(t) =
rx�

�
1�x�

K

�
qx� : Thus, assuming that the e¤ort E is constrained

as 0 � E � Emax, the optimal harvesting policy in [0; 1) is

E�(t) =

8>>>>>><>>>>>>:
Emax; x(t) > x�;

rx�
�
1�x�

K

�
qx� ; x(t) = x�;

0; x(t) < x�:

Next consider the �nite time-horizon problem

J = max
E

TZ
0

e��t (pqx� c)Edt;

subject to
_x = rx

�
1� x

K

�
� qEx;

x(0) = x0; x(T ) = xT ;

0 � E � Emax;

In this case, the population would have to be driven to x� from some initial value x0 6= x�:

The path x�, however, would have to be abandoned before T , say at time s, to meet the

speci�ed terminal condition xT , producing the so-called turnpike behaviour in between s and

T (Samuelson, 1965).

2.3 Optimization concepts: Optimal Control

In this section, we present a brief outline of optimal control theory; further details can be

found in Kirk (1970) and Bryson & Ho (1975). Consider a dynamical system described as

_x = f(x; u;t); (2.26)

x(0) = x0;

with state vector x 2 Rn and control input u 2 Rm.
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The performance index (objective function) is de�ned as

J = �(x(T ); T ) +

TZ
0

g(x; u;t)dt;

where [0; T ] is the time interval of interest. The optimal control problem is to �nd the input

u�(t) in [0; T ]; that drives the system along a trajectory x�(t); such that the objective function

J is optimized and also the p terminal conditions

 (x(T ); T ) = 0;

are satis�ed for a given function  2 Rp.

We �rst construct the Hamiltonian

H(x; u; t) = g(x; u; t) + �Tf(x; u; t);

where � 2 Rn is called the vector of Lagrange multipliers and the superscript T denotes

transpose. In summary, the necessary optimality conditions are:

� _x = f(x; u; t), n di¤erential equations,

� � _� = @H
@x , n (costate or adjoint) di¤erential equations,

� @H
@u = 0, m algebraic (stationarity) equations,

� x(0) = x0, n boundary conditions,

� �T(T ) =
�

@�
@x(T ) + �

T @ 
@x(T )

�
, n boundary conditions,

�  (x(T ); T ) = 0, p terminal conditions,

where � 2 Rp is the constant vector of Lagrange multipliers associated with the p terminal

conditions.

The stationarity conditions determine the control m-vector, u(x; �; t). The 2n di¤erential

equations with the 2n boundary conditions form a two-point boundary value problem, where

the constant p-vector, �, is to be found from the p terminal conditions. The stationarity

condition that graduH
�
@H
@u

�
= 0 is necessary but not su¢ cient for optimality. Su¢ ciency is

guaranteed if, in addition, the Hessian matrix @2H
@u2

is positive-de�nite (negative-de�nite) for

a minimum (maximum).
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In the absence of the terminal conditions  (x(T ); T ) = 0, there is no � vector to be deter-

mined. Consequently, the boundary conditions for the vector � become

�T(T ) =
@�

@x(T )
:

If �(x(T ); T ) = 0 then the �nal value of the multiplier vector (transversality condition) is

�T(T ) = 0:

The time derivative of the Hamiltonian is

_H =
@H
@t

+ ( _x)T
�
@H
@x

�
+ ( _u)T

�
@H
@u

�
+ ( _�)Tf: (2.27)

Substituting for _x from Equation (2.26) and _� from adjoint equations � _� = @H
@x , Equation

(2.27) becomes

_H =
@H
@t

+ ( _u)T
�
@H
@u

�
. (2.28)

We let H� denote the optimized Hamiltonian. The stationarity equations imply that @H�

@u = 0

on the optimal path, therefore Equation (2.28) reduces to

_H� = @H�
@t

: (2.29)

If f and g are not explicit functions of time then substituting Equation (2.26) in Equation

(2.29) leads to
_H� = 0:

Hence for a time-invariant system and objective function the Hamiltonian is constant on the

optimal trajectory. If the �nal time T is also unspeci�ed then on the optimal path we also

have
H� = 0:

When T ! 1; the above problem is called an in�nite horizon optimal control problem.

In such problems, the terminal time is considered free. Consequently, H�(t) = 0 for all

t 2 [0;1). Usually, in�nite horizon problems involve a boundary condition at in�nity so

that lim
t�!1

x(t) = x1 and, consequently, lim
t�!1

�(t) 6= 0: Otherwise, if the terminal state is

free then lim
t�!1

�(t) = 0 (as in the �nite horizon case). Another issue is the convergence
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of the integral

1Z
0

g(x;u;t)dt. In most of the management problems the integrand involves

a discount factor, e��t; which guarantees the convergence of the integral

1Z
0

e��tg(x;u;t)dt

provided sup
u
g(x;u;t) = G for all t: In that case,

1Z
0

e��tg(x;u;t)dt �
1Z
0

e��tGdt =
G

�
:

The optimal control problem described here does not impose any constraints on the control

variable u. If the control is constrained to lie in an admissible region such that umin � u �

umax then all of the optimality conditions outlined earlier still hold, the only exception being

the stationarity condition @H
@u = 0; which is replaced by the following more general (necessary,

but again not su¢ cient) condition:

� H(x�; u�; ��;t) 6 H(x�; u; ��;t) for all admissible u; if the objective is to minimize J ,

� H(x�; u�; ��;t) > H(x�; u; ��;t) for all admissible u; if the objective is to maximize J .

The optimality requirement is called Pontryagin�s minimum (maximum) principle which can

be stated as:

The Hamiltonian must be minimized (maximized) over all admissible u for optimal values

of the state and costate.

This principle is broader than the �rst-order stationarity condition @H
@u = 0 for it optimizes

the Hamiltonian over the entire admissible control region [umin; umax], whereas, @H@u = 0 is

valid only in the open interval (umin; umax) which excludes optimal occurring at either umin or

umax (corner solutions). If there is a �nite time interval [t1; t2] during which the Pontryagin

condition provides no information about the relationship between u�(t), x�(t), and ��(t) then

the problem is singular and the interval [t1; t2] is called a singular interval.

There is an economic interpretation associated with the Hamiltonian function (Dorfman, 1969)

which also clari�es the reason for adopting the Hamiltonian as the function to be optimized:

Consider a maximization problem where J =

TZ
0

g(x; u;t)dt represents cumulative pro�t earned
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during [0; T ] with the state dynamics given by Equation (2.26): The product of the associated

Hamiltonian with dt is given by

Hdt = g(x;u;t)dt+ �Tf(x;u;t)dt = g(x;u;t)dt+ �Tdx: (2.30)

For the time interval [t; t+ dt] ; the �rst term in Equation (2.30), i.e. g(x; u;t)dt, represents

the direct pro�t contribution to J when the �rm possesses capital x(t) and the decision is to

apply u(t) over [t; t+ dt]. The second term, �Tdx, represents the change in the capital over

[t; t+ dt] which is equivalent to the value of the capital accumulated during the interval.

Therefore �Tdx is the indirect contribution to J in dollars. The decision is to choose u(t)

so as to make the total contribution to J; i.e. g(x;u;t)dt + �Tf(x;u;t)dt; as big as possible;

maximizing J only would neglect the e¤ect of the capital accumulation. This implies that

the Hamiltonian must be optimized at each instant of time t.

The costate di¤erential equations � _� = @H
@x also admit an economic interpretation: � _�(t)

is the rate at which a unit of capital depreciates over [t; t+ dt], or equivalently, � _�dt

is the marginal cost of holding that capital, whereas @H(x(t);u(t);t)
@x(t) dt = @g(x(t);u(t);t)

@x(t) dt +

�(x(t); u(t); t)T @f(x(t);u(t);t)@x(t) dt is the marginal revenue gained over [t; t+ dt]. Hence the

costate equations imply that marginal cost equals marginal revenue.

Recalling the optimal harvesting problem solved in Section 2.2, the analogy with harvesting

is straightforward: x is the �sh population (capital) and h is the decision to harvest, with

the direct pro�t contribution embodied in the integrand e��t(p � c(x))hdt, and the indirect

contribution coming from the change dx in the population level.

In economic applications of optimal control theory the integrand function usually contains

a discount factor, e��t; and has the form: e��tg(x; u;t). To avoid the complexities inher-

ent in the di¤erentiations involved, a new Hamiltonian is introduced which is free of the

discount factor. This Hamiltonian is called the current value Hamiltonian (discussed in

standard books on optimization, for instance Kamien & Schwartz, 1991), to emphasize its

undiscounted nature. Because the Hamiltonian involves Lagrange multipliers, current value
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Lagrange multipliers �c also have to be introduced as

�c(t) = e�t�(t):

The current value Hamiltonian takes the form

Hc = He�t = g(x; u;t) + �Tc f(x; u;t):

The stationarity condition @H
@u = 0 simply transforms to @Hc

@u = 0. The costate equation,

however, changes to
_�c = �

@Hc
@x

+ ��c:

In the absence of terminal boundary conditions on the state x, the transversality condition

becomes
�c(T )e

��T = 0:

which implies

�c(T ) = 0 if T is �nite,

lim
t!1

�c(t) = 0 if T is in�nite.

For a time-invariant system and objective function, the time-derivative of the current value

Hamiltonian is given by

_Hc = ( _x)T
�
@Hc
@x

�
+ ( _�c)

T :x =

�
@Hc
@x

�T
_x+

�
�@Hc
@x

+ ��c

�T
_x = ��Tc _x

Thus Hc is not constant over time unless � = 0.

There is a special class of optimal control problems for which the Hamiltonian is linear in

u implying that @H@u is not necessarily 0 on the optimal path. When H is plotted against u;

the plot is a straight line with the optimal control to be found at a boundary of u: When

H versus u yields a horizontal line, there is no unique optimal control since any value for u

yields the same value for H; it then becomes a problem with singular control. Thus the form

of the optimal control in the time interval [0; T ] ; for a minimization problem, is obtained as

u�(t) =

8>>>>><>>>>>:
umax if

@H(x(t);u(t);t)
@u(t) < 0;

singular if @H(x(t);u(t);t)@u(t) = 0;

umin if
@H(x(t);u(t);t)

@u(t) > 0:

(2.31)



2. Background theory and application to linear control in harvesting 43

On the other hand, for a maximization problem we get

u�(t) =

8>>>>><>>>>>:
umin if

@H(x(t);u(t);t)
@u(t) < 0;

singular if @H(x(t);u(t);t)@u(t) = 0;

umax if
@H(x(t);u(t);t)

@u(t) > 0:

(2.32)

The solutions (2.31) and (2.32) are mathematical statements of the bang-bang principle. The

sign of the function @H
@u is instrumental in setting the control switches and is appropriately

called the switching function.

Optimal harvesting with linear costs: the Hamiltonian approach

Consider again the optimal harvesting problem, with the Schaefer model (Section 1.1) for

growth and �shing costs linear in e¤ort, with the objective

max
E

TZ
0

e��t(pqx� c)Edt;

subject to
_x = rx

�
1� x

K

�
� qEx;

x(0) = x0;

0 � E � Emax:

The associated Hamiltonian is

H = e��t(pqx� c)E + �
h
rx
�
1� x

K

�
� qEx

i
=

�
e��t(pqx� c)� �qx

�
E + �rx

�
1� x

K

�
: (2.33)

The switching function is the coe¢ cient of the control E in Equation (2.33). Singular control

occurs when @H
@E ; i.e. the switching function e

��t(pqx� c)� �qx; is zero over a time interval.

The form of the optimal control in [0; T ] is then obtained as

E�(t) =

8>>>>><>>>>>:
Emax; e��t(pqx(t)� c)� �qx(t) > 0;

singular, e��t(pqx(t)� c)� �qx(t) = 0;

0; e��t(pqx(t)� c)� �qx(t) < 0:
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It follows that if at a point x(t) the following holds

e��t(pqx(t)� c)� �qx(t) = 0

then the control is singular. To analyze this situation, suppose that the following holds over

a time interval [t1; t2]:

e��t(pqx(t)� c)� �(t)qx(t) = 0: (2.34)

Equation (2.34) can be solved for �(t) as

�(t) = e��t
�
p� c

qx(t)

�
:

Di¤erentiating �(t) with respect to t and equating _�(t) with �@H
@x leads to

r � 2rx(t)
K

+
cr
�
1� x(t)

K

�
pqx(t)� c = �: (2.35)

The optimal state should satisfy Equation (2.35) when the control is singular. This equation

is quadratic in x(t) and can be solved to give the same optimal solution x� as obtained using

the calculus of variations; this x� serves as a switching point for the control (as seen for the

optimal solution obtained using the calculus of variations in Section 2.2).

2.4 Optimization concepts: Dynamic Programming

Dynamic programming presents an alternative approach to optimal control (see Ross, 1983

or Bertsekas, 1987 for a comprehensive description). It is a technique for solving sequential

optimization problems by converting a sequential multistage problem to a series of single-

stage problems. The term dynamic programming was coined in 1957 by Richard Bellman

(Bellman, 1957) who based his approach on the principle of optimality which can be stated

as:

From any point on the optimal trajectory, the remaining trajectory is optimal for the

corresponding problem initiated at that point.

This principle introduces the concept of the optimal value function and allows the build up

of solutions by progressing backwards in time.
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We �rst consider deterministic settings. As a general example let us consider the system

_x = f(x;u;t);

x(0) = x0;

with state x 2 Rn and control vector u 2 Rm. With this system, the performance index (or
objective function) to be maximized is given by

J(x) = �(x(T ); T ) +

TZ
0

g(x;u;t)dt:

We denote by V (x(t); t) the optimal value of the objective function that could be obtained by

starting at state x(t) at time t. The function V (x(t); t) is called the optimal value function.

To develop a formula for V (x(t); t) we assume that the function is known for t +�t, where

�t is small, and then move backwards to t to obtain

V (x(t); t) = max
u(t)

[g(x;u;t)�t+ V (x(t)+�x(t); t+�t)] : (2.36)

where �x(t) = x(t + �t) � x(t) � f(x(t); u(t); t)�t; to derive relation (2.36) it is assumed

that a �xed u is applied between times t and t+�t: This yields an immediate contribution of

approximately g(x;u;t)�t from the integral term in the objective and, additionally, transfers

the state x(t) approximately to the point x(t)+f(x(t); u(t); t)�t at time t+�t; the optimal

return is known from the point t + �t. Assuming that V (x(t); t) is a smooth function, a

Taylor expansion of V (x(t)+�x(t); t+�t) around (x(t); t) gives

V (x(t)+�x(t); t+�t) = V (x(t)+f(x(t); u(t); t)�t; t+�t)

= V (x(t); t) +
@V (x(t); t)

@t
�t+

@V (x(t); t)

@x(t)
f(x(t); u(t); t)�t+O(�t2):

Substituting the expansion for V (x(t)+�x(t); t+�t) into Equation (2.36) yields

V (x(t); t) = max
u(t)

�
g(x(t);u(t);t)�t+ V (x(t); t) +

@V (x(t); t)

@t
�t

+
@V (x(t); t)

@x(t)
f(x(t); u(t); t)�t+O(�t2)

�
:

Now V (x(t); t) does not depend on u(t) and can be taken outside the maximization where it

then cancels out with the left-hand side. Also, @V�t �t can be taken outside the maximization.
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Now divide by �t and let �t! 0. This yields the �nal result, known as the Hamilton-Jacobi-

Bellman (HJB) equation

�@V (x(t); t)
@t

= max
u(t)

�
g(x(t);u(t);t) +

@V (x(t); t)

@x(t)
f(x(t); u(t); t)

�
: (2.37)

The associated boundary condition is given by

V (x(T ); T ) = �(x(T ); T );

which is the optimal value starting at the terminal time. The derivative @V (x(t);t)
@x(t) is the per

unit change in the objective function for a small change in x(t), so in fact, it is identical to the

adjoint variable �(t). We also recall that the Hamiltonian is H(x;u;t) = g(x;u;t) + �f(x; t)

and, therefore, the Hamilton-Jacobi-Bellman equation can be written as

�@V (x(t); t)
@t

= max
u(t)

[H(x(t);u(t);t)] :

The Hamilton-Jacobi-Bellman equation is a non-linear partial di¤erential equation for the

optimal return V (x(t); t) and is often di¢ cult to solve analytically. However, the advantage of

the dynamic programming approach is that it automatically determines the optimal control

in feedback form. Next we derive the Hamilton-Jacobi-Bellman equation when there is a

discount factor, e��t, present in the integrand of the objective function as

J(x) = �(x(T ); T ) +

TZ
0

e��tg(x;u;t)dt:

Proceeding in the usual manner, the optimal value is

V (x(t); t) = max
u(t)

�
e���tg(x(t);u(t);t)�t+ e���tV (x(t)+�x(t); t+�t)

�
: (2.38)

When �t is small, e���t � (1� ��t): Consequently, for small �t, Equation (2.38) becomes

V (x(t); t) � max
u(t)

[(1� ��t)g(x(t);u(t);t)�t+ (1� ��t)V (x(t)+�x(t); t+�t)]

= max
u(t)

�
g(x(t);u(t);t)�t+ (1� ��t)

�
V (x(t); t) +

@V (x(t); t)

@t
�t

+
@V (x(t); t)

@x(t)
f(x(t); u(t); t)�t+O(�t2)

��
:
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Equivalently,

V (x(t); t) = max
u(t)

[g(x(t); u(t);t)�t+ (1� ��t)V (x(t); t)

+
@V (x(t); t)

@t
�t+

@V (x(t); t)

@x(t)
f(x(t); u(t); t)�t+O(�t2)

�
:

Dividing throughout by �t and taking the limit as �t �! 0 gives the Hamilton-Jacobi-

Bellman equation

�@V (x(t); t)
@t

+ �V (x(t); t) = max
u(t)

�
g(x(t);u(t);t) +

@V (x(t); t)

@x(t)
f(x(t); u(t); t)

�
; (2.39)

with the �nal condition V (x(T ); T ) = �(x(T ); T ). Note that Equation (2.39) with � ! 0

gives Equation (2.37).

Stochastic dynamic programming

While obtaining Equations (2.37) and (2.39) the state variables were assumed to be known

with certainty. If this were not the case, the state of the system would be a stochastic process

and its evolution would be described by a stochastic di¤erential equation. When a control is

involved in the dynamic process, the problem becomes a stochastic optimal control problem.

We now consider the optimality of the control when the state is disturbed by a random

process and the system state becomes a Markov process. For a stochastic optimal control

problem with n states, the following performance index is introduced:

J(x) = E

24�(x(T ); T ) + TZ
0

e��tg(x; u; t)dtjx(0) = x0

35 ;
subject to

dx = f(x; u; t)dt+ �(x; u; t)dw; (2.40)

x(0) = x0;

where dw is the n-vector of Wiener increments.

Proceeding as in the deterministic case leads to

V (x(t); t) = max
u(t)

�
e���tg(x(t);u(t);t)�t+ e���tE [V (x(t)+�x(t); t+�t)]

�
: (2.41)
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Again for small �t Equation (2.41) can be written as

V (x(t); t) � max
u(t)

[(1� ��t)g(x(t);u(t);t)�t+ (1� ��t)E [V (x(t)+�x(t); t+�t)]]

= max
u(t)

�
g(x(t);u(t);t)�t+ (1� ��t)E

�
V (x(t); t) +

@V (x(t); t)

@t
�t

+
@V (x(t); t)

@x(t)
�x(t) +

1

2

@2V (x(t); t)

@x2(t)
�x2(t) +O(�t2)

��
= max

u(t)

�
g(x(t);u(t);t)�t+ (1� ��t)V (x(t); t) + @V (x(t); t)

@t
�t

+
@V (x(t); t)

@x(t)
E [�x(t)] + 1

2

@2V (x(t); t)

@x2(t)
E [�x2(t)] +O(�t2)

�
: (2.42)

From Equation (2.40) we have

�x2(t) = (f(x(t); u(t); t)�t+ �(x(t); u(t); t)�w(t))2

= f(x(t); u(t); t)2�t2 + �(x(t); u(t); t)2�w(t)2

+2f(x(t); u(t); t)�(x(t); u(t); t)�t�w(t):

Taking the expectation of both sides yields

E [�x2(t)] = E
�
f(x(t); u(t); t)2�t2 + �(x(t); u(t); t)2�w(t)2

+2f(x(t); u(t); t)�(x(t); u(t); t)�t�w(t)]

= f(x(t); u(t); t)2�t2 + �(x(t); u(t); t)2E
�
�w(t)2

�
+2f(x(t); u(t); t)�(x(t); u(t); t)�tE [�w(t)] : (2.43)

By de�nition (see Section 2.1) a Wiener increment is normally distributed with the expected

value equal to zero and the variance equal to time-lag. Applying this to Equation (2.43) and

ignoring higher order terms in �t we obtain

E [�x2(t)] = �(x(t); u(t); t)2�t (2.44)

Substituting for E [�x2(t)] from Equation (2.44) into Equation (2.42) gives

V (x(t); t) = max
u(t)

�
g(x(t);u(t);t)�t+ (1� ��t)V (x(t); t) + @V (x(t); t)

@t
�t

+
@V (x(t); t)

@x(t)
f(x(t); u(t); t)�t+

1

2

@2V (x(t); t)

@x2(t)
�(x(t); u(t); t)2�t+O(�t2)

�
:

Proceeding as in the deterministic case, the Hamilton-Jacobi-Bellman equation for the sto-

chastic optimal control problem is thus a deterministic partial di¤erential equation:
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�V (x(t); t) = max
u(t)

�
g(x(t);u(t);t) +

@V (x(t); t)

@t
+
@V (x(t); t)

@x(t)
f(x(t); u(t); t)

+
1

2

@2V (x(t); t)

@x2(t)
�2
�
; (2.45)

with the �nal condition V (x(T ); T ) = �(x(T ); T ).

Optimal harvesting with linear costs: the stochastic dynamic programming
approach

We now examine an optimal harvesting problem with exponential biological growth, i.e. rx,

and linear costs. Considering the growth to be stochastic, the growth dynamics can be

speci�ed as

dx = (r � qE)xdt+ �xdw;

x(0) = x0:

The e¤ort is constrained as
0 � E � Emax:

The objective is to maximize the expected value of the discounted pro�t over an in�nite

horizon, given by

J(x) = E

24max
E

1Z
0

e��t (pqx� c)Edt

35 ;
where the discount rate � is a positive constant.

In �nite-horizon problems, the value function V (x(t); t) is a function of time and therefore

the time derivative @V (x(t);t)
@t appears in the Hamilton-Jacobi-Bellman equation. In in�nite-

horizon problems with time-invariant state equations and integrand, the value function is

time-invariant and depends only on the initial state, so that, V = V (x(t)) and @V (x(t))
@t = 0.

Thus, utilizing Equation (2.45), the Hamilton-Jacobi-Bellman equation for this problem is

�V (x(t)) = max
E(t)

�
(pqx(t)� c)E(t) + @V (x(t))

@x(t)
(r � qE(t))x(t)

+
1

2
�2x(t)2

@2V (x(t))

@x(t)2

�
: (2.46)
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Since the control E(t) appears linearly in the objective function and the state-dynamics, the

choice of optimal control is bang-bang with the switching function

pqx(t)� c� qx(t)@V (x(t))
@x(t)

:

Solving the equation pqx(t) � c � qx(t)@V (x(t))@x(t) = 0 provides the boundary between the two

extreme controls: 0 and Emax. This boundary is the critical population level, x�.

Thus,

E�(t) =

8>><>>:
0; 0 � x(t) < x�;

Emax; x(t) � x�:

(2.47)

Using the optimal control E�(t); Equation (2.46) can be rewritten as

�V (x(t)) = (pqx(t)� c)E�(t) + @V (x(t))

@x(t)
(r � qE�(t))x(t)

+
1

2
�2x(t)2

@2V (x(t))

@x(t)2
: (2.48)

To calculate x�, we solve the following two equations arising from the application of extreme

controls (0 and Emax) to Equation (2.48):

�V (x(t)) = rx
@V (x(t))

@x(t)
+
1

2
�2x(t)2

@2V (x(t))

@x(t)2
; for 0 � x(t) < x�; (2.49)

�V (x(t)) = (pqx(t)� c)Emax +
@V (x(t))

@x(t)
(r � qEmax)x(t)

+
1

2
�2x(t)2

@2V (x(t))

@x(t)2
; for x(t) � x�: (2.50)

Equation (2.49) is a homogeneous Euler equation and Equation (2.50) is a nonhomogeneous

Euler equation. The analytical solutions to these type of equations are described in standard

books on ordinary di¤erential equations, e.g. Boyce & DiPrima (2003). The solution to

Equation (2.49) is of the form

V (x(t)) = �1x(t)
�1 + �2x(t)

�2 ; (2.51)

where �1, �2 are constants and �1 and �2 are as follows:
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�1 =
(�2 � 2r) +

p
(�2 � 2r)2 + 8��2
2�2

> 0;

�2 =
(�2 � 2r)�

p
(�2 � 2r)2 + 8��2
2�2

< 0;

Since V (0) = 0 and �2 < 0; Equation (2.51) can hold only if �2 = 0. The remaining task

now is to determine �1. At x(t) = x�; V (x(t)) must satisfy the switching function

pqx(t)� c� qx(t)@V (x(t))
@x(t)

= 0: (2.52)

Substituting for V (x(t)) from Equation (2.51) and replacing x(t) with x�, Equation (2.52)

becomes

pqx� � c� qx��1�1(x�)�1�1 = 0:

This yields �1 as

�1 =
(x�)1��1

�1

�
p� c

qx�

�
;

so that

V (x(t)) =
1

�1

�
px� � c

q

��
x(t)

x�

��1
;

where �1 =
(�2 � 2r) +

p
(�2 � 2r)2 + 8��2
2�2

; 0 � x(t) < x�:

Now we concentrate on Equation (2.50). As noted earlier, it is a nonhomogeneous Euler

equation and its solution consists of the superposition of its particular solution and the

complementary solution corresponding to homogeneous equation

1

2
�2x(t)2

@2V (x(t))

@x(t)2
+
@V (x(t))

@x(t)
(r � qEmax)x(t)� �V = 0:

Similar to the solution of Equation (2.49), the complementary solution has the form

Vc(x) = �1x
�1 + �2x

�2 ;

where

�1 =
[�2 � 2(r � qEmax)] +

p
[�2 � 2(r � qEmax)]2 + 8��2
2�2

> 0; (2.53)

�2 =
[�2 � 2(r � qEmax)]�

p
[�2 � 2(r � qEmax)]2 + 8��2
2�2

< 0;

and �1, �2 are constants.
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Using the standard variation of parameters method, the particular solution has the form

Vp(x(t)) = 1(x(t))x(t)
�1 + 2(x(t))x(t)

�2 ;

where 1(x) and 2(x) are functions whose �rst order derivatives can be determined from the

following system:


0
1(x(t))x(t)

�1 + 
0
2(x(t))x(t)

�2 = 0;


0
1(x(t))�1x(t)

�1�1 + 
0
2(x(t))�2x(t)

�2�1 =
�2(pqx(t)� c)Emax

�2x(t)2
:

Solving this system gives


0
1(x(t)) =

2(pqx(t)� c)Emax
�2(�2 � �1)x(t)�1+1

; 
0
2(x(t)) =

�2(pqx(t)� c)Emax
�2(�2 � �1)x(t)�2+1

:

Integrating both equations leads to

1(x(t)) =
2Emaxx(t)

��1

�2(�2 � �1)

�
pqx(t)

1� �1
+

c

�1

�
;

2(x(t)) =
2Emaxx(t)

��2

�2(�1 � �2)

�
pqx(t)

1� �2
+

c

�2

�
:

The particular solution is then

Vp(x(t)) =
2Emax

�2(�2 � �1)

�
pqx(t)

1� �1
+

c

�1

�
+

2Emax
�2(�1 � �2)

�
pqx(t)

1� �2
+

c

�2

�
:

The general solution to Equation (2.50) is given by

V (x(t)) = Vc(x(t)) + Vp(x(t))

= �1x(t)
�1 + �2x(t)

�2 +
2Emax

�2(�2 � �1)

�
pqx(t)

1� �1
+

c

�1

�
+

2Emax
�2(�1 � �2)

�
pqx(t)

1� �2
+

c

�2

�
: (2.54)

From Equation (2.53), for �1 to be greater than 1 we need

[�2 � 2(r � qEmax)] +
p
[�2 � 2(r � qEmax)]2 + 8��2
2�2

> 1

, �2 � 2(r � qEmax) +
p
[�2 � 2(r � qEmax)]2 + 8��2 > 2�2

,
p
[�2 � 2(r � qEmax)]2 + 8��2 > �2 + 2(r � qEmax):
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Simplifying we get that the following inequality should hold in order to have �1 > 1:

� > r � qEmax: (2.55)

If we �x Emax = r=q, then the inequality (2.55) is equivalent to

� > 0;

which is true. Furthermore, the integral E

24max
E(t)

1Z
0

e��t (pqx� c)Edt

35 is bounded from above
by a function linear in x (Kolosov, 1999, page 134). Since �1 > 1; the upper bound is violated

unless �1 = 0. Therefore the value function for x(t) � x�; given by Equation (2.54), takes

the form

V (x(t)) = �2x(t)
�2 +

2Emax
�2(�2 � �1)

�
pqx(t)

1� �1
+

c

�1

�
+

2Emax
�2(�1 � �2)

�
pqx(t)

1� �2
+

c

�2

�
: (2.56)

The only unknown parameter is �2 and it is determined by enforcing the switching condition

pqx(t)� c� qx(t)@V (x(t))
@x(t)

= 0 at x(t) = x�:

Substituting for V (x(t)) from Equation (2.56) and putting x(t) = x� gives

�2 =
(x�)1��2

�2

�
p+

2pqEmax
�2(1� �1)(1� �2)

�
� c

q�2
(x�)��2 :

Continuity at x(t) = x� implies that the two value functions are equal there. Equating both

second order derivatives @
2V (x(t))
@x(t)2

at x(t) = x� yields

x� =
c
�
k1+k2�2qEmax

2�2

�
pq
�
k1+k2�2qEmax

2�2
+ 4qEmax

�2+2(r�qEmax)�k2

� ;
where

k1 =
p
(�2 � 2r)2 + 8��2;

k2 =
p
[�2 � 2(r � qEmax)]2 + 8��2:
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Substituting Emax = r=q; the expression for x� �nally simpli�es to

x� =
c
�
k1+k2�2r

2�2

�
pq
�
k1+k2�2r

2�2
+ 4r

�2�k2

� ;
where

k1 =
p
(�2 � 2r)2 + 8��2; (2.57)

k2 =
p
�4 + 8��2: (2.58)

Thus we have obtained the critical population level x� which serves as the switching point

for the optimal e¤ort E�. Now x� can be rewritten as

x� =
c

pq

 
1

1� 8�2r
(k2��2)(k1+k2�2r)

!
: (2.59)

Recall from Section 1.1 that when x� > c=pq, Sustainable Economic Rent is positive. From

Equation (2.59),

x� >
c

pq
if

8�2r

(k2 � �2)(k1 + k2 � 2r)
> 0:

From Equation (2.58), k2 > �2 is true. Therefore, in order to have a positive value for

Sustainable Economic Rent we must have

k1 + k2 > 2r: (2.60)

Thus if the parameter values (r; � and �) are such that the inequality (2.60) is satis�ed,

Sustainable Economic Rent would be positive.



