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ii.

ABSTRACT

Genetic and phenotypic parameters were estimated from liveweight
and fleece data recorded on 1604 New Zealand Romney lambs between 1970
and 1972. The flock into which the lambs were born is located at
Woodlands Research Station near Invercargill. The data analysed are
from the establishment phase of a long-term selection experiment;

the flock was closed for selection in 1973.

The traits studied were birthweight (BWT), docking weight (DWT),
weaning weight (WWT), April liveweight (APR), June liveweight (JUN),
August liveweight (AUG), November liveweight (NOV), 2-tooth liveweight
(2TH), lamb fleece weight (LFW), hogget fleece weight (HFW), staple
length (STL), quality number (QNO), character (CHR), fleece colour

(COL) and break severity (BRS).

Restricted maximum likelihood (REML) estimates of the variance
components were obtained. These were used in the generation of
paternal half-sib estimates of the heritabilities (hz), the inter-trait
genetic (rg) and phenotypic (rp) correlations, and the best linear

unbiased estimates (BLUE) of the non-genetic (fixed) effects.

The estimates of the h2's for the liveweights ranged from 0.08
for BWT, increasing through to 0.13 for 2TH. These estimates are
lower than most of the values previously published (generally, from
0.2-0.4, respectively), although they are comparable with many of the

more recent h? estimates for liveweight.

The estimates of h? for the fleece traits were generally similar
to the estimates of previous studies. Estimates of 0.19 and 0.30

were obtained for LFW and HFW, respectively, and 0.37 for STL. The
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fleece quality traits were found to have h? estimates ranging from

0.07 for BRS to 0.56 for QNO.

The estimates of the genetic and phenotypic correlations between
the traits studied were comparable with estimates from previous studies
in most cases. Important exceptions include the low genetic corre-
lations of WWT with the liveweights from JUN (of 0.38) through to 2TH

(of 0.50).

The BLUE's of the fixed effects generally agree well with the
estimates of previous studies. Year-of-birth, birth-rearing rank
and date-of-birth effects were significant for all the traits studied.
In addition, age-of-dam effects were significant for all the liveweights,

and sex effects were significant for BWT, DWT and WWT.
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CHAPTER ONE

INTRODUCT ION

The retention of a selected group of individuals for breeding
purposes is a fundamental aspect of any selection programme. While
the actual methods used to select between individuals may vary, they
all aim to identify individuals with the highest genetic merit. An
effective selection policy combined with a complementary mating plan
forms the basis of a breeding programme designed to maximize genetic
gain in each generation of selection. These concepts were applied to
animal breeding during the 1930's and 40's by Lush and Hazel following
earlier work by Fisher, Wright and Haldane (see, for example, Lush,

1937; Hazel, 1943; Fisher, 1930; Wright, 1939; Haldane, 1946).

Both single-trait improvement and selection for several traits
simultaneously (e.g., using selection indices) can be breeding
objectives. This is particularly so with a dual-purpose breed such
as the Romney, where an aggregate breeding value may be estimated as
a basis for choosing between individuals. It is important, therefore,
to know how certain productive traits can be expected to change in
future generations as a result of selection on one or several other
traits. These factors are dependent on such parameters as the
heritabilities of the individual traits and the genetic and pheno-
typic correlations between traits. These parameters are all functions
of variance components; thus the estimation of variance components is

an integral and important aspect of animal improvement.

As with any field of estimation, many procedures for estimating

variance components have been developed. Each method of estimation



has its own properties and applicability to a specific situation.

Not all methods can be applied in animal breeding settings where, in
particular, the data are usually unbalanced (i.e., there are unequal
numbers of observations in the different subclasses), and the under-

lying model is mixed (i.e., includes both fixed and random effects).

Variance components have traditionally been estimated by analysis
of variance (ANOVA) type methods such as the methods outlined by
Henderson (1953). These estimates have then been used to estimate
genetic and phenotypic parameters, such as heritabilities and
correlations, for use in breed improvement plans. However, develop-
ments in computing facilities have been accompanied by the emergence
of a number of new methods for estimating variance components which

can be applied to mixed models with unbalanced data.

In this study it was decided to use Restricted Maximum Likelihood
(REML) to estimate the variance components. REML shares with
Maximum Likelihood (ML) some desirable features of the maximum likeli-
hood approach, such as translation invariance as well as "having the
intuitively appealing property of maximizing the likelihood function"
(Mood, Graybill and Boes, 1974), which is always well-defined. How-—
ever, like ML, REML is an iterative procedure, which precludes unbiased-
ness properties, and does require assumptions concerning the form of
the distribution of the data. When estimating variance components
from mixed models, REML is preferable to ML because it takes account
of the fixed effects in the model whereas ML does not. Furthermore,
in the case of balanced data, REML has been shown to coincide with
ANOVA estimators (which are best, unbiased, quadratic estimators,

BQUE, in the balanced data case) (R.D. Anderson, 1978).



Having generated the REML estimates of the variance components,
advantage was taken of the fact that under normality the first iterate
of the REML estimator is equal to the MIVQUE (and the MINQUE under
normality) to also obtain MIVQUE estimates of the variance components.
Method III estimates were also estimated and, in fact, were used as

the a priori starting values for the MIVQUE estimates.

Environmental effects have traditionally been estimated by least

squares procedures. In this study, the REML estimates of the
variance components were regarded as the known parameter values under
normality; allowing best linear unbiased estimates of the environ-

mental effects to be obtained. Hence, this provides another interest-

ing comparison.

This study provides a basis for evaluating genetic and phenotypic
parameter estimates of a range of liveweight and fleece traits using

a new method of estimation, namely; REML.
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CHAPTER TWO

REVIEW OF LITERATURE

I VARIANCE COMPONENT ESTIMATION THEORY

A. Introduction

Fisher (1918) first used the terms ''variance" and '"analysis of
variance" and later, (Fisher, 1925), he formally outlined an analysis
of variance (ANOVA) pertaining to the l-way random-effects model with
balanced data. The estimation of variance components using the
ANOVA approach was, according to R.D. Anderson (1978), clarified by

Tippet (1931), having not been explicitly presented by Fisher (1925).

In animal breeding settings, the data are rarely balanced. It
was Cochran (1939) who proposed a method for estimating variance
components from unbalanced data, which is analogous to Fisher's (1925 )
technique. A clear demonstration of the case of an ANOVA approach to
estimating variance components for the l-way random-effects model with
unbalanced data was given by Winsor and Clarke (1940). The ANOVA
method was then "extended to the multi-fold nested classification
model by Ganguli (1941) and to the 2-way crossed classification random

model with interaction by Crump (1947)." (R.D. Anderson, 1978)

The estimation of variance components from unbalanced data by so-
called ANOVA-type methods (which are based on equating analysis of
variance sums of squares of the observations to their expected values)
was formally outlined by Eisenhart (1947) who also clearly distinguished
between fixed- and random-effects models. Henderson (1953) considered
in detail the problem of variance component estimation from unbalanced

data when the underlying model was mixed. This was particularly



relevant to the estimation of variance components in animal breeding
exercises, since the assumption of a mixed model is often required.
A mixed model is defined and discussed in Chapter Four. Thus, the
paper by Henderson (1953) outlining three methods pertinent to animal

breeding is a landmark for variance component estimation (Searle, 1977;.

Hartley and Rao (1967) presented the first general derivation of
Maximum Likelihood (ML) for the estimation of variance components
from mixed models, although Crump (1947) developed ML estimators for
a specific model. Patterson and R. Thompson (1971) introduced a
modified ML approach, now known as Restricted Maximum Likelihood
(REML) . This method follows on from the work of W.A. Thompson (1962)

and also dates back to the ideas of R.L. Anderson and Bancroft (1952).

Interest in best (i.e., uniformly minimum sampling variance)
quadratic, unbiased estimators (BQUE), has led to methods such as
Minimum Norm Quadratic Unbiased Estimation (MINQUE) (Rao, 1970), and,
under the assumption of normality, Minimum Variance Quadratic Unbiased

Estimation (MIVQUE) (LaMotte, 1970).

There are certain important properties of variance component
estimators that are considered to be desirable. In the discussion
of Searle's (1968) paper, Zelen (1968) lists ''unbiasedness, minimum
variance or minimum mean square error, consistency, robustness in the
sense that optimal properties do not depend critically on the dis-
tribution of the measurements, knowledge of the distribution of the
estimate (either the exact or asymtotic distribution), and easy com-
putation', as some of these features. Other favourable properties
include asymtotic efficiency, minimal sufficiency and translation

invariance. The prevention of estimates with values which are not



permitted by the parameter space (e.g., negative variance component

estimates) is another desirable feature.

In the case of balanced data, the optimal properties of ANOVA
estimators of the variance components minimizes the problem of
choosing between the various methods. Graybill (1954) showed that for
the general, nested, random-effects model with balanced data, that the
ANOVA estimators are BQUE. Graybill and Hultquist (1961) later
extended this to show ANOVA estimators are BQUE for all random-effects
models with balanced data. Albert (1976) demonstrated that this
property held for the mixed model case also. Furthermore, when the
data are balanced and normally distributed, Graybill and Wortham

(1956) showed the ANOVA estimators are best unbiased estimators (BUE).

With unbalanced data however, no one method for estimating variance
components has emerged that is superior to all the other techniques in
all respects (Searle, 1971b). This explains why so many methods are
available for estimating variance components from unbalanced data.
Moreover, the computing difficulty of many methods explains why many
computing algorithms have been developed to assist in their application.
Some methods for estimating variance components from unbalanced data
will now be reviewed, particularly those of relevance to the present

study.

B. Henderson's Methods

Henderson (1953) outlined three methods of estimating variance
components from unbalanced data. Method I, or the ANOVA method as it
is often called, was not in fact derived by Henderson but dates back

to Cochran (1939). Henderson's contribution was to show that Method



I could only be applied to variance component estimation in the case
of random-effects models. However, in most animal breeding appli-
cations, variance components need to be estimated from unbalanced data
with an underlying mixed model. Accordingly, Henderson (1953)
proposed Method II which could be applied to mixed models providing
there was no nesting of random within fixed effects, or any inter-
actions between the fixed and random effects. The limitations of
Methods I and II are overcome in Method III, which yields unbiased
estimates of the variance components in the general mixed model.
However, the computational complexity of Method III can restrict its

use.

1. Henderson's Method I

With Method I, quadratic forms analogous to sums of squares
in the case of balanced data are computed and then equated to
their expected values. Hence the name '"analysis of variance"
Method. It does, however, lead to biased estimates if there

are fixed effects or correlations between effects in the model.
Despite this, Method I has often been used with mixed models
which essentially implies either including the fixed effects in
the model and treating them as random, or excluding them from

the model and ignoring them completely. Searle (1968) observes
that the bias is introduced because "if fixed effects are part

of the model they cannot be eliminated from the expectations used
in Method I."

Method I's great advantage is its computational simplicity. If a
random model is justifiable, Method I is then a possible method

to use. Prior to present-day computing facilities, Method I was



in fact used quite widely, but not always correctly.

Henderson's Method II

Method II was proposed to overcome the inability of Method I to
handle mixed models, but to retain the computational simplicity.
It involves first obtaining least squares estimates of the fixed
effects in the model, adjusting the data according to these
estimates and then applying Method I to the adjusted data to
estimate the variance components.

Since the estimation of the fixed effects involves obtaining a
generalised inverse, Searle (1968) suggested that the estimates
of the variance components would depend on the particular
solution vector chosen to correct the data. However, Henderson,
Searle and Schaeffer (1974) subsequently showed that the variance
components are, in fact, invariant to the solution vector for the
fixed effects.

Method II is a possible procedure for obtaining unbiased estimates
of the variance components from unbalanced data with a mixed model,

notwithstanding the exceptions noted earlier.

Henderson's Method III

Method III is a general method for estimating variance components
from mixed models with unbalanced data, although it is computa-
tionally more difficult to apply than Method II. Unlike the
previous two methods which use ANOVA sums of squares to estimate
the variance components, Method III uses reductions in sums of
squares obtained from fitting the full model and different sub-
models, according to the method of Yates (1934). This generates

reductions in sums of squares which are free of the fixed effects



in the model. These reductions are then equated to their expected
value under the full model, leading to equations which yield un-
biased estimates of the variance components. As Method III is
based upon the method of fitting constants by Yates (1934), it is
also known as the Fitting Constants Method (Searle, 197la).
Henderson (1953) states that when it is computationally feasible,
Method III is the most satisfactory of his methods for estimating
variance components since it yields unbiased estimators even if
certain elements in the mixed model are correlated. Its use

may, however, be limited because it involves the inversion of a
matrix with order equal to at least the number of random effects
in the model. With animal breeding studies, for example, where
hundreds or thousands of sires may be involved, this may be a
problem. Despite this, Method III has been, and indeed still is,

widely used particularly as computing capabilities have improved.

All three of Henderson's methods have the desirable feature of
unbiasedness when applied appropriately. Another useful property is
that they are translation invariant, although this is relevant to
Methods II and III only. Furthermore, Henderson's methods do not

require any distributional assumptions about the data.

However, Henderson's Methods are not optimal in all respects.
One of the difficulties of using Henderson's Methods with non-
orthogonal data is that there are often more sums of squares that
can be computed than there are variance components to be estimated.
Thus the choice of a different set of sums of squares will result in
a different set of estimates. That is, Henderson's Methods have the

undesirable property of lack of uniqueness (Henderson, 1980).
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Nor do any of Henderson's Methods yield minimally sufficient
statistics from unbalanced data. Furthermore, none of them possess
minimum sampling variance although they all reduce to the ANOVA method

(with its optimal properties) with balanced data.

The sizes of the sampling variances of the variance component
estimates for a wide variety of models have been derived by many
workers, but Searle (1971la) provides a comprehensive summary. He
notes that these derivations often involve cumbersome algebra and the
assumption of normality. In the unbalanced data case, Henderson's

methods do not generate best asymtotically normal estimators.

