Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Design and Implementation of HTS Technology for Cellular Base Stations:

An Investigation into Improving Cellular Communication

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering at Massey University, Palmerston North, New Zealand and James Cook University, Townsville, Australia

Adrian Knack

2006

ABSTRACT

When placed between the antenna and receiver electronics of a cellular base transceiver station, a Cryogenic Receiver Front End (CRFE), consisting of a High Temperature Superconducting (HTS) filter and modern Low Noise Amplifier (LNA), can significantly improve the base stations' coverage and capacity. Due to CRFEs being hurried to the telecommunications industry in a competitive market, the development of CRFEs and their performance have been classified. This left it to be pondered whether HTS filters could really have been beneficial or if they were always just of academic interest. It is the main objective of this thesis to *investigate if and under what circumstances high temperature RF-superconductivity can prove to be an important technological contribution to current and future wireless communications*.

This dissertation presents the analysis of an existing CRFE developed by Cryoelectra GmbH and its performance characteristics measured in a field trial held in rural China. With the aid of a CDMA Uplink Model developed by the author, the data was analysed and several novel engineering improvements were made to create an advanced CRFE which was economical to deploy. The analysis of results from a field trial in Beijing city using the CDMA Uplink Model led to the exploration of alternative filter technologies which could achieve similar results to the HTS filter technology. This culminated in the development of dielectric resonators filters which could be used as an alternative and as a supplement to the HTS filters used in the CRFE. The design of two novel dielectric resonator duplexers and two advanced multi-operator combiner antenna sharing solutions followed the successful implementation of a high performance dielectric resonator filter.

The performed investigation and development described in this thesis suggest that HTS filter technology for terrestrial wireless communications can be beneficial in current cellular networks, but due to its high cost is economical for use only under certain conditions. However, HTS filter technology may be of great importance in the design and implementation of spectrum friendly wireless communications systems in the future.

ACKNOWLEDGEMENTS

I would like to begin by offering my sincerest thanks to my supervisor, Prof. Janina Mazierska, who presented me with a wonderful opportunity to do my PhD. Her contacts in research, guidance and support have been invaluable assets through the past three years.

I must also extend my deepest gratitude to Prof. Helmut Piel and Cryoelectra GmbH for taking a chance on a graduate student from the other side of the globe and looking after me for two and a half years. Additionally Prof. Piel's knowledge, guidance and experience combined with financial and technical support from Cryoelectra GmbH allowed me to achieve far more that I ever thought would be possible at the beginning of my PhD project and for that I am forever in their debt. I would also like to thank all the Cyroelectra staff for the opportunity work with such an experienced team and bounce my ideas off very well regarded engineers and physicists.

James Cook University and Massey University financial support is also very much appreciated. Special mention must be made of both universities' acceptance of the conjoint PhD arrangement which allowed me to maintain close contact with my supervisor and both universities.

Finally I must send a heart felt thanks all my family and friends whose support has made everything I have undertaken possible.

