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Abstract

Unrestricted Kohn-Sham (broken symmetry) density functional calculations have been

used to determine the low-energy geometries of the chromium dihalide molecules (CrX2)

and their clusters, Cr2X4, Cr3X6, and Cr4X8. The monomers are also investigated at

a higher level, including coupled-cluster and state-average CASSCF computations. Our

calculations show that the monomers have a 5B2 ground state arising from the Renner-

Teller distorted 5Πg transition state, leading to a bent geometry. The global minima of the

gas-phase clusters of CrF2 and CrCl2 consist of two-dimensional, anti-ferromagnetically

coupled chains of CrX2 units forming four-membered, doubly bridged Cr2X2 rings, closely

resembling their solid-state structures. The global minima of the CrBr2 and CrI2 clus-

ters consist of the same two-dimensional chain-like structures for their dimers, but their

trimers and tetramers consist of three-dimensional ’triangular’ structures which contain

two capping ligands bound to three chromium atoms along with a Cr-Cr bond. Each

Cr atom within these clusters has spin quantum number S=2. There is approximately

a constant change in energy, between 45-55 kcal/mol, with every new CrX2 unit during

cluster formation.

Information about the structure of the CrCl2 clusters is used in the reanalysis of

high-temperature electron diffraction data. The vapor at 1170 K contains about 77%

monomeric molecules, 19% dimers, and a small amount of trimers. Monomeric CrCl2 is

found to be bent with a bond angle of 149(10)◦, in good agreement with our computations.

Solid-state DFT calculations are performed on α-CrCl2 to determine the lattice struc-

ture and spin-coupling constants for the Cr atoms within the crystals. The GGA (PW91)

method produces a structure in good agreement with the literature. In the lowest energy

structure, the spins of the Cr atoms within the chains along the crystallographic c-axis

are anti-ferromagnetically coupled with four parallel spins situated almost exclusively in

the d-bands of Cr along these chains. This anti-ferromagnetic coupling is also seen in the

CrX2 clusters.
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Chapter 1

Introduction

The electronic and structural properties of the seemingly simple first-row transition metal

dihalides have been debated by both theoreticians and experimentalists for many years

[1, 2]. Infrared (IR) spectroscopy and electron diffraction (ED) have been the primary

means of determining the geometry of these systems. The ED study of CrCl2 [3], and

CrF2 [4] and the IR spectroscopic studies of different chromium dihalides [5–12] have

been reported previously. However, the unambiguous determination of their geometry

has been a problematic issue. According to the mass spectrometric study of chromium

dihalides [13, 14] their vapor phase is complex, with considerable amount of larger clus-

ters (up to tetramers) present beside the monomers. This fact makes the analysis of

both electron diffraction and gas-phase spectroscopic results difficult, since the informa-

tion concerning the monomeric molecules is buried among the ones corresponding to the

different oligomers. Matrix-isolation infrared spectroscopic studies (MI-IR) might be a

remedy to this problem, but they suffer from possible effects due to the interaction with

the matrix. Another difficulty for spectroscopy is that chromium dihalides are rather

involatile compounds, and the high temperatures needed to vaporize their molecules com-

plicate the interpretation of the IR spectra because of the significant occupation of excited

vibrational and rotational levels. Furthermore, these molecules have low-energy bending

modes that are often outside the range of spectrometers. IR spectroscopy is also insensi-

tive to the isotopic shifts of the antisymmetric stretching mode for quasi-linear molecules

with bond angles between 150◦ to 180◦, and this makes the determination of their shape

ambiguous.

9
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The general agreement from the above mentioned IR spectroscopic studies is that the

structure of the chromium dihalides appear to be linear, with the primary evidence of lin-

earity being the lack of a peak corresponding to the symmetric stretching frequency. How-

ever, the weak intensity of the symmetric stretching vibration for a quasi-linear molecule

would be quite difficult to detect in the IR spectrum, and the possibility of non-linearity

cannot be discarded. Further evidence for a possible bent structure stems from the earli-

est argon MI-IR experiment of CrCl2 [5] in which the authors reported that the frequency

pattern for the asymmetric stretching mode closely resembled that of a molecule with a

bond angle between 120◦ and 150◦. The earlier ED experiment by Hargittai et al. [3]

reported a highly bent structure with a Cl-Cr-Cl bond angle of 110◦. However, later it

was communicated that due to the more complicated vapor composition than assumed in

the study, the result should be disregarded [2].

In the last two decades, quantum chemical studies have become a powerful technique

in aiding the interpretation of experimental data for the chromium dihalides. Before,

earlier ligand field theory (LFT) was the accepted model to aid the interpretation of

the spectra of transition metal halides. LFT predicts that the transition metal dihalides

(MX2) would be linear in the gas-phase, with a high-spin metal center, and only ionic

interactions between the metal and the halides. In a linear MX2 molecule (D∞h-symmetry

ligand field), the relative energies of the metal d orbitals are in the order of δg < πg <

σg [15, 16]. Hence, LFT together with Hund’s rule predicts that CrX2 would have an

electronic ground state of 5Σ+
g with an open shell electron configuration of δ2

gπ
2
g . The

two earliest ab-initio calculations [17, 18] on CrCl2 agreed with this prediction, and the

ground state of CrCl2 was calculated to be the 5Σ+
g state with the 5Πg (δ2

gπ
1
gσ

1
g) and 5∆g

(δ1
gπ

2
gσ

1
g) states being the first and second excited electronic states, respectively. However,

the more recent DFT calculations by Wang and Schwarz [19] and also by Bridgeman and

Bridgeman [20] gave the energy sequence 5Πg < 5Σ+
g < 5∆g. Bridgeman also suggested

for the first time, that the first members of the transition metal dihalide series might

have a bent equilibrium geometry with a flat bending potential. At about the same time,

Jensen [21] determined a 5B2 ground state for CrCl2 as a result of the Renner-Teller type

bending of the 5Πg state. He, again, noted a very flat bending potential with a barrier

to inversion of only 100 cm−1 at a bond angle of 144.3◦. In a more recent paper, Nielsen

and Allendorf [22] also predicted the 5B2 state as the ground state for CrF2 and CrCl2

using coupled cluster theory, CCSD(T). They also reported that the 5B2 state for CrF2
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and CrCl2 were only 0.8 and 0.1 kcal mol−1 lower in energy than the 5Πg transition state,

respectively. This rather small energy difference is below the zero-point vibrational energy

for the bending mode of CrCl2. The barrier to inversion of the bent structure decreases

going from F to I, and DFT calculations by Schiefenhövel et al. [23] predict that the ground

state for CrI2 is the 5Πg state. Interestingly, there are no papers published concerning the

structure or ground state of CrBr2. Based on the trends from previous quantum chemical

studies, we predict that CrBr2 could be either linear or bent with 5Σ+
g , 5Πg, or 5B2 ground

states as possible candidates. Such a small energy difference between the 5Πg and 5B2

states makes the correct prediction of the ground state symmetry a formidable task for

experimentalists, and to this date a definite assignment of the electronic ground state of

any of the chromium dihalides remains an irresolute issue.

The breakdown of LFT for transition metal dihalides was discussed extensively by

Wang and Schwarz [19] and Bridgeman and Bridgeman [20]. The computations show

that ligand-induced 3d-4s hybridization from the partially filled 3d subshell on Cr lowers

the energy of the σg orbital and the strong π-donating properties of the halide ligands

tend to increase the energy of the πg orbital. Jensen showed that inclusion of electron

correlation is also important in determining the correct ground electronic state of CrCl2;

it increased the energy of the 5Σ+
g and 5∆g states relative to the 5Πg state by 3500 and

2600 cm−1, respectively. Apparently, scalar relativistic effects contributed less than 600

cm−1 [21].

The computations up until now focused on the monomeric species. However, as dis-

cussed above, the vapor phase of the chromium dihalides contains a large amount of

oligomers as well. The only computation on such species was done on Cr2I4 [23], where

the structure was optimized with C2v symmetry and a high-spin (nonet) ground state.

No other possible geometry or spin-state was investigated, neither were the trimeric and

tetrameric species.

Computations of transition metal dihalides face a number of serious difficulties. For

transition metal containing compounds, wave-function based methods are computer time

intensive and often require a multi-reference treatment [24]. Density functional theory, on

the other hand, is plagued with correctly describing strong correlation and multi-reference

character in such systems [25, 26]. As an example, Mott insulators of transition metal

compounds are not well described by the generalized gradient approximation (GGA) in
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DFT [27], and one is forced to add an on-site Hubbard-like repulsion term (LDA+U

approach [28]). Spin symmetry breaking in transition metal compounds and consequently

spin-spin coupling in magnetic materials are also affected by these deficiencies [29,30].

In this thesis, we attempt to determine the gas-phase geometry and ground state

properties of the series of chromium dihalide monomers, dimers, trimers, and tetramers

(CrX2)n with X=F–I and n=1–4, with an emphasis on CrCl2, as there is a lack of ex-

perimental and/or quantum chemical data on the remaining dihalides. As mentioned

previously, mass spectrometric studies have shown that oligomers up to the tetramers

have been detected in the gas-phase. Hence, we will determine the geometry and mag-

netic properties of the chromium dihalide oligomers up to the tetramers as well as calculate

their thermodynamic values. The shortcomings of DFT in correctly describing magnetic

materials are addressed in detail, and the results of our DFT calculations for the monomers

and dimers are compared with those from coupled-cluster theory (CCSD(T)) and com-

plete active-space SCF (CASSCF) calculations. We also use our calculated global minima

for the CrCl2 monomers to the trimers in a re-evaluation of a previous ED experiment by

Hargittai and coworkers [3].

The theory is outlined in the next chapter. The results of our quantum chemical

investigations and electron diffraction analysis is given in Chapter 3. General trends from

our investigations can be found in Chapter 4, and our conclusions are outlined in Chapter

5.



Chapter 2

Theory

2.1 Quantum Mechanics and Molecules

The interactions between n particles (electrons and nuclei) must be expressed quantum

mechanically. The basic problem in non-relativistic quantum chemistry is thus to solve

the (time-independent) Schrödinger equation [31]

Ĥ|Ψ〉 = E|Ψ〉 (2.1)

where Ĥ is the Hamilton operator for an atom or molecule that operates on the n-particle

wavefunction Ψ. The total Hamilton operator can be written as a sum of kinetic and

potential energy operators for the nuclei and electrons.

Ĥ = T̂n + T̂e + V̂ne + V̂ee + V̂nn (2.2)

The first two terms on the right hand side of Eq. 2.2 are the kinetic energy operators

for the nuclei and electrons, respectively. The last three terms contain the Coulombic

interactions among all of the nuclei and electrons. For a system with n electrons and N

nuclei of mass MN , Eq. 2.2 can be rewritten with quantum mechanical operators for each

term (using atomic units)

Ĥ = −1

2

n
∑

i=1

∇2
i −

1

2MN

N
∑

k=1

∇2
k −

n
∑

i=1

N
∑

k=1

Zk

rik

+
∑

i<j

1

rij

+
∑

k<l

ZkZl

Rkl

(2.3)

where k, l runs over the nuclei and i, j over the electrons. Solving Eq. 2.3 for systems

with many electrons and nuclei can become a daunting task. The Born-Oppenheimer

13
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(BO) approximation [32] can therefore be used to simplify the problem by removing the

nuclear degrees of freedom. This approximation is validated on the basis that nuclei are

significantly more massive than electrons; hence, electronic relaxation occurs in a much

shorter time frame with respect to nuclear motion. If this is assumed, then the second

term (nuclear kinetic energy) can be neglected (clamped nucleus approximation). The

last term involving Coulombic nuclear-nuclear interactions can be separated from the

electronic part and treated as a constant. Thus, the BO approximation decouples the

nuclear-electronic problem to a set of equations which describe electrons moving in a

potential created by the static field of the nuclei. The time-independent, non-relativistic

Schrödinger equation simplifies to

Ĥel|Ψel〉 = Eel|Ψel〉 (2.4)

where

Ĥel = −1

2

n
∑

i=1

∇2
i −

n
∑

i=1

N
∑

k=1

Zk

rik

+
∑

i<j

1

rij

(2.5)

and

Etot = Eel +
∑

k<l

ZkZl

Rkl

(2.6)

When solving the molecular Schrödinger equation, the electronic wavefunction Ψel

(which will be labeled as Ψ for the rest of the chapter), is unknown, and an initial guess of

the wavefunction needs to be chosen. Certain properties such as the indistinguishability of

electrons and the antisymmetry (Pauli principle) of Ψ with respect to electron permutation

must be obeyed. Also, the efficiency in quantum chemical calculations is based on the

choice of the trial wavefunction Ψ, and a function that is prohibitively complex should not

be chosen. Slater [33] devised a way to satisfy the first two requirements by expressing

the electronic wavefunction in a determinantal form, called a Slater Determinant (SD).

The SD can be constructed from n spin orbitals χn by [34]:

Ψ(xn) = (n!)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ1(x2) χ1(x3) · · · χ1(xn)

χ2(x1) χ2(x2) χ2(x3) · · · χ2(xn)
...

...
...

...
...

χn(x1) χn(x2) χn(x3) · · · χn(xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.7)

There are just two possible spin ”functions” (α and β), and the generation of spin functions

which are mixtures of these two are usually not considered. Hence, the computational
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problem is the determination of the spatial orbitals (ψi) which are the spatially dependent

part of χi:

χi(x) = ψi(r)σ (2.8)

where σ can be either α or β spin. The spatial functions (ψi(r)) can be expanded into a

linear combination of basis functions which are fixed for a particular calculation and are

chosen based on both theoretical and practical grounds. These basis functions (φk(r)) are

the key elements to the successful calculation of any molecular electronic structure:

ψi(r) =
m

∑

k=1

φk(r)Cki (2.9)

where there are m basis functions with which to expand the n optimum molecular orbitals.

The Hartree-Fock variational method optimizes the coefficients Cki to ensure the lowest

energy description of the molecular system. For practical reasons, these basis functions

are usually chosen to be Gaussian functions centered at the nuclei. For example, the

product of two Gaussians located at different centers is the same as a single Gaussian

located at a center in-between. This property alone greatly speeds up the calculation of

the two-electron integrals, which involve products of four Gaussians at different centers.

Gaussian functions are also quite easy to implement into computational software packages.

The direct implementation of Gaussian functions into Eq. 2.9 would require a large

amount of disk space, particulary for the storage of the electron repulsion integrals. A

compromise is made in which the length of the explicit expansion in Eq. 2.9 is restricted

by taking the basis functions themselves to be fixed linear combinations of primitive

Gaussians, ηj:

φk(r) =

nk
∑

j=1

djkηj(r) (2.10)

where the coefficients djk are fixed for a specific basis set. The general form of a primitive

Gaussian located at the origin is a product of a Cartesian factor and an exponential:

ηj(r) = Nxlymzn(e−α|r|2) (2.11)

where l, m, n are integers which characterize the type and order of the Gaussian function.

The coefficient N is chosen to normalize the Gaussian function to unity.
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2.2 Variational Principle

It is rarely the case that the wavefunction for a molecule is accurately known. In fact, not

a single molecular wavefunction is known analytically. Any trial wavefunction consisting

of a finite set of basis functions will always be an approximation of the exact wavefunction,

Ψex. It is helpful to know whether systematic changes in the trial wavefunction will lead

to convergence and improvements in the wavefunction. The nonrelativistic Hamiltonian

operator is bound from below, and the corresponding expectation values give an upper

bound on the exact energy, Eo. If the trial wavefunction is the exact wavefunction, then

〈Ψ|Ψex〉 = 1

〈Ψ|Ĥ|Ψex〉 = Eo (2.12)

If they are not, then
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 > Eo (2.13)

The variational principle is therefore written as:

min
Ψ∈H

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ Eo (2.14)

Thus, it can be concluded that changes made to improve the trial wavefunction towards

the limiting case of the exact wavefunction will lead to progressively lower energies because

Ĥ is bound from below.

2.3 Hartree-Fock Theory

If Ψ consists of a SD of spin-orbitals (|Ψ〉 = |Φ1Φ2Φ3 . . . Φn〉), then the energy of the

system can be calculated variationally. In the resulting Hartree-Fock (HF) equation, the

one-electron Fock operator for a system of i electrons is given as

f̂i = ĥi +
n

∑

j

(Ĵij − K̂ij) (2.15)

where ĥi includes the kinetic energy and Coulombic attraction operators among n elec-

trons and N nuclei

ĥi = −1

2
∇2

i −
N

∑

k

Zk

rik

(2.16)
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The second term in Eq. 2.15 contains the classical Coulombic repulsion operator (Ĵij)

between electrons i and j and the quantum mechanical exchange operator (K̂ij). The

exchange operator has no classical analogue and arises from the antisymmetry of the

wavefunction with respect to exchanging the coordinates of two electrons. For the total

energy of a closed-shell system we get

E =
n

∑

i

〈Φi|f̂i|Φi〉 −
1

2

n
∑

ij

〈Φi|(Ĵij − K̂ij)|Φi〉 (2.17)

=
n

∑

i

ǫi −
1

2

n
∑

ij

(

〈Φi(1)Φj(1)|r−1
12 |Φi(2)Φj(2)〉 − 〈Φi(1)Φj(2)|r−1

12 |Φj(1)Φi(2)〉
)

The numbers within the parentheses represent electrons 1 and 2, and the r−1
12 operator

represents the repulsive force between the charge densities of electrons 1 and 2. The

resulting solution of the Schrödinger equation is described as independent electrons being

influenced by nuclear attraction within a mean electric field created by all other electrons.

The primary consequence of this is that HF theory does not include electron correlation.

2.4 Møller-Plesset Perturbation Theory

The underlying Møller-Plesset concept of perturbation theory is that HF provides a good

first-order solution. This is expressed mathematically by decomposing the Hamilton op-

erator into a reference (Ĥo) and a perturbation (V̂ ) operator. Hence, it is assumed that

V̂ is small relative to Ĥo. HF theory gives roughly 99% of the total energy of a molecule

in most cases; therefore, the correlation energy (Ecorr) can be added as a small perturba-

tion to the zeroth-order energy (Eo). For a perturbed system, the Schrödinger equation

becomes

Ĥ|Ψ〉 = (Ĥo + V̂ )|Ψ〉 = Etot (2.18)

where

Ĥo|Ψo〉 = Eo|Ψo〉 (2.19)

Etot = Eo + Ecorr (2.20)

If the perturbation is small, then Ψ and 〈Ψ|Ĥ|Ψ〉 should be close to Ψo and 〈Ψo|Ĥo|Ψo〉.
It should therefore be possible to derive Ĥ and Ψ from Ĥo and Ψo from perturbation

theory.
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The wavefunction (Ψ) and corresponding eigenvalues (Etot) for the perturbed system

can be written as a Taylor expansion of nth order corrections ∆Ψn and ∆En. From this,

it is possible to derive the following relationships

Eo = 〈Ψo|Ĥo|Ψo〉 (2.21)

∆E1 = 〈Ψo|V̂ |Ψo〉 (2.22)

∆E2 = 〈Ψo|V̂ |∆Ψ1〉 (2.23)

and so on for the nth perturbed term. The zeroth-order Hamilton operator (Ĥo) is the

same as the one-electron Fock operator given in Eq. 2.15, and Ψo is the HF wavefunction.

Therefore, it can be seen that for a closed-shell system

Eo =
n

∑

i

〈Φi|f̂i|Φi〉 =
n

∑

i

ǫi (2.24)

∆E1 = −1

2

n
∑

ij

(〈Φi|Ĵij − K̂ij|Φi〉) (2.25)

The zeroth-order energy perturbation gives the sum of the molecular orbital energies.

The energy at the first order of perturbation includes a correction for the overcounting

of the electron-electron repulsion at zeroth-order. Hence, the sum of the zeroth and first-

order energies is the same as the HF energy. The second order perturbation includes all

doubly-excited occupations and ∆E2 is written as:

∆E2 = 〈Ψo|V |∆Ψ1〉

=
∑

a<b

∑

r<s

[〈Φa(1)Φb(1)|Φr(2)Φs(2)〉 − 〈Φa(1)Φr(1)|Φb(2)Φs(2)〉]2
ǫa + ǫb − ǫr − ǫs

(2.26)

The double sum is over all occupied orbitals a and b as well as over all virtual orbitals

r and s. The sum of Eo, ∆E1, and ∆E2 is defined as the second-order Møller-Plesset [35]

energy, or MP2 energy. MP2 is quite often used because most of the electron correlation

comes from double excitations. However, MP2 tends to overestimate the correlation en-

ergy as well as underestimate bond lengths. Further perturbations which include third,

fourth, fifth, etc. order excitations (labeled as MP3, MP4, MP5,. . .,MPn) can also be

calculated but become considerably more time consuming computationally. MPn cal-

culations assume that the HF reference wavefunction is close to representing the true

wavefunction. If it is not a good starting point (in such cases as multi-reference systems),

then the MPn calculation may fail to converge smoothly, leading to poor results, or even

divergence.
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2.5 Coupled-Cluster Theory

A better way to obtain the correlation energy is to expand the wavefunction as a linear

combination of wavefunctions with all possible excitations considered.

|Ψ〉 = co|Ψo〉 +
∑

a

∑

r

cr
a|Ψr

a〉 +
∑

a<b

∑

r<s

crs
ab|Ψrs

ab〉 + . . . (2.27)

The first term in Eq. 2.27 is the HF wavefunction, and the remaining terms consist of

all possible determinants resulting from single, double, etc. excitations. When all of the

possible excitations are considered, which is equivalent to a full configuration-interaction

calculation (full-CI), then 100% of the correlation energy is calculated for a given basis

set. However, such a calculation can only be achieved for very small systems with a few

electrons and a small basis set.

Another way to rewrite the terms in Eq. 2.27 is to make it size-extensive, leading to

coupled-cluster theory (CC) [36]. In CC, the best description of the true wavefunction

within a given basis set can be written as

|Ψcc〉 = eTΨo (2.28)

eT = 1 + T +
1

2
T2 +

1

6
T3 + . . . =

∞
∑

n=0

1

n!
Tn (2.29)

Each cluster operator T is defined as

T = T1 + T2 + . . . + TN (2.30)

where N is the total number of electrons. Each Ti operator generates all ith excited

Slater determinants from the HF reference wavefunction. For example, T2 operating on

the HF wavefunction would lead to

T2|Ψo〉 =
∑

a<b

∑

r<s

trs
ab|Ψrs

ab〉 (2.31)

The coefficient trs
ab is called the amplitude for all double excitations and has a similar

meaning to the crs
ab coefficient in Eq. 2.27. Combining Eqs. 2.29 and 2.30, the exponential

operator can be written as

eT = 1 + T1 +
(

T2 +
1

2
T2

1

)

+
(

T3 + T1T2 +
1

6
T3

1

)

+ . . . (2.32)

The first two terms generate the HF reference wavefunction and all singles excitations.

The first group of terms within the parenthesis generates all doubly excited terms, which
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can be referred as connected (T2) and disconnected (T2
1) terms. The second parenthesis

generates all triply excited terms, and so on. The coupled-cluster energy can be calculated

by solving the Schrödinger equation for Ψcc.

Ecc = 〈Ψo|ĤeT|Ψo〉

= 〈Ψo|Ĥ(1 + T1 + T2 +
1

2
T2

1 + . . .)|Ψo〉 (2.33)

The Hamilton operator only operates on one and two-electron terms. Given this

property along with the definition of Tn, Eq. 2.33 can be expanded to

Ecc = 〈Ψo|Ĥ|(1 + T1 + T2 +
1

2
T2

1)Ψo〉

= Eo +
∑

r

∑

a

tra〈Ψo|Ĥ|Ψr
a〉 +

∑

a<b

∑

r<s

(trs
ab + trat

s
b − trbt

s
a)〈Ψo|Ĥ|Ψrs

ab〉

= Eo +
∑

a<b

∑

r<s

(trs
ab + trat

s
b − trbt

s
a)〈Ψo|Ĥ|Ψrs

ab〉 (2.34)

Since Ψo is the HF wavefunction, Brillouin’s theorem states that the second term in

Eq. 2.34 must be zero.

The amplitudes for each excitation can be determined by multiplying a singly excited

wavefunction 〈Ψe
i | to the left of ĤeT|Ψo〉 and integrating.

〈Ψe
i |ĤeT|Ψo〉 = Ecc〈Ψe

i |eTΨo〉

〈Ψe
i |Ĥ|(1 + T1 + T2 +

1

2
T2

1 + T3 + T1T2 +
1

6
T3

1)Ψo〉 = Ecc〈Ψe
i |T1Ψo〉 (2.35)

Here, a set of coupled equations among all of the singles, doubles, and triples amplitudes

are generated. All of the remaining TN terms can be determined by multiplying by doubly,

triply, quadruply, etc. excited wavefunctions instead of the singly excited wavefunction

and integrating. The algorithms involved to solve the coupled equations can become

very cumbersome and will not be discussed here. It is fair to say that only for small

systems can a coupled-cluster calculation beyond triples be carried out. Therefore it is

common for a coupled-cluster calculation to be truncated at the triples level of excitation.

Including triple excitations can be done directly in a CCSDT calculation in which the

cluster operator would include T3, or perturbatively in a CCSD(T) calculation. CCSD(T)

has become the standard method for calculating electron correlation.

Unlike MP2 calculations, coupled-cluster is slightly more forgiving on the choice of

the reference wavefunction. However, a CC calculation can become less accurate if the
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HF guess provides a poor description of the wavefunction. This difficulty usually arises

in multireference systems where a single determinant wavefunction is inadequate. In such

a calculation, the singles amplitude is usually large, thus leading to oscillatory behavior

for the higher-order excitations. A T1-diagnostic calculation can be used to determine the

quality of the CC result. It is defined as

T1 =
|t1|√

N
(2.36)

where |t1| is the norm of the singles amplitude and N is the number of electrons. A value

of T1 > 0.02 indicates that the reference wavefunction has significant multi-determinant

character, and the results of the CC calculation should be taken with caution.

2.6 Configuration Interaction

The HF solution provides, by definition, the best single-determinant description of the

wavefunction, and the most rational way of including electron correlation is to create a lin-

ear combination of determinants that starts from the HF reference in which the electrons

within the occupied orbitals are excited into virtual orbitals. Such a multi-determinant

wavefunction is called configuration interaction (CI). Thus, the CI wavefunction would

be

ΨCI = aoΨo +
∑

S

aSΨS +
∑

D

aDΨD +
∑

T

aT ΨT + . . . =
∑

i=0

aiΨi (2.37)

The coefficients ao, aS, aD, and aT represent contributions from the reference wavefunction

as well as from single, double, and triple excitations, respectively, and range in value from

zero to one if the wavefunction is normalized. The energy of this system is minimized

variationally such that the total CI wavefunction is normalized. This can be done by

introducing a Lagrange multiplier, L, such that

L = 〈ΨCI |Ĥ|ΨCI〉 − λ[〈ΨCI |ΨCI〉 − 1] (2.38)

The first bracket term is the total energy of the CI wavefunction. The second term

represents the norm of the wavefunction. Expanding the CI wavefunction into multiple

determinants, these two bracket terms become

〈ΨCI |Ĥ|ΨCI〉 =
∑

i=0

∑

j=0

aiaj〈Ψi|Ĥ|Ψj〉 =
∑

i=0

a2
i Ei +

∑

i=0

∑

j 6=i

aiaj〈Ψi|Ĥ|Ψj〉 (2.39)
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〈ΨCI |ΨCI〉 =
∑

i=0

∑

j=0

aiaj〈Ψi|Ψj〉 =
∑

i=0

a2
i (2.40)

Placing these two terms into Eq. 2.38 and solving variationally yields

δL

δai

= 2
∑

j

aj〈Ψi|Ĥ|Ψj〉 − 2λai = 0

δL

δai

= ai(Ei − λ) +
∑

j 6=i

aj〈Ψi|Ĥ|Ψj〉 = 0 (2.41)

There is one equation for each ai term in Eq. 2.41. Therefore, solving the variational

problem leads to solving a set of CI secular equations.

If all possible combinations of excited determinants are included in ΨCI , then this

is considered a full-CI calculation. In this calculation, all of the correlation energy is

calculated, and ΨCI would be the best possible representation of the true wavefunction

for a specific basis set. However, this type of calculation is very demanding and can only

be done for small systems. Therefore, the CI calculation can be truncated to include

specific excitations. A CIS calculation, which includes all single excitations, only leads

to the HF reference energy. The lowest level CI calculation would be a CID calculation

which includes only the doubly excited determinants. Larger numbers of configurations

can be considered in CISD, CISDT, and CISDTQ calculations in which single, double,

triple, and quadruple excitations are added to ΨCI . Since the computational time of a CI

calculation increases factorally based on the number of excitations included, including up

to the quadruple excitations can only be done for small systems.

2.7 Complete Active Space SCF

As mentioned previously, ΨCI is constructed by adding excited determinants to the HF

wavefunction. For systems where a single-determinant wavefunction poorly describes the

system, a full-CI calculation would be able to determine the correlation energy. Trun-

cated CI calculations may not be able to properly describe a multi-reference system.

This is because all of the important configurations may not be included in the series of

determinants. For molecules with significant multireference character, such as transition

metal compounds, it may be necessary to separate the HF wavefunction into specific parts

and perform a full-CI only on the orbitals responsible for causing the multi-determinant

behavior. This type of calculation is called a Complete Active Space SCF or CASSCF

calculation.
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The initial wavefunction for a CASSCF calculation is typically a converged R(O)HF

reference wavefunction. This initial guess is then separated into three sections: inactive

occupied orbitals, the active (occupied and virtual) space, and inactive virtual orbitals.

The inactive occupied orbitals are all doubly occupied and are optimized during the SCF

procedure, while the inactive virtual orbitals remain unoccupied. The orbitals within the

active space are subjugated to a full-CI calculation. A CASSCF calculation is typically

labeled as a CASSCF(n,m) calculation in which the active space consists of n electrons

within m orbitals. The primary goal of a CASSCF calculation is not to calculate a large

portion of the correlation energy. It is done to obtain all of the important configurations

of a multi-determinant wavefunction and to recover all of the changes that occur in the

correlation energy. The amount of computational time increases factorally with the in-

crease in the number of possible configurations; hence, the selection of an appropriate

active space is very important and requires more in-depth knowledge of the system at

hand. The CI coefficients obtained from the active space of a CASSCF calculation do not

have the same meaning as those from Eq. 2.37. The absolute value of the CI coefficients

represent the weight of each configuration relative to other configurations. Again, the

values of the CI coefficients can range from zero to one.

A CASSCF calculation often provides an unbalanced view of the electron correla-

tion of the molecule, with only the active orbitals being correlated. Dynamic correlation

can be calculated from a CASSCF wavefunction using two major techniques. The first

method involves a truncated CI calculation with the reference wavefunction being the

multi-determinant wavefunction instead of a single-determinant HF reference. This tech-

nique is labeled as a Multi-Reference Configuration Interaction or MRCI calculation.

Truncating the MRCI to include only singles and doubles contributions can yield very

accurate results; however, this type of calculation is computationally very expensive. The

other technique involves an nth order Rayleigh-Schrödinger perturbation calculation from

the CASSCF reference wavefunction and is called a CASPTn calculation. The compu-

tational technique involved in a CASPTn calculation is very similar to that of a Møller-

Plesset calculation, and the computational details will not be described here. Since the

CASSCF wavefunction will usually include all of the major determinants involved in a

multi-reference system, it will provide a better reference wavefunction to perform a per-

turbative calculation. The level of perturbation is typically cut off to second (CASPT2)

or third order (CASPT3) and often leads to very accurate results with less computational



CHAPTER 2. THEORY 24

effort than a MRCI calculation. However, the problem with any perturbative calculation

is that the amount of perturbation is small with respect to the reference wavefunction.

If an incorrect active space is chosen, then the results of a CASPTn calculation could be

less accurate. In addition, if the energy differences among the orbitals are relatively close

to one another (near degeneracy), then the energy could diverge. This can be seen from

the denominator for the second order perturbative energy in Eq. 2.26. If the energies of

the orbitals are closely spaced, then the value of (ǫa + ǫb)− (ǫr + ǫs) will be close to zero,

thus making the value of ∆E2 very large.

2.8 Density Functional Theory

The basis of density functional theory (DFT) stemmed from a proof by Hohenberg and

Kohn [37] that the ground state energy of a system can be determined completely by its

electron density, ρ(r). Kohn and Sham [38] devised a set of equations that could be used

to calculate the energy of a system. The starting point of such a calculation involves

creating a fictitious system of ”non-interacting” electrons whose ground state electron

density is identical to that of a real system where the electrons interact. The energy

functional of such a system would be calculated by

E[ρ(r)] = Te[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)] (2.42)

The first three terms on the right hand side of Eq. 2.42 are the kinetic energy term for a

non-interacting system, the Coulombic attraction term between the nuclei and electrons,

and the classical electron-electron repulsion term. The last two terms consist of corrections

to the kinetic energy when going from a non-interacting to a real system and the non-

classical electron-electron interactions, respectively. Within an orbital approach for the

density, the energy functional can be rewritten as

E[ρ(r)] =
N

∑

i

(

〈Φi| −
1

2
∇2

i |Φi〉 − 〈Φi|
M

∑

k

Zk

|ri − Rk|
|Φi〉

)

+
N

∑

i

〈Φi|
1

2

∫

ρ(r′)

|ri − r′|dr
′|Φi〉 + Exc[ρ(r)] (2.43)

where Φi represents a Kohn-Sham orbital. The sums of i and k are over all electrons and

nuclei, respectively. The Exc term includes the corrections to the electron kinetic energy



CHAPTER 2. THEORY 25

as well as the non-classical repulsion terms and is labeled as the exchange-correlation

energy. Within this approach, the one-electron density is expressed as

ρ(r) =
N

∑

i=1

Φ∗
i (r)Φi(r) (2.44)

The next step is to find the Kohn-Sham (KS) orbitals Φi that minimize the energy

functional. This can be accomplished through a set of pseudoeigenvalue equations

hKS
i Φi = ǫiΦi (2.45)

where hKS
i is the one-electron KS operator, which is given by

hKS
i = −1

2
∇2

i −
M

∑

k

Zk

|ri − Rk|
+

∫

ρ(r′)

|ri − r′|dr
′ + Vxc (2.46)

and

Vxc =
δExc

δρ
(2.47)

Vxc is a functional derivative of the exchange-correlation energy with respect to the

electron density. It is a one-electron operator for which the expectation value of the

KS Slater determinant is Exc. Since the value of E[ρ(r)] being minimized in Eq. 2.42

is exact (assuming the BO approximation and neglecting relativity), then the orbitals

corresponding to the minimum energy must form the exact density of the non-fictitious

system. Furthermore, these orbitals form the Slater-determinantal eigenfunctions of the

separable, non-interacting Hamiltonian of Eq. 2.46.