Another disadvantage of Henderson's Methods is that they can all
produce negative variance component estimates. Hudson and Van Vleck
(1982) observé that '"'the problem of what to do when negative estimates
are obtained from unbiased estimators remains unresolved." Techniques
for dealing with this problem vary, although simply truncating negative
estimates to zero is not a satisfactory approach_(Searle, 1971b). The
production of negative variance component estimates from a specific
data set is often considered a criterion for using a different method
of variance component estimation. So although Henderson's methods
do possess the properties of unbiasedness and translation invariance,
the deficiencies noted above have stimulated interest in alternative

methods of variance component estimation from unbalanced data.

(GJ Maximum Likelihood

The paper by Hartley and Rao (1967) led to renewed interest in
using ML to estimate variance components. Harville (1977) states

that '"the computation of maximum likelihood estimates [of the variance
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components] requires the numerical solution of a constrained non-linear
optimization problem." In general terms, constrained optimization
involves maximizing (or minimizing) an objective function while satis-
fying certain constraints. In the case of ML estimation of variance
components, this specifically involves maximizing a likelihood function,

subject to non-negativity constraints on the solutions obtained.

The likelihood function is defined as the joint density function,
fY(X, Q), of the random variables in Y, where the density function is
k;own except for an unknown vector of parameters, O. The method of
ML yields the value of O which maximizes the likelihood that Y assumes
the values of Ys the vector of observed data (Mood, Graybill and Boes,

1974) . For mathematical convenience, the logarithm of the likelihood

function is usually used.

When estimating variance cemppnents using ML, it is common to
assume that the data are normally distributed. The necessity to
make this assumption can be a limitation of ML. In animal breeding
populations, the form of the distribution is rarely known, and an
assumption of normally distributed residuals should not be made

temerariously.

A general mixed model, defined in matrix notation is:

y=Xa & I Z.u. (2.1)

where,

is an N x 1 vector of observations

1<

<

is a known N x p design matrix

1R

is an unknown p x 1 vector of fixed effects

Z, for i 0, 1, ... c are known N x q, incidence matrices
~i i

u, for i =0, 1, ... c are non-observable q; X 1 vectors of

random effects
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such that,
E[gi]=9,i=0, l, ... c

with the elements of u, assumed to be independently, normally distri-

2

buted with common variance oi,

i=0,1, ... c. It is also assumed
that cov(ui,ui) =0, i # i' and therefore,
n N ~

Cc
= = = 2 1
E [y] = Xo and var(y) =V izl o5 2,

where y is assumed to have a multivariate normal distribution.

For the model (2.1), the likelihood function can then be derived
under normality (see Hartley and Rao, 1967) as:

L =% log 21 - % log[V] - %(y-Xa)'V™ (y-X) (2.2)

Deriving equations for '"estimating" o, the vector of fixed effects

and 62, the vector of variance components pertaining to the model, where,

éz = [0502] with 92 = {Gi}, 1=1y ... € (2.3)

2

involves differentiating (2.2) with respect of o and 62 and equating to

zero. This leads to the equations:

1{‘)_’5":’_1? (2.4)

= @'V

1Ry

! v~_1 ' :2 = v~ |~
(e [V 2,20V 72,2362 = (5'2Z,20Py) (2.5)

for i, j =0, 1, ... ¢
with é being a solution for a and where P is P of (2.6), but with V in

place of V:

1 = - i
xay o Ty (2.6)

P=V -V

where g is a ML solution for V.

Note that these ML equations require V to be known which is un-

likely. Nevertheless, assuming an initial value for éz, a solution for

g2 may be obtained iteratively. Note that only non-negative solutions

to (2.4) are ML estimators of éz.
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The ML equations do not usually yield explicit solutiomns.
Exceptions include certain balanced cross-classified models with as
many latent roots as there are variance components to be estimated
(T.W. Anderson, 1969) and all completely nested models with balanced
data (Szatrowski and Miller, 1977). Iterative algorithms do not
always lead to convergence and may be tedious. However with recent
improved computing facilities and the derivation of improved com-
puting algorithms, ML estimation has become less difficult to apply.
Henderson (1980) observes that the iteration can still be slow, and
that even when convergence does occur fairly rapidly that there is no
guarantee that this is to a global rather than a local maximum. This
latter aspect however does depend on the computing algorithm used,
which is further considered in section F. It should be noted that
applying procedures (such as penalty techniques or gradient projection
methods) to deal with convergence problems will involve a large, and

often impractical, increase in computing.

Hartley and Rao (1967) also addressed some of the optimal properties
of ML estimation. They used the Methods of Steepest Ascent (see
section F) for the iteration, which guarantees convergence and non-
negative estimates, although it is often impractically slow. Hartley
and Rao concentrated primarily on large sample optimality criteria.

They showed that for any mixed model with unbalanced data, that the ML
estimator they derived is weakly consistent and best, asymtotically
normal. Hartley and Rao assumed the "design" matrices X and Z had
full rank and that the number of levels of each random factor is
restricted to some constant, however T.W. Anderson (1973) and Miller

(1973, see also Miller, 1977) showed that ML estimators were consistent
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and best asymtotically normal without the second of these assumptions.
Hartley and Rao also noted that, based on work by Hultquist and Gray-
bill (1965) that "it is a considerable small sample advantage' that

ML estimators will always be functions of minimally sufficient statis-

tics.

Searle (1970, 1971a) derived the large sample variances of ML
estimators for a number of models. Since ML estimators are best
asymtotically normal he notes that '"one value of the resulting

2's cannot be

expressions is that even though ML estimators of the o
obtained [explicitly], values for the variances in their asymtotic
distribution can; and against these can be compared variances of

estimators obtained by other methods to give measures of asymtotic

efficiency of those other methods."

The main difficulty with the ML techniques proposed by Hartley
and Rao (1967) is the amount of computation time. Hence they also
discussed an alternative method which was further developed by
Henderson (1973) and Henderson, Ufford and Schaeffer (1976). This
ML method is known as Henderson's Algorithm and makes use of Henderson's
Mixed Model Equations (MME) (see, for example, Henderson et al., 1959;
Henderson, 1963, 1972). This greatly simplifies the computations.
Henderson's Algorithm also has the advantage that it always yields
non-negative variance component estimates. Yet another algorithm
was developed by T.W. Anderson (1973), although it does not guarantee
non-negative solutions. There are also a number of general algorithms

which have been applied and some of these, e.g. Fisher-scoring and

Newton—-Raphson, are discussed in section F.

Harville (1977) provides a comprehensive review of ML methodology
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and properties. He notes that the ML approach is always well-defined
as well as having the optimal properties of consistency, sufficiency

and efficiency already discussed.

An important problem associated with ML when estimating variance
components from mixed models is that no account is taken of the loss
in degrees of freedom due to the need to also estimate the fixed effects,
in the model. Henderson (1980) states that unless the rank of the
design matrix, X, pertaining to the fixed effects is small»relative to
the total number of observations, the estimate of the residual variance
component will be seriously biased downwards. He also notes that the
estimate of the variance component pertaining to any random effect with
a small number of levels will also be biased downwards. To overcome
this problem, Patterson and Thompson (1971) developed the REML method

discussed in the following section D.

Harville (1977) suggests that another disadvantage of ML, namely
the need to assume a distributional form, is not in fact very serious.
He discusses several results which indicate that ML estimators derived
under normality may be suitable even when the form of the distribution
is not specified. Thus, except where the estimators are biased by
fixed effects in a mixed model, the advantages of ML have recently
seen it applied in many appropriate situations. For example,
Rothschild and Henderson (1979) and Rothschild, Henderson and Quaas
(1979) have used ML to estimate variance and covariance components
from simulated lactation records; Schaeffer (1979, 1981) applied it
to the estimation of variance and covariance components from pig data

and dairy sire progeny test results, respectively.
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D. Restricted Maximum Likelihood

Restricted Maximum Likelihood (REML), being a modification of ML,
shares many of the properties of ML. The main advantage of REML for
variance component estimation is that it takes account of the need to
estimate fixed effects in mixed models. The method is described by
Patterson and Thompson (1971) essentially as partitioning the data
into two separate parts and deriving the likelihood function for each.
One portion, which is free of the fixed effects is then maximized to

estimate the vector of variance components 02, defined in (2.3).

Quaas (1976) suggests that the development of the REML equations
can be considered in two different ways. In the first approach, the
equations are derived by maximizing the likelihood function over a
restricted sample space. That is the likelihood is derived for just
a portion of the sample space of y, the observation vector. To obtain
variance component estimates by REML, the likelihood function is
derived from "a certain subpopulation for which [é] has a fixed value'
(Quaas, 1976). Thus, the REML likelihood function is the conditional
density of y given é which is assumed to have a multivariate normal

1

distribution with E[yla] = a and var(;|&) =V - X(X'V_lX)_ X'.

The second approach is the method of maximizing the likelihood
of a set of error contrasts. An error contrast is a linear function
of the observation vector, say E'Z, where E does not include any of
the unknown parameters in the model and E[E'Z] = 9. This is the method
used by Patterson and Thompson (1971) to derive their REML equations.
The maximum number of linearly independant (LIN) contrasts in each
set is N - p* where N is the total number of observations (i.e., the

order of y) and p* is the rank of X, the design matrix. Searle (1979a)
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states that "there is obviously no merit in dealing with k'y if some

rows of k' (and hence elements of k'y) are linear combinations of

others; neither should we lose information by using a k'y that has

fewer elements than the possible maximum." k'y has a multivariate

normal distribution with E[g'y] = 0 and var(k'y) = k'Vk. The

logarithm of the likelihood of k'y is then required, and it can be
shown (see Searle, 1979b, for example) for any E’ of order (N - p*) x N,
with full row rank (N - p*),

and with k'X = 0, that the resulting

function will be exactly the same except
only on k' and not on any of the unknown
Quaas (1976) has shown that maximization

space yields exactly this expression for

for a constant which depends
parameters in the model.
over a restricted sample

the likelihood. Thus the

likelihood function for REML is:

L =]

1 'l(g—xé) (2.7)

constant - %log[V] - %log[g'Y_lgl - H(y-Xa)'V

Various procedures can be used to obtain the REML equations from

L They generally involve various combinations of taking first and

1

second order partial derivatives of (2.7), their expected values and/or

related quantities (Harville, 1977). One way to obtain the REML

with

equations is to maximize the likelihood by differentiating L1

respect to O and then setting the resulting equations to zero, in the
same way that the equations for ML were obtained. From Searle (1979a),

the equations which afford REML estimates are:

D "N o '3
tr(Pz,2,') = (y-x&)'ﬁ'lz Z. "V L (y-x0) (2.9)
~~i~1 A= ~ ~i~1i ~ i abine.
or,
" ' 5
(tr[P2.2, gz Zy "NHé (y Pzi g 'Py) (2.10)

for i, j=0,1, ... c
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where the matrix P is the matrix P of (2.6) with ?_1 in place of V_l,

2 2

A N -
a is a solution for o and 0% is the REML estimate of g?.

As Searle (1979b) observes, while there is no implicit REML
estimator of o obtained from maximizing (2.7) an "obvious'" estimator

of a is:

- (§.§-l§)-x-§-ly (2.11)

R »

a
A

where a is, in fact, the generalised least squares (GLS) estimate

= B Y

but with Q_l in place of Y—l. Note also, that

of (2.4) with V 1 replaced by ¥ I.

1R

Ys
:

IR»

is analogous to

Maximization over a restricted sample space is therefore the
basic feature distinguishing REML from ML. The REML equations do
not guarantee non-negative solutions, so like ML, only non-negative
solutions to (2.8) — (2.10) can be regarded as REML estimates of the
variance components. As with ML, the REML equations do not usually
yield explicit estimators but need to be solved iteratively. Various
computing algorithms are available which are discussed in more detail
in the following section E. Some use second order partial derivatives
or expected values, and they differ in speed of convergence and other
properties. For example, an algorithm may be modified to avoid

negative estimates.

Another feature of REML is that with balanced data, solutions to
the REML equations have been shown to be numerically equal to ANOVA
estimates in special cases including the split-plot design (Patterson
and Thompson, 1974), the l-way random, the 2-way nested random and
the 2-way crossed classification mixed model, with and without inter-
action (Corbeil and Searle, 1976b). R.D. Anderson (1978) in fact

showed that in the balanced data case, REML estimators of the
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variance components coincide with ANOVA estimators in general. That

is, with balanced data REML estimators are BUE.

REML does not improve on ML in all properties of interest. Al-
though it should be pointed out that, to date, the properties of ML
estimators have been studied far more extensively than those of REML
estimators. One property in which ML is superior is sufficiency.

In the comment to Harville's (1977) paper, Rao (1977) observes that in
contrast to the full ML likelihood function, the REML likelihood
function is not minimally sufficient. In his rejoinder Harville
suggests that this is irrelevant since ''the ML estimator turns out to

depend on the data vector y only through the error contrasts."

REML estimators of the variance components are translation
invariant (Corbeil and Searle, 1976a). Harville (1977) notes that
this has been cited as a reason for preferring REML over ML, but that
this is quite invalid since ML estimators are themselves translation
invariant also.

The relative sampling variance of the REML estimator depends
largely on the '"specifics of the underlying model and possibly on Q+"
(Harville, 1977), where Q+ is the true value of 0. The sampling
variance of REML in comparison to ML estimators has been studied for
ordinary fixed ANOVA or regression models. For such models Harville
(1977) states that '"the ML estimator of the variance [90] has uni-
formally smaller MSE than the REML estimator when p* g 4; however, the
REML estimator has the smaller MSE when p* > 5 and n — p* is sufficiently
large (n - p* > 2 suffices if p* » 13). MSE comparisons between variance-
component estimators obtained by solving the likelihood equ;tions for

ML and variance-component estimators obtained by solving the likelihood
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equations for REML, were made by Corbeil and Searle (1976b) and
Hocking and Kutner (1975) for several mixed and random ANOVA models."
They also found that the ML estimator generally had a smaller MSE
relative to the REML estimator except when there were only a few
observations per cell or when the random—~effects variances are small
relative to the residual variance, which Corbeil and Searle observe

is often the case in genetics.