ABSTRAC	Τ	I
ACKNOW	LEDGEMENTS	II
CONTENT	`S	III
FIGURES.		VI
TABLES		XI
CHAPTER	1 INTRODUCTION	1
CHAPTER	2 WIRELESS COMMUNICATION TECHNOLOGY	5
2.1	ESSENTIALS OF WIRELESS COMMUNICATION	5
2.1.1	The Mobile Environment	6
2.1.2	The Cellular Concept	7
2.1.3	Multipath Signal Fading and Diversity Antennas	9
2.1.4	Radio Frequency Spectrum, Demand and Capacity	10
2.2	2 ND GENERATION CELLULAR SYSTEMS	11
2.2.1	Global System for Mobile Communications (GSM)	11
2.2.2	Code Division Multiple Access (CDMA)	13
2.3	3 RD GENERATION CELLULAR SYSTEMS	14
CHAPTER	3 FUNDAMENTALS OF FILTER TECHNOLOGY	16
CHAPTER 3.1	3 FUNDAMENTALS OF FILTER TECHNOLOGY	16
СНАРТЕВ 3.1 3.2	3 FUNDAMENTALS OF FILTER TECHNOLOGY Filter Basics Cavity Filters	16 16 18
CHAPTER 3.1 3.2 3.3	3 FUNDAMENTALS OF FILTER TECHNOLOGY Filter Basics Cavity Filters. Dielectric Resonator Filters.	16
СНАРТЕВ 3.1 3.2 3.3 <i>3.3.1</i>	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming	
CHAPTER 3.1 3.2 3.3 <i>3.3.1</i> 3.4	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming PLANAR FILTERS	16 16 18 22 23 25
CHAPTER 3.1 3.2 3.3 <i>3.3.1</i> 3.4 <i>3.4.1</i>	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming PLANAR FILTERS Packaging, Trimming and Tuning	16 16 18 22 23 25 27
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs	16
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS <i>Coupling, Tuning and Trimming</i> PLANAR FILTERS <i>Packaging, Trimming and Tuning</i> <i>HTS Filter Designs</i> FINAL COMMENTS ON FILTER TECHNOLOGY	16 16 18 22 23 25 27 27 27 31
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER	X 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs FINAL COMMENTS ON FILTER TECHNOLOGY	16 18 22 23 25 27 27 27 31 33
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER 4.1	X 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming. PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs FINAL COMMENTS ON FILTER TECHNOLOGY X 4 FUNDAMENTALS OF RF SUPERCONDUCTIVITY THE SUPERCONDUCTING STATE AND THE LONDON TWO FLUID MODEL	16 16 18 22 23 25 27 27 31 33 33
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER 4.1 4.2	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming. PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs FINAL COMMENTS ON FILTER TECHNOLOGY A FUNDAMENTALS OF RF SUPERCONDUCTIVITY THE SUPERCONDUCTING STATE AND THE LONDON TWO FLUID MODEL OTHER SUPERCONDUCTIVITY LIMITING PHENOMENA	16 16 18 22 23 25 27 27 31 33 33 35
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER 4.1 4.2 4.2.1	A FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS <i>Coupling, Tuning and Trimming</i> PLANAR FILTERS <i>Packaging, Trimming and Tuning HTS Filter Designs</i> FINAL COMMENTS ON FILTER TECHNOLOGY A FUNDAMENTALS OF RF SUPERCONDUCTIVITY THE SUPERCONDUCTING STATE AND THE LONDON TWO FLUID MODEL OTHER SUPERCONDUCTIVITY LIMITING PHENOMENA <i>Ionisation of Cooper Pairs by radiation</i>	16 18 22 23 25 27 27 27 31 33 33 35 35
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER 4.1 4.2 4.2.1 4.2.2	A FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming. PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs FINAL COMMENTS ON FILTER TECHNOLOGY A FUNDAMENTALS OF RF SUPERCONDUCTIVITY THE SUPERCONDUCTING STATE AND THE LONDON TWO FLUID MODEL. OTHER SUPERCONDUCTIVITY LIMITING PHENOMENA Ionisation of Cooper Pairs by radiation Critical magnetic field	16 18 22 23 25 27 27 31 33 35 35 36
CHAPTER 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.5 CHAPTER 4.1 4.2 4.2.1 4.2.2 4.2.3	R 3 FUNDAMENTALS OF FILTER TECHNOLOGY FILTER BASICS CAVITY FILTERS CAVITY FILTERS DIELECTRIC RESONATOR FILTERS Coupling, Tuning and Trimming PLANAR FILTERS Packaging, Trimming and Tuning HTS Filter Designs FINAL COMMENTS ON FILTER TECHNOLOGY R 4 FUNDAMENTALS OF RF SUPERCONDUCTIVITY THE SUPERCONDUCTING STATE AND THE LONDON TWO FLUID MODEL OTHER SUPERCONDUCTIVITY LIMITING PHENOMENA Ionisation of Cooper Pairs by radiation Critical magnetic field Critical Current Density in a Superconductor	16 16 18 22 23 25 27 27 31 33 35 35 36 36