It is apparent that there are many similarities between DFT and HF theory; however,

there is one major difference between the two. DFT is exact (within the approximations

used) if the value of Exc as a function of ρ is known. The problem is that the value of Exc

is unknown and must be estimated. There are currently several different approximations

of the exchange-correlation functional of the electron density, and the discussion of such

functionals will be limited to the more popular ones used in this thesis. The types of

methods used to approximate the functionals can be separated into three different cate-

gories: local density methods, gradient corrected semi-local methods, and hybrid methods

including exact exchange.
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2.8.1 Local Density Methods

It is customary to separate Exc into two parts, a pure exchange and pure correlation

functional. The kinetic energy correction is quite small compared to the other electronic

corrections and is typically added implicitly through the adjustment of arbitrary coeffi-

cients. Hence, Exc becomes

Exc[ρ] = Ex[ρ] + Ec[ρ] =

∫

ρ(r)ǫx[ρ(r)]dr +

∫

ρ(r)ǫc[ρ(r)]dr (2.48)

The functionals ǫx and ǫc are in terms of energy per particle.

In the Local Density Approximation (LDA), it is assumed that the density can be

treated locally as a uniform electron gas and implies that the density is a slowly varying

function. The exchange energy for a uniform electron gas was determined by Dirac [39]

ELDA
x [ρ] = −Cx

∫

ρ4/3(r)dr (2.49)

⇒ ǫLDA
x [ρ] = −Cxρ

1/3

Equation 2.50 holds for any closed-shell system where the number of α and β electrons

are equal. For open-shell systems, the Local Spin Density Approximation (LSDA) is used,

and the exchange energy can be written as

ELSDA
x [ρ] = −21/3Cx

∫

[ρ4/3
α + ρ

4/3
β ]dr (2.50)

⇒ ǫLSDA
x [ρ] = −21/3Cx[ρ

1/3
α + ρ

1/3
β ]

The value of ǫLSDA
x [ρ] may also be written in terms of the total density and spin polar-

ization

ǫLSDA
x [ρ] = −1

2
Cxρ

1/3[(1 + ζ)4/3 + (1 − ζ)4/3] (2.51)

where

ζ =
ρα − ρβ

ρα + ρβ
,

4

3
πr3

s = ρ−1 (2.52)

The term r3
s is the effective volume containing one electron.

The correlation energy of a uniform electron gas has been determined from Monte

Carlo methods for a number of different densities. Vosko, Wilk, and Nusair [40] were able

to use these results to create a suitable analytic interpolation formula which could be used
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in DFT. This formula, commonly labeled as VWN, interpolates between the unpolarized

(ζ = 0) and spin polarized (ζ = 1) limits and is written as

ǫV WN
c (rs, ζ) = ǫc(rs, 0) + ǫa(rs)

[

f(ζ)

f ′′(0)

]

[1 − ζ4] + [ǫc(rs, 1) − ǫc(rs, 0)]f(ζ)ζ4

f(ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

2(21/3 − 1)
(2.53)

ǫc(rs, ζ) and ǫc(rs) functionals are parameterized according to

ǫc/a(x) = A

[

ln
x2

X(x)
+

2b

Q
tan−1

(

Q

2x − b

)

− bxo

X(xo)

[

ln
(x − xo)

2

X(x)
+

2(b + 2xo)

Q
tan−1

(

Q

2x + b

)]

]

x =
√

rs (2.54)

X(x) = x2 + bx + c

Q =
√

4c − b2

The parameters A, xo, b, and c are fitting constants and are all different for ǫc(rs, 0),

ǫc(rs, 1), and ǫa(rs).

The LSDA approximation usually underestimates the correlation energy and tends to

underestimate bond lengths, which leads to an overestimation of the dissociation energies.

The uniform electron gas model fails to describe most molecules in which the electron

density does not vary slowly; hence, the accuracy of a LSDA calculation is comparable

somewhat to that of a HF calculation. However, the LDA works well for solid state metals.

2.8.2 Gradient Corrected Methods

As mentioned in the previous section, the electron density of most systems cannot be

properly modelled as a uniform electron gas. Therefore, improvements over the LSDA

approach must consider a non-uniform electron gas. The exchange and correlation energies

would not only depend on the electron density, but they would also depend on the gradient

of the electron density. Such methods are known as Generalized Gradient Approximations

(GGA). Most GGA functionals are constructed with a correction term being added to the

LSDA functional.

ǫGGA
xc [ρ(r)] = ǫLSDA

xc [ρ(r)] + ∆ǫxc

[ |∇ρ(r)|
ρ4/3(r)

]

(2.55)
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There are many different formulae used to calculate the gradient correction term of

Eq. 2.55, which will not be detailed here. The GGA exchange functionals used in this

thesis were PW91 [41], PBE [42], and B88 [43]. The correlation functionals used were

PW91 [41], PBE [44], and LYP [45,46].

2.8.3 Hybrid Methods

Assume for a moment that the Hamilton operator for any system can be written as a

function of a parameter (λ), which describes the extent of interelectronic interactions.

Ĥλ = T̂ + V̂ext(λ) + λV̂ee (2.56)

where 0 ≤ λ ≤ 1. The T̂ term is the kinetic energy operator for each electron. The

V̂ext(λ) operator is the external potential operator. The λ = 0 limit describes a system

of non-interacting electrons, and the λ = 1 limit describes a system with fully interact-

ing electrons. Using the Hellmann-Feynman theorem, one can show that the exchange-

correlation energy can be written as

Exc =

∫ 1

0

〈Ψλ|V̂xc(λ)|Ψλ〉dλ (2.57)

Equation 2.57 is known as the Adiabatic Connection Formula [47]. At the λ = 0 limit,

there is no correlation energy, and Exc is equal to the exchange energy (EHF
x ). The

exact exchange energy can be calculated from a Slater Determinant of HF orbitals. For

intermediate values of λ as well as at the λ = 1 limit, V̂xc and Ψλ are unknown, and

the exchange-correlation energy is parameterized such that these values are added as an

exchange-correlation parameter of either GGA or LDA to EHF
x . Thus, the value of Exc

from Eq. 2.57 would be

Exc = (1 − a)EDFT
xc + aEHF

x (2.58)

where a is a constant that is optimized from experiments. The first term on the right hand

side of Eq. 2.58 can be further split up and parameterized to include a variety of different

methods (GGA, LDA, or both) to estimate the correlation and exchange energies. In this

thesis, the B3LYP [40, 45, 48, 49] hybrid functional was used. Within this model, Exc is

defined as

EB3LY P
xc = (1 − a)ELSDA

x + aEHF
x + b∆EB

x + (1 − c)ELSDA
c + cELY P

c (2.59)

a, b, and c are all fitted constants and are equal to 0.20, 0.72, and 0.81, respectively.
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2.8.4 Broken Symmetry DFT

Molecular systems such as organic radicals or weakly interacting transition metal com-

plexes cannot be properly described by a single SD. The application of DFT or any other

single determinant ab-initio method will be both technically and conceptually problem-

atic.

Spin unrestricted Kohn-Sham (UKS) equations are similar to the UHF method pro-

posed by Pople and Nesbet [50] and by Berthier [51]. Applications of UHF encountered

certain problems related to spin contamination arising from the fact that the UHF wave-

function is not an eigenfunction of 〈S2〉. Advanced wavefunction methods such as MC-

SCF, CI, and CASSCF can accurately calculate properties of multireference systems with

the correct 〈S2〉 but are computationally intensive. Density functional methods do not

suffer from the same problems as advanced wavefunction methods because electron corre-

lation is implicitly included within the exchange-correlation functional. However, possible

artifacts can arise within spin unrestricted DFT because the real system of interacting

electrons possesses well-defined spin symmetries, and the UKS noninteracting reference

system does not.

Radicals and open shell systems with high spin ground states can be described rea-

sonably well with the UKS approach. However, problems remain if the system of interest

exhibits a low spin ground state of broken symmetry between ρα and ρβ, or when the

property of interest concerns energy differences among high and low spin states. These

types of systems include biradicals and a broad range of polynuclear complexes with open

shell transition metal atoms. A practical solution would be to use a restricted Kohn-

Sham approach, as this would provide the correct spin symmetry for the non-interacting

reference system. It has been shown, however, that the RKS approach leads to unusually

high energies for the low spin states. Covalent bonding among transition metal centers in

anti-ferromagnetically coupled systems is overestimated, and metal-metal bonds are too

short [52]. If the symmetry constraints for the spin are lifted within a UKS approach,

then the resulting KS wavefunction can minimize to a broken symmetry solution. These

solutions allow for the localization of spin density on two or more weakly interacting atoms

within a molecule. For example, the broken symmetry solution for a singlet state of an

anti-ferromagnetically coupled transition metal dimer is described as having an excess of

α spin localized on one metal atom with a concomitant amount of excess β spin on the

other metal atom [53]. This type of system would be described as an equal mixture of
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the low and high spin states, and within a UHF approach, the wavefunction would have

significant spin contamination. The value of 〈S2〉 for a singlet state typically resembles

that of an average between the high spin and low spin values. Though broken symmetry

solutions to the KS equations are founded upon the flaws of estimating the exchange-

correlation functional, they have provided reasonable geometries and trends for weakly

interacting, anti-ferromagnetically coupled systems [52,54,55].

The broken symmetry approaches provide a way to bypass the problem of dealing

with low spin states in UKS calculations; however, the problem still remains that the real

system must possess spin symmetry. Broken symmetry DFT also tends to overstabilize

low spin states and cannot accurately reproduce magnetic coupling constants for many

systems. The use of broken symmetry UKS theory is currently an active area of research,

and several computational techniques have been created to deal with the shortcomings of

this theory [53,56–61].

2.9 Basis Set Superposition Errors

Basis sets are usually centered on the nuclei. Since complete basis sets cannot be used in

practice, the N4 or higher scaling of computational time with respect to N basis functions

limits the number of basis functions that can be used to hundreds or a few thousand at

best. The mean absolute error associated with basis set incompleteness can be quite

large and on the order of several hartree; however, the primary goal of most ab-initio

calculations is to compare relative energies. It is therefore necessary to make the error as

constant as possible.

Fixing the position of the basis functions at the nuclei allows for a compact basis set,

otherwise sets of basis functions centered at many different points in geometrical space

would be needed. Comparing the energies of molecules with a different geometry using a

nuclei-fixed basis set introduces an error. The quality of the basis set is not the same at all

geometries because the electron density around one nucleus may be described by functions

centered at another nucleus. This error can become significant when describing small

effects, such as van der Waals interactions or hydrogen bonding. For example, consider

two molecules A and B interacting to form the complex AB. The simplest approach

to calculating the complexation energy would be to subtract the energies of the isolated

species A and B from the complex AB (assuming a size extensive method). Assuming weak
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interactions between A and B, then the electron distributions for A and B in the complex

AB would be similar to those of the isolated species. In the complex, however, basis

functions from A can compensate for some of the basis set incompleteness in B and vice-

versa. The complexation energy will therefore be artificially lowered and the interactions

between A and B overestimated. This effect is known as the Basis Set Superposition Error

(BSSE). In the limit of a complete basis set, the BSSE will be zero, and the addition of

basis functions will not give any improvement. The simplest approach to eliminating the

BSSE is to add more basis functions until the complexation energy no longer changes.

Unfortunately, this requires large basis sets and can only be achieved for small systems.

Therefore, when determining complexation energies for weakly bound systems, a balance

must be made between computational cost and BSSE when selecting basis sets.

An approximate way of assessing the BSSE is the Counterpoise (CP) correction [62,63].

In this method, the BSSE is estimated as the difference between the monomer energies

with the regular basis sets and the energies calculated with the full set of basis functions

for the complex. Consider again molecules A and B with nuclear-centered basis functions

denoted by subscripts a and b, and the complex AB having the combined basis functions

ab. The geometries of the two isolated molecules are first optimized. The geometries

of the A and B molecules within the complex will usually be slightly different from the

isolated species, and the complex geometry will be denoted by a ∗. The complexation

energy can be calculated by

∆Ecomplexation = E(AB)∗ab − E(A)a − E(B)b (2.60)

To estimate how much of this complexation energy is due to the BSSE, four additional

energy calculations need to be performed. The energies of fragments A and B need to

be calculated with the geometries they have within the complex. Two additional energy

calculations of the fragments with the complex geometry are carried out with the full set

of basis functions ab. For example, the energy of A is calculated in the presence of both

the normal (a) basis functions and the (b) basis functions of fragment B centered at the

corresponding nuclear positions, but the B nuclei are not present. Such basis functions

located at fixed points in space without nuclei are referred to as ghost orbitals. The energy

of fragment A will be lowered due to the presence of these ghost orbitals. The CP energy

correction is therefore defined as

∆Ecp = E(A)∗ab + E(B)∗ab − E(A)∗a − E(B)∗b (2.61)
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The counterpoise corrected complexation energy is given as ∆Ecomplexation −∆Ecp. If the

counterpoise energy correction is significant compared to the complexation energy, then

a re-evaluation of the basis sets needs to be done. As basis sets are often at HF-limit

quality, the largest BSSE comes from electron correlation.

2.10 The Pseudopotential Approximation

The treatment of atoms and molecules with a large number of electrons from HF or DFT

techniques is still a challenge to quantum chemists due to the fact that computational

time scales as Nm with N being the number of basis functions. The increase in CPU

power and the development of sophisticated algorithms over the last few decades has

made it possible to calculate properties of lighter atoms and molecules with results at

or near experimental accuracy. However, further approximations without significant loss

of accuracy are needed for heavy or large molecules, as an all-electron treatment for

these types of systems is still computationally time consuming. Such an approximation is

called the pseudopotential approximation (PPA) or effective core potential (ECP) method

originally introduced by H. Hellmann [64] as the combined approximation method [65].

In the PPA, the electrons are separated into core and valence spaces and applies to the

basic idea that the valence electrons are primarily responsible for chemical bonding and

processes. The PPA is introduced into the electronic Hamiltonian by [66]:

Ĥv = −1

2

nv
∑

i

∇2
i +

nv
∑

i<j

1

rij

+
nv
∑

i

Nc
∑

a

[

V a
PP (rai) −

Qa

rai

]

+
Nc
∑

a<b

QaQb

rab

(2.62)

Ĥv is the valence electron model Hamiltonian with nv valence electrons and Nc cores

(nuclei), and VPP is the corresponding pseudopotential for core-valence interactions. The

indices a and b run over all cores (nuclei) and i, j run over all valence electrons. Qa is

the charge of core a and is equivalent to Za −Na
c , Na

c being the number of core electrons

of atom a. For an all-electron treatment of a specific atom, Qa = Za. The last term in

Eq. 2.62 describes the Coulombic core-core repulsion. Additional corrections are needed

if one goes beyond the frozen-core approximation.

Non-relativistic quantum chemical calculations on heavy atoms fail to reproduce an

accurate treatment of basic properties such as ionization potentials, electron affinities,

excitation energies, and static dipole polarizabilities; hence relativistic effects for these
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systems cannot be neglected. Even though relativistic basis sets [67–70] as well as Dirac-

Hartree-Fock (DHF) coupled cluster calculations including Breit interactions for many-

electron heavy atomic systems are now available, a fully relativistic treatment for heavy

elements is still a formidable task. There are two main approaches toward the treatment

of large molecules with heavy elements. One of these methods is relativistic density

dunctional theory (RDFT) [71] in which relativistic Hamiltonians are introduced into a

DFT scheme. Current RDFT schemes suffer from the fact that they cannot be improved

to high accuracy to describe certain interactions (for example Van der Waals) even with

the development of more accurate functionals within the GGA [72].

The other alternative is to stay with relativistic ab-initio calculations and reduce the

number of electrons in the Hamiltonian. Since the core electrons are not as important in

describing most chemical properties as the valence electrons, one might consider a frozen

core approximation and apply the PPA model to approach heavy elements. Such an

approach is not trivial, as several fundamental issues need to be addressed before a PPA

model is adopted. One concern with the PPA is that the electrons cannot be separated

into core and valence electrons, as this violates the Pauli principle. Transferability among

different molecules as well as fitting techniques for different pseudopotentials are of further

concern. Relativistic perturbation operators act in the close vicinity of the nucleus, and it

is not obvious how a relativistic scheme can be implemented into the PPA using nodeless

orbitals. Lastly, core properties such as electric field gradients and magnetic shielding

tensors cannot be obtained directly from pseudopotential schemes.

Given that there are several concerns associated with using a PPA description for

heavy atoms, there are many advantages for using such an approximation. Atomic and

molecular properties for elements with large relativistic effects have been calculated very

accurately using the PPA. Removing the core and replacing them with nodeless pseu-

doorbitals significantly reduces the number of basis functions for an atomic or molecular

calculation. The amount of the BSSE is reduced for weakly interacting systems. Rela-

tivistic effects can be included implicitly in the pseudopotential through the adjustment

procedure to relativistic atomic calculations. This eliminates the need to carry out a fully

relativistic treatment for molecules containing heavy elements.



CHAPTER 2. THEORY 34

2.10.1 Introducing Pseudopotentials into the Hartree-Fock Equa-

tions

Before introducing the PPA into the HF equations, appropriate core and valence spaces

must be chosen. This task is not trivial, and several properties must be considered before

selecting these corresponding spaces. First, the core should be chosen within a region

where there is little overlap between the core and valence spaces. This can be achieved

by comparing the outermost core orbital with the innermost valence orbital through the

examination of orbital energies, overlap regions, r-expectation values, etc. Next, the

static dipole polarizability of the core should be small. This defines a hard core where

polarization effects from other electrons and nuclei are relatively small. The core density

should not change significantly with the addition or removal of valence electrons. The

valence electrons from other atoms should not penetrate into the core. Core penetration

causes large errors associated with overlap between cores of different atoms. Given the

above criteria, core spaces are typically chosen to be closed shell and contain the innermost

s, p, d, or f orbitals.

For a neutral atom with Nc core electrons and nv = Z − Nc valence electrons, the

Hartree-Fock core and valence electron densities can be written as:

ρc(r) =
∑

c∈core

Nc|φc(r)|2 (2.63)

ρv(r) =
∑

v∈valence

nv|φv(r)|2 (2.64)

The HF equation for the valence electrons would be

F̂ φv = ǫvφv (2.65)

〈φv|φc〉 = 0

For simplicity it is assumed that the valence space consists of a single electron, and the

core space is closed-shell. An extension into systems with many electrons within the

valence space is given in Ref. [73]. If a new valence orbital (χv) is created by mixing in

core orbitals, then we have:

χv = φv +
∑

c

acvφc (2.66)

acv = 〈φc|χv〉
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we obtain

〈χv|F̂ |χv〉 = ǫv +
∑

c

a2
cvǫc (2.67)

The linear combination in Eq. 2.67 can be chosen such that the radial part of χv becomes

nodeless in the region (0,∞), which is called the pseudoorbital transformation. The aim

is to construct a new Fock operator such that

F̂ ′χx = ǫvχv (2.68)

where ǫv is identical to that in Eq. 2.66. The HF equation for χv thus becomes

F̂χv = ǫvφv +
∑

c

acvǫcφc

= ǫvχv + ǫv(φv − χv) +
∑

c

acvǫcφc

= ǫvχv +
∑

c

acv(ǫc − ǫv)φc

= ǫvχv +
∑

c

〈χv|φc〉(ǫc − ǫv)φc (2.69)

The last term in Eq. 2.69 can be brought to the left hand side and after inserting Eq. 2.67

for the coefficients acv we obtain

[F̂ + P̂core]χv = F̂PKχv = ǫvχv (2.70)

where F̂PK stands for the Philips-Kleinman operator. P̂core is a specific core projection

operator such that

P̂core =
∑

c

(ǫv − ǫc)|φc〉〈φc| (2.71)

The Fock operator can now be split into a sum of valence and core operators, with the core

operator being absorbed into pseudopotential operator (V̂pp(r)) for the valence electron

at position r. Hence, the total Fock operator becomes

F̂ = F̂valence + V̂pp(r) = F̂valence −
Nc

r
+

∑

c

(2Ĵc − K̂c) + P̂core (2.72)

Solving the HF equations for χv leads to

〈χv|F̂valence + V̂pp|χv〉
〈χv|χv〉

= 〈φv|F̂valence + V̂pp|φv〉 = 〈φc|F̂valence + V̂pp|φc〉 = ǫv (2.73)
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Equation 2.72 is considered the starting point for all pseudopotential approximations in

which V̂pp can take on a variety of different forms within different PPA schemes. There

are two major types of pseudopotentials, which will be discussed briefly below: Energy

consistent pseudopotentials and Shape consistent pseudopotentials.

Within the pseudopotential approximation, V̂pp is replaced by a local or non-local

potential which is bound from below by a linear combination of Gaussian type orbitals

(GTO’s). One therefore chooses l-dependent semi-local pseudopotentials of the form

[74–77]

V̂pp = V̂ local
pp (r) +

Lmax
∑

l=0

V̂ l
pp(r)

l
∑

m=−l

|lm〉〈lm|

=

NL
∑

n=1

Anr
kne−αnr2

+
Lmax
∑

l=0

NSL
∑

n=1

Blnr
klne−βlnr2

l
∑

m=−l

|lm〉〈lm| (2.74)

where the sum over the m term is an l-dependent operator projecting onto the Hilbert

subspace of angular momentum l, and k is an integer with a value k ≥ −2.

Energy consistent pseudopotentials (EC-PP or EC-ECP) are fitted such that the pseu-

dopotential parameters An, αn, Bln, and βln in Eq. 2.74 are adjusted to an atomic valence

spectrum by a least squares fit procedure.
∑

i

wi(∆EAE
i − ∆EPP

i )2 = min. (2.75)

where wi are weight factors, and ∆EAE
i are ionization potentials, electron affinities, and

excitation energies for neutral or charged atoms. These reference data are obtained from

numerical HF calculations [78].

The same parameters described above in Eq. 2.74 can also be adjusted such that

the valence orbitals are reproduced to high accuracy above a certain cut-off radius (Rc).

This fitting process can be done by modifying all-electron orbitals such that they are

nodeless in the core region below Rc and adjusting the pseudopotential parameters such

that they match these orbitals [79–81]. These pseudopotentials are called shape consistent

pseudopotentials (SC-PP or SC-ECP). The primary drawback to this procedure is that a

large number of Gaussians are required to obtain an accurate fit.

As mentioned previously, relativistic operators act in the vicinity of the nucleus. Pa-

rameterization of the pseudopotentials to relativistic data therefore seems to successfully

transfer both direct and indirect relativistic effects to the valence orbitals. The param-

eterization procedure for modeling these effects into the PPA can come from a variety
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of different data. Reference energies or orbitals can be taken from scalar relativistic,

spin-orbit coupled, or fully relativistic all-electron calculations. The PPA can be intro-

duced at the scalar (spin-orbit averaged) relativistic level (SRPP, ARPP, or AREP), at

the two-component level (SOPP or REP), or derived from the 4-component Dirac equa-

tion [82–85].

2.11 Gas-phase Electron Diffraction

When a beam of electrons hits a set of randomly oriented molecules in the gas-phase,

the electrons are diffracted by the charge distribution of these molecules. The resulting

defraction pattern contains a large amount of information about the system, such as inter-

nuclear distances, relative isomer conformations, vibrational information, and the relative

composition [86]. These molecules can be considered ”free” molecules, i.e. free from in-

termolecular effects, as the diffraction chamber is kept at very low (typically between

10−5–10−6 torr) pressures.

The apparatus for a typical ED experiment is shown in Figure 2.1. The source of

electrons comes from the electron gun, which consists of a tungsten filament that releases

a beam of electrons when heated. The electrons are accelerated toward an anode at a

potential of 40–50 kV. A magnetic lens is used to focus the electron beam to a diameter

between 0.1–0.2 mm before it enters the diffraction chamber. The diffraction chamber

itself is kept at a low pressure through the use of a diffusion pump. The molecular

beam is introduced into the diffraction chamber through the nozzle, which has a diameter

of roughly 0.3 mm. To obtain reasonably high values of the scattering intensities, the

pressure of the molecular beam should be between 10–20 torr. To avoid ruining the

vacuum in the diffraction chamber, the molecular beam is collected in a cold trap. A

rotating sector is used to reduce the exposure of the detector (photographic plate) at low

scattering angles. Lastly, a beam-stop is used to prevent the primary beam from reaching

the detector. The diffraction pattern is usually collected at two and sometimes three

different distances from the diffraction center. This makes it possible to cover a larger

range of scattering angles than would be covered at a single distance.

A vast majority of the gas-phase ED studies employ the independent-atom model,

which states that the atoms within a molecule can be considered as spherically symmetric,

independent diffraction centers. This model can be applied to a gas consisting of rigid,
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Figure 2.1: Scheme of an apparatus for gas-phase electron diffraction (from Ref. [86]).

non-vibrating molecules, and to that of a gas containing vibrating molecules. Given a set

of randomly oriented rigid molecules, the intensity of elastically scattered electrons can

be calculated by:

I(s) = KIoR
−2

N
∑

i=1

N
∑

j=1

fi(s)f
∗
j (s)

sin srij

srij

(2.76)

where Io is the intensity of the incident electron beam, R is the distance between the
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observation point and the scattering center, K is a constant that can be expressed in

terms of fundamental constants, N is the number of atoms in the molecule, fi(s) and

fj(s) are the scattering amplitudes of the i-th and j-th atoms, respectively, rij is the

internuclear distance, and the variable s is defined as s = (4π/λ) sin(θ/2) (where λ is the

wavelength of the electron beam and θ is the scattering angle).

Although the molecules are randomly oriented, the diffracted electrons can interfere

with one another depending on internuclear distances. Hence, the diffracted intensity can

be split into an atomic contribution, Ia(s), which contains no structural information, and

a molecular contribution, Im(s), which contains all of the structural information.

I(s) = Ia(s) + Im(s) = KIoR
−2

N
∑

i=1

|fi(s)|2 + KIoR
−2

N
∑

i=1

N
∑

j 6=i

fi(s)f
∗
j (s)

sin srij

srij

(2.77)

In addition to elastic scattering, inelastic scattering needs to be considered. While

elastic scattering is found for a wide range of scattering angles, inelastic scattering is

primarily found at small scattering angles. Assuming that the inelastic scattering is

incoherent, we obtain the following equation:

It(s) = Ii(s) + Ia(s) + Im(s) = Ib(s) + Im(s) (2.78)

where It(s) is the total diffracted intensity, and Ib(s) represents the background intensity.

The atomic scattering amplitudes, fi(s), can be introduced at different levels of ap-

proximation. In the quasi-kinematic approximation, the incident electron wave undergoes

a significant phase shift as it propagates through an atomic field. The phase shift increases

with increasing atomic number and scattering angle. Taking into account these consider-

ations, the atomic scattering amplitudes take the form:

fi(s) = |fi(s)|eiηi(s) (2.79)

where |fi(s)| is the modulus of the amplitude, and ηi(s) is the phase angle in radians. If

these complex scattering angles are used in the determination of the molecular intensity,

we get:

Im(s) = KIoR
−2

N
∑

i=1

N
∑

j 6=i

gij(s)
sin srij

srij

(2.80)

where

gij(s) = |fi(s)||fj(s)| cos[ηi(s) − ηj(s)] (2.81)
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Treating molecules as rigid and non-vibrating is usually a poor approximation. This

is especially true for nonvolatile systems in which high temperatures are required to

vaporize the sample. Molecules with low frequency, large amplitude vibrations are also

poorly described by such an approximation. If the vibrational motions are assumed to be

harmonic, then the following equation for the molecular intensity is obtained:

Im(s) = KIoR
−2

N
∑

i=1

N
∑

j 6=i

gij(s) exp(−l2ijs
2/2)

sin srij

srij

(2.82)

Here lij is the mean vibrational amplitude along the line connecting the two nuclei, and

rij is now an effective nuclear distance, denoted as ra, which can be approximated by

relating it to the vibrationally averaged internuclear distance at the temperature of the

ED experiment, rg, by the following equation:

ra ≈ rg −
l2

ra

(2.83)

If the vibrations are anharmonic, then the sin(srij) term is replaced by sin[s(rij−κijs
2)]

where κij is an asymmetry factor related to the a constant in the Morse equation and can

be determined from the ED experiment.

Structural analysis of an ED experiment requires two basic steps. The first being

the choice of a molecular model. The second step involves the refinement of the model

and comparing the theoretical and experimental intensities. The molecular model usually

comes from the results of quantum chemical calculations. If the model is not known in

advance, then geometrical information can be found from the radial distribution function,

and models are tested from trial-and-error until a satisfactory one is found.

The starting model is usually refined by the least-squares method, minimizing the sum

of the weighted squares of the differences between the experimental molecular intensities,

IE
m(s) = IE

t (s)− IE
b (s), and the corresponding theoretical values calculated from Eq. 2.82,

IT
m(s). The least squares method is applied iteratively until convergence is reached. Care-

ful attention must be paid to the converged structure, as several different minima can exist

in the least-squares refinement. The converged structure should be chemically reasonable;

to further aid in convergence, the starting parameters should not deviate significantly from

their experimental values. Often the molecular intensities are not used, rather they are
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modified into the following forms:

sME(s) =
s[IE

t (s) − IE
b (s)]

IE
b (s)

(2.84)

sMT (s) =
sIT

m(s)

IT
a (s)

(2.85)

The background term, IE
b (s), can be determined by hand-tracing a smooth curve

through the oscillations of the total experimental intensities, or for more difficult systems,

it can be determined by fitting a high-order polynomial through the oscillations. The

curve is adjusted repeatedly through the analysis. These adjustments should not effect

the geometrical parameters, and only the least-squares standard deviations should be

effected by the changes.

There are several different quantities that can be determined and/or adjusted during

the least-squares refinement. Some of them are real molecular parameters, and others

refer to the conditions of the experiment:

1. Geometrical parameters and bond length differences.

2. Mean amplitudes of vibration, lij, for bonded and non-bonded distances.

3. Asymmetry parameters, κij, and shrinkage parameters, δij.

4. Conformer populations.

5. Gas-phase composition of systems with different oligomers.

6. Coefficients of the polynomials used to fit the background curve.

The structural analysis of an ED experiment is not a straightforward procedure. Two

or more different parameters may couple with one another, producing several different

possibilities for molecular structures. This process is even more complicated for systems

containing different oligomers, as several differences in bond lengths and angles may couple

with each other.

2.12 Computational Details

To determine all possible low-energy structures, we performed geometry optimizations us-

ing symmetry-broken unrestricted Kohn-Sham density functional theory (BS-DFT) [41]
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with the PW91 functional, the Los-Alamos pseudopotentials, and corresponding valence

double-zeta basis sets (LanL2DZ) [79, 87] for Cr and the halides (F, Cl, Br, I). These

preliminary calculations were carried out for a large variety of possible three dimen-

sional structures with chromium in different coordination and spin states. All minima

that yielded energies within a window of 1 eV from the global minimum were considered

for further refinement. To determine an accurate DFT method to use for the intensive

analysis of the chromium dihalide oligomers, the results of different local (LSDA), GGA

(PW91 and PBE), and hybrid (B3LYP) DFT geometry optimizations on the monomer

were compared with available literature data as well as from our UHF, MP2, CCSD(T),

CASSCF, and CASPT2 calculations. After comparing our DFT results on the chromium

dihalide monomers with the literature data, it was determined that B3LYP best rep-

resented the CrF2 and CrCl2 molecules and PW91 best represented the structures for

CrBr2 and CrI2. Using the geometries from the PW91/LanL2DZ geometry optimiza-

tions of the oligomers as a starting point, we carried out geometry optimizations for

the chromium dihalides using the methods mentioned above. Here we used a modified

energy-consistent Stuttgart scalar relativistic small-core pseudopotential and correspond-

ing valence basis set with a [8s8p7d18f]/(7s7p5d3f) contraction scheme for Cr [88]. An

aug-cc-pVDZ basis set was used for F and Cl [89–91]. The basis sets for Br and I con-

sisted of an energy-consistent Stuttgart scalar relativistic small-core pseudopotential and

corresponding augmented double-zeta valence basis set with a [9s8p8d]/(5s4p3d) contrac-

tion scheme for Br and a [9s7p7d]/(5s4p3d) contraction scheme for I [92]. For CrCl2,

we also used the B3PW91 functional together with the Stuttgart pseudopotential for Cr

and a cc-pVTZ basis set for Cl to obtain a second set of bond distances and angles for

the electron diffraction analysis. All of the geometry optimizations were performed using

the Gaussian03 software package [93]. The Cartesian coordinates of the lowest energy

structures we calculated from our preliminary and intensive geometry optimizations as

well as the modified basis sets used for Cr, Br, and I are given in the Appendix.