Chapter 3

Deterministic Environment

3.1 Introduction

In this chapter we present the optimal harvesting problem in a deterministic setting, based on

the Schaefer model (discussed in Section 1.1) and quadratic costs. The layout of the chapter is

as follows: Section 3.2 describes the formulation of our model which is then investigated using

three di¤erent optimization techniques. Section 3.3 illustrates the dynamic programming

method, Section 3.4 demonstrates the Hamiltonian method and Section 3.5 deals with a

variational approach. Due to the complexity and non-linearity of the problem, numerical

methods have to be applied to solve the system of di¤erential equations obtained in each

case. Section 3.6 presents a sensitivity analysis of the net present value of the �ow of pro�t

and Section 3.7 covers in�nite horizon harvesting. Section 3.8 provides a summary.

3.2 Model formulation

Following the deterministic Schaefer model (see Section 1.1), the growth dynamics of the

resource population can be speci�ed as

dx(�)

d�
= rx(�)

�
1� x(�)

K

�
� qE(�)x(�); (3.1)

where � denotes time and the rest of the notation holds as before.

55
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The �shing e¤ort is constrained as

0 � E(�) � Emax <1 for all � ; (3.2)

where Emax is a �xed constant. It is usual practice in the �sheries literature to �x r=q as

an upper bound for �shing e¤ort (Clark, 1990; Hanson & Ryan, 1998), the reason being that

the growth equation (3.1) yields a negative equilibrium for the population when e¤ort is

expended at a level greater than r=q (see Section 1.1), and this amounts to the extinction of

the resource stock.

Apart from the biological reason mentioned above, Emax is also required for representing an

upper bound on the harvesting capacity of the harvester. The crew, gear and number of

vessels that the harvester possesses can in�uence the total e¤ort that the harvester is able to

expend; in this case, it is possible for the harvester to have Emax di¤erent from r=q. An ad hoc

value for Emax; depending upon the maximum capacity of the �shing �eet and the amount

of capital invested, has been considered by Nøstbakken (2006) and Clark et al. (1979).

We consider the �sh price per unit harvest to be a constant, denoted by p. The cost of harvest

is assumed to be of quadratic form, given by c1E(�) + c2
2 E(�)

2; where c1 and c2 are positive

constants. This implies that the �shing cost does not increase linearly with e¤ort and the

marginal increase is of the form c1+ c2E(�): As noted by Hanson (2006), it can be due to the

use of unspecialized gear and boats for additional e¤ort when the best ones have already been

employed. Sancho & Mitchell (1975) and Holt et al. (1960) also point out that a quadratic

cost function appears to be more realistic. Furthermore, we suppose that harvesting starts

at an initial time 0 and continues up to a (�nite) terminal time T:

The net pro�t earned by the harvester at time � is denoted by �(�); and is calculated as:

unit �sh price � harvest � costs, so that,

�(�) = p(qE(�)x(�))� c1E(�)�
c2
2
E(�)2;

or,

�(�) =
�
pqx(�)� c1 �

c2
2
E(�)

�
E(�): (3.3)
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The future pro�ts are discounted at rate �. Therefore the net present value of the total �ow

of pro�t earned between the initial time 0 and the terminal time T is given by

PV =

Z T

0
e����(�)d� : (3.4)

Substituting for �(�) from Equation (3.3), we can rewrite the net present value de�ned in

Equation (3.4) as

PV =

Z T

0
e���

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�:

We assume that the optimal harvesting strategy maximizes the net present value of total �ow

of pro�t, i.e. the total discounted pro�t, and de�ne J�(x(t); t) as the optimal (maximized)

value of the total discounted pro�t obtained by initiating the harvest at time t and state x(t);

where 0 � t � T: Then we can write

J�(x(t); t) = max
E(�)
t���T

�Z T

t
e��(��t)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
;

so that, in particular,

J�(x(T ); T ) = 0: (3.5)

The problem of deriving an optimal harvesting policy, starting from the initial time t = 0;

can now be formulated as an optimal control problem. The control variable is E(�) and the

payo¤ (value) function is given by

J�(x(0); 0) = max
E(�)
0���T

�Z T

0
e���

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
;

subject to the initial condition

x(0) = x0;

and the constraints on e¤ort

0 � E(�) � Emax <1 for all � :

Furthermore, we wish to maintain the population density above a minimum viable level

throughout the harvest. So we introduce a lower bound on the population level, denoted by

xmin.
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In the sections that follow we analyze the deterministic model using three di¤erent methods:

Dynamic Programming, Hamiltonian method, and a Variational method.

3.3 Dynamic Programming technique

We consider the constrained optimization problem, where the e¤ort is bounded, and use the

dynamic programming technique (discussed in Section 2.4) to derive the Hamilton-Jacobi-

Bellman equation for the total discounted pro�t.

Derivation of the Hamilton-Jacobi-Bellman equation

We start with the current-valued payo¤ function at time t as follows:

J�(x(t); t) = max
E(�)
t���T

Z T

t
e��(��t)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d� ; (3.6)

subject to the growth equation

dx(�)

d�
= rx(�)

�
1� x(�)

K

�
� qE(�)x(�): (3.7)

Breaking down the integral in Equation (3.6) we get

J�(x(t); t) = max
E(�)
t���T

�Z t+dt

t
e��(��t)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

+

Z T

t+dt
e��[(��t)+dt�dt]

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
; (3.8)

where dt is very small. Using the approximation e��dt � (1 � �dt); valid for small dt, in

Equation (3.8) we obtain

J�(x(t); t) = max
E(�)
t���T

�Z t+dt

t
e��(��t)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

+(1� �dt)
Z T

t+dt
e��(��t�dt)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
: (3.9)
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Applying the principle of optimality (Bellman, 1957), Equation (3.9) can be rewritten as

J�(x(t); t) = max
E(�)

t���t+dt

�Z t+dt

t
e��(��t)

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

+(1� �dt) max
E(�)

t+dt���T

Z T

t+dt
e��(��(t+dt))

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�

35 ;

which is equivalent to

J�(x(t); t) = max
E(t)

h�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)dt+ (1� �dt)J�(x(t+ dt); t+ dt)

i
: (3.10)

Now x(t + dt) represents the population density at time t + dt, therefore it is equal to the

sum of the population level, x(t), at time t and the increment in population density, dx(t),

in time dt: In other words,

x(t+ dt) = x(t) + dx(t):

This gives

J�(x(t+ dt); t+ dt) = J�(x(t) + dx(t); t+ dt):

Expanding J�(x(t) + dx(t); t+ dt) around (x(t); t) yields

J�(x(t) + dx(t); t+ dt) = J�(x(t); t) +
@J�(x(t); t)

@x(t)
dx(t) +

@J�(x(t); t)

@t
dt

+higher order terms in dt: (3.11)

Substituting J�(x(t) + dx(t); t+ dt) from Equation (3.11) into Equation (3.10) and ignoring

the higher order terms in dt we get

0 = max
E(t)

h�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x(t)

dx(t)

dt
+
@J�(x(t); t)

@t

�
; (3.12)

where we have divided throughout by dt.
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Substituting dx(t)
dt from Equation (3.7) into Equation (3.12) leads to

�@J
�(x(t); t)

@t
= max

E(t)

h�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

��
: (3.13)

Equation (3.13) is the required Hamilton-Jacobi-Bellman equation for the total discounted

pro�t. Since dynamic programming uses backward induction, time t in Equation (3.13) is

moving backwards from the terminal time T to the initial time 0 (standard approach in

dynamic programming):

An analytic expression for the optimal e¤ort

We let G denote the control-switching term for the maximization being carried out in Equa-

tion (3.13). Then G consists of all the terms present in Equation (3.13) which contain E(t);

i.e.

G =
�
pqx(t)� c1 �

c2
2
E(t)

�
E(t) +

@J�(x(t); t)

@x(t)
(�qE(t)x(t)) :

If E�uc(t) denotes the solution with regard to the unconstrained maximum then E
�
uc(t) is given

by the solution to dG
dE = 0; which implies

pqx(t)� c1 � c2E�uc(t)�
@J�(x(t); t)

@x(t)
qx(t) = 0:

Rearranging terms we obtain

E�uc(t) =

�
p� @J�(x(t); t)

@x(t)

�
q

c2
x(t)� c1

c2
: (3.14)

Using the constrained optimal e¤ort, denoted by E�(t); in place of E(t) we can rewrite the

Hamilton-Jacobi-Bellman equation (3.13) as

�@J
�(x(t); t)

@t
=

�
pqx(t)� c1 �

c2
2
E�(t)

�
E�(t)� �J�(x(t); t)

+
@J�

@x

�
rx(t)

�
1� x(t)

K

�
� qE�(t)x(t)

�
; (3.15)
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where

E�(t) =

8>>>><>>>>:
0; E�uc(t) < 0;�

p� @J�

@x

� qx(t)
c2

� c1
c2
; 0 � E�uc(t) � Emax;

Emax; E�uc(t) > Emax:

(3.16)

The boundary conditions associated with the problem can be speci�ed as follows:

� At the �nal time T , J� = 0 by de�nition (see Equation (3.5)). Therefore the boundary

condition associated with the temporal variable is

J�(x; T ) = 0: (3.17)

� There is no harvesting when the population level is at xmin, therefore the spatial bound-

ary condition is

E�(xmin; t) = 0: (3.18)

In order to obtain the optimal harvesting policy, Equations (3.15)-(3.18) have to be solved

subject to the given initial stock level x0; the �xed minimum viable population level xmin and

the growth dynamics given by Equation (3.7). Due to the complicated nature of the partial

di¤erential equation (3.15), it is not possible to solve it analytically. Therefore we apply a

(Crank-Nicolson) �nite-di¤erence method to work out a numerical solution; the procedure

is described in Appendix A. The numerical scheme, to �nd the maximized total discounted

pro�t and the optimal e¤ort, is coded in Matlab.

Numerical solution and discussion

In the optimal harvesting problem under consideration we have imposed constraints on the

control variable E(t); and therefore, in essence, we are solving a constrained optimization

problem. Furthermore, Equation (3.16) indicates that the biological and economic parameters

present in the problem have a signi�cant impact on the optimal harvesting strategy. Before

demonstrating the numerical solution, we discuss the e¤ect of these parameters on the nature

of the solution. If the parameter values are such that the optimal e¤ort E�(t) stays within

[0; Emax] then the constraints on e¤ort are not binding. Consequently, the optimal solution
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stays the same even if the constraints are omitted. In other words, both constrained and

unconstrained optimal harvesting problems yield the same optimal solutions in this case.

However, if the resultant optimal e¤ort is outside the permissible range then the constraints

come into play and become binding. Under these circumstances, the optimal e¤ort E�(t) is

adjusted, and is set to its bound at the instant of constraint violation. We provide further

explanation with the help of the simulations presented next. The parameter values used for

simulation purposes are summarized in Table 3.1.

Table 3.1: Parameter values for the simulation of the Hamilton-Jacobi-Bellman equation

Parameter Description Value Unit

r Intrinsic growth rate 0:71 year�1

� Discount rate 0:12 year�1

q Catchability coe¢ cient 0:0001 SFU�1 year�1

K Biological carrying capacity 106 tonnes

xmin Minimum viable population level 0:4K tonnes

p Unit harvest price 0:5 $ tonne�1

T Terminal time 1 year

Emax Maximum e¤ort r=q SFU

Non-binding constraints

We �rst present an example where the constraints on the optimal e¤ort are not violated. Fig-

ure 3.1 demonstrates the optimal e¤ort path when the harvesting is initiated at the carrying

capacityK; the cost parameters are �xed as c1 = $0:01/SFU/year and c2 = $0:01/SFU2=year.

We note that the optimal e¤ort stays between 0 and Emax; so the constraints on e¤ort are not

binding in this case. Since it is biologically feasible and economically bene�cial to harvest at

positive levels, the optimal e¤ort never falls below 0: However, it is not bene�cial to harvest

at full capacity as an increase in e¤ort is accompanied by an increase in the harvesting cost,

and this additional cost exceeds the revenue earned from additional harvest. Consequently,

the optimal e¤ort always stays below Emax:
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Figure 3.1: Numerical solution for the optimal e¤ort strategy when the cost parameters are �xed as

c1 = $0:01/SFU/year and c2 = $0:01/(SFU)2=year with x0 = K. The constraints on the optimal

e¤ort are not binding in this case.

Binding constraints

Next we illustrate the scenario where the unconstrained optimal e¤ort falls out of the range

[0; Emax]. The cost coe¢ cients c1 and c2 are now allowed to assume lower values, speci�cally

c1 = $0:001/SFU/year and c2 = $0:001/SFU2=year; and the rest of the parameters are left

unchanged.

Since the costs are reduced, it now becomes pro�table to raise the �shing e¤ort and the

recommended optimal e¤ort calculated using Equation (3.14) results in a value greater that

Emax: The �nal optimal e¤ort, however, is determined by Equation (3.16), where the con-

straints are exercised and the optimal e¤ort is not allowed to exceed Emax: Figure 3.2 presents

the optimal e¤ort solution obtained under these circumstances. We observe that, in this case,

the constraint on e¤ort is binding and the optimal e¤ort stays at the maximum possible e¤ort

level, Emax:
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Figure 3.2: The optimal e¤ort solution when the cost parameters are �xed as c1 = $0:001/SFU/year

and c2 = $0:001/(SFU)2=year with x0 = K. The constraint on e¤ort becomes binding in this case

and the optimal e¤ort stays at Emax throughout the harvest.

Minimum viable level

We wish to study the signi�cance of the minimum viable level constraint which we have

introduced on the population undergoing harvest. There are two circumstances under which

the resource stock can be driven below the minimum viable level. We illustrate each one

of these scenarios with the help of an example, and show how the constraint imposed over

the minimum viable population level conserves the �sh population. The parameter values

utilized are again from Table 3.1.

The �rst case, where the population can fall below the minimum level, is when the initial

stock level is low, i.e., x0 is close to the minimum viable population level. We demonstrate

this situation by �xing the minimum viable level at 0:4K and setting x0 = 0:5K; c1 =

$0:01/SFU/year and c2 = $0:01/SFU2=year. Figure 3.3 presents the evolution of the popu-

lation, under the in�uence of optimal e¤ort, for these parameter values. The asterisks signify

the case where the boundary condition given by Equation (3.18) is employed, i.e. xmin is set
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equal to 0:4K; ensuring that the e¤ort is reduced to zero if the harvested stock level drops

to the minimum viable level: Thus the population is allowed to recover before harvesting is

restarted. It can be seen that, in this case, the population under harvesting always stays

above the minimum level: Next we consider the case where we have ignored the boundary

condition speci�ed by Equation (3.18); this amounts to the removal of the lower bound xmin

from the population density by setting xmin = 0. The consequence is visible via the solid

line in Figure 3.3, which shows that, under these circumstances, the stock falls below the

minimum viable level. While extinction does not occur till the terminal time T , there is a

possibility that any remaining �sh may not be able to survive.

The second scenario, where the resource stock can be driven below the minimum viable

population level; is when Emax is very high and it is pro�table to harvest using maximum

e¤ort. We demonstrate this situation by �xing Emax = 20000 SFU > r=q; x0 = K; c1 =

$0:001/SFU/year and c2 = $0:001/SFU2=year; the minimum viable level is again 0:4K. Even

though the initial population level is high in this case, still there is a possibility of biological

over-�shing as is evident from Figure 3.4. The asterisks again represent the solution where the

constraint xmin = 0:4K has been imposed and the solid line illustrates the solution obtained

by ignoring the restrictions on the minimum viable level (here xmin = 0). In the former case,

the �sh stock is conserved and the population level stays above the minimum viable level

throughout harvesting, whereas in the latter case the stock level falls below the minimum

viable level which can be fatal for the �sh population.
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Figure 3.3: The population growth under the optimal harvest when the initial population level is

�xed at 0:5K; c1 = $0:01/SFU/year and c2 = $0:01/(SFU)2=year; the minimum viable level is �xed

at 0:4K. The �nal population drops below the minimum level when the constraint on the minimum

viable population level is not actively enforced.
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Figure 3.4: The population growth under the optimal harvest for high Emax (= 20000 SFU) and low

cost: c1 = $0:001/SFU/year and c2 = $0:001/(SFU)2=year; the minimum viable level is again �xed

at 0:4K. The unconstrained �sh stock drops below the minimum viable level, even though x0 is high

(�xed at the carrying capacity K).
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3.4 Hamiltonian method

In this section we aim to �nd the optimal solution using the Hamiltonian method which is

based on Pontryagin�s maximum principle (a brief introduction to the Hamiltonian method

and the maximum principle is included in Section 2.3). Here we are solving the uncon-

strained optimal harvesting problem where we ignore the constraints on �shing e¤ort given

by Equation (3.2).

Derivation of the system of equations

We recall from Section 3.2 that the maximized objective function is

J�(x(0); 0) = max
E(�)
0���T

Z T

0
e���

�
pqx(�)� c1 �

c2
2
E(�)

�
E(�)d�:

This objective function can be reformulated as

J� = max
E(�)
0���T

Z T

0
e���f(x(�); E(�))d� ;

where f =
�
pqx(�)� c1 �

c2
2
E(�)

�
E(�): (3.19)

We form the current-valued Hamiltonian as follows:

H(E; x) = f(x(�); E(�); �) +m(�)
dx(�)

d�

=
�
pqx(�)� c1 �

c2
2
E(�)

�
E(�) +m(�)

�
rx(�)

�
1� x(�)

K

�
� qE(�)x(�)

�
;(3.20)

where m(�) is a Lagrange multiplier, and f(x(�); E(�); �) and dx(�)
d� have been substituted

with Equations (3.19) and (3.7) respectively.

In order to �nd the control E(�) maximizing the objective function, we need to solve the

following system of Euler-Lagrange equations:

@H
@E

= 0; (3.21)

dm(�)

d�
= �m(�)� @H

@x
; (3.22)
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and the growth equation

dx(�)

d�
= rx(�)

�
1� x(�)

K

�
� qE(�)x(�); (3.23)

subject to the initial condition

x(0) = x0 (constant), (3.24)

along with the transversality condition (see Section 2.3)

m(T ) = 0: (3.25)

Di¤erentiating Equation (3.20) with respect to E and using Equation (3.21) gives

[pqx(�)� c1 � c2E(�)]�mqx(�) = 0;

which can be solved for e¤ort as

E(�) =
(p�m(�))qx(�)� c1

c2
: (3.26)

This E(�) is the required (unconstrained) optimal e¤ort.

Di¤erentiating Equation (3.20) with respect to x we have

@H
@x

= pqE(�) + rm(�)� 2m(�)rx(�)
K

�m(�)qE(�)

= (p�m(�)) qE(�) + rm(�)� 2m(�)rx(�)
K

: (3.27)

Substituting Equation (3.26) for E(�) into Equation (3.27) yields

@H
@x

= (p�m(�)) q
�
(p�m(�))qx(�)� c1

c2

�
+ rm(�)� 2m(�)rx(�)

K
: (3.28)

Using Equation (3.28) in Equation (3.22) we get

dm(�)

d�
= �m(�)� rm(�)� (p�m(�)) q

�
(p�m(�))qx(�)� c1

c2

�
+
2m(�)rx(�)

K
;

which is equivalent to

dm(�)

d�
= (� � r)m(�) + 2rm(�)x(�)

K
� (p�m(�))

2q2x(�)

c2
+
(p�m(�))qc1

c2
: (3.29)
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Substituting Equation (3.26) for optimal E(�) into Equation (3.23) leads to

dx(�)

d�
= rx(�)

�
1� x(�)

K

�
� 1

c2
[(p�m(�))q2x(�)2] + qx(�)c1

c2
: (3.30)

Thus we have obtained a system comprising two ordinary di¤erential equations, Equation

(3.29) and Equation (3.30). We know the initial value of the population level, x(0) (given

by Equation (3.24)), and the terminal value of the Lagrange multiplier, m(T ) (given by

Equation (3.25)). This indicates that we have a two-point boundary-value problem with split

conditions.

We use the shooting method (Stanoyevitch, 2005) for determining the numerical solution for

the above-mentioned boundary-value problem. Following this method we try several initial

values for the Lagrange multiplier m(�), solve the boundary-value problem as an initial-value

problem, and compare the terminal value obtained for m(�) in each case with the actual

terminal value, which is 0. Using trial and error we wish to reduce the di¤erence between the

actual and the obtained terminal value below a pre-speci�ed tolerance; this procedure yields

the initial value m(0): As x(0) is given already, the system (3.29)-(3.30) can now be solved

as an initial value problem. The solution obtained for m(�) is substituted in Equation (3.26)

and this gives the unconstrained optimal e¤ort. The parameter values used for simulation

purposes are same as those listed in Table 3.1 and the initial population level is �xed at the

carrying capacity K.

Numerical results and discussion

We compare the solutions obtained by employing the Hamiltonian method with the solutions

determined using dynamic programming. Figure 3.5 illustrates the optimal e¤ort path pro-

duced by the Hamiltonian method where c1 = $0:01/SFU/year, c2 = $0:01/SFU2=year and

x0 = K. We noted in Section 3.3 that, for these parameter values, the constraints on the

optimal e¤ort are not binding at any time. Hence the constrained optimal solution deter-

mined using dynamic programming, illustrated by Figure 3.1, is the same as its unconstrained

counterpart obtained by using the Hamiltonian method, represented by Figure 3.5.
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Figure 3.5: Numerical solution for the optimal e¤ort yielded by the Hamiltonian method for

c1 = $0:01/SFU/year and c2 = $0:01/(SFU)2=year with x0 = K. The solution obtained here co-

incides with the solution obtained using the dynamic programming technique for the same set of

parameter values.

Next we �x c1 = $0:001/SFU/year; c2 = $0:001/SFU2/year and retain the same values for

the remaining parameters. Figure 3.6 presents the optimal e¤ort solution for this case. We

observe that the optimal e¤ort solution obtained here is di¤erent from the optimal e¤ort path

(E� = Emax) produced by the dynamic programming approach (Figure 3.2). It was noted in

Section 3.3 that the constraints on the optimal e¤ort become binding for this set of parameter

values. Since we do not incorporate the constraints in the Hamiltonian method, the resultant

optimal e¤ort falls outside [0; Emax]; here, the optimal e¤ort stays above Emax throughout

the harvesting period. On the other hand, the dynamic programming technique does not

allow the optimal e¤ort to exceed the upper bound Emax: Consequently, the optimal e¤ort

determined using dynamic programming stays at Emax:
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Figure 3.6: Numerical solution for the optimal e¤ort produced by the Hamiltonian method when

c1 = $0:001/SFU/year and c2 = $0:001/(SFU)2=year with x0 = K. Here the optimal e¤ort stays

above Emax throughout the harvest. This solution is di¤erent from the optimal solution obtained

using the dynamic programming approach where the optimal e¤ort was equal to Emax for identical

parameter values.

3.5 Variational approach

We now investigate the unconstrained optimal harvesting problem using a variational ap-

proach based on the calculus of variations (the calculus of variations is discussed in Section

2.2; see also Chiang, 2000 for a description of the variational approach employed here).

Derivation of the system of equations

Again the performance index is given by

J(x(0); 0) =

Z T

0
e���

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d� ; (3.31)

which has to be maximized with respect to the control E(�); subject to the growth equation
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dx(�)

d�
= rx(�)

�
1� x(�)

K

�
� qEx(�); (3.32)

and the initial condition

x(0) = x0: (3.33)

Let E�(�) furnish an unconstrained maximum for the performance index given by Equation

(3.31) and x�(�) denote the corresponding population growth. We introduce a small variation

in E�(�) and x�(�) as follows:

E(�) = E�(�) + h(�);

x(�) = x�(�) + k(�);

where h(�) and k(�) are arbitrary functions such that jhj � 1 and jkj � 1:

The �rst variation of J is then given by

4J =

Z T

0
e���

�
pq(x� + k)� c1 �

c2
2
(E� + h)

�
(E� + h)d�

�
Z T

0
e���

�
pqx� � c1 �

c2
2
E�
�
E�d� ; (3.34)

where x�; E�; k and h are functions of time.