CONTENTS

5.1	BASE STATION RECEIVERS AND CRFES	42
5.2	CRFE DEMONSTRATOR 6 BY CRYOELECTRA	46
5.2	2.1 D6 System Overview	
5.2	2.2 The HTS Filter	
5.2	2.3 A Linear Low Noise Amplifier for Wireless Comms	
5.2	2.4 Supporting Equipment	
5.3	THE WUNONGCHANG FIELD TRIAL	61
СНЛРТ	ER 6 CDMA UPLINK MODEL	65
6.1	CDMA UPLINK MODEL DEVELOPMENT	65
6.1	1.1 The Single Base Station CDMA Uplink Model	
6.1	.2 Multiple Base Station CDMA Uplink Model	
6.1	1.3 Intermodulation Distortion	71
6.1	.4 Final CDMA Uplink Model	
6.2	PERFORMANCE SIMULATIONS OF BASE STATION FRONT ENDS	74
6.2	2.1 Performance Simulations in the Presence of Noise and Interference	
6.2	P.2 Performance Simulations of the Effect of System IP3	
6.2	2.3 Performance Simulations of Filter Selectivity	81
6.2	2.4 Performance Simulations in Different Environments	83
6.3	INTERPRETATION OF THE SIMULATION RESULTS	
6.4	ANALYSIS OF THE WUNONGCHANG FIELD TRIAL	86
СНЛРТ	ER 7 DEVELOPMENT OF AN ADVANCED CRFE	89
7.1	Cryogenic Receiver Front Ends	89
7.2	CRYOGENIC COMPONENTS	91
7.2	2.1 HTS Filter	
7.2	2.2 Low Noise Amplifier	
7.2	2.3 The Filter & LNA Mounting Structure	96
7.2	2.4 Radiation Shielding and Heat Sources	100
7.3	SUPPORTING SYSTEMS	101
7.3	3.1 Vacuum Systems	
7.3	3.2 Electronic CRFE Controller	
7.4	THE BEIJING FIELD TRIALS	105
7.4	4.1 Analysis of the Beijing Field Trials	
7.5	FINAL COMMENTS ON THE CRFE FIELD TESTS	106
СНАРТ	ER 8 NOVEL DIELECTRIC RESONATOR FILTER TECHNOLOGY FO	R WIRELESS
FRONT	ENDS	108
8.1	DIELECTRIC RESONATOR FILTERS FOR UMTS SYSTEMS	109
8.2	NOVEL CONCEPT OF DIELECTRIC RESONATOR DUPLEXERS	118
0 7	NOVEL CONCEPT OF A DVANCED MULTI-OPERATOR COMBINERS	

ΠΛΡΠ	ER 9 DISCUSSIONS AND CONCLUSIONS	
9.1	RECOMMENDATIONS	
9.2	CONCLUSIONS	
9.3	THESIS RELATED PUBLICATIONS	
EFERI	ENCES	
EFERI PPENI PPENI	ENCES DIX A – WUNONGCHANG FIELD TRIAL DIX B – BEIJING FIELD TRIAL	
EFERI PPENI PPENI PPENI	ENCES DIX A – WUNONGCHANG FIELD TRIAL DIX B – BEIJING FIELD TRIAL DIX C – IR SHIELD AND HEAT SOURCES	