A different refinement scheme was used for the intensive tetramer analysis. All of the

high-spin (septendecet) structures were optimized with the B3LYP or PW91 functionals,

and their energies were compared. If a structure was above 0.5 eV from the lowest energy

septendecet structure, the low-spin (nonet and singlet) states were not examined. This

scheme was used because the high-spin states were significantly easier to obtain SCF and

geometry convergence than the low-spin states; hence, the number of low-spin structures
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that needed to be analyzed was kept to a minimum. The energy of the lowest lying

septendecet structure was always close to that of the global minima and smaller than 0.5

eV.

Harmonic vibrational frequencies were calculated analytically, if possible. These fre-

quencies were used to calculate the zero-point vibrational energy correction, the enthalpy

and Gibbs free energies of atomization from 1000–2000 K and 1 atm. of pressure. The

vibrational analysis was also carried out to obtain the force constants in cartesian coor-

dinates, which was needed for the normal coordinate analysis of CrCl2.

Basis set superposition errors (BSSE) for the clusters were calculated using the coun-

terpoise correction by Boys and Bernardi [62,63], but including two-body terms between

CrX2 fragments only.

Because of the open-shell nature of the chromium dihalides’ electronic structures, we

also performed complete active space self-consistent field calculations, CASSCF, followed

by second-order perturbation theory, CASPT2, for both the monomer and dimer species,

as well as full-space coupled cluster calculations (CCSD(T)) for the monomer. Initial

guesses of the wavefunctions were obtained from restricted open-shell Hartree-Fock cal-

culations. For the low lying 5B2,
5Σ+

g , 5Πg, and 5∆g states of the monomer, we applied

CASSCF(16,15), which denotes 16 electrons distributed over 15 orbitals. This active space

consisted of the five 3d metal orbitals on Cr (δg, πg, σg) along with the valence p orbitals

from both halides. Also included within the active space were virtual orbitals consisting

of σg and σu symmetry and a pair of πu orbitals. The geometry was kept at the optimized

B3LYP or PW91 structures, as these calculations were quite computer time consuming.

For the CASPT2 calculation, we had to reduce the active space to (4,5) for the 5B2,
5Σ+

g ,
5Πg,

5∆g,
3Σ−

g , and 1Σ+
g states, which distributes 4 electrons in the metal 3d orbitals.

Here we were able to carry out a geometry optimization. For the dimers, we used the

same active space as for the monomers, which results in a CASSCF(8,10) of the ten 3d

metal orbitals on the Cr atoms. Only the singlet and nonet states of the dimer were exam-

ined, as these calculations became again prohibitively expensive, and the geometry was

also fixed to that obtained from the B3LYP or PW91 intensive calculations. For the 5Πg

and 5∆g states, a state-averaged CASSCF calculation had to be performed to correctly

describe the multireference character in these states. All multireference calculations were

performed using the program system Molpro [94].
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2.13 Solid-state Calculations

The ground state properties of α-CrCl2 were calculated using DFT in conjunction with a

plane wave basis set as implemented in the Vienna Ab initio Simulation Package [95].

Electron-electron interactions were modeled using the LSDA [37, 96] or the GGA by

Perdew et al. [41] (PW91) of the exchange-correlation energy. The electron-ion inter-

actions were modeled using the projector augmented wave (PAW) method [97,98] with a

cutoff of 450 eV in the expansion of the electronic wavefunction. Brillouin zone (BZ) inte-

grations were done on a regular mesh in reciprocal space, equivalent to 128 k-points in the

BZ of the primitive α-CrCl2 unit cell. Geometry optimizations were carried out by first

optimizing the cell lattice vectors and all internal coordinates for a number of different

cell volumes, using either a conjugate-gradient or quasi-Newton algorithm to minimize

the Hellmann-Feynman forces. We considered the structures to be in equilibrium if the

Cartesian force vectors of the atomic forces were below 5 meV Å−1. The resulting E(V )

curve was fitted with a Vinet equation of state (EOS) [99], and the cell parameters and

internal structure were optimized at the equilibrium cell volume V◦.

To calculate the anti-ferromagnetically coupled infinite chain of CrCl2, we performed

DFT calculations with the PW91 functional employing the PAW method with a plane

wave basis set as implemented in the Vienna Ab-initio Simulation Package. Using a

supercell approach, neighboring chains were separated by at least 25 Å. Along the chain

direction, two irreducible k-points were found to suffice to sample the Brillouin zone.

2.14 Electron Diffraction Analysis

We reanalyzed the earlier electron diffraction experimental data on CrCl2 [3]. We did not

feel comfortable with the conclusions of that publication after learning that the vapors of

chromium dichloride might have contained trimeric species as well besides the monomers

and dimers that were taken into account in that analysis [2]. Therefore, taking into

consideration the computed structures of the dimer and trimer, we introduced certain

constraints into the electron diffraction analysis about the bond length differences of

these species and the monomer. Similarly, we also accepted some of the bond lengths of

the oligomers from computation, in order to decrease the number of refineable parameters

in the ED analysis.
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2.14.1 Experimental Details

A sample of CrCl2 was provided by Professor Herald Schäfer from the University of

Münster [100]. CrCl2 is a rather involatile solid; hence, high-temperature experimental

conditions were needed for the ED analysis. The diffractometer used was the ’Budapest

Apparatus’ [101, 102] with a high-temperature molybdenum nozzle used to inject the

sample [103] into the diffraction chamber. The nozzle temperature was set to 1170±50 K.

Because the CrCl2 vapor may be complex, the combined electron diffraction/quadrupole

mass spectrometric technique was utilized [102,104]. The wavelength of the electron beam

was 0.04911 Å, and the two nozzle-to-plate distances were 189.29 mm and 497.66 mm.

The ranges of intensity data used at 50 cm and 19 cm were 2.00 ≤ s ≤ 14.00 Å−1 and

9.25 ≤ s ≤ 29.00 Å−1 (s = 4πλ−1 sin 1
2
θ, where λ is the electron wavelength and θ is

the scattering angle), respectively. The data intervals were ∆s = 0.125 and 0.250 Å−1,

respectively.

2.14.2 Least-Squares Refinement

We first needed the mean amplitudes of vibration from our monomer, dimer, and trimer

global minima before any least-squares treatment of our system began. To accomplish

this, we first performed harmonic vibrational calculations on the global minima to obtain

the Hessian in Cartesian coordinates. This force-field along with the respective atomic

motions were used to carry out a normal coordinate analysis and calculate the mean

amplitudes of vibration through the use of the ASYM20 software package [105].

The least-squares method was applied to the molecular intensities in the form of the

corresponding equation:

sM(s) =
∑

i

∑

j 6=i

|fi(s)||fj(s)|
B(s)

cos[ηi(s) − ηj(s)] exp(−1

2
l2ijs

2) sin[s(rij − κijs
2)] (2.86)

where |f(s)| and η(s) are the absolute values and phases of the complex electron scattering

angles [106,107], rij are the internuclear distances, lij and κij are the corresponding mean

amplitudes of vibration and asymmetry constants, and B(s) is the background scattering.

The least-squares refinement was done through the use of a modified version of the KCED

software package [108].

Our strategy for the least-squares treatment was the following: we accepted as con-

straints, at least at the initial stages of the refinement, all the differences of the different
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cluster bond lengths from that of the monomer. It is well known that the physical mean-

ing of bond lengths coming from different techniques is different [109] and simply taking

over bond lengths from the computation (equilibrium bond length, rM
e ) to the analysis

of electron diffraction data (where we determine thermal average bond lengths, rg) would

be erroneous. However, taking the differences of bond lengths approximately cancels the

difference between their physical meaning, and therefore, their use as constraints is an

accepted procedure. The stretching vibrations of metal halides are usually anharmonic,

and this influences the molecular intensities. The so-called asymmetry parameter, κ, de-

scribing the stretching anharmonicity, can usually be refined. However, with so many

closely spaced bond lengths this was impossible; therefore, we assumed the asymmetry

parameter based on other transition metal dihalides [110].

Furthermore, we also accepted the bond angles of the dimer and trimer from the

computation. We also carried out normal coordinate analyses based on the computed

frequencies and force fields of all three species, in order to calculate vibrational amplitudes.

These amplitudes were used as starting parameters, and many of them were later refined

during the analysis. The parameters that were refined at the first stages of the analysis

were the bond length and the vibrational amplitudes of the monomer molecule, the vapor

composition, and the vibrational amplitudes of the other chromium-chlorine bond lengths

grouped together with the monomer amplitude. We also refined the amplitudes of the

most important nonbonded distances. The analysis was performed with the so-called

static analysis, meaning that a thermally averaged structure was refined. Such a structure

suffers from the shrinkage effect and usually has a lower symmetry than the equilibrium

structure. Therefore, we introduced and refined the parameters describing the puckering

and bending motions of the dimers and trimers.

We found that with the above constraints, the agreement between the experimental

and theoretical distributions was not satisfactory, especially in the region of the bond

length, indicating that the constrained bond length differences did not quite correspond

to the measured structures. Therefore, we tried to carefully refine them, and they usually

refined to somewhat smaller values than the computed ones. Since the computed bond

length differences were not exactly the same from different levels of computations, we

decided that allowing to refine these values was justified. Further, we let the bond angle

of the monomer and those of the dimer also refine. They stayed close to the computed

values.
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2.15 Thermodynamic Analysis

The frequency analyses allowed us to determine the values of ∆H, ∆G, and ∆S of at-

omization at 298.15 K as well as from 1000–2000 K. Given these values, we were able to

calculate the thermodynamics of the stepwise cluster formation within these temperature

ranges as well as approximate the equilibrium vapor composition of these systems. We

assumed that the clusters are formed in a stepwise fashion, meaning that the following

reactions were examined:

(1) 2CrX2 → Cr2X4

(2) Cr2X4 + CrX2 → Cr3X6

(3) Cr3X6 + CrX2 → Cr4X8

(4) 2Cr2X4 → Cr4X8

The equilibrium constants for these reactions are:

K1 =
Pd

P 2
m

(2.87)

K2 =
Ptr

PmPd

(2.88)

K3 =
Ptet

PmPtr

(2.89)

K4 =
Ptet

P 2
d

(2.90)

where Pm, Pd, Ptr, Ptet represent the partial pressures of the monomer, dimer, trimer, and

tetramer, respectively. If we assume a constant total pressure of the gas mixture, then

we can calculate the value of Pm by solving the following equation and taking only the

realistic roots:

0 = Pm + K1P
2
m + K1K2P

3
m + (K1K2K3 + K2

1K4)P
4
m − PT (2.91)

where PT is the total pressure, and for simplicity reasons, this value was set to 1 atmo-

sphere. The partial pressures of the remaining species can be determined through the use

of Eq. 2.91 along with the equilibrium expressions.
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Results

3.1 Monomers

The results of the different-level computations on the CrF2, CrCl2, CrBr2, and CrI2

monomers are listed in Tables 3.1, 3.2, 3.3, and 3.4, respectively, together with the avail-

able literature data. Experimental structural parameters are also given for comparison.

Considering the calculations of the linear geometries, from the three possible high-spin

states: 5Σ+
g (δ2

gπ
2
g),

5Πg (δ2
gπ

1
gσ

1
g), and 5∆g (δ1

gπ
2
gσ

1
g), DFT predicts that the 5Πg state is

lowest in energy. However, the 5Πg state is not a local minimum, rather a second-order

transition state, which splits into two nondegenerate states of 5B2 and 5A2 symmetry, of

which the 5B2 state is the ground state. Figure 3.1 depicts the bending potential curves

for the 5B2 and 5A2 states of CrF2 to CrI2 from B3LYP (CrF2 and CrCl2) and PW91

(CrBr2 and CrI2) calculations. We see that the 5B2 state is at a maximum at 180◦ for

all of the chromium dihalides, with minima located between 140◦ for CrF2 to roughly

175◦ for CrI2. The 5A2 state for all of the chromium dihalides has a minimum at 180◦

and increases in energy substantially with bending. Note that the bending curve for the
5A2 state becomes flatter going down the halide group. All of the chromium dihalides

have a shallow bending potential for the 5B2 state, below 0.1 eV from all computations

except HF. The bending potential decreases substantially going from F to I, which is also

reflected by an increase in the bond angle of the 5B2 state. For CrI2, the 5B2 state lies less

than 0.060 eV below the 5Πg state from all of the DFT, CCSD(T), and MP2 calculations.

Interestingly, the bond angle of the 5B2 state changes only slightly among the different

DFT methods, with the exception of CrI2, as the very shallow bending potential may be

48
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Figure 3.1: DFT bending potential curves of the 5B2 and 5A2 states for (a) CrF2, (b) CrCl2, (c) CrBr2, and (d) CrI2.
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Table 3.1: Relative energies, geometrical parameters, and vibrational frequencies of CrF2

in different electronic states. Energies in eV, distances in Å, angles in degrees,

and frequencies in cm−1.

State Methoda Ref.b ∆E R(CrF) ∠(FCrF) νc
bend νsym−str νasym−str

exp. [2, 4] - 1.776d - 135(32)e,155.4f 593g 654.5f ,688g

exp. [6] - - - - - 697h

5B2 B3LYP 0 1.778 136.3 119.5 613.7 715.8

PW91 0 1.767 132.8 138.6 623.9 715.4

PBE 0 1.769 132.7 139.6 621.3 711.9

LSDA 0 1.731 132.3 151.8 676.0 773.0

CCSD(T) 0 1.791 149.3 - - -

UHF 0.402 1.829 153.4 61.7 567.7 743.3

MP2 0.007 1.789 151.4 77.4 575.3 980.2

CASPT2 0.079 1.795 143.1 - - -

CASSCFi 0 1.778 136.3 - - -

B3LYP [22] 0 1.7860 137.5 116 600 701

CCSD(T) [22] 0 1.7987 145.1 99 574 748
5Πg B3LYP 0.079 1.789 180 116.0i/155.8j 580.8 736.9

PW91 0.117 1.783 180 128.4i/151.5j 580.3 728.4

PBE 0.120 1.785 180 128.8i/150.9j 577.3 724.6

LSDA 0.129 1.747 180 141.4i/148.0j 626.0 776.6

CCSD(T) 0.018 1.795 180 - - -

UHF 0.409 1.831 180 44.5i/162.1j 553.2 728.8

MP2 0.020 1.793 180 58.9i/174.5j 563.4 738.2

CASPT2 0.161 1.803 180 - - -

CASSCFi 0.010 1.789 180 - - -

BP-VWN [19] 0 1.772 180 i
j 584 700

5Σ+
g B3LYP 0.201 1.835 180 131.0 577.8 672.7

PW91 0.493 1.834 180 120.7 568.5 661.6

PBE 0.500 1.836 180 119.7 566.6 659.0

LSDA 0.678 1.800 180 106.9 604.0 702.1

CCSD(T) 0.080 1.842 180 - - -

UHF 0 1.848 180 157.1 585.1 699.8

MP2 0 1.841 180 142.7 574.0 673.5

CASPT2 0 1.841 180 - - -

CASSCFi 0.798 1.835 180 - - -

BP-VWN [19] 0.47 1.825 180 - - -
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Table 3.1 Continued

State Methoda Ref.b ∆E R(CrF) ∠(FCrF) νc
bend νsym−str νasym−str

5∆g B3LYP 1.124 1.826 180 82.2 562.6 706.4

PW91 1.395 1.822 180 39.6ij 563.4 699.0

PBE 1.413 1.825 180 47.7ij 560.4 695.2

LSDA 1.596 1.788 180 85.4ij 601.4 740.4

CCSD(T) 1.062 1.834 180 - - -

UHF 1.231 1.855 180 121.8 536.8 711.3

MP2 1.002 1.836 180 113.7 548.6 705.0

CASPT2 1.078 1.842 180 - - -

CASSCFi 1.052 1.826 180 - - -
3Σ−

g B3LYP 1.665 1.739 180 110.5ij 616.6 813.2

PW91 1.681 1.729 180 126.3ij 624.7 811.2

PBE 1.680 1.731 180 125.4ij 622.7 808.2

LSDA 1.461 1.691 180 134.2ij 683.6 872.4

CCSD(T) 1.738 1.739 180 - - -

UHF 3.383 1.788 180 46.5ij 566.5 784.7

MP2 2.113 1.741 180 85.9 594.6 812.4

CASPT2 2.396 1.772 180 - - -

BP-VWN [19] 1.41 1.721 180 - - -
1Σ+

g B3LYP 4.114 1.720 180 98.1 669.0 779.5

PW91 4.102 1.714 180 42.4 662.5 776.0

PBE 4.107 1.716 180 41.7 659.3 772.3

LSDA 3.669 1.684 180 21.9ij 707.7 826.4

CCSD(T) 4.201 1.734 180 - - -

UHF 6.440 1.749 180 173.8 658.6 780.7

MP2 4.274 1.717 180 151.2 670.9 773.3

CASPT2 3.489 1.770 180 - - -

BP-VWN [19] 3.71 1.710 180 - - -

a Unless otherwise mentioned, a CASSCF(4,5) was used. b Unless otherwise stated, the

data given are from this study. c For the linear structures, the bending mode is doubly

degenerate. d ED (re) value from Ref. [4]. e Estimated gas-phase value from Ref. [4].
f MI-IR (Ar) from Ref. [6]. g Estimated value from Ref. [2]. h Estimated gas-phase value

from Ref. [6]. i A CASSCF(16,15) was used. j Imaginary frequency in the bending mode.
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Table 3.2: Relative energies, geometrical parameters, and vibrational frequencies of

CrCl2 in different electronic states. Energies in eV, distances in Å, angles

in degrees, and frequencies in cm−1.

State Methoda Ref.b ∆E R(CrCl) ∠(ClCrCl) νc
bend νsym−str νasym−str

exp. [5, 9] - - - - - 493.5d,457.4e

[7, 8] - - - 110.5g - 475f ,458.5g

[12] - - - - - 422h

exp.i 2.196(20) 149(9.5)
5B2 B3LYP 0 2.193 146.7 49.3 349.4 472.8

B3PW91j 0 2.175 143.6 56.8 357.6 476.7

PW91 0 2.171 141.3 54.4 358.1 473.1

PBE 0 2.173 140.7 56.9 357.5 471.2

LSDA 0 2.123 137.5 63.9 390.6 506.0

CCSD(T) 0 2.194 167.0 32.4 337.9 492.2

UHF 0.219 2.270 180 39.4/92.6 314.9 468.1

MP2 0 2.191 177.4 5.3 332.6 495.2

CASPT2 0.035 2.201 167.5 - - -

CASSCFk 0 2.193 146.7 - - -

B3LYP [21] 0 2.201 144.3 57.2 344.2 467.3

CCSD(T) [22] 0 2.199 156.2 45 338 486
5Πg B3LYP 0.020 2.198 180 47.4i/92.4l 329.6 479.0

B3PW91j 0.027 2.182 180 46.2i/98.1l 334.1 484.5

PW91 0.030 2.181 180 50.8i/92.5l 330.1 478.4

PBE 0.033 2.183 180 53.1i/91.1l 328.5 476.0

LSDA 0.045 2.136 180 54.2i/94.8l 356.4 511.9

CCSD(T) 0.032 2.194 180 - - -

UHF 0.219 2.270 180 39.4/92.6 314.9 468.1

MP2 0.001 2.191 180 3.8i/100.0l 332.5 495.2

CASPT2 0.085 2.202 180 - - -

CASSCFk 0.075 2.198 180 - - -

CASSCF [111] - 2.175 180 - - -

B3LYP [21] 0.012 2.209 180 - - -

BP-VWN [19] 0 2.173 180 i
l 358 476

LSDA [20] 0 2.15 180 85 315 480

HF [18] 0.282 2.309 180 - - -
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Table 3.2 Continued

State Methoda Ref.b ∆E R(CrCl) ∠(ClCrCl) νc
bend νsym−str νasym−str

5Σ+
g B3LYP 0.156 2.239 180 69.7 327.7 460.3

PW91 0.403 2.224 180 53.8 326.5 459.3

PBE 0.400 2.225 180 52.2 325.6 458.0

LSDA 0.566 2.181 180 35.6 347.7 488.4

CCSD(T) 0.145 2.240 180 80.8 333.5 474.8

UHF 0 2.286 180 91.9 325.0 466.3

MP2 0.010 2.234 180 86.2 335.8 478.6

CASPT2 0 2.240 180 - - -

CASSCFk 0.276 2.239 180 - - -

B3LYP [21] 0.200 2.248 180 - - -

BP-VWN [19] 0.44 2.216 180 - - -

HF [18] 0 2.315 180 - - -

LSDA [20] 0.532 2.21 180 65 326 465
5∆g B3LYP 0.804 2.226 180 49.9 322.5 468.9

PW91 1.079 2.206 180 98.8il 327.8 471.9

PBE 1.090 2.208 180 104.5il 326.5 470.1

LSDA 1.239 2.162 180 191.1il 351.9 502.9

CCSD(T) 0.765 2.228 180 - - -

UHF 0.735 2.289 180 76.2 309.5 462.2

MP2 0.653 2.224 180 76.0 325.3 486.2

CASPT2 0.654 2.229 180 - - -

CASSCFk 0.910 2.226 180 - - -

B3LYP [21] 0.860 2.237 180 - - -

LSDA [20] 1.039 2.183 180 56 325 459
3Σ−

g B3LYP 1.636 2.135 180 19.8 352.1 510.0

PW91 1.626 2.112 180 8.7 362.6 517.2

PBE 1.640 2.114 180 4.0il 361.2 514.9

LSDA 1.409 2.066 180 23.6 393.8 555.2

CCSD(T) 1.794 2.122 180 - - -

UHF 3.170 2.227 180 50.0 314.1 477.8

MP2 2.096 2.111 180 46.8 353.7 526.7

CASPT2 2.319 2.158 180 - - -

BP-VWN [19] 1.45 2.101 180 - - -

LSDA [20] 0.899 2.078 180 90 348 540
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Table 3.2 Continued

State Methoda Ref.b ∆E R(CrCl) ∠(ClCrCl) νc
bend νsym−str νasym−str

1Σ+
g B3LYP 5.025 2.144 180 51.7 367.8 508.5

PW91 4.906 2.126 180 17.1 369.0 512.7

PBE 4.913 2.128 180 15.8 367.5 510.6

LSDA 4.489 2.086 180 19.1il 393.4 546.6

CCSD(T) 4.284 2.170 180 - - -

CASPT2 3.503 2.138 180 - - -

BP-VWN [19] 4.65 2.126 180 - - -

a Unless otherwise mentioned, a CASSCF(4,5) was used. b Unless otherwise stated, the

data given are from this study. c For the linear structures, the bending mode is doubly

degenerate. d MI-IR (Ar) from Ref. [5]. e MI-IR (Ar) from Ref. [9]. f Gas-phase IR data

from Ref. [8]. g MI-IR (Ar) from Ref. [7]. h Gas-phase IR value from Ref. [12]. i Result

from our ED refinement. j cc-pVTZ basis set used for Cl. k A CASSCF(16,15) was used.
l Imaginary frequency in the bending mode.

Table 3.3: Relative energies, geometrical parameters, and vibrational frequencies of

CrBr2 in different electronic states. Energies in eV, distances in Å, angles

in degrees, and frequencies in cm−1.

State Methoda Ref.b ∆E R(CrBr) ∠(BrCrBr) νc
bend νsym−str νasym−str

exp. [8, 11] - - - - - 363.0d, 365e

5B2 B3LYP 0 2.342 150.1 33.0 220.5 376.6

PW91 0 2.322 148.0 32.2 223.8 376.3

PBE 0 2.324 146.9 33.7 224.4 374.4

LSDA 0 2.267 140.8 35.6 255.4 403.7

CCSD(T) 0 2.329 179.8 - - -

UHF 0.167 2.419 180 40.3/73.9 193.8 378.2

MP2 0 2.327 180 32.3/82.7 206.7 408.3

CASPT2 0.003 2.346 179.9 - - -

CASSCFf 0 2.322 148.0 - - -
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Table 3.3 Continued

State Methoda Ref.b ∆E R(CrBr) ∠(BrCrBr) νc
bend νsym−str νasym−str

5Πg B3LYP 0.009 2.347 180 24.4i/73.9g 199.6 384.9

PW91 0.009 2.330 180 21.4i/74.3g 197.9 382.0

PBE 0.011 2.333 180 24.1i/73.4g 197.0 380.4

LSDA 0.053 2.278 180 33.1i/73.1g 214.8 411.9

CCSD(T) 1.4x10−4 2.329 180 - - -

UHF 0.167 2.419 180 40.3/73.9 193.8 378.2

MP2 0 2.327 180 32.3/82.7 206.7 408.3

CASPT2 0.055 2.347 180 - - -

CASSCFf 0.015 2.330 180 - - -
5Σ+

g B3LYP 0.192 2.386 180 55.1 200.2 375.9

PW91 0.449 2.370 180 35.2 199.3 375.4

PBE 0.444 2.372 180 33.9 198.8 374.6

LSDA 0.631 2.321 180 19.0ig 211.1 397.6

CCSD(T) 0.162 2.377 180 - - -

UHF 0 2.436 180 73.2 198.7 378.1

MP2 0.044 2.370 180 72.4 208.4 397.0

CASPT2 0 2.384 180 - - -

CASSCFe 0.176 2.370 180 - - -
5∆g B3LYP 0.763 2.372 180 36.9 197.0 379.9

PW91 1.057 2.349 180 150.2 199.8 382.4

PBE 1.065 2.352 180 138.1 199.1 381.2

LSDA 1.237 2.300 180 108.1 214.4 408.5

CCSD(T) 0.678 2.363 180 - - -

UHF 0.615 2.436 180 62.3 191.0 373.9

MP2 0.589 2.358 180 66.3 203.1 401.5

CASPT2 0.549 2.372 180 - - -

CASSCFf 0.882 2.349 180 - - -
3Σ−

g B3LYP 1.642 2.280 180 30.2 213.5 409.2

PW91 1.623 2.256 180 27.1 218.5 413.5

PBE 1.635 2.258 180 26.9 217.7 411.8

LSDA 1.439 2.202 180 28.8 238.5 446.7

CCSD(T) 1.761 2.255 180 - - -

UHF 3.108 2.378 180 47.5 193.6 384.5

MP2 2.128 2.246 180 52.1 217.7 433.2

CASPT2 2.293 2.302 180 - - -
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Table 3.3 Continued

State Methoda Ref.b ∆E R(CrBr) ∠(BrCrBr) νc
bend νsym−str νasym−str

1Σ+
g B3LYP 5.216 2.294 180 36.3 221.0 409.0

PW91 5.070 2.274 180 20.0ig 221.4 411.5

PBE 5.075 2.277 180 19.4ig 220.6 410.0

LSDA 4.676 2.227 180 34.7ig 236.5 439.1

CCSD(T) 4.347 2.309 180 - - -

UHF 7.698 2.366 180 72.2 213.5 400.2

MP2 5.487 2.264 180 54.4 230.2 427.3

CASPT2 3.364 2.302 180 - - -

a Unless otherwise mentioned, a CASSCF(4,5) was used. b Unless otherwise stated, the

data given are from this study. c For the linear structures, the bending mode is dou-

bly degenerate. d MI-IR (Ar) from Ref. [11]. e Gas-phase value from Ref. [8]. f A

CASSCF(16,15) was used. g Imaginary frequency in the bending mode.

Table 3.4: Relative energies, geometrical parameters, and vibrational frequencies of CrI2

in different electronic states. Energies in eV, distances in Å, angles in degrees,

and frequencies in cm−1.

State Methoda Ref.b ∆E R(CrI) ∠(ICrI) νc
bend νsym−str νasym−str

exp. [10] - - - 37d - 319.7d

5B2 B3LYP 0 2.553 155.4 21.6 158.7 328.0

PW91 0 2.540 174.5 13.0 141.0 328.8

PBE 0 2.542 172.8 14.4 141.3 327.5

LSDA 0 2.471 140.2 23.7 197.8 345.7

CCSD(T) 0 2.530 167.8 - - -

UHF 0.122 2.639 180 39.8/62.1 138.8 324.5

MP2 0 2.532 180 35.8/70.2 149.3 354.1

CASPT2 0 2.554 169.9 - - -

CASSCFe 0 2.540 174.5 - - -



CHAPTER 3. RESULTS 57

Table 3.4 Continued

State Methoda Ref.b ∆E R(CrI) ∠(ICrI) νc
bend νsym−str νasym−str

5Πg B3LYP 0.002 2.557 180 18.1i/58.9f 141.2 330.4

PW91 3.8x10−4 2.540 180 10.0i/58.1f 139.6 327.9

PBE 4.4x10−4 2.543 180 12.5i/57.5f 139.0 326.4

LSDA 0.008 2.484 180 18.1i/58.4f 151.7 355.9

CCSD(T) 0.001 2.531 180 - - -

UHF 0.122 2.639 180 39.8/62.1 138.8 324.5

MP2 0 2.532 180 35.8/70.2 149.3 354.1

CASPT2 0.056 2.556 180 - - -

CASSCFe 0.033 2.540 180 - - -

LDA [23] 0 2.499 180 70 148 345
5Σ+

g B3LYP 0.241 2.593 180 41.0 141.6 324.5

PW91 0.521 2.573 180 45.2 141.6 326.9

PBE 0.514 2.575 180 45.1 141.2 325.9

LSDA 0.645 2.519 180 68.9if 152.0 352.4

CCSD(T) 0.208 2.581 180 - - -

UHF 0 2.656 180 61.9 141.5 326.1

MP2 0.066 2.575 180 62.9 150.3 347.7

CASPT2 0.021 2.591 180 - - -

CASSCFe 0.280 2.573 180 - - -
5∆g B3LYP 0.725 2.575 180 17.2 140.6 328.1

PW91 1.056 2.548 180 60.1 143.8 334.8

PBE 1.062 2.551 180 58.3 143.3 333.6

LSDA 1.182 2.494 180 55.1 155.2 361.4

CCSD(T) 0.623 2.563 180 - - -

UHF 0.480 2.650 180 54.7 137.2 321.6

MP2 0.492 2.560 180 59.5 147.7 349.8

CASPT2 0.443 2.573 180 - - -

CASSCFe 0.734 2.548 180 - - -
3Σ−

g B3LYP 1.701 2.488 180 28.1 150.2 348.2

PW91 1.686 2.461 180 28.1 152.6 351.3

PBE 1.698 2.464 180 28.5 152.1 350.0

LSDA 1.482 2.402 180 29.4 166.8 382.7

CCSD(T) 1.802 2.457 180 - - -

UHF 3.062 2.599 180 44.0 139.0 327.6

MP2 2.201 2.456 180 48.9 154.4 371.9

CASPT2 2.308 2.512 180 - - -
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Table 3.4 Continued

State Methoda Ref.b ∆E R(CrI) ∠(ICrI) νc
bend νsym−str νasym−str

1Σ+
g B3LYP 5.472 2.510 180 17.5 154.3 349.9

PW91 5.304 2.484 180 32.9if 154.4 351.9

PBE 5.307 2.487 180 32.2if 153.9 350.7

LSDA 4.873 2.431 180 42.5if 164.9 377.1

CCSD(T) 4.457 2.519 180 - - -

UHF 7.951 2.598 180 59.2 150.4 342.1

MP2 5.773 2.477 180 43.3 162.2 369.8

CASPT2 3.373 2.512 180 - - -

a Unless otherwise mentioned, a CASSCF(4,5) was used. b Unless otherwise stated, the

data given are from this study. c For the linear structures, the bending mode is doubly

degenerate. d Gas-IR from Ref. [10]. e A CASSCF(16,15) was used. f Imaginary frequency

in the bending mode.

responsible for this deviation.

Because the barrier to inversion of the chromium dihalides is so small, we predict

that only a few vibrational states will fall within this energy well. According to our

DFT calculations, the harmonic zero-point vibrational energies for the bending mode of

the 5B2 state are approximately 60, 25, 16, and 6.5 cm−1 for CrF2, CrCl2, CrBr2, and

CrI2, with their barrier heights to linearity being 637, 161, 73, and 10 cm−1, respectively.

Hence, we are only able to fit 5 bending states into the energy well for CrF2, 3 states for

CrCl2, 2 states for CrBr2, and only one state for CrI2. The ED experiments performed

on CrF2 [4] and CrCl2 [3] were done at 1520 K and 1170 K, respectively. Using the

Maxwell-Boltzmann equation for a distribution over 100 states (60–12060 cm−1 for CrF2,

25–5025 cm−1 for CrCl2), we calculate that 43% of the CrF2 monomers and 16% of the

CrCl2 monomers will be below the energy barrier for bending at these temperatures. At

1000 K, we predict that only 9% of CrBr2 and 2% of CrI2 will be below their barriers for

bending. It comes as no surprise why the experimental results to date have shown that

these molecules are linear, as roughly 57% of CrF2 and 84% of CrCl2 would have more

than enough energy to fluctuate between the bent double-minima. The average structure

under these conditions would therefore be linear.