Corbeil and Searle (1976b) also investigated the relative
properties of ML, REML, Henderson's Method II and Method III (Henderson,
1953) and an iterative method from Thompson (1969) in the unbalanced
data case using numerical studies. They found ML to be noticeably
superior in terms of MSE, the other methods being relatively similar.
The same trend was found for the sampling variances which were cal-
culated from expressions derived by Hartley and Rao (1967) and Corbeil
and Searle (1976a). However, Corbeil and Searle (1976b) do note that
the study was limited to a mixed model with 6 levels of the fixed
effects and 10 levels of the random effects factor and that these

results may not necessarily apply with larger models.

Carter (198l) looked at some large sample properties of REML but
only for the regression model. He was interested in comparing different
methods of measuring the activity of the enzyme sucrose in intestinal
tissues, using REML method. Carter first studied some asymtotic
properties of REML estimators under a full rank model. He found
them to be consistent and asymtotically, normally efficient when just
3 levels (i.e. 3 different measuring methods) of the regression co-
efficient are included in the model. Nevertheless, as both Harville

and Rao (in Harville, 1977) point out, there is still a great need for
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" large-sample properties of REML estimators to be established

"realistic
for a wide variety of models. Indeed, work on asymtotic properties of

ML estimators also needs to be extended to a wider range of models than

have currently been investigated.

The usefulness of any method of estimation depends finally on the
ease with which it can be applied. Henderson (1980) comments that the
iteration is usually more complex with REML than it is for ML. Never-
theless, there are a number of algorithmsthat can be applied to REML
to improve convergence, which will be discussed in the subsequent
section. The choice of an appropriate algorithm and the availability
of suitable computing facilities makes REML an applicable method of

estimation in a variety of situations.

E. Other Estimation Methods

Attention to the properties of unbiasedness and minimum sampling
variance has stimulated interest in best, quadratic unbiased estimation
(BQUE) . Townsend (1968) and Townsend and Searle (1971) derived
estimators for a l-way random model with unbalanced data, assuming a
normal distribution with a zero mean, that were locally BQUE, where
locally best is defined by LaMotte (1973a). Harville (1969) also
derived locally BQUE of the variance components under normality for a
l-way random model and unbalanced data, but for the case of non-zero

means.

The BQUE approach has been considerably extended by the work of
LaMotte (1970, 1973a, b) and Rao (1970, 1971a, b, 1972, 1973).
The minimum norm quadratic unbiased estimators (MINQUE) of the

variance components were derived by Rao (1970) by minimizing a
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weighted, Euclidian norm (as discussed, for example, by R.D. Anderson,
1978, 1979b and Searle, 1979b). The MINQUE do not require an iterative

solution and are distribution free.

Under the assumption of normality, LaMotte (1970) derived minimum
variance quadratic unbiased estimators (MIVQUE) which are locally BQUE.
The MIVQUE also do not require an iterative solution. In fact, under
normality the form of the MINQUE equations is identical to the MIVQUE
equations for estimating the variance components:

(er[Pz,2,'22,2,'1)6% = (y'P2,2;Py) (2.12)
for i, i =10, I, ...c
where f is g of (2.6) but with a priori estimates of the variance com-
52

ponents, ¢, in V. Equations (2.12) also have the same form as equations

(2.8) - (2.10) for REML, although REML requires an iterative solution.

The properties of translation invariance and unbiasedness of the

estimator are invoked for MINQUE and MIVQUE. Denoting a quadratic

2

estimator of the estimable function, t'c“, as y'Ay for a symmetric

matrix A, the necessary and sufficient conditions for translation

invariance are that AX = 0. Unbiasedness is guaranteed when X'AX

~ ~ o~

1
1O

~and tr(é%i%i') =t i=0,1, ... c, which ensures that E[Z'AX] =

et
1Qe.

In the derivation of MIVQUE, minimum sampling variance of the

estimator is also invoked. That is, A must also be determined such

2

that the variance of g'g is minimized. R.D. Anderson (1978) notes

2

that the estimator E'é is only MIVQUE when the chosen a priori vector

of the variance components éz, actually equals gz, the variance com-
ponents to be estimated. Since the probability that the a priori
estimates do equal éz is low, Anderson queries whether the minimum

variance properties of MIVQUE or MINQUE, under normality, are likely to
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be very strong in practice for a mixed model and unbalanced data.
R.D. Anderson, H.V. Henderson, Pukelshein and Searle (1979) have shown
that, with no assumptions concerning the distribution, the MINQUE are

BQUE with balanced data.

There are a number of variations of MINQUE and MIVQUE which are
less dependent on a priori estimates of éz. Rao (1970) suggested that
one method of overcoming lack of knowledge about éz, is to set all the
variances in 92 to zero and assume any value for o%. This method is
now known as MINQUE- (0) and yields the same estimators as were derived
by Seely (1971) and Hartley, Rao and LaMotte (1978). Assuming
normality, Quaas and Bolgiano (1979) showed that the sampling variance
of the MIVQUE- (0) estimators became very large as gz/oi deviated from

0.

Another modification of MINQUE which alleviates the need for
a priori estimates of the variance components is iterative or I-MINQUE,
so-named by Brown (1976). He also showed that both the MINQUE and
I-MINQUE estimators are asymtotically normal. I-MINQUE is computed
by iterating the MINQUE equations (2.12) starting with any reasonable
values for éz. However, the estimators are no longer unbiased nor do
they possess minimum variance. Thus, Searle (1979b) suggests that

the loss of minimum variance properties makes an analogous procedure

for ﬁIVQUE inappropriate.

Under the assumption of normality, the first iterate of the REML
or the I-MINQUE procedures equals the MINQUE and the MIVQUE (R.D.
Anderson, 1978). As with the REML solutions, all the MINQUE-related
methods discussed must be constrained to non-negative solutions when

estimating variance components P.S.R.S. Rao (1977) discusses a
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minimum norm quadratic estimator (MINQE) which is inherently non-
negative. However, it is not unbiased, although its sampling

variance was found to be comparable to the MINQUE.

There are various other modifications of MINQUE available. Rao
(1972) extended the use of MINQUE for variance components to include
the estimation of covariance components. Goodnight (1976) employed
MIVQUE "to provide quadratic unbiased estimators whose variance is
dependent on as few of the unknown variance components as possible",
which he called maximally-invariant quadratic unbiased estimators.
Harville (1981) derives the necessary and sufficient conditions for
unbiased and minimum-variance unbiased estimators for fixed effect
models with arbitrary covariance structure. These estimators have

also been studied by Rao (1979).

Henderson (1980) describes a new method of estimation of variance
components applicable to mixed models which is related to MINQUE (0)
but does not depend on g/og being close to O. Furthermore, it is
computationally feasible, with ¥'¥ being the only matrix to be inverted,
although this is also unnecessary if ¥'¥ is diagonal. Henderson notes
that the sampling variances are relatively easy to compute for this
method. He thus compared these with MINQUE, MINQUE (0) and Method III
for a mixed model including one random (sire) effect without interaction,
over a wide range of og/og values. The new method showed a smaller
sampling variance than all the other methods over the entire range of
Og/og studied (from 0.5 to 100). Hudson and Van Vleck (1982) com-
pared Henderson's new method with Method III. The estimates resulting
from the two methods weré generally similar although they occasionally

yielded estimates of opposite sign. The possible production of
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negative estimates is an unresolved problem of both methods. Both
methods are unbiased and translation invariant. The ease of com-
putation of the new methods is improved when there are fewer fixed
effect equations to be absorbed although both methods are generally
computationally feasible with present-day facilities. Once the fixed
effects are absorbed the new method converges rapidly and with relative
ease. Thus, Henderson's new method appears to have a number of
desirable properties for estimating variance components in animal
breeding settings. Nevertheless, a universally optimal method is

not available for unbalanced data and there are methods other than

those described which are desirable for particular applications.

F. Computing Algorithms

Having derived equations for a particular method of estimation
it is then necessary to obtain a solution. Attention will be focussed
here on computing algorithms that can be applied to REML. The com-
puting algorithm may involve solving the equations of (2.8) - (2.10),
or it could incorporate modifications which offer advantages such as
speeding up the iteration or yielding only solutions which are permitted

by the parameter space.

Iy Mathematical optimization

Before discussing some of the algorithms, a brief description of
the terminology of mathematical optimization will be given.
Mathematical optimization algorithms can be single-variate or
multivariate, constrained or unconstrained, direct search methods
or indirect gradient methods. Gradient methods are based on the

Taylor series and tend to be more useful for variance component
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estimation because search methods are usually very time-consuming.

Harville (1977) states that the solution for @, the vector of un-
known parameters from the (r + l)st iteration of any maximization

algorithm can be represented as:

GUnRbl ., BF 4 5w (2.13)

where Qr is the solution for O from the previous round, W is the
vector determining the search direction, and P is a positive
scalar controlling the distance traversed in each round, in the
direction of the search. Gradient algorithms are further defined,

for REML, by specifying for L the likelihood function under REML,

1,
that:

_ (r)
w_ = N_ (3L,/30) (2.14)

for some square matrix Nr with order equal to the number of random

effects in the model. Equation (2.14) could just as easily have

been written for ML, that is, with 9L/930.

The different gradient algorithms are characterized by the terms
they have in P, and Nr' A method may be either first order or
second order depending on whether or not it uses the second order
partial derivatives of the likelihood function as well as the first
order partial derivatives in Nr' The steepest ascent method (used
by Hartley and Rao, 1967) is a first order method, while the Fisher-

scoring and Newton-Raphson algorithms are both second order methods.

The constrained optimization methods usually apply either linear
or non-linear constraints, although with some algorithms (e.g., the
gradient projection and the penalty techniques), both can be applied.

For reasons of mathematical simplicity, it is generally preferable
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to apply linear constrains. There are also transformation
methods available which change a constrained problem into an un-
constrained one. Note, that 'mon-linear optimization method"
refers to a non-linear objective function (e.g., quadratic for

variance components); it does not specify the type of constraints.

It is also important to recognize that for any given estimation
method, including REML, it is not possible to identify the optimal
computing algorithm. An algorithm that performs well in one
application may perform poorly in another setting. The rate at
which the iteration converges and certain optimality considerations
(such as whether the iteration converges to a global rather than a
local maximum, or whether only solutions permitted by the para-
meter space can be generated), have resulted in the derivation of

a variety of algorithms. Thus it is useful to have some knowledge
of the performance that can be expected from various algorithms

under specific conditions.

Unconstrained optimization algorithms

The method of steepest ascent (also known as Cauchy's method) used
by Hartley and Rao (1967) is a first order method. The iteration
may be initiated with any set of starting values and it is
theoretically guaranteed to converge. However, it has the dis-
advantage of having a linear convergence rate and is often very
slow to converge (Powell, 1970). This tedious rate is associated
with the matrix of order N, the number of observations, that has
to be inverted on each round of the iteration. Hartley and Rao
also outline a modification which Hemmerle and Hartley (1973)

developed into an algorithm called the W transformation, which can
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be applied to other algorithms such as the steepest ascent method.
It removes the need to invert this N x N matrix and ensures the
computations do not depend on N at all, thus speeding up the
iteration. Hemmerle and Hartley actually apply the W trans-
formation to the Newton-Raphson algorithm. This is one of two
important gradient algorithms, the other being Fisher-scoring,

which will be discussed here.

The method of Fisher-scoring is a second-order gradient method.

It also has a linear convergence rate, however, it is faster than
the steepest ascent method since it does not involve inverting an
N x N matrix (where N is the total number of observations), on

each iteration. With this method, P, of (2.13) equals 1 and

Nr of (2.14) is a function of the expected values of the second
order partial derivatives. Thus, based on Searle (1979b) the
solution for O from the (r + l)st iteration of applying the Fisher-

scoring algorithm for REML is:

ot gt 4+ g

32L ] U &

1
0030" 30 , (2.15)

To express (2.15) in a computational form, the information matrix
of 9, denoted I(9), is first defined (from Searle, 1979b), under
REML as:

aZLl
1 = - B | —= N
G 030’ (2.16)

Thus I(@) is used directly in the Fisher-scoring algorithm. It is
often useful to denote Q as a function of &2, defined in (2.2), say
;, where:

i = [Yo!] - (2.17)
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for T B and y {Yi} {oi/oo}for i, 1, ... c. Then the

expression for I(y) may be given as:

1) =% | {(¥-p*) /o) {(aq;-tr [T, /0D ")

diagonal terms:

tr[(I .—T..)z]/Y?
~qi ~ii i

{(q.-tr[T..])/c?}
ql [ 11] 1 off-diagonal terms:

er [T, T, vy (2.18)

for i, j =1, ... ¢

which may be substituted into (2.15) and the remaining expression

for the first order partial derivatives for i from Harville (1977)

is computed by the Fisher-scoring algorithm as:

oL, = -k {Y;I(N-p*-z'g'g)}

L3 {Y;I(qi‘tr(Tii)) ~ YoVivyi! (2.19)
for i =1, ... ¢

where P is defined in (2.6), 9y is the number of levels in the ith

random effect, and v, is an element of v which is related to b, the

vector of random effects:

b = Dy (2.20)
where D = var(b). Iii is a submatrix of T:
-1
= ' = . e e

T = (1 +2's2D) Ty ==~ Br

Icl : ch J (2.21)
with
5=k -RX @WRIOEE (2.22)

solving (2.19) therefore requires estimates of P, T and v.