Simplifying Equation (3.34) and ignoring the second order terms in h and k yields

4J =
Z T

0
e���h(pqx� � c1 � c2E�)d� +

Z T

0
e���k(pqE�)d�: (3.35)

Replacing x by (x� + k) and E by (E� + h) in Equation (3.32) we get

d(x� + k)

d�
= r(x� + k)

�
1� (x

� + k)

K

�
� q(E� + h)(x� + k) (3.36)

Simplifying Equation (3.36) leads to

dk

d�
= r

�
1� 2x

�

K

�
k � qE�k � qx�h+ higher order terms in k and h: (3.37)

Rearranging Equation (3.37) and ignoring the higher order terms, we obtain h as

h =
r
�
1� 2x�

K

�
k � dk

d� � qE
�k

qx�
: (3.38)
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As E�(�) and x�(�) correspond to a maximum for J; the �rst variation of J given by Equation

(3.34) is zero, which amounts toZ T

0
e���h(pqx� � c1 � c2E�)d� +

Z T

0
e���k(pqE�)d� = 0: (3.39)

Substituting Equation (3.38) into Equation (3.39) we obtainZ T

0
e���

(
(pqx� � c1 � c2E�)

 
r
�
1� 2x�

K

�
� qE�

qx�

!
+ pqE�

)
kd�

�
Z T

0
e���

�
pqx� � c1 � c2E�

qx�

�
dk

d�
d� = 0 (3.40)

Note that Equation (3.40) holds for all k: Integrating by parts in the second integral in

Equation (3.40) yieldsZ T

0
e���

"
(pqx� � c1 � c2E�)

 
r
�
1� 2x�

K

�
� qE�

qx�

!
+ pqE�

��
�
pqx� � c1 � c2E�

qx�

�
� c1
q

�
1

x�

�0
� c2
q

�
E�

x�

�0�
kd�

�e��T
�
p� c1 � c2E�(T )

qx�(T )

�
k(T ) +

�
p� c1 � c2E�(0)

qx�(0)

�
k(0) = 0: (3.41)

For Equation (3.41) to hold, each of the three terms present in the equation should be

identically zero. This impliesZ T

0
e���

"
(pqx� � c1 � c2E�)

 
r
�
1� 2x�

K

�
� qE�

qx�

!
+ pqE�

��
�
pqx� � c1 � c2E�

qx�

�
� c1
q

�
1

x�

�0
� c2
q

�
E�

x�

�0�
kd� = 0; (3.42)

�
p� c1 � c2E�(T )

qx�(T )

�
k(T ) = 0; (3.43)

and �
p� c1 � c2E�(0)

qx�(0)

�
k(0) = 0: (3.44)

We �rst examine Equation (3.44). Since the initial state x�(0) is given as x0, Equation (3.44)

implies k(0) = 0:



3. Deterministic Environment 74

Next we consider Equation (3.43). As the �nal state x�(T ) is free therefore k(T ) 6= 0.

Consequently, �
p� c1 � c2E�(T )

qx�(T )

�
= 0;

which leads to the boundary condition

E�(T ) =
pqx�(T )� c1

c2
: (3.45)

Finally, the integral in Equation (3.42) is equal to zero for any arbitrary k (�); this amounts

to the integrand being identically zero. Therefore,

e���

"
(pqx� � c1 � c2E�)

 
r
�
1� 2x�

K

�
� qE�

qx�

!
+ pqE�

��
�
pqx� � c1 � c2E�

qx�

�
� c1
q

�
1

x�

�0
� c2
q

�
E�

x�

�0�
k = 0: (3.46)

Simplifying Equation (3.46) we get

dE�

d�
= r

E�x�

K
+ �E� +

pq

c2
(r � �)x� � 2rpq

c2K
x�2 +

c1
c2

�
�+

rx�

K

�
: (3.47)

To summarize, we have obtained a system of ordinary di¤erential equations comprising of

the optimal e¤ort dynamics (given by Equation (3.47)) and the corresponding population

dynamics (given by Equation (3.32)). We rewrite them as follows:

dE�

d�
= r

E�x�

K
+ �E� +

pq

c
(r � �)x� � 2rpq

cK
x�2 +

c1
c2

�
�+

rx�

K

�
;

dx�

d�
= rx�

�
1� x�

K

�
� qE�x�:

We use Matlab to determine a numerical solution for this system of equations. As we have

the �nal boundary condition for e¤ort (given by Equation (3.45)) and the initial boundary

condition for population (given by Equation (3.33)), we use the shooting method for simula-

tion purposes. The initial population level is again �xed at the carrying capacity K and the

remaining parameter values are those in Table 3.1.
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Numerical results and discussion

We compare the optimal solution obtained by using the variational approach with the optimal

solutions found by the dynamic programming technique and the Hamiltonian method. We

�rst �x c1 = $0:01/SFU/year and c2 = $0:01/SFU2=year; recall that the constraints on

the optimal e¤ort are not binding for these parameter values (see Section 3.3). Figure 3.7

illustrates the optimal e¤ort path determined using the variational approach; we �nd that

the optimal solution obtained here agrees with the optimal solution produced by the dynamic

programming technique (Figure 3.1) and the Hamiltonian method (Figure 3.5).
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Figure 3.7: The optimal e¤ort calculated with the variational approach for c1 = $0:01/SFU/year and

c2 = $0:01/(SFU)2=year with x0 = K: This solution agrees with the optimal e¤ort solution obtained

using dynamic programming and the Hamiltonian method, for the same parameter values.

Next we study the behaviour of the optimal solution when the cost parameters c1 and c2 are

low, demonstrated by �xing c1 =$ 0:001/SFU(year) and c2 =$ 0:001/(SFU)2(year). Figure

3.8 illustrates the solution for optimal e¤ort obtained in this case. We notice that the solution

obtained here is the same as the solution produced by the Hamiltonian method (Figure 3.6),

the reason being that the constraints on e¤ort are not taken into account by any of these two

approaches. As noted earlier in Sections 3.3 and 3.4, the dynamic programming approach
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results in a di¤erent solution where the optimal e¤ort is forced to follow the constraints and

to stay at Emax throughout the harvest.
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Figure 3.8: The optimal e¤ort obtained using the variational approach when the cost parameters c1

and c2 are low (c1 = $0:001/SFU/year and c2 = $0:001/(SFU)2=year. The unconstrained solution is

same as the solution produced by the Hamiltonian method for the same set of parameter values, but

di¤erent from the constrained optimal solution obtained using the dynamic programming technique.

3.6 Sensitivity analysis

In this section we consider the constrained optimal harvesting problem formulated using the

dynamic programming technique, presented in Section 3.3. The expression E�(t) for the

optimal e¤ort, given by Equation (3.16), includes various parameters, e.g. the catchability

coe¢ cient q, the cost parameters c1 and c2, the stock size x(t) and the price p. Therefore the

simulated optimal harvesting strategy, and consequently the total discounted pro�t, is highly

sensitive to the values used for these parameters. We investigate the sensitivity of the total

discounted pro�t to di¤erent combinations of catchability and cost parameters.

We concentrate on those values of c1 and c2 for which harvesting is feasible and pro�table.

We �x x0 = K, c1 = $0:01=SFU/year and c2 = $0:01=SFU2=year as the base values, and

record the present value of the total pro�t corresponding to a high and a low value of the
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catchability coe¢ cient q; the low value for the catchability coe¢ cient is demonstrated using

q = 0:0001/SFU/year and the high value is demonstrated using q = 0:1/SFU/year: Then we

introduce variations in the values of c1 and c2; and examine their e¤ect on the total discounted

pro�t. The observations are recorded in Table 3.2 and are based on the numerical simulations

of the Hamilton-Jacobi-Bellman equation (3.15), using parameter values from Table 3.1.

For q = 0:0001/SFU/year; an increase in the value of c1 incurs a minimal change in the

total discounted pro�t, whereas the same increase in c2 incurs a signi�cant drop; hence the

quadratic term in the cost function is dominant when the catchability is low. An explanation

for this e¤ect can be provided by studying Figure 3.9 where we observe that a rise in c1 does

not have a substantial e¤ect on the optimal e¤ort expended, whereas, a rise in c2 results in

a considerable decrease in the optimal e¤ort and the overall e¤ect is a pronounced decline in

the total discounted pro�t. On the other hand, when q = 0:1/SFU/year, the total discounted

pro�t is more or less constant; a change in the values of c1 and c2 does not have a signi�cant

e¤ect on the total discounted pro�t. This can be attributed to the fact that the optimal e¤ort

stays at Emax for high catchability, as demonstrated by Figure 3.10.

Table 3.2: Sensitivity analysis of the total discounted pro�t with respect to di¤erent combinations of

catchability and cost parameters.

q c1 c2 J�(x(0) = K; 0)

[SFU�1 year�1] [$ SFU�1 year�1] [$ SFU�2 year�1] [$]

0:0001 0:01 0:01 8:7141� 104

1 0:01 8:3689� 104

0:01 1 0:1184� 104

0:1 0:01 0:01 2:5641� 105

1 0:01 2:5641� 105

0:01 1 2:5639� 105
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Figure 3.9: E¤ect of an increase in the cost parameters on the optimal e¤ort policy for a low catch-

ability, demonstrated by �xing q = 0:0001/SFU/year. Top: c2 is �xed while c1 is allowed to vary;

Bottom: c1 is �xed while c2 is allowed to vary. An increase in c2 has a much greater impact on the

optimal e¤ort than an increase in c1.
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Figure 3.10: E¤ect of an increase in the cost parameters on the optimal e¤ort policy for a high

catchability, demonstrated by �xing q = 0:1/SFU/year. Top: c2 is �xed while c1 is allowed to vary;

Bottom: c1 is �xed while c2 is allowed to vary. The optimal e¤ort stays at Emax in all the cases

illustrated here.
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3.7 In�nite horizon

Thus far, we have considered harvesting for a �nite time horizon where the terminal time

T is �xed. The objective in this section is to study the behaviour of the optimal solution

corresponding to harvesting for an in�nite time horizon (T !1).

As noted by Tsur & Zemel (2001), when the terminal time is in�nite it is not always necessary

to study the evolution of the optimal solution path. For a broad category of time-autonomous

optimization problems, where the calendar time t is not explicitly present in the formulation

of the problem (except in the discount factor), the optimal solution is time-invariant in the

long run and converges to an equilibrium state. This idea of time-invariant optimal solution

can also be understood by studying the Bellman equation (3.15) as explained below.

For a �xed terminal time, the Bellman equation contains the time derivative, @J
�(x(t);t)
@t ; of

the value function J�. However, in the case of an in�nite time horizon J� depends only on

the state variable, provided the state dynamics and the pro�t function are time-autonomous

(Miranda, 2002), and therefore @J�(x(t);t)
@t = 0. We notice that the time variable is not

explicitly present in the growth equation (3.7) or in the pro�t function given by Equation

(3.3). Therefore, for in�nite horizon harvesting the Hamilton-Jacobi-Bellman equation (3.15)

reduces to

0 = max
E(t)

h�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

��
;

and the optimal e¤ort and population level converge to their respective optimal equilibrium

states.

Determining long run optimal steady state solution

We use the method developed by Tsur & Zemel (2001) to �nd the optimal steady-state so-

lution for an in�nite-horizon harvesting and present a brief description of the method before
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applying it. Retaining their original notation, the in�nite-horizon problem investigated by

Tsur & Zemel (2001) was of the form

V (X0) = max
ct

Z 1

0
e�rtf(Xt; ct)dt

subject to the state equation _Xt � dXt=dt = g(Xt; ct);

satisfying X
¯
� Xt � �X, with initial state X0, given c¯

� ct � �c, where ct is the control

vector. The discount rate r was assumed to be positive and the functions f and g were

time-autonomous and su¢ ciently smooth. The evolution function was introduced based on

the idea that one is not better o¤ by deviating from an optimal steady state and entering a

nearby steady state. For a steady-state policy c = R(X), the evolution function was denoted

by L(X) and was given by

L(X) � r

�
fc(X;R(X))

gc(X;R(X))
+W 0(X)

�
;

where the subscripts denoted partial derivatives and the prime denoted di¤erentiation with

respect to the state variable; W (X) = f(X;R(X))=r was the steady state value so that

W (X) � V (X): The equality was obeyed only when the policy R(X) was optimal. Using

the variational method, it was shown that any optimal state must be a root of the evolution

function. An optimal steady-state policy could then be determined by solving for the roots

of the evolution function.

We now follow the same procedure as described above to formulate the in�nite horizon optimal

harvesting problem. To our knowledge, the in�nite horizon problem with logistic growth and

quadratic costs has never been examined using this approach. In this context, the value

function is given by

J�(x(0); 0) = max
E(t)

Z 1

0
e��t

�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)dt

= max
E(t)

Z 1

0
e��tf(x(t); E(t))dt (say) ; (3.48)

subject to the growth equation

dx(t)

dt
= rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

= g(x(t); E(t)) (say); (3.49)

satisfying 0 � x(t) � K, with x(0) = x0 and constraints on e¤ort as 0 � E(t) � Emax:
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The associated evolution function can be speci�ed as

L(Xeqm) � �

�
fE(Xeqm; Eeqm)

gE(Xeqm; Eeqm)
+W 0(Xeqm)

�
; (3.50)

where Xeqm represents a steady state (not necessarily optimal) for the state variable x(t);

and Eeqm � E(Xeqm) is the corresponding steady-state e¤ort. At equilibrium the rate of

growth of the �sh stock is zero, therefore the growth equation (3.49) gives

dXeqm
dt

� rXeqm

�
1� Xeqm

K

�
� qEeqmXeqm = 0: (3.51)

Rearranging Equation (3.51), the equilibrium e¤ort is obtained as

Eeqm =
r

q

�
1� Xeqm

K

�
: (3.52)

We now determine the partial derivatives present in the evolution function (3.50). From

Equations (3.48) and (3.49) we have

f(x(t); E(t)) =
�
pqx(t)� c1 �

c2
2
E(t)

�
E(t);

g(x(t); E(t)) = rx(t)

�
1� x(t)

K

�
� qE(t)x(t):

Di¤erentiating the functions f and g with respect to E and evaluating the derivatives at the

equilibrium state yields

fE(Xeqm; Eeqm) = pqXeqm � c1 � c2
r

q

�
1� Xeqm

K

�
;

gE(Xeqm; Eeqm) = �qXeqm: (3.53)

Furthermore,

W (Xeqm) =
f(Xeqm; Eeqm)

�

=
1

�

"
pqXeqm

r

q

�
1� Xeqm

K

�
� c1

r

q

�
1� Xeqm

K

�
� c2
2

r2

q2

�
1� Xeqm

K

�2#
(3.54)

Di¤erentiating Equation (3.54) with respect to Xeqm gives

W 0(Xeqm) = pr � 2prXeqm
K

+
c1r

qK
� c2r

2Xeqm
q2K2

+
c2r

2

q2K
: (3.55)
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Substituting the functions given by Equations (3.53) and (3.55) in the evolution function

(3.50) and equating it to zero, we obtain the following equation (which is quadratic in Xeqm):�
2pr

K
+

c2r
2

q2K2

�
q2X2

eqm +

��
p+

c2r

q2K

�
(� � r)� rc1

qK

�
q2Xeqm � �(c1q + c2r) = 0: (3.56)

We denote the optimal steady-state solutions for e¤ort and population by E1 and X1

respectively. The quadratic equation (3.56) can be solved for Xeqm; the optimal equilibrium

population level X1 is obtained as the positive root whilst the other root is negative and can

be discarded. The steady-state, to which the optimal e¤ort converges in the long run, can

be determined by substituting Xeqm with X1 in Equation (3.52). We calculate the optimal

equilibrium for the parameter values speci�ed in Table 3.1, and �nd that under the optimal

policy the population level stabilizes at

X1 = 0:6924�K; (3.57)

and the e¤ort approaches the equilibrium value

E1 = 2183:5 SFU: (3.58)

Simulations of Bellman equation for large values of terminal time

In the previous section, we determined the long-run steady states for the optimal e¤ort and

population level corresponding to an in�nite horizon harvesting. We now wish to study the

evolution of the optimal e¤ort and the �sh stock when �nite-horizon harvesting is carried on

for a long period; the objective is to investigate how the latter compares with the equilibrium

states obtained for in�nite-horizon harvesting. For this purpose we simulate the Hamilton-

Jacobi-Bellman equation (3.15) obtained for �nite-time harvesting, for large values of the

terminal time T:

We use the parameter values given in Table 3.1 with c1 = $0:01=SFU/year and c2 =

$0:01=SFU2=year; and perform numerical simulations of Equation (3.15) for T = 1 year;

T = 10 years and T = 20 years. Recall that, for this set of parameters, the equilibrium

states (corresponding to in�nite-horizon harvesting) for the optimal stock level and the opti-

mal e¤ort are obtained as X1 = 0:6924K and E1 = 2183:5 SFU (see Equations (3.57) and
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(3.58)). We �rst analyze the nature of the optimal solution for �nite-horizon harvesting when

the initial population level is above X1, speci�cally x0 = 0:7K. Figure 3.11 illustrates the

optimal e¤ort path and Figure 3.12 presents the associated optimal population growth. We

note that the steady state behaviour of the optimal solution is not visible when T = 1 year.

However, as T increases, the optimal e¤ort tends to stabilize at E1 and the optimal stock

level settles at X1 before undergoing a change towards the end of the harvesting period.

During harvesting, there is a trade-o¤ between harvesting today and letting the population

grow for increased future harvest. But near the terminal time, there is no incentive for

the harvester to allow the population to grow. Therefore the optimal e¤ort displays an

increase over a few stages before the �nal time and, consequently, the population level declines.

If harvesting had carried on for an in�nite time then the optimal e¤ort and the optimal

population would have stayed forever at E1 and X1 respectively.
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Figure 3.11: Comparison of the optimal e¤ort, E�; obtained using the Bellman equation for a long-

term �nite-horizon harvesting with the steady state, E1; corresponding to the in�nite-horizon optimal

solution; the initial stock level is above the corresponding optimal equilibrium value. As T increases,

E� stabilizes at E1 before increasing towards the end.
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Figure 3.12: Comparison of the optimal population level, x�; corresponding to a long-term �nite-

horizon harvesting with the optimal steady state, X1; associated with the in�nite-horizon optimal

solution. As T increases, x� settles at X1; a decline is observed for a few time stages before the

terminal time.

Next we analyze the case where harvesting is initiated below the steady state X1; to demon-

strate this we �x x0 = 0:65K and retain the rest of the parameter values. Figures 3.13 and

3.14 show the optimal e¤ort path and the optimal stock growth respectively. Under these

circumstances, the optimal solutions corresponding to T = 10 years and T = 20 years portray

the same qualitative behaviour whereas the optimal solution for T = 1 year traces a totally

di¤erent path. For T = 1 year, the resource stock undergoes a decline from the beginning

and continues to drop until harvesting ceases, whereas, for comparatively large values of T

(illustrated using T = 10 years and T = 20 years), the optimal e¤ort rises to E1 and the

optimal population increases to X1; the steady states are maintained for a while before a

change in the optimal e¤ort drives the population level down in the �nal stages.

Thus the optimal e¤ort policy corresponding to an in�nite time-horizon recommends a sta-

tionary value for the e¤ort in the long run, with the population stabilized at the corresponding

steady state. If time is su¢ ciently long, the optimal solution associated with a �nite-horizon

harvesting stabilizes itself at the equilibrium state corresponding to the solution for an in�nite

horizon before re-adjusting itself close to the terminal time.
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Figure 3.13: Comparison of the optimal e¤ort solution, E�; associated with a long-term �nite-horizon

harvesting, with the optimal equibrium value, E1; obtained for an in�nite-horizon harvesting; the

initial stock level is below the respective optimal steady state. E� approaches E1 as T increases and

stays there for a while before a change is observed in a few �nal time stages.
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Figure 3.14: Comparison of the solution for a long-run �nite-horizon optimal population level , x�;

with the optimal steady state, X1; corresponding to an in�nite-horizon harvesting. As T increases,

x� stabilizes at X1 before undergoing a change towards the end of the harvesting period.
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3.8 Summary

In this chapter, we discussed a deterministic model for �sh harvesting with a constant non-

zero price and quadratic costs. The optimal harvesting policy maximizing the net present

value of �ow of pro�t was sought, while the resource stock was maintained above a minimum

viable level throughout the harvest. The model was examined using the following three

methods:

� Dynamic programming: This technique resulted in the Hamilton-Jacobi-Bellman par-

tial di¤erential equation. The equation was solved using the Crank-Nicolson �nite-

di¤erence method and at each step the e¤ort was checked and forced to follow the

constraints.

� Hamiltonian method: The method demonstrated in this chapter did not incorporate

the constraints on e¤ort and yielded a system of two ordinary di¤erential equations.

Moreover, this method introduced an additional variable (Lagrange multiplier) to the

problem. As it was a boundary-value problem, the system had to be solved numerically

with split boundary conditions using the shooting method.

� Variational approach: This method also led to a system of two ordinary di¤erential

equations and provided the optimal e¤ort solution straightaway. It did not, however,

include the constraints on e¤ort. Furthermore, we again had to solve with split bound-

ary conditions.

We observed that all of these methods resulted in the same optimal solution for the set of

parameters corresponding to non-binding constraints on e¤ort. In other words, when the

parameter values were such that the constraints on the optimal e¤ort were not binding and

the optimal e¤ort lay within [0; Emax] ; the optimal e¤ort policy produced by all the methods

was the same. However, when the constraints on the optimal e¤ort were binding, the dynamic

programming technique resulted in an optimal policy which was di¤erent from the optimal

solution produced by the other two methods. Further, we found that the pro�t maximizing

harvesting policy can drive the population to extinction, if the proper constraints are not
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enforced to ensure that the resource stock stays above the minimum viable level during

harvesting.

Following that, we carried out a sensitivity analysis of the total discounted pro�t which

suggested that, for a low catchability, the total discount pro�t is highly sensitive to a change

in the quadratic coe¢ cient of cost, c2, whereas a change in the linear coe¢ cient, c1; does not

have a signi�cant impact. The total discounted pro�t was observed to be constant when the

catchability coe¢ cient was high.

Finally, we studied in�nite-horizon harvesting where we determined the long-run steady states

for the optimal e¤ort and the population level. Then we simulated the optimal solution

corresponding to large values of the terminal time for �nite-horizon harvesting and found

that this optimal solution tends to stabilize at the optimal steady-state solution associated

with in�nite-horizon harvesting. However, due to the �niteness of the terminal time, the

former undergoes a change towards the end of the harvesting period. We further noted that

harvesting can be performed at higher levels when the initial population level is well above

the long-run steady state X1, whereas, an initial level lower that the long-run steady state

value forces the optimal e¤ort to adjust itself so that the population can rise to X1:



Chapter 4

Stochastic Environment

4.1 Introduction

This chapter concentrates on the optimal harvesting problem in a stochastic environment.

The chapter is organized as follows: Section 4.2 develops a harvesting model for a �shery

experiencing continuous disturbance in stock and price; the noise is represented by two dif-

ferent Wiener processes which may be correlated or uncorrelated. Section 4.3 presents the

stochastic dynamic programming technique, which yields a Hamilton-Jacobi-Bellman partial

di¤erential equation describing the expected net present value of the total pro�t (or the ex-

pected total discounted pro�t). We �rst consider the fully stochastic problem, with random

growth and random price, and then reduce it to the case of random growth and constant

price.

In Section 4.4 we present the optimal solution corresponding to stochastic growth and con-

stant price and Section 4.5 illustrates the optimal solution when both growth and price are

stochastic. The optimal solutions corresponding to both short-term and long-term harvesting

are illustrated and their sensitivity to the variance of growth and price is examined. Section

4.6 focuses on the sensitivity of the expected total discounted pro�t to the catchability and

cost parameters and Section 4.7 discusses the correlation between the resource stock and the

price. Section 4.8 summarizes the work done in this chapter.

89
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4.2 Stochastic model formulation

The deterministic model (discussed in Section 3.2) is now extended to its stochastic ver-

sion, with the growth dynamics of the resource population given by an Itô-type stochastic

di¤erential equation

dx(�) =

�
rx(�)

�
1� x(�)

K

�
� qE(�)x(�)

�
d� + �1x(�)dW1(�); (4.1)

where �1 is a positive constant representing random growth e¤ects (growth volatility) and

dW1(�) is a standard Wiener increment.

The e¤ort is again constrained as

0 � E(�) � Emax <1 for all � ; (4.2)

where Emax is a �xed constant. We assume the �sh price to be random; the price-dynamics

also follow an Itô-type stochastic di¤erential equation

dp(�) = �pp(�)d� + �2p(�)dW2(�); (4.3)

where p(�) is the price per unit harvest at time � ; dW2(�) denotes a standard Wiener incre-

ment and �2 is a positive constant representing the magnitude of random price e¤ects (price

volatility). Here the drift in price, �pp(�); is assumed to be proportional to the spot price;

�p is a positive constant. Note that we have assumed that the �shery is small so that it�s

harvest has no e¤ect on the world prices.

The harvesting cost is again assumed to be quadratic in �shing e¤ort, given by c1(�)E(�) +

c2
2 E(�)

2 where c1 and c2 are positive constants. The expected net value of the pro�t earned

by the harvester at time � is denoted by �(�) and is given by the di¤erence between revenue

and costs

�(�) = E
h
p(�)qx(�)E(�)� c1E(�)�

c2
2
E(�)2

i
= E

h�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)

i
;

where E is the expectation operator.
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It is further assumed that harvesting is initiated at time 0 and continues up to a �nite time

T . The future pro�ts are discounted at rate � and the expected net present value of the total

pro�t earned by the harvester is obtained as

PV = E
�Z T

0
e����(�)d�

�
:

We assume that the optimal harvesting strategy maximizes the expected net present value of

the total pro�t. Thus the principle underlying the optimal harvesting stays the same as the

deterministic case (see Section 3.2) but the calculations here are based on the expected values

of the stochastic processes involved. We let J�(x(t); p(t); t) denote the maximized value of

the expected total discounted pro�t when harvesting begins at time t and continues up to

the terminal time T: Then we can write

J�(x(t); p(t); t) = max
E(�)
t���T

E
�Z T

t
e��(��t)�(�)d�

�

= max
E(�)
t���T

E
�Z T

t
e��(��t)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
;

so that, in particular,
J�(x(T ); p(T ); T ) = 0: (4.4)

Furthermore, a minimum viable population level xmin is maintained throughout harvesting.

Under these assumptions the problem of deriving an optimal harvesting strategy, for the

period [0; T ]; can be formulated as a stochastic optimal control problem where the control

variable is E(�) and the value function is given by

J�(x(0); p(0); 0) = max
E(�)
0���T

E
�Z T

0
e����(�)d�

�

= max
E(�)
0���T

E
�Z T

0
e���

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
: (4.5)

The optimal solution must be determined subject to the growth dynamics given by Equation

(4.1), the price dynamics given by Equation (4.3), the constraints on e¤ort given by (4.2), the

minimum viable population level xmin; and the initial conditions x(0) = x0 and p(0) = p0:
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4.3 Stochastic dynamic programming

In this section we derive the Hamilton-Jacobi-Bellman equation, corresponding to the ex-

pected total discounted pro�t, by employing stochastic dynamic programming (see Section

2.4 for an introduction to stochastic dynamic programming).

Derivation of the Hamilton-Jacobi-Bellman equation

In order to derive the Hamilton-Jacobi-Bellman equation, we consider the current value form

of Equation (4.5) as

J�(x(t); p(t); t) = max
E(�)
t���T

E
�Z T

t
e��(��t)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
; (4.6)

where t denotes the current time and x(t) and p(t) represent the population level and price

respectively at time t.