The splitting of the 5Πg electronic state is a typical Renner-Teller effect, characterizing

linear molecules in degenerate electronic states. The Renner-Teller effect, similarly to the
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better known Jahn-Teller effect, is the result of the coupling between the electronic and

vibrational wavefunctions of the molecule (i.e. the breakdown of the Born-Oppenheimer

approximation). The difference between the two effects is that the instability of the linear

configuration is due to the quadratic or higher order coupling terms, while the Jahn-Teller

effect for nonlinear degenerate systems is due to the linear coupling terms [112]. Consider

for the moment the CrX2 molecule in a 5Πg state. The reference configuration for a linear,

triatomic molecule would have cylindrical symmetry.

We can introduce the two components of the bending distortion (in the x or y direction)

in polar coordinates, Qx = ρ cos φ, Qy = ρ sin φ, with ρ2 = Q2
x + Q2

y. Accordingly, the

quadratic terms of the vibronic coupling between the two electronic terms are equal to
1
2
gρ2, with 1

2
g being the quadratic vibronic coupling constant. The vibronic coupling

matrix for this case is:

W =

∣

∣

∣

∣

∣

0 1
2
gρ2

1
2
gρ2 0

∣

∣

∣

∣

∣

(3.1)

Solving the vibronic coupling secular equation for this type of system and including the

elasticity term gives the vibronic coupling energy (ǫ±(ρ)) [113]:

ǫ±(ρ) =
1

2
(Ko ± g)ρ2 (3.2)

where Ko is the force constant for bending. The two branches of the adiabatic potential

energy surface (APES) are shown in Figure 3.2(a). We see that for weak coupling (g <

Ko), the APES is just split in two by the bending vibrations. For larger g values, we see

that the ǫ− surface becomes very small and can even take on negative values (g > Ko). For

a system with strong vibronic coupling, fourth-order coupling terms may be necessary to

describe the APES behavior correctly. With the fourth-order terms included, the vibronic

coupling energy becomes:

ǫ±(ρ) =
1

2
(Ko ± g)ρ2 + jρ4 (3.3)

where j is the fourth-order coupling constant. The APES for a strongly coupled system

is shown in Figure 3.2(b). We see that the upper surface looks similar to that with weak

coupling, with the minimum located at ρ = 0. However, the lower surface has a maximum

at ρ = 0 with minima located at a distance ρo from the center.

ρo =

√

g − Ko

4j
(3.4)
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Figure 3.2: APES of a linear molecule in a doubly-degenerate ground state with respect to bending. (a) weak coupling -

stable minimum; (b) strong coupling - dynamic instability of the ground state; (c) three-dimensional view of

a strongly coupled system.



CHAPTER 3. RESULTS 61

Figures 3.2(a) and (b) represent only a one-dimensional picture of the APES. A three-

dimensional view of the APES for a strongly-coupled system is shown in Figure 3.2(c).

We see that the APES is similar to the well-known Mexican hat topology.

Getting back to the CrX2 molecule in the 5Πg state, we see that the upper APES

represents bending into the 5A2 state, and the lower APES represents bending into the
5B2 state. A majority of our HF calculations on the 5Πg state predict weak vibronic

coupling, thus leading to two different, real bending frequencies. Our DFT and some of

the MP2 calculations show strong vibronic coupling with only one imaginary frequency for

bending into the 5B2 state (i.e. lower APES of Figure 3.2(b)), as single-reference methods

fail to describe the situation correctly.

A more accurate description of the 5Πg state (and of the 5∆g state as well) is obtained

from the state-averaged CASSCF calculations in which the πg (or δg) orbitals possess

half occupancies in each orbital. We note that the CASPT2(4,5) geometry optimization

produces a structure in very close agreement with our CCSD(T) structures. The results

of the CASSCF(16,15) (which lack major dynamic correlation) also predict a 5B2 ground

state with the 5Πg state lying slightly higher in energy for all of the chromium dihalides.

The next state is the 5Σ+
g state. Both the CCSD(T) and DFT calculations predict that this

state lies above the 5B2 state, and the CCSD(T) calculations predict that it increases in

energy relative to the 5B2 state going from fluorine (∆E = 0.08 eV) to iodine (∆E = 0.21

eV). Our HF calculations predict that this state is the ground state for all of the monomers,

thus showing that the inclusion of electron correlation is very important for these systems.

There were, however, a few exceptions in the ordering of the 5Σ+
g state with some of the

correlated calculations. MP2 predicts a 5Σ+
g ground state for CrF2, and the CASPT2

calculations predict the same ground state for CrF2 to CrBr2. However, a limited active

space was used in the CASPT2 calculations for the monomer, as these calculations were

computationally time intensive; given that all of the CCSD(T) calculations predict a 5B2

ground state, we are certain that this state falls below the 5Σ+
g state. The next state, 5∆g,

is considerably higher in energy by all methods and cannot be considered as a contestant

for the ground state. Also, the lower spin triplet and singlet states of the monomers were

both significantly higher in energy than the global minima.

The single-reference CCSD(T) procedure is capable of describing most states rather

well, with the exception being the 3Σ−
g and 1Σ+

g states, as both of them exhibit significant

multireference character. The major contributions to these two states as well as the state-
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averaged 5Πg state are shown in Table 3.5. We see that the original configurations for

the 3Σ−
g (σ2

gδ
α
g δα

g ) and the 1Σ+
g (δ2

gδ
2
g) states contribute between 60–65% of their total

wavefunctions. As expected, the 5Πg state consists of roughly a 50/50 mixture of two

configurations.

Based on the literature data, the ground state of CrF2 and CrCl2 is expected to be

the 5B2 state arising from the Renner-Teller distorted 5Πg state. The B3LYP results from

Jensen [21] show a flat bending potential for the 5Πg state of CrCl2, with the barrier of

inversion of only 0.012 eV. Nielsen [22] also mentioned an unusually flat bending potential

for CrCl2 and that the 5B2 state was only 0.004 eV below that of the 5Πg state. There

is a lack of quantum chemical and experimental data for CrBr2 and CrI2; however, based

on the available data and our calculations, the ground state should be either the 5Σ+
g or

5B2 states. Our B3LYP calculations on the 5Πg and 5B2 states of CrF2 and CrCl2 agree

very well with the experimental and quantum chemical geometries from the literature.

The predicted Cr-I length from the LDA calculations of Schiefenhövel et al. [23] is shorter

than our calculated values. Based on our calculations for all of the monomers, LSDA

always underestimates the bond lengths. They also predicted a 5Πg ground state with

identical, doubly degenerate bending frequencies. This result is unusual given that even

our HF calculations, which lack electron correlation, predicted different bending frequen-

cies. Calculating identical bending frequencies for this state would be possible with a

multireference DFT approach, but the authors did not mention that such an approach

was used.

The electronic absorption spectra of CrCl2, reported by DeKock and Gruen [15] con-

tains two transitions located at 5400 cm−1 and 9000 cm−1. The oscillator strengths of

these two transitions indicate that they arise from Laporte forbidden d4 → d4 transi-

tions. These type of transitions are indicative of a linear geometry which occur between

the states of D∞h symmetry. Based on ligand-field theory, DeKock and Gruen assigned

these two transitions to 5Σ+
g → 5Πg and 5Σ+

g → 5∆g, respectively. Because ligand-field

theory incorrectly predicts the relative energies of the 3d metal orbitals, the assignment

of the first transition is incorrect, as the 5Πg state is lower in energy than the 5Σ+
g state.

Furthermore, the 5Πg →5 Σ+
g transition is calculated to be at 911 cm−1 at the CCSD(T)

level, which is well below both excitation energies. The 5400 cm−1 transition is close to

our calculated 5Πg → 5∆g transition, which is at 5912 cm−1 at the CCSD(T) level (not

including zero-point vibrational effects). None of the transitions studied for CrCl2 came
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Table 3.5: Contributions from the major configurations within the active space of the
3Σ−

g , 1Σ+
g , and 5Πg states from CASPT2(4,5) geometry optimizations.

Molecule State Configurationa % Molecule State Configurationa %

CrF2
3Σ−

g σ2
gδ

α
g δα

g 65.51 CrCl2
3Σ−

g σ2
gδ

α
g δα

g 62.54

δα
g δα

g π2
g 10.33 δα

g δα
g π2

g 11.87

σ2
gπ

α
g πα

g 9.18 σ2
gπ

α
g πα

g 10.15

σα
g δα

g π2
g 7.49 σα

g δα
g π2

g 7.72

σα
g δα

g πα
g π

β
g 7.49 σα

g δα
g πα

g π
β
g 7.72

1Σ+
g δ2

gδ
2
g 68.08 1Σ+

g δ2
gδ

2
g 66.51

δ2
gπ

2
g 10.32 δ2

gπ
2
g 10.38

σα
g δ

β
g π2

g 5.40 σα
g δ

β
g π2

g 5.78

σ
β
g δα

g π2
g 5.40 σ

β
g δα

g π2
g 5.78

σα
g δ

β
g πα

g π
β
g 5.40 σα

g δ
β
g πα

g π
β
g 5.78

σ
β
g δα

g πα
g π

β
g 5.40 σ

β
g δα

g πα
g π

β
g 5.78

5Πg σα
g δα

g δα
g πα

g π0
g 49.99 5Πg σα

g δα
g δα

g πα
g π0

g 49.99

σα
g δα

g δα
g π0

gπ
α
g 49.99 σα

g δα
g δα

g π0
gπ

α
g 49.99

CrBr2
3Σ−

g σ2
gδ

α
g δα

g 61.94 CrI2
3Σ−

g σ2
gδ

α
g δα

g 61.16

δα
g δα

g π2
g 12.15 δα

g δα
g π2

g 12.43

σ2
gπ

α
g πα

g 10.40 σ2
gπ

α
g πα

g 10.79

σα
g δα

g π2
g 7.76 σα

g δα
g π2

g 7.81

σα
g δα

g πα
g π

β
g 7.76 σα

g δα
g πα

g π
β
g 7.81

1Σ+
g δ2

gδ
2
g 65.44 1Σ+

g δ2
gδ

2
g 64.36

δ2
gπ

2
g 10.57 δ2

gπ
2
g 10.60

σα
g δ

β
g π2

g 6.00 σα
g δ

β
g π2

g 6.26

σ
β
g δα

g π2
g 6.00 σ

β
g δα

g π2
g 6.26

σα
g δ

β
g πα

g π
β
g 6.00 σα

g δ
β
g πα

g π
β
g 6.26

σ
β
g δα

g πα
g π

β
g 6.00 σ

β
g δα

g πα
g π

β
g 6.26

5Πg σα
g δα

g δα
g πα

g π0
g 49.97 5Πg σα

g δα
g δα

g πα
g π0

g 49.96

σα
g δα

g δα
g π0

gπ
α
g 49.97 σα

g δα
g δα

g π0
gπ

α
g 49.96

a Configurations with the |CI-coefficient| > 0.05.

close to the 9000 cm−1 transition, and it was predicted that this band could have arisen

from transitions between rotational-vibrational levels of the 5Πg and 5∆g states [21]. This

is rather unlikely according to our results, but multi-reference configuration interaction
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calculations are needed to identify these bands, as done recently for example for CrO2

[114].

Mulliken analyses were also carried out for the different monomer spin states, and

the results are given in Table 3.6. Most of the spin density is located on the Cr atom

with a small amount of spin density on the halide atoms. As expected, the interactions

between the Cr and halide atoms become more covalent and less electrostatic going down

the periodic table. For CrBr2 and CrI2, the Cr atom even takes on a partial negative

charge. It is misleading to characterize these molecules as purely ionic.

3.1.1 Infrared Analysis

Examining the IR data for CrF2, we see that our bending frequency calculated by B3LYP

is lower than the argon matrix IR result from Hastie et al. [6] as well as the estimated

value from Zasorin et al. [4]. The other DFT methods are in better aggreement with the

bending frequencies. Our νasym−str values are in good agreement with the estimated gas-

phase values by Hargittai [2] and from Hastie and coworkers. However, these values are

significantly (60 cm−1) higher than Hastie’s MI-IR (Ar) result and are more than likely

attributed to matrix effects.

For CrCl2, the most intense IR band for the monomer arises from the asymmetric

Cr-Cl stretching mode. The two DFT calculations predict this mode to occur at 473 and

477 cm−1, respectively; while MP2 and CCSD(T) calculations give 497 and 493 cm−1,

respectively. The experimental information for this mode is rather confusing. Kobra

assigned 475 cm−1 to the asymmetric stretching frequency in a gas-phase IR experiment

[8]. From the three available argon matrix IR measurements, two groups assigned this

mode similarly, at 458 cm−1 [7] and 457 cm−1 [9], while the third group assigned a value

that is 40 cm−1 higher, 494 cm−1 [5]. To make the picture more complicated, Hastie et

al. [7] measured CrCl2 in a neon matrix and found the mode at 493 cm−1. Even taking

into account matrix shifts, the 40 cm−1 difference between the different matrices is too

large – not to mention the difference between groups referring to the same matrix. The

picture is further complicated by a relatively new gas-phase measurement that suggested

a 422 cm−1 value for the asymmetric stretching frequency of CrCl2 [10].

Beside the obvious problems of both high-temperature gas-phase and matrix isolation

IR experiments, including an uncertain amount of dimeric or other polymeric species,

there are also other uncertainties in the experiments. For example, in two of them [9,10]
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Table 3.6: Mulliken atomic charges and spin densities for the chromium dihalides. Pos-

itive or negative spins represent an excess of alpha or beta spin density, re-

spectively.

Molecule State Atom Charge Spin Molecule State Atom Charge Spin

CrF2
5B2 Cr 1.106 4.081 CrCl2

5B2 Cr 0.427 4.084

F -0.553 -0.040 Cl -0.213 -0.042
5Πg Cr 1.168 4.099 5Πg Cr 0.435 4.132

F -0.584 -0.049 Cl -0.217 -0.066
5Σ+

g Cr 1.296 3.933 5Σ+
g Cr 0.561 3.964

F -0.648 0.034 Cl -0.280 0.018
5∆g Cr 1.156 3.960 5∆g Cr 0.470 3.925

F -0.578 0.020 Cl -0.235 0.037
3Σ−

g Cr 1.057 2.098 3Σ−

g Cr 0.393 2.228

F -0.528 -0.049 Cl -0.196 -0.114
1Σ+

g Cr 1.295 0 1Σ+
g Cr 0.315 0

F -0.647 0 Cl -0.157 0

CrBr2
5B2 Cr 0.016 4.258 CrI2

5B2 Cr -0.260 4.513

Br -0.008 -0.129 I 0.130 -0.256
5Πg Cr 0.047 4.352 5Πg Cr -0.261 4.517

Br -0.024 -0.176 I 0.131 -0.258
5Σ+

g Cr 0.187 4.000 5Σ+
g Cr -0.146 4.042

Br -0.093 0 I 0.073 -0.021
5∆g Cr 0.082 3.895 5∆g Cr -0.251 3.902

Br -0.041 0.052 I 0.125 0.049
3Σ−

g Cr -0.018 2.436 3Σ−

g Cr -0.320 2.456

Br 0.009 -0.218 I 0.160 -0.228
1Σ+

g Cr -0.025 0 1Σ+
g Cr -0.430 0

Br 0.012 0 I 0.215 0

CrCl3 was evaporated, not CrCl2 and thus the vapor composition was, possibly, even more

complicated. In another experiment [5] metallic chromium was reacted with chlorine gas

at high temperature in argon atmosphere and the vapor composition was not checked.

For CrBr2, our νasym−str value from the PW91 calculations on the 5B2 state are in

good agreement with the argon MI-IR of Gregory et al. [11] as well as the gas-phase IR

value from Kobra [8]. Our PW91 results for the νbend and νasym−str frequencies for the 5B2

state of CrI2 agree very well with the gas-phase IR data from Konings and coworkers [10].



CHAPTER 3. RESULTS 66

3.2 Clusters

3.2.1 Dimers

In order to ascertain the most likely representation of the global minima for all of the clus-

ters, two important properties need to be considered. The first is symmetry and geometry,

and several different trial geometries were explored to determine a likely structure for each

cluster. Pictoral representations of these structures which were used for the dimers are

given in Figure 3.3. Second, we have to consider the spin of the clusters. The chromium

dihalide monomers can have three possible spin states (quintet, triplet, singlet), and all

three of these must be considered for the clusters. This leads to a total of five possible

states for the dimers (nonet, septet, quintet, triplet, singlet).

In the preliminary PW91/LanL2DZ geometry optimizations, all of the structures given

in Figure 3.3 were optimized. Frequency calculations were performed on the converged

structures to determine if it represented a local minimum or a saddle point. If a structure

optimized to a saddle point, we reoptimized it along the imaginary frequency modes,

which in almost all cases required the molecule to be of lower symmetry. If necessary, the

geometry of the molecule was manually adjusted to facilitate convergence into the new

geometry. One more important caveat needs to be considered. Because we are using an

UKS approach in describing transition metal complexes, we need to be certain that the

low-spin states are of broken symmetry because spin-symmetric representations for these

states can produce unusually high energies and short metal-metal distances. To determine

if the UKS orbitals represented a BS solution for the low-spin states, the orbitals were

examined with the focus being on the nonbonding 3d orbitals of Cr. A BS solution

would exhibit spin polarization on the two Cr atoms. For example, the BS solution for a

singlet state would have four α electrons within the 3d orbitals on one Cr atom and four β

electrons in different 3d orbitals on the other Cr atom (S=2 at each Cr atom). For clusters

with low symmetry, the UKS approach typically converged to a BS solution. For the other

clusters, the wavefunction symmetry was lowered slightly to allow for symmetry breaking.

If this method did not produce a BS result, then spin contamination was introduced by

manually shifting the occupied α and β 3d orbitals on the Cr atoms so that they were

different. The orbitals were then re-examined and adjusted, if necessary, to ensure that

the 3d α and β orbitals were not the same. The BS-DFT produced unreasonable 〈S2〉
values, which is a well-known (and disregarded) fact [52–55].
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Figure 3.3: Initial dimer structures used in the preliminary analysis.

Figure 3.4 depicts the lowest energy minima from each spin state from our geometry

optimizations. A comparison of their energies is given in Table 3.7. We see that our

preliminary results (PW91/LanL2DZ column) show that the global minima consist of the

singlet states of the planar structures with either C2v or C2h symmetry (D1) or (D2),

respectively. The high-spin nonet states lie very close in energy to the singlet states. All

of the other spin states were significantly higher in energy.

We included all minima within 1 eV of the global minima for further refinement with

the larger basis sets. A comparison of their energies from different levels of theory are

given in Table 3.7. According to our intensive analysis, we see that the global minima

consist of the low-spin (singlet) states of structures (D1) or (D2) for the dimers. There
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is one exception in which the global minimum of the CrI2 dimer is the nonet state of

(D1). Our results are surprising, considering that according to Hund’s rule, one would

expect the nonet states being more stable than the singlet states (vide infra). The most

symmetrical planar structure (D2h-symmetry) represented a second-order saddle-point

with two imaginary frequencies for bending the terminal halide atoms within the plane

of the molecule toward the cis-(D1) or trans-(D2) structures. This is again surprising

because the D2h-symmetry bridged structures are common for metal dihalide dimers [2].

The dimers in the septet, quintet, and triplet states are all considerably higher in energy,

leading us to conclude that the dimers (and larger clusters) only consist of monomers

which are in the quintet state.

(D1)

(D2)

(D3)

(D4)

(D5)

(D6)

(D7)

Cr1 Cr2

Xt1 Xt2

Xb1

Xb2

Figure 3.4: Representations of the low-energy minima for the dimers.
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Looking again at the C2h and C2v structures, we can conceptualize that the C2h struc-

ture could possibly be formed from two linear monomers. This type of symmetry can

be extended to form a two-dimensional, chain-like structure by the addition of linear

monomers. Interestingly, this sort of of chain-like structure is present in the solid-state of

all of the chromium dihalides [115–120]. The C2v structure can only be formed by having

at least one bent monomer unit, and the D2h structure must have both monomers being

bent.

Table 3.7: Relative energies among the dimer minima from various geometry optimiza-

tions.

Molecule Structure State ∆E (eV) ∆E (eV) ∆E (eV) ∆E (eV) ∆E (eV)

Methoda PW91/LanL2DZ B3LYP HF CASSCF(8,10) CASPT2(8,10)

Cr2F4 D1 9A1 0.021 0.015

D1 7B1 1.151

D1 5A2 1.507

D1 3B1 1.149

D1 1A1 0 0.001

D2 9Ag 0.021 0.011 0 0 0.006

D2 1Ag 0.010 0 21.115 0.042 0

D7 9A′ 0.857 b

Methoda PW91/LanL2DZ B3LYP B3PW91 HF CASSCF(8,10) CASPT2(8,10)

Cr2Cl4 D1 9A1 0.024 0.054 0.050 0 0 0

D1 7B1 1.228

D1 1A1 0 0 0 8.498 0.089 0.024

D2 9Ag 0.025 0.058 0.059

D2 1Ag 0.001 0.001 0.004

D3 9A 0.519 b

D3 5A 1.486

D3 3A 0.789 1.557

Methoda PW91/LanL2DZ PW91 HF CASSCF(8,10) CASPT2(8,10)

Cr2Br4 D1 9A1 0.002 0.100 0 0 0

D1 5A1 1.540

D1 1A1 0 0 13.692 0.069 0.018

D2 9Ag 0.047 0.102

D2 1Ag 0.010 0.001

D3 7A 1.135

D3 3A′′ 0.639 0.768

Methoda PW91/LanL2DZ PW91 HF CASSCF(8,10) CASPT2(8,10)

Cr2I4 D1 9A1 0.021 0 0 0 0

D1 1A1 0 0.001 20.263 0.095 0.033

D2 9Ag 0.050 b

D2 1Ag 0.020 0.004

D3 7A1 0.921 1.013

D4 1A1 0.800 b

D5 3A′′ 0.910 0.985

D6 5B 1.376

D6 3B 0.657 0.862

a See computational details for applied basis sets. b Optimized to (D1).
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The nonet and singlet states are very close in energy, and they also have similar

geometries. A comparison of the geometry between the lowest energy singlet and nonet

states for all of the dimers can be seen in Table 3.8 with the atomic labeling scheme given

in Figure 3.4. We see that the Cr-Xt1 distance changes very little between the two different

spin states. Most of the differences in bond length between the singlet and nonet states

come from the Cr-Xb and Cr-Cr distances. The Cr-Cr distance for the nonet states are

between 0.03–0.1 Å longer than in the singlet states, and these differences increase going

from F to Br. The exception to this trend is the nonet state of the CrI2 dimer, whose

Cr-Cr distance is shorter than the singlet state and comparable to the Cr-Cr distance in

Cr2F4. The overall trend is that the geometry of the two spin states is almost identical

for Cr2F4 and become less similar going down the halide group. All of the C2v structures

are fully planar with a ring puckering angle of zero degrees. The B3PW91 structures for

Cr2Cl4 along with the larger cc-pVTZ basis sets for Cl are very similar to the B3LYP

structures and will not be mentioned here.

Schiefenhövel et al. [23] calculated the geometry of the CrI2 dimer with LDA. They

determined that the global minimum of Cr2I4 has C2v symmetry with a 9B2 ground

state. Their structure was not planar and had a ring puckering angle of 10.2◦. They also

calculated that the Cr-Cr, Cr-It, and Cr-Ib distances were 3.000 Å, 2.493 Å, and 2.594

Å, respectively. Their values for ∠(It-Cr-Ib) and ∠(Ib-Cr-Ib) were 125.5◦, and 108.5◦,

respectively. We see that their calculated global minimum is qualitatively similar to ours

(i.e. high-spin ground state with C2v symmetry), but their bond lengths are all significantly

shorter than our values. This result is to be expected, as LDA tends to underestimate

bond lengths, which was indeed observed in our geometry optimizations for the monomers.

The general trend for the Mulliken spin densities is that most of the spin is located

on the chromium atoms with only a small amount of spin present on the halides (Table

3.9). The magnitude of spin present on the Cr atoms also increases going down the

halide group. All of the singlet states represent broken-symmetry structures, as there

is a significant amount of spin polarization present on the chromium atoms, with one

chromium atom having an excess of roughly four α electrons, and the other chromium

atom having a concomitant excess of β electrons. The orbitals responsible for the spin

polarization come from the 3d orbitals of Cr, in which all of the α and β electrons are

occupied within different orbitals. There is even a slight amount of spin polarization

present on the terminal halide atoms, with the signs of their spin being the same as those
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Table 3.8: Geometrical parameters for the lowest energy singlet and nonet dimers ob-

tained from intensive geometry optimizations.

Molecule State Parameter Valuea Molecule State Parameter Valuea

Cr2F4
9Ag R(Cr1-Cr2) 3.045 Cr2Br4

9A1 R(Cr1-Cr2) 3.388

R(Cr1-Ft1) 1.805 R(Cr1-Brt1) 2.337

R(Cr1-Fb1) 1.950 R(Cr1-Brb1) 2.447

R(Cr1-Fb2) 1.982 R(Cr1-Brb2) 2.526

∠(Ft1-Cr1-Fb1) 123.0 ∠(Brt1-Cr1-Brb1) 116.0

∠(Ft1-Cr1-Fb2) 158.5 ∠(Brt1-Cr1-Brb2) 149.9

∠(Fb1-Cr1-Fb2) 78.5 ∠(Brb1-Cr1-Brb2) 94.1

1Ag R(Cr1-Cr2) 3.016 1A1 R(Cr1-Cr2) 3.284

R(Cr1-Ft1) 1.804 R(Cr1-Brt1) 2.331

R(Cr1-Fb1) 1.948 R(Cr1-Brb1) 2.467

R(Cr1-Fb2) 1.981 R(Cr1-Brb2) 2.467

∠(Ft1-Cr1-Fb1) 123.6 ∠(Brt1-Cr1-Brb1) 131.7

∠(Ft1-Cr1-Fb2) 156.8 ∠(Brt1-Cr1-Brb2) 131.8

∠(Fb1-Cr1-Fb2) 79.7 ∠(Brb1-Cr1-Brb2) 96.6

Cr2Cl4
b 9A1 R(Cr1-Cr2) 3.384 Cr2I4

9A1 R(Cr1-Cr2) 3.078

R(Cr1-Clt1) 2.211 R(Cr1-It1) 2.543

R(Cr1-Clb1) 2.355 R(Cr1-Ib1) 2.651

R(Cr1-Clb2) 2.389 R(Cr1-Ib2) 2.651

∠(Clt1-Cr1-Clb1) 122.9 ∠(It1-Cr1-Ib1) 125.5

∠(Clt1-Cr1-Clb2) 148.1 ∠(It1-Cr1-Ib2) 125.5

∠(Clb1-Cr1-Clb2) 89.0 ∠(Ib1-Cr1-Ib2) 109.0

1A1 R(Cr1-Cr2) 3.307 1A1 R(Cr1-Cr2) 3.437

R(Cr1-Clt1) 2.210 R(Cr1-It1) 2.537

R(Cr1-Clb1) 2.354 R(Cr1-Ib1) 2.654

R(Cr1-Clb2) 2.373 R(Cr1-Ib2) 2.676

∠(Clt1-Cr1-Clb1) 125.9 ∠(It1-Cr1-Ib1) 121.5

∠(Clt1-Cr1-Clb2) 142.9 ∠(It1-Cr1-Ib2) 138.8

∠(Clb1-Cr1-Clb2) 91.2 ∠(Ib1-Cr1-Ib2) 99.7

a All bond lengths in Å and all bond angles in degrees. b B3LYP structures.



CHAPTER 3. RESULTS 72

Table 3.9: Mulliken charges and spin densities for the lowest energy singlet and nonet

dimers obtained from the intensive geometry optimizations. Positive or neg-

ative spin represents an excess of alpha or beta electrons, respectively.

Molecule State Atom Charge Spin Molecule State Atom Charge Spin

Cr2F4
9Ag Cr1 1.12 4.05 Cr2Br4

9A1 Cr1 -0.16 4.25

Cr2 1.12 4.05 Cr2 -0.16 4.25

Ft1 -0.63 -0.01 Brt -0.07 -0.09

Fb1 -0.49 0.05 Brb1 0.11 -0.11

1Ag Cr1 1.12 3.97 Brb2 0.34 -0.21

Cr2 1.12 -3.97 1A1 Cr1 -0.18 4.11

Ft1 -0.63 0.01 Cr2 -0.18 -4.11

Ft2 -0.63 -0.01 Brt1 -0.06 0.09

Fb1 -0.49 0 Brt2 -0.06 -0.09

Brb1 0.24 0

Brb2 0.25 0

Cr2Cl4
a 9A1 Cr1 0.41 4.08 Cr2I4

9A1 Cr1 -0.44 4.36

Cr2 0.41 4.08 Cr2 -0.44 4.36

Clt -0.31 -0.01 It 0.10 -0.16

Clb1 -0.05 -0.08 Ib1 0.34 -0.20

Clb2 -0.14 -0.06 Ib2 0.34 -0.20

1A1 Cr1 0.40 4.06 1A1 Cr1 -0.42 4.20

Cr2 0.40 -4.06 Cr2 -0.42 -4.20

Clt1 -0.31 0.01 It1 0.09 0.17

Clt2 -0.31 -0.01 It2 0.09 -0.17

Clb1 -0.06 0 Ib1 0.27 0

Clb2 -0.11 0 Ib2 0.38 0

a B3LYP structures.

of the nearest Cr atoms. An examination of the orbitals reveals that there is slightly more

electron density (either α or β) present on the p orbitals of the terminal halide atoms.

The lower energy s orbitals do not appear to be spin polarized. Also, the lower energy

3s and 3p orbitals on Cr are not spin polarized. Looking at the Mulliken charges, we see

that these clusters are quite covalent in character.

The primary disadvantage of BS-DFT is that the exchange coupling between the metal
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centers is overestimated, and the coupled-spin states are overstabilized [53]. Not only this,

but we obtained S ∼= 3 (〈S2〉 = 12.09, 12.20, 12.38, and 12.77) for the singlet states of

Cr2F4, Cr2Cl4, Cr2Br4, and Cr2I4, respectively. We see that these values are close to those

of a septet state and indicate a significant amount of spin contamination, as they should

be zero. In light of the BS solutions for the low-spin states of the dimers, CASPT2(8,10)

calculations were performed on the lowest energy singlet and nonet structures with their

geometry fixed at those obtained from the intensive geometry optimizations. These re-

sults are also given in Table 3.7. Not surprisingly, the RHF calculations predict a nonet

ground state with the singlet state lying very high in energy. The singlet state’s energy

drops substantially after the CASSCF(8,10) calculation and lies less than 0.095 eV above

the nonet state for all of the dimers. The energy of the singlet state decreases further

relative to the nonet state after the CASPT2 calculation and even becomes the minimum

for the CrF2 dimer. We see that the CASPT2 calculations show that the nonet state

becomes increasingly more stable going from F to I, which is reflected by the increase in

the CASPT2 energy of the singlet state relative to the nonet. This trend is completely

the opposite to that obtained from the DFT calculations for Cr2F4 to Cr2Br4 (see Table

3.7). The nonet states are described reasonably well by a single determinant, as none of

them exhibit any multireference behavior. This is not the case for the singlet states. The

singlet states for all of the dimers have significant multireference character, and they all

consist of greater than 100 major configurations (i.e. |CI-coefficient| > 0.05). It is also ap-

parent that the better the description of the singlet state, the lower in energy it becomes.

The CASPT2 calculations predict high-spin ground states for Cr2Cl4, Cr2Br4, and Cr2I4.

However, these calculations have been performed at the B3LYP or PW91 optimized dis-

tance as they are computationally demanding, and a proper geometry optimization could

easily favor the singlet over the nonet state.

3.2.2 Trimers

The next series of clusters which were examined are the trimers. Like the dimers, we

followed a similar procedure to locate their global minima. We first began by looking at

several possible structures, which are depicted in Figure 3.5. Many of these structures were

not chosen randomly, as we took into consideration the geometry of the global minima of

the dimers to try to limit the possible structures we need to consider.
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Figure 3.5: Initial trimer structures used in the preliminary analysis.

The trimers can have a total of seven possible spin states: tridecet, undecet, nonet,

septet, quintet, triplet, and singlet. However, our findings on the low-energy spin states

of the dimers allows us to greatly reduce the number of states we need to consider for any

cluster size. We found that the clusters can only consist of high-spin (quintet) monomers.

Only the high-spin and low-spin states of the dimers were found to have the lowest ener-

gies. All of the intermediate spin states (ones which require at least one monomer to be
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in a triplet or singlet state) are much higher in energy and do not pose as candidates for

the global minima. These low-energy, high-spin and low-spin states are not just observed

in our gas-phase clusters. Similar results were found in the solid state of α-CrCl2 [30],

in which the chains along the crystallographic c-axis comprise of high-spin, quintet CrCl2

monomers coupled either anti-ferromagnetically (AFM) or ferromagnetically (FM). Our

results allow us to predict the low-energy spin states for any cluster size. Therefore, we

only need to examine the tridecet and quintet states for the trimer; for the tetramer, we

only need to look at the septendecet, nonet, and singlet states.

The resulting structures from our preliminary and intensive geometry optimizations

are shown in Figure 3.6, and a comparison of their energies is given in Table 3.10. Ac-

cording to our preliminary analysis, we see that the quintet states for all of the trimers

represent the global minima, and the tridecet states all lie slightly higher in energy. For

the CrF2, CrCl2, and CrBr2 trimers, the global minima consist of the quintet state of

structure (T1). The situation is different for the CrI2 trimer, for which the global mini-

mum is the quintet state of (T2). Interestingly, the lowest energy tridecet state for the

CrI2 trimer is structure (T1).