Solutions for T and v are discussed in the following section, F3.
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Searle (1979b) has shown that:

=3 S(y - ZDv) (2.23)

This expression can be further simplified depending on the particular
specifications of the underlying model. For example, when R = I ;'
L. ~

can be assumed then:

y'Py = [(¢'yy' XX 0 X' y)/o2] - "2y "XX'X) 7X'2) vy] (2.24)

~ o~ o~ o~ o~ o~ S ~ o~

The Newton-Raphson algorithm is, in fact, very similar to the Fisher-
scoring method except that the second order partial derivatives
themselves are used, rather than their expected values. Thus, it
is also a second order gradient method. From Searle (1979b), the
REML solution to Q on the (r + l)st iteration of the Newton-Raphson
algorithm is:

1

oFHD | 50 _ BZLI]— oL,

5930 30

(2.25)
Computing the first order term in (2.25) is exactly the same as the
expression given in (2.19) for the Fisher-scoring method.. The com-

putation of the second order term is given by:
r - - -
37-L1 = -4 {Y;Z(—N+p*+2¥'€¥)} {(viv )™

dyay

diagonal terms:

—2 2 _1."
Yy tr(%qfﬁ?ii) +2YoYi Yi(Iql T11)~1
{viv}
~l~
off-diagonal terms:

-1 -1 -1
- o tr(T,.T..)-2y vy, VvIT, . v,
1 Yy (~1J~Jl) Yoy YiT15Y5

(2.26)

for iy j = L, wee €

where y'Py is defined as in (2.23) or, for R = 102, as in (2.24).
1.2 ~ ~o0
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The advantage of the Newton-Raphson algorithm is that it has a
quadratic convergence rate and therefore a solution is usually
obtained in fewer iterations than from the Fisher-scoring method.
Harville (1977) notes that for any function with a negative
definite Hessian matrix (the matrix of second order partial
derivatives of the objective function), convergence will occur in
a single iteration. The difficulty with the Newton-Raphson
algorithm is that quadratic convergence rates are only achieved
if the iteration is initiated with starting values that are in
reasonable proximity to the maximizing value. If the starting
value is poor, the Newton-Raphson algorithm may converge to a local
rather than a global maximum, or to a stationary point which is

neither, or it may fail to converge altogether (Bard, 1974).

When estimating variance components, well-substantiated prior
estimates are usually available as suitable starting values for

the Newton-Raphson algorithm. Jennrich and Sampson (1976) found
the performance of the Newton-Raphson iteration improved if it was
preceded by at least one round of Fisher-scoring and also defaulted
to this whenever the change in ;i was greater than 1. Harville
(1977) suggests that although the Fisher-scoring method usually
takes more iterations to converge, that it is often easier, and
quicker, to compute the terms required within each iteration.

Thus both methods have computational attributes.

Use of the mixed model equations

When REML estimates of the variance components are to be generated
from a mixed model with unbalanced data, it is generally an

advantage to make use of the mixed model equations (MME). The
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MME derived by Henderson (1963, for example) are:

xR X'RX a X'R 7y
2 'x z'r7lz + 07! b Z'R-ly (2.27)

Harville (1976, 1977) suggested another form of the MME which,

unlike Henderson's, allowed for singular, D, namely:

X'R'X X'R7zD a X'R ™y
el - ~ - ol
Z'R "X I+ 2Z'R 2D v Z'R. Ty (2.28)

Obtaining a solution for v from (2.28) and making use of the
definition of v in (2.20), provides a solution for b. The left
hand side (LHS) matrix of (2.28), say C, is related to the LHS

matrix of (2.27), say B, by the expression:

C=2B

1
O

(2529)

1 O
o

In comparison with the matrices such as P, T and V which are found

in the REML equations, (2.8) - (2.10), or in some of the computing
algorithms outlined, the matrices in the MME, X and Z and sometimes

R and D, may have relatively simple structures. Obtaining solutions
for o and b from the MME and using these as estimates in such
equations as (2.20) to (2.24) can offer worthwhile computational
advantages. Furthermore, use of the MME is often complementary

to other algorithms, such as the Fisher-scoring and Newton-Raphson

methods, for estimating REML estimates of the variance components.

Iteration of the basic REML equations involves inverting V on each
round of the iteration. The matrix V is never known and further-
more, being of order N, is usually very large to invert. Based on

earlier studies (see, for example, Henderson, 1973 -and Harville,
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1975, 1977), Searle (1979b) shows that the equations for REML can

also be expressed as:

c2(x+l) | y'(y - Xa Zb ")
© N - p* (2.30)
and, for i =1, ... c, the number of random effects:
aon G
aq - e (Tag) (2.31)

where g, a solution for b, may be obtained from the MME (e.g.,
(2.1)), é is the estimate of @ defined in (2.11), p* is the rank of
X, 9y is the number of levels in the ith random effect and T is
defined in (2.21). Searle (1979b) observes that iterating (2.30)
and (2.31) always ensures positive estimates because, as he shows,

the numerators are always positive, tr(Iii) is always positive and

2

q; is always greater than or equal to tr(Iii) when oy is greater

than O.

The MME can also be usefully applied to obtain an estimate of T.
The algorithm for computing % from Henderson's MME is given in
the appendix. A similar procedure yields i from Harville's MME.
The advantage of Harville's MME in this respect is that T is
directly obtained as the lower right-hand submatrix of the
generalised inverse of C, whereas for Henderson's MME some

additional computation is required.

Modifications to apply constraints

A major problem with the unconstrained gradient algorithms (out-
lined in section F.2.) for variance component estimation is that
they can all produce negative solutions, which are not permitted

by the parameter space. Constraints may be applied in a number
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of ways, although procedures such as setting negative solutions
to zero after each round, or ignoring these solutions completely,
are unsatisfactory. Such procedures, although they have been
used (e.g., Hemmerle and Hartley, 1973; Miller, 1973), can be
the cause of convergence to stationary points which are not
maxima. A preferable approach is to modify the unconstrained
algorithm with a technique such as those discussed below (see
also, Harville, 1977; Bard, 1974 or Gill and Murray, 1974, for

example) .

To apply non-negativity constrains for variance component
estimation there are a number of algorithms available including
penalty techniques which maintain the solution within the
parameter space by modifying the objective function by some
penalty term after each iteration. There are also the trans-
formation techniques which transform the constrained optimization
into an unconstrained problem. Another method is the gradient

projection technique which '"can be used whenever all the in-

2
i

equality constraints [for example, o§ >0 or of > 0] are linear
constraints (as in computing ML or REML estimates of variance
components)' (Harville, 1977), that is, whenever the constraints
can be expressed as a linear function of O. With this technique
the search direction is modified after each iteration by a set of
active constraints. These are defined by Powell (in Gill and
Murray, 1974) as 'a list of those constraints that are satisfied
as equalities during an iteration.'  Methods for evaluating the

active set at each iteration, that is active set strategies, are

discussed by Gill and Murray (1974) and Adby and Dempster (1974).
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Harville (1977) states that the unconstrained search direction,
denoted by v of (2.14) is then modified, to wr say, where:

= — ' -1'
W= @-wU UwU) Uhw (2.32)

where Ur is the set of active constraints for the rth iteration.

Harville (1977) suggests that the gradient projection technique
is probably the best of the three methods mentioned in the case

of variance component estimation. It is considered "

superior

to the penalty technique for handling linear constraints, especially
when it is suspected that the maximizing value may be located on a
boundary." It is also better than the transformation methods
which should only be used "in conjunction with algorithms that
guarantee at least some increase in the value of the objective
function on each iteration" because, for example, when computing

REML estimates of variance components it may introduce additional

stationary points of the likelihood function.

There are other methods available for imposing constraints such

as the modified Newton-Raphson algorithm outlined by Harville
(1977) and the improved W-transformation by Hemmerle and Lorens
(1976). Harville (1977) observes that 'the search for improved
optimization algorithms is an ongoing process." Indeed, both

the continued development of estimation methods and the derivation
of computing algorithms for applying these methods, are important

ongoing aspects of variance component estimation.
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ITI. PARAMETER ESTIMATES FOR THE ROMNEY

A. Non - Genetic Effects

The phenotypic record of an individual has a genetic and an
environmental component, although it is the genetic portion that is
important in terms of selection. Non-genetic or environmental effects
mask the breeding value (B.V.) of the individual as, although they are
not controlled by (or inherited with) the same genes as the trait, they
may affect its expression. For breeding purposes it is, therefore, use-
ful to identify the important envirommental effects and adjust the

records for these to give a more accurate indication of B.V.

A number of studies of environmental effects on liveweight in the
Romney (e.g., Ch'ang and Rae, 1961; Ch'ang and Rae, 1970; Baker et al.,
1974; Baker et al., 1979; Eikje and Johnson, 1979; Jury et al., 1979)
have indicated that date of birth, year of birth, sex and birth-rearing
rank of the lamb and age of the dam should be considered. Jury et al.
found that between a third and a half of the total within flock variation
was controlled by environmental effects. Clarke and Rae (1976) state
that from the analysis of large numbers of National Flock Recording Scheme
(Sheeplan) flocks it has been found that of the total of 40-457% of the
variation in weaning weight that is controlled by environmental effects;
5% is due to year effects, 2% is due to age-of-dam effects, 15% is due
to birth-rearing rank effects, 5% due to sex effects and 157% is due to

date of birth of the lamb.

Eikje (1979) suggests that hogget fleece weight should be adjusted
for sex and, possibly, birth-rearing rank and date of birth also. Estimates
~ of environmental effects on hogget fleeceweight (e.g., Baker et al., 1974)

have generally shown sex to be the single most important effect on this
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trait. Baker et al. (1979) found sex effects accounted for 167 of the
total variation in hogget fleece weight, while the other environmental

effects together controlled 3-47 of the total variation.

The importance of the environmental effects does change with time.
Maternal and other effects associated with the early environment of the
lamb such as the age of the dam, date of birth and birth-rearing rank
have a lesser effect as the lamb gets older. For example, Baker et al.
(1979) found that the environmental effects, particularly date of birth
(11%) and birth-rearing rank (18%) controlled a total of 357% of the
variation in lamb fleece weight, but a year later all the environmental
effects, except sex, were relatively unimportant. The same trend
occurs with liveweight although environmental effects have more influence

on hogget liveweight than hogget fleece weight.

The influence of sex on hogget traits found in these studies
actually includes a grazing mob effect since the sexes are usually run
separately from weaning. Eikje (1978a) notes that a number of factors,
such as the possibility of interactions between the effects, or the
presence of significant within-flock or within-year variation should be
considered when choosing a method of adjustment. Jury et al. (1979)
and Eikje and Johnson (1979) concluded that specific within-flock and
within-year adjustments for environmental effects could be more accurate
in flocks weaning more than 150 lambs; except that overall adjustments
for birth-rearing rank are suggested unless more than 1000 lambs are

being weaned. Overall adjustments are recommended for smaller flocks.

Sheeplan uses within-flock and within-year deviations from the
group means to adjust for sex and to take account of whether a ewe first

lambed as a hogget or not (dam class, say), but uses overall adjustments
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for the other environmental effects. Liveweight records are adjusted
by overall correction factors for the effects of birth-rearing rank,
date of birth and age of dam (i.e., age within the older ewe class).
The effects of sex and dam class are accounted for by within-flock

deviations from the group mean in each year (Clarke and Rae; 1976) .

Hogget fleece weight was not initially adjusted for envirommental
effects except to be expressed as a deviation from the group mean for
sex and dam class. Callow and Johnson (1982) note that extensive
analysis of data from some Sheeplan flocks has indicated that environ-
mental effects account for 187% of variation in hogget fleece weight of
hoggets that were not shorn as lambs; although they only contribute 8%
of this variation in hoggets that were shorn as lambs. Accordingly,
Sheeplan now uses overall correction factors to adjust hogget fleece

weight records for birth-rearing rank and age of dam.

Some of the correction factors used by Sheeplan for liveweight
and fleece weight, the traits of interest in this study, are presented
in Table 2.1. Adjustments for a specific trait which are made for
birth-rearing rank (with singles raised as singles as the base level)
and age of dam (with mature dams, 4 years old and older, as the base
level) are applied by additive overall correction factors. One year
0old dams do not have an adjustment factor as hogget dams are accounted
for by the within-group deviation. Date of birth is adjusted for by
a regression coefficient which has been computed as an overall regression
from extensive Sheeplan data. All the correction factors are the same
for rams and ewes since sex is adjusted for by deviation from the group
mean, following the overall adjustments. The traits for which Sheeplan
makes adjustment include weaning weight (WWT), autumn liveweight (ALW),

winter liveweight (WLW), spring liveweight (SLW) and hogget fleece
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weight (HFW). Table 2.1 does not cover the complete range of adjust-
ments available in Sheeplan (e.g., correction factors for triplets are
also used and there is another set of correction factors for the meat

breeds) but it includes the adjustments relevant to the present study.

The correction factors used by Sheeplan are the difference in
environmental effect between the base level and other levels of the
effect which have been estimated from national flock data. The
estimates agree well in all cases with the estimates presented in

Table 2.2.

Correction factors have traditionally been obtained using least
squares procedures. The environmental effects have usually been
estimated by assuming a conventional fixed effects model (where all
terms are regarded as fixed except for a random, residual term) and
applying Ordinary Least Squares (OLS). Under OLS the random, residual
effects are assumed to be independently and identically distributed;
the additional assumption of normality being required for hypothesis

testing.

A more general approach, which can be applied to mixed models is
Generalised Least Squares (GLS). For the mixed model defined in (2.1),

the GLS estimate of a, the vector of fixed effects is:

—1 =y pa=1

- VR XY (2.32)

Q>

~

where V is the variance-covariance matrix of the vector of observations

~

Vs When V = Iog, the GLS and the OLS estimator for a are the same.
Under the assumption of normality, the GLS estimate, &, can be shown
(see, for example, Searle, 197la) to be the best, linear, unbiased
estimator (BLUE) and the maximum likelihood estimator (MLE) of &.

These desirable properties of the GLS estimator make it preferable to

the OLS estimator in the mixed model case.



TABLE 2.1:

CORRECTION FACTORS USED BY SHEEPLAN FOR DUAL-PURPOSE

SHEEP BREEDS

40.

<ro82) . : .
Correction factorl Trait“ (adjustments given in kg.)
WWT ALW WLW SLW HFW
Birth-rearing rank
SS - TS 2.0 1.8 1.5 .4 OS5
SS - TT 4.2 2.7 Y2 0.26
Age of dam
mat. - 2 y.o. 1r.3 1.9 2.4 4 -
mat. - 3 y.o. 0.2 0.4 0.9 .0 -
Date of birth
0.17 0.10 0.09 .09 -
F 0.17 0.10 0.09 .08 -
l.ss = single lamb raised as single
TS = twin lamb raised as single
TT = twin lamb raised as twin
2 y.o. = 2 year old dams
3 y.o. = 3 year old dams
mat. = mature dams, 4 years old and older
M = ram lambs
F = ewe lambs

2.Abbreviations given in text




TABLE 2.2: ESTIMATES OF ENVIRONMENT EFFECTS ON WEANING WEIGHT, HOGGET LIVEWEIGHT AND HOGGET FLEECE WEIGHT

IN ROMNEY SHEEP

Environmental Effects? (kg.)