The integral in Equation (4.6) can be broken down as

J�(x(t); p(t); t) = max
E(�)
t���T

E
�Z t+dt

t
e��(��t)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d� +

Z T

t+dt
e��(��t�dt+dt)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
:

Utilizing the approximation e��dt � (1� �dt); valid for small dt; we get

J�(x(t); p(t); t) = max
E(�)
t���T

E
�Z t+dt

t
e��(��t)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d� +

(1� �dt)
Z T

t+dt
e��(��(t+dt))

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

�
:

(4.7)

Applying the principle of optimality (Bellman, 1957), Equation (4.7) becomes

J�(x(t); p(t); t) = max
E(�)

t���t+dt

E
�Z t+dt

t
e��(��t)

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d� +

(1� �dt) max
E(�)

t+dt���T

Z T

t+dt
e��(��(t+dt))

�
p(�)qx(�)� c1 �

c2
2
E(�)

�
E(�)d�

35 ;
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which is equivalent to

J�(x(t); p(t); t) = max
E(t)

E
h�
(p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)dt

+ (1� �dt)J�(x(t) + dx(t); p(t) + dp(t); t+ dt)]: (4.8)

Expanding J�(x(t) + dx(t); p(t) + dp(t); t+ dt) around (x(t); p(t); t) we obtain

J�(x(t) + dx(t); p(t) + dp(t); t+ dt) = J�(x(t); p(t); t) +
@J�(x(t); p(t); t)

@t
dt

+
@J�(x(t); p(t); t)

@x(t)
dx(t) +

@J�(x(t); p(t); t)

@p(t)
dp(t)

+
1

2

@2J�(x(t); p(t); t)

@x(t)2
dx(t)2 +

1

2

@2J�(x(t); p(t); t)

@p(t)2
dp(t)2

+
@2J�(x(t); p(t); t)

@x(t)@p(t)
dx(t)dp(t) +O(dt2): (4.9)

Substituting for dx(t) and dp(t) from Equations (4.1) and (4.3) respectively, we can rewrite

Equation (4.9) as

J�(x(t) + dx(t); p(t) + dp(t); t+ dt) = J�(x(t); p(t); t) +
@J�(x(t); p(t); t)

@t
dt

+
@J�(x(t); p(t); t)

@x(t)

��
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt+ �1x(t)dW1(t)

�
+
@J�(x(t); p(t); t)

@p(t)

�
�pp(t)dt+ �2p(t)dW2(t)

�
+
1

2

@2J�(x(t); p(t); t)

@x(t)2

"�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�2
dt2 + �21x(t)

2dW1(t)
2

+2

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
�1x(t)dW1(t)dt

�
+
1

2

@2J�(x(t); p(t); t)

@p(t)2
[�2pp(t)

2dt2 + �22p(t)
2dW2(t)

2 + 2�pp(t)�2p(t)dW2(t)dt]

+
@2J�(x(t); p(t); t)

@x(t)@p(t)
�1x(t)�2p(t)dW1(t)dW2(t) +O(dt)2
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Rearranging we get

J�(x(t) + dx(t); p(t) + dp(t); t+ dt) = J�(x(t); p(t); t) +
@J�(x(t); p(t); t)

@t
dt

+
@J�(x(t); p(t); t)

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt

+
@J�(x(t); p(t); t)

@x(t)
�1x(t)dW1(t)

+
@J�(x(t); p(t); t)

@p(t)
�pp(t)dt+

@J�(x(t); p(t); t)

@p(t)
�2p(t)dW2(t)

+
1

2

@2J�(x(t); p(t); t)

@x(t)2
�21x(t)

2dW1(t)
2 +

1

2

@2J�(x(t); p(t); t)

@p(t)2
�22p(t)

2dW2(t)
2

+
@2J�(x(t); p(t); t)

@x(t)2

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
�1x(t)dW1(t)dt)

+
@2J�(x(t); p(t); t)

@p(t)2
�pp(t)�2p(t)dW2(t)dt

+
@2J�(x(t); p(t); t)

@x(t)@p(t)
�1x(t)�2p(t)dW1(t)dW2(t) +O(dt2):

(4.10)

Substituting J�(x(t)+dx(t); p(t)+dp(t); t+dt) from Equation (4.10) in Equation (4.8) gives

J�(x(t); p(t); t) = max
E(t)

E
h�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)dt+ (1� �dt)J�(x(t); p(t); t)

+ (1� �dt)
�
@J�

@t
dt+

@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt

+
@J�

@p(t)
�pp(t)dt+

@J�

@x(t)
�1x(t)dW1(t) +

@J�

@p(t)
�2p(t)dW2(t)

+
1

2

@2J�

@x(t)2
�21x(t)

2dW1(t)
2 +

1

2

@2J�

@p(t)2
�22p(t)

2dW2(t)
2

+
@2J�

@x(t)2

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
�1x(t)dW1(t)dt

+
@2J�

@p(t)2
�pp(t)�2p(t)dW2(t)dt

+
@2J�

@x(t)@p(t)
�1x(t)�2p(t)dW1(t)dW2(t)

�
+O(dt2)

�
:

(4.11)



4. Stochastic Environment 95

Finally, simplifying Equation (4.11) leads to

0 = max
E(t)

E
��
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)dt� �J�dt+ @J�

@t
dt

+
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt+

@J�

@p(t)
�pp(t)dt

+
@J�

@x(t)
�1(t)dW1(t)� �

@J�

@x(t)
�1x(t)dW1(t)dt+

@J�

@p(t)
�2p(t)dW2(t)

� � @J
�

@p(t)
�2p(t)dW2(t)dt+

1

2

@2J�

@x(t)2
�21p(t)

2dW1(t)
2 � �1

2

@2J�

@x(t)2
�21x(t)

2dW1(t)
2dt

+
1

2

@2J�

@p(t)2
�22p(t)

2dW2(t)
2 � �1

2

@2J�

@p(t)2
�22p(t)

2dW2(t)
2dt

+
@2J�

@x(t)2

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
�1x(t)dW1(t)dt

+
@2J�

@p(t)2
�pp(t)�2p(t)dW2(t)dt+

@2J�

@x(t)@p(t)
�1x(t)�2p(t)dW1(t)dW2(t)

�� @2J�

@x(t)@p(t)
�1x(t)�2p(t)dW1(t)dW2(t)dt+O(dt2)

��
; (4.12)

where J� represents J�(x(t); p(t); t); i.e. the expected value of the maximized total discounted

pro�t earned by initiating the harvest at time t and continuing up to the �nal time T .

The case of zero correlation

We �rst suppose that the two Wiener increments, dW1(t) and dW2(t), are uncorrelated so that

E [dW1(t)dW2(t)] = 0: Taking the expectation of Equation (4.12) and using E [dW1(t)] = 0;

E [dW2(t)] = 0; E
�
dW1(t)

2
�
= dt; E

�
dW2(t)

2
�
= dt; and E [dW1(t)dW2(t)] = 0 we get

0 = max
E(t)

��
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)dt� �J�dt+ @J�

@t
dt

+

�
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+

@J�

@p(t)
�pp(t)

�
dt

+
1

2

@2J�

@x(t)2
�21x(t)

2dt+
1

2

@2J�

@p(t)2
�22p(t)

2dt+O(dt2)
�
: (4.13)
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Dividing Equation (4.13) throughout by dt; rearranging terms and letting dt! 0 we obtain

�@J
�

@t
= max

E(t)

h�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�

+
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+

@J�

@p(t)
�pp(t)

+
1

2

@2J�

@x(t)2
�21x(t)

2 +
1

2

@2J�

@p(t)2
�22p(t)

2

�
; (4.14)

which is the required partial di¤erential equation for the expected total discounted pro�t

when dW1(t) and dW2(t) are uncorrelated.

The case of non-zero correlation

Next we assume that the two Wiener increments, dW1(t) and dW2(t); are correlated with a

correlation-coe¢ cient � 6= 0;�1 � � � 1. Analytically, we suppose that dW1(t) is a linear

combination of two uncorrelated Wiener processes, dW2(t) and dW3(t), so that we can write

dW1(t) = adW2(t) + bdW3(t); (4.15)

where a and b are constants. Note that:

� Since the expected value of a Wiener increment is zero, E [dW1(t)] = 0; E [dW2(t)] = 0;

E [dW3(t)] = 0:

� Since the variance of a Wiener increment is equal to the time-lag, E
�
dW1(t)

2
�
= dt;

E
�
dW2(t)

2
�
= dt; E

�
dW3(t)

2
�
= dt.

� Since dW2(t) and dW3(t) are uncorrelated, E [dW2(t)dW3(t)] = 0:

Using the above-mentioned expected values, the correlation-coe¢ cient between dW1(t) and

dW2(t) can be calculated as

� = Corr(dW1(t); dW2(t)) =
E [dW1(t)dW2(t)]� E [dW1(t)] E [dW2(t)]p

V ar(dW1(t)
p
V ar (dW2(t))

=
E [dW1(t)dW2(t)]� 0p

dt
p
dt

=
E [dW1(t)dW2(t)]

dt
;

which gives

E [dW1(t)dW2(t)] = �dt: (4.16)
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From Equation (4.15)

dW1(t)dW2(t) = adW2(t)
2 + bdW3(t)dW2(t)

) E [dW1(t)dW2(t)] = aE
�
dW2(t)

2
�
+ bE [dW3(t)dW2(t)]

= adt: (4.17)

Comparing Equations (4.16) and (4.17) we obtain

a = �:

Furthermore,

dt = E
�
dW1(t)

2
�
= E

h
(adW2(t) + bdW3(t))

2
i

= E
�
a2dW2(t)

2 + b2dW3(t)
2 + 2abdW2(t)dW3(t)

�
= a2E

�
dW2(t)

2
�
+ b2E

�
dW3(t)

2
�
+ 2abE [dW2(t)dW3(t)]

= a2dt+ b2dt

) 1 = a2 + b2

or b =
p
1� a2 =

p
1� �2 (since a = �).

Substituting a = � and b =
p
1� �2 in Equation (4.15) we get

dW1(t) = �dW2(t) +
p
1� �2dW3(t): (4.18)

We now derive the Hamilton-Jacobi-Bellman equation for this scenario where dW1(t) and

dW2(t) are correlated, as speci�ed by Equation (4.18); recall that � is the coe¢ cient of

correlation between dW1(t) and dW2(t). We take the expectation of Equation (4.12) and use

E [dW1(t)] = 0; E [dW2(t)] = 0; E
�
dW1(t)

2
�
= dt; E

�
dW2(t)

2
�
= dt; E [dW1(t)dW2(t)] = �dt

to obtain

0 = max
E(t)

��
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)dt� �J�dt+ @J�

@t
dt

+

�
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+

@J�

@p(t)
�pp(t)

�
dt+

1

2

@2J�

@x(t)2
�21x(t)

2dt

+
1

2

@2J�

@p(t)2
�22p(t)

2dt+
@2J�

@x(t)@p(t)
��1x(t)�2p(t)dt+O(dt)2

�
: (4.19)
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Dividing Equation (4.19) throughout by dt; letting dt! 0 and rearranging yields

�@J
�

@t
= max

E(t)

h�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�

+
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+

@J�

@p(t)
�pp(t)

+
1

2

@2J�

@x(t)2
�21x(t)

2 +
1

2

@2J�

@p(t)2
�22p(t)

2 +
@2J�

@x(t)@p(t)
��1x(t)�2p(t)

�
; (4.20)

which is the partial di¤erential equation describing the expected total discounted pro�t for

non-zero correlation between dW1(t) and dW2(t):

Comparing Equations (4.14) and (4.20), obtained for the case of zero correlation and non-

zero correlation respectively, we note that the two equations are the same except one extra

term (containing the correlation-coe¢ cient �) present in the latter. If we put � = 0 then

Equation (4.20) reduces to Equation (4.14). Therefore, the solution for Equation (4.14) can

be obtained by solving Equation (4.20) with � = 0:

An analytic expression for the optimal e¤ort

Denoting the control switching term in Equation (4.20) by D we can write

D = max
E(t)

��
pqx(t)� c1 �

c2
2
E(t)

�
E(t)� @J�(x(t); t)

@x(t)
qE(t)x(t)

�
: (4.21)

Let E�uc(t) correspond to the maximization being carried out in Equation (4.21). Then E
�
uc(t)

is obtained by solving @D
@E = 0 which gives

(pqx(t)� c1 � c2E�uc(t))�
@J�(x(t); t)

@x(t)
qx(t) = 0

=) E�uc(t) =

�
p� @J�(x(t); t)

@x(t)

�
qx(t)

c2
� c1
c2
:
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We denote the constrained optimal e¤ort by E�(t), and replace E(t) with E�(t) in Equation

(4.20) to obtain

�@J
�

@t
=
�
p(t)qx(t)� c1 �

c2
2
E�(t)

�
E�(t)� �J�

+
@J�(x(t); p(t); t)

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE�(t)x(t)

�
+

@J�

@p(t)
�pp(t)

+
�21x(t)

2

2

@2J�

@x(t)2
+
�22p(t)

2

2

@2J�

@p(t)2
+

@2J�

@x(t)@p(t)
��1x(t)�2p(t): (4.22)

where

E�(t) =

8>>>>><>>>>>:
0; E�uc(t) < 0;�

p(t)� @J�

@x(t)

�
qx(t)
c2

� c1
c2
; 0 � E�uc(t) � Emax;

Emax; E�uc(t) > Emax:

(4.23)

The boundary conditions associated with the problem are as follows:

� There is no harvesting when the population is at the minimum viable level xmin; there-

fore the boundary condition corresponding to the spatial variable x is

E�(xmin; p; t) = 0: (4.24)

� It is not pro�table to harvest when the price is 0, consequently the boundary condition

associated with the spatial variable p is

E�(x; 0; t) = 0: (4.25)

� The boundary condition for the temporal variable t follows from Equation (4.4), i.e.

J�(x(T ); p(T ); T ) = 0: (4.26)

To �nd the optimal harvesting policy, we need to solve the system comprising Equations

(4.22)-(4.26) subject to the growth and the price dynamics, the pre-speci�ed minimum viable

population level, and the given initial values for the �sh stock and the price. As in the

deterministic case (Chapter 3), we resort to numerical methods for determining the optimal

solution.
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Fixed price case

If we keep the price �xed at a constant value p and assume that only the population evolves

stochastically then Equation (4.22) reduces to

�@J
�(x(t); t)

@t
= max

E(t)

h�
pqx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x(t)

�
r(x(t))

�
1� x(t)

K

�
� qE(t)x(t)

�
+
1

2

@2J�(x(t); t)

@x(t)2
�21x(t)

2

�
: (4.27)

Under these circumstances, the boundary condition (4.25) is no longer relevant and Equation

(4.27) need only be solved with the remaining boundary conditions and constraints.

To summarize, the stochastic e¤ects in the problem under consideration are due to the pres-

ence of two random variables: one related to stock growth and the other related to the

evolution of price, where the two Wiener increments associated with the growth and the

price dynamics can be either correlated or uncorrelated. Furthermore, assuming the price

to be a �xed constant, the original problem can be reduced to include only one stochastic

variable, i.e. the population level. The Hamilton-Jacobi-Bellman partial di¤erential equation

obtained in each case is non-linear and involves one temporal variable along with two random

spatial variables (or one in the case of constant price). These complexities make the equa-

tion analytically intractable, therefore we use numerical methods to determine the optimal

solution. We now investigate the optimal solution obtained in each of the above-mentioned

cases.

4.4 The optimal solution: random growth and constant price

First, we consider the growth to be stochastic and the price per unit harvest to be a �xed

constant. Equation (4.27) describes the expected total discounted pro�t corresponding to this

case. In order to obtain the optimal solution, we perform numerical simulations of Equation

(4.27) using a Crank-Nicolson �nite-di¤erence method. The computational procedure for the
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�nite-di¤erence scheme is included in Appendix B. Figure 4.1 shows the optimal solution for

the e¤ort E�(t) and the corresponding (optimal) population growth x�(t): Parameter values

are summarized in Table 4.1. The dashed lines represent three di¤erent realizations for the

Wiener process dW1(t) and the solid line represents the mean taken over 2000 such paths.
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Figure 4.1: The optimal solution for random growth and constant price. Top: optimal e¤ort; Bottom:

population growth under the in�uence of optimal e¤ort. In both graphs, the dashed lines illustrate

three distinct sample paths and the solid line is the mean taken over 2000 such paths.
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Table 4.1: Parameter values for the simulation of the Hamilton-Jacobi-Bellman equation associated

with the case of random growth and constant price

Parameter Description Value Unit

r Intrinsic growth rate 0:71 year�1

� Discount rate 0:12 year�1

� Price drift 0:02 year�1

q Catchability coe¢ cient 0:0001 SFU�1 year�1

K Biological carrying capacity 106 tonnes

xmin Minimum viable population level 0:4K tonnes

p Unit harvest price 0:5 $ tonne�1

c1 Linear cost coe¢ cient 0:01 $ SFU�1 year�1

c2 Quadratic cost coe¢ cient 0:01 $ SFU�2 year�1

�1 Growth volatility 0:2 year�1=2

E¤ect of variance: short-term solution

In Chapter 3, we noted that the optimal solution for short-term harvesting was di¤erent

from the solution associated with long-term and in�nite-horizon harvesting. Here we wish to

investigate the e¤ect of growth volatility �1 on the optimal solution when the harvesting is

carried out only for a short period of time. In this context, we �x T = 1 year and investigate

the average optimal solution, where the average is taken over 2000 sample paths: Figure

4.2 presents the average optimal solution for three di¤erent values of �1; an increase in the

value of �1 indicates that the stochastic �uctuations in the growth dynamics are rising in

magnitude. The impact of pronounced random e¤ects is visible in Figure 4.2 which shows

that, on an average, increased volatility implies that the population level is at an increased

risk of falling. Consequently, the optimal policy recommends conservative harvesting and,

therefore, the optimal e¤ort declines with a rise in the growth volatility.
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Figure 4.2: The e¤ect of growth volatility �1 on a short-term optimal solution for the case of random

growth and constant price. Top: optimal population path; Bottom: optimal e¤ort. An increase in �1

results in diminished population growth and, consequently, decreased harvest.
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E¤ect of variance: long-term solution

In Section 3.7, we discussed in�nite-horizon harvesting in a deterministic setting and observed

that both optimal e¤ort and the corresponding optimal population level approached a steady

state; these steady states were denoted by E1 and X1 respectively. When the terminal time

was in�nite, the steady state was maintained eternally. For �nite-horizon harvesting, provided

the harvesting period was su¢ ciently long, the optimal e¤ort and the optimal population level

were seen to stabilize at their respective (above-mentioned) steady states for a while, before

undergoing a change towards the end of the harvesting period. Thus the long-run optimal

solution was di¤erent from the solution obtained for in�nite-horizon only during the last few

stages, and this di¤erence was due to the �niteness of the terminal time in the former case. We

now analyze the e¤ect of growth volatility on the long-run optimal solution for �nite-horizon

harvesting. For this purpose, we �x T = 20 years and solve Equation (4.27), corresponding

to stochastic growth and constant price, for di¤erent values of growth volatility �1:

Figure 4.3 demonstrates the mean optimal e¤ort path and the mean optimal population

growth for di¤erent values of �1; the parameter values are the same as given in Table 4.1,

and the mean is taken over 2000 realizations of dW1(t). The initial population level is �xed

at 0:7K. The deterministic solution, which in essence corresponds to �1 = 0, is illustrated

by the solid line. All of the other illustrations correspond to the optimal solution for the

stochastic problem with di¤erent non-zero values for �1: Recall from Section 3.7 that the

optimal steady-state solution associated with these parameter values is

X1 = 0:6924�K; E1 = 2183:5 SFU.

In every solution for non-zero �1, the optimal e¤ort and the optimal population appear to

approach a steady state and stay more or less stable for a while. The optimal solution, how-

ever, is not completely stable and exhibits some �uctuations due to continuous disturbance

(characterized by �1): As in the deterministic case, the optimal path is adjusted in the last

few stages due to the �xed (�nite) terminal time. Furthermore, the steady state solution

associated with the stochastic problem changes as �1 changes. An increase in �1 lowers the

steady-state value for the optimal stock level as well as for the optimal e¤ort solution.
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Figure 4.3: The e¤ect of growth volatility �1 on a long-term optimal solution for the case of random

growth and constant price. Top: optimal population growth; Bottom: optimal e¤ort path. As

�1 increases, the long-run steady-state values associated with the optimal e¤ort and the optimal

population level are lowered.
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4.5 The optimal solution: random growth and random price

We now consider both �sh growth and price per unit harvest to be stochastic. The optimal

solution for this case is determined by simulating the Hamilton-Jacobi-Bellman equation

(4.22): The numerical scheme is once again formulated using a Crank-Nicolson �nite-di¤erence

method, as described in Appendix C. Figures 4.4 and 4.5 show the optimal solution for � = 0

and � 6= 0 respectively, with parameter values as given in Table 4.2: The dashed lines represent

the optimal solution for three di¤erent realizations of Wiener processes, and the solid lines

illustrate the average optimal solution paths for e¤ort and population where the average is

taken over 2000 realizations of dW1(t) and dW2(t):

Table 4.2: Parameter values for the simulation of the Hamilton-Jacobi-Bellman equation associated

with the case of random growth and random price

Parameter Description Value Unit

r Intrinsic growth rate 0:71 year�1

� Discount rate 0:12 year�1

� Price drift 0:02 year�1

q Catchability coe¢ cient 0:0001 SFU�1 year�1

K Biological carrying capacity 106 tonnes

xmin Minimum viable population level 0:4K tonnes

p0 Initial price 0:5 $ tonne�1

c1 Linear cost coe¢ cient 0:01 $ SFU�1 year�1

c2 Quadratic cost coe¢ cient 0:01 $ SFU�2 year�1

�1 Growth volatility 0:2 year�1=2

�2 Price volatility 0:2 year�1=2

� Correlation between dW1 and dW2 �0:5 year�1
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Figure 4.4: The optimal solution when both growth and price are random and dW1(t) and dW2(t) are

uncorrelated, i.e., the correlation coe¢ cient � is zero. Left: optimal e¤ort solution; Right: optimal

population growth.
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Figure 4.5: The optimal solution when both growth and price are random and dW1(t) and dW2(t) are

correlated, i.e., the correlation coe¢ cient � is non-zero; here � = �0:5. Left: optimal e¤ort solution;

Right: optimal population growth.

Note that we have �xed � = �0:5 to demonstrate a non-zero correlation between dW1(t)

and dW2(t): We have assigned a negative sign to � because the stochastic �uctuations in

growth and price are negatively correlated. For example, say the price increases as an e¤ect

of a random �uctuation; this makes harvesting more pro�table and results in an increased

harvest. The additional harvest leads to a drop in the population level. Thus, an unexpected

rise in price results in an unexpected decline in stock. This indicates that there exists an
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inverse relationship between the random �uctuations in growth and price. As these random

�uctuations for the growth and the price are represented by the Wiener increments dW1(t)

and dW2(t) respectively, we therefore infer that dW1(t) and dW2(t) are negatively correlated.

We notice that there is no signi�cant di¤erence between the optimal solutions corresponding

to zero correlation and non-zero correlation, illustrated by Figures 4.4 and 4.5 respectively.

As in the previous section, we now analyze the e¤ect of growth and price variability on the

average optimal solution where the average is always taken over 2000 realizations for the

Wiener processes associated with stock growth and price dynamics.

E¤ect of variance: short-term solution

We �rst study the e¤ect of a change in growth volatility and price volatility on the optimal

solution associated with short-term harvesting. To accomplish this, we �x T = 1 year,

the temporal step-size (dt) in the numerical scheme is 1=60th year. Figures 4.6 and 4.7

respectively illustrate the average optimal e¤ort path and the corresponding average optimal

population growth for di¤erent combinations of growth volatility �1 and price volatility �2.
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Figure 4.6: E¤ect of stochastic �uctuations in population and price on a short-term optimal e¤ort

solution for the case of random growth and random price. The increased variability results in decreased

average optimal e¤ort; the impact is more signi�cant in the case of high growth variability.
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Figure 4.7: E¤ect of stochastic �uctuations in population and price on the mean optimal population

path. On an average, a high growth volatility results in a pronounced decline in the optimal stock

level whereas a high price volatility does not have a signi�cant in�uence.

We notice that, on an average, the overall e¤ect of increased variability is to shift the optimal

e¤ort and optimal population level downwards. However, a rise in �1 causes a bigger decline

in the optimal e¤ort solution than a rise in �2: Furthermore, for these parameter values, the

increased price volatility has a negligible e¤ect on the population growth whilst the increased

growth volatility causes the stock level to drop substantially.

E¤ect of variance: long-term solution

Next we examine the in�uence of stochastic �uctuations in growth and price on the optimal

solution for long-term harvesting; for this purpose, we �x T = 20 years and consider three

di¤erent combinations of �1 and �2. Figure 4.8 presents the average optimal e¤ort solution

and the average optimal population growth. The qualitative behaviour of the mean optimal

solution is similar to the mean optimal solution for the case of random growth and constant

price, i.e., a rise in random e¤ects lowers the steady state associated with the long-term

optimal solution. However, as in the previous case, a rise in growth variability has a greater
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in�uence on the population growth than a rise in price variability.
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Figure 4.8: E¤ect of stochastic �uctuations in population and price on a long-term optimal solution

for the case of random growth and random price. An increase in variability causes the average optimal

e¤ort as well as the average optimal population level to decline; similar to the short-term solution,

the impact is more signi�cant in the case of high growth volatility.
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4.6 Sensitivity analysis

In Section 3.6 we studied the sensitivity of the net present value of total pro�t to the catcha-

bility q and the cost parameters c1 and c2. We now wish to perform the same analysis for the

stochastic optimal harvesting problem with random growth and random price. The observa-

tions recorded here are based on the simulations of the Hamilton-Jacobi-Bellman equation

(4.22); we consider a mean of 2000 realizations for the Wiener processes dW1(t) and dW2(t).

As in the deterministic environment, we maintain the initial population level at K; the initial

price at $0:5/tonne, and �x c1 = $0:01/SFU/year and c2 = $0:01/SFU2=year as the base case.

The remaining parameter values are utilized from Table 4.1. We consider two scenarios: �rst

where the catchability is low, demonstrated by �xing q = 0:0001/SFU/year; second where

the catchability is high, demonstrated by �xing q = 0:1/SFU/year. In each scenario, we �rst

record the expected net present value of total pro�t corresponding to the base case, then

introduce variations in the values of and c1and c2 and record the corresponding expected net

present value of total pro�t. The �ndings are summarized in Table 4.3 and discussed below.

Table 4.3: Sensitivity analysis of the expected total discounted pro�t with respect to the catchability

and the cost parameters

q c1 c2 J�(x(0) = K; 0)

[SFU�1 year�1] [$ SFU�1 year�1] [$ SFU�2 year�1] [$]

0:0001 0:01 0:01 8:9364� 104

1 0:01 8:5946� 104

0:01 1 1:2310� 103

0:1 0:01 0:01 2:5585� 105

1 0:01 2:5584� 105

0:01 1 2:5583� 105
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Figure 4.9: E¤ect of an increase in the cost parameters on the average optimal e¤ort policy for a low

catchability, demonstrated by �xing q = 0:0001/SFU/year. Top: c2 is �xed while c1 is allowed to

vary; Bottom: c1 is �xed while c2 is allowed to vary. An increase in c2 has a much greater impact on

the optimal e¤ort than an increase in c1.
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Figure 4.10: E¤ect of an increase in the cost parameters on the average optimal e¤ort policy for a

high catchability, demonstrated by �xing q = 0:1/SFU/year. Top: c2 is �xed while c1 is allowed to

vary; Bottom: c1 is �xed while c2 is allowed to vary. The optimal e¤ort stays at Emax in all the cases

illustrated here.
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For the lower value of q, a change in the linear cost-coe¢ cient c1 has a negligible e¤ect on

the expected net present value of the total pro�t J�; whilst a similar change in the quadratic

cost-coe¢ cient c2 has a pronounced e¤ect; a signi�cant drop is observed in the value of J�

following an increase in the value of c2: The reason for this e¤ect is illustrated by Figure

4.9 which shows the optimal solution under these circumstances. Evidently, a change in c1

does not have a noticeable impact on the optimal solution, whereas a change in c2 results in

diminished (average) optimal e¤ort and a consequent drop in the expected total discounted

pro�t. On the other hand, it is optimal to harvest at full capacity when the catchability is

high (see Figure 4.10). The optimal e¤ort stays at Emax even after introducing a variation

in the values for c1 and c2, consequently the expected total discounted pro�t stays more or

less on the same level. Thus, neither of the cost coe¢ cients has a considerable in�uence

on the expected value of the total discounted pro�t for the case of high catchability. These

observations are in accordance with the conclusions drawn in a deterministic environment

(see Chapter 3).

4.7 Correlation between population and price

Next we focus on the correlation between �sh price p (t) and the population undergoing

optimal harvest, x� (t). We assume that dW1(t) and dW2(t) are uncorrelated, and the �shery

under consideration is relatively small so that the �sh harvest has no e¤ect on the world

prices. Now the population dynamics, as given by Equation (4.1), include the e¤ort E(t):

Furthermore, from Equation (4.23), the optimal e¤ort E� (t) depends upon the price p(t):

This implies that the optimal population level is a¤ected by the �sh price through the optimal

e¤ort expended. The price dynamics given by Equation (4.3), however, are independent of

the population level and the amount of e¤ort exerted. By de�nition, the correlation between

two random variables usually measures the strength of their dependency on each other. But

here the stock level depends upon the price, whilst the price �uctuates randomly on its own.

This indicates that the correlation between the population and the price is actually a measure

of the dependency of the population on the price. The coe¢ cient of correlation between the
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optimal population level and the price, denoted by �x�p(t); can be calculated as

�x�p(t) =
E [x�(t)p(t)]� E [x�(t)] E [p(t)]p

V ar [x�(t)]
p
V ar [p(t)]

(4.28)

As in Section 4.5, we use numerical methods to simulate Equation (4.22) and obtain 2000

realizations for x�(t) and p(t) for t 2 [0; 1]; the parameter values are taken from Table

4.2. Next, we calculate the expected value and the variance for both x�(t) and p(t), and

substitute them into Equation (4.28) to determine the correlation-coe¢ cient �x�p(t). Figure

4.11 illustrates the correlation between the population and the price during the harvest for

various combinations of price and growth volatility. Some observations are discussed below.
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Figure 4.11: Correlation coe¢ cient between �sh price and the population undergoing optimal harvest

for three di¤erent combinations of growth and price volatility. The correlation coe¢ cient is seen to be

mostly negative; it displays a considerable increase with a rise in price volatility whereas an increase

in growth volatility does not produce a substantial e¤ect.