Looking at our intensive geometry optimizations, we see that the global minima for

all of the trimers are in the low-spin quintet state, in agreement with our preliminary

analysis. There are, again, two major geometries for the global minima. For Cr3F6 and

Cr3Cl6, the global minima consist of the the quintet state of (T1). The quintet state of

(T2) is lowest in energy for Cr3Br6 and Cr3I6, and we observe that this structure becomes

more stable going down the halide group. Taking a closer look at the geometry of (T2),

we see that this structure consists of three Cr atoms arranged within a trianglular plane

and not in a linear fashion like (T1). Within this structure are three monohalide bridges

(X2, X3, X4) linking the three Cr atoms (see Figure 3.6). These three halides are not

within the plane of the Cr atoms. There are two additional halides (X5 and X6) which

cap the molecule above and below the plane of the Cr atoms. Interestingly, these two

halides are bonded to all three of the Cr atoms and are closer to Cr2 and Cr3 than to

Cr1. Lastly, there is a ’terminal’ halide (X1) attached to Cr1. The tridecet states for all

of the C2h structures (T1) lie less than 0.07 eV higher in energy than their quintet states;

however, the tridecet states of (T2) are much higher in energy than their quintet states,

indicating stronger spin-spin interactions. We also see that the quintet state of (T1) is

very close in energy with the global minimum for the CrBr2 trimer.
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Figure 3.6: Representations of the low-energy minima for the trimers.
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Table 3.10: Relative energies among the low energy trimers from various geometry op-

timizations.

Molecule Structure State ∆E (eV) ∆E (eV) ∆E (eV)

Methoda PW91/LanL2DZ B3LYP

Cr3F6 T1 13Ag 0.029 0.022

T1 5Ag 0 0

T2 13A′ 0.900 1.212

T2b 5A 0.885 1.174

Methoda PW91/LanL2DZ B3LYP B3PW91

Cr3Cl6 T1 13Ag 0.030 0.045 0.045

T1 5Ag 0 0 0

T2 13A′ 0.372 0.906

T2b 5A 0.184 0.741

T3 13A 0.540 c

T3 5A 0.445 c

T4 13A 0.772 0.945

T4 5A 0.768 0.697

T7 13A′′ 0.852 0.976

Methoda PW91/LanL2DZ PW91

Cr3Br6 T1 13Ag 0.037 0.150

T2 5Ag 0 0.084

T2 13A′ 0.241 0.463

T2b 5A 0.004 0

T3 13A 0.448 0.664

T3 5A 0.400 d

T4 13A 0.701 0.801

T4 5A c 0.241

Methoda PW91/LanL2DZ PW91

Cr3I6 T1 13Ag 0.081 0.356

T1 5Ag 0.064 0.308

T2 13A′ 0.087 0.419

T2b 5A 0 0

T3 13A 0.286 0.461

T3 5A 0.231 0.494

T4 13A 0.629 0.875

T4 5A 0.606 0.494

T5 13A 0.810 1.209

T5 5A 0.966 d

T6 5A 0.623 c

a See computational details for applied basis sets. b Slightly distorted structure due to

BS-DFT (see text). c Optimized to (T1). d Optimized to (T2).



CHAPTER 3. RESULTS 78

Selected geometrical parameters for the trimer global minima are given in Table 3.11.

Figure 3.6 shows the atomic labeling schemes used. The geometries of Cr3F6 and Cr3Cl6

(T1) are very similar to their dimer geometries (see Table 3.8). For Cr3F6, the Cr1-Cr2

distance is only 0.001 Å shorter than the Cr-Cr distance in the singlet dimer. The Cr1-

Cr2 distance in Cr3Cl6 is closer to that of the nonet dimer rather to that of the singlet.

The remaining Cr-X bond lengths within these two trimers are very close to those of the

dimers.

There are three different Cr-Cr distances in the Cr3Br6 and Cr3I6 global minima (T2).

The Cr1-Cr2 and Cr1-Cr3 distances are somewhat similar, with the former being slightly

longer. The Cr2-Cr3 distances are significantly shorter than any of the Cr-Cr distances

calculated so far, 2.462 Å and 2.500 Å for Cr3Br6 and Cr3I6, respectively. These short

distances are indicative of a possible metal-metal bond between the two Cr atoms. We

examined the 3d orbitals on Cr2 and Cr3 and found that there is significant overlap

between the orbitals of dz2 symmetry, forming what appears to be a sigma bond. Not

only this, but the Wiberg bond indices for Cr2-Cr3 are 0.43 and 0.47 for Cr3Br6 and Cr3I6,

respectively. A picture of this orbital overlap from the PW91 calculations for the tridecet

state of Cr3Br6 is shown in Figure 3.7. Looking at the Cr-X bond lengths within the

six-membered ring of (T2), we see that they range from about 2.45–2.57 Å in Cr3Br6 and

from 2.66–2.77 Å in Cr3I6. The Cr1-X5 distance is very large (greater than 3.66 Å) for

both trimers, and it is significantly longer than Cr2-X5 and Cr3-X5. The Cr1-X6 and Cr2-

X6 bond lengths are about the same for both trimers, and the Cr3-X6 length is somewhat

shorter. Interestingly, the Cr1-X1 bond length is the shortest of all of the metal-halide

bonds within (T2) and is similar in length to the CrBr2 and CrI2 monomers. We note that

looking at the overall structure of (T2), we see that it could consist of one of two possible

dimers. The more likely dimer consists of a distorted (D2) structure (i.e. Cr1, Cr2, X1,

X2, X4, X6). The other dimer consists of a distorted (D3) structure (i.e. Cr2, Cr3, X2, X4,

X5, X6). Structure (D3) was shown to have significantly higher energy than (D2), hence

the possibility that (T2) is formed from (D3) is less likely than it being formed from (D2).

Both of the quintet trimers are close to Cs symmetry, but there is a slight asymmetry

arising from the different Cr1-Cr2 and Cr1-Cr3 distances, which we will see later that it

arises from the BS representation of the quintet spin state. The high-spin tridecet states

for (T2) have Cs symmetry for all of the trimers (Table 3.10).
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Table 3.11: Geometrical parameters for the trimer global minima obtained from inten-

sive geometry optimizations.

Molecule State Parameter Valuea Molecule State Parameter Valuea

Cr3F6
5Ag R(Cr1-Cr2) 3.015 Cr3Cl6

b 5Ag R(Cr1-Cr2) 3.390

(T1) R(Cr1-Ft1) 1.806 (T1) R(Cr1-Clt1) 2.214

R(Cr1-Fb1) 1.947 R(Cr1-Clb1) 2.347

R(Cr1-Fb2) 1.974 R(Cr1-Clb2) 2.366

R(Cr2-Fb1) 1.969 R(Cr2-Clb1) 2.391

R(Cr2-Fb2) 1.965 R(Cr2-Clb2) 2.391

∠(Ft1-Cr1-Fb1) 124.8 ∠(Clt1-Cr1-Clb1) 126.6

∠(Ft1-Cr1-Fb2) 155.3 ∠(Clt1-Cr1-Clb2) 143.8

∠(Fb1-Cr1-Fb2) 79.9 ∠(Clb1-Cr1-Clb2) 89.7

∠(Fb1-Cr2-Fb2) 79.5 ∠(Clb1-Cr2-Clb2) 88.1

Cr3Br6
5A R(Cr1-Cr2) 3.091 Cr3I6

5A R(Cr1-Cr2) 3.159

(T2) R(Cr1-Cr3) 2.939 (T2) R(Cr1-Cr3) 3.034

R(Cr2-Cr3) 2.462 R(Cr1-Cr3) 2.500

R(Cr1-Br1) 2.365 R(Cr1-I1) 2.583

R(Cr1-Br2) 2.573 R(Cr1-I2) 2.768

R(Cr1-Br3) 2.547 R(Cr1-I3) 2.746

R(Cr1-Br5) 3.664 R(Cr1-I5) 3.827

R(Cr1-Br6) 2.603 R(Cr1-I6) 2.805

R(Cr2-Br2) 2.450 R(Cr2-I2) 2.658

R(Cr2-Br4) 2.511 R(Cr2-I4) 2.714

R(Cr2-Br5) 2.519 R(Cr2-I5) 2.724

R(Cr2-Br6) 2.715 R(Cr2-I6) 2.862

R(Cr3-Br3) 2.451 R(Cr3-I3) 2.655

R(Cr3-Br4) 2.520 R(Cr3-I4) 2.722

R(Cr3-Br5) 2.520 R(Cr3-I5) 2.715

R(Cr3-Br6) 2.589 R(Cr3-I6) 2.783

∠(Cr1-Br2-Cr2) 75.9 ∠(Cr1-I2-Cr2) 71.2

∠(Cr1-Br3-Cr3) 72.0 ∠(Cr1-I3-Cr3) 68.3

∠(Cr2-Br4-Cr3) 58.6 ∠(Cr2-I4-Cr3) 54.8

a All bond lengths in Å and all bond angles in degrees. b B3LYP structure.
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Figure 3.7: Side and top views of the overlap between the dz2 orbitals from Cr2 and Cr3

in the tridecet state of Cr3Br6.

(T1)

(T2)

Cr1 Cr2 Cr3

Cr1

Cr2

Cr3

Figure 3.8: BS spin-coupling patterns for the trimer global minima. Each arrow repre-

sents four unpaired electrons (S=2).
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The BS spin patterns for the quintet global minima of (T1) and (T2) are depicted in

Figure 3.8. Starting with (T1), we see that the BS scheme has inversion symmetry. The

spins of (Cr1Cr2Cr3) consist of a (4α4β4α) pattern. Trivially, the (4β4α4β) produces the

same energy.

The spin pattern for (T2) is slightly more complex as compared to (T1). We see that

the BS spin scheme for (Cr1Cr2Cr3) is (4α4α4β). The spin-spin interactions between Cr1-

Cr2 and Cr1-Cr3 are different. A consequence of this is different Cr1-Cr2 and Cr1-Cr3 bond

lengths. To test if the asymmetry is due to the BS representation of the quintet state,

we altered the spins such that we had a pattern for (Cr1Cr2Cr3) being (4β4α4β). We

observed that the energy of the molecule with this new spin pattern was the same as the

previous pattern after we reoptimized the structure. After the molecule was reoptimized,

the Cr1-Cr2 and Cr1-Cr3 distances were the opposite to those of the first structure, as one

expects (i.e. the Cr1-Cr2 and Cr1-Cr3 distances in Cr3Br6 are 2.94 Å and 3.09 Å in the new

structure). More interestingly, we decided to study the spin-spin interactions between Cr2

and Cr3. To accomplish this, we changed the spin pattern to (4α4β4β). The energy of

this state is now higher by 0.393 and 0.317 eV for Cr3Br6 and Cr3I6, respectively. We

see that these energies are between that of the quintet and tridecet states. These results

clearly demonstrate that there are greater spin-spin interactions between the Cr2 and Cr3

atoms in (T2) compared to the Cr-Cr interactions in the planar ribbons of (T1).

3.2.3 Tetramers

The final series of clusters examined are the tetramers. Representations of the starting ge-

ometries we used are given in Figure 3.9. Of the nine possible spin states for the tetramers,

only the septendecet, nonet, and singlet states were examined, as these arise from quintet

monomers. In order to keep the number of plausible structures of the tetramers within a

manageable limit, many of the starting geometries included dimeric or trimeric minima,

as these were shown to be significantly lower in energy than any of the other possible

geometries considered for those clusters.

The results of our preliminary and intensive geometry optimizations are given in Table

3.12, and the lowest energy structures are shown in Figure 3.10. According to our prelim-

inary analysis, we see that the global minimum of the CrF2, CrCl2, and CrBr2 tetramers

is the singlet state of (Q1). The nonet state of (Q4) is calculated to be lowest in energy

for the CrI2 tetramer.
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Figure 3.9: Initial tetramer structures used in the preliminary analysis.
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Figure 3.10: Representations of the low-energy minima for the tetramers.
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Table 3.12: Relative energies among the low energy tetramers from various geometry

optimizations.

Molecule Structure State ∆E (eV) ∆E (eV)

Methoda PW91/LanL2DZ B3LYP

Cr4F8 Q1 17Ag 0.059 0.022

Q1 9Ag 0.023 0.015

Q1 1Ag 0 0

Q3 17Ag 0.429 0.926

Q3b 9A 0.331

Q4 17A 0.787 1.206

Q4 9A 0.424

Q4 1A 0.618

Q5 17A 0.944 2.053

Q5 9A 0.772

Methoda PW91/LanL2DZ B3LYP

Cr4Cl8 Q1 17Ag 0.036 0.048

Q1 9Ag 0.020 0.019

Q1 1Ag 0 0

Q2 17A 0.611 0.934

Q2 9A 0.561

Q2 1A 0.584

Q3 17Ag 0.398 0.864

Q3 1Ag 0.327

Q4 17A 0.421 0.852

Q4 9A 0.180

Q4 1A 0.284

Methoda PW91/LanL2DZ PW91

Cr4Br8 Q1 17Ag 0.028 0.228

Q1 9Ag 0.014 0.166

Q1 1Ag 0 0.124

Q2 17A 0.508 0.798

Q2 9A 0.495

Q2 1A 0.462

Q3 17Ag 0.361 0.650

Q3b 9A 0.378

Q3 1Ag 0.351

Q4 17A 0.270 0.454

Q4 9A 0.207 0

Q4 1A 0.211 0.131

Methoda PW91/LanL2DZ PW91

Cr4I8 Q1 17Ag 0.216 0.389

Q1 9Ag 0.205 0.354

Q1 1Ag 0.189 0.332

Q2 17A 0.469 0.705

Q2 9A 0.387 0.580

Q2 1A 0.423 0.662

Q3 17Ag 0.279 0.516

Q3b 9A 0.252 0.024

Q3 1Ag 0.209 0

Q4 17A 0.214 0.397

Q4 9A 0 0.161

Q4 1A 0.098 0.286

a See computational details for applied basis sets. b Slightly distorted structure due to

BS-DFT (see text).
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From our more intensive analysis, we obtain three major structures for the global

minima. For Cr4F8 and Cr4Cl8, the lowest energy structure is a continuation of the

anti-ferromagnetically coupled planar structure (Q1). The global minimum for Cr4Br8

now consists of the nonet state of (Q4), and for Cr4I8, the singlet state of (Q3) is now

the global minimum. Looking at (Q1) for the CrF2 and CrCl2 tetramers, we find that

the singlet, nonet, and septendecet states are all very close in energy, with the nonet

state lying between the singlet and septendecet states in energy. It is interesting to note

that the energy difference between the high and low spin states of (D1), (D2), (T1), and

(Q1) is almost constant for each dihalide (0.02, 0.05, 0.10, and 0.05 eV for CrF2, CrCl2,

CrBr2, and CrI2, respectively). The only exception to this pattern is (D1) of Cr2I4, in

which the singlet and nonet states were only 0.001 eV apart in energy. The apparent

convergence between the high and low-spin states’ energies for these chains could prove

useful in determining the magnetic properties for the solid-state of all of the chromium

dihalides, as they all possess these chain-like structures in their crystals. We mention

that in our solid-state calculations for α-CrCl2, the energy difference between the FM

and AFM states is only 0.016 eV. The resulting spin state for the Cr4Br8 global minimum

is surprising, as we have predicted singlet global minima for all of the other tetramers, yet

the singlet state of (Q4) is 0.131 eV higher in energy than the nonet state. The high-spin

state for this structure is 0.454 eV higher in energy. The nonet and septendecet states

for (Q3) of Cr4I8 are 0.024 and 0.516 eV higher in energy than the global minimum,

respectively. Structures (Q3) and (Q4) become more stable going down the halide group.

Taking a closer look at (Q3) and (Q4), we see that neither of them are planar (Figure

3.10). The high-spin and low-spin states of (Q3) have Ci symmetry, and the nonet state

has C1 symmetry but is close to Ci symmetry. We believe that both of these structures

come from the (T2) trimer, as there is a strong resemblance between these two tetramers

and (T2), Figure 3.6. The primary structural difference between these tetramers is that

in (Q3), atoms X4 and X5 are trans to one another, and in (Q4), they are cis.

Selected geometrical parameters for the tetramer global minima are given in Table 3.13.

Looking at the Cr4F8 and Cr4Cl8 global minima, (Q1), we see that we have two different

Cr-Cr distances. For both tetramers, Cr1-Cr2 is shorter than Cr2-Cr3. The difference

between the two Cr-Cr distances is small for Cr4F8, but for Cr4Cl8, the difference is

significant (roughly 0.1 Å). In fact, the Cr2-Cr3 is longer than any of those for the CrCl2

oligomers.
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Table 3.13: Selected geometrical parameters for the tetramer global minima obtained

from intensive geometry optimizations.

Molecule State Parameter Valuea Molecule State Parameter Valuea

Cr4F8
1Ag R(Cr1-Cr2) 3.017 Cr4Cl8

b 1Ag R(Cr1-Cr2) 3.383

(Q1) R(Cr2-Cr3) 3.030 (Q1) R(Cr2-Cr3) 3.480

R(Cr1-Ft1) 1.807 R(Cr1-Clt1) 2.215

R(Cr1-Fb1) 1.946 R(Cr1-Clb1) 2.348

R(Cr1-Fb2) 1.972 R(Cr1-Clb2) 2.364

∠(Ft1-Cr1-Fb1) 125.3 ∠(Clt1-Cr1-Clb1) 126.9

∠(Fb1-Cr1-Fb2) 79.9 ∠(Clb1-Cr1-Clb2) 90.0

Cr4Br8
9A R(Cr1-Cr2) 2.910 Cr4I8

1Ag R(Cr1-Cr2) 2.943

(Q4) R(Cr1-Cr3) 3.097 (Q3) R(Cr1-Cr3) 2.932

R(Cr2-Cr3) 2.592 R(Cr2-Cr3) 2.512

R(Cr2-Cr4) 3.533 R(Cr1-I1) 2.570

R(Cr3-Cr4) 3.494 R(Cr1-I4) 2.725

R(Cr1-Br1) 2.361 R(Cr2-I4) 2.780

R(Cr4-Br8) 2.349 R(Cr3-I4) 2.742

R(Cr1-Br4) 2.625 R(Cr2-I6) 2.653

R(Cr2-Br4) 2.562 R(Cr3-I7) 2.686

R(Cr3-Br4) 2.616

R(Cr2-Br5) 2.545

R(Cr3-Br5) 2.563

R(Cr4-Br5) 2.826

R(Cr2-Br6) 2.465

R(Cr3-Br7) 2.470

a All bond lengths in Å and all bond angles in degrees. b B3LYP result.

We find that with the continuation of the chain-like structure for these two systems, the

Cr-X distances among the different oligomers changes very little. Looking at the CrBr2

and CrI2 tetramer global minima, we find that the Cr1-Cr2 and Cr1-Cr3 distances between

these molecules are similar (around 3 Å). Both of these tetramers contain a metal-metal

bond between Cr2 and Cr3, given that their distances are 2.592 and 2.512 Å for Cr4Br8

and Cr4I8, respectively. In the CrBr2 tetramer, Br4 is bonded to Cr1, Cr2, and Cr3 with
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their bond lengths ranging between 2.56–2.63 Å. However, Br5 is significantly further

away from Cr4, given a bond length of 2.83 Å. In Cr4I8, we see that the three Cr-I4 (and

consequently the three Cr-I5) distances are similar and between 2.72 and 2.78 Å. We note

that the Cr1-X1 and Cr4-X8 bond lengths are the shortest of all of the Cr-X distances for

Cr4Br8 and Cr4I8, and they are similar to their monomers in length.

The BS spin-coupling patterns for the tetramer global minima are shown in Figure

3.11. For the CrF2 and CrCl2 tetramers, the pattern for (Cr1Cr2Cr3Cr4) consists of

(4α4β4β4α). This spin-coupling pattern is very similar to the AFM-II intra-chain spin-

coupling scheme we calculated for the solid-state of α-CrCl2 [30]. According to our solid-

state calculations on α-CrCl2, we found that this spin-coupling pattern did not produce

the lowest energy, as the AFM-I scheme (4α4β4α4β . . .) produced the lowest energy. We

were unable to reproduce the AFM-I scheme for our (Q1) tetramer after several attempts

at manipulating the orbitals. A consequence of this spin-coupling scheme is that the

Cr2-Cr3 distance is longer than Cr1-Cr2 or Cr3-Cr4 (see Table 3.13).

In the solid-state of α-CrCl2, the spins of the Cr 3d-electrons are found to be coupled

anti-ferromagnetically with four parallel spins sitting almost exclusively in the d-bands

of Cr along these chains [121, 122]. However, the energy difference between the anti-

ferromagnetic (AFM) and the ferromagnetic phase (FM) is very small with only 0.016

eV [30]. We therefore expect that the low and high spin states are close in energy for the

clusters. According to Hund’s rule, one expects the high-spin states being more stable

than the low-spin states. However, in the solid the AFM state is the ground state [30],

which predicts a low-spin singlet state for the dimer and the tetramer, and a quintet state

for the trimer. This is indeed the case for our CrCl2 clusters. According to our B3LYP

calculations, the global minima consist of the singlet (D1) structure of the dimer, the

quintet state of (T1) for the trimer, and the singlet state of (Q1) of the tetramer.

The spin-coupling pattern for the nonet state of Cr4Br8 (Q4) is also shown in Fig-

ure 3.11. We see that the BS scheme for the nonet state consists of a (4α4α4β4α) for

(Cr1Cr2Cr3Cr4). The spin-coupling pattern for the singlet state of (Q4) is slightly different

than that of the nonet. In this state, we have a (4α4β4β4α) pattern for (Cr1Cr2Cr3Cr4).

Both the nonet and singlet states of (Q4) have similar geometries, and we believe that

the added instability of the singlet state is based on the spin-spin interactions between

Cr2 and Cr3. To prove this, we look at the septendecet state of (Q4). The septendecet

state is 0.454 eV higher in energy than the nonet. The only difference in the spin pattern
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between these two states is that in the septendecet state, Cr3 has 4α spin. Hence, the

spin-spin interactions between Cr2 and Cr3 is significant, which provides an explanation

as to why the singlet state is higher in energy than the nonet state for (Q4).

Looking at the singlet state of the CrI2 tetramer (Q3), we see that the coupling scheme

does not follow the symmetry of the point group (Ci). We have a (4α4β4α4β) pattern

for (Cr1Cr2Cr3Cr4). It is interesting to note that the nonet state of (Q3) is only 0.024

eV higher in energy than the singlet. The spin-coupling scheme for the nonet state is

(4α4β4α4α) for (Cr1Cr2Cr3Cr4). Like (Q4), the spin-spin interactions between Cr2 and

Cr3 is significant, as the septendecet state for (Q3) is 0.516 eV higher in energy than the

singlet state.

(Q1)
(Q4)

(Q3)

Cr1 Cr2 Cr3 Cr4

Cr1

Cr2

Cr3

Cr4

Cr1

Cr2

Cr3

Cr4

Figure 3.11: BS spin-coupling patterns for the tetramer global minima.

3.2.4 Basis Set Superposition Errors

The basis set superposition errors (BSSE) for all of the global minima were estimated

using the counterpoise technique and only including two-body terms. The choice of the

two molecules (i.e. monomer and dimer, or monomer and trimer) for which to calculate the

BSSE for the planar ribbons was trivial. However, there are several different possibilities

in the selection of these two molecules for assessing the BSSE for structures (T2), (Q3),
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and (Q4), and all of them must be considered in order to ascertain which produces the

largest error. There are also two possible ways to form the tetramers. One of these

consists of adding a monomer to the trimer, and the other involves the combination of

two dimers. Both of these schemes were considered in our estimation of the BSSE for the

tetramers. The results of our BSSE calculations are shown in Table 3.14. We see that

for both CrF2 and CrCl2, the amount of the BSSE is relatively constant for the different

oligomers, with their values being between 0.06 and 0.07 eV. The BSSE for the CrBr2

and CrI2 dimers are also relatively low and comparable with those of the other dimers.

Looking at the trimers and tetramers of CrBr2 and CrI2, we see that the amount of BSSE

is slightly higher than their dimers and between 0.1–0.2 eV.

To assess the quality of our basis sets, we need to compare the binding energies of the

clusters with our calculated values of the BSSE. The binding energies of the clusters are

calculated from the single-point energies of each species in conjunction with the following

equations:

Bd = Ed − 2Em (3.5)

Btr = Etr − Ed − Em (3.6)

Btet = Etet − Etr − Em (3.7)

B′
tet = Etet − 2Ed (3.8)

where B is the binding energy, and Em, Ed, Etr, Etet are the energies of the monomer,

dimer, trimer, and tetramer, respectively. A comparison of the BSSE and binding energies

is also shown in Table 3.14. We see that, with a couple of exceptions, the binding energies

tend to decrease going down the halide group as well as decrease with increasing cluster

size. For all of the clusters, the relative amount of the BSSE is quite small and less than

6% of the binding energies. The exception to this is for the tetramer of CrBr2, for which

the value approaches 10% when considering the tetramer coming from two dimers.

As mentioned in Chapter 2, the BSSE is responsible for an overestimation of the bind-

ing energies due to basis set incompleteness. Hence, we need to apply corrections to the

binding energies by adding the calculated BSSE to them, which gives us the counterpoise-

corrected energies:

Ecc = B + EBSSE (3.9)

where Ecc is the counterpoise-corrected energy, B is the binding energy, and EBSSE is the

BSSE energy.
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Table 3.14: Calculated BSSE for the oligomer global minimaa.

Molecule BSSE (eV) Binding Energy (eV) % BSSE

Cr2F4 0.057 -2.269 2.5

Cr2Cl4 0.069 -2.019 3.4

Cr2Br4 0.072 -2.011 3.6

Cr2I4 0.070 -1.911 3.7

Cr3F6 0.057 -2.398 2.4

Cr3Cl6 0.069 -1.917 3.6

Cr3Br6 0.080 -1.927 4.2

Cr3I6 0.097 -2.020 4.8

Cr4F8 0.058/0.058 -2.386/-2.515 2.4/2.3

Cr4Cl8 0.070/0.069 -1.920/-1.818 3.6/3.8

Cr4Br8 0.117/0.177 -1.969/-1.885 5.9/9.4

Cr4I8 0.103/0.112 -1.800/-1.909 5.7/5.9

a Largest BSSE value listed. For the tetramers, the second value listed is for the combi-

nation of two dimers.

We see that the values of Ecc will always be slightly more positive than B. Although

the contribution of EBSSE to Ecc is small, the actual magnitude of EBSSE is comparable

to the energy differences between some of the low-energy oligomers, and in several cases,

the errors exceed these energy differences (see Tables 3.7, 3.10, 3.12). Therefore, we need

to calculate the BSSE for all of the low-lying states which lie within the uncertainty of

our global minima. The reasoning behind this can be seen in the following example. The

energy difference between the singlet and nonet states of (D1) for Cr2Cl4 is 0.054 eV,

with their binding energies being -2.019 and -1.965 eV, respectively. After applying the

counterpoise-correction, the binding energy of the singlet state increases to -1.950 eV. If

the calculated BSSE for the nonet state is less than 0.015 eV, then we cannot say with

certainty that the singlet state is indeed the global minimum for Cr2Cl4.

Table 3.15 compares the counterpoise-corrected binding energies (Ecc) of the low-lying

states with our global minima. For the dimers, we do not examine the BSSE between

the C2v and C2h structures with the same spin, as their geometries and energies are

almost identical. We see that our calculated global minima from the DFT calculations

are still lowest in energy after considering the BSSE for the low-energy states. There is
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one exception; the nonet state of (D1) for Cr2I4 is no longer lowest in energy. The energy

difference between the singet and nonet states of Cr2I4 from the DFT calculations (0.001

eV) is just too small to ascertain which is lower in energy.

Table 3.15: Comparison of the counterpoise-corrected binding energies of the global min-

ima with other low-lying states.

Molecule Structure State Ecc (eV)a

Cr2F4 D2 9Ag -2.203

D2* 1Ag -2.212

Cr2Cl4 D1 9A1 -1.899

D1* 1A1 -1.950

Cr2I4 D1* 9A1 -1.841

D1 1A1 -1.848

Cr3F6 T1 13Ag -2.318

T1* 5Ag -2.341

Cr3Cl6 T1 13Ag -1.815

T1* 5Ag -1.848

Cr4F8 Q1 17Ag -2.309/-2.437

Q1 9Ag -2.315/-2.444

Q1* 1Ag -2.328/-2.457

Cr4Cl8 Q1 17Ag -1.812/-1.704

Q1 9Ag -1.834/-1.734

Q1* 1Ag -1.850/-1.749

Cr4Br8 Q1 9Ag -1.734/-1.666

Q1 1Ag -1.776/-1.694

Q4* 9A -1.852/-1.708

Q4 1A -1.737/-1.573

Cr4I8 Q3 9A -1.678/-1.785

Q3* 1Ag -1.697/-1.797

a For the tetramers, the second value listed is for the combination of two dimers. * Global

minimum from our DFT calculations.
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3.2.5 Thermodynamics

CrF2

Vibrational analyses on the low-energy CrX2 species were carried out to determine various

thermodynamic properties. The calculated dissociation energies at the PW91/LanL2DZ

and B3LYP levels of theory for CrF2 are shown in Table 3.16. The results clearly show

that the addition of each CrF2 unit to the CrF2 chain brings an almost constant value in

energy of about 55 kcal/mol. Somewhat higher energies are obtained with the CASPT2

calculations, as the dissociation for structure (D2) was calculated to be 62.8 kcal/mol.

We assume that our dissociation energies are underestimated by our DFT methods by

roughly 8 kcal/mol.

Table 3.16: Dissociation energies for the global minima of the (D1), (D2), (T1) and (Q1)

CrF2 clusters for each spin state.

D1 D2 T1 Q1

Propertya Method 1A1
9A1

1Ag
9Ag

5Ag
13Ag

1Ag
9Ag

17Ag

De PW91b 52.9 52.4 52.6 52.4 109.5 108.8 165.6 165.1 164.3

B3LYP 52.3 52.0 52.3 52.1 107.6 107.1 162.6 162.3 162.1

De + ZPV E B3LYP 51.8 50.7 51.0 50.8 105.0 104.3 158.6 158.2 158.0

a Dissociation energies in kcal/mol. b PW91 calculations using the LanL2DZ basis set.

We calculated the values of ∆H, ∆G, and ∆S on the global minima from statistical

thermodynamics for the following reactions:

(1) 2CrX2 → Cr2X4

(2) Cr2X4 + CrX2 → Cr3X6

(3) Cr3X6 + CrX2 → Cr4X8

(4) 2Cr2X4 → Cr4X8

at 298.15 K and from 1000–2000 K. Table 3.17 lists these values at selected temperatures.

Our results show that all three thermodynamic properties become more positive with

increasing temperature. At 298 K, we see that tetramerization by reaction (4) is the most

thermodynamically favored, as its ∆G value is the most negative. At higher temperatures,
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the values of ∆G for reactions (1) and (2) are similar, as are the values for reactions (3)

and (4). We see that all of the reactions are exothermic, with dimerization being the least

and tetramerization via (4) being the most. Interestingly, the ∆H values for (2) and (3)

are almost the same at all temperatures studied.

Zasorin et al. performed an ED experiment on CrF2 at 1520 K [4]. At 1500 K, the

values of ∆G for reactions (1)–(4) were 4.3, 4.1, 15.0, and 14.9 kcal/mol, respectively. We

used Eq. 2.91 to estimate the equilibrium vapor-phase composition at this temperature,

and we calculated that it should consist of approximately 81.1% monomer, 15.7% dimer,

and 3.2% trimer.

Table 3.17: Thermodynamic properties for the CrF2 nucleation according to reactions

(1) – (4) in the text.a

Temperature (K)

Property 298.15 1000 1200 1500 2000

∆H(1) -51.1 -48.4 -47.6 -46.4 -44.4

∆G(1) -38.7 -13.0 -6.0 4.3 20.9

∆S(1) -40.2 -34.4 -34.7 -33.8 -32.6

∆H(2) -54.0 -51.3 -50.5 -49.3 -47.3

∆G(2) -42.0 -14.1 -6.7 4.1 21.7

∆S(2) -41.9 -37.4 -36.5 -35.6 -34.5

∆H(3) -53.7 -51.2 -50.3 -49.1 -47.1

∆G(3) -39.9 -6.7 2.1 15.0 36.1

∆S(3) -46.3 -44.5 -43.7 -42.8 -41.6

∆H(4) -56.6 -54.1 -53.3 -52.1 -50.1

∆G(4) -43.3 -7.8 1.4 14.9 36.9

∆S(4) -48.0 -46.3 -45.6 -44.7 -43.5

a ∆H and ∆G in kcal/mol, ∆S in cal/ mol K.

CrCl2

Vibrational analyses were performed on the low-lying CrCl2 states within the same tem-

perature range as CrF2. The results of our calculated dissociation energies at the
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PW91/LanL2DZ, B3LYP, and B3PW91 levels of theory along with the PAW calculations

for the infinite chain are shown in Table 3.18. We see that the addition of each CrCl2 unit

to the chain brings almost a constant value in energy of about 45 kcal/mol. This is also

supported from our PAW calculations where we obtain a cohesive energy of 42.9 kcal/mol

per CrCl2 unit for the AFM infinite chain. This compares to 46.4 kcal/mol per unit for

the solid, which includes interactions between the CrCl2 chains. Somewhat higher ener-

gies are obtained with wavefunction based methods. At the unrestricted (single-reference)

MP2 level of theory, we calculate a dissociation energy for structure (D1) of 57.4 kcal/mol

for the nonet state. In comparison, at the CASPT2 level we get 54.0 kcal/mol. Hence we

assume that the dissociation energies are, again, underestimated by our DFT methods.