Reference Trait! Age of dam Birth-rearing rank Sex Regression
on
mat.-2 y.o. mat.-3 y.o. SS-TS SS-TT M-F birthday
Ch'ang and Rae (1961)3 WWT 0. 255 4.5 2.3 0.10
Ch'ang and Rae (1970) WWT 2.0 0. 1.3 4.2 - 0.12
HLW 2.4 I 0.4 2.2 - 0.08
Baker et al. (1974) WWT 18 0. 2.5 4.2 1.9 0.12
HLW 1.2 0. 1.5 2.1 10.8 0.05
HFW 0.0 0. 0.0 0.1 0.5 0.01
Jury et al. (1979)" WWT 0. 2.0 4.2 2.1 -

Lo wwr = weaning weight, HLW = hogget liveweight, HFW = hogget fleece weight.

2. Abbreviations as for Table 2.1.

3
L

(

» Average of 12 flocks.

* Average of estimates from 2 flocks, over 9 years.

‘1Y
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B. Heritabilities

Heritability (h?) is defined as the proportion of the phenotypic

variance that is due to the additive genetic effects of the genes.

That is:
h2 = g2
a
2
’p (2.33)
where 02 is the additive genetic variance and og is the phenotypic

variance. Heritability is important in animal breeding because it is
used to predict a number of parameters such as genetic gain from
selection and the relative breeding values of individuals within a

population.

Heritability cannot be estimated directly from (2.33), because

although 85 can be obtained, Og

cannot be estimated since additive
genetic values are not observable. However, 02, and therefore h2,
can be estimated indirectly using records on related animals. The
most common relationships used to estimate h? are the correlation
between records on paternal half-sibs, and the regression of records
of the parent on the offspring's records. Both methods make use of

relationships which are readily available in sheep breeding data and

which are relatively free of non-additive genetic effects.

The paternal half-sib correlation is completely free of maternal
effects and dominance variance and contains less than 1/16 of the

epistatic variance. The genetic relationship between paternal half-

sibs is %; thus og is estimated as 4 times the between sire variance

ogi Similarly, h? is estimated as 4 times the paternal half-sib

intraclass correlation, which can be expressed as:
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A )
W =4 0s
68 + ae (2.34)

with ci denoting the between sire variance and oé the residual variance.

The paternal half-sib correlation is frequently based on analyses
where sires are nested within years; hence, if any sire x year inter-
actions are present then they would be included in 0: of (2.34) (Chopra,
1978). Denoting Ogt as the variance due to the sire x year interactions,
Chopra (1978) suggests the following expression may estimate h? more

accurately from paternal half-sib records:

Qs

h2 = 4

200N {OF N

Q>

pt + o2
o + ¢ i (2.35)

Interactions between fixed and random effects (such as ogt), are
frequently ignored, however, because they are difficult to interpret
and often non-significant anyway. Nevertheless, if such interactions
are significant, but not taken into account and removed from 8:, the h?
will be over-estimated to some extent.

The relationship between parent and offspring can also be used to
estimate h2. Unlike the parent-offspring correlation, the parent-
offspring regression is not biased by selection having been practiced
among the parents, the independent variable, which makes it particularly
suitable in an animal breeding context. Selection among the offspring
biases both the correlation and the regression, but they have the same
expectation when selection has not been practiced in either generation.
The parent-offspring correlation is free of dominance effects and
includes less than % of the epistatic variance. It does however have

the disadvantage that maternal effects may inflate the covariance and



44,

therefore the h? estimate. Because the genetic relationship between
parent and offspring is %, the regression coefficient is doubled to

estimate h?:

o]
az oy po,d
g2
Pq (2.36)
where op denotes the covariance between pairs of records on each
o,d

2 is the phenotypic variance of the
d

parent and their offspring and o
parents' records.

The h? estimates in Table 2.3 for a range of traits in the Romney
breed are estimated from either a parent-offspring regression (POR) or
paternal half-sib (PHS) approach. In some cases the dam-offspring
regression (DOR), sire-offspring regression (SOR) or daughter-dam
regression (DDR) are used which are specific applications of the POR.
Chopra (1978) uses two variations of the PHS. His PHS1 approach

is given in (2.35) and PHS2 method estimates h? as:

02 + o2
S st

T
2 2
By — Y TE, (2.37)

and is therefore equivalent to the usual PHS estimate of (2.34). Chopra
estimated h? from flocks under two different stocking rates (control and
intensive) and also from a combination of these records. For the com-
bined stocking rate analysis he also included a term for the sire x
stocking rate interaction variance, a:t, alongside th in (2.35) and
(2.37). There was no significant difference found between the

estimates of h?® from the different stocking rates for the traits

reviewed here, so just the range is given in Table 2.3.

Chopra (1978) did, however, find some significant differences
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TABLE 2.3: HERITABILITY ESTIMATES FOR VARIOUS LIVEWEIGHT AND FLEECE
CHARACTERISTICS IN ROMNEY SHEEP

Estimate Method Age Reference Comments

GREASY FLEECE WEIGHT

0.26 PHS 14 mth McMahon (1943) most probable:
0.01-0.15
0.04 DDR 14 mth 2 "
0.20 DOR 14 mth Rae (1946)
0.35 DOR 14 mth " s
.0
0.01-0.15 DOR 14 mth " (1948)
0.46 DOR 14 mth Wright and Stevens
(1953)
0.11 DOR 14 mth Rae (1958)
0.31 PHS 14 mth i "
0.32 DOR 14 mth " "
0.43 PHS 14 mth Tripathy (1966)
0.23 PHS 14 mth Lundie (1971)
0.002 PHS - Radomska and Tyszka
(1972) lst shear
0.324 PHS - ¥ " ] 2nd shear
0.367 PHS - L Y 4 3rd shear
0.29 PHS 15 mth Baker et al. (1974)
0.57 PHS 15 mth " " "
0.068 - - Radomska and Klewiec
(1975)
0.105 - - Radomska and Klewiec
(1976) lst shear
0.225 PHS 14 mth Rae (1977)
0.38-0.61 PHS1 14 mth Chopra (1978) range of stock-
ing rates
0.38-0.61  PHS® 14 mth " "

0.28-0.55 PHS 13 mth Eikje (1978b)



46.

TABLE 2.3: (continued)
Estimate Method Age Reference Comments
GREASY FLEECE WEIGHT
0.37 PHS 13 mth Eikje (1978b) ram hoggets
0.43 PHS 13 mth " " ewe hoggets
0.34 PHS 13 mth " " singles
0.37 PHS 13 mth " . twins
0.12 PHS 4 mth Baker et al. (1979) ram lambs
0.21 PHS 4 mth - - & ewe lambs
0.15 PHS 4 mth " " "
0.27 PHS 13 mth " " " ram hoggets
0.41 PHS 13 mth " " " ewe hoggets
0.29 PHS 13 mth " u L
0.34 DOR 13 mth u o -
0.37 SOR 13 mth " u il
0.29 - 14 mth Baker (1977)
0.28-0.34 PHS 13 mth Blair (1981) ewe hoggets
0.07-0.15 PHS 13 mth " " ram hoggets
0.14-0.68 PHS ave. life 4 " ewes
QUALITY NUMBER
0.18 PHS 14 mth McMahon (1943) most probable:
0.35-0.40
0.33 DOR 14 mth " "
0.37 DOR 14 mth Rae (1946)
0.41 DOR 14 mth " (1948)
0.27 DOR 14 mth " (1950)
0.25 DOR mature " (1958)
0.27 DOR 14 mth " "
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TABLE 2.3: (continued)
Estimate Method Age Reference Comments
QUALITY NUMBER

0.34 DOR 14 mth Rae (1958)

0.47 PHS 14 mth " "
0.46-0.59 PHS1 14 mth Chopra (1978)
0.46-0.72  PHS® 14 mth " "
0.31-0.39 PHS 13 mth Blair (1981) ewe hoggets
0.46-0.58 PHS 13 mth " " ram hoggets
0.22-0.73 PHS ave. life " " ewes
STAPLE LENGTH

0.16 DOR 14 mth Rae (1946)

0.19 DOR 14 mth " "

0.21 DOR 14 mth " (1948)

0.35 DOR 14 mth " (1950)

0.29 DOR mature " (1958)

0.35 DOR 14 mth " "

0.50 DOR 14 mth " "

0.48 PHS 14 mth " " lst shear

0.46 DDR 14 mth Tripathy (1966)

0.127 - - Radomska and Klewiec

(1975)
0.109 - - Radomska and Klewiec
(1976)

0.54-0.57 PHS1 14 mth Chopra (1978)
0.56-0.63 PHS2 14 mth " ¥
0.09-0.33 PHS 13 mth Blair (1981) ewe hoggets
0.39-0.47 PHS 13 mth u i ram hoggets
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TABLE 2.3: (continued)
Estimate Method Age Reference Comments
STAPLE LENGTH
0.18-0.31 PHS ave. life Blair (1981) ewes
CHARACTER
0.18 PHS 14 mth McMahon (1943)
Gl 12 DOR 14 mth L "
0.00 DOR 14 mth Rae (1946)
0.15 DOR 14 mth g '
@l. 16 DOR 14 mth X L
OF.5277 DOR 14 mth " (1948) side
0.20 DOR 14 mth " = forequarter
0.38 DOR 14 mth " L hindquarter
0.25 DOR mature " (1958)
0.16 DOR 14 mth " u
0.22 DOR 14 mth " "
0.12 PHS 14 mth = "
0.24-0.31 PHS1 14 mth Chopra (1978)
0.28-0.34 PHS2 14 mth " "
0.25-0.50 PHS 13 mth Blair (1981) ewe hoggets
0.27-0.50 PHS 13 mth " " ram hoggets
0.18-0.57 PHS ave. life " " ewes
FLEECE COLOUR
0.22-0.34 PHS1 14 mth Chopra (1978) greasy
0.31-0.44 PH82 14 mth " " greasy
0.10-0.19  PHS' 14 mth " " scoured
0.30-0.39 PH82 14 mth " " scoured
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TABLE 2.3: (continued)
Estimate Method Age Reference Comments
BIRTHWEIGHT
0.013 - - Radomska and Klewiec
(1975)
0.19-0.32 PHS - Blair (1981) ewe lambs
0.32 PHS - " " ram lambs
WEANING WEIGHT
085 DOR 3 mth Ch'ang and Rae (1961)
0.30 PHS 3 mth " "o (1970)
0.23 DOR 3 mth " "o "
0.35 PHS 3 mth Lundie (1971)
0.612 PHS - Radomska and Tyszka
(1972)
0.18 PHS 3 mth Baker et al. (1974)
-0.05 PHS 3 mth o " "
0.18 - - Radomska and Klewiec
(1975)
0.07-0.18 PHS - Eikje (1978b) mean = 0.14
0.12 PHS 3 mth " " ram lambs
0.16 PHS 3 mth " " ewe lambs
0.15 PHS 3 mth " " singles
0.11 PHS 3 mth " " twins
-0.06 PHS 3 mth Baker et al. (1979) ram lambs
0.20 PHS 3 mth " " " ewe lambs
0.08 PHS 3 mth Eikje (1978b)
0.22 DOR 3 mth " -
0.08 SOR 3 mth " "
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Estimate Method Age

Reference

Comments

WEANING WEIGHT

0.08 PHS -
0.24-0.35 PHS 3 mth
0.19 PHS 3 mth

HOGGET (YEARLING) LIVEWEIGHT

0.46 DDR I ifeh
@51 PHS 13 mth
0.46 DOR 19 el
0.015 PHS 12 mth
0.22 PHS 15 mth
0.22 PHS 15 mth
0.107 = 12 mth

0.21-0.46  PHS' 14 mth

0.47-0.72  PHS® 14 mth
0.23 PHS 13 mth
0.31 PHS 13 mth
0.27 PHS 13 mth
0.26 DOR 13 mth
0.23 SOR 13 mth
0.27 PHS =

0.06-0.52  PHS 13 mth

0.26-0.42  PHS 13 mth

LIVEWEIGHT AT OTHER AGES

0.45 PHS 6 mth

Baker (1977)

Blair (1981)

Tripathy (1966)
Ch'ang and Rae (1970)

Radomska and Tyszka
(1972)

Baker et al. (1974)

Radomska and Klewiec
(1975)

Chopra (1978)

Baker et al. (1979)

Chopra (1978)

" "
Baker et al. (1979)
Baker (1977)

Blair (1981)

" [1]

Ch'ang and Rae (1970)

ewe lambs

ram lambs

ram hoggets

ewe hoggets

ewe hoggets

ram hoggets



TABLE 2.3:

(continued)

o).,

Estimate

Method

Age

Reference

Comments

LIVEWEIGHT AT OTHER AGES

0.

0.

0

0.142

0.
0.
0.
0.

0.158

0.

0.

0.
0.

Q.

0

35

39

42

24

24

38

32

.3-0.41

.22

33

20

522

.28

09

34

28

.29

.23

47

22

DOR

PHS

DOR

PHS

PHS

PHS

PHS

PHS

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

6

9

9

10

10

0-3 mth

10

10

10

16

16

16

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

Ch'ang and Rae (1970)

Radomska and Tyszka

(1972)

Baker et al.

Radomska and Klewiec

(1976)

Ugalde (1978)

Baker et al.

(1974)

(1979)

"

range only
given
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Estimate Method Age Reference Comments
LIVEWEIGHT AT OTHER AGES

0.46 PHS 10 mth Baker (1977) rams

0.21 PHS 10 mth " " ewes
0.26-0.48 PHS ave. life Blair (1981) ewes
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between the PHS1 and PH82 estimates of h2, which indicates that the
interactions are important for that trait. He found sire x year
interactions to be highly significant for hogget liveweight and greasy
fleeceweight, but non-significant for all the other traits reviewed
here. Sire x stocking interactions were highly significant for hogget
.liveweight and moderately significant for greasy colour grade. In the
Romney, apart from reproductive rate, hogget liveweight and greasy
fleece weight are the most important selection criteria. The impli-
cations of these interactions, particularly for hogget liveweight,
suggest that selecting breeding animals under low stocking rates (as
may be found in studs), which enhance favourable expression of any
genetic potential, is likely to be less effective than selection under
higher (commercial) stocking rates. Furthermore, using (2.37), or
(2.34), to estimate h? for these traits will tend to over-estimate h2

relative to (2.35).