The correlation-coe¢ cient is mostly negative since an increase in price supports increased

harvest which, in turn, brings the population level down. Thus, a rise in price has an adverse

impact on stock level. It is further noted that the magnitude of the correlation-coe¢ cient

undergoes a high increase with an increase in price volatility, whereas an increase in growth

volatility does not have a pronounced e¤ect. This e¤ect can be attributed to the assumption
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that stock level and e¤ort have no in�uence on price. Since the price is independent of

the population level, a change in growth volatility does not have a substantial e¤ect on the

correlation between stock and price. A high price-volatility, however, can introduce large

variations in the stock growth through the e¤ort expended, and these variations cause the

magnitude of �x�p(t) to increase considerably.

4.8 Summary

In this chapter we extended the deterministic model studied in Chapter 3 to its stochastic ver-

sion by allowing the �sh growth and the price per unit harvest to be stochastic processes. The

optimal harvesting strategy was assumed to maximize the expected net present value of total

pro�t earned during the harvesting period. Stochastic dynamic programming was employed

to derive the Hamilton-Jacobi-Bellman partial di¤erential equation describing the expected

total discounted pro�t; the equation was solved numerically to determine the optimal policy.

We �rst restricted our study to the case of random growth and constant price. We discussed

the mean optimal e¤ort policy and the corresponding mean optimal population path for both

short-term and long-term harvesting, and also investigated the e¤ect of growth volatility

on the mean optimal solution obtained in both cases. For short-term harvesting, we found

that an increase in growth volatility caused the average optimal population level as well as

the average optimal e¤ort to decline. For long-term harvesting, on average, the optimal

e¤ort and the optimal population level stayed close to an equilibrium level for a while before

the �niteness of the terminal time altered the optimal path. However, when close to the

equilibrium level, the optimal solution was not completely stable and displayed �uctuations

due to the presence of random e¤ects. Furthermore, the equilibrium states associated with

the optimal e¤ort and the optimal population level shifted downwards as growth volatility

increased.

Next, we studied the fully stochastic model where both stock growth and price per unit

harvest were assumed to be random. Once again, we discussed the average optimal solution
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for short-term and long-term harvesting, and analyzed the sensitivity of the average optimal

solution to various combinations of growth and price volatility. The observations were sim-

ilar to those recorded for the case of random growth and constant price. Furthermore, as

compared with price volatility, an increase in growth volatility resulted in a bigger drop in

the average optimal solution.

Then we examined the sensitivity of the expected total discounted pro�t to the catchability

coe¢ cient q and the cost parameters c1 and c2. For a low value of q, the expected total

discounted pro�t displayed a substantial drop with an increase in c2, whereas an increase in

c1 did not have a signi�cant in�uence on the value of the expected total discounted pro�t.

For a high value of q; however, the expected total discounted pro�t displayed more or less

the same value irrespective of the variations introduced in the values of c1 and c2.

Finally, we investigated the correlation between the stock level under optimal harvesting and

the �sh price. We noted that the correlation measured the dependency of the population

level on price, and not vice versa, since the price was independent of the stock level. We

found that the correlation coe¢ cient was mostly negative. Furthermore, the magnitude of

the correlation coe¢ cient increased signi�cantly with a rise in price volatility whilst a rise in

growth volatility had a negligible e¤ect.



Chapter 5

Harvesting as a real option

5.1 Introduction

Traditionally, the optimal harvesting strategy is de�ned in terms of �shing e¤ort and is based

on the Expected Net Present Value (ENPV) rule. The ENPV rule asserts that an investment

project should be taken up only if the present value of the cash �ows from the project is

greater than or equal to the total costs associated with the project. For calculating the

present value, future cash �ows are discounted at a risk-adjusted discount rate re�ecting the

opportunity cost of capital; the opportunity cost is the expected rate of return that could

be earned by undertaking another investment bearing a risk similar to the project under

consideration. But, in practice, it is not always possible to correctly measure the opportunity

cost of a project, and this undermines the validity of the ENPV rule as a decision-making

tool for an investment opportunity.

The optimal policy obtained in Chapters 3 and 4 is based on the ENPV rule. Following this

approach, the harvester calculates the expected �ow of pro�t coming from harvesting and

discounts it to the initial time in order to determine the expected net present value of the

harvesting project; here, the discount rate is �xed arbitrarily. However, the above-mentioned

calculations are based on the expected values of the stochastic variables underlying harvesting,

and as the uncertainty is gradually resolved, these values may turn out to be di¤erent than

expected. Therefore it might be bene�cial for the harvester to change the initial decisions.

118



5. Harvesting as a real option 119

This option of altering the operating decisions during the life of the investment project is not

considered in the ENPV rule; it treats the investment on a now-or-never basis and ignores

the opportunity to wait before investing. Consequently, the managerial �exibility to revise

later decisions is not accounted for. These issues have been discussed in great detail by a

large number of researchers, who have put forward real options theory for evaluating capital

investment projects.

Literature review

Real options are de�ned on capital investment projects exhibiting a possibility to alter the

operational strategies, e.g. to defer, contract, shut down or abandon the investment during

its life. Black & Scholes (1973) pioneered the option-pricing theory in �nance. The books

by Dixit & Pindyck (1994) and Trigeorgis (1996) provide a comprehensive description of real

options along with their valuation techniques.

As pointed out in Dixit & Pindyck (1994), there are three main characteristics associated

with a capital investment project which render evaluation using the ENPV rule misleading;

these are: irreversibility; uncertainty; and an option to delay the investment decision. Most

natural resource investments are irreversible because they are �rm-speci�c. For instance,

vessels and gear used for �sh harvesting cannot be used in any other industry. There is also

a high degree of uncertainty associated with output prices and stock growth. Furthermore,

owning a harvesting opportunity is analogous to owning a �nancial call option. The owner

of the call option can pay the strike price and exercise the option; (s)he has the right but not

the obligation to do so. Similarly, the harvester can pay the associated costs (i.e. strike price)

and exercise the harvesting option, thus acquiring the cash �ows. But (s)he will harvest only

if there is a pro�t to be earned, which implies that (s)he can delay harvesting. Hence it seems

appropriate to apply �nancial techniques for valuing the harvesting option.

Real options theory incorporates two di¤erent valuation techniques; a detailed description

with examples can be found in Insley & Wirjanto (2006). The �rst technique is dynamic

programming with a risk-adjusted (�xed) discount rate, which implies that the rate of increase
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of total risk is constant with time (Trigeorgis, 1996), but this generally does not depict the true

nature of the problem. Optimal tree harvesting was modeled as a real option by Insley (2002).

The dynamic programming technique was employed and the harvesting decision was speci�ed

as an optimal stopping problem. The option value together with the optimal cutting time

was determined numerically.

The second valuation technique in real options theory is contingent claims analysis; it involves

building a risk-less portfolio consisting of the investment project under consideration along

with other tradeable assets. Brennan & Schwartz (1985) used contingent claims analysis to

derive the value of a mine with stochastic output prices. They �rst considered a cost function

that was linear in mining rate, assuming that the mine had only two possible operating rates:

zero when it was closed and the optimal rate when it was open. Switching from one operating

rate to the other was assumed to incur costs. Following that, they discussed the case of convex

(quadratic) costs, where the operating rate could vary continuously between zero and a �xed

upper bound without incurring any expenses. They constructed a replicating portfolio with

current value identical to the present value of the cash �ow stream arising from the mining

project; it was assumed that a futures market exists for the output commodity. Slade (2001)

also used real options theory to evaluate mining investments.

Morck et al. (1989) used a real options approach to value forestry resources assuming sto-

chastic inventories and prices. The forestry lease was valued as an option to harvest trees

at the most pro�table time. Assuming costs to be quadratic in harvest rate, they derived

the partial di¤erential equation governing the option-value and solved it numerically for the

value of the forest and the cutting rate. Murillas & Chamorro (2006) developed a real op-

tions model to determine the value of the exploitation and the investment opportunity in a

�shery with deterministic growth and stochastic price. They noted that a futures market

does not exist for �sh, therefore they considered a replicating portfolio consisting of existing

assets spanning the risk in the output price. To accomplish this, they introduced a twin asset

with a price that was perfectly correlated with the output price; the harvesting option was

evaluated by building a portfolio consisting of the �shery and this twin asset.
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None of the aforementioned models possessed an analytical solution but all could be solved by

employing numerical techniques. A discussion on numerical methods and their application

to real options problems is provided in Hull & White (1990), Geske & Shastri (1985) and

Cortazar et al. (1998).

In this chapter we extend the model examined by Murillas & Chamorro (2006) and allow the

�sh stock to evolve stochastically. In order to overcome the restrictions imposed by the risk-

adjusted discount rate approach of dynamic programming, we focus on a contingent claims

approach. The chapter is organized as follows: In Section 5.2 the �sh-harvesting problem is

formulated using contingent claims analysis; this yields a partial di¤erential equation deter-

mining the option value of harvesting. The partial di¤erential equation is solved numerically,

and comparisons with the optimal solution obtained by employing the ENPV rule are made

in Section 5.3. Following that, a sensitivity analysis of the optimal solution with respect to

various biological and economic parameters is presented. Section 5.4 provides a summary.

5.2 A real options model for harvesting

In this section we consider both population growth and �sh price to be stochastic. As before,

the growth dynamics for the �sh stock is given by

dx(t) =

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt+ �1x(t)dW1(t); (5.1)

and the price dynamics follows

dp(t) = �pp(t)dt+ �2p(t)dW2(t);

where the notation has its usual interpretation (see Section 4.2) and we have again assumed

that the �shery�s harvest has no e¤ect on world prices.

We normalize the population by de�ning X(t) = x(t)
K ; then the growth equation (5.1) can be

rewritten as

dX(t) = (rX(t) (1�X(t))� qE(t)X(t)) dt+ �1X(t)dW1(t):
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The convenience yield per unit of �sh held is denoted by Y (p(t)). As suggested by

Murillas & Chamorro (2006), it can be de�ned as the �ow of net bene�ts provided by a

stored unit of stock. In essence, convenience yield is like a dividend accrued to the owner

of an asset, but not to the owner of a derivative contract on that asset. The harvester loses

convenience yield if (s)he does not exercise the harvesting option; thus convenience yield acts

like an additional opportunity cost for postponing the harvesting decision. We assume that

the convenience yield is proportional to the �sh price, i.e.,

Y (p(t)) = yp(t);

where y is a constant. This assumption has been adopted by a number of researchers, in-

cluding Brennan & Schwartz (1985), Morck et al. (1989), and Murillas & Chamorro (2006),

primarily for simplicity and tractability.

As noted by Murillas & Chamorro (2006), there does not exist a futures market for �sh.

Therefore we assume that the risk in the �sh price is spanned by a combination of existing

assets. This relies on a further assumption that the market is su¢ ciently complete, which

means that we can �nd a tradeable asset whose stochastic changes exactly replicate the

realizations for the Wiener process governing the �sh price. We denote the price of this

spanning asset by S(t) and the expected return by �s (a constant). The spanning asset�s

price is assumed to evolve according to the following Itô-type stochastic di¤erential equation

dS(t) = �sS(t)dt+ �sS(t)dW2(t); (5.2)

where �s (a constant) is the di¤usion component; the risk for the �sh price and the risk for

the spanning asset are the same, both represented by dW2(t):

We assume that �s � �p and present the following argument to justify our assumption. Given

the opportunity, the harvester can either undertake harvesting or postpone it. If (s)he decides

to wait, and in the meantime invests in the spanning asset, then the harvester�s money grows

at rate �s. On the other hand, if (s)he goes ahead with harvesting then the return from p(t)

must be discounted at rate �s, the reason being that the return from a project has to be

discounted at a rate which mirrors its opportunity cost. In this case, the return from S(t)
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would be considered as an opportunity cost of harvesting. Having �s < �p implies a low

discount rate, leading to the conclusion that the future is equally important. This in turn

would mean that the harvester is better o¤ waiting and, consequently, the harvesting option

will never be exercised. Therefore our assumption, �s � �p; is reasonable.

We denote the returns from p(t) and S(t) by rp and rs respectively. The return from p(t) is

equal to the drift plus the return due to convenience yield. Hence we can write

rp = �p + y;

and the return from S(t) is

rs = �s:

We can further assume that the di¤usion component �s of the spanning asset is equal to the

di¤usion component �p of the �sh price p(t) (Murillas & Chamorro, 2006). If �s 6= �2; we

can choose a riskfree asset and combine it with the spanning asset in such a proportion that

the resulting asset has di¤usion component equal to �2: Furthermore, using Capital Asset

Pricing Model (described in textbooks like Brailsford et al., 2006)

�p + y = �s: (5.3)

We have assumed that �s � �p; therefore Equation (5.3) yields y � 0.

Following the intertemporal asset pricing model introduced by Merton (1973), the other as-

sumptions underlying the capital market are:

� The assets are perfectly divisible, and trading in assets takes place continuously in time.

� There is no arbitrage.

� There are no transaction costs or taxes associated with the assets traded in the market.

As speci�ed by Murillas & Chamorro (2006), we further assume that harvesting, once initi-

ated, is perpetual and the e¤ort can vary without costs between zero and an upper bound

Emax:
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The case of zero correlation

We �rst consider the case when the two Wiener increments, dW1(t) and dW2(t); are un-

correlated so that E [dW1(t)dW2(t)] = 0. We let J(X(t); p(t); t) denote the option value of

harvesting at time t; the change in the option value during the time interval dt is given by

Itô�s lemma (see Section 2.1) as

dJ =

�
dJ

dt
+ �pp(t)

@J

@p
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+
�22
2
p(t)2

@2J

@p2
+
�21
2
X(t)2

@2J

@X2

�
dt

+�1X(t)
@J

@X
dW1(t) + �2p(t)

@J

@p
dW2(t): (5.4)

To evaluate the harvesting option, we construct a replicating portfolio by buying one unit of

the harvesting option and selling short n units of the spanning asset S(t). We assume that

dW1(t) is a biological phenomenon independent of any market, which means that the risk

depicted by dW1(t) cannot be hedged out. We hedge out the risk depicted by dW2(t) by using

the replicating portfolio: For the hedging to be successful, the portfolio should be risk-free,

in other words, the risk represented by dW2(t) should be eliminated. For this to happen, the

component of risk in dJ corresponding to dW2(t); must cancel out the component of risk in

ndS. Equating the coe¢ cient of dW2(t) in Equation (5.4) with its counterpart in n times

Equation (5.2) we obtain

�2p(t)
@J

@p
= n�sS(t):

Since �2 = �s; the above relation reduces to

p(t)
@J

@p
= nS(t): (5.5)

We calculate the total return from the portfolio as follows: We own one unit of the harvesting

option in our portfolio and the return from the harvesting option, in time interval dt, is a sum

of two components: the expected capital gain dJ; and the cash �ow from harvest which is�
p(t)qKX(t)� c1 � c2

2 E(t)
�
E(t)dt. Additionally, we are selling n units of the spanning asset

and these carry an expected return equal to ndS in time span dt: The expected return from
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the replicating portfolio is the di¤erence between the expected return from the harvesting

option and the expected return from n units of the spanning asset: The risk-free return from

the portfolio over time interval dt is given by �(J � nS(t))dt; where � denotes the risk-free

rate of interest. To avoid arbitrage, the risk-free return must be equal to the total expected

return from the portfolio. Equivalently,

�(J � nS(t))dt = E [dJ � ndS] +
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)dt: (5.6)

Substituting for the expected values in Equation (5.6) and dividing throughout by dt leads

to

�(J � nS(t)) =
dJ

dt
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X
+ �pp(t)

@J

@p

+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)� �snS(t):

Making use of Equations (5.3) and (5.5) gives

0 =
dJ

dt
� �J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+(�� y)p(t)@J
@p
+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t): (5.7)

Equation (5.7) must be satis�ed for each possible harvesting strategy. Therefore the value-

maximizing harvesting policy can be determined by solving

0 = max
E(t)

�
dJ

dt
� �J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+(�� y)p(t)@J
@p
+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)

i
;

or alternatively,

�dJ
dt

= max
E(t)

�
��J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+(�� y)p(t)@J
@p
+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)

i
; (5.8)
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where the optimal e¤ort lies within [0; Emax]. This is the partial di¤erential equation, the

solution to which is sought for the option value of harvesting corresponding to the case of

zero correlation between dW1(t) and dW2(t).

The case of non-zero correlation

Next we assume that the two Wiener increments, dW1(t) and dW2(t); are correlated. We

follow the same approach as described in Section 4.3 and suppose that the relation between

dW1(t) and dW2(t) is given by

dW1(t) = �dW2(t) +
p
1� �2dW3(t) (5.9)

where �1 � � � 1; where dW3(t) is a standard Wiener increment and dW2(t) and dW3(t) are

uncorrelated. Recall that the correlation-coe¢ cient between dW1(t) and dW2(t) is calculated

as

Corr(dW1(t); dW2(t)) =
E [dW1(t)dW2(t)]� E [dW1(t)] E [dW2(t)]p

V ar(dW1(t)
p
V ar (dW2(t))

=
�dt

dt
= �

We further assume that the return from p(t) is uncorrelated with the market portfolio. Then

the Capital Asset Pricing Model asserts that the total return, rp; from p(t) is equal to the

risk-free rate of return �, which gives

�p + y = �: (5.10)

This is the risk-neutral valuation technique followed by standard option pricing literature

(e.g. Hull, 2005); here the market price of risk is assumed to be zero. In this case, the value

of the harvesting option, represented by J(X(t); p(t); t); evolves according to the stochastic

di¤erential equation

dJ =

�
dJ

dt
+ �pp(t)

@J

@p
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+
�22
2
p(t)2

@2J

@p2
+
�21
2
X(t)2

@2J

@X2
+ ��1X(t)�2p(t)

@2J

@X@p

�
dt

+�1X(t)
@J

@X
dW1(t) + �2p(t)

@J

@p
dW2(t): (5.11)



5. Harvesting as a real option 127

Substituting for dW1(t) and �p from Equations (5.9) and (5.10) respectively, Equation (5.11)

can be reformulated as

dJ =

�
dJ

dt
+ (�� y)p(t)@J

@p
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+
�22
2
p(t)2

@2J

@p2
+
�21
2
X(t)2

@2J

@X2
+ ��1X(t)�2p(t)

@2J

@X@p

�
dt

+�1X(t)
@J

@X
[�dW2(t) +

p
1� �2dW3(t)] + �2p(t)

@J

@p
dW2(t): (5.12)

We again apply contingent claims analysis to �nd the value of the harvesting opportunity.

This is achieved by constructing a replicating portfolio where we buy one unit of the harvesting

option and sell short n units of the spanning asset S(t). Here we assume that dW3(t) is

a biological phenomenon, independent of any market, and hedge out the risk depicted by

dW2(t): Equating the coe¢ cients of dW2(t) in Equation (5.12) and n times Equation (5.2)

yields

��1X(t)
@J

@X
+ �2p(t)

@J

@p
= n�sS(t): (5.13)

Using �2 = �s; Equation (5.13) reduces to

�
�1
�2
X(t)

@J

@X
+ p(t)

@J

@p
= nS(t): (5.14)

To avoid arbitrage, we equate the total expected return from the portfolio to the risk-free

return �(J � nS(t))dt; this gives

�(J � nS(t))dt = E [dJ � ndS] +
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)dt: (5.15)

Then, substituting for the expected values and using the relation (5.10) in Equation (5.15),

we obtain

�(J � nS(t)) =
dJ

dt
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X
+ (�� y)p(t)@J

@p

+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2
+ ��1X(t)�2p(t)

@2J

@X@p

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t)� �snS(t): (5.16)
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Using Equation (5.14), we then get

�J = (�� �s)
�
�
�1
�2
X(t)

@J

@X
+ p(t)

@J

@p

�
+
dJ

dt

+(�� y)p(t)@J
@p
+ (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2
+ ��1X(t)�2p(t)

@2J

@X@p

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t): (5.17)

Substituting for �s from Equation (5.3) into Equation (5.17) leads to

0 =
dJ

dt
� �J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+(�� y) p(t)@J
@p
+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t) + ��1X(t)�2p(t)

@2J

@X@p
: (5.18)

The value of the harvesting option satis�es Equation (5.18) for each feasible harvesting strat-

egy, therefore the problem of �nding the optimal harvesting policy maximizing the option

value can be stated as

0 = max
E(t)

�
dJ

dt
� �J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X

+(�� y)p(t)@J
@p
+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t) + ��1X(t)�2p(t)

@2J

@X@p

�
; (5.19)

where the e¤ort is constrained according to 0 � E(t) � Emax.

Restructuring Equation (5.19) yields

�dJ
dt

= max
E(t)

�
��J + (rX(t) (1�X(t))� qE(t)X(t)) @J

@X
+ (�� y)p(t)@J

@p

+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2

+
�
p(t)qKX(t)� c1 �

c2
2
E(t)

�
E(t) + ��1X(t)�2p(t)

@2J

@X@p

�
; (5.20)

which is the partial di¤erential equation determining the value of the harvesting opportunity

in the case of non-zero correlation between dW1(t) and dW2(t).
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Value-maximizing harvesting policy

Ignoring the term containing the correlation-coe¢ cient � in Equation (5.20), we see that

Equation (5.20) is the same as Equation (5.8), obtained for zero correlation. Hence the

solution for the case of zero correlation can be deduced by simulating Equation (5.20) with

� = 0. Therefore, we concentrate on Equation (5.20) for determining the value-maximizing

harvesting strategy and the option value of harvesting. Denoting the control switching term

in Equation (5.20) by D we have

D = max
E(t)

��
pqKX(t)� c1 �

c2
2
E(t)

�
E(t)� @J�(X(t); t)

@X
qE(t)X(t)

�
:

The unconstrained optimal harvesting strategy, E�uc(t); is obtained by setting the partial

derivative @D
@E = 0 which gives

(pqKX(t)� c1 � c2E�uc(t))�
@J�X((t); t)

@X
qX(t) = 0

=) E�uc(t) =

�
p� @J�(x(t); t)

@X

1

K

�
qKX(t)

c2
� c1
c2
:

The constrained optimal e¤ort is denoted by E�(t) and lies within [0; Emax]. Using the

optimal e¤ort E�(t) in place of E(t); Equation (5.20) transforms to

�dJ
dt

=
�
p(t)qKX(t)� c1 �

c2
2
E�(t)

�
E�(t) + (�� y)p(t)@J

@p

��J + (rX(t) (1�X(t))� qE�(t)X(t)) @J
@X

+
�21
2
X(t)2

@2J

@X2
+
�22
2
p(t)2

@2J

@p2
+ ��1X(t)�2p(t)

@2J

@X@p
(5.21)

where

E�(t) =

8>>>>><>>>>>:
0; E�uc(t) < 0;�

p(t)� @J�(X(t);t)
@X(t)

1
K

�
qKX(t)
c2

� c1
c2
; 0 � E�uc(t) � Emax;

Emax; E�uc(t) > Emax:

(5.22)

Equation (5.21) is similar to the Hamilton-Jacobi-Bellman equation (4.22) describing the

discounted �ow of pro�t for stochastic growth and price; there are two di¤erences as follows:
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1. The risk-free rate � in Equation (5.21) is replaced by the arbitrary discount rate � in

Equation (C.2).

2. The di¤erence between the risk-free rate � and the convenience yield y in Equation

(5.21) is replaced by the price-drift, �p; in Equation(C.2) .

The boundary conditions associated with the problem can be speci�ed as follows:

� If the price p(t) is zero then the value of the �shery will also fall to zero, which gives

J(X; 0; t) = 0: (5.23)

� If the stock falls to the minimum viable level xmin then there will be no harvesting.

Consequently,

E�(xmin; p; t) = 0: (5.24)

� At the �nal time T , the harvesting option cannot be delayed any further and therefore

the option value is again zero. In other words,

J(X; p; 0) = 0. (5.25)

Equations (5.21)-(5.25) represent a general model for the value of harvesting opportunity.

This system has to be solved numerically due to the complexity and non-linearity involved;

the numerical scheme is along the same lines as that for the Bellman equation (C.2).

5.3 Numerical results and discussion

Every solution illustrated in this section is a mean taken over 2000 realizations of the random

variables included in stock and price evolution. Furthermore, J� represents the value of the

harvesting opportunity for contingent claims analysis, and the expected net present value of

total pro�t for the ENPV rule. For the options approach, the time t marks the beginning of

the options period. Therefore, T � t is the time left before exercising the harvesting option.

For the ENPV approach, t represents the time at which harvesting is initiated. The initial

population level is always �xed at ninety percent of the carrying capacity, i.e. x0 = 0:9K;

unless otherwise stated. :
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Comparison of ENPV and Options solution

We compare the optimal solution obtained using the ENPV rule and the real options approach

for the parameter values listed in Table 5.1. Two scenarios are presented for the real options

technique: one where the convenience yield is zero and the other where the convenience yield

is non-zero. Figure 5.1 illustrates the di¤erence between the expected net present value of

total pro�t and the value of the harvesting option; Figure 5.2 presents the corresponding

optimal e¤ort paths. To examine the in�uence of correlation between dW1(t) and dW2(t),

we plot separate graphs in each �gure for � = 0 and � 6= 0: To illustrate the case of non-zero

correlation, we �x � = �0:5. Following the explanation provided in Section 4.5, we have

assigned a negative sign to the correlation-coe¢ cient, �.

In Figure 5.1, we observe that the value of the harvesting option is greater than the dis-

counted �ow of pro�t in each case. This renders managerial �exibility important when mak-

ing harvesting decisions and highlights the ine¢ ciency of the arbitrarily-�xed discount rate

introduced by the ENPV approach. Furthermore, the option value declines as convenience

yield increases; this can be attributed to the dividend-like behaviour of convenience yield

as follows: In substance, convenience yield corresponds to net bene�ts earned by holding

additional units of the resource stock. As there is a possibility that the �sh population might

decline in the future, the harvester could earn extra pro�t by storing �sh. Thus convenience

yield is akin to a dividend paid to the owner of an asset and a rise in the value of a dividend

has an inverse in�uence on the value of an option. The analogy here is that a dividend

paying stock loses value (equal to the amount of expected dividend) each time a dividend is

paid, therefore a high dividend would cause a bigger decrease in the stock value than a low

dividend. The dividend is received by the owner, not by the option holder, but the option

holder can see the stock losing value and, consequently, the option value declines.

Now we concentrate on the optimal e¤ort policy. Figure 5.2 shows that, compared to the

ENPV solution, the options approach yields lower optimal e¤ort. This implies that optimal

harvesting becomes more conservative when computed using contingent claims analysis. The

optimal e¤ort, however, increases with an increase in convenience yield. To explain this we
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will again consider the stock-dividend analogy. If a stock pays dividends at discrete time

stages, the stock price is adjusted downwards each time a dividend is paid. On the other

hand, if a stock pays a continuous dividend, the stock price has to be adjusted continuously

in order to re�ect the dividend paid. In either case, for a dividend paying stock, the stock

price is highest in the beginning and then keeps falling; due to the dividend-type in�uence of

convenience yield this behaviour can also be associated with the �sh price. Thus with a high

convenience yield the risk-adjusted prices are expected to fall in the future. Consequently,

there is an incentive to opt for an increased initial harvest and cash in the bene�ts coming

from a high convenience-yield.

We notice that the qualitative behaviour of the optimal solution for �shing e¤ort and option

value stays the same for � = 0 and � 6= 0. Hence, for these parameter values, correlation

between dW1(t) and dW2(t) has no e¤ect on the nature of the solution.