Table 3.18: Dissociation energies for the global minima of the (D1), (D2), (T1) and (Q1)

CrCl2 clusters for each spin state.

D1 D2 T1 Q1

Property Method 1A1
9A1

1Ag
9Ag

5Ag
13Ag

1Ag
9Ag

17Ag

De PW91b 47.8 47.2 47.8 47.2 96.1 95.4 143.9 143.4 143.0

PW91c 45.4 45.1 45.6 45.1 87.8 84.2 131.9 - 127.1

B3LYP 46.6 45.3 46.5 45.2 90.8 89.7 135.0 134.6 133.9

B3PW91d 47.1 46.0 47.0 45.8 92.6 91.6 138.3 137.5 137.1

De + ZPV E B3LYP 45.6 44.4 45.6 44.3 88.9 87.8 132.2 131.7 131.1

B3PW91d 46.1 45.0 46.1 44.8 90.7 89.6 135.4 134.6 134.2

a Dissociation energies De in kcal/mol. b PW91 calculations using the LanL2DZ basis

set. c PW91 calculations using PAW method and plane wave basis sets. d cc-pVTZ basis

set used for Cl.

We also calculated the value of ∆Ho
298 for the nucleation reactions (1)–(4) to be -44.4,

-42.0, -42.1, and -40.7 kcal/mol, respectively. Based on the ∆Ho
298 values of sublimation

for the monomer to the tetramer from a mass spectrometric study by Ratkovskii et al. [14],

we calculated the values of ∆H for the same reactions to be -55±4, -53±5, -56, and -56

kcal/mol at standard conditions, respectively; the tetramer value is only an estimation.

Ratkovskii and coworkers also determined the standard enthalpies of dissociation of the

dimer, trimer, and tetramer to be 55±4, 109±8, and 156 kcal/mol, respectively. We

obtained values of 44.4, 86.4, and 128.5 kcal/mol for the same processes.
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Table 3.19: Thermodynamic properties for the CrCl2 nucleation according to reactions

(1) – (4) in the text.a

Temperature (K)

Propertyb 298.15 1000 1200 1500 2000

∆H(1) -51.8 -50.1 -49.3 -48.1 -46.1

∆G(1) -40.2 -16.9 -10.3 -0.7 14.8

∆S(1) -39.0 -33.2 -32.5 -31.6 -30.4

∆H(2) -49.5 -47.7 -46.9 -45.7 -43.7

∆G(2) -37.9 -12.6 -5.6 4.6 21.7

∆S(2) -38.8 -35.1 -34.4 -33.5 -32.4

∆H(3) -49.6 -47.8 -47.0 -45.8 -43.8

∆G(3) -36.5 -8.7 -1.0 10.0 28.8

∆S(3) -43.7 -39.0 -38.3 -37.2 -36.3

∆H(4) -50.5 -47.7 -46.9 -45.7 -43.8

∆G(4) -27.7 3.1 11.2 23.1 42.5

∆S(4) -43.5 -41.0 -40.1 -39.4 -38.2

a ∆H and ∆G in kcal/mol, ∆S in cal/ mol K. b The ∆H values listed includes the

CASPT2 correction for De (see text).

Schoonmaker et al. [13] determined the ∆H◦ value of dissociation of the dimer to be

47.9±3 kcal/mol. We obtained a value of 42.0 kcal/mol. Hence, our ∆H values from

the B3LYP calculations for reactions (1) to (4) are all too positive compared to the

experimental values. Changing to B3PW91 does not improve this situation significantly.

We therefore used our CASPT2 dimerization as a basis to estimate all other dissociation

energies. Our approach was the following: first, as each CrCl2 adds almost a constant

value, we took the CASPT2 dimerization energy of 54.0 kcal/mol and corrected this by

the higher than two-body contributions from our B3LYP calculations. This gives changes

in total electronic energies (not including zero-point vibrational energy corrections) of ∆E

= -54.0 kcal/mol for reaction (1) as discussed above, -51.7 for reactions (2) and (3), and

-50.5 for reaction (4). Next we took the vibrational analysis from our B3LYP calculation

and added these to our CASPT2 values. The calculated corrected enthalpies ∆H and free

energies ∆G at different temperatures are listed in Table 3.19. The reported ∆H values
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are now in much better agreement with experiment, although they might be still a bit

low.

We used Eq. 2.91 to estimate the vapor-phase composition of CrCl2 at 1200 K (i.e. ap-

proximately the same temperature in which the ED experiment was done in Ref. [3]). We

calculate a vapor composition of 39.4% monomer, 51.0% dimer, 9.2% trimer, and 0.4%

tetramer. We see that these values are quite different than our calculated vapor compo-

sition from the least-squares refinement, in which we estimated a vapor composition of

77% monomer, 19% dimer, and 4% trimer. We see that all of these oligomerization ener-

gies do not help us much in trying to estimate, based on the computations, the possible

vapor composition at our ED experimental conditions. The vapor decomposion is very

sensitive to slight changes in the ∆G values. Moreover, what most likely happens is a

sublimation process, during which larger species might evaporate from the solid together

with the monomeric molecules. Hence, the estimation of the vapor composition is beyond

our present possibilities.

CrBr2

The results of our calculated dissociation energies for the various CrBr2 oligomers at the

PW91/LanL2DZ and PW91 levels of theory are shown in Table 3.20. Our results show

that the addition of each monomer to the clusters adds approximately a constant value

of 45 kcal/mol. This result is interesting, since the global minima for the trimers and

tetramers were not the anti-ferromagnetically coupled chains of monomers like CrF2 or

CrCl2, yet we see a nearly constant addition to the dissociation energy. Even more so is

the fact that these De values are very close to those we obtained for the global minima

of the CrCl2 oligomers without the CASPT2 correction. The values of De (without zero-

point corrections) for the quintet state of (T1) and the singlet state of (Q1) (i.e. the

continuation of the anti-ferromangetically coupled chain) was calculated to be 88.9 and

133.4 kcal/mol, respectively. The dissociation energies of the quintet state of (T2) and

the nonet state of (Q4) are 1.9 and 2.8 kcal/mol higher than (T1) and (Q1), respectively.

Our CASPT2 calculations give a dissociation energy for (D1) of 46.1 kcal/mol, in good

agreement with our DFT results.

We calculated the ∆H, ∆G, and ∆S values of the oligomerization reactions (1)–(4),

and the results of these calculations are given in Table 3.21. We see that, again, all

thermodynamic properties become more positive with increasing temperature. Similar to
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Table 3.20: Dissociation energies for the global minima of the (D1), (D2), (T2) and (Q4)

CrBr2 clusters for each spin state.

D1 D2 T2 Q4

Propertya Method 1A1
9A1

1Ag
9Ag

5A 13A′ 1A 9A 17A

De PW91b 44.3 43.2 44.0 43.2 88.2 82.7 127.3 127.8 126.3

PW91 46.4 44.1 46.3 44.0 90.8 80.1 133.2 136.2 125.7

De + ZPV E PW91 45.6 43.4 45.6 43.2 89.1 78.6 130.7 133.7 123.4

a Dissociation energies in kcal/mol. b PW91 calculations using the LanL2DZ basis set.

Table 3.21: Thermodynamic properties for the CrBr2 nucleation according to reactions

(1) – (4) in the text.a

Temperature (K)

Property 298.15 1000 1200 1500 2000

∆H(1) -45.1 -42.4 -41.6 -40.4 -38.4

∆G(1) -34.0 -9.8 -3.4 6.0 21.2

∆S(1) -37.2 -32.5 -31.8 -31.0 -29.8

∆H(2) -43.3 -40.5 -39.7 -38.5 -36.5

∆G(2) -26.8 9.8 19.8 34.5 58.5

∆S(2) -55.1 -50.3 -49.5 -49.1 -47.5

∆H(3) -44.2 -41.4 -40.6 -39.4 -37.4

∆G(3) -31.8 -4.7 2.6 13.3 30.6

∆S(3) -41.1 -36.7 -36.0 -35.5 -34.0

∆H(4) -42.3 -39.5 -38.7 -37.5 -35.5

∆G(4) -24.6 15.0 25.8 41.8 67.9

∆S(4) -59.3 -54.5 -53.7 -52.8 -51.7

a ∆H and ∆G in kcal/mol, ∆S in cal/ mol K.

CrCl2, reaction (1) is the most exothermic, and the general trend in exothermicity is (1)

> (3) > (2) > (4). According to our calculated ∆G values, we see that reaction (1) is

the most thermodynamically favorable and (4) is the least favorable. Schoonmaker and
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coworkers [13] determined that the value of ∆H◦ of dissociation for Cr2Br4 was 47.0±3

kcal/mol, in good agreement with our PW91 value of 45.1 kcal/mol.

CrI2

The calculated dissociation energies for the various CrI2 oligomers are given in Table 3.22.

Our results show that the addition of a monomer to each of the clusters adds between

41.6–46.5 kcal/mol.

Table 3.22: Dissociation energies for the global minima of the (D1), (D2), (T2) and (Q3)

CrI2 clusters for each spin state.

D1 D2 T2 Q3

Propertya Method 1A1
9A1

1Ag
9Ag

5A 13A′ 1Ag
9A 17Ag

De PW91b 41.3 40.8 40.8 40.2 82.6 80.6 121.5 120.5 119.9

PW91 44.0 44.1 44.0 - 90.6 81.0 132.2 131.6 120.2

De + ZPV E PW91 43.3 43.3 43.3 - 89.1 79.5 129.7 129.3 118.4

a Dissociation energies in kcal/mol. b PW91 calculations using the LanL2DZ basis set.

There is an interesting trend which we observed among the De values for the CrCl2,

CrBr2, and CrI2 clusters. Looking at their overall dissociation energies, we see that they

are all quite similar (see Tables 3.18 and 3.20). Even more surprising is the fact that

among these three systems, we have two different structures for the global minima for the

trimers and three for the tetramers.

Our calculated De value for the nonet state of (D1) from our CASPT2 calculations is

37.1 kcal/mol - significantly lower than our PW91 value. If we consider the continuation

of the anti-ferromagnetically coupled chain of CrI2 units, we calculate the dissociation

energies (without zero-point corrections) for the quintet state of (T1) and the singlet

state of (Q1) to be 83.5 and 124.5 kcal/mol, respectively. We see that these values are 7.1

and 7.7 kcal/mol lower than the De for the quintet state of (T2) and the singlet state of

(Q3), respectively. Hence, structures (T2), (Q3), and (Q4), which contain a Cr-Cr bond,

become more stable than the chain-like structures as we go down the halide group, as the

values of De for the low-spin (T2) and (Q4) structures of CrBr2 were only 1.9 and 2.8

kcal/mol higher than the respective chain-like structures.
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Table 3.23: Thermodynamic properties for the CrI2 nucleation according to reactions

(1) – (4) in the text.a

Temperature (K)

Property 298.15 1000 1200 1500 2000

∆H(1) -42.9 -40.1 -39.4 -38.2 -36.2

∆G(1) -33.4 -7.9 -1.5 7.8 22.8

∆S(1) -31.8 -32.2 -31.5 -30.6 -29.5

∆H(2) -45.4 -42.6 -41.8 -40.6 -38.6

∆G(2) -29.0 7.8 17.9 32.6 56.8

∆S(2) -55.2 -50.5 -49.7 -48.9 -47.7

∆H(3) -40.2 -37.5 -36.7 -35.5 -33.6

∆G(3) -26.8 4.7 13.1 25.4 45.5

∆S(3) -45.1 -42.3 -41.5 -40.7 -39.5

∆H(4) -42.7 -40.0 -39.2 -38.0 -36.0

∆G(4) -22.3 20.5 32.5 50.3 79.5

∆S(4) -68.5 -60.5 -59.8 -58.9 -57.7

a ∆H and ∆G in kcal/mol, ∆S in cal/ mol K.

Looking at the dimer De values from our CASPT2 calculations from the four chromium

dihalides, we see that it decreases going down the halide group. Not only this, but if we

also calculate the difference in the CASPT2 dimer De values between these four molecules,

i.e. (CrF2 and CrCl2), (CrCl2 and CrBr2), and (CrBr2 and CrI2) we get 3.3, 5.6, and

9.0 kcal/mol, respectively. We see that there is roughly an increase of 3 kcal/mol in

the differences in the dissociation energy for each dimer going from F to I. We see two

different patterns emerging between the CASPT2 and DFT results. CASPT2 predicts a

steady decrease in the dissociation energies of the chromium dihalide oligomers going down

the halide group. Our DFT calculations show that the CrF2 oligomers have overall the

largest dissociation energies; the dissociation energies of the CrCl2 to the CrI2 oligomers

are roughly the same. It is interesting to note that Brewer et al. [123] reported that the

∆Ho values of sublimation for CrF2, CrCl2, CrBr2, and CrI2 were 85, 64.8, 63.3, and 62

kcal/mol, respectively; the CrF2 value was an estimation. We clearly see that the ∆Ho

values of sublimation for CrCl2, CrBr2, and CrI2 are very similar.
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We also calculated the thermodynamic properties for nucleation reactions (1)–(4) at

various temperatures, the results of which are given in Table 3.23. Of the four reac-

tions, only dimerization has a negative ∆G value above 1000 K, and the general trend in

thermodynamic favorability at high temperatures is (1) > (3) > (2) > (4).

3.2.6 Infrared Analysis

The infrared spectra of the gas-phase chromium dihalides are complex, with several peaks

arising from the different species present in the vapor. A definite assignment of these

peaks is quite difficult because many of them are either weakly absorbing or overlap with

vibrations from other oligomers. In this section, we report the calculated vibrational

frequencies of the chromium dihalide global minima from the monomer to the trimer. We

also compare our results with the available literature data. It should be noted that no

experimental IR data could be found for the CrF2 oligomers and only the results for the

monomer are reported.

The calculated frequencies and IR intensities for the monomer, dimer, and trimer

global minima from our intensive geometry optimizations are shown in Table 3.24. Start-

ing with the CrF2 monomer, the most intense peak is from the asymmetric Cr-F stretching

frequency (ν3) located at 716 cm−1. This stretching occurs at lower frequencies for the

dimer (649 cm−1) and the trimer (653 cm−1) and corresponds to the asymmetric stretch

of the terminal fluorides. The spectrum of the dimer should consist of several other peaks

located at roughly 480, 440, 190, and 60 cm−1. The Cr3F6 spectrum would have additional

peaks around 470, 210, 110, and 45 cm−1.

According to our B3LYP calculations, the IR spectrum of CrCl2 vapor should consist

of intense peaks located around 470, 420, and 330 cm−1. The first peak arises from ν3 of

the monomer, with the other two coming from the dimer and trimer. Kobra [8] performed

a gas-phase IR analysis of CrCl2 at 950 ◦C and located a series of broad, intense peaks

at 475, 415, and 320 cm−1. He labeled the first peak as ν3 of the monomer with the

two other peaks coming from the dimer or trimer. Kobra also observed two low intensity

peaks located at 260 and 235 cm−1. We see that the three intense peaks are in good

agreement with our calculated frequencies. The one at 475 cm−1 comes exclusively from

the monomer, and the peak at 415 cm−1 could come from from both the dimer and

trimer, as both of these molecules have an intense band within this region. The one at

320 cm−1 could, again, have contributions from both the dimer and trimer; there is the
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Table 3.24: Vibrational frequencies (in cm−1) and IR intensities (in km mol−1) calcu-

lated for the global minima of the different chromium dihalide species.a

Molecule Species Frequencies and Intensities

CrF2 Monomer 119(28), 614(56), 716(224)

Dimer 48(6), 57(31), 81, 136, 190(45), 201, 398, 442(88), 463, 481(132), 649(432), 667

Trimer 24(3), 44(21), 60, 61, 84(2), 108(18), 130(9), 140, 169, 209(53), 248(1), 368

414(3), 424, 453, 468(87), 482, 495(173), 510(408), 653(381), 659

CrCl2
b Monomer 49(15), 349(11), 473(147)

Dimer 21(8), 23(2), 37, 90, 113, 115(19), 265(8), 282(6), 284, 330(46), 420(293), 433(5)

Trimer 13(2), 18(7), 23, 29, 29, 90, 92(4), 95(8), 105, 133(18), 144, 213, 261, 281(13)

288, 293(5), 309, 330(191), 350(79), 424(299), 429

CrBr2 Monomer 32(5), 224(4), 376(80)

Dimer 10, 10(1), 21, 64, 80, 85(5), 168, 180, 240, 274(17), 337(160), 343

Trimer 22, 54, 71(1), 72, 78(1), 84(1), 89, 104(1), 109, 121(3), 131(1), 138

145, 159(5), 186(1), 198(14), 203(7), 240(23), 281(30), 309(51), 315(42)

CrI2 Monomer 13(4), 141, 329(58)

Dimer 14, 16, 38, 52(2), 70, 72, 96(5), 136, 194, 242(17), 279(75), 306

Trimer 14, 44, 52, 55, 62, 64(1), 68, 78, 85(1), 96, 101, 110(5), 117(1), 135(1)

144(1), 171(8), 187(5), 205(16), 244(21), 262(38), 266(19)

a Only non-zero intensities are listed and set in parentheses after the corresponding fre-

quency. b B3LYP result.

possibility that the monomer’s symmetric stretching frequency at 349 cm−1 could also be

buried within this peak. In an Ar MI-IR experiment by Hastie et al. [7], several peaks of

different intensities were located at 500, 430, 415, 370, 342, 324, 282, 263, 257, 170, and

50 cm−1, and the authors mentioned that they came from the dimer and trimer; several

of these frequencies are in good agreement with our calculated values. It is interesting

to mention that Konings et al. [10] reported that the ν3 value for the monomer is at 422

cm−1; we see that this matches one of the frequencies for the dimer from our calculations.

As we have [4(n − 1) + 2] Cr-X bonds for the (CrF2)n and (CrCl2)n clusters, we

have (4n − 2) Cr-X stretching frequencies in the CrX2 chain. The two highest frequency

modes are the symmetric and asymmetric terminal Cr-Xt stretching modes. The coupling
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between the symmetric and antisymmetric modes becomes smaller as the chain grows for

CrCl2, and the splitting between these two modes become smaller with only 5 cm−1 left

for the trimer. For CrF2, the coupling between these two modes decreases to 18 cm−1

for the dimer and increases slightly to 24 cm−1 for the trimer. The lowest frequencies for

all of the CrCl2 (and CrF2) clusters are the ring puckering, ring twisting, and terminal

halide bending modes.

Looking at the data for the CrBr2 species, we expect the IR spectrum to consist of

three intense peaks located at approximately 380, 340, and 310 cm−1; the first peak comes

from the asymmetric Cr-Br stretching mode of the monomer, and the remaining two come

from the dimer and trimer. Kobra [8] studied the gas-phase IR spectrum of CrBr3 and

observed that it underwent decomposition to CrBr2 and reacted with Br2 gas to form

CrBr4. He concluded that the asymmetric stretching band from the CrBr2 monomer

was at 365 cm−1. Kobra also observed bands at 320, 246, and 200 cm−1 and assigned

these to the different vibrations from the dimer. We see that our monomer values are in

good agreement; the dimer vibration at 320 cm−1 agrees reasonably well with our peak

at 337 cm−1. However, our data for the dimer does not show any absorptions around

246 or 200 cm−1. Our calculated peak at 274 cm−1 is the only one that comes close

to the experimental values for the dimer. Looking at the trimer, we see that there are

several absorptions around 246 and 200 cm−1. Since this gas-phase IR experiment started

with CrBr3 and not from CrBr2, the vapor composition may be complex, and we cannot

ascertain whether the peaks at 246 and 200 cm−1 come from the trimer or from other

species present in the vapor.

The gas-phase IR absorption spectrum of CrI2 vapor was obtained by Konings and

Booij [10]. They observed the asymmetric stretching and bending peaks for the monomer

at 319.7 and 37 cm−1, respectively. We see that the asymmetric stretching frequency is in

good agreement with our value, and the bending frequency is higher than our calculated

value. They also observed three additional bands at 280.9 (intense), 214 (weak), and 88

(weak) cm−1. They concluded that the two bands at 280.9 and 88 came from the dimeric

species, and the one at 214 came from the condensed phase. Looking at our calculated

frequencies for the dimer, we see an intense band at 279 and a weak band at 96 cm−1,

which agree with the experimental data. However, a band at 242 cm−1 was not observed

in their spectra, and this peak could have been buried underneath the strong absorption

band at 280.9 cm−1. Schiefenhövel and coworkers [23] calculated the IR spectra of the
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CrI2 monomer and dimer with LDA. For the monomer, they calculated the frequencies

to be at 70, 148, and 345 cm−1, and for the dimer, they calculated the frequencies to be

19, 22, 38, 53, 72, 77, 108, 150, 215, 265, 305, and 336 cm−1. We see that all of their

frequencies are higher than our corresponding values.

3.3 Gas-Phase Electron Diffraction Analysis of CrCl2

The experimental and theoretical molecular intensity and radial distribution curves are

given in Figures 3.12 and 3.13; the experimental molecular intensities are given in the

Appendix. It can be seen that most of the information about the systems present in the

vapor is in the first peak, corresponding to the bond lengths. The major component of

the vapor, the monomer, has only one Cl· · ·Cl nonbonded distance, but the clusters have

many strong contributions in this region, even if they are present only in small amounts.

Therefore, it is not surprising that depending on the refinement scheme, within a certain

interval, different vapor compositions and somewhat different geometrical parameters can

give equally good agreement - even if we consider only realistic solutions. Moreover, if

we accept the results of the computation about the structure of the clusters, we have

altogether eight different Cr-Cl bond lengths within the first peak, differing from each

other by about 0.02 Å to 0.20 Å, with their different vibrational amplitudes and different

weights depending on their relative amounts.

There is one more uncertainty concerning the ED results. Our computations showed

(see Table 3.2) that the symmetric 5Πg saddle point state is only about 0.02–0.09 eV higher

in energy than the 5B2 ground state, and this means that molecules in this state may also

be present in the vapor phase since the thermal energy of our experiment is more than

enough to produce them. Even if the lifetime of these transition-state molecules is short,

it might still be much longer than the very fast interaction time of the electron beam and

the molecular beam in the experiment (approximately 10−18 sec). Even molecules in the
5Σ+

g excited state might be present in the vapor according to some of the computations.

The monomers in the 5Πg and 5Σ+
g states are linear and also have somewhat longer bond

lengths than the ground state (5B2) molecule. We tried to include two different monomeric

species in the analysis, but this was not successful due to the high correlations. There

is also a certain elusiveness concerning the dimeric species which constitutes about 20%

of the vapor. The energy difference, for example, between the nonet and singlet dimeric
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Figure 3.12: Experimental (E, dots) and calculated (T, solid line) electron diffraction

molecular intensities for a vapor composition of 77(4)% monomers, 19(4)%

dimers, and 4(3)% trimers of chromium dichloride.

structures of C2v symmetry is about 0.024 eV, and the DFT and correlated methods do not

even agree on which one is the ground state. These structures differ by several thousandths

of an Å in some of their bond lengths. Moreover, the energy difference between the C2v

and C2h symmetry dimers is only about 0.001 eV, although their geometries do not differ

much. Therefore, in determining the uncertainties of the structural parameters, we have

to consider that some structures may be averages of similar molecular species.

The results of the ED analysis of CrCl2 are given in Table 3.25. The thermal average

bond length (rg), 2.214(13) Å, agrees with the previously [3] determined value within their

uncertainties. The equilibrium bond length can be estimated from the thermal average

value by introducing vibrational corrections.

This process is done by the use of the following equation:

rM
e = rg − (3/2)al2T (3.10)

where a is the Morse parameter and lT is the vibrational amplitude at temperature T .
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Figure 3.13: Experimental (E, dotted line) and calculated (T, solid line) radial distribu-

tions and their differences (∆) corresponding to the molecular intensities

of Figure 3.12. The contributions of different distances are indicated.

As discussed above, the value we determined here depends on several assumptions and

thus carries a larger than usual uncertainty. The equilibrium Cr-Cl bond length (rM
e ) of

2.196(20) Å is in agreement with several of our computed values, see Table 3.2. The bond

angle from electron diffraction, 149(9.5)◦, has an even larger uncertainty, due to the fact

that the peak around 4.2 Å on the radial distribution curve has several components from

the dimers and trimers, and thus the exact position of the monomer Cl· · ·Cl distance is

uncertain. Nonetheless, this bond angle does not correspond to a linear molecule, even if

taking into account the shrinkage effect. If we assume that due to the high experimental

temperature and the small energy difference between the ground state and the 5Πg state

the linear transition-state molecules could also be present in the vapor in a smaller amount

- and assuming that they had a bond length similar to that of the ground state molecule as
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Table 3.25: Geometrical parameters and vapor composition for CrCl2 from electron

diffraction.

Parameter Value

rg(Cr-Cl)a, Å 2.214(13)

rM
e (Cr-Cl)b, Å 2.196(20)

l(Cr-Cl)c, Å 0.093(3)

κ(Cr-Cl)d, Å3 5.17x10−5

rg(Cl· · ·Cl), Å 4.272(95)

l(Cl· · ·Cl), Å 0.216(26)

∠a Cl-Cr-Cl, deg. 149(9.5)

Monomer (%) 77.4(4.2)

Dimer (%) 18.7(4.2)

Trimer (%) 3.9(2.8)

a The rg(Cr-Cl) value from Ref. [3] is 2.207(10) Å. b Calculated from rg(Cr-Cl) by an-

harmonic corrections. c Refined in a group with the amplitudes of the dimer and trimer

bond lengths. d Not refined.

obtained from our calculations (see Table 3.2) - its Cl· · ·Cl distance would be only about

0.12 Å longer than that of the ground-state molecule with a 149◦ bond angle due to the

shrinkage effect. This would somewhat decrease the Cl· · ·Cl distance and, consequently,

the bond angle of the ground-state molecule. The large uncertainty of the bond angle

covers this possibility.

The electron diffraction radial distribution curve (Figure 3.13) clearly indicates that

there are other species present in the gas phase beside the monomer since for a triatomic

molecule, only two peaks corresponding to the Cr-Cl bond distance and the Cl· · ·Cl non-

bonded distance would be observed. The peak at 3.3 Å contains the Cr· · ·Cr and Clb· · ·Clb

distances within the rings of the oligomers (Figure 3.13). The monomer Cl· · ·Cl distance

is in the peak at 4.3 Å, together with several oligomer distances, and the further peaks,

at about 5.4 and 7.3 Å, correspond to different longer nonbonded distances of the dimer

and trimer molecules. The agreement between the experimental and calculated distribu-

tion is very good, demonstrating that the chain-like structures support the experimental

data. Pictures of the thermally-averaged dimer and trimer from our least-squares refine-
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ment are shown in Figure 3.14. We see that the rings within these thermally-averaged

structures are puckered, yet still contain the four-membered ring motif as were found in

the computations. We also have to mention that the more general, six-membered ring

structure of metal halide trimers (see, for example Ref. [124]) does not agree with the

experimental data. In that structure, there are three equal Cr· · ·Cr distances in the ring

that are situated around 4.0 - 4.1 Å. That would push the monomer Cl· · ·Cl distance to

the peak at 3.3 Å, resulting in a monomer bond angle smaller than 110 degrees, which

would not agree with either of our computations. Even if the trimer amount is about

3% in both types of refinements, due to the large atomic number of Cr and the fact that

there are three such distances, its effect is noticeable. Due to the many closely-spaced

distances and of the relatively low concentration of the larger species in the vapor, it is

not possible to distinguish between their high-spin and low-spin states, or between the

C2v and C2h structures of the dimer. Based on our refinement scheme, we predict that

the vapor composition consists of 77.4(4.2)% monomer, 18.7(4.2)% dimer, and 3.9(2.8)%

trimer.

Dimer

Trimer

Figure 3.14: Thermal-averaged dimer and trimer structures for CrCl2 from the least-

squares analysis. Top and side views are given for each cluster.
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3.4 The Solid State of CrCl2

Crystalline α-CrCl2 has an orthorhombic unit cell with Pnnm symmetry [115,116]. CrF2

and CrBr2 have monoclinic unit cells with P21/n and C2/m symmetries, respectively

[117,118]. There has been some debate on the crystal structure of CrI2. Tracy et al. [119]

reported a monoclinic unit cell of C2/m symmetry, and Besrest et al. [120] later concluded

on an orthorhombic unit cell with Cmc21 symmetry. Although all of the chromium

dihalides possess different crystallographic symmetries, they all have one major structural

similarity in common. All of them contain a central chromium atom surrounded by a Jahn-

Teller distorted octahedron of halide atoms (similar to cubic close packed geometry). Four

of the Cr-X bonds within the plane are all equivalent, and the remaining two Cr-X bonds

are elongated. These structures form infinite chains of parallel CrX2 ribbons which are

rotated at some angle to one another. These structure is represented pictorally in Figure

3.15 for α-CrCl2.

Our calculated global minima for the oligomers of CrF2 and CrCl2 consist of planar,

anti-ferromagnetically coupled ribbons of CrX2 molecules linked together through bridging

halide atoms. It is very unusual for these oligomers to have structures which are very

similar to that of the solid state. In one of our recent papers [30], we calculated several

different properties of the solid state α-CrCl2 from DFT. In α-CrCl2, the ribbons of CrCl2

units align in perpendicular sheets along the crystallographic c-axis. The spins of the Cr

3d electrons were experimentally found to be anti-ferromagnetically coupled along these

chains [121, 122]. However, there are different possibilities in the spin coupling patterns,

and we sought to determine if the coupling scheme occurred via intrachain coupling or

interchain coupling (see Figure 3.16). Not only this, but we wanted to determine if GGA

(PW91) or LSDA produced a better crystal structure and determined which DFT method

best reproduced the experimental spin coupling constants.

According to our results, the anti-ferromagnetic (AFM) coupling scheme is energet-

ically favored over the ferromagnetic (FM) coupling pattern for both PW91 and LSDA

crystal structures (Figures 3.16 and 3.17). PW91 produces a very shallow minimum for

both coupling schemes, and the binding energy was nearly constant beyond a cell volume

of 80 Å3. The PW91 functional with AFM-I coupling produces a slightly under-bonded

structure, with the a and b lattice constants overestimated by roughly 5%. LSDA exhibits

an overbinding effect perpendicular to the c-axis and produces a theoretical cell volume

that is 17% smaller than the experimental cell volume. The Cr-Cl bond lengths within
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Figure 3.15: Magnetic unit cell of the anti-ferromagnetically coupled α-CrCl2.

Green/large (grey/small) spheres represent Cl(Cr) atoms. Dashed lines

indicate elongated octahedral bonds. Figure obtained from Ref. [30].

the molecular ribbons are very similar to those that we obtained from the B3LYP gas phase

calculations. A comparison of the Cr-Cl bond lengths from our solid state calculations

with our gas-phase data is given in Table 3.4. Both the FM and AFM-I schemes from our
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Figure 3.16: Different intra and interchain coupling schemes examined for α-CrCl2. Fig-

ure obtained from Ref. [30].

PW91 calculations reproduce the experimental ribbon structures reasonably well. As

expected, the overbinding effects from LSDA produce bond lengths that are slightly too

short. We found that the intrachain Cr-Cl bond length changes very little in the coupled

and uncoupled schemes, and this same effect is observed in our gas-phase calculations

for all of the CrCl2 clusters (i.e. high spin and low spin states have almost identical

geometries). Our gas-phase Cr-Cl bond lengths for the bridging halides agree very well

with our PW91 solid state results as well as those from Oswald and coworkers.

Given that we are able to accurately reproduce the crystal structure for α-CrCl2,

our next goal is to reproduce the experimental spin coupling constants among the Cr 3d

orbitals. Crystalline α-CrCl2 was found to be a S = 2 Heisenberg antiferromagnet. The

chainlike structure would be easily described by the Heisenberg Hamiltonian

HH = −2J
∑

c,i

SiSi+1 − 2J ′
∑

c,i

∑

c′,i′

SiSi′+1 (3.11)

taking into account intra- and interchain next neighbor coupling, J and J ′, respectively.

The first sum in Eq. 3.11 runs over all spins i in each chain c, and the second sum runs
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Figure 3.17: E(Ωo)-curves. Circles: data points, lines: Vinet-fit, diamonds: parameters

of final structure. (A) is the LSDA result. (B) is the PW91 result. Eo:

binding energy per CrCl2 unit, Ωo: unit cell volume per CrCl2 unit. Figure

obtained from Ref. [30].
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Table 3.26: Comparison of the intrachain Cr-Cl bond lengths from crystalline α-CrCl2

with our gas-phase structures. Bond lengths listed are in Å.

Method R (Cr-Cl)

Tracy et al.a 2.40

Oswaldb 2.37

FM, PW91 2.36

FM, LSDA 2.32

AFM-I, PW91 2.36

AFM-I, LSDA 2.34

Gas-phase B3LYP 2.354, 2.373c

a Ref. [116]. b Ref. [115]. c Bridging Cr-Cl distances for the CrCl2 dimer global minimum

from Figure 3.8.

over all spins within the adjacent chains c, c′. With the exception of the high-spin FM

state, all solutions to the spin-unrestricted DFT or UHF equations used by us are not

eigenfunctions of the Heisenberg Hamiltonian [57]. Therefore, we can work with the Ising

Hamiltonian

HI = −2J
∑

c,i

Sz,iSz,i+1 − 2J ′
∑

c,i

∑

c′,i′

Sz,iSz′,i′ (3.12)

and fit the first-principles energies for three different magnetic coupling schemes to respec-

tive expectation values HI to obtain J and J ′. These three different coupling schemes,

which are labeled as FM, AFM-I, and AFM-II, are depicted in Figure 3.16. AFM-I was

calculated to be the magnetic ground state. For these states, we are able to calculate

their energies

EFM = −2JS2 + 8J ′S2 + Eo (3.13)

EAFM−I = 2JS2 + Eo (3.14)

EAFM−II = −4J ′S2 + Eo (3.15)

per spin Si, where we also introduced the nonmagnetic contributions Eo to the binding

energy. Thus, we obtained J and J ′ by

J =
1

8S2
(EFM + 3EAFM−I − 2EAFM−II) (3.16)

J ′ =
1

16S2
(EFM + EAFM−I − 2EAFM−II) (3.17)
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The values of EFM , EAFM−I , and EAFM−II are calculated using the experimental cell

coordinates as well as our optimized structures.