Blair (1981) studied genetic parameters in a control flock of
Romneys, a flock selected for open-face and another selected for fleece
weight. These were generally in agreement with each other for the
traits reviewed here, so again the range only is given. In other
cases, a range of h? in the table represents a number of replicates.
McMahon (1943) presented the ﬁz range that he considered to be most

probable as well as his own estimates.

As a general guide, the magnitude of the heritabilities can be
interpreted as low between 0.0 and 0.1, intermediate between 0.1 and

0.3 and high between 0.3 and 1.0 (Turner and Young, 1969).

Most estimates of h? in Table 2.3 are made at a particular age,

frequently as hoggets (13-15 months), although Blair (1981), for
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example, also estimated h? from the average lifetime performance records
of a ewe flock. When h? is estimated within a single sex this is

indicated unless it is otherwise obvious (e.g., with DDR estimates).

Blair (1981) found differences in the h? estimates between the
ram and ewe hoggets although these were generally non-significant.
However, h? estimates for greasy fleece weight were significantly
lower for the ram hoggets. Blair discusses the implications of this
in an industry where rams have a greater influence on genetic change,
but where genetic parameters tend to be estimated from ewe data. He
suggests that response to selection for greasy fleece weight could be
less than would otherwise be expected. Baker et al. (1979) found
when analysing the sexes separately that the h? estimates for live-
weight and fleeceweight traits were consistently lower for the ram
progeny (not all their h? of liveweight estimates for each sex
separately are included in Table 2.3). This trend was also supported
by Eikje (1978b) for weaning weight and hogget fleeceweight. He
points out that this suggests it may be desirable to weigh ram and
ewe records differently when predicting breeding values for selection
purposes. The estimation of h? for each sex separately has not been
investigated extensively but these three studies suggest the differences
could be important particularly in liveweight and fleeceweight traits
which are fundamental selection criteria in a dual purpose breed such

as the Romney.

Baker et al. (1979) also investigated the effect of birth-rearing
rank on the h? of weaning weight. The paternal half-sib estimates
were 0.12 for singles and 0.05 for twins. Eikje (1978b) found a
similar trend for weaning weight, but not for fleeceweight as his

results in Table 2.3 show. Work in other breeds also indicates that
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h? is higher in singles than twins for weaning weight. Gjedrem (1967)
has suggested this may be associated with the better level of nutrition
that the dam can provide for a single lamb than for each twin. He
suggests that the two cases may be considered as estimating h? in two
different environments. Baker et al. (1979) found that the effect

of birth-rearing rank on h? declined after weaning, although they did

not publish the estimates, which agrees with this theory.

Probably the most noticeable feature of the estimates in Table
2.3 is the wide variation both between and within the various traits.
This is true of h? estimates in all breeds, and Turner and Young (1969)
comment that at least part of the large variation in values is due to
the inclusion of estimates with large sampling errors. Some of this
variation is due to environmental differences such as age, sex and
birth-rearing rank and the method, if any, used to adjust for these
factors. There is also, of course, the differences in methods used
to estimate h? since these may involve different variance components.
Generally, however, the production characteristics tend to have

moderate to high h?'s in both the wool and liveweight traits.

Greasy fleece weight, quality number and staple length, amongst
the traits reviewed here, all appear to be reasonably heritable traits
in the Romney. The estimates on fleece colour are too few and too
variable to be conclusive and character has a low heritability. Most
of the h? estimates for the wool traits have been made on hogget data.
In particular there is little information on important traits such as
fleece weight at different ages. The h? estimates for greasy lamb
fleece weight calculated by Baker et al. (1979) suggest that it is

markedly lower than that of hogget fleece weight. Studies in other
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breeds (see, for example, Young et al., 1960; Mullaney et al., 1970
and Nawara and Duniec, 1972) have also tended to suggest that h? of
many production traits increases with age, although the results have
not always supported this trend. Nevertheless, h? is often
sufficiently large, even at early ages, to support worthwhile selection
responses in the production wool traits following selection as hoggets

or even earlier.

Liveweight also appears to show increased h? with increasing age.
However, although the estimates of h? of birthweight are generally
lower than at older ages, the lack of information on this trait makes
definite conclusions impossible. Blair (1981) obtained a moderate
estimate of h? of birthweight in ram lambs from the fleeceweight
flock. There was no estimate published for the facecover flock for
this trait, due to a negative sire component, and no estimates calcu-
lated from the control flock data for any trait in the ram progeny,
due to a lack of sufficient numbers. Baker et al. (1979) found that
h? of liveweight increased with age from weaning to hogget stage.
Other estimates in the table at intermediate stages are in general
agreement with this despite some obvious exceptions. Baker et al.
discuss the importance of recognizing that different methods include
different sources of variation. The fact that some maternal effects
are included in the numerator of the dam offspring regression as well
as the covariance between individual and maternal effects is highly
relevant in the case of liveweight traits. The sire offspring
regression will include the covariance term but not the variance due
to any maternal effects. It is therefore not surprising that h?
estimates from the dam offspring regression are noticeably higher at

weaning and weights close to weaning and that the difference is reduced
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with increasing age. The effect of the maternal environmental
decreases from an important role in lamb growth to a minimal level

in the older lamb and appears to have been eliminated by the hogget
stage. Liveweight, at all ages, is also influenced by the individual
lamb's own genotype. However, the distinction between and relative
magnitude of maternal and individual effects on liveweight from birth
onwards has not been fully studied. Eikje (1978b) notes that these
two effects on weaning weight should be treated as separate traits.
Weaning weight is usually treated as a lamb trait, not a maternal trait.
As Baker et al. (1979) observe 'there are few estimates in sheep of the
heritability of maternal effects or of the genetic correlation between

individual and maternal effects', a topic which warrants further study.

In general the liveweight traits, like the production wool traits,
do have moderate to high h2?'s and can also be expected to provide

reasonable selection response.

G5 Correlations

The correlation coefficient (r) is a measure of the association
between two variates. Inter-trait correlations which usually refer to
the correlation between two traits measured at the same time on the same
animal will be discussed here, although intra-trait correlations on the
same or different animals also provide a useful indication of expected
changes of correlated variates in a selected population. The pheno-
typic correlation may be divided into a genetic and an environmental
portion. It is the genetic correlation that determines the correlated
response that may be expected from selection. Phenotypic correlations

play an important role in constructing selection indices.

The phenotypic correlation between two traits (rp) may be
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estimated from pairs of records on a sample of individuals from a

population, using the product-moment expression. That is,

~

o
s P12
P e e
/02 o2
Fy * Pg (2.38)
where Op denotes the covariance between two traits 1 and 2 calculated
1,2
from pairs of records from a number of individuals, and OS and 0;
il 2

represent the phenotypic variances of the two traits. When variance
and covariance components have been estimated from the data then r
can readily be estimated. Thus, following an analysis of variance

and covariance from paternal half-sib data:

~ A

o + o,
- 1,2 152
p /| A -~ ~ -~
V(a2 +02 ) (02 +02 ) (2.39)
(- s e
i p 2 2
where 05 and 02 denote the sire and residual variance components, and
Os and %% the sire and residual covariance terms respectively.
1,2 1,2

The covariance may be of any magnitude and sign, and therefore the
correlation can also be positive or negative. However, the standardis-
ation afforded by the denominator, theoretically ensures that the
correlation ranges between -1 and +l1. Generally, an absolute value
between 0 and 0.2 is regarded as negligable, 0.2 to 0.4 as low, 0.4 to
0.6 as moderate and over 0.6 as high (Brown and Turner, 1968). These

guidelines apply to both phenotypic and genetic correlations.

Estimation of the genetic correlations is not as straightforward
as the estimation of the phenotypic correlation using (2.38). Once
again the paternal half-sib and parent-offspring relationships are most

frequently used. The necessary variance and covariance components can
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be estimated from the data with appropriate analyses of variance and
covariance. From the paternal half-sib analysis, the covariance be-

tween the traits due to sires estimates a quarter of the additive

genetic variance, in the same way that U: estimates %02, as was dis-
cussed for heritability. Thus:
%
I, 2
r,= ¥ 22 o
g L B (2.40)
1 2
since the fours cancel out. The genetic correlation can also be

estimated from the parent-offspring regression although the expression

is somewhat different in that it involves 2 different traits and 2

classes of individuals on which measurements are made. That is
a o
8 + g
k) Bty
rg = -
2/ @ . 0
// gd o) gd o)
171 22 (2.41)

The 2 is introduced in the denominator to obtain the mean of the 2
covariances in the numerator. In the denominator the sums of cross
products although calculated within traits, are between animals thus

covariances rather than variances are employed.

In part I a number of the methods available for estimating variance
components were discussed. These methods can generally be applied to
the estimation of covariance components also (see Henderson, 1953, for

example).

The apportioning of the phenotypic correlation into a genetic and
an environmental component is illustrated in equation (2.39). A
positive correlation between two traits does not however imply they
have a common genetic base. The genetic component could be small

and/or negative and it could be the environmental component which is
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2

causing the positive value for op. The reverse could also apply,
but og itself does not convey this information.

The genetic correlation also indicates what, if any, counter-
selection may be necessary. It is also possible, when a desired
characteristic is difficult or expensive to measure, that there may be
a highly genetically correlated trait on which indirect selection can
be practiced. This also applies to phenotypic correlations with
respect to lifetime performance. It is therefore evident that the
selection objectives could be antagonistic if the genetic and pheno-
typic correlations have different signs. Since the phenotypic
correlation involves both a genetic and an environmental component,
whereas the genetic correlation just the former, they are more likely
to be of the same sign for traits in which the environment has a lesser
effect. Pleiotropy, and to some extent linkage, are important causes

of the genetic correlation.

In Tables 2.4 and 2.5 a range of estimates of phenotypic corre-
lations and genetic correlations, respectively, are presented. As
with the heritabilities, the estimates reviewed are confined to a
selection of wool and growth traits that are of interest in the Romney
breed. The phenotypic correlation is invariably estimated from the
product-moment expression of (2.38); hence the method of estimation
is not listed. In both tables, age pertains to both traits in the
correlation, unless it is indicated to be otherwise. The fleece
trait x liveweight correlations are exceptions since they generally
refer to characteristics of the hogget fleece, with the liveweights
being recorded at the ages specified. The range of correlations

presented from Blair (1981) cover the same selection flocks described
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TABLE 2.4: PHENOTYPIC CORRELATION ESTIMATES BETWEEN VARIOUS LIVE-
WEIGHT AND FLEECE CHARACTERISTICS IN ROMNEY SHEEP
Estimate Age Reference Comments

GREASY FLEECE WEIGHT x HOGGET FLEECE WEIGHT

ORSN

0.35

0.44

0.62

GREASY FLEECE

2 y.o. Wright and Stevens (1953)
5 y.o.

ave. life " " " "

ave life " " " "

WEIGHT x QUALITY NUMBER

-0.33

-0.07--0.03

-0.31--0.18

-0.33

-0.18

-0.13

-0.27

-0.26--0.22

-0.26--0.05

GREASY FLEECE

14 mth Rae (1958)

14 mth Sumner (1969)

mixed " "

mixed Wickham et al. (unpubl.)
14 mth Eikje (1978b)

14 mth " "

14 mth " "

13 mth Blair (1981)

13 mth " "

WEIGHT x STAPLE LENGTH

0.45

0.48

0.22-0.51

0.30-0.39

0.47

0.17

0.20

0.40-0.50

0.29-0.51

14 mth Rae (1958)

14 mth Tripathy (1966)

14 mth Sumner (1969)

mixed = "

mixed Wickham et al. (unpubl.)
- Radomska and Klewiec (1975)
- " " " (1976)

13 mth Blair (1981)

13 mth " "

excl. hoggets

incl. hoggets

ewes

ewes

ewe hoggets
ram hoggets
both sexes
ewe hoggets

ram hoggets

ewes

ewes

ewe hoggets

ram hoggets
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(continued)

62.

Estimate

Age Reference

Comments

GREASY FLEECE WEIGHT x CHARACTER

0.24 14 mth Rae (1958)

0.12-0.22 14 mth Sumner (1969)
-0.01-0.18 mixed " "

-0.09 mixed Wickham et al. (unpubl.)
0.06-0.07 13 mth Blair (1981)

0.00-0.18 13 mth i "
QUALITY NUMBER x STAPLE LENGTH

-0.54 14 mth Rae (1958)

-0.69 mixed Ross (1964)
-0.49--0.46 14 mth Sumner (1969)
-0.52--0.42 mixed " Y

-0.53 mixed Wickham et al. (unpubl.)
-0.58--0.53 13 mth Blair (1981)
-0.55--0.31 13 mth " =

QUALITY NUMBER x CHARACTER

0.06
0.39-0.58
0.08-0.38

0,83
1.11-1.13
0.13-0.36

STAPLE LENGTH

14 mth Rae (1958)

14 mth Sumner (1969)

mixed g :

mixed Wickham et al. (unpubl.)
13 mth Blair (1981)

13 mth E 2

x CHARACTER

0.20

-0.26--0.11

14 mth Rae (1958)

14 mth Sumner (1969)

ewes
ewes
ewe hoggets

ram hoggets

ewes

ewes
ewes
ewe hoggets

ram hoggets

ewes
ewes
ewe hoggets

ram hoggets



TABLE 2.4: (continued)

63.