FIGURES

FIGURE 2.1. SPECIFIC ABSORPTION OF RF SIGNALS DUE TO ATMOSPHERIC GASES VS. FREQUENCY [8]	5
FIGURE 2.2. MAP COVERAGE USING HEXAGONAL AND CIRCULAR CELLS	3
FIGURE 2.3. A CELL SITE LIE AT THE EDGE OF SEVERAL CELLS [17]	3
FIGURE 2.4. CELL GEOGRAPHY SHOWING CELL SITE ANTENNA DIRECTION AND CHANNEL REUSE FOR	
AMPS	3
FIGURE 2.5. DIAGRAM REPRESENTING A 25MHz BANDWIDTH GSM CHANNEL SHOWING 124 CARRIER	
FREQUENCIES (FDMA) AND THE TDMA FRAME AND BURST PERIODS (TDMA)12	2
FIGURE 2.6. DIAGRAM REPRESENTING A 1.25MHZ CDMA CHANNEL SHOWING MULTIPLE WALSH CODED	
CDMA SIGNAL1	3
FIGURE 2.7. EUROPEAN UMTS FREQUENCY ALLOCATIONS	5
FIGURE 3.1. IDEAL LC RESONATOR	6
FIGURE 3.2. IDEAL FILTER WITH ELECTRICAL COUPLINGS	6
Figure 3.3. Transfer Characteristics of a lossless filter and a filter with a finite Q_0 of 20000 $$)
	7
FIGURE 3.4. A PILLBOX CAVITY1	9
FIGURE 3.5. PILLBOX CAVITY FILTER	9
FIGURE 3.6. PHOTOGRAPH OF PILLBOX CAVITY FILTERS AT MT. STUART, TOWNSVILLE	9
FIGURE 3.7. SCHEMATIC OF AN RF CAVITY FOR PARTICLE ACCELERATORS SHOWING EM FIELD LINES [39]]
	0
FIGURE 3.8. 9 CELL AS USED IN THE TESLA TEST FACILITY [39]	0
FIGURE 3.9. COUPLED COAXIAL RESONATORS	1
FIGURE 3.10. COUPLED COMBLINE RESONATORS	2
FIGURE 3.11. DIELECTRIC RESONATOR DEVELOPED IN CHAPTER 8 (LEFT: CAD, RIGHT: MANUFACTURED)	
	2
FIGURE 3.12. DIAGRAM OF A DIELECTRIC PUCK AND CAVITY	4
FIGURE 3.13. TOP: MAGNETIC MODE FIELDS FROM TOP VIEW OF COUPLED CAVITIES; BOTTOM: SIDE VIEW	/
OF MAGNETIC FIELDS BETWEEN TWO COUPLED CAVITIES	4
FIGURE 3.14. QUADRUPLET STRUCTURE USING A NEGATIVE CROSS-COUPLING TO OBTAIN A QUASI-	
ELLIPTIC RESPONSE	5
FIGURE 3.15. HALF WAVELENGTH MICROSTRIP RESONATOR	5
FIGURE 3.16 - THEORETICALLY ACHIEVABLE SKIRT STEEPNESS FOR DIFFERENT FILTER ARCHITECTURE	
DEPENDING ON THE FILTER ORDER [53]	8
FIGURE 3.17 - LAYOUT OF COUPLING BETWEEN TWO J-SHAPED RESONATORS AND THE EQUIVALENT	
CIRCUIT [31]	9
FIGURE 3.18 - 32 POLE CHEBYSHEV FILTER [31]	9
FIGURE 3.19 - QUADRUPLET STRUCTURE USED TO PLACE 10 TRANSMISSION ZEROS (DOTTED LINES	
REPRESENT CROSS COUPLINGS) [30]	0
FIGURE 3.20 - TOPOLOGY OF CLIP RESONATOR [32]	0

FIGURE 3.21 - DUAL MODE RESONATOR WITH INPUT AND OUTPUT PORTS	
FIGURE 3.22 - SIMULATED AND MEASURED CHARACTERISTIC OF DUAL MODE RESONATOR	
FIGURE 4.1. GRAPH OF MERCURY'S TRANSITION TO THE SUPERCONDUCTING STATE [61]	
FIGURE 4.2. SURFACE RESISTANCE OF YBCO THIN FILM ON LAALO3 SUBSTRATE AT 10GHZ [[66]38
FIGURE 4.3. SURFACE RESISTANCE AS A FUNCTION OF FREQUENCY FOR YBCO THIN FILMS AN	D COPPER
лт 77K and Bulk Niobium (Nb) лт 7.7K [10]	
FIGURE 4.4. Rs vs Hrf at $f0 = 1.5$ GHz on YBa2Cu3O7-x stripline resonator for difference of the transmission of trans	RENT
TEMPERATURES	
Figure 4.5. Comparison of Input Power versus Output Power at 1.3 GHz for a TI_2BA_2	2CACU2O8
Film at 80K and a YBa2CU3O7 Film at 70K [69]	40
Figure 5.1. STIs' SuperLink [™] Rx 850	41
Figure 5.2. Conductus' ClearSite® 2300	41
Figure 5.3. ISCOs' OMNI	41
FIGURE 5.4. SCHEMATIC DIAGRAM OF THE RECEIVE SIDE OF A CONVENTIONAL BASE STATION	42
FIGURE 5.5. SIMPLIFIED BASE STATION BLOCK DIAGRAM	
FIGURE 5.6. BLOCK DIAGRAM OF THE CRYOGENIC RECEIVER FRONT END (CRFE)	44
FIGURE 5.7. SCHEMATIC DIAGRAM OF CRFE IN A BASE STATION - BLUE OBJECTS ARE COOLED	UNDER
VACUUM TO 68K, RED OBJECTS ARE ROOM TEMPERATURE	45
FIGURE 5.8. BLOCK DIAGRAM OF DEMONSTRATOR D6 CRFE	46
Figure 5.9. Tsinghua's 16 Pole HTS Filter Design	47
FIGURE 5.10. SCHEMATIC OF THE PRINCIPLE OF ULTRASONIC WEDGE BONDING USED TO BONI	THE FILTER
PORTS TO SMA CONNECTORS	
FIGURE 5.11. EXAMPLE OF ULTRASONIC WEDGE BONDING (PICTURE IS NOT OF THE FILTER BO	ONDS)48
FIGURE 5.12. FILTER HOUSING WITH SMALL AIR HOLE IN THE TOP LEFT HAND CORNER	
FIGURE 5.13. TUNING DEWAR	
FIGURE 5.14. D6'S 3CHANNEL OBELISK WITH FILTER-LNA COMBINATIONS MOUNTED	
FIGURE 5.15. FREQUENCY RESPONSES FOR 3 FILTER-LNA COMBINATIONS IN D6	
FIGURE 5.16. CRYOELECTRA LNA IN BRASS HOUSING	
Figure 5.17. Experimental OP1 Measurements of the Cryoelectra LNA at $U_{DC} = 5V$.	
Figure 5.18. OP1-Measurement of a MITEQ LNA	
FIGURE 5.19. MEASURED CHARACTERISTIC OF OP1 AT 3.5V	54
FIGURE 5.20 - CROSS-SECTIONAL VIEW OF THE INTERIOR OF THE VACUUM CHAMBER OR DEW	AR55
Figure 5.21. Bottom of 3 Channel Obelisk	
FIGURE 5.22. OPEN DEWAR OF D6 WITH RF CABLES CONNECTED TO SMA FEED THROUGHS	
FIGURE 5.23. DEMONSTRATOR D6 (LEFT) CONNECTED TO A TVP (RIGHT) AT CRYOELECTRA'S	Lлв56
Figure 5.24. ION Getter Pump	
FIGURE 5.25. ION GETTER PUMP CONNECTED TO HIGH VOLTAGE POWER SUPPLY	57
FIGURE 5.26. HIGH VOLTAGE POWER SUPPLY FOR ION GETTER PUMP	
FIGURE 5.27. D6 PROTOTYPE POWER REGULATION AND DISTRIBUTION BOARD	