Table 5.1: Parameter values for the simulation of Hamilton-Jacobi-Bellman equation

Parameter Description Value Unit

r Intrinsic growth rate 0:71 year�1

� Discount rate 0:12 year�1

q Catchability coe¢ cient 0:0001 SFU�1 year�1

K Biological carrying capacity 106 tonnes

xmin Minimum viable population level 0:3K tonnes

p Unit harvest price 0:5 $ tonne�1

T Terminal time 5 year

c1 Linear cost-coe¢ cient 0:01 $ SFU�1 year�1

c2 Quadratic cost-coe¢ cient 0:01 $ SFU�2 year�1

� Price drift 0:02 year�1

�1 Growth volatility 0:04 year�1=2

�2 Price volatility 0:04 year�1=2
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Figure 5.1: Comparison of the option value of harvesting with the expected net present value of total

pro�t. Top: � = 0; Bottom: � = �0:5. In both cases, the value of the harvesting option exceeds the

expected net present value of total pro�t.
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Figure 5.2: Comparison of the optimal e¤ort solution obtained using the real options approach and

the ENPV rule. Top: � = 0; Bottom: � = �0:5. In both cases, the policy yielded by real options

indicates a lower e¤ort level and therefore a more conservative harvest.
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Sensitivity of the optimal solution to the initial population level

We now aim to study the change in the optimal solution due to a change in the initial

population level, x0: Figure 5.3 shows the value of harvesting opportunity and Figure 5.4

presents the optimal e¤ort policy, both for three di¤erent initial population levels, where we

have �xed p0 = $1/tonne and T = 2 years: The remaining parameter values are utilized from

Table 5.1.

We see that both the optimal e¤ort and the option value decline with a fall in x0: This is

reasonable as a low initial stock level implies that there are less �sh available for harvesting,

which in turn recommends harvesting at reduced levels to avoid over-exploitation of the �sh.

A diminished optimal e¤ort is accompanied by a fall in the harvesting costs. However, this

drop in the optimal e¤ort and population levels also brings a drop in the revenue. The fall

in revenue exceeds the fall in costs and, consequently, the value of the harvesting option

decreases as x0 decreases:
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Figure 5.3: Sensitivity of the value of the harvesting option to the initial population level, x0. The

option value decreases as x0 decreases.
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Figure 5.4: Sensitivity of the optimal e¤ort policy to the initial population level, x0. The optimal

e¤ort decreases as x0 decreases.

Sensitivity of the optimal solution to the intrinsic growth rate of �sh-stock

Next we examine the in�uence of the intrinsic rate of growth, r; on the optimal solution. Fig-

ure 5.5 shows the option value of harvesting and Figure 5.6 demonstrates the corresponding

optimal e¤ort path, both for three di¤erent values of r. Figure 5.7 illustrates the correspond-

ing scenarios for the population growth under optimal harvesting. The parameter values are

utilized from Table 5.1 with T = 2 years and p0 = $1/tonne:

We observe that a rise in r results in an increase in the optimal e¤ort expended, as well as an

increase in the value of the harvesting opportunity. This behaviour of the optimal solution

can be accounted for by considering the fact that the biological growth of the resource stock

is accelerated with a high value of r. Therefore, the population is harvested increasingly and

the overall e¤ect is a rise in the value of the harvesting option.
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Figure 5.5: Sensitivity of the value of the harvesting option to the intrinsic rate of growth, r, of the

resource stock. The option value is an increasing function of r.
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Figure 5.6: Sensitivity of the optimal e¤ort solution to the intrinsic rate of growth, r, of the resource

stock. The optimal e¤ort increases with r.
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Figure 5.7: Population growth under optimal harvesting for three di¤erent values of r.

Sensitivity of the optimal solution to the growth volatility

Figure 5.8 presents the sensitivity of the option value of harvesting to a change in the growth

volatility, �1. The corresponding e¤ect on the optimal e¤ort strategy is illustrated in Figure

5.9. We consider two scenarios for the initial stock size: (i) the initial population level is

at half its carrying capacity, representing a low initial stock level; (ii) the initial population

level is at ninety percent of its carrying capacity, representing a high initial stock level. We

�nd that, in both cases, the option value decreases with an increase in the growth volatility.

Furthermore, a rise in the magnitude of the growth volatility also leads to a considerable

downward shift in the optimal e¤ort path.

To understand these results we have to concentrate on the connection between the growth-

variability and the stock level, demonstrated in Figure 5.10. With a high volatility, the

population level can deviate signi�cantly from its expected value. But there are biological

and environmental constraints on the �sh stock, and due to these limitations, the population

level cannot rise above the carrying capacity K: Thus a stock-level higher than K cannot be

maintained by the population, even if the stochastic �uctuations are large. However, with a

high growth di¤usion coe¢ cient, the random �uctuations can result in the �sh stock falling

much below its predicted level. In other words, the upside potential of the resource stock
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is bounded by the carrying capacity whilst increased growth volatility raises the downside

potential. Therefore the value of the harvesting opportunity declines as the growth volatility

increases. However, for the parameter values considered for a high initial stock level, the fall

in the option value is not substantial. Also, to avoid over-�shing, the optimal solution for

e¤ort suggests that harvesting be at reduced levels.
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Figure 5.8: Sensitivity of the option value of harvesting to growth volatility. Top: x0 = 0:5K; Bottom:

x0 = 0:9K. In both cases, the option value decreases as growth volatility increases.
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Figure 5.9: Sensitivity of the optimal e¤ort policy to growth- volatility. Top: x0 = 0:5K; Bottom:

x0 = 0:9K. In both cases, the optimal e¤ort decreases as growth volatility increases.
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Note that x0 = 0:5 implies that the initial population level is very close to the minimum

viable level. A high growth volatility in this case puts population at a greater risk of falling

below the minimum vialble level. Consequently, the optimal population path in Figure 5.10

exhibits a high degree of �uctuations.

0 0.4 0.8 1.2 1.6 2

O
pt

im
al

 p
op

ul
at

io
n,

x*
[to

nn
es

]

Time, t [years]

σ
1
 = 0.04

σ
1
 = 0.4

0.5K

0.56K

0.46 K

0 0.4 0.8 1.2 1.6 2

O
pt

im
al

 p
op

ul
at

io
n,

 x
*

[to
nn

es
]

Time, t [years]

σ
1
 = 0.04

σ
1
 = 0.4

0.9K

0.7K

0.5K

Figure 5.10: Sensitivity of the population dynamics to growth volatility. Top: x0 = 0:5K; Bottom:

x0 = 0:9K. In both cases, the population growth is lowered with a rise in the growth volatility.
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Sensitivity of the optimal solution to the price volatility

Figure 5.11 captures the e¤ect of price variability on the value of the harvesting opportunity

and Figure 5.12 displays the respective in�uence on the optimal e¤ort strategy. We have again

plotted two scenarios: one for x0 = 0:5K and the other for x0 = 0:9K:We notice that, in both

cases, the option value of harvesting increases with price volatility whereas the optimal e¤ort

path shifts downwards. This result is in accordance with standard option-pricing literature,

for instance see Dixit & Pindyck (1994), where it is noted that an increased price volatility

raises the option value.

To provide a general explanation for this observation, we consider a risky stock being traded

in the market. To acquire a call option on this risky stock, a payment has to be made by

the option holder. Let us suppose, for example, that the price volatility of the underlying

stock has increased. This raises the upside as well as the downside potential for the stock

price movement. If the stock price moves up and exceeds the strike price, the option holder

can cash in the extra bene�ts by exercising the call option. On the other hand, if the stock

price moves down, the option holder will not exercise the call option. Therefore the loss for

the option holder is limited to the original cost of the option even if the stock price falls by

a big amount, whereas a possible gain from a high price volatility is unbounded. Thus an

increased price volatility ampli�es the amount of money that the option-holder expects to

earn, and this leads to a rise in the option value with a rise in the price volatility.

For the same reason, a high volatility of �sh price implies a higher value of the harvesting

option. Under unfavorable circumstances (non-positive pro�t), the harvester will not exercise

the harvesting option, hence no costs will be incurred. Thus the downside potential here is

limited to zero whilst the upside potential is again unlimited. Furthermore, a high option

value indicates that there is an incentive in delaying the exercise of the option. Consequently,

the optimal e¤ort drops with an increase in �sh price volatility.
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Figure 5.11: The e¤ect of price volatility on the value of harvesting opportunity. Top: x0 = 0:5K;

Bottom: x0 = 0:9K. In both the cases, the option-value increases as price volatility increases.
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Figure 5.12: The e¤ect of price volatility on the optimal e¤ort strategy. Top: x0 = 0:5K; Bottom:

x0 = 0:9K. In both cases, the optimal e¤ort drops as price volatility rises.
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5.4 Summary

In this chapter we presented an optimal harvesting model based on real options theory.

We extended the basic model with deterministic growth and stochastic price, introduced by

Murillas & Chamorro (2006), to include stochastic �uctuations in growth. We �rst restricted

the analysis to the case of zero correlation between the Wiener increments underlying random

growth and price e¤ects. Following this, we included a non-zero correlation between the two

Wiener increments. In each case, we obtained a partial di¤erential equation governing the

option value of harvesting; we solved these equations numerically.

We found that the real options method produced a higher value of the �shery (which is the

value of the harvesting option) and a lower optimal e¤ort compared to the ENPV approach.

The correlation had no signi�cant impact on the qualitative nature of the optimal solution.

Furthermore, the convenience-yield produced a dividend-like e¤ect on the option value and

optimal e¤ort policy.

Next we studied the rôle played by the intrinsic rate of growth in deciding the value-

maximizing e¤ort policy. We found that an increase in the growth rate triggered a higher

biological growth as well as a higher optimal e¤ort. The combined e¤ect was to raise the

option value of harvesting. Then we investigated the in�uence of the initial population level

on the optimal solution. We observed that the optimal e¤ort and the option value were

increasing functions of the initial population level.

Finally, we performed a sensitivity analysis of the optimal solution with respect to the growth

and the price variability. We found that the growth volatility had a pronounced e¤ect on the

optimal e¤ort expended. The in�uence on the option value was less signi�cant. Further, we

noted that the price volatility had a positive e¤ect on the value of harvesting opportunity. A

rise in the magnitude of price volatility resulted in an increase in the option value, whereas

the optimal e¤ort declined.



Chapter 6

Elasticity

6.1 Introduction

A large proportion of the existing literature considers the demand for �sh to be in�nitely

elastic (see, for example, Clark, 1975), the reason being that the harvested �sh are supplied

to a big market being catered for by a large number of �sheries. In Chapters 3-5 we followed

the same route and only considered a small �shery such that the �shery�s harvest had no

e¤ect on the evolution of market price. At most, we considered the stochastic �uctuations

in stock growth and price to be correlated; we did not explicitly model the in�uence of �sh

harvest on price. In other words, the price dynamics did not explicitly contain any term

corresponding to stock growth. The objective in this chapter is to demonstrate the e¤ect of

price elasticity of demand on the optimal harvesting strategy. This is achieved by assuming

both stock growth and �sh price to be random, and introducing a term that is dependent on

stock size in the price dynamics. There is only a small amount of literature devoted to the

role played by elasticity in �sh harvesting. Some examples of such studies can be found in

Gatto (1992), Briones (2006) and Danielsson (2002).

We �rst brie�y explain some fundamental concepts underlying elasticity. A thorough explana-

tion of all these economic concepts can be found in standard text-books, e.g. Jackson et al. (2007)

and Swann & McEachern (2006). The price elasticity of demand is de�ned as a proportional

change in the demand of a product due to a given change in its price. The coe¢ cient of price

146
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elasticity of demand is denoted by Ed; it measures the sensitivity of the quantity demanded

by consumers to a change in the price of a product, and is calculated as

Ed =
percentage change in quantity demanded

percentage change in price
:

In other words,
Ed =

dq=q

dp=p
; (6.1)

where p denotes price and q denotes quantity demanded. If k denotes the slope of a demand-

curve, relating a price that the market will pay to a speci�c quantity supplied to the market,

then k = dp=dq and Equation (6.1) becomes

Ed =
1

k

p

q
: (6.2)

Or,
k =

1

Ed

p

q
: (6.3)

The law of economics (Jackson, 2007) states that there is an inverse relationship between

the price of a product and the quantity demanded of that product. As the price increases

the quantity demanded declines, and vice versa, where all other things are held constant.

Consequently, a market demand-curve is downward sloping which yields a negative slope k

and, therefore, a negative coe¢ cient of elasticity Ed: However, it is a convention in economics

to represent a coe¢ cient of elasticity in absolute value by dropping the negative sign in front

of it.

A product is said to have unit elasticity when the percentage change in quantity demanded

is equal to the percentage change in price, so that, jEdj = 1 and k = p
q . This corresponds to

the revenue-neutral case where the loss due to a fall in price is equally o¤set by the gain due

to a rise in quantity demanded so that the total revenue remains una¤ected. A highly elastic

product has a coe¢ cient of elasticity jEdj > 1: A decline in price in this case is dominated

by a rise in quantity demanded. Therefore the total revenue increases as price decreases,

and vice versa. For a perfectly elastic (or in�nitely elastic) product, the elasticity coe¢ cient

Ed is unde�ned and the demand-curve is parallel to the horizontal axis with slope k = 0.

The demand for a good is called relatively inelastic when the quantity demanded does not

change much with the price change. Such a product has a coe¢ cient of elasticity jEdj < 1: A
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fall in price for an inelastic good is accompanied by a relatively smaller increase in quantity

demanded, and consequently, the total revenue moves in the same direction as price. Goods

and services for which no substitutes exist are generally inelastic.

6.2 Model formulation with price elasticity of demand

We recall from Section 4.2 that the growth dynamics of resource stock follows:

dx(t) =

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt+ �1x(t)dW1(t): (6.4)

We aim to capture the e¤ect of price elasticity in the model. To achieve this, we include an

extra term in the price dynamics linking the �sh growth with the price; the price changes are

now speci�ed as

dp(t) = �pp(t)dt+ �2p(t)dW2(t) + k(t)dx(t); (6.5)

where k(t) is the slope of a market demand-curve. When k(t) = 0, the problem reduces to

the original case where the �shery is small and has no observable e¤ect on the market price.

Substituting k = 0 in Equation (6.2) yields the elasticity coe¢ cient as 1, which amounts

to the demand being in�nitely elastic. Therefore we can say that the problem discussed in

Chapter 4 corresponds to in�nite elasticity. Now, as k(t) is the slope of a market demand-

curve, we have

k(t) =
dp(t)

dx(t)
: (6.6)

We assume that the coe¢ cient of elasticity is a constant. Since a market demand-curve is

downward sloping, i.e. it has a negative slope, k(t) is negative. Consequently, the coe¢ cient

of elasticity is negative (see Equation (6.2)). We denote the magnitude of the elasticity

coe¢ cient by m(> 0): Then, using Equation (6.1) and introducing the negative sign to

capture the true e¤ect of elasticity, we can write

dx(t)=x(t)

dp(t)=p(t)
= �m;

which is equivalent to
dx(t)

dp(t)

p(t)

x(t)
= �m (6.7)
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Utilizing Equation (6.6) in Equation (6.7) we obtain

1

k(t)

p(t)

x(t)
= �m

) k(t) = � p(t)

mx(t)
(6.8)

Using Equations (6.8) and (6.4) in Equation (6.5) yields

dp(t) = �pp(t)dt+ �2p(t)dW2(t)

� p(t)

mx(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
dt

�p(t)
m

�1dW1(t):

which leads to

dp(t) =

�
�p �

r

m

�
1� x(t)

K

�
+
qE(t)

m

�
p(t)dt+ �2p(t)dW2(t); (6.9)

where we have ignored the contribution of stochastic �uctuations in stock growth (repre-

sented by dW1(t)) towards the elasticity e¤ect. The basic optimization problem faced by the

harvester is still the same as the stochastic optimal control problem discussed in Chapter

4, where an optimal harvesting policy maximizing the expected present value of total �ow

of pro�t is sought, subject to random growth and price dynamics, boundary conditions and

constraints on e¤ort. The only di¤erence now is in the price dynamics which have been

modi�ed to include the e¤ect of price elasticity of demand. We proceed in the same manner

as in Section (4.3) and obtain the Hamilton-Jacobi-Bellman equation for the discounted �ow

of pro�t as

�@J
�

@t
= max

E(t)

h�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�

+
@J�

@x

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+
@J�

@p

�
�p �

r

m

�
1� x(t)

K

�
+
qE(t)

m

�
p(t)

+
1

2

@2J�

@x2
�21x(t)

2 +
1

2

@2J�

@p2
�22p(t)

2

�
; (6.10)

where the optimal e¤ort is given by

E�(t) =

8>>>>><>>>>>:
0;

�
p� @J�

@x

� qx(t)
c2

+ qp(t)
mc2

@J�

@p �
c1
c2
< 0�

p� @J�

@x

� qx(t)
c2

+ qp(t)
mc2

@J�

@p �
c1
c2
; 0 �

�
p� @J�

@x

� qx(t)
c2

+ qp(t)
mc2

@J�

@p �
c1
c2
� Emax;

Emax;
�
p� @J�

@x

� qx(t)
c2

+ qp(t)
mc2

@J�

@p �
c1
c2
> Emax:

(6.11)
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As always, the Hamilton-Jacobi-Bellman equation (6.10) is solved numerically and the numer-

ical procedure followed is same as in all the other cases. The numerical results are illustrated

in the next section.

6.3 Numerical solution

We �rst examine the in�uence of a variation in the magnitude of the coe¢ cient of elasticity

on the optimal solution. Figure 6.1 presents the average optimal solution for three di¤erent

values of the elasticity coe¢ cient m; where the average is taken over 2000 realizations of the

Wiener increments dW1(t) and dW2(t). The parameter values are listed in Table 6.1.

Table 6.1: Parameter values for the simulation of the Hamilton-Jacobi-Bellman equation

Parameter Description Value Unit

r Intrinsic growth rate 0:71 year�1

� Discount rate 0:12 year�1

� Price drift 0:02 year�1

q Catchability coe¢ cient 0:0001 SFU�1 year�1

K Biological carrying capacity 106 tonnes

xmin Minimum viable population level 0:4K tonnes

p0 Initial price 0:5 $ tonne�1

c1 Linear cost coe¢ cient 0:01 $ SFU�1 year�1

c2 Quadratic cost coe¢ cient 0:01 $ SFU�2 year�1

�1 Growth volatility 0:1 year�1=2

�2 Price volatility 0:1 year�1=2

Compared to the solution for m = 1, the optimal e¤ort is lower when m > 1 (demonstrated

using m = 1:2) and higher when m < 1 (demonstrated using m = 0:8). We recall that m = 1

corresponds to the revenue neutral case (see Section 6.1). When m > 1, the total revenue

moves in a direction opposite to the movement of price. This implies that @J
�

@p is negative and
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this lowers the optimal e¤ort given by Equation (6.11). On the other hand, when m < 1, the

total revenue increases with an increase in price, and vice versa. Therefore, @J
�

@p is positive

and this leads to a rise in the optimal e¤ort given by Equation (6.11). The consequence of the

change in optimal e¤ort on the corresponding population growth is visible in Figure 6.1. The

optimal population level x� undergoes an increase when m = 1:2 due to diminished optimal

e¤ort E�, whereas, a decline is observed in x� when m = 0:8 due to an increase in E�.
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Figure 6.1: The optimal solution for three di¤erent magnitudes of the coe¢ cient of elasticity, m.

Above: optimal e¤ort; Below: optimal stock level. As the magnitude of the elasticity coe¢ cient

decreases, the optimal e¤ort increases whereas the optimal stock level drops.
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In�nite elasticity vs. �nite elasticity

We now compare the optimal solution associated with the case of in�nite elasticity (which is

the original problem discussed in Chapter 4) with the optimal solution corresponding to the

case of �nite elasticity; Figure 6.2 illustrates the comparison. We observe that the optimal

e¤ort is diminished when the demand is perfectly elastic. As the magnitude of the elasticity

coe¢ cient decreases, i.e. the demand becomes less elastic, the optimal e¤ort increases causing

the optimal stock level to fall.
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Figure 6.2: Comparison of the optimal solutions corresponding to in�nite and �nite elasticity. As

demand becomes less elastic, the optimal e¤ort rises while the optimal stock level declines.
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6.4 Summary

In this chapter we extended the model studied in Chapter 4 to re�ect the price elasticity of

demand. In this context, we reformulated the evolution of price to include the product of

stock growth with the slope of the demand curve. The fundamental constrained optimization

problem and the initial and boundary conditions are exactly those as discussed in Chapter 4,

the only change being the modi�ed price dynamics. The Hamilton-Jacobi-Bellman equation

associated with the problem was solved numerically. It was observed that, on average, a

decrease in the magnitude of the elasticity coe¢ cient resulted in a higher optimal e¤ort

and a subsequent drop in the optimal stock level. We also compared the optimal solution

obtained for the original problem (in�nite elasticity) with the optimal solution corresponding

to a relatively less elastic demand. We noted that the optimal e¤ort was lower while the

optimal stock level was higher for the case of in�nitely elastic demand.

We have con�ned our study to a constant coe¢ cient of elasticity. Another approach would

be to implement a linear demand curve with a constant slope k. This would imply that

dx(t)=dp(t) will be the same for all times t. The elasticity, however, would vary through

time as m(t) = k p(t)x(t) : It would be interesting to investigate this problem as a piece of future

research.



Chapter 7

Summary and future directions

The main objective of this thesis was to determine optimal harvesting strategies for �sheries,

in both deterministic and stochastic settings, by employing various optimization techniques

and real options theory. We now present a summary of the work done.

7.1 Thesis summary

In Chapter 1 we discussed existing literature and introduced the Schaefer model, which laid

the foundation for the �sh population growth modelled in this study. In Chapter 2 we pre-

sented an outline of the optimization techniques used in this work. Speci�cally, we discussed

the calculus of variations, optimal control theory, and dynamic programming in determinis-

tic and stochastic frameworks. The applications to �sh harvesting were also illustrated. In

Chapter 3 we developed our model for a deterministic optimal harvesting problem with the

following main assumptions:

(i) The population consists of a single species of �sh.

(ii) The growth is only density dependent (hence the use of Schaefer model for representing

growth dynamics).

(iii) The �shing e¤ort is constrained to stay below a �xed maximum.

(iv) The harvesting costs are quadratic in �shing e¤ort.

154



7. Summary and future directions 155

(v) There exists a minimum viable population level such that if the stock falls below this

level then the population will become extinct.

The �sh population was constrained to stay above a pre-speci�ed minimum viable level

throughout harvesting. The optimal harvesting strategy was assumed to maximize the net

present value of total �ow of pro�t. We determined the optimal solution corresponding to

�nite-horizon harvesting using three di¤erent optimization techniques: dynamic program-

ming, optimal control theory (Hamiltonian method), and a variational method based on

the calculus of variations. While dynamic programming was employed to solve the con-

strained problem, the constraints on �shing e¤ort were dropped when using the other two

approaches. A sensitivity analysis of the total discounted pro�t was carried out with respect

to the catchability and cost parameters. The analysis highlighted the pronounced in�uence

of the quadratic cost-coe¢ cient on the total discounted pro�t for the case of low catchability;

the linear cost-coe¢ cient was seen to have a negligible e¤ect. When catchability was high,

the total discounted pro�t was observed to be una¤ected by a change in the value of either

of the cost-coe¢ cients.

We also studied in�nite-horizon harvesting where we found that the optimal e¤ort and the

optimal population approach a steady state in the long run. We determined the optimal

steady states and compared them with the optimal solution corresponding to �nite-horizon

harvesting. It was noted that if the harvesting is carried on for a long (�nite) period of time,

the optimal e¤ort and the optimal population stabilize at their respective steady states (as-

sociated with in�nite-horizon harvesting) for a while. Due to the �niteness of the harvesting

period, a deviation from the steady-state solution was observed in the last few time-stages.

In Chapter 4 we extended the optimal harvesting problem formulated in Chapter 3 to include

random �uctuations in growth and price dynamics. The stochastic e¤ects in the evolution

of population and price were modelled using two di¤erent Wiener processes. We separately

discussed the cases corresponding to zero correlation and a non-zero correlation between the

two Wiener processes. The constraints on �shing e¤ort and minimum viable population level

remained as before. The optimal harvesting strategy, however, maximized the expected net
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present value (ENPV) of the total �ow of pro�t. Stochastic dynamic programming was em-

ployed to determine the optimal solution. We �rst considered random growth and constant

price and analyzed the e¤ect of growth variability on the optimal harvesting policy. When

harvesting was carried on over a short term, both optimal e¤ort and optimal population level

decreased with an increase in growth variability. For long-term harvesting, a rise in growth

volatility lowered the steady state associated with the long-term optimal solution. Next we

considered both growth and price to be random and examined the in�uence of growth and

price volatility on the optimal solution. A sensitivity analysis with respect to the catchability

and cost parameters was performed on the expected total discounted pro�t and the conclu-

sions were found to be in agreement with those obtained in the deterministic environment.

We also computed the correlation coe¢ cient between the �sh price and population undergo-

ing optimal harvest. The coe¢ cient of correlation was found to be mostly negative, and it

displayed a high increase in magnitude following an increase in price variability.

Chapter 5 presented the above-mentioned stochastic optimal harvesting problem in a real-

options framework. Instead of maximizing the expected net present value of total pro�t,

this approach focused on determining the option value of harvesting. The optimal solution

obtained using real-options theory was compared with the optimal solution determined using

the ENPV approach in Chapter 4. It was found that the option value of harvesting exceeded

the expected net present value of total pro�t while the optimal e¤ort produced by the real

options technique recommended harvesting at a reduced level. We also performed sensitivity

analyses of the optimal e¤ort path and the optimal population growth with respect to various

parameters present in the model. Finally, Chapter 6 demonstrated the in�uence of price

elasticity of demand on the optimal harvesting policy. The ENPV approach was employed

to determine the optimal solution.

In each chapter, we obtained a partial di¤erential equation which was always non-linear and

highly complex. Therefore, the possibility of an analytical solution was ruled out and nu-

merical methods were used to solve the partial di¤erential equation and obtain the optimal

solution. To approximate the spatial and temporal derivatives we can use a forward di¤er-

ence scheme, a backward di¤erence scheme or an average of the two; this choice determines
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whether the �nite-di¤erence scheme is explicit or implicit. Each numerical scheme (explicit

or implicit) has di¤erent stability criteria and truncation errors; further details can be found

in Thomas (1995) and Dunn et al. (2006). The stability condition for an explicit method

depends upon the temporal and spatial step-sizes. The HJB partial di¤erential equation for

deterministic case can be solved using an explicit �nite-di¤erence scheme. However, for ran-

dom environment, the explicit scheme exhibits stability and convergence problems. Therefore,

we use an implicit (Crank-Nicolson) �nite di¤erence method for solving the partial di¤erential

equations obtained in each chapter.

7.2 Future directions

This thesis is a comprehensive study of optimal harvesting policies for �sheries. Nevertheless,

the problem studied here can be used as a basis for future research; some speci�c guidelines

for further research are recorded below.

1. Critical depensation

Throughout this study we adopted variations of the Schaefer model, which is based on the

logistic function, to represent biological growth. Recall from Section 1.1 that in the logistic

models, the proportional growth rate f(x)
x is a decreasing function of x, i.e. they are pure

compensation models, whereas, if f(x)x is an increasing function of x for some values of x then

depensation exists. In our study, the minimum viable population level was modelled as a

constraint on the state. On the other hand, the minimum viable level can be included in the

growth dynamics when modelling depensation. Consider the di¤erential equation

dx

dt
= rx

�
x

K0
� 1
��
1� x

K

�
:

This equation possesses a critical threshold at x = K0, which is theminimum viable population

level. Solutions with initial conditions above K0 approach K, whereas those starting below

K0 decay to zero. Since the net growth rate is negative at population levels lower than
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K0, this model exhibits critical depensation (Clark, 1990). Adding harvesting to the critical

depensation model yields

dx

dt
= rx

�
x

K0
� 1
��
1� x

K

�
� qEx:

There is a trivial equilibrium at x� = 0 whilst the remaining two equilibria are the roots of

the quadratic equation

r

�
x

K0
� 1
��

1� x

K

�
� qE = 0: (7.1)

Some of the consequences of multiple equilibria in the context of �sheries are discussed in

Larkin et al. (1964). Equation (7.1) undergoes bifurcations at the critical parameters E�,

since solutions of the system change discontinuously as E traces E� (Kot, 2001). An inter-

esting problem for future research would be the net pro�t maximization from harvesting with

critical depensation in stock growth. This is especially challenging as the constraint on e¤ort

E must be chosen judiciously so that catastrophic e¤ects on the population can be averted.

2. Time-delays

The logistic model does not explicitly consider recruitment, survival or lags in recruitment.