Estimate Age Reference Comments
STAPLE LENGTH x CHARACTER

-0.10-0.05 mixed Sumner (1969) ewes

-0.27 mixed Wickham et al. (unpubl.) ewes
-0.15--0.09 13 mth Blair (1981) ewe hoggets
-0.15-0.12 13 mth " = ram hoggets
GREASY FLEECE WEIGHT x LIVEWEIGHT

0.61 14 mth Tripathy (1966)
-0.50-0.52 14 mth Sumner (1969)
-0.27-0.49 mixed " " ewe ave. life
FLW
0.47 mixed Wickham et al. (unpubl.) ewe ave. life
FLW

0.11 birth Radomska and Klewiec (1975)

0.17 3 mth " " " "

0.23 12 mth " " " -

0.20 10 mth " " b (1976)

0.29 3 mth Eikje (1978b) all progeny
0.30 3 mth " " ram progeny
0.26 3 mth - " ewe progeny
0.30 3 mth " " singles

0.30 3 mth " " twins

0.25 3 mth Baker et al. (1979)

0.38 5 mth " v u

0.52 10 mth " " "

0.44 13 mth " " "

0.40 16 mth " " Al
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TABLE 2.4: (continued)
Estimate Age Reference Comments
GREASY FLEECE WEIGHT x LIVEWEIGHT
0.47-0.55 13 mth Blair (1981) ewe hoggets
0.44-0.53 13 mth i " ram hoggets
QUALITY NUMBER x LIVEWEIGHT
0.08-0.10 14 mth Sumner (1969)
0.04-0.14 mixed " " ewe ave. life
QN
-0.01 3 mth Eikje (1978b) all progeny
-0.01 3 mth H " ewe progeny
-0.03 3 mth i " ram progeny
-0.08-0.05 13 mth Blair (1981) ewe hoggets
-0.07--0.02 13 mth = ' ram hoggets
STAPLE LENGTH x LIVEWEIGHT
0.24 14 mth Tripathy (1966)
0.01-0.18 14 mth Sumner (1969)
0.09-0.17 mixed " " ewe ave. life
SL
0.14 mixed Wickham et al. (unpubl.) ewe ave. life
SL
-0.06 birth Radomska and Klewiec (1975)
-0.01 3 mth L L " "
0.06 12 mth u v " "
0.15-0.26 13 mth Blair (1981) ewe hoggets
0.03-0.21 13 mth - il ram hoggets



TABLE 2.4:

(continued)

65.

Estimate

Age Reference

Comments

BIRTHWEIGHT x LIVEWEIGHT AT LATER AGES

0.

0.

32

27

3

12

WEANING WEIGHT x

mth Radomska and Klewiec (1975)
mth " " " "

LIVEWEIGHT AT LATER AGES

0

0

HOGGET (YEARLING) WEIGHT BY LIVEWEIGHT AT VARIOUS AGES

.82

.74

262

.61

.69

.57

.49

.45

6

9

13

12

5

10

13

16

mth Ch'ang and Rae (1972)
mth " L X "
mth
mth Radomska and Klewiec (1975)
mth Baker et al. (1979)

mth "
mth

mth "

0.

0

0.

0

0.

74

.85

60

.83

70

6

9

5

10

16

mth Ch'ang and Rae (1972)
mth ”" ”" ”" ”"
mth Baker et al. (1979)
mth ”" ”" ”"

mth ”" " ”"

BETWEEN LIVEWEIGHTS AT VARIOUS OTHER AGES

0

0

0.57

0.

.89

.72

70

6 x 9 mth Ch'ang and Rae (1972)

5 x 10 mth Baker et al. (1979)

5 x 16 mth " " "

10 x 16 mth " " "
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for heritability. The range of estimates from Sumner (1969) represent

two different stocking rates, control and intensive.

From Table 2.4 and 2.5 it appears that the genetic and phenotypic
correlations generally agree in terms of sign. As mentioned earlier
this is an important advantage in terms of selection objectives. The
.genetic correlation is usually of greater magnitude than the phenotypic
correlations. However, as with h2, there is considerable variation
within each trait. Although this is often associated with high
standard errors of the estimates, it may also reflect changes in the
genetic variation due to factors such as selection pressure, inbreeding
and outbreeding. The phenotypic variation may also change over time
due to both genetic and environmental changes. Changes in management
policies and nutritional regimes are typical examples. Thus it is
desirable to re—-estimate parameters involving variance components, such
as the correlations and heritabilities, fairly regularly. High standard
errors and estimates lying outside the bounds of the correlation have
often been associated with the analysis of low numbers of records.
However this is not always the case. Several of the genetic correlations
generated by Radomska and Klewiec (1975) have a magnitude greater than 1

although 1717 paternal half-sib records were analysed.

In both tables, there does not appear to be a great deal of
difference in either the genetic or phenotypic correlations between the
sexes. Differences in birth-rearing rank have only been studied for
the correlations between greasy fleece weight and weaning weight
(Eikje, 1978b). The phenotypic correlation is no different between the
singles and twins and the genetic correlation is higher for the twins;
however more estimates of these differences are needed to make con-

clusions.
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The estimation of genetic correlations by different methods has
been studied by several workers in the table. Baker et al. (1979)
comment that for their estimates between the liveweight traits, "with
a few exceptions estimates of genetic correlations obtained by
different methods of estimation showed satisfactory agreement, although
sampling errors were relatively large (0.01-0.27)." Ch'ang and Rae
(1972) also estimated genetic correlations between the liveweights by
different methods, and their results also appear to support this, al-
though they found a tendency for the DDR estimates to be slightly
higher than the PHS estimates. They suggested this could be due to
the maternal effects ignored in the DDR and therefore estimated the
correlation by a third method using dam-offspring covariance components.
These estimates were little different from the DDR estimates and
suggested the difference in the PHS estimates was a property of the
data, for the between liveweight correlations, rather than inadequate

consideration of the maternal effects by the PHS method.

In general it is evident from the table that both the genetic and
phenotypic correlations are reasonably high between all the liveweights.
The genetic correlations between weaning weight and later ages suggest

preliminary selection can be made at an early age.

The phenotypic and genetic correlations between liveweight and fleece
weight are positive, although fairly low, which is an important advantage
for a dual purpose sheep such as the Romney. The correlations between
liveweight and fleece quality traits are considerably more variable.

They are generally low, although the phenotypic correlations are

particularly variable.

Correlations between the fleece weight and fleece quality traits
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are also variable and can be antagonistic to some extent. Thus al-
though greasy fleece weight, clean fleece weight and staple length
tend to be positively correlated with each other, they are generally
negatively correlated with quality number and character and positively
correlated with mean fibre diameter and hairiness. The noticeably
low correlations involving character is one of the reasons that this

trait has become regarded as a less useful selection objective.

In the Romney, fleece weight and liveweight are two important
objectives of improvement. Depending on the end-use demand for the
wool either coarser or finer fibre diameter may be preferred. So
although fleece weight and liveweight can be selected for together
with little difficulty, it may be necessary to monitor changes in

fibre diameter so that these can be maintained at the desired level.
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TABLE 2.5: GENETIC CORRELATION ESTIMATES BETWEEN VARIOUS LIVEWEIGHT
AND FLEECE CHARACTERISTICS IN ROMNEY SHEEP

Estimate Method Age Reference Comments

GREASY FLEECE WEIGHT x HOGGET FLEECE WEIGHT

0.65 PHS 2 WEok Radomska and Tyszka 2nd x 3rd
(1972) shear
0.80 PHS 3 mth Baker (1977)

GREASY FLEECE WEIGHT x QUALITY NUMBER

-0.62 PHS 14 mth Rae (1958)

-0.47 DOR mature 4 =

-0.49 DOR 14 mth K i

-0.47 DOR 14 mth v =

-0.09 PHS 14 mth Eikje (1978b) ewe hoggets
0.88 PHS 14 mth " e ram hoggets
-0.18 PHS 14 mth " " both sexes
0.02 PHS 14 mth Chopra (1978)

-0.43--0.07 PHS 13 mth Blair (1981) ewe hoggets
-0.24 PHS 13 mth " " ram hoggets

GREASY FLEECE WEIGHT x STAPLE LENGTH

0.60 PHS 14 mth Rae (1958)

0.26 DOR mature " "

0.21 DOR 14 mth " "

0.25 DOR 14 mth " "

0.40 DDR 14 mth Tripathy (1966)

0.54 - - Radomska and Klewiec
(1975)

0.75 - - Radomska and Klewiec
(1976)

0.58 PHS 14 mth Chopra (1978)



TABLE 2.5: (continued)
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Estimate

Method

Age Reference

Comments

GREASY FLEECE WEIGHT x STAPLE LENGTH

0.35-0.58 PHS 13 mth Blair (1981)

0.44-0.56 PHS 13 mth " "
GREASY FLEECE WEIGHT x CHARACTER

0.27 PHS 14 mth Rae (1958)

0.09 DOR mature " "
-0.16 DOR 14 mth o "

0.08 DOR 14 mth " "

0.24 PHS 14 mth Chopra (1978)
-0.17-0.39 PHS 13 mth Blair (1981)
-0.36--0.16 PHS 13 mth " "
GREASY FLEECE WEIGHT x COLOUR
-0.19 PHS 14 mth Chopra (1978)
-0.11 PHS 14 mth - -

QUALITY NUMBER x STAPLE LENGTH

-0.76

-0.73

-0.53

-0.93--0.37

-0.65

PHS

DOR

PHS

PHS

PHS

14 mth Rae (1958)

14 mth o =

14 mth Chopra (1978)
13 mth Blair (1981)
13 mth 4 "

QUALITY NUMBER x CHARACTER

-0.41

0.21

0.61

PHS

DOR

PHS

14 mth Rae (1958)
14 mth " !

14 mth Chopra (1978)

ewe hoggets

ram hoggets

ewe hoggets

ram hoggets

greasy

scoured

ewe hoggets

ram hoggets



TABLE 2.5:

(continued)

71.

Estimate

Method

Age Reference

Comments

QUALITY NUMBER x CHARACTER

-0.93--0.37

0.57-0.64

PHS

PHS

13 mth Blair (1981)

13 mth " "

QUALITY NUMBER x COLOUR

0.02

0.27

STAPLE LENGTH

PHS

PHS

14 mth Chopra (1978)

14 mth " "

x CHARACTER

0.74

0.13

-0.28

-0.78--0.06

-0.45--0.37

STAPLE LENGTH

-0.06

-0.23

CHARACTER x COLOUR

0.57

0.20

GREASY FLEECE WEIGHT

PHS 14 mth Rae (1958)
DOR 14 mth " "

PHS 14 mth Chopra (1978)
PHS 13 mth Blair (1981)
PHS 13 mth " "

x COLOUR

PHS 14 mth Chopra (1978)
PHS 14 mth " "
PHS 14 mth Chopra (1978)
PHS 14 mth " "

x LIVEWEIGHT

0.54

1.00

-1.29

0.30

0.39

PHS

PHS

14 mth Tripathy (1966)
12 mth Radomska and Tyszka
(1972)
birth Radomska and Klewiec
(1975)
3 mth " " "
12 mth " " "

ewe hoggets

ram hoggets

greasy

scoured

ewe hoggets

ram hoggets

greasy

scoured

greasy

scoured

3rd shear
FWT



TABLE 2.5:

(continued)

v

Estimate

Method

Age

Reference

Comments

GREASY FLEECE WEIGHT x LIVEWEIGHT

0.

64

.29

.29

3

.23

.60

.11

<39

.24

.04

. 87

.08

.05

.40

.21

.11

.41

.04

.02

.40

.26

.14

.64-0.89

.49-0.59

PHS

PHS

PHS

PHS

PHS

PHS

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

PHS

PHS

10

10

10

10

13

13

13

16

16

16

13

13

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

Radomska and Klewiec

(1976)

Eikje (1978b)

Chopra (1978)

Baker et al.

"

Blair (1981)

(1979)

all progeny
ram progeny
ewe progeny
singles

twins

ewe hoggets

ram hoggets



TABLE 2.5:

(continued)

73.

Estimate

Method

Age

Reference

Comments

QUALITY NUMBER x LIVEWEIGHT

-0.29

-0.11

0.40

0.37

-0.71-0.12

-0.18-0.47

STAPLE LENGTH

PHS

PHS

PHS

PHS

PHS

PHS

3

3

3

14

13

13

mth

mth

mth

mth

mth

mth

x LIVEWEIGHT

0.21

2.54

0.44

0.73

0.50

-0.20-0.77

0.21-0.47

DDR

PHS

PHS

PHS

14

mth

birth

3

12

14

13

13

mth

mth

mth

mth

mth

BIRTHWEIGHT x LIVEWEIGHT AT

Eikje (1978b)

Chopra (1978)

Blair (1981)

Tripathy (1966)

Radomska and Klewiec

(1975)

Chopra (1978)

Blair (1981)

LATER AGES

0.56

1.85

3

12

mth

mth

WEANING WEIGHT x LIVEWEIGHT

Radomska and Klewiec

(1975)

AT LATER AGES

0.73

0.96

0.86

0.97

0.74

PHS

DDR

PHS

DDR

PHS

6

6

9

9

13

mth

mth

mth

mth

mth

Ch'ang and Rae (1972)

all progeny
ewe progeny

ram progeny

ewe hoggets

ram hoggets

ewe hoggets

ram hoggets



TABLE 2.5:

(continued)

74.

Estimate

Method

Age

Reference

Comments

WEANING WEIGHT x LIVEWEIGHT

AT LATER AGES

0.90 DDR
0.86 -

0.78 PHS
1.02 DOR
0.80 SOR
0.74 PHS
0.72 DOR
0.70 SOR
0.77 PHS
0.62 DOR
0.76 SOR
0.73 PHS
0.60 DOR
0.56 SOR

HOGGET (YEARLING)

13

12

10

10

10

13

13

13

16

16

16

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

mth

Ch'ang and Rae (1972)

Radomska and Klewiec
(1975)

Baker et al. (1979)

WEIGHT x LIVEWEIGHT AT VARIOUS AGES

0.86 PHS
0.86 DDR
0.96 PHS
0.90 DDR
0.87 PHS
0.83 DOR
1.03 SOR
0.97 PHS

6

10

mth

mth

mth

mth

mth

mth

mth

mth

Ch'ang and Rae (1972)

Baker et al.

(1979)



TABLE 2.5:

(continued)

75.