The results of our spin-coupling calculations for solid-state α-CrCl2 are given in Table

3.4 along with the experimental values. Also at the experimental geometry, we utilize

the PBE exchange-correlation functional [42] and a combination of LSDA with on-site

Coulomb repulsion (LSDA+U) [28]. In the LSDA+U theory, we chose U + J = 3.8 eV,

which gave the best agreement with the spin-coupling constant, J . For all methods, we

reproduce the antiferromagnetic character of α-CrCl2 such that J < 0. We also find that

J ′ > 0 and that |J ′| < |J |. However, our calculated values of J are more than double the

experimental value, with the exception of the fitted LSDA+U value. We also obtain even

worse results for the J ′ values. Using the optimized geometries for PW91 and LSDA gave

no improvements for the results. We also note that the values of J and J ′ change very

little for our PW91 results from both the experimental and optimized geometries.

Table 3.27: Spin coupling constants for α-CrCl2, calculated at experimental and theo-

retical geometries.

Geometry Method J(kBK−1) J ′(kBK−1)

Experimental Literaturea -9.5 1.23

LSDA -23.9 2.68

PW91 -19.4 3.08

PBE -18.0 3.62

PBE0 -37.9 -11.19

LSDA+U -9.6 1.46

Optimized LSDA -49.5 4.32

PW91 -19.8 3.08

a Ref. [115]

DFT typically fails to describe magnetic interactions for strongly correlated sys-

tems [29, 125]. This deficiency arises from the self-interaction energy. It can be partially

overcome by explicitly correcting for the electronic self-interaction [126, 127] or by in-

cluding some of the exact exchange in the exchange-correlation functional [128]. Perdew

et al. argued for an exact exchange mixing coefficient a = 0.25 from coupling-constant

integration [129] and the according extension (PBE0) of the PBE exchange-correlation



CHAPTER 3. RESULTS 114

functional [54], which has given improved magnetic coupling parameters [130]. We pre-

form exact exchange calculations with variable mixing a around a = 0.25 (see Figure

3.18 for results). A value of a = 1.0 would give 100% of the Hartree-Fock exchange en-

ergy. The strong dependence of J and J ′ on the value of a can be stated, however, in

contrast to other studies including the exact exchange does not improve the agreement

with experimental data. Both J and J ′ are negative around a = 0.25, suggesting an

anti-ferromagnetic interchain coupling and thus a positive ratio J/J ′, in contrast to the

experiment.

0.0 0.1 0.2 0.3
exact exchange contribution a

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

J,
 J

’ [
k B

/K
]

J’
J

Figure 3.18: Magnetic coupling constants J , J ′ from hybrid-DFT calculations, varying

the exact exchange mixing coefficient a. Figure obtained from Ref. [30]



Chapter 4

Trends among the Chromium

Dihalides

In Chapter 3, we found that many of the properties of the different chromium dihalides

were quite similar. For example, the ground electronic state of all of the monomers is the
5B2 state, arising from the Renner-Teller distorted 5Πg state - leading to bent structures

for all of them. We also discovered that all of the lowest energy dimers consisted of a

planar, anti-ferromagnetically coupled, dihalide bridged structure of either C2v or C2h

symmetry. All of the dimers with D2h symmetry represented second-order saddle points

with imaginary bending modes of the terminal halides going to either cis (C2v) or trans

(C2h) structures. There are several more interesting trends among the properties of the

chromium dihalide species which we discovered from our calculations, which are reported

in this chapter.

Beginning with the monomers, we looked at the chromium-halide bond lengths in their

ground states (from our DFT calculations) and compared them with the experimental gas-

phase data along with the solid-state (where available). We also compared the X-Cr-X

bond angles for the different monomers in the 5B2 ground states. The results of these

analyses are shown in Figure 4.1. Not surprisingly, our calculations show that there is a

steady increase in the Cr-X bond length going down the halide group, which is supported

by the experimental gas-phase data. Going from CrCl2 to CrBr2, we see that the Cr-X

bond length changes the least. A similar trend is also found in the intrachain as well

the interchain Cr-X bonds in the crystals. Looking at the bond angles, we see that they

increase with the increasing size of the halide.

115
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Figure 4.1: Comparison of the Cr-X bond lengths and angles among the different

monomers. a CrF2: ED result from Ref. [4], CrCl2: from our ED analy-

sis, CrI2: estimated value from Ref. [10]. b Solid-state intra- and interchain

Cr-X distances from Refs. [116–119].
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This trend is not linear, as there is a large difference in the bond angle (roughly 25◦)

between CrBr2 and CrI2. Interestingly, the bond angles of CrCl2 and CrBr2 are almost

the same.

Looking at the dimers in the singlet states, there are some interesting properties among

the Mulliken spin densities of the Cr atoms and the Cr-Cr distances. These trends are

represented in Figure 4.2. For the Mulliken spin density, we only report the α spin value.

We see that the Cr-Cr distance tends to increase with the increasing size of the halides,

with the exception being Cr2Br4, as this distance slightly smaller than Cr2Cl4. The

Mulliken spin density on the Cr atoms increases almost linearly going down the halide

group and varies between 3.9 for Cr2F4 to 4.2 for Cr2I4, which is consistent with the

decreasing electronegativity from F to I. We also report that the overall spin density on

the terminal halides increases from 0.01 for fluorine to 0.17 for I. The spins of the bridging

halides change very little and are always close to zero.

All of the chromium dihalides have different crystallographic symmetries, yet they all

have one structural similarity in common, which is that they all contain planar dihalide

bridged structures which are rotated at some angle to one another. For CrF2 and CrCl2,

these planar, anti-ferromagnetically coupled structures were the global minima for the

dimer to the tetramer. For CrBr2 and CrI2, these structures were lowest in energy only

for their dimers. It was seen that as the length of the ribbon increased (i.e. going from the

dimer to the tetramer), the change in the geometry decreased. To see how the intrachain

Cr-X distances for the larger clusters compare with those of the experimental solid-state,

we looked at the average Cr1-Xb distances in the dimers and the average Cr2-Xb distances

in the trimers and tetramers. A plot of these bond lengths for the dimer to the tetramer

for the anti-ferromagnetically coupled ribbons [(D1), (T1), (Q1)] is shown in Figure 4.3;

the intrachain Cr-X distances in the solid state are given for comparison. We see that

all of the gas-phase Cr-Xb distances in the clusters converge nicely to their solid-state

values, though a majority of them are slightly shorter than the experimental values. This

is expected, as the solid-state structures also include interchain interactions. The absolute

differences in the Cr-Xb bond lengths between the solid-state and Cr4F8, Cr4Cl8, Cr4Br8,

and Cr4I8 are 0.66%, 0.08%, 1.26%, and 0.66%, respectively.

In our analysis of the dissociation energies of the low-energy oligomers, we saw that

CrF2 had the highest of the dissociation energies. One would logically predict that the
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state dimers from DFT calculations.
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Figure 4.3: Gas-phase Cr-Xb distances for the dihalide-bridged, anti-ferromagnetically

coupled oligomers. Solid-state values are indicated by dashed lines and are

taken from Refs. [116–119].

dissociation energies would decrease going down the halide group, as ion-ion interactions

become progressively weaker. This was not the case. Our calculations showed that the

dissociation energies of the CrCl2, CrBr2, and CrI2 oligomers were roughly the same,

with each monomer adding approximately 45 kcal/mol to the cluster. These trends are

represented pictorally in Figure 4.4 for the oligomer global minima. We see that the De

for the CrF2 oligomers are approximately 10-20 kcal/mol higher than all of the other

chromium dihalides. The De values for CrCl2, CrBr2, and CrI2 are all very close to

each other. We note that the plots of the dissociation energies are linear for all of the

chromium dihalides. Turning to the literature, we found that the standard sublimation

enthalpies of the chromium dihalides follow a similar pattern. Brewer et al. reported that

the standard sublimation enthalpies of CrF2, CrCl2, CrBr2, and CrI2 were 85, 64.8, 63.3,
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and 62 kcal/mol, respectively [13,123,131–135]; the CrF2 value was an estimation. We see

that the sublimation enthalpy for CrF2 is approximately 20 kcal/mol higher than the other

chromium dihalides. We calculated the standard dissociation enthalpies (∆H◦
dis) for the

tetramers of CrF2, CrCl2, CrBr2, and CrI2 to be 158.8, 128.5, 132.6, and 128.5 kcal/mol,

respectively. Note that the CrCl2 value does not include the CASPT2 corrections. The

∆H◦
dis of dissociation for Cr4F8 is roughly 26-30 kcal/mol higher than the other three

tetramers. The ∆H◦
dis values for Cr4Cl8, Cr4Br8, and Cr4I8 are similar, with the Cr4Br8

value being 4 kcal/mol higher than the other two. If we take the average ∆H298 values for

reactions (1)–(3) (see section 3.2.5) as a crude approximation of the standard enthalpies

of sublimation for the chromium dihalides, we get 52.9, 42.8, 44.2, and 42.8 kcal/mol for

CrF2, CrCl2, CrBr2, and CrI2, respectively. Though these enthaplies are significantly less

than the experimental values, we see the relationships arising among these molecules early

in the nucleation processes.
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Figure 4.4: Dissociation energies (De) for the different chromium dihalide oligomers ob-

tained from DFT calculations.
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During the calculations of the chain-like structures for the chromium dihalides, we

noticed that the energy difference between the high and low-spin states converged to

specific values. For the tetramers of CrF2, CrCl2, CrBr2, and CrI2, the energy difference

between the septendecet and singlet states of (Q1) from our DFT calculations are 0.022,

0.048, 0.104, and 0.057 eV, respectively. We mention that in our solid-state calculations

of α-CrCl2, the energy difference between the AFM and FM coupling schemes was only

0.016 eV. We see that our gas-phase calculations overestimate the energy difference -

being slightly over double that of the calculated solid-state value. The literature value for

this energy difference at 298 K is 0.009 eV [115]. It is well-known, however, that BS-DFT

overestimates the energy difference between the high and low-spin states [53].



Chapter 5

Conclusions

The chromium dihalides represent a class of deceptively simple molecules for which to

study experimentally and theoretically. The difficulties from both the computations and

experimental analyses amply support this.

According to the literature, both the electronic state and the shape of the ground-

state monomeric molecules were in doubt. Infrared spectroscopy and gas-phase electron

diffraction experiments supported a linear structure for the monomers, in agreement with

the geometry predicted by LFT. From a computational standpoint, handling an open

electron shell system requires special care. It has been shown previously [19,20] that LFT

is only a crude approximation for these systems, as there is a noticeable 3d-4s mixing,

giving rise to low-lying, closely-spaced electronic states. In this thesis, complete active

space calculations with different sizes of the active space were applied; as well as multi-

reference, second-order many-body perturbation theory, and coupled cluster calculations,

in order to treat both dynamical and nondynamical electron correlation for the monomers.

Our results showed that the treatment of these systems is extremely method-dependent.

Our DFT calculations predicted that from among the possible electronic states of a linear

molecule, the 5Πg state has the lowest energy, but it is a second-order saddle point, in

agreement with the ramifications of the Renner-Teller effect. Our CASSCF(16,15) and

CCSD(T) calculations also showed that the 5Πg state was lowest in energy for the linear

molecules.

The chromium dihalides, with their d4 electronic configuration, are interesting systems

in that they are subject to both the Jahn-Teller and the Renner-Teller effects; the former

in their crystals and the latter in the gas-phase. The chromium atoms in the chromium

122
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dihalide crystals have a distorted (elongated) octahedral coordination according to their

X-ray diffraction data, consistent with a typical Jahn-Teller distortion of a high-symmetry

octahedral coordination around a d4 metal. Our solid-state calculations on α-CrCl2 also

supported this distorted structure. Linear molecules are not subject to Jahn-Teller effects,

but they can undergo Renner-Teller effects, as this is demonstrated by the vapor-phase

molecules.

According to the Renner-Teller effect, the lowest-energy linear electronic state of the

molecule, 5Πg, splits into two nondegenerate states, of which the 5B2 symmetry state

is the ground state from all of our DFT, CCSD(T), and CASSCF(16,15) calculations,

and the molecule is bent. However, the actual depth of the bending potential for these

molecules is very shallow, with only a few vibrational levels fitting within this well. As

high temperatures are required to vaporize these molecules, our calculations showed that a

significant percentage of them will have enough energy to become linear. The ramifications

of this is that the vibrationally-averaged structure could appear linear in the gas-phase

at such high temperatures. Our calculated bond lengths for the ground states were all

in good agreement with the DFT, CCSD(T), and ED studies from other groups. Some

of the correlated ab-initio calculations produced different ground states. The CASPT2

method puts the 5B2 electronic state above the 5Σ+
g state for CrF2, CrCl2, and CrBr2.

Our full-space MP2 calculations predicted a 5Σ+
g ground state for CrF2. However, given

that our DFT and full-space CCSD(T) calculations places the 5B2 state below the 5Σ+
g

state, we are certain that the ordering of the states is 5B2 <5 Σ+
g <5 ∆g. The lower spin

states were much higher in energy and were not contestants for the ground state.

Small clusters of chromium dihalides from the dimers to the tetramers were studied

with DFT. We observed that all of the low-spin states exhibited broken-symmetry so-

lutions. All of the global minima for the dimers consisted of planar, dihalide-bridged

structures of either C2h or C2v symmetry. Our DFT calculations predicted that the global

minima were in the singlet state, with the exception of Cr2I4, whose global minimum

was calculated to be in the nonet state. The energy difference between the C2h and C2v

structures is very small, and both of them are candidates for the global minimum. The

lowest energy singlet and nonet states of the dimers had almost identical geometries.

The BS-DFT calculations unrealistically overestimate the stabilities of the coupled-

spin states. Hence, we carried out CASPT2(8,10) calculations for the singlet and nonet

states of the dimers. Our calculations showed that the high-spin nonet states were slightly
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lower in energy than the singlet states, with the exception of Cr2F4, for which the singlet

state was lowest in energy. Because of the high computational cost of these type of cal-

culations, the geometry of the dimers was fixed at those obtained from DFT calculations,

and a proper geometry optimization could easily favor the singlet state over the nonet.

This, however, was not computationally feasible.

For the trimers, we obtained two different geometries for the global minima. For Cr3F6

and Cr3Cl6, the continuation of the planar ribbon-like structure of C2h symmetry was

lowest in energy. All of the Cr atoms within these structures were anti-ferromagnetically

coupled, leading to quintet global minima, with the high-spin tridecet states lying less

than 0.022 eV above the quintet states. The global minima for Cr3Br6 and Cr3I6 consisted

of the triangular structure (T2) in the quintet state.

The lowest energy tetramers of CrF2 and CrCl2, again, consisted of planar ribbons

with C2h symmetry - very similar to their solid-state structures; the singlet states were

lowest in energy, with the nonet and septendecet states lying slightly higher in energy.

It is interesting to point out that in our solid-state calculations of α-CrCl2, the spins of

the 3d electrons on the Cr atoms within the chains are all anti-ferromagnetically coupled

in the ground state with a (4α4β4α4β . . .) spin-coupling pattern. Hence, our solid-state

calculations would predict that the monomer and trimer would be in the quintet state

and the tetramer would be in the singlet state. This is indeed the case from our gas-phase

calculations of CrCl2. We calculated the global minima of Cr4Br8 and Cr4I8 consisted

of a continuation of the triangular structure (Q3) and (Q4); however, the nonet state of

Cr4Br8 was lowest in energy and not the singlet. We believe that the strong spin-spin

repulsion between the two closely-spaced Cr atoms in our BS representation of the singlet

state is responsible for its destabilization relative to the nonet state. The singlet state of

(Q3) was calculated to be the global minimum of Cr4I8.

We estimated the two-body basis set superposition errors (BSSE) for the oligomer

global minima using counterpoise-corrected energies, with several different combination

schemes tested for the trimers and tetramers. Our calculations showed that the amount

of the BSSE is relatively small and less than 10% of the binding energies. However,

the energy differences between the global minima and some of the low-lying states were

smaller than the magnitude of the BSSE. After calculating the BSSE for all of the low-

energy minima, we cannot say with certainty that the global minimum for the CrI2 dimer

is the nonet state, as the energy difference between the singlet and nonet states is too
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small. The differences in the BSSE between the remaining global minima and low-lying

states were not larger than their corresponding energy differences.

We reanalyzed the previously published ED data on CrCl2 [3] taking into consideration

the more complicated vapor composition as supposed in that study. We found that the

vapor of chromium dichloride contained about 19(4)% dimers and 4(3)% trimers beside the

main component, the monomers, but their larger size means greater contributions to the

molecular scattering due to their larger number of atomic pairs than their small percentage

would indicate. The present ED analysis is in agreement with the previous one in that the

molecule is not linear; however, the bond angle from the present study, 149(9.5)◦, is much

larger than the one reported in Ref. [3], which was calculated to be 110◦. We estimated the

experimental equilibrium bond length of CrCl2 by anharmonic corrections, which came

to rM
e (Cr-Cl) = 2.196(20) Å. This value as well as the bond angle of the molecule agrees

very well with our computations. The unusually large uncertainties of the parameters

are due to the complicated vapor composition and the very large correlations among the

closely spaced distances belonging to the different species. The dibridged structure of

the trimeric species, found to be the ground-state structure by our computations, is also

in agreement with the experiment, while the usual structure of metal halide trimers, the

six-membered ring structure, is not. The bridged structure of the dimeric and trimeric

species can be considered as a first step in the nucleation process leading to the crystal

of CrCl2.

Young et al. [136] conclude their recent article on the shape of the TiF2 molecule

with the following statement: “There is now no reliable experimental evidence for the

nonlinearity of any first row transition metal difluoride or dichloride.” In view of our

findings on the nonlinearity of CrCl2, we offer the following comment. Our computations

determined that this molecule undergoes Renner-Teller symmetry breaking, and within

the adiabatic (Born-Oppenheimer) approximation - which strictly defines the structure

of a molecule [137] - it is bent. It is comforting that the electron diffraction experimental

data are fully consistent with this finding. At this point, it is of interest to look into

the question: could the ED data alone be interpreted by a linear arrangement of the

molecule? This question is not as straightforward as we might think since ED yields

a thermal average structure rather than the equilibrium structure, hence, even a linear

molecule appears to be bent in an ED analysis. Thus, the question is whether it might

be possible to distinguish a bent thermal average structure from a genuinely nonlinear



CHAPTER 5. CONCLUSIONS 126

geometry? The shrinkage of the nonbonded Cl· · ·Cl distance for a linear metal dichloride

molecule is always much larger than that of a truly bent molecule, so the thermal-average

structure for such a linear molecule could be close to a truly bent one. There is a simple

relationship between the bending frequency of a linear molecule and the shrinkage effect

and, consequently, the bond angle of the molecule [138]. As we already discussed above,

the computed bending frequencies of CrCl2 are much too small to be reliable. However,

there are experimental frequencies available for several other transition metal dichlorides

[2]. In between TiCl2 (130 cm−1) and CuCl2 (122 cm−1), the bending frequencies of other

first-row transition metal dichlorides vary between about 85 – 95 cm−1. Thus, it seems

reasonable to suppose that the gas-phase bending frequency of CrCl2 would not be smaller

than, say, 90 – 100 cm−1. We performed structure analyses with bond angles constrained

at values corresponding to bending frequencies in the region between 60 – 120 cm−1.

The agreement with experiment somewhat worsened compared with the structure with

the refined 149◦ bond angle. However, whenever the constraint on the bond angle was

lifted, it always refined to the 149◦ value. We also checked what bending frequency would

correspond to a thermal average bond angle of 149◦ for a molecule whose equilibrium

structure would be linear. The corresponding ν2 was 73 cm−1. This value appears far too

low considering the trend of the bending frequency variation among the first row transition

metal dichlorides. This observation lends additional support for the nonlinearity of CrCl2.

We calculated various thermodynamic properties of the oligomers at 298.15 K as well

as from 1000–2000 K. The CrF2 oligomers had the highest of the dissociation energies,

between 10-20 kcal/mol higher than the other dihalides. We saw that the dissociation

energies as well as the enthalpies of the oligomerization reactions for CrCl2, CrBr2, and

CrI2 were close in value to each other. The addition of each CrX2 monomer to the clusters

added an almost constant value in energy. For CrF2, this value was approximately 55

kcal/mol, and for the other dihalides, this value was roughly 45 kcal/mol. This result

was also supported by our PAW calculations where we obtained a cohesive energy of 42.9

kcal/mol per CrCl2 unit for the AFM infinite chain. This compares well with the 46.4

kcal/mol per unit for the solid which includes interactions between the CrCl2 chains. Our

dissociation energies and standard enthalpies of dissociation were underestimated by our

DFT methods. For CrCl2, we applied a correction to the dissociation energies which gave

better agreement with the experimental data. The similarity in the dissociation energies

and nucleation enthalpies among CrCl2, CrBr2, and CrI2 was very surprising, as CrBr2
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and CrI2 have different global minima for the trimers and tetramers. It is interesting

to note that the standard enthalpies of sublimation for the chromium dihalides follow a

similar pattern to those we calculated for De and ∆H◦
dis, though again our DFT results

were too low compared to the literature data.

We investigated crystalline α-CrCl2 using first-principles DFT calculations. We opti-

mized the crystal structure utilizing the LSDA or PW91 exchange functional. The PW91

optimized structure is in good agreement with experiment. We also confirmed experi-

mental data in that α-CrCl2 is anti-ferromagnetically coupled along the crystallographic

c-axis. The intra- and interchain magnetic coupling constants were calculated using a

variety of different methods; all local and semilocal exchange-correlation schemes grossly

overestimate the magnetic coupling. A LSDA+U study with U + J = 3.8 eV gives good

agreement with experiment. Hybrid DFT calculations, which include some of the exact

exchange, also give rather poor results with a qualitatively different interchain coupling

scheme.



Chapter 6

Appendix

6.1 Cartesian Coordinates of the Low-energy Struc-

tures

Table 6.1: Cartesian coordinates (in Å) and energies of the optimized CrF2 oligomers.

Method Structure State Atom X Y Z

E=-572.255636129 au

PW91/LanL2DZ D1 9A1 Cr 0 1.543793 0.144313

F 0 0 1.411996

Cr 0 -1.543793 0.144313

F 0 -3.205530 -0.554396

F 0 0 -1.072871

F 0 3.205530 -0.554396

E=-572.256411925 au

PW91/LanL2DZ D1 1A1 Cr -1.537951 0.147900 0

F 0 1.417027 0

Cr 1.537951 0.147900 0

F 0 -1.074047 0

F -3.193075 -0.565898 0

F 3.193075 -0.565898 0

128
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Table 6.1 Continued

Method Structure State Atom X Y Z

E=-572.255654275 au

PW91/LanL2DZ D2 9Ag Cr 1.524247 0.225088 0

F 0.217913 -1.227020 0

Cr -1.524247 -0.225088 0

F -0.217913 1.227020 0

F 3.272621 -0.197861 0

F -3.272621 0.197861 0

E=-572.256051093 au

PW91/LanL2DZ D2 1Ag Cr -1.512217 -0.220525 0

F -0.220722 1.238545 0

Cr 1.512217 0.220525 0

F 0.220722 -1.238545 0

F -3.261974 0.188816 0

F 3.261974 -0.188816 0

E=-858.431698201 au

PW91/LanL2DZ T1 13Ag Cr 0 0 0

F -1.843505 -0.724066 0

Cr -2.938076 0.908941 0

F -4.735950 0.748309 0

F 1.060520 -1.649597 0

Cr 2.938076 -0.908941 0

F 1.843505 0.724066 0

F 4.735950 -0.748309 0

F -1.060520 1.649597 0



CHAPTER 6. APPENDIX 130

Table 6.1 Continued

Method Structure State Atom X Y Z

E=-858.432958714 au

PW91/LanL2DZ T1 5Ag Cr 0 0 0

F 1.943465 -0.409945 0

Cr 1.964254 -2.367587 0

F 3.580436 -3.164787 0

F 0 1.968041 0

Cr -1.964254 2.367587 0

F -1.943465 0.409945 0

F -3.580436 3.164787 0

F 0 -1.968041 0

E=-1144.60614654 au

PW91/LanL2DZ Q1 17Ag Cr 1.537560 -0.067304 0

F -0.052386 -1.241218 0

Cr -1.537560 0.067304 0

F -3.133514 -1.114344 0

Cr -4.620320 0.163622 0

F -6.314253 -0.453999 0

F 3.133514 1.114344 0

Cr 4.620320 -0.163622 0

F 6.314253 0.453999 0

F 3.021861 -1.367231 0

F 0.052386 1.241218 0

F -3.021861 1.367231 0
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Table 6.1 Continued

Method Structure State Atom X Y Z

E=-1144.60748365 au

PW91/LanL2DZ Q1 9Ag Cr 0 0 0

F 0 0 1.970813

Cr 1.929158 0 2.380429

F 1.936769 0.065493 4.376719

Cr 3.887650 0.199866 4.783274

F 5.437346 0.384969 5.687350

F 1.928085 -0.065493 0.424270

F -1.936769 0.141189 -0.424270

Cr -1.929158 0.199866 -2.380429

F 0 0 -1.970813

F 3.474079 0.065493 2.825366

F -3.474079 0.427588 -3.301507

E=-1144.60831114 au

PW91/LanL2DZ Q1 1Ag Cr -1.538661 0 0

Cr -4.616479 -0.030205 0

F -3.081943 -1.244278 0

F -3.072252 1.239071 0

F -6.267687 -0.746345 0

Cr 1.538661 0 0

F 0 -1.237689 0

F 0 1.237689 0

Cr 4.616479 0.030205 0

F 3.072252 -1.239071 0

F 3.081943 1.244278 0

F 6.267687 0.746345 0
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Table 6.1 Continued

Method Structure State Atom X Y Z

E=-573.698457231 au

B3LYP D1 9A1 Cr -1.522258 -0.099452 0

F 0 -1.360610 0

Cr 1.522258 -0.099452 0

F 3.261938 0.382775 0

F 0 1.125470 0

F -3.261938 0.382777 0

E=-573.698994152 au

B3LYP D1 1A1 Cr 0 1.511590 0.089250

F 0 0 -1.147754

Cr 0 -1.511590 0.089250

F 0 -3.263903 -0.342605

F 0 0 1.356964

F 0 3.263903 -0.342605

E=-573.698606995 au

B3LYP D2 9Ag Cr -0.024271 -1.522315 0

F -0.591069 -3.236319 0

F -1.244058 0 0

Cr 0.024271 1.522315 0

F 1.244058 0 0

F 0.591069 3.236319 0

E=-573.699019712 au

B3LYP D2 1Ag Cr -1.508435 0.027294 0

F 0 -1.256942 0

Cr 1.508435 -0.027294 0

F 3.231457 -0.557902 0

F 0 1.256942 0

F -3.231457 0.557902 0
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Table 6.1 Continued

Method Structure State Atom X Y Z

E=-860.59412079 au

B3LYP T1 13Ag Cr 0 0 0

F 1.934852 -0.380290 0

Cr 1.943351 -2.329844 0

F 3.424940 -3.362088 0

F 0 1.967610 0

Cr -1.943351 2.329844 0

F -1.934852 0.380290 0

F -3.424940 3.362088 0

F 0 -1.967610 0

E=-860.594915809 au

B3LYP T1 5Ag Cr 0 0 0

F 1.936634 -0.357718 0

Cr 1.944558 -2.304603 0

F 3.431780 -3.329269 0

F 0 1.965355 0

Cr -1.944558 2.304603 0

F -1.936634 0.357718 0

F -3.431780 3.329269 0

F 0 -1.965355 0

E=-1147.48959945 au

B3LYP Q1 17Ag Cr -0.011158 1.513441 0

Cr -0.011158 4.548210 0

F 1.230246 3.048227 0

F -1.270349 3.028844 0

F 0.449574 6.295230 0

Cr 0.011158 -1.513441 0

F 1.253966 0.008963 0

F -1.253966 -0.008963 0

Cr 0.011158 -4.548210 0

F 1.270349 -3.028844 0

F -1.230246 -3.048227 0

F -0.449574 -6.295230 0
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Table 6.1 Continued

Method Structure State Atom X Y Z

E=-1147.48985627 au

B3LYP Q1 9Ag Cr -0.011198 1.510314 0

Cr -0.011198 4.521447 0

F 1.238105 3.028404 0

F -1.277754 3.008419 0

F 0.448070 6.268312 0

Cr 0.011198 -1.510314 0

F 1.249473 0.009040 0

F -1.249473 -0.009040 0

Cr 0.011198 -4.521447 0

F 1.277754 -3.008419 0

F -1.238105 -3.028404 0

F -0.448070 -6.268312 0

E=-1147.49039974 au

B3LYP Q1 1Ag Cr -0.011187 1.514805 0

Cr -0.011187 4.531316 0

F 1.238376 3.040086 0

F -1.278216 3.020145 0

F 0.448283 6.278728 0

Cr 0.011187 -1.514805 0

F 1.252287 0.009102 0

F -1.252287 -0.009102 0

Cr 0.011187 -4.531316 0

F 1.278216 -3.020145 0

F -1.238376 -3.040086 0

F -0.448283 -6.278728 0
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Table 6.2: Cartesian coordinates (in Å) and energies of the optimized CrCl2 oligomers.