In �sheries, our logistic model assumes a one-year time lag between changes in biomass

and net production. A Lagged Recruitment, Survival and Growth (LRSG) model was ana-

lyzed by Hilborn & Mangel (1997). Another approach to represent net growth is to employ

delay-di¤erence models. These models are a little more comprehensive than simple pro-

duction models because they explicitly contain the age-structured dynamics of population,

including the lag between spawning and recruitment. A comprehensive reference in this

area is Quin & Deriso (1999). Such models are important because they address the issue

that ecosystems cannot respond simultaneously to recruitment and changes such as harvest-

ing. A simple modi�cation of the logistic growth equation to incorporate delays is due to

Hutchinson & Wright (1948) and is given by the delay-di¤erential equation

dx

dt
= rx

�
1� x(t� �)

K

�
; x(s) = x0(s); � � � s � 0:

where the single time delay is represented by � . Delay-di¤erential equation models tend to

exhibit destabilizing e¤ects in the form of oscillations. In the context of harvesting, time
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delays can appear either in the growth function or in the harvesting term. Two recent works

that consider such problems are Berezansky et al. (2004) and Cui & Li (2007). In both these

works the time delay in the harvesting term appears in the population part. For example,

in a delay model of a lobster �shery there is a delay in getting the information of the lobster

population which yields the growth dynamics as

dx

dt
= rx

�
1� x

K

�
� qE(t)x(t� �):

A future research problem would be to maximize the net pro�t from harvesting as formulated

in this thesis, with the stock growth dynamics given by the above delay-di¤erential equation.

3. The theory of games

Another area to explore is to determine optimal harvesting strategies using game-theory. We

now brie�y outline the concepts underlying game-theory and also provide a game-theoretic

formulation of the optimal harvesting problem in the presence of two harvesters. The theory

of games is designed to analyze strategic interactions among individuals; these individuals

can be persons, �rms, nations, or others. An elementary introduction to game theory can

be found in Osborne (2004). The individuals in the theory of games are called players and

have courses of actions available to them called strategies. Each player expects a return or

payo¤ when following a particular action. The magnitude of this payo¤ depends on the

other players�actions and payo¤s. A satisfactory payo¤ to each player is termed a solution

to the game. However, in many cases, such a solution does not exist. A two-person game

is a zero-sum game if one player�s gain is exactly equal to the other�s loss, otherwise it is a

non-zero sum game.

There are two broad classes of games: cooperative and non-cooperative. In a cooperative game

the players can communicate with each other and have an incentive to cooperate. A solution

to a cooperative game exists if no player is better o¤ by unilaterally deviating from the

cooperative solution. In a non-cooperative game, no communication exists between players.
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Di¤erential Games

A di¤erential game is a mathematical model of a competitive situation which evolves continu-

ously in time (Dockner et al., 2000). The two main features of a di¤erential game are: (i) the

set of state variables characterizing the dynamical system, (ii) evolution of the state variables

described by a set of di¤erential equations. Due to their dynamic nature, di¤erential games

are well suited for modelling resource management problems. Consider a di¤erential game

played by N players over a time horizon [0; T ] where T could be in�nite, in which case the

time horizon becomes [0; 1) : The n-dimensional state vector is denoted by x. When N = 1;

the di¤erential game reduces to an optimal control problem. The variable ui; known as the

control variable, denotes the action taken by player i and is, in general, an m-dimensional

vector. If the game is non-zero sum, each player i seeks to maximize his total payo¤ over the

planning horizon, discounted at the rate �i � 0:

Ji = �i(x(T ); T ) +

TZ
0

e��itgi(x;u;t)dt; : : : ; i = 1; 2; : : : ; N

subject to
:
x = f(x;u;t):

where u = (u1; u2; :::; uN ) is called a strategy pro�le. Most of the problems in economics fall

into the category of non-cooperative games (Dockner et al., 2000). Since we are investigating

a bioeconomic model of a �shery, we con�ne our discussion to non-cooperative game the-

ory. The simplest non-cooperative solution strategy is a non-cooperative Nash equilibrium

(Nash, 1951). A strategy pro�le (u�1; u
�
2; :::; u

�
i ; :::; u

�
N ) is said to be a Nash equilibrium if the

following holds for i = 1; 2; : : : ; N :

J�i (u
�
1; u

�
2; : : : u

�
i ; : : : ; u

�
N ) � Ji(u

�
1; u

�
2; : : : ui; : : : ; u

�
N ) for each admissible ui:

i.e., unilateral deviation from a Nash strategy does not result in a better payo¤. However,

a Nash equilibrium may not be unique. Furthermore, for each player, we can de�ne the

Hamiltonian in the usual manner as

Hi(x;u;�;t) = e��itgi(x;u;t) + �
Tf(x;u;t):
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Then the conditions for a Nash equilibrium can be speci�ed as

H�i (u�1; u�2; : : : u�i ; : : : ; u�N ; �;t) � Hi(u�1; u�2; : : : ui; : : : ; u�N ; �;t): (7.2)

In addition to Equations (7.2) we have the boundary conditions

:
xi =

@H�i
@�i

;

and costate equations
:
�i = �

@H�i
@xi

;

with transversality conditions

�i(T ) =
@�i

@xi(T )
:

The solution to the game consists of the vector u�= [u�1 : : : u
�
N ]
T which provides the action of

each player in an analytical form. A Nash equilibrium can be open-loop or closed-loop. An

open-loop strategy is a strategy dependent on time t only, and is �xed from the outset. A

closed-loop strategy, on the other hand, is conditioned both on time t and state vector x(t).

What occurs prior to time t is irrelevant, only the current state vector is of signi�cance. For

this reason, closed-loop strategies are also known as Markovian strategies.

Open-loop and closed-loop solutions of di¤erential games

Consider the N -player di¤erential game where the ith player wishes to choose his control ui

to maximize

Ji =

TZ
0

gi(x; t; u1; : : : ; uN )dt;

subject to the constraints
:
x = f(x; t; u1; : : : ; uN ); x(0) = x0;

where x is a state vector of dimension 1. We assume that there are no constraints either on

the controls or the state variable.
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Open-loop Nash solutions If the ith player is given the open-loop Nash controls u�j (t);

where j 6= i; for all his competitors then he can obtain a set of necessary conditions for

his own open-loop Nash control using the established methods of optimal control theory, as

follows: De�ne the Hamiltonian for the ith player as

Hi(x; t; u1; : : : ; uN ; �i) = gi(x; t; u1; : : : ; uN ) + �if(x; t; u1; : : : ; uN ):

Since u�i (t) must maximize Ji when the other players use their Nash controls, the following

�rst order necessary conditions must hold:

:
x = f(x; t; u�1; : : : ; u

�
N ); ,x(0) = x0;

:
�i(t) = �@Hi(x; t; u

�
1; : : : ; u

�
N ; �i)

@x
; ...,�i(T ) = 0;

@Hi(x; t; u�1; : : : ; u�N ; �i)
@ui

= 0: (7.3)

@2Hi(x; t; u�1; : : : ; u�N ; �i)
@u2i

is negative semi-de�nite on the optimal Nash path:(7.4)

Equations (7.3) for i = 1; 2; : : : ; N provide a set of necessary conditions for the entire N -tuple

of Nash open-loop strategies. These equations can be solved either numerically or analytically

to obtain a control vector u�(t) as a function of x; t; �1; : : : ; �N . It must be noted that the

ith player�s Hamiltonian is maximized only with respect to his own control, i.e.

@Hi(x; t; u�1; : : : ; u�N ; �i)
@uj

6= 0; i 6= j:

Closed-loop Nash solutions If the ith player is given the closed-loop strategies u�j (x; t);

where j 6= i; for all his competitors then he has to solve the system of following necessary

conditions:

:
x = f(x; t; u�1; : : : ; u

�
N ); : : : ; x(0) = x0;

:
�i(t) = �@Hi(x; t; u

�
1; : : : ; u

�
N ; �i)

@x
�

NX
j 6=i

@Hi
@uj

@uj
@x

; ; �i(T ) = 0;

@Hi(x; t; u�1; : : : ; u�N ; �i)
@ui

= 0:

We see that for N � 2 the summation term
NP
j 6=i

@Hi
@uj

@uj
@x gives rise to a set of partial di¤erential

equations, generally extremely di¢ cult to solve, unlike in the single player case (N = 1)

where the summation term is absent.
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Another approach dealing with closed-loop Nash controls is the dynamic programming tech-

nique. If Vi(x1; t1) denotes the optimal pro�t for the ith player starting from state x1 at time

t1 then

Vi(x1; t1) = max
ui
[gi(x1; t1)�t+ Vi(x1 + �x1; t1 + �t)] ;

�@Vi
@t

= max
ui
Hi; : : : ; V (x(T ); T ) = 0:

These are the generalized Hamilton-Jacobi-Bellman equations. The solutions to these are

obtained by integrating backwards from the terminal boundary condition V (x(T ); T ) = 0.

Di¤erential games in �sheries resource management

The problem of managing a �shery resource being shared by two di¤erent nations or �rms

was illustrated by Clark (1985), using the famous Prisoner�s Dilemma (Luce, 1958) discussed

extensively in game theory. To keep the problem simple, Clark ignored the �shing costs. The

simpli�ed problem was to maximize the discounted revenue

1Z
0

e��tph(x)dt;

subject to
:
x = f(x)� h(x);

where it was assumed that the two countries hold identical �nancial opportunities (same �sh

price p and discount rate �) and have the same harvesting power. We now present a brief

review of the approach taken by Clark. Straightforward application of the Euler-Lagrange

equation from Section 2.2 (Equation 2.21 with cost equal to zero) yields the optimal biomass

f 0(x�) = �:

The global economic return from the resource at x = x� is the discounted revenue pf(x�)
� ;

this is the present value of the revenue earned by employing sustainable harvesting leading

to conservation of the resource. Suppose that x(0) = x�; and consider two possible strate-

gies: "deplete the resource" and "conserve the resource". Since the available biomass is x�;

depleting the resource as rapidly as possible would yield an economic return of px�. Note

that the growth rate is assumed to be zero during the time taken for depleting the resource.
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Thus if both countries adopt the depletion strategy, each would get a return of px
�

2 . If, on

the other hand, they both adopt the conservation strategy then each would get a return of

pf(x�)
2� . Hence the payo¤ matrix for the �shing game is obtained as

conserve deplete

conserve

deplete

0BB@
�
pf(x�)
2� ; pf(x

�)
2�

�
(0; px�)

(px�; 0)
�
px�

2 ;
px�

2

�
1CCA :

If x� > f(x�)
� ; the depletion strategy obviously works better for each country (regardless of

the strategy that the other country adopts). This will motivate each country to deplete

the resource, thus receiving a return of px
�

2 . However, if there was one player involved, it

would be adopting the conservation strategy only which means pf(x�)
� > px�. It follows

then that px�

2 < pf(x�)
2� , which in turn renders the mutual depletion strategy inferior to the

mutual conservation strategy. The solution ("deplete the resource","deplete the resource"),

referred to as the competitive equilibrium, is decidedly inferior to the solution ("conserve the

resource","conserve the resource"), referred to as the cooperative solution. If x� < f(x�)
2� , the

�rst country would be better o¤ conserving if the other country followed the same strategy.

This is however a highly unstable situation as one country might be tempted to deplete when

the other one conserves, thus leaving the country following the conservation strategy with

essentially nothing. If both countries choose to deplete, they again end up with the inferior

return of px
�

2 .

A simple di¤erential game with two players was solved by Clark (1980). The problem was

an extension of the problem presented in Section 2.2, from one harvester to two harvesters.

The �sh growth model was the Gordon-Schaefer model:

:
x = rx

�
1� x

K

�
� q1E1x� q2E2x; : : : ; x(0) = x0;

0 � Ei � Emaxi ; : : : ; i = 1; 2;

where i stands for the ith player. The harvesting costs were assumed to be linear in �shing

e¤ort and the objective of each player was again to maximize his respective discounted pro�t

Ji =

1Z
0

e��it(piqix� ci)Eidt; : : : ; i = 1; 2:
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The optimal biomass corresponding to the scenario where each player was operating alone

were denoted by x�i ; i = 1; 2: These could be determined by solving the quadratic Euler-

Lagrange equations (see Section 2.2):

(�2rpiqi)(x�i )2 + [ciri +Kpiqi(ri � �i)]x�i +Kci�i = 0:

Additionally, x1i ; i = 1; 2; denoted the bionomic equilibria at which the economic rent van-

ished. These were given by x11 = c1
p1q1

and x12 = c2
p2q2

(see Section 1.1).

Assuming that x11 < x12 , i.e. the �rst player is more "e¢ cient" than the second player, the

non-cooperative Nash equilibrium was given by

E�1(x) =

8>>>>><>>>>>:
Emax1 ; x(t) > min(x�1; x

1
2 );

r(1� x
K )

q1
; x(t) = min(x�1; x

1
2 );

0; x(t) < min(x�1; x
1
2 );

E�2(x) =

8><>: Emax2 ; x(t) > x12 ;

0; x(t) � x12 :

This implies that the �rst player, being the most e¢ cient, started by harvesting enough stock,

thereby reducing it to an appropriate level that eliminated the second player. That is, the

second player was forced to exit the �shery. If the e¢ ciency of the �rst player was much

higher than the second player then the former could harvest x�1, tantamount to operating

alone.

A di¤erential game between two players, where one player makes the �rst move and the

second player follows, was considered by Benchekroun & Long (2002). In this work, the �rst

mover�s catch rate was h1(t) = E1(t)x(t) and the net bene�t was R1(h1(t)). The net bene�t

R1(h1(t)) was independent of the other player�s �shing e¤ort, E2(t), because of the �rst move.

The net bene�t to the follower, however, was dependent on both h1(t) and h2(t) as well as

x(t), denoted by R2(h1(t); h2(t); x(t)), where h2(t) = E2(t)x(t). The rate of �sh growth was

given by
:
x = f(x(t); E1(t); E2(t)):
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The objective of the �rst mover was to maximize

J1 =

1Z
0

e��tR1(h1(t))dt;

and the objective of the follower was to maximize

J2 =

1Z
0

e��tR2(h1(t); h2(t); x(t))dt:

It was noted that the �rst mover had to follow a more conservationist approach than he

normally would have if he was operating alone. Deviating from that strategy would trigger

an aggressive response from the second mover, leading to overexploitation of the resource.

This scenario, where the action of the second player depends on the action of the �rst, admits

a solution normally called a Stackelberg equilibrium. The action of the leader can be observed

by the follower before taking an action. This problem is of Markovian nature with solutions

E�1(x) and E
�
2(E

�
1(x); x).

Dockner et al. (1989) studied a two-player di¤erential game, and provided both Nash and

Stackelberg equilibrium solutions to it. They maximized the usual objective function

Ji =

1Z
0

e��it(pqix� ci)Eidt; i = 1; 2;

with no constraints on the e¤ort and assuming a Gompertz growth function for the stock,

given by
:
x = x(a� b lnx)� q1E1x� q2E2x:

They concluded that the pro�ts of both players were higher in the Stackelberg case than in

the corresponding Nash case. Extinction of the �sh population in �nite time was ruled out

due to the structure of the growth model.

Munro (1979) investigated the problem of optimal management of renewable resources jointly

owned by two states using Nash�s theory of two-person cooperative games (Nash, 1953). In

this work Munro assumed that there was only one harvest function h(t); to be allocated by

means of harvest shares to both states: �h(t) to the �rst, and (1� �)h(t) to the other. The
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objective functions of the two countries could then be expressed as

J1 =

1Z
0

e��1t�(p� c(x))h(t)dt;

J2 =

1Z
0

e��2t(1� �)(p� c(x))h(t)dt:

Through an agreement, both states decided to maximize the weighted sum of the objective

functionals
J = �J1 + (1� �)J2; : : : ; 0 � � � 1;

where � was a bargaining parameter weighing the preferences of each state: � = 1 indicated

that the �rst state was dominant and � = 0 indicated that the second state was dominant.

Munro considered three cases: (i) �1 6= �2 with equal harvesting costs, (ii) �1 = �2 with

variable harvesting costs, (iii) �1 = �2 with equal harvesting costs and variable �sh prices.

The �rst two cases turned out to be easy to tackle but the third one proved to be signi�cantly

more di¢ cult, allowing for the possibility that the optimal control could fail to exist.

Nash�s cooperative solution is not the only game theoretic model available. Another approach

is based on the Shapley value (Shapely, 1953). In a survey paper related to �sheries manage-

ment, Bjørndal et al. (2000) considered the Shapley value approach. According to Shapley,

players form coalitions which de�ne their contribution in the cooperative agreement and, as

a consequence, their bargaining strengths. This is done by the de�nition of a characteristic

function which assigns a particular value to each member of a coalition. The Shapley value

is deemed to be a fair treatment to all players involved as it takes into account their rela-

tive strengths. A paper by White & Mace (1988) analyzed a four-player game between two

harvesters and two processors based on the characteristic function approach.

Finally, the players may be receiving measurements of the state subject to noise. This

situation gives rise to stochastic di¤erential games where the state equation is generally of

the form
:
x = f(x)�

NX
i=1

qiEix+ �xdw;

and the objective, as usual, is to maximize the expectation of the present value of the dis-
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counted pro�t

Ji = max
Ei

E

24 TZ
0

e��it(pqiEix� ci(Ei))dt

35 :
Examples of such games applied to �sheries are found in Jørgensen & Yeung (1996) and in

Laukkanen (2003).

A formulation of a non-cooperative di¤erential game with two players

We now follow a game-theoretic approach to formulate the optimal harvesting problem pre-

sented in Chapter 3. The di¤erential game with two players is posed thus

Ji = max
ui

TZ
0

e��it(piqiEix� ci(Ei))dt; ; i = 1; 2

subject to
:
x = rx

�
1� x

K

�
� q1E1x� q2E2x; x(0) = x0;

where ci(Ei) are the quadratic harvesting costs: c1(E1) = a1E1+
b1
2 E

2
1 ; c2(E2) = a2E2+

b2
2 E

2
2 ,

and the index i refers to the ith player.

Open-loop Nash equilibrium We �rst present the case where �shing e¤ort is only a

function of time and is independent of the state. The Nash equilibrium obtained here would

correspond to the open-loop solution. The Hamiltonians for the two players are formed as

Hi = e��it(piqiEi(t)x� ci(Ei(t))) + �i
h
rx
�
1� x

K

�
� q1E1(t)x� q2E2(t)x

i
; i = 1; 2:

The necessary optimality conditions are:

@Hi
@Ei

= e��it(piqix� c
0
i(Ei(t))� �iqix = 0, i = 1; 2;

:
�i = �e��itpiqiEi(t)� r�i + 2r�i

x

K
+ �i(q1E1(t) + q2E2(t)); �i(T ) = 0; i = 1; 2:

Closed-loop Nash equilibrium We now consider the case where �shing e¤ort is depen-

dent on both current state and time. The two Hamiltonians as well as the stationarity

conditions are the same as in the open-loop case, but E1 and E2 now are functions of the
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stock as well as time. The additional complication arises from the extra terms in the costate

equations:

:
�i = �e��it

�
piq1Ei(t; x(t)) + piqix

@Ei(t; x(t))

@x
� @ci(Ei(t; x(t))

@x

�
+�i

�
�r + 2r�i

x

K
+ q1E1(t; x(t)) + q2E2(t; x(t))

+q1x
@E1(t; x(t))

@x
+ q2x

@E2(t; x(t))

@x

�
; i = 1; 2;

�i(T ) = 0; i = 1; 2:

Some open problems for di¤erential games in �sh harvesting We have presented a

brief open-loop and closed-loop formulation of the optimal harvesting problem in deterministic

settings demonstrating the complexity of the two-harvester di¤erential game. We identify

below two major open problems in this area:

(i) The players can only access noise-corrupted measurements of the state, i.e., the amount

of stock is not known precisely but its growth can be approximately modelled by a

stochastic di¤erential equation. This gives rise to stochastic di¤erential games.

(ii) Some players adopt open-loop strategies while others adopt closed-loop strategies.

Further research is needed to provide more insights and deepen our understanding of optimal

harvesting strategies for �sheries.



References

Anderson, P. (1982). Commercial �sheries under price uncertainty. Journal of Environmental

Economics and Management, 9 (1), 11-28.

Ash, R. B. & Doléans-Dade, C. (2000). Probability and measure theory. London: Academic

Press.

Beverton, R. J. H. & Holt, S. J. (1957). On the dynamics of exploited �sh populations. London:

Chapman and Hall.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.

Benchekroun, H. & Long, N. V. (2002). Transboundary �shery: A di¤erential game model.

Economica, 69 (274), 207-221.

Berezansky, L., Braverman, E. & Idels, L. (2004). Delay di¤erential logistic equations with

harvesting. Mathematical and Computer Modelling, 40, 1509-1525,

Bertsekas, D. P. (1987). Dynamic programming : Deterministic and stochastic models. Engle-

wood cli¤s, N.J.: Prentice-Hall.

Billingsley, P. (1995). Probability and measure. New York: J. Wiley & sons.

Bjørndal, T., Kaitala, V., Lindroos, M. & Munro, G. R. (2000). The management of high

seas �sheries. Annals of Operations Research, 94, 183-196.

Black, F. & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of

Political Economy, 81 (3), 637-654.

170



REFERENCES 171

Botsford, L. W., Castilla, J. C. & Peterson, C. H. (1997). The management of �sheries and

marine ecosystems. Science, 277, 509-515.

Boyce, W. E. & DiPrima, R. C. (2003). Elementary di¤erential equations and boundary value

problems. New York: Wiley Series.

Brailsford, T., Heaney, R. & Bilson, C. (2006). Investments: Concepts and applications. South

Melbourne: Thomson Publications.

Brennan, M. J. & Schwartz, E. S. (1985). Evaluating natural resource investments. The

Journal of Business, 58 (2), 135-157.

Briones, R. M. (2006). Projecting future �sh supplies using stock dynamics and demand. Fish

and Fisheries, 7, 303-315.

Bryson, A. E. & Ho, Y-C. (1975). Applied optimal control : Optimization, estimation and

control. Washington: Hemisphere Publishing Corporation.

Chiang, A. C. (2000). Elements of dynamic optimization. Prospect Heights: Waveland Press.

Chung, K. L. & AitSahila, F. (2003). Elementary probability theory :With stochastic processes

and an introduction to mathematical �nance. New York: Springer.

Clark, C. W. (1985). Bioeconomic modelling and �sheries management. New York: Wiley

Series.

Clark, C., Edwards, G. & Friedlaender, M. (1973). Beverton-Holt model of a commercial

�shery: Optimal dynamics. Journal of Fisheries Research Board of Canada, 30 , 1629-1640.

Clark, C. W. (1990). Mathematical Bioeconomics: The optimal management of renewable

resources. New York: Wiley Series.

Clark, C. W. & Munro, G. R. (1975). The economics of �shing and modern capital theory:

A simpli�ed approach. Journal of Environmental Economics and Management, 2, 92-106.

Clark, C. W. (1979). Mathematical models in the economics of renewable resources. SIAM

Review, 21 (1), 81-99.



REFERENCES 172

Clark, C. W., Clarke, F. H. & Munro, G. R. (1979). The optimal exploitation of renewable

resource stocks: Problems of irreversible investment. Econometrica, 47 (1), 25-47.

Clark, C. W. (1980). Restricted Access to Common-Property Fishery Resources. In P-T Liu

(Ed.). Dynamic optimization and mathematical economics. Plenum Press.

Clark, C. W. (2006). The worldwide crisis in �sheries: Economic models and human behav-

iour. Cambridge: Cambridge University Press.

Cortazar, G., Schwartz, E. S. & Löwener, A. (1998). Optimal investment and production

decisions and the value of the �rm. Review of Derivatives Research, 2 (1), 39-57.

Cui, J. & Li, H-X. (2007). Delay di¤erential logistic equation with linear harvesting. Nonlinear

Analysis, 8 (5), 1551-1560.

Danielsson, A. (2002). E¢ ciency of catch and e¤ort quotas in the presence of risk. Journal

of Environmental Economics and Management, 43 (1), 20-33.

Dixit, A. K. & Pindyck, R. S. (1994). Investment under uncertainty. Princeton, N.J.:Princeton

University Press.

Dockner, E., Feichtinger, G. & Mehlmann, A. (1989). Noncooperative solutions for a di¤er-

ential game model of �shery. Journal of Economic Dynamics and Control, 13 (1), 1-20.

Dockner, E. J., Jørgensen, S., Long, N. V. & Sorger, G. (2000). Di¤erential games in eco-

nomics and management science. New York: Cambridge University Press.

Dorfman, R. (1969). An economic interpretation of optimal control theory. The American

Economic Review, 59 (5), 817-831.

Dunn, S. M., Constantinides, A. & Moghe, P. V. (2006). Numerical methods in Biomedical

engineering. USA: Elsevier Academic Press.

Durret, R. (1996). Stochastic calculus: A practical introduction. Florida: CRC Press.

Eide, A., Skjold, F., Olsen, F. & Flaaten, O. (2003). Harvest functions: The Norwegian

bottom trawl cod �sheries. Marine Resource Economics, 18, 81-93.



REFERENCES 173

Food and Agriculture Organization (2007). The state of world �sheries and aquaculture 2006.

FAO Corporate Document Repository, Food and Agriculture Organization of the Unites

states. Available online at http://www.fao.org/docrep/009/A0699e/A0699e00.HTM

Gatto, M. & Ghezzi, L. L. (1992). Taxing overexploited open-access �sheries: The role of

demand elasticity. Ecological Modelling, 60, 185-198.

Geske, R. & Shastri, K. (1985). Valuation by approximation: A comparison of alternative

option valuation techniques. Journal of Financial and Quantitative Analysis, 20 (1), 45-71.

Gleit, A. (1978). Optimal harvesting in continuous time with stochastic growth. Mathematical

Biosciences, 41, 111-123.

Gordon, H. S. (1953). An economic approach to the optimum utilization of �shery resources.

Journal of Fisheries Research Board of Canada, 10 (7), 442-457.

Gordon, H. S. (1954). The economic theory of a common property resource: The �shery.

Journal of Political Economy, 62, 124-142.

Hannesson, R. (1975). Fishery Dynamics: A North Atlantic Cod Fishery. The Canadian

Journal of Economics, 8 (2), 151-173.

Hanson, F. B. & Ryan, D. (1998). Optimal harvesting with both population and price dy-

namics. Mathematical Biosciences, 148 (2), 129-146.

Hanson, F. B. (2006). Applied stochastic processes and control for jump-di¤usion: mod-

eling, analysis and computation. Retrieved November 2006 from SIAM Publications:

http://www.math.uic.edu/~hanson/pub/SIAMbook/bk12bioapps.pdf .

Hardin, G. (1968). The tragedy of commons. Science. 162 (3859), 1243-1248.

Henderson, D. & Plaschko, P. (2005). Stochastic di¤erential equations in Science and engi-

neering. New Jersey: World Scienti�c Publishing Co.

Higham, D. (2001). An algorithmic introduction to numerical solution of stochastic di¤erential

equations. SIAM Review, 43 (3), 525-546.

Hilborn, R. & Mangel, M. (1997). The ecological detective: Confronting models with data.

New Jersey: Princeton University Press..



REFERENCES 174

Hilborn, R. &Walters, C. J. (1992).Quantitative �sheries stock assessment : Choice, dynamics

and uncertainty. New York: Chapman & Hall.

Holt, C. C., Modigliani, F., Muth, J. & Simon H. (1960). Planning production inventories

and work force. New Jersey: Prentice-Hall.

Hull, J. C. (2005). Options, futures and other derivatives. London: Prentice Hall.

Hull, J. & White, A. (1990). Valuing derivative securities using the explicit �nite di¤erence

method. Journal of Financial and Quantitative Analysis, 25 (1), 87-100.

Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Acad-

emy of Sciences, 50 (4), 221-246.

Insley, M. (2002). A real options approach to the valuation of a forestry investment. The

Journal of Environmental Economics and Management, 44 (3), 471-492.

Insley, M. & Wirjanto, T. S. (2006). Contrasting two approaches in real options valua-

tion: Contingent claims versus dynamic programming. Retrieved May 2007 from SSRN :

http://ssrn.com/abstract=1105588.

Jackson, J., McIver, R. & Bajada, C. (2007). Economic principles. Sydney: McGraw-Hill

Australia Pty Limited.

Jørgensen, S. & Yeung, D. W. K. (1996). Stochastic di¤erential game model of a common

property �shery. Journal of Optimization Theory and Applications, 90 (2), 381-403.