FIGURE 5.29. D6 FRONT PANEL)
FIGURE 5.30. POLAR DRIVE C (LEFT) AND SCHEMATIC OF INPUTS AND OUTPUTS (RIGHT))
FIGURE 5.31. POLARWARE – SOFTWARE TO CONTROL CRYOCOOLER)
FIGURE 5.32. D6 FRONT VIEW OF CHASSIS)
FIGURE 5.33. D6 OPEN CHASSIS AND OPEN DEWAR	I
FIGURE 5.34. CHINA UNICOM CDMA BASE TRANSCEIVER STATION MEASURED METALLIC FILTER	
RESPONSE	2
FIGURE 5.35. MEASURE S21 OF THE HTS FILTER AND METALLIC FILTER OF THE SAME OPERATIONAL	
BANDWIDTH	2
FIGURE 5.36 - WUNONGCHANG BASE STATION IN CHINA	3
FIGURE 5.37 - D6 OPERATIONAL IN WUNONGCHANG BASE STATION	3
FIGURE 6.1. CELL TOPOLOGY SHOWING ADJACENT CELL INTERFERENCE [8, 17])
FIGURE 6.2. AVERAGE USER DISTANCE FROM BASE STATION OF INTEREST (THE BASE STATION IS AT THE	
CENTRE OF EACH CELL IN THIS DIAGRAM FOR SIMPLIFICATION))
FIGURE 6.3. INTER-MODULATION DISTORTION [90]	1
FIGURE 6.4. EFFECT OF PRE-SELECTION FILTER ON OUT-OF-BAND INTERFERER	2
FIGURE 6.5. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) WITH NOISE ONLY	7
FIGURE 6.6. SCHEMATIC OF 20W OUT-OF-BAND INTERFERER, CDMA CHANNELS AND FILTER	
CHARACTERISTICS USED IN SIMULATIONS	3
FIGURE 6.7. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) WITH NOISE AND A NARROWBAND OUT-	
of-Band Interfernce of 20W @ 825MHz	9
FIGURE 6.8. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) FOR DIFFERENT SYSTEM IP3 IN THE	
PRESENCE OF INTERFERENCE OF 20W80	0
FIGURE 6.9. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) FOR FILTERS OF DIFFERENT SELECTIVITY	
WITH NOISE AND A NARROWBAND OUT-OF-BAND INTERFERNCE OF 20W @ 825MHz8	1
FIGURE 6.10. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) FOR FILTERS OF DIFFERENT	
Selectivity with Noise and a Narrowband Out-of-Band Interfernce of 20W @ 828.5MHz	
	2
FIGURE 6.11. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) FOR DIFFERENT ENVIROMENTS WITH	
NOISE ONLY	3
FIGURE 6.12. COMPUTED COVERAGE VS. CAPACITY (PER SECTOR) FOR DIFFERENT ENVIRONMENTS WITH	
NOISE AND A NARROWBAND OUT-OF-BAND INTERFERNCE OF 20W @ 825MHz	4
FIGURE 6.13. EXPERIMENTAL RESULTS COMPARED TO SIMULATED RESULTS USING THE CDMA UPLINK	
MODEL	8
Figure 7.1. Pictures of D7 front and back showing the New N-type connectors for RF input	
(TOP OF CRYOSTAT) AND OUTPUT (BACK PANEL)	0
FIGURE 7.2. PICTURES OF D7 WITH REMOVED CRYOSTAT ENCLOSURE TO DISPLAY THE NEW OBELISK WITH A	١
HEXAGONAL CROSS SECTION FOR THE MOUNTING OF 6 FILTER-LNA ASSEMBLIES TO BE USED WITH A	
3 SECTOR CDMA BASE STATION	0
FIGURE 7.3. PICTURES OF 19" RACK MOUNTABLE D8 FRONT AND BACK	0