Method Structure State Atom X Y Z

E=-232.762638816 au

PW91/LanL2DZ D1 9A1 Cr -1.741411 0.252080 0

Cl 0 1.949182 0

Cr 1.741411 0.252080 0

Cl 3.795895 -0.630550 0

Cl 0 -1.399842 0

Cl -3.795895 -0.630550 0

E=-232.763519498 au

PW91/LanL2DZ D1 1A1 Cr 1.704230 -0.242862 0

Cl 0 -1.959682 0

Cr -1.704230 -0.242862 0

Cl -3.773332 0.599591 0

Cl 0 1.446232 0

Cl 3.773332 0.599591 0

E=-232.762605062 au

PW91/LanL2DZ D2 9Ag Cr -0.269376 1.729939 0

Cl 0.269376 3.900297 0

Cl 1.649170 0.277064 0

Cr 0.269376 -1.729939 0

Cl -1.649170 -0.277064 0

Cl -0.269376 -3.900297 0

E=-232.763474755 au

PW91/LanL2DZ D2 1Ag Cr -0.242568 1.696309 0

Cl 0.242568 3.877219 0

Cl 1.680012 0.267939 0

Cr 0.242568 -1.696309 0

Cl -1.680012 -0.267939 0

Cl -0.242568 -3.877219 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-349.183018312 au

PW91/LanL2DZ T1 13Ag Cr 0 0 0

Cl 2.419352 -0.144141 0

Cr 2.426755 -2.547018 0

Cl 4.466110 -3.468313 0

Cl 0 2.420147 0

Cr -2.426755 2.547018 0

Cl -2.419352 0.144141 0

Cl -4.466110 3.468313 0

Cl 0 -2.420147 0

E=-349.184129153 au

PW91/LanL2DZ T1 5Ag Cr 0 0 0

Cl 2.421489 -0.092127 0

Cr 2.424279 -2.489561 0

Cl 4.458289 -3.419793 0

Cl 0 2.414354 0

Cr -2.424279 2.489561 0

Cl -2.421489 0.092127 0

Cl -4.458289 3.419793 0

Cl 0 -2.414354 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-465.602642798 au

PW91/LanL2DZ Q1 17Ag Cr 1.764242 -0.100088 0

Cl -0.098988 -1.647030 0

Cr -1.764242 0.100088 0

Cl -3.626818 -1.454501 0

Cr -5.279176 0.284237 0

Cl -7.397125 -0.441029 0

Cl 3.626818 1.454501 0

Cr 5.279176 -0.284237 0

Cl 7.397125 0.441029 0

Cl 3.431420 -1.854569 0

Cl 0.098988 1.647030 0

Cl -3.431420 1.854569 0

E=-465.6032238 au

PW91/LanL2DZ Q1 9Ag Cr 1.754150 0.101168 0

Cl -0.108064 1.643661 0

Cr -1.754150 -0.101168 0

Cl -3.614248 1.481990 0

Cr -5.243199 -0.271957 0

Cl -7.369227 0.424897 0

Cl 3.614248 -1.481990 0

Cr 5.243199 0.271957 0

Cl 7.369227 -0.424897 0

Cl 3.418643 1.853550 0

Cl 0.108064 -1.643661 0

Cl -3.418643 -1.853550 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-465.603957184 au

PW91/LanL2DZ Q1 1Ag Cr 1.756227 -0.100286 0

Cl -0.098029 -1.649626 0

Cr -1.756227 0.100286 0

Cl -3.594535 -1.480919 0

Cr -5.224887 0.271458 0

Cl -7.350233 -0.428053 0

Cl 3.594535 1.480919 0

Cr 5.224887 -0.271458 0

Cl 7.350233 0.428053 0

Cl 3.400171 -1.865074 0

Cl 0.098029 1.649626 0

Cl -3.400171 1.865074 0

E=-2015.18319704 au

B3LYP D1 9A1 Cr 0 0.138687 1.691942

Cl 0 1.825147 0

Cr 0 0.138687 -1.691942

Cl 0 -0.358647 -3.846774

Cl 0 -1.499439 0

Cl 0 -0.358647 3.846774

E=-2015.18519734 au

B3LYP D1 1A1 Cr 1.653538 0.094292 0

Cl 3.837637 -0.240746 0

Cl 0 -1.580948 0

Cr -1.653538 0.094292 0

Cl 0 1.796221 0

Cl -3.837637 -0.240746 0

E=-2015.18307275 au

B3LYP D2 9Ag Cr -0.132320 1.691643 0

Cl 0.132320 3.887239 0

Cl 1.653426 0.145973 0

Cr 0.132320 -1.691643 0

Cl -1.653426 -0.145973 0

Cl -0.132320 -3.887239 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-2015.18516674 au

B3LYP D2 1Ag Cr -0.096224 1.650708 0

Cl 0.096224 3.851911 0

Cl 1.683724 0.111780 0

Cr 0.096224 -1.650708 0

Cl -1.683724 -0.111780 0

Cl -0.096224 -3.851911 0

E=-3022.80948553 au

B3LYP T1 13Ag Cr 0 0 0

Cl 0 2.393323 0

Cr 2.350577 2.500727 0

Cl 3.600193 4.329251 0

Cl -2.391911 -0.128727 0

Cr -2.350577 -2.500727 0

Cl 0 -2.393323 0

Cl -3.600193 -4.329251 0

Cl 2.391911 0.128727 0

E=-3022.81113319 au

B3LYP T1 5Ag Cr 0 0 0

Cl 0 2.390885 0

Cr 2.347298 2.445482 0

Cl 3.624129 4.254322 0

Cl -2.389655 -0.079521 0

Cr -2.347298 -2.445482 0

Cl 0 -2.390885 0

Cl -3.624129 -4.254322 0

Cl 2.389655 0.079521 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-4030.4354273 au

B3LYP Q1 17Ag Cr -0.005356 1.732781 0

Cr -0.005356 5.167941 0

Cl 1.634329 3.481868 0

Cl -1.660002 3.471655 0

Cl 0.314783 7.360764 0

Cr 0.005356 -1.732781 0

Cl 1.635634 0.005872 0

Cl -1.635634 -0.005872 0

Cr 0.005356 -5.167941 0

Cl 1.660002 -3.471655 0

Cl -1.634329 -3.481868 0

Cl -0.314783 -7.360764 0

E=-4030.43648498 au

B3LYP Q1 9Ag Cr 1.735360 -0.038330 0

Cl -0.031845 -1.636277 0

Cr -1.735360 0.038330 0

Cl -3.497172 -1.552485 0

Cr -5.146112 0.119852 0

Cl -7.339980 -0.194169 0

Cl 3.497172 1.552485 0

Cr 5.146112 -0.119852 0

Cl 7.339980 0.194169 0

Cl 3.413871 -1.743197 0

Cl 0.031845 1.636277 0

Cl -3.413871 1.743197 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-4030.43719007 au

B3LYP Q1 1Ag Cr -0.018465 1.739965 0

Cr -0.040483 5.123215 0

Cl 1.629509 3.473409 0

Cl -1.701312 3.440257 0

Cl 0.256934 7.318260 0

Cr 0.018465 -1.739965 0

Cl 1.629509 0.017950 0

Cl -1.629509 -0.017950 0

Cr 0.040483 -5.123215 0

Cl 1.701312 -3.440257 0

Cl -1.629509 -3.473409 0

Cl -0.256934 -7.318260 0

E=-2015.06485965 au

B3PW91 D1 9A1 Cr -1.673010 -0.181541 0

Cl -3.768621 0.471639 0

Cl 0 1.439755 0

Cr 1.673010 -0.181541 0

Cl 0 -1.870460 0

Cl 3.768621 0.471639 0

E=-2015.06669595 au

B3PW91 D1 1A1 Cr 1.628518 -0.149201 0

Cl 3.756219 0.382641 0

Cl 0 1.512913 0

Cr -1.628518 -0.149201 0

Cl 0 -1.856923 0

Cl -3.756219 0.382641 0

E=-2015.06452369 au

B3PW91 D2 9Ag Cr -0.167493 1.673793 0

Cl 1.636849 0.185172 0

Cr 0.167493 -1.673793 0

Cl -0.167493 -3.843188 0

Cl 0.167493 3.843188 0

Cl -1.636849 -0.185172 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-2015.06656142 au

B3PW91 D2 1Ag Cr 0 1.628762 0

Cl 0.491623 3.766335 0

Cl -1.682751 -0.023015 0

Cr 0 -1.628762 0

Cl 1.682751 0.023015 0

Cl -0.491623 -3.766335 0

E=-3022.63334915 au

B3PW91 T1 13Ag Cr 0 0 0

Cl 0 2.372169 0

Cr 2.325542 2.479176 0

Cl 3.400627 4.396724 0

Cl -2.372074 -0.120016 0

Cr -2.325542 -2.479176 0

Cl 0 -2.372169 0

Cl -3.400627 -4.396724 0

Cl 2.372074 0.120016 0

E=-3022.63501134 au

B3PW91 T1 5Ag Cr 0 0 0

Cl 2.369732 -0.057591 0

Cr 2.352348 -2.380005 0

Cl 4.220002 -3.538188 0

Cl 0 2.370380 0

Cr -2.352348 2.380005 0

Cl -2.369732 0.057591 0

Cl -4.220002 3.538188 0

Cl 0 -2.370380 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-4030.20174660 au

B3PW91 Q1 17Ag Cr -0.009401 1.715599 0

Cr -0.009401 5.117333 0

Cl 1.613676 3.450257 0

Cl -1.658005 3.432458 0

Cl 0.512481 7.254167 0

Cr 0.009401 -1.715599 0

Cl 1.624661 0.010322 0

Cl -1.624661 -0.010322 0

Cr 0.009401 -5.117333 0

Cl 1.658005 -3.432458 0

Cl -1.613676 -3.450257 0

Cl -0.512481 -7.254167 0

E=-4030.20237609 au

B3PW91 Q1 9Ag Cr -0.006401 1.722650 0

Cr -0.016341 5.063683 0

Cl 1.635709 3.432018 0

Cl -1.680526 3.403852 0

Cl 0.470386 7.207789 0

Cr 0.006401 -1.722650 0

Cl 1.635709 0.029676 0

Cl -1.635709 -0.029676 0

Cr 0.016341 -5.063683 0

Cl 1.680526 -3.403852 0

Cl -1.635709 -3.432018 0

Cl -0.470386 -7.207789 0
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Table 6.2 Continued

Method Structure State Atom X Y Z

E=-4030.20365349 au

B3PW91 Q1 1Ag Cr -0.014331 1.707296 0

Cr -0.018391 5.049520 0

Cl 1.631560 3.416212 0

Cl -1.685816 3.392483 0

Cl 0.485308 7.189877 0

Cr 0.014331 -1.707296 0

Cl 1.631560 0.014655 0

Cl -1.631560 -0.014655 0

Cr 0.018391 -5.049520 0

Cl 1.685816 -3.392483 0

Cl -1.631560 -3.416212 0

Cl -0.485308 -7.189877 0

Table 6.3: Cartesian coordinates (in Å) and energies of the optimized CrBr2 oligomers.

Method Structure State Atom X Y Z

E=-225.64137971 au

PW91/LanL2DZ D1 9A1 Cr 1.792691 -0.344995 0

Br 0 -2.217555 0

Cr -1.792692 -0.344995 0

Br -3.986212 0.614672 0

Br 0 1.461349 0

Br 3.986213 0.614671 0

E=-225.642386686 au

PW91/LanL2DZ D1 1A1 Cr -1.742617 -0.327323 0

Br 0 -2.221431 0

Cr 1.742617 -0.327323 0

Br 3.957973 0.571956 0

Br 0 1.526425 0

Br -3.957973 0.571956 0
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-225.640682399 au

PW91/LanL2DZ D2 9Ag Cr 0.713209 -0.255059 -1.647178

Cr -0.713209 0.255059 1.647178

Br 2.232487 0 -3.479659

Br -2.232487 0 3.479659

Br -1.344946 -1.176043 -0.371586

Br 1.344946 1.176043 0.371586

E=-225.642020127 au

PW91/LanL2DZ D2 1Ag Cr 0 1.758194 0

Br 1.863887 0.031503 0

Cr 0 -1.758194 0

Br -1.863887 -0.031503 0

Br 0.707361 4.041069 0

Br -0.707361 -4.041069 0

E=-338.497134183 au

PW91/LanL2DZ T1 13Ag Cr 0 0 0

Br 2.058557 -1.562217 0

Cr 3.637880 0.431814 0

Br 5.952068 -0.185558 0

Br -1.603281 -2.022871 0

Cr -3.637880 -0.431814 0

Br -2.058557 1.562217 0

Br -5.952068 0.185558 0

Br 1.603281 2.022871 0

E=-338.498494541 au

PW91/LanL2DZ T1 5Ag Cr 0 0 0

Br 1.585250 -2.030022 0

Cr 3.587005 -0.408556 0

Br 2.032641 1.596567 0

Br -2.032641 -1.596567 0

Cr -3.587005 0.408556 0

Br -1.585250 2.030022 0

Br 5.910422 0.165438 0

Br -5.910422 -0.165438 0
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-338.48962585 au

PW91/LanL2DZ T2 13A′ Cr 1.386413 1.508573 0.103050

Cr 1.386413 -1.508573 0.103050

Br 3.528814 0 0.013239

Br 0.617178 0 2.131790

Br -0.924574 -2.548537 -0.051518

Br 0.617178 0.000000 -2.131790

Br -0.924574 2.548537 -0.051518

Cr -1.560514 0 -0.533907

Br -3.823948 0 0.286436

E=-338.498344337 au

PW91/LanL2DZ T2 5A Cr 1.346436 1.371368 0.087089

Cr 1.251021 -1.311425 0.089374

Br 3.512536 -0.049330 -0.030629

Br 0.786233 0.041403 2.276079

Br -0.958530 -2.520183 0.019805

Br 0.607104 -0.069356 -2.219580

Br -0.886566 2.524259 -0.085738

Cr -1.538898 -0.009411 -0.554740

Br -3.786647 0.038556 0.299452

E=-451.353837763 au

PW91/LanL2DZ Q1 17Ag Cr -1.850721 -0.002911 0

Cr -5.515633 0.025483 0

Br -3.698968 1.807906 0

Br -3.698968 -1.807906 0

Br -7.741885 0.912020 0

Cr 1.850721 0.002911 0

Br -0.004215 1.789811 0

Br 0.004215 -1.789811 0

Cr 5.515633 -0.025483 0

Br 3.698968 1.807906 0

Br 3.698968 -1.807906 0

Br 7.741885 -0.912020 0
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-451.354250658 au

PW91/LanL2DZ Q1 9Ag Cr 3.033488 0.014273 -0.445870

Cr -3.033488 -0.014273 0.445870

Br 0.763192 -0.017911 -1.914435

Br -0.763192 0.017911 1.914435

Br 5.397112 0.030653 -0.019401

Br -5.397112 -0.030653 0.019401

Br -2.395306 -2.362341 -0.489956

Br 2.490558 -2.320844 0.532339

Cr 0.047452 -1.832650 -0.040376

Br -2.490558 2.320844 -0.532339

Br 2.395306 2.362341 0.489956

Cr -0.047452 1.832650 0.040376

E=-451.354873329 au

PW91/LanL2DZ Q1 1Ag Cr -0.129476 1.839624 0

Cr -0.338083 5.435452 0

Br 1.582495 3.777060 0

Br -2.071686 3.532777 0

Br 0.338083 7.732327 0

Cr 0.129476 -1.839624 0

Br 1.788834 0.126869 0

Br -1.788834 -0.126869 0

Cr 0.338083 -5.435452 0

Br 2.071686 -3.532777 0

Br -1.582495 -3.777060 0

Br -0.338083 -7.732327 0
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-451.343966831 au

PW91/LanL2DZ Q4 9A Cr -2.990994 -0.280135 -0.820972

Cr 0.143569 -1.752756 0.693455

Br -1.253293 -2.198631 -1.383703

Br -1.895850 -0.532735 1.885346

Br -5.279421 0.430231 -0.621045

Cr 2.905062 0.199294 0.040351

Br 1.556424 -0.181609 2.380218

Br 2.366199 -2.342572 -0.389732

Br 4.534685 0.554345 -1.690806

Br 1.811167 2.595647 0.096276

Br -1.738824 2.008815 -0.909498

Cr -0.205057 1.347258 1.010209

E=-1842.26172522 au

PW91 D1 9A1 Cr 0.246367 -1.693884 0

Br 2.119577 0 0

Cr 0.246367 1.693884 0

Br -0.469200 3.919108 0

Br -1.519052 0 0

Br -0.469200 -3.919108 0

E=-1842.26541662 au

PW91 D1 1A1 Cr 0.026183 -1.641985 0

Br 1.867494 0.000000 0

Cr 0.026183 1.641985 0

Br 0.025067 3.972854 0

Br -1.867494 0.000000 0

Br 0.025067 -3.972854 0

E=-1842.26166402 au

PW91 D2 9Ag Cr -0.000345 1.488682 0

Br -1.954307 0.000000 0

Cr 0.000345 -1.488682 0

Br -0.000345 -3.825476 0

Br 1.954307 0.000000 0

Br 0.000345 3.825476 0
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-1842.26537145 au

PW91 D2 1Ag Cr 0 0 0

Br 0 0 2.481098

Cr 2.436774 0 2.202213

Br 3.951469 0 3.973879

Br -1.529209 0 -1.759154

Br 2.436774 0 -0.278885

E=-2763.42889002 au

PW91 T1 5Ag Cr 0 0 0

Br -0.747184 2.452590 0

Cr 1.649109 3.058200 0

Br 2.847139 5.061167 0

Br 2.417712 0.714684 0

Br 0.747184 -2.452590 0

Cr -1.649109 -3.058200 0

Br -2.847139 -5.061167 0

Br -2.417712 -0.714684 0

E=-2763.43197538 au

PW91 T2 13A′ Cr 1.320323 1.419760 0.091916

Cr 1.320323 -1.419760 0.091916

Br 3.428796 0 -0.127014

Br -0.917139 0 2.142073

Br -0.917257 -2.455329 0.015284

Br 0.540430 0 -2.076015

Br -0.917257 2.455329 0.015284

Cr -1.516926 0 -0.502123

Br -3.760979 0 0.248978
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-2763.43197538 au

PW91 T2 5A Cr 1.277945 1.265293 0.065967

Cr 1.155322 -1.193451 0.089824

Br 3.396655 -0.065016 -0.145396

Br 0.923046 0.072793 2.256330

Br -0.952720 -2.443057 0.087029

Br 0.538809 -0.088435 -2.168339

Br -0.869453 2.437887 -0.065365

Cr -1.471161 -0.022798 -0.515284

Br -3.696066 0.052198 0.282250

E=-3684.5833963 au

PW91 Q4 17A Cr -2.921495 -0.208270 -0.804330

Cr 0.138124 -1.657922 0.695512

Br -1.248067 -2.047831 -1.333156

Br -1.812887 -0.449015 1.864012

Br -5.205854 0.299580 -0.592697

Cr 2.776826 0.159711 0.006021

Br 1.541978 -0.153516 2.303304

Br 2.285030 -2.315440 -0.340206

Br 4.421992 0.459218 -1.662960

Br 1.817430 2.514230 0.067954

Br -1.686057 1.959219 -0.890345

Cr -0.159072 1.317912 0.954601

E=-3684.60008799 au

PW91 Q4 9A Cr -2.851415 -0.256086 -0.758292

Cr 0.214231 -1.345155 0.619184

Br -1.073503 -1.963306 -1.389287

Br -1.817588 -0.452307 1.864762

Br -5.154956 0.155242 -0.550284

Cr 2.641059 0.142483 0.013472

Br 1.560448 -0.080909 2.395515

Br 2.311005 -2.345754 -0.191974

Br 4.148614 0.406454 -1.783692

Br 1.778648 2.523339 0.063330

Br -1.662972 1.927817 -0.924333

Cr -0.134681 1.210002 0.878084
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Table 6.3 Continued

Method Structure State Atom X Y Z

E=-3684.59528095 au

PW91 Q4 1A Cr -2.548935 -0.287432 -0.647525

Cr 0.381177 -1.584325 0.709502

Br -0.941360 -2.154882 -1.291932

Br -1.620217 -0.542270 1.935370

Br -4.849466 0.164400 -0.463715

Cr 2.240236 0.224476 -0.163435

Br 1.721091 -0.115396 2.376113

Br 2.544050 -2.290982 -0.225558

Br 2.743483 0.534780 -2.440053

Br 1.866023 2.685278 0.304006

Br -1.504135 1.982778 -0.814506

Cr -0.013372 1.262708 1.006026

Table 6.4: Cartesian coordinates (in Å) and energies of the optimized CrI2 oligomers.

Method Structure State Atom X Y Z

E=-218.524680965 au

PW91/LanL2DZ D1 9A1 Cr 1.847262 -0.426016 0

I 0 -2.503390 0

Cr -1.847282 -0.426016 0

I -4.201076 0.660070 0

I 0 1.568960 0

I 4.201076 0.660070 0

E=-218.52546772 au

PW91/LanL2DZ D1 1A1 Cr 1.789451 0.415723 0

I 0 2.514256 0

Cr -1.789451 0.415723 0

I 0 -1.631762 0

I 4.156897 -0.629499 0

I -4.156897 -0.629499 0
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-218.523626043 au

PW91/LanL2DZ D2 9Ag Cr -1.822060 -0.482800 0

I -0.539298 1.938206 0

Cr 1.822060 0.482800 0

I 0.539298 -1.938206 0

I -4.391408 -0.147313 0

I 4.391408 0.147313 0

E=-218.524715873 au

PW91/LanL2DZ D2 1Ag Cr -1.780546 0.350505 0

I -0.430102 -2.012950 0

Cr 1.780546 -0.350505 0

I 0.430102 2.012950 0

I -4.356334 0.133873 0

I 4.356334 -0.133873 0

E=-327.818141776 au

PW91/LanL2DZ T1 13Ag Cr 0 0 0

I 1.970801 -1.975794 0

Cr 3.874548 0.027380 0

I 6.262262 1.034652 0

I -1.970801 1.975794 0

Cr -3.874548 -0.027380 0

I -1.970801 -1.969492 0

I -6.262262 -1.034652 0

I 1.970801 -1.975794 0

E=-327.818738908 au

PW91/LanL2DZ T1 5Ag Cr 0 0 0

I 2.183302 -1.733668 0

Cr 3.796369 0.446876 0

I 6.304572 -0.192909 0

I -1.684017 -2.218166 0

Cr -3.796369 -0.446876 0

I -2.183302 1.733668 0

I -6.304572 0.192909 0

I 1.684017 2.218166 0



CHAPTER 6. APPENDIX 153

Table 6.4 Continued

Method Structure State Atom X Y Z

E=-327.817920371 au

PW91/LanL2DZ T2 13A′ Cr 1.474774 1.516992 0.099660

Cr 1.474774 -1.516992 0.099660

I 3.847640 0 0.032408

I 0.767404 0 2.368578

I -0.965379 -2.736887 -0.051680

I 0.728253 0 -2.343378

I -0.965379 2.736887 -0.051861

Cr -1.552209 0 -0.574851

I -4.045204 0 0.215840

E=-327.821102935 au

PW91/LanL2DZ T2 5A Cr -1.366311 1.489688 -0.129158

Cr -1.366318 -1.489690 -0.129125

I -3.743888 0.000014 -0.363264

I -0.438135 0.000022 -2.349836

I 0.971681 -2.809109 0.282897

I -0.928766 -0.000053 2.352946

I 0.971661 2.809113 0.282971

Cr 1.310392 -0.000001 0.508208

I 3.811479 0.000015 -0.318887

E=-437.110318199 au

PW91/LanL2DZ Q3 17Ag Cr -3.171455 -0.045777 0.451031

Cr 3.171455 0.045777 -0.451031

I -0.819189 -0.019636 2.082957

I 0.819189 0.019636 -2.082957

I -5.772513 0.049533 0.260628

I 5.772513 -0.049533 -0.260628

I 2.600259 -2.372542 0.760134

I -2.550291 -2.499151 -0.737950

Cr 0.000283 -1.876903 0.004060

I 2.550291 2.499151 0.737950

I -2.600259 2.372542 -0.760134

Cr -0.000283 1.876903 -0.004060
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-437.111313713 au

PW91/LanL2DZ Q3 9A Cr -3.203785 -0.000228 0.512531

Cr 3.203905 -0.000732 -0.513127

I -0.928722 -0.138451 2.267747

I 0.927824 -0.138951 -2.267069

I -5.783594 -0.062768 0.173319

I 5.783917 -0.063446 -0.176193

I 2.451087 -2.237201 0.943871

I -2.451513 -2.238563 -0.942349

Cr -0.000390 -1.504149 0.000602

I 2.517542 2.432957 0.615188

I -2.516590 2.433799 -0.614564

Cr 0.000379 1.532989 0.000105

E=-437.112901922 au

PW91/LanL2DZ Q3 1Ag Cr -3.177249 -0.033667 -0.495165

Cr 3.177249 0.033667 0.495165

I -0.933932 -0.078276 -2.266974

I 0.933932 0.078276 2.266974

I -5.758487 -0.026392 -0.208664

I 5.758487 0.026392 0.208664

I 2.417720 2.349577 -0.839060

I -2.559489 2.311889 0.782124

Cr -0.054714 1.511098 -0.039488

I 2.559489 -2.311889 -0.782124

I -2.417720 -2.349577 0.839060

Cr 0.054714 -1.511098 0.039488
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-437.112737145 au

PW91/LanL2DZ Q4 17A Cr -3.074132 -0.156492 -0.982108

Cr 0.316523 -1.938266 0.370835

I -0.716856 -1.195857 -2.080412

I -2.095035 -1.292116 1.698070

I -5.667432 -0.099143 -0.750862

Cr 2.976660 0.213509 0.185000

I 1.580400 -0.571643 2.603090

I 2.798990 -2.485785 -0.623539

I 4.858782 0.996894 -1.453888

I 1.645943 2.655059 0.406389

I -2.321577 2.376978 -0.170109

Cr -0.402817 1.032396 1.246141

E=-437.120584013 au

PW91/LanL2DZ Q4 9A Cr 3.143465 0.291770 -0.830097

Cr -0.099169 1.683113 0.672725

I 1.430058 2.403408 -1.477685

I 2.116194 0.546763 2.037820

I 5.528108 -0.727687 -0.587373

Cr -2.872972 -0.185893 0.107754

I -1.660511 0.342694 2.689277

I -2.423650 2.496374 -0.492436

I -4.662376 -0.629303 -1.748102

I -1.968839 -2.806246 0.351822

I 1.528832 -1.932278 -1.189983

Cr 0.076415 -1.112635 0.969743
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-437.116982613 au

PW91/LanL2DZ Q4 1A Cr -0.857234 1.387841 1.270324

Cr 0.857181 -1.387797 1.270253

I 3.367764 -2.076716 0.424789

I -1.643236 -1.038898 2.408838

I 1.643132 1.038806 2.408998

I -3.367723 2.076871 0.424692

I 0.130341 2.019912 -1.330216

I -0.130300 -2.019891 -1.330329

Cr -2.016636 0.102100 -1.010197

Cr 2.016686 -0.102112 -1.010294

I -4.086983 -1.383902 -1.620984

I 4.087007 1.383804 -1.621298

E=-1365.54309068 au

PW91 D1 9A1 Cr -0.000013 1.538790 0

I -2.158122 0 0

Cr 0.000013 -1.538790 0

I -0.000072 -4.081640 0

I 2.158122 0 0

I -0.000072 4.081640 0

E=-1365.54303937 au

PW91 D1 1A1 Cr 0 1.724984 0

I 2.201670 0.204153 0

Cr 0.317367 -1.697302 0

I 0.129580 -4.226776 0

I -1.853597 -0.174652 0

I -0.621366 4.184740 0
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-1365.54295622 au

PW91 D2 1Ag Cr 1.315773 1.122231 0

I 1.315773 -1.543595 0

Cr -1.315376 -1.122231 0

I -3.245302 -2.767909 0

I 3.245302 2.767909 0

I -1.315376 1.543595 0

E=-2048.33836491 au

PW91 T2 13A′ Cr -1.418722 -1.446134 0.087228

Cr -1.418722 1.446134 0.087228

I -3.761652 0 -0.085606

I -0.897608 0 2.349141

I 0.958205 2.663383 -0.006396

I -0.661405 0 -2.278052

I 0.958205 -2.663383 -0.006396

Cr 1.525523 0 -0.545565

I 3.998331 0 0.195352

E=-2048.35374836 au

PW91 T2 5A Cr 0.012376 1.507921 0.754774

I 0.595508 1.617852 -1.894441

I 0.441572 -0.752518 2.320702

Cr -1.110046 -1.216081 0.030359

I -2.867747 -2.389329 -1.454186

I 2.593566 2.210533 1.257626

Cr 1.809219 -0.015355 -0.083034

I 1.119172 -2.344957 -1.160425

I -2.593504 1.020137 0.612654
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-2731.13734089 au

PW91 Q3 17Ag Cr -3.105309 0.037645 -0.389202

Cr 3.105309 -0.037645 0.389202

I -0.867392 0.014554 -2.058187

I 0.867392 -0.014554 2.058187

I -5.666390 -0.037265 -0.297720

I 5.666390 0.037265 0.297720

I 2.509248 2.292839 -0.820970

I -2.453632 2.404591 0.798630

Cr 0.001325 1.742872 -0.015886

I 2.453631 -2.404591 -0.798630

I -2.509248 -2.292839 0.820970

Cr -0.001325 -1.742872 0.015886

E=-2731.15542547 au

PW91 Q3 9A Cr -2.810281 0.048807 0.251300

Cr 2.810250 0.049649 -0.251468

I -0.945897 -0.347970 2.260342

I 0.945398 -0.347276 -2.259559

I -5.362401 0.109713 -0.038053

I 5.362812 0.109489 0.033607

I 2.351390 -2.361884 0.894868

I -2.350558 -2.363178 -0.893368

Cr 0.000208 -1.496238 0.000419

I 2.208860 2.652016 0.074613

I -2.209614 2.651835 -0.072795

Cr -0.000156 1.170887 0.000511
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Table 6.4 Continued

Method Structure State Atom X Y Z

E=-2731.15632149546 au

PW91 Q3 1Ag Cr 2.644848 0.022934 -0.235307

Cr -2.644848 -0.022934 0.235307

I 0.868130 -0.015968 -2.300716

I -0.868130 0.015968 2.300716

I 5.183225 -0.010864 0.167874

I -5.183225 0.010864 -0.167874

I -2.265154 -2.641544 -0.300972

I 2.277308 -2.604511 0.319378

Cr 0.016751 -1.255849 -0.007603

I -2.277308 2.604511 -0.319378

I 2.265154 2.641544 0.300972

Cr -0.016751 1.255849 0.007603
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6.2 Experimental Electron Diffraction Molecular In-

tensities

Table 6.5: Electron diffraction molecular intensities (in Å−1) for two camera ranges for

CrCl2

Camera range: 50 cm

Smin = 2.00 Smax = 14.00 step size = 0.125

-409.0 -443.2 -448.8 -406.1 -318.9 -195.4 -65.7 68.2

194.9 313.2 407.4 480.1 523.3 517.0 448.7 337.8

205.8 51.0 -84.6 -197.7 -302.7 -378.7 -429.0 -450.0

-457.2 -423.4 -363.2 -283.6 -156.4 -8.1 147.8 297.2

405.0 492.8 502.1 471.1 395.7 300.2 183.0 48.9

-47.6 -147.8 -229.4 -290.1 -334.7 -344.2 -343.9 -334.6

-280.9 -209.8 -128.9 -47.4 62.1 137.4 223.9 283.2

315.6 321.4 315.7 266.9 213.6 129.6 52.0 -19.4

-97.3 -158.9 -218.4 -249.1 -263.8 -260.0 -231.6 -200.1

-145.1 -90.2 -21.1 56.2 102.9 166.0 189.2 231.7

216.3 199.7 169.4 129.0 89.4 38.6 -11.7 -58.9

-96.0 -123.4 -144.1 -155.8 -170.8 -167.9 -146.8 -111.0

-59.1

Camera range: 19 cm

Smin = 9.25 Smax = 29.00 step size = 0.25

296.8 238.0 73.3

-90.7 -220.7 -278.2 -251.7 -141.9 -7.2 119.5 227.5

229.3 142.7 64.7 -29.0 -110.9 -155.2 -164.5 -121.2

-35.1 35.5 99.7 125.8 136.2 99.0 18.3 -34.5

-87.5 -132.6 -118.3 -70.4 -15.1 39.7 85.1 106.6

87.2 53.3 34.1 -33.5 -42.5 -82.4 -78.2 -58.5

-15.6 0.8 30.6 45.6 64.2 51.6 27.9 -12.9

-35.2 -16.8 -28.0 -23.8 -13.5 1.9 17.0 12.8

19.1 -4.2 0.0 -2.2 -0.8 -11.1 -18.6 0.3

16.1 11.9 1.2 -19.2 15.1 9.4 -1.1 4.6

-3.5 1.0 -21.7 -37.9 -21.3
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6.3 Modified Basis Sets for Cr, Br, and I

Table 6.6: Modified basis set for Cr.

Type No. Contractions Exponent Coefficient

S 2 14.053450 0.8856241645

11.735218 -1.030132191

S 1 5.9049150 1

S 1 1.6346650 1

S 1 0.6629310 1

S 1 0.0978000 1

S 1 0.0377050 1

S 1 0.0133690 1

P 2 51.317664 0.02967198637

9.3214980 -1.012759535

P 1 3.7411210 1

P 1 1.5102140 1

P 1 0.5379560 1

P 1 0.0934080 1

P 1 0.0266450 1

P 1 0.0100000 1

D 3 26.781439 0.03497001324

8.2316400 0.1721950652

2.7816450 0.4270321617

D 1 0.9036780 1

D 1 0.2492580 1

D 1 0.0700000 1

D 1 0.0250000 1

F 6 7.7139000 0.0390498000

3.0575000 0.168051500

1.2119000 0.405014700

0.4803000 0.450786500

0.1904000 0.227614700

0.0755000 0.0535853000

F 6 7.7139000 -0.0921689000

3.0575000 -0.360906800

1.2119000 -0.455905600

0.4803000 0.247494900

0.1904000 0.518272900

0.0755000 0.192898900

F 6 7.7139000 0.204737400

3.0575000 0.574575400

1.2119000 -0.171444700

0.4803000 -0.697253100

0.1904000 0.457467300

0.0755000 0.419648500
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Table 6.7: Modified basis set for Br.

Type No. Contractions Exponent Coefficient

S 6 2808.60 0.001606

421.180 0.008393

50.3457 0.069578

17.9133 -0.389908

3.80531 0.694497

1.74968 0.491354

S 6 2808.60 -0.000635

421.180 -0.003492

50.3457 -0.025195

17.9133 0.150113

3.80531 -0.366226

1.74968 -0.383422

S 1 0.448555 1

S 1 0.164498 1

S 1 0.0502 1

P 6 105.752 0.005341

27.6368 -0.083084

6.59656 0.447766

2.78522 0.550617

1.07812 0.123500

0.393537 -0.003771

P 6 105.752 -0.001308

27.6368 0.022921

6.59656 -0.145029

2.78522 -0.209037

1.07812 0.093730

0.393537 0.605021

P 1 0.127469 1

P 1 0.0394 1

D 6 143.865 0.010237

46.1163 0.076083

17.3694 0.229807

6.95107 0.403347

2.75607 0.409728

1.01178 0.162790

D 1 0.4291 1

D 1 0.1548 1
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Table 6.8: Modified basis set for I.

Type No. Contractions Exponent Coefficient

S 6 2437.23 0.000430

358.331 0.002292

14.5856 0.393905

9.18532 -0.925011

2.10199 0.935200

1.03944 0.391057

S 6 2437.23 0.000179

358.331 0.001077

14.5856 0.166524

9.18532 -0.415575

2.10199 0.630059

1.03944 0.324446

S 1 0.317845 1

S 1 0.122187 1

S 1 0.0421 1

P 4 18.3299 0.083100

11.4794 -0.258792

2.75125 0.665756

1.21708 0.451823

P 4 18.3299 -0.026616

11.4794 0.0883472

2.75125 -0.301465

1.21708 -0.151315

P 1 0.342164 1

P 1 0.111445 1

P 1 0.0339 1

D 4 51.2059 0.004042

15.7468 -0.004992

4.51661 0.293292

2.04408 0.512688

D 1 0.869864 1

D 1 0.3013 1

D 1 0.1196 1
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Korona, T.; Rauhut, G.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper,

D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Lloyd,

A. W.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer,

R.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T. Molpro,

version 2006.1, a package of ab initio programs, 2006. see http://www.molpro.net.

[95] Kresse, G.; Furthmüller, J. Phys. Rev. B, 1996, 54, 11169.

[96] von Barth, U.; Hedin, L. J. Phys. C, 1972, 5, 1629.
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