Kamien, M. I. & Schwartz, N. L. (1991). Dynamic optimization: The calculus of variations

and optimal control in economics and management. New York: Elsevier Science Publishing

Co.

Kirk, D. E. (1970). Optimal control theory: an introduction. New Jersey: Prentice-Hall.

Kot, M. (2001). Elements of mathematical ecology. New York: Cambridge University Press.

Kolosov, G. E. (1999). Optimal design of control systems: Stochastic and deterministic prob-

lems. New York: Marcel Dekker.



REFERENCES 175

Lande, R,. Engen, S. & Saether, B. E. (1994). Optimal harvesting, economic discounting and

extinction risk in �uctuating populations. Nature, 372, 88-90.

Lande, R., Engen, S. & Saether, B. E. (1995). Optimal harvesting of �uctuating populations

with a risk of extinction. The American Naturalist, 145 (5), 728-745.

Lande, R., Saether, B. E. & Engen, S. (1997). Threshold harvesting for sustainability of

�uctuating resources. Ecology, 78 (5). 1341-1350.

Larkin, P. A., Raleigh, R. F. & Wilimovsky, N. J. (1964). Some alternative premises for

constructing theoretical production curves. Journal of Fisheries Research Board of Canada,

21, 477-484.

Larkin, P. A. (1977). An epitaph for the concept of maximum sustainable yield. Transactions

of the American Fisheries Society, 106 (1), 1-11.

Laukkanen, M. (2003). Cooperative and non-cooperative harvesting in a stochastic sequential

�shery. Journal of Environmental Economics and Management, 45, 454-473.

Levy, J. K., Kilgour, D. M. & Hipel, K. W. (2006). Reducing the risk of �shery resource

disasters: A bioeconomic approach to sustainable resource management. Journal of American

Water Resources Association, 42 (6), 1451-1463.

Lewis, T. R. (1981). Exploitation of a renewable resource under uncertainty. The Canadian

Journal of Economics, 14 (3), 422-439.

Luce, R. D. & Rai¤a, H. (1958). Games and Decisions: Introduction and Critical Survey.

New York: Wiley Series.

Ludwig, D. (1979). Optimal harvesting of a randomly �uctuating resource.I: Application of

perturbation methods. SIAM Journal on Applied Mathematics, 37 (1), 166-184.

Ludwig, D. & Varah, J. M. (1979). Optimal harvesting of a randomly �uctuating resource.

II: Numerical methods and results. SIAM Journal on Applied Mathematics, 37 (1), 185-205.

Ludwig, D., Hilborn, R. & Walters, C. (1993). Uncertainty, resource exploitation and conser-

vation: Lessons from history. Ecological Applications, 3 (4), 548-549.

Ludwig, D. (1998). Management of stocks that may collapse. Oikos, 83 (2), 397-402.



REFERENCES 176

Mace, P. M. (1994). Relationships between common biological reference points used as thresh-

old and targets of �sheries management strategies. Canadian Journal of Fisheries Aquatic

Sciences, 51, 110-122.

Mangel, M. (1985). Decision and control in uncertain resource systems. USA: Academic Press.

McDonald, A. D., Sandal, L. K. & Steinshamn, S. I. (2002). Implications of a nested stochas-

tic/deterministic bio-economic model for a pelagic �shery. Ecological Modelling, 149, 193-201.

Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica, 41 (5),

867-887.

Mikosch, T. (1998). Elementary stochastic calculus with �nance in view. New Jersey: World

Scienti�c Publishing Co.

Miranda, M. J. & Fackler, P. L. (2002). Applied computational economics and �nance. Massa-

chusetts: The MIT Press.

Morck, R., Schwartz, E. & Stangeland D. (1989). The valuation of forestry resources under

stochastic prices and inventories. The Journal of Financial and Quantitative Analysis, 24 (4),

473-487.

Munro, G. R. (1979). The optimal management of transboundary renewable resources. The

Canadian Journal of Economics, 12 (3), 355-376.

Murillas, A. & Chamorro, J. M. (2006). Valuation and management of �shing resources under

price uncertainty. Environmental & Resource Economics, 33 (1), 39-71.

Myers, R. A., Rosenberg, A. A., Mace, P. M., Barrowman, N. & Restrepo, V. R. (1994).

In search of thresholds for recruitment over�shing. ICES Journal of Marine Science. 51 (2),

191-205.

Nash, J. F. (1951). Non-cooperative games. The Annals of Mathematics, 54 (2), 286-295.

Nash, J. F. (1953). Two-person cooperative games. Econometrica, 21 (1), 128-140.

Nøstbakken, L. (2006). Regime switching in a �shery with stochastic stock and price. Journal

of Environmental Economics and Management, 51 (2), 231-241.



REFERENCES 177

Osborne, M. J. (2004). An introduction to game theory. New York: Oxford University Press.

Pindyck, R. S. (1984). Uncertainty in the theory of renewable resource markets. The Review

of Economic Studies, 51 (2), 289-303.

Quinn, T. J., Fagen, R. & Zheng, J. (1990). Threshold management policies for exploited

populations. Canadian Journal of Fisheries and Aquatic Sciences, 47 (10), 2016-2029.

Quinn II, T. J. & Deriso, R. B. (1999). Quantitative �sh dynamics. New York: Oxford

University Press.

Reed, W. J. (1974). A stochastic model for the economic management of a renewable animal

resource. Mathematical Biosciences, 22, 313-337.

Reed, W. J. (1979). Optimal escapement levels in stochastic and deterministic harvesting

models. Journal of Environmental Economic Management, 6 (4), 350-363.

Rosenberg, A. A., Fogart, M. J., Sissenwine, M. P., Beddington, J. R. & Shepherd J. G.

(1993). Achieving sustainable use of renewable resources. Science, 262 (5135), 828-829.

Ross, S. M. (1983). Introduction to stochastic dynamic programming. New York: Academic

Press.

Roughgarden, J. & Smith, F. (1996). Why �sheries collapse and what to do about it. Proc.

Natl. Acad. Sci., USA, 93 (10), 5078-5083.

Saether, B. E., Engen, S. & Lande, R. (1996). Density-dependence and optimal harvesting of

�uctuating populations. Oikos, 76 (1), 40-46.

Samuelson, P. A. (1965). A catenary turnpike theorem involving consumption and the golden

rule. The American Economic Review, 55 (3), 486-496.

Sancho, N. G. F. & Mitchell, C. (1975). Economic optimization in controlled �sheries. Math-

ematical Biosciences, 27, 1-7.

Sanders , M. J. (1993). Fishery performance and the value of future entitlements under quota

management: A case study of a Handline �shery in the southwest Indian ocean. Fisheries

Research (Amsterdam), 18, 219-229.



REFERENCES 178

Schaefer, M. B. (1957). Some considerations of population dynamics and economics in relation

to the management of marine �sheries. Journal of the Fisheries Research Board of Canada,

14, 669-681.

Sha¤er, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31 (2),

131-134.

Shapley, L. S. (1988). A value for n-person games. In H.Kuhn & A.W.Tucker (Eds.). Contri-

butions to the theory of games, 2. Princeton University Press, New Jersey.

Slade, M. E. (2001). Valuing managerial �exibility: An application of real option theory to

mining investments. Journal of Environmental Economics and Management, 41 (2), 193-233.

Smith, D. K. (1991). Dynamic Programming- A practical introduction. England: Ellis Hor-

wood Limited.

Spence, M. & Starrett, D. (1975). Most rapid approach paths in accumulation problems.

International Economic Review, 16 (2), 388-403.

Stanoyevitch, A. (2005). Introduction to numerical ordinary and partial di¤erential equations

using MatlabR. New Jersey: Wiley Interscience Series.

Swann, M. & McEachern, W. A. (2006). Microeconomics: A contemporary introduction.

South Melbourne: Thomson, Nelson Australia Pty Limited.

Thomas, J. W. (1985). Numerical partial di¤erential equations: Finite di¤erence methods.

New York: Springer-Verlag.

Trigeorgis, L. (1996). Real options: Managerial �exibility and strategy in resource allocation.

Massachusetts: The MIT Press.

Tsur, Y. & Zemel, A. (2001). The in�nite horizon dynamic optimization problem revisited:

A simple method to determine equilibrium states. European Journal of Operational Research,

131 (3), 482-490.

Wan Frederick, Y. M. (1995). Introduction to the calculus of variations and its applications.

New York: Chapman and Hall.



REFERENCES 179

White, G. N. & Mace, P. (1988). Models for cooperation and conspiracy in �sheries: Changing

the rules of the game. Natural Resource Modeling, 2 (3), 499-530.



Appendix A

Numerical solution for
deterministic growth and constant
price

We want to simulate the deterministic Hamilton Jacobi Bellman (HJB) partial di¤erential

equation given by

�@J
�(x(t); t)

@t
=
�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E�(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x

�
rx(t)

�
1� x(t)

K

�
� qE�(t)x(t)

�
; (A.1)

where E�(t) is evaluated using

E�(t) =

8>>>>><>>>>>:
0;

�
p� @J�

@x

� qx(t)
c2

� c1
c2
< 0�

p� @J�

@x

� qx(t)
c2

� c1
c2
; 0 �

�
p� @J�

@x

� qx(t)
c2

� c1
c2
� Emax;

Emax;
�
p� @J�

@x

� qx(t)
c2

� c1
c2
> Emax:

(A.2)

subject to the boundary conditions J�(x; T ) = 0 and E�(xmin; t) = 0:

We normalize the population with respect to the carrying capacity K and denote X(t) = x(t)
K :

Using the normalized population, Equations (A.1) and (A.2) can be reformulated as:

�@J
�(X(t); t)

@t
=
�
pqKX(t)� c1 �

c2
2
E�(t)

�
E�(t)� �J�(X(t); t)

+
@J�(X(t); t)

@X(t)
frX(t) (1�X(t))� qE�(t)X(t)g ; (A.3)
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and

E�(t) =

8>>>>><>>>>>:
0;

�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
< 0�

p� @J�

K@X

� qKX(t)
c2

� c1
c2
; 0 �

�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
� Emax;

Emax;
�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
> Emax:

(A.4)

We recall that harvesting is initiated at the initial time 0 and is terminated at the �nal time T

(a �xed constant). The interval [0, T ] is partitioned as 0 = t0; t1; t2; : : : ; tN = T where each

subinterval is of equal length, denoted by �t. The normalized population X(t) lies between

Xmin = xmin=K and 1; and the interval [Xmin; 1] is partitioned as Xmin; X1; X2; : : : ; XM = 1

where all the sub-partitions are of same length, denoted by �X.

We let J�i;n and E
�
i;n denote the values of J

� and E� respectively at X = Xi and t = tn where

0 � i � M and 0 � n � N . The �rst order derivative of J� with respect to the temporal

variable t is approximated by:

@J�

@t
=
J�i;n+1 � J�i;n

4t for 0 � n � N � 1:

The values of J� and its spatial derivative are approximated as an average of the respective

values at the nth and the (n+ 1)th time step where 0 � n � N � 1. The �rst order spatial

derivative is approximated by:

@J�

@X
=

1

2

��
J�i+1;n+1 � J�i�1;n+1

24X

�
+

�
J�i+1;n � J�i�1;n

24X

��
for 0 � i �M � 1;

@J�

@X
=

1

2

��
3J�M;n � 4J�M�1;n + J

�
M�2;n

24X

�
+

�
3J�M;n+1 � 4J�M�1;n+1 + J

�
M�2;n+1

24X

��
for i =M:

The error in the temporal and the spatial derivatives above is of order O(dt2) and O(dX2)

respectively.

These approximations are then substituted in Equations (A.3) and (A.4). The numerical so-

lution is calculated by moving backwards in time since we have obtained the HJB equation by
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using dynamic programming which involves backward recursion while performing optimiza-

tion. We know the J� values at the terminal time T = tN which can be used to determine

the J� values at time tN�1 and so on. In other words, we feed the J� values at each time tn+1

in the �nite di¤erence approximation of the HJB equation to evaluate the corresponding J�

values at time tn. Discretizing the HJB equation for 1 � i �M � 1 we obtain

�
J�i;n+1 � J�i;n

4t =
h
pqKXi � c1 �

c2
2
E�i;n+1

i
E�i;n+1 � �

�
J�i;n
2
+
J�i;n+1
2

�
+
1

2

�
J�i+1;n � J�i�1;n

24X

��
rXi (1�Xi)� qE�i;n+1Xi

	
+
1

2

�
J�i+1;n+1 � J�i�1;n+1

24X

��
rXi (1�Xi)� qE�i;n+1Xi

	
; (A.5)

and

E�i;n+1 =

�
p�

J�i+1;n+1 � J�i�1;n+1
24XK

�
qKXi
c2

� c1
c2
: (A.6)

For i =M we get the numerical scheme:

�
J�M;n+1 � J�M;n

4t =
h
pqXM � c1 �

c2
2
E�M;n+1

i
E�M;n+1 � �

�
J�M;n
2

+
J�M;n+1
2

�
+
1

2

�
3J�M;n � 4J�M�1;n + J

�
M�2;n

24X

��
rXM (1�XM )� qE�M;n+1XM

	
+
1

2

�
3J�M;n+1 � 4J�M�1;n+1 + J

�
M�2;n+1

24X

��
rXM (1�XM )� qE�M;n+1XM

	
(A.7)

and

E�M;n+1 =

�
p�

3J�M;n+1 � 4J�M�1;n+1 + J
�
M�2;n+1

24XK

�
qKXM
c2

� c1
c2
: (A.8)

The optimal e¤ort is forced to satisfy the constraints by performing the following check:

if E�i;n+1 < 0 then put E�i;n+1 = 0;

if E�i;n+1 > Emax then put E�i;n+1 = Emax:
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Rearranging terms in Equation (A.5) and collecting the coe¢ cients gives

�t

4�X

�
rXi (1�Xi)� qE�i;n+1Xi

	
J�i�1;n +

�
1 +

��t

2

�
J�i;n

� �t

4�X

�
rxi (1�Xi)� qE�i;n+1Xi

	
J�i+1;n

= � �t

4�X

�
rXi (1�Xi)� qE�i;n+1Xi

	
J�i�1;n+1 +

�
1� ��t

2

�
J�i;n+1

+
�t

4�X

�
rXi (1�Xi)� qE�i;n+1Xi

	
J�i+1;n+1

+
�
pqKXi � c1 �

c2
2
E�i;n+1

�
E�i;n+1: (A.9)

For i =M , rearranging terms in Equation (A.7) yields

� �t

4�X

�
rXM (1�XM )� qE�M;n+1XM

	
J�M�2;n

+
�t

�X

�
rXM

�
1� XM

K

�
� qE�M;n+1XM

�
J�M�1;n

+

�
1� 3�t

4�X

�
rXM (1�XM )� qE�M;n+1XM

	
+
��t

2

�
J�M;n

=
�t

4�X

�
rXM (1�XM )� qE�M;n+1XM

	
J�M�2;n+1

� �t

�X

�
rXM (1�XM )� qE�M;n+1XM

	
J�M�1;n+1

+

�
1 +

3�t

4�X

�
rXM (1�XM )� qE�M;n+1XM

	
� ��t

2

�
J�M;n+1

+
�
pqXM � c1 �

c2
2
E�M;n+1

�
E�M;n+1: (A.10)

Hence we have obtained a system of M equations represented by Equations (A.9) and (A.10)

and we can write this system in matrix form as follows:

AJ�n = BJ�n+1 +D (A.11)

where J�n =
�
J�1;n J�2;n � � J�M;n

�T
.

We solve the system (A.11) for each n = N �1; :::; 1; 0 to �nd J�n. In this process the optimal

e¤ort is found implicitly from Equations (A.6) and (A.8). Finally we obtain two matrices,

J� and E�, where each J�i;n corresponds to the total discounted pro�t earned by initiating

the harvest at time tn with normalized initial population level X (tn) = Xi, and each E�i;n

represents the required optimal e¤ort when the population level is equal to Xi at time tn.

The optimal solution path starting from the given initial population level x0 at the initial

time t0 can then be determined by interpolation.



Appendix B

Numerical solution for stochastic
growth and �xed-price

The objective is to integrate numerically the Hamilton Jacobi Bellman partial di¤erential

equation for stochastic growth and �xed price, given by

�@J
�(x(t); t)

@t
=
�
pqx(t)� c1 �

c2
2
E�(t)

�
E�(t)� �J�(x(t); t)

+
@J�(x(t); t)

@x

�
rx(t)

�
1� x(t)

K

�
� qE�(t)x(t)

�
+
1

2

@2J�(x(t); t)

@x2
�21x(t)

2; (B.1)

where

E�(t) =

8>>>>><>>>>>:
0;

�
p� @J�

@x

� qx(t)
c2

� c1
c2
< 0�

p� @J�

@x

� qx(t)
c2

� c1
c2
; 0 �

�
p� @J�

@x

� qx(t)
c2

� c1
c2
� Emax;

Emax;
�
p� @J�

@x

� qx(t)
c2

� c1
c2
> Emax:

(B.2)

subject to the boundary conditions J�(x; T ) = 0 and E�(xmin; t) = 0:

Normalizing the population with respect to the carrying capacity K and denoting the nor-

malized population level by X(t) gives X(t) = x(t)
K . Using this, Equations (B.1) and (B.2)
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can be rewritten as:

�@J
�(X(t); t)

@t
=
�
pqKX(t)� c1 �

c

2
E�(t)

�
E�(t)� �J�(X(t); t)

+
@J�(X(t); t)

@X
(rX(t) (1�X(t))� qE�(t)X(t))

+
1

2

@2J�(X(t); t)

@X2
�21X

2; (B.3)

and

E�(t) =

8>>>>><>>>>>:
0;

�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
< 0�

p� @J�

K@X

� qKX(t)
c2

� c1
c2
; 0 �

�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
� Emax;

Emax;
�
p� 1

K
@J�

@X

� qKX(t)
c2

� c1
c2
> Emax:

(B.4)

As in the deterministic case, the harvesting is carried on from the initial time 0 to the �xed

�nal time T and the interval [0; T ] is uniformly partitioned as 0 = t0; t1; t2; : : : ; tN = T

where tn+1 � tn = �t for 0 � n � N � 1. The spatial discretization is performed as

Xmin = X0; X1; X2; : : : ; XM = 1 where the sub-partitions are of uniform length �X. Recall

that we know the �nal boundary condition for the total discounted pro�t, so in order to

determine the solution we need to perform numerical integration moving backwards in time.

We let J�i;n and E
�
i;n denote the values of J

� and E� respectively at X = Xi and t = tn for

0 � i � M and N � n � 0. Using the Crank-Nicolson method, the spatial derivatives of

J�are approximated as an average of the corresponding values at the nth and the (n+ 1) th

time step for 0 � n � N � 1 as follows:

@J�(X(t); p(t); t)

@X
=

1

2

��
J�i+1;n+1 � J�i�1;n+1

24X

�
+

�
J�i+1;n � J�i�1;n

24X

��
for 1 � i �M � 1;

@J�(X(t); p(t); t)

@X
=

1

2

��
3J�M;n � 4J�M�1;n + J

�
M�2;n

24X

�
+

�
3J�M;n+1 � 4J�M�1;n+1 + J

�
M�2;n+1

24X

��
for i =M:
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The second order spatial derivatives of J�(X(t); p(t); t) are approximated by:

@2J�(X(t); p(t); t)

@X2
=

1

2

��
J�i+1;j;n+1 � 2J�i;j;n+1 + J�i�1;j;n+1

4X2

�
+

�
J�i+1;j;n � 2J�i;j;n + J�i�1;j;n

4X2

��
for 1 � i �M � 1;

@2J�(X(t); p(t); t)

@X2
=

1

2

��
2J�M;j;n+1 � 5J�M�1;j;n+1 + 4J

�
M�2;j;n+1 � J�M�3;j;n+1

4X2

�
+

�
2J�M;j;n � 5J�M�1;j;n + 4J

�
M�2;j;n � J�M�3;j;n

4X2

��
for i =M:

The temporal derivative is approximated by:

@J

@t
=
J�i;n+1 � J�i;n

4t for 0 � n � N � 1:

For 1 � i �M � 1; discretizing the HJB equation (B.3) gives

�
J�i;n+1 � J�i;n

4t =
�
pqKXi � c1 �

c2
2
E�i;n+1

�
E�i;n+1 � �

�
J�i;n
2
+
J�i;n+1
2
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+
1

2

��
J�i+1;n+1 � J�i�1;n+1

24X

�
+
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J�i+1;n � J�i�1;n

24X

���
rXi (1�Xi)� qE�i;n+1Xi

	
+
1

2

��
J�i+1;n+1 � 2J�i;n+1 + J�i�1;n+1

4X2

�
+

�
J�i+1;n � 2J�i;n + J�i�1;n

4X2

��
�21X

2
i

2
(B.5)

For i =M; we get the numerical scheme:

�
J�M;n+1 � J�M;n

4t =
�
pqKXM � c1 �

c2
2
E�M;n+1

�
E�M;n+1 � �

�
J�M;n
2

+
J�M;n+1
2

�
+
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2

��
3J�M;n+1 � 4J�M�1;n+1 + J

�
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24X

�
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�
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�
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24X

���
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��
2J�M;n+1 � 5J�M�1;n+1 + 4J

�
M�2;n+1 � J�M�3;n+1

4X2

�
+

�
2J�M;n � 5J�M�1;n + 4J

�
M�2;n � J�M�3;n

4X2

��
�21X

2
M

2
: (B.6)
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The error in the temporal and the spatial derivatives approximated here is of order O(dt2)

and O(dX2) respectively. The optimal e¤ort is calculated from Equation (B.4) and is ap-

proximated as follows:

E�i;n+1 =

�
p�

J�i+1;n+1 � J�i�1;n+1
24X

1

K

�
qKXi
c2

� c1
c2

for 1 � i �M � 1;

E�M;n+1 =

�
p�

3J�M;n+1 � 4J�M�1;n+1 + J
�
M�2;n+1

24X
1

K

�
qKXM
c2

� c1
c2
:

We force the e¤ort to fsatisfythe constraints by performing the following check:

if E�i;n+1 < 0 then put E�i;n+1 = 0;

if E�i;n+1 > Emax then put E�i;n+1 = Emax;

and substitute it in equations (B.5) and (B.6). Substituting and rearranging the terms in

Equation (B.5) we get:�
�t

4�X

�
rXi (1�Xi)� qE�i;nXi

	
� �t
4

�21X
2
i
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4X2
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+

�
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4�X

�
rXi (1�Xi)� qE�i;n+1Xi

	
+
�t

4

�21X
2
i

4X2

�
J�i+1;n+1: (B.7)
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Rearranging the terms in Equation (B.6) we obtain:�
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��t
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rXM (1�XM )� qE�M;n+1XM

	
��t
2

�2X2
M

4X2

�
J�M;n

=
�
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��t
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M

4X2
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J�M;n+1:(B.8)

Equations (B.7) and (B.8) represent a system of M equations which can be written in the

matrix form as:

AJ�n = BJ�n+1 +D; (B.9)

J�n =

�
J�1;n J�2;n � � J�M;n

�T
:

The system (B.9), along with the boundary conditions, is solved for each n = N � 1; :::; 0

using Matlab. This procedure yields two matrices, J� (the maximized total discounted

pro�t) and E� (the optimal e¤ort), for each possible value of the initial population level.

As in the deterministic case, the optimal harvesting policy for a particular initial population

level can be determined by interpolation.
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Numerical solution for stochastic
growth and price

We wish to obtain a numerical solution of the Hamilton Jacobi Bellman equation correspond-

ing to stochastic growth and stochastic price:

�@J
�

@t
= max

E(t)

h�
p(t)qx(t)� c1 �

c2
2
E(t)

�
E(t)� �J�

+
@J�

@x(t)

�
rx(t)

�
1� x(t)

K

�
� qE(t)x(t)

�
+

@J�

@p(t)
�pp(t)

+
1

2

@2J�

@x(t)2
�21x(t)

2 +
1

2

@2J�

@p(t)2
�22p(t)

2 +
@2J�

@x(t)@p(t)
��1x(t)�2p(t)

�
; (C.1)

where the optimal e¤ort is given by

E�(t) =

8>>>>><>>>>>:
0;

�
p(t)� @J�

@x

� qx(t)
c2

� c1
c2
< 0�

p(t)� @J�

@x

� qx(t)
c2

� c1
c2
; 0 �

�
p(t)� @J�

@x

� qx(t)
c2

� c1
c2
� Emax;

Emax;
�
p(t)� @J�

@x

� qx(t)
c2

� c1
c2
> Emax:

We are solving the equation corresponding to a non-zero correlation between population and

price. The solution for the case when �sh stock and price are uncorrelated can be obtained

by equating the correlation-coe¢ cient � to zero.

Normalizing the population with respect to the carrying capacity K and denoting the nor-
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malized population by X(t) we can rewrite the HJB equation as:
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+
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where

E�(t) =
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�
p(t)� 1
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� qKX(t)
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> Emax:

(C.3)

The boundary conditions associated with the problem are:

J�(X; p; T ) = 0; J�(X; 0; t) = 0 and E�(Xmin; p; T ) = 0; (C.4)

where Xmin =
xmin
K (normalized minimum viable population level).

We perform numerical integration using the Crank-Nicolson �nite-di¤erence method. As

before, the initial time is assumed to be 0 and the �nal time is T (a �xed constant). We

discretize over time by dividing the interval [0; T ] into N equal sub-intervals of size �t

as: 0; t1; t2; : : : ; tN = T . The normalized population lies between [Xmin; 1] and this inter-

val is partitioned as Xmin; X1; X2; : : : ; XM = 1 where all the sub-partitions are of uniform

length �X. The price is assumed to lie between 0 and 1 and the interval is partitioned

as 0; p1; p2; : : : ; pL = 1, again all the sub-partitions being of equal length �p. We let J�i;j;n

and E�i;j;n denote the values of J
� and E�respectively at X = Xi; p = pj and t = tn where

0 � i � M; 0 � j � L and 0 � n � N . The values of J� and its spatial derivatives are

approximated as an average of the derivative approximation at the nth time step and the

(n+ 1)th time step.
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For 0 � n � N � 1; the �rst order derivatives of J�(X(t); p(t); t) are approximated by:

@J�(X(t); p(t); t)

@t
=

J�i;j;n+1 � J�i;j;n
4t ;

@J�(X(t); p(t); t)

@X
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��
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24X

�
+
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24X

��
;
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@p
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1
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J�i;j+1;n+1 � J�i;j�1;n+1

24p

�
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24p

��
; (C.5)

where 1 � i �M � 1 and 1 � j � L� 1:

For i =M;

@J�(X(t); p(t); t)

@X
=

1

2
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�
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24X

�
+

�
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�
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24X

��
: (C.6)

For j = L;

@J�(X(t); p(t); t)

@p
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��
: (C.7)

The second order derivatives of J�(X(t); p(t); t) are approximated by:

@2J�(X(t); p(t); t)
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��
: (C.8)

where 0 � n � N � 1; 1 � i �M � 1 and 1 � j � L� 1:
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For i =M; 1 � j � L� 1;

@2J�(X(t); p(t); t)

@X2
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��
(C.9)

For j = L; 1 � i �M � 1;
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: (C.10)



C. Numerical solution for stochastic growth and price 193

For i =M; j = L;

@2J�(X(t); p(t); t)
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��
: (C.11)

The optimal e¤ort is constrained as follows:

if E�i;n+1 < 0 then put E�i;n+1 = 0;

if E�i;n+1 > Emax then put E�i;n+1 = Emax;

The error in the temporal and the spatial derivatives approximated here is of order O(dt2)

and O(dX2) respectively.

The approximations (C.5)-(C.11) are substituted in Equations (C.2) and terms are rearranged.
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For 1 � i �M � 1; 1 � j � L� 1 we obtain�
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For i =M; 1 � j � L� 1 we get�
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For 1 � i �M � 1; j = L this gives�
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And for i =M; j = L we have�
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The numerical scheme thus obtained, to �nd the maximized total discounted pro�t and the

optimal e¤ort, is coded in Matlab. At each stage, the optimal e¤ort is calculated using the

formula given by E�(t) and the solution is forced to satisfy the constraints. The �sh stock is

not allowed to fall below a minimum viable level denoted by xmin:

Finally, we obtain two matrices J� and E� for all possible combinations of initial population

level x0 and initial price p0. The optimal solution corresponding to a given combination of

x0 and p0 is determined using two-dimensional interpolation.