FIGURE 7.4. PICTURE OF THE MAST MOUNTABLE SYSTEM M1 WITH THE DEWAR OPEN AND A FULL	
COMPLEMENT OF FILTERS	91
FIGURE 7.5. PICTURE OF THE LATEST SYSTEM, D9, FEATURING A RICOR STIRLING COOLER	91
FIGURE 7.6. NEW GENERATION 12 POLE CDMA FILTER DESIGN	92
FIGURE 7.7. NEW GENERATION 20 POLE CDMA FILTER DESIGN	93
FIGURE 7.8. FULL WAVE SIMULATED RESPONSE OF THE NEW GENERATION 12 POLE CDMA FILTER	93
FIGURE 7.9. FULL WAVE SIMULATED RESPONSE OF THE NEW GENERATION 20 POLE CDMA FILTER	94
FIGURE 7.10. LAYOUT OF THE NEW 20-POLE UMTS FILTER	94
FIGURE 7.11. FULL WAVE SIMULATED RESPONSE OF THE NEW GENERATION 20 POLE UMTS FILTER	95
FIGURE 7.12. ALUMINIUM HOUSED LNA	96
FIGURE 7.13. 6 CHANNEL OBELISK WITH CDMA FILTER LNA COMBINATIONS	96
FIGURE 7.14 - WEIGHT ON THE COLD HEAD (VERTICAL)	97
FIGURE 7.15 - WEIGHT ON THE COLD HEAD (HORIZONTAL)	97
FIGURE 7.16 – CRFE D8 WITH SPIDER SUPPORT SYSTEM INSTALLED	98
FIGURE 7.17 - CONCEPTUAL BLOCK DIAGRAM OF RADIATION SHIELD AND INSULATION	100
FIGURE 7.18. NEG PUMP WITH VACUUM FEED THROUGH FOR HEATING WIRES	101
FIGURE 7.19. ZEOLITE	102
FIGURE 7.20. NEG PUMP TESTS – COOLER INPUT POWER VS. TIME	103
FIGURE 7.21 – BLOCK-DIAGRAM OF THE BUILT-IN CRYOGENIC FRONT-END MONITORING, DIAGNOSTIC A	ND
CONTROL SYSTEM	105
FIGURE 8.1. DIELECTRIC RESONATOR (LEFT: HFSS FINAL DESIGN, RIGHT: MANUFACTURED INITIAL	
Design)	109
FIGURE 8.2. MEASURED Q-FACTOR VS. RESONANT FREQUENCY OF THE DIELECTRIC RESONATOR	110
FIGURE 8.3. CAD DRAWING OF 4 POLE DR FILTER AS SEEN IN HFSS	111
FIGURE 8.4. MANUFACTURED 4 POLE RX DR FILTER (NOTE: COUPLING WINDOWS BETWEEN RESONAT	ORS
AND CORRESPONDING ADJUSTABLE TRIM RODS AND TUNING PLATES IN THE LID)	
Figure 8.5. Simulated Frequency Response of 4 Pole Rx DR Filter USING HTSS (S $_{21}$ – Blue, S	11 -
Red)	112
FIGURE 8.6. MEASURED 4 POLE RX DR FILTER RESPONSE	112
Figure 8.7. Simulated 4 Pole RX DR Filter Passband Response ($Q_0 \approx 40000$)	113
FIGURE 8.8. MEASURED 4 POLE RX DR FILTER PASSBAND RESPONSE ($Q_0 \approx 20000$)	113
FIGURE 8.9. EIGHT POLE FILTER DESIGN WITH 2 CROSS-COUPLINGS	114
FIGURE 8.10. CAD DRAWING OF 9 POLE DR FILTER AS SEEN IN HFSS	114
FIGURE 8.11. SIMULATED FREQUENCY RESPONSE OF 9 POLE RX DR FILTER	115
FIGURE 8.12 PHOTOGRAPH OF THE 9-POLE DR FILTER FOR THE UMTS UPLINK (LEFT: COMPLETE PACK	AGE,
RIGHT: OPEN LID)	115
FIGURE 8.13. MEASURED CHEBYSHEV RESPONSE OF THE 9-POLE TX DR FILTER SHOWING -21DB	
MATCHING AT 2115MHz WITH 6MHz BANDWIDTH	
FIGURE 8.14. PHOTOGRAPH OF THE 9-POLE-UPLINK UMTS-FILTER WITH CROSS COUPLING (OPEN LID)116

FIGURE 8.15. MEASURED QUASI-ELLIPTIC RESPONSE OF THE 9-POLE TX DR FILTER SHOWING -21 DB	
MATCHING AT 2116MHz WITH 5MHz BANDWIDTH	.117
FIGURE 8.16. MEASURED QUASI-ELLIPTIC RESPONSE IN THE PASSBAND OF THE 9-POLE TX DR FILTER .	.117
FIGURE 8.17. OPTION 1 – DR DUPLEXER FRONT END	.119
FIGURE 8.18. OPTION 2 – WIDEBAND DR DUPLEXER AND CRFE	.120
FIGURE 8.19. DR DUPLEXER LUMPED ELEMENT CIRCUIT MODEL	.121
FIGURE 8.20. DR DUPLEXER RESPONSE OF TRANSMIT AND RECEIVE CHANNELS	.122
FIGURE 8.21. DR DUPLEXER CLOSE UP OF TRANSMIT CHANNEL RESPONSE	.122
FIGURE 8.22. BLOCK DIAGRAM OF A TRADITIONAL MOC SPLITTING THE UMTS SIGNAL FOR FILTERING	3
WITH CAVITY FILTERS	.123
FIGURE 8.23. BLOCK DIAGRAM OF A DIELECTRIC RESONATOR MOC	.124
FIGURE 8.24. BLOCK DIAGRAM OF THE DR AND HTS MOC	.125
FIGURE 8.25. HTS HEXAPLEXER SIMULATED FREQUENCY RESPONSE	.126

TABLES

TABLE 3.1. Q_0 values and Size Various Filter Designs	26
TABLE 5.1. CRYOELECTRA LNA SPECIFICATION	52
TABLE 5.2. VOLTAGE SUPPLIES AND CONNECTIONS FOR THE POWER REGULATION AND DISTRIBUTION	
BOARD	58
Table 6.1. Link Budget Parameters	74
TABLE 6.2. PROPERTIES OF BASE STATION RECEIVER FRONT ENDS	77
TABLE 6.3. PARAMETERS OF INVESTIGATED BASE STATION RECEIVER FRONT ENDS	80
TABLE 6.4. PARAMETERS OF FILTERS USED IN FILTER SELECTIVITY EXPERIMENTS	81
TABLE 7.1. VERTICAL AND HORIZONTAL TESTING	99
TABLE 7.2. VERTICAL AND HORIZONTAL MOUNTING TEST RESULTS OF D8	99
TABLE 8.1. COMPARISON OF IMPORTANT PARAMETERS OF PROPOSED AND CONVENTIONAL MOC	126