Estimate

Method

Age

Reference

Comments

HOGGET (YEARLING) WEIGHT x LIVEWEIGHT AT VARIOUS AGES

0.90

0.95

0.98

0.98

1.00

BETWEEN LIVEWEIGHTS AT VARIOUS OTHER AGES

DOR

SOR

PHS

DOR

SOR

10 mth

10 mth

16 mth

16 mth

16 mth

Baker et al. (1979)

0.96

0.98

0.87

1.05

0.91

0.84

0.85

0.94

0.96

0.99

0.95

PHS

DDR

PHS

DOR

SOR

PHS

DOR

SOR

PHS

DOR

SOR

6 x 9 mth

6 x 9 mth

5 x 10

5 x 10

5 x 10

5 x 16

5 x 16

5 x 16

10 x 16

10 x 16

10 x 16

mth

mth

mth

mth

mth

mth

mth

mth

mth

Ch'ang and Rae (1972)

Baker et al.

(1979)
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CHAPTER THREE

SOURCE OF DATA

I. RUAKURA SHEEP SELECTION STUDIES

A. Introduction and Objectives

This study is concerned with various liveweight and fleece traits
recorded on the Romney lambs born from 1970 to 1972 at Woodlands
Research Station near Invercargill. This represents a section of data
from the establishment phase of a long-term selection experiment being
undertaken by the Genetics Section of Ruakura Animal Research Station
at Hamilton. A brief outline is given of the full experiment, before
discussing details of the data set specific to the present analysis, in
part II. The information has been assembled from a number of sources
including the Genetics Section of the MAF Annual Reports, in particular
the 1970/71, 1971/72 and 1972/73 issues, several unpublished publications
from Ruakura Genetics Section, and Clarke (pers. comm.) and Hickey (pers.

comm.) .

The Ruakura sheep selection studies commenced in 1970 and have an
intended duration of 15 to 20 years. The objectives are to provide
estimates of direct and correlated responses to selection for repro-
ductive, growth and wool production traits, and estimates of various
genetic and phenotypic parameters. It is also intended, where possible,
to determine the biological and physiological bases of the genetic
responses to selection. Estimates of the genetic and phenotypic
parameters will be available for use in the national flock recording

scheme, Sheeplan.
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There are a number of different groups within which selection is
being practised. These include 3 different locations and 7 different
breed groups although breeds are neither completely nested within, nor
cross—classified across locations. There are 6 breeds in the selection
study; Romney, Cheviot, Corriedale, Dorset (both horned and polled
animals) and Border-Romney cross ewes. The seventh breed group consists
of Romneys screened for high fertility with the requirement being that
two-tooth ewes have weaned a set of twins and older ewes at least two
lambs from a set of triplets. The 3 locations, Tokanui (near Hamilton),
Templeton (near Christchurch) and Woodlands (near Invercargill), are all
Ministry of Agriculture and Fisheries Research Stations located through-
out New Zealand. Hence, the comparative selection response between
the different breeds and environments are two further important objectives

of the experiment.

B. Design of the Experiment

Iss The establishment phase

The Ruakura sheep selection experiment has proceeded in 2 distinct
phases. The first establishment phase includes the 1970 to 1972
matings. The screened Romneys were purchased from Southland

flocks only during 1970-1973. Ewes in the other breeding groups
were purchased from commercial farmers, breed societies and research
institutions all over New Zealand between 1970-1972. There were

60 different sources for the Romney, 50 for the Border Leicester,

20 for the Cheviot and 15 for both the Dorset and Corriedale ewes.
These were collected and distributed evenly each year between the

3 locations. Each year of the 1970-1973 establishment phase there

was an interchange of sheep just prior to mating between the 3
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locations; Tokanui, Templeton and Woodlands. This was done to
establish a base population with similar genetic composition in

all 3 flocks. This interchange also makes it possible to estimate
the extent to which performance is effected by different climates,
locations and managerial regimes; although management was kept as

uniform as possible.

There was no selection practised during the establishment phase.
All progeny were retained to hogget stage and all rams were left
entire. Numbers were reduced to the required level by a random
culling of hoggets across all the flocks prior to re-distribution.
The ewes were randomly allocated to sires, which were also
purchased from a wide range of breeders throughout New Zealand.
The methods of management were standardized as much as possible
between the locations, and different classes of sheep were kept

in single mobs in an effort to maintain uniform conditioms.

The selection phase

Before mating in 1973 the flocks at Tokanui, Templeton and Wood-
lands were closed. There was no further interchanging of ewes
between the 3 locations, nor were any more sheep brought in from
other sources. The ewes were divided into 22 flocks with 9 of
these at Tokanui, 5 at Templeton and 8 at Woodlands. There are
15 Romney flocks, 1 screened Romney, 2 Border Leicester, 1 Border-
Romney cross, 1l Corriedale, 1 Dorset and 1 Cheviot flock. The
sheep were divided into flocks containing 150 mixed-age ewes and

some young replacement stock.

Each flock was assigned a selection policy for the duration of the

selection phase. The Romney was the only breed with control
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flocks. There are 7 different selection policies, including 2
selection indices comprising combinations of the single-trait
selection criteria. The details of the selection policies and
their allocation across the different breeds and locations are
shown in Table 3.1. The total number of flocks at each location
and the approximate total number of breeding ewes maintained each

year are also shown in the table.

Details of management during the selection phase are not con-

sidered in this study.
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EXPERIMENTS AT TOKANUI, TEMPLETON AND

WOODLANDS

Selection Criteria Tokanui Templeton Woodlands
Control R R R R R
Fertility Index B R BR R

Number of lambs born R

Hogget body weight R

Uncommitted R
Productivity Index Co R R Ch

Number of lambs born R SR

Weaning weight R

Hogget fleece weight R
Number of flocks 9 b} 8
Number of breeding ewes 1350 750 1200

Note: R = Romney, B = Border Leicester, BR = Border Romney,

Co = Corriedale, D =

Romney

Dorset, Ch = Cheviot, SR = Screened
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IT. ESTABLISHMENT PHASE OF THE WOODLANDS ROMNEY FLOCKS

A. The Sheep and their Environment

During 1969 mixed-age Romney ewes were purchased for the sheep
selection study. Early in 1970 a random sample of 762 of these ewes
were transferred to Woodlands Research Station. The Woodlands ewes

—_;;éresent 24 different sources of Romney breeders and research

institutions throughout New Zealand. There were also 24 Romney sires

from 20 different sources sent to Woodlands prior to mating in 1970.

The ewes were randomly allocated, each year, into sire groups with
comparable age structures and range of source and liveweight. In
1970, the start of mating was delayed until 10 May as some of the ewes
were late arriving at Woodlands. In subsequent years, mating started
about 3 weeks earlier. The ewes also took longer to adjust to the
new environment in the first year. Furthermore, the weather conditions
at lambing were particularly poor in 1970. The mating period lasted
5 weeks in 1970 and 6 weeks in the following 2 years starting on 21
April in 1971 and 17 April in 1973. The ewes were paddock mated in

single sire groups.

Before mating in 1971 all the ewes at Tokanui, Templeton and
Woodlands, including some additional ewes purchased during the year
were randomly re-allocated between the 3 stations and the required
interchanges were made. In 1971 there were 741 mixed-age Romney ewes
at Woodlands which were again mated in 24 single-sire groups. The
rams came from 21, and the ewes from 55 different sources. Rams are
generally used as sires for 1 season only, although 2 of the rams used
at Woodlands in 1970 were used again in the second year. Mating was

slightly delayed due to the exchanging of ewes between the 3 sites.
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During the winter of 1971, feed shortages occurred which were accentuated

by insufficient supplementary crops.

Prior to mating in the final year of the establishment phase the
ewes were once again randomly re-distributed between the 3 statiomns.
In 1972 there were 739 mixed-age Romneys re-allocated to Woodlands.
This year the rams included 8 bred at Tokanui and 9 bred at Woodlands
with the balance of the 24 sires originating from different Romney
breeders. In order to avoid further problems associated with under-
nutrition, all hoggets were grazed off the station during the 1972
winter and early spring. The ram hoggets were sent to a station at
Te Anau and the ewe hoggets to a Lands and Survey block at Mossburn.
Feed was in fact also limited at Te Anau; however, the ram hoggets
grew well enough to still be used as sires in 1973. Liveweight
recordings were maintained on the hoggets at approximately 2 monthly

intervals.

Woodlands Research Station comprises 183 ha of fertile, Southland
lowlands (47m above sea level) located 19 km north-east of Invercargill.
Temperatures are generally in the range of 5=15P¢ although -11°¢C frosts
can be expected for a 120-day period over winter. Rainfall is spread
evenly throughout the year with a range of 1000-1200 mm. Approxi-

mately 1650 hours of sunshine may be expected each year.

The main soil type at Woodlands is the Waikiwi silt loam. The
parent material is tuffaceous greywacke over weathered gravels. The
original browntop pasture has predominantly been replaced by ryegrass
and white clover. The pastures respond well to superphosphate, lime

and potash. A stocking rate of 15-18 s.u/ha is carried at present.
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B. The Data Collected

During the establishment phase, pedigree information and performance
records were collected on the Romney lambs born at Woodlands from 1970-
1972. A maximum of 38 variables were recorded on each lamb from birth
to 2-tooth stage including information on the sire and dam. The sire
code denotes breed, source and year of use. Identification code,
source, breed and age at the lamb's birth were recorded for the dam.

Sex, date of birth and birth-rearing rank were recorded on the lamb.
Date of birth was re-coded for the analysis from the beginning of the

lambing season each year.

The liveweight and fleece data recorded on each lamb and the age
at which the records were collected are shown in Table 3.2. The
abbreviations for each trait used in subsequent chapters are also shown

in the table.

Birthweight was recorded within 24 hours of birth. The lambs
were actually docked at birth; the trait docking weight was recorded
when the lamb was approximately 3-4 weeks old. However the age at
measurement of this trait was relatively more variable than the other
liveweights. Weaning weights were recorded on the same day for all
lambs. After weaning, the 2 sexes were grazed separately and live-
weights were recorded up to a week apart in the two groups. In a few

of the later liveweights the 2 sexes were weighed up to 15 days apart.

Birthweight, docking weight and the greasy fleece weights were
recorded to the nearest 0.0l kg., and the remaining liveweights were

recorded to the nearest 0.l kg.

Staple length was recorded to the nearest 0.1 cm from a mid-side

sample collected at shearing.
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Quality number was recorded as a mean value of the subjective

score (e.g., 46/48 was coded as 47) assessed on the mid-side sample.

Character was recorded on a subjective scale from 1 (very bad) to

7 (excellent) based on an assessment of the overall fleece at shearing.

Greasy fleece colour was subjectively assessed at shearing on a

scale from 1 (bad) to 5 (very good) over the whole fleece.

Break severity was graded on a subjective scale from 1 denoting a
slight break on pulling the staple from each end, to 4 for a very bad

break.

Break position was initially scored subjectively from 1 (near the
staple butt) to 5 (near the staple tip). However, the assessment of
break position was changed to a linear measurement from the staple

butt during the establishment phase; this variable has been ommi t ted
/

from the analysis.
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TABLE 3.2: AGE AT MEASUREMENT AND THE ABBREVIATIONS USED FOR THE

LIVEWEIGHT AND FLEECE TRAITS

Abbreviations Mean age at measurement (days)
Trait used 1970 1971 1972
Birthweight BWT - - =
Docking weight DWT 33 25 35
Weaning weight WWT 94 101 99
March/April weight APR 165 173 169
May/June weight JUN 235 248 235
July/August weight AUG 286 285 . 281
October/November weight NOV 400 416 397
Two-tooth weight 2TH 467 483 490
Lamb fleece weight LFW 123 137 113
Hogget fleece weight HFW 396 418 404
Staple length STL " " "
Quality number QNO " " "
Character CHR i N "
Colour COL g o "
Break severity BRS " " "
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CHAPTER FOUR

STATISTICAL METHODS

I. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION OF VARIANCE COMPONENTS

A. The Model Used

Previous studies suggested the following effects should be con-
sidered for a model to describe the liveweight and fleece data recorded
on lambs, namely; year of birth, sex, birth-rearing rank, age of dam,
date of birth, dam and sire. All these effects, except dam, were

included in the model for estimating the variance components.

The data analysed in this study are, in fact, part of a large-
scale experiment as discussed in Chapter Three. Each year a random
sample of dams was drawn from the total ewe population of the 3
locations involved in the experiment and re-allocated to Woodlands.
Some of the lambs born in different years will therefore have the same
dam. However, the possibility of correlated dam effects is not
expected to be significant. Accordingly, dam effects were included
in the residual variance and the residuals assumed to be randomly
and independently distributed. In fact, to obtain REML estimates
of the variance components the random effects in the model were

assumed to be independently and identically, normally distributed.

The problem of determining which interactions between the fixed
effects in the model to include, was overcome by using a sub-class
means model. Thus the model to estimate the variance components for
both the liveweight and the fleece data recorded on the Romney lambs

at Woodlands was:
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Wglgn © Puam 08 PR S (4.1)
where,
. . th . . th
Y. is the observation on the n lamb born in the i year,
ijklmn
with the jth sire, the kth sex, the lth birth-rearing
th
rank and of the m  dam-age group.
. . . . th
uiklm is the mean of the observations in the iklm subclass.
o .th . q . th
sij is the random effect of the j sire nested in the i
year. Sire effects are assumed to be identically and
independently, normally distributed with mean zero and
variance o2.
s
: . .. th
X.. is the (coded) date of birth of the ijklmn lamb.
ijklmn
b is the coefficient of the regression of y_, on
ijklmn
xijklmn'
e,.. is the random residual effect unique to the ijklmnth
ijklmn

observation. Residual effects are assumed to be identi-
cally and independently, normally distributed with mean
zero and variance Og.

Furthermore, sire effects and residual effects are assumed to be un-

correlated.

Sires were fitted as a random effect, nested within years. Al-
though there were 6 repeated sires, the data were not considered to
be sufficiently connected for a cross-classified model. Accordingly,
the records on the second set of progeny of these sires were deleted
and a nested model adopted. The records on the progeny of a further
2 rams which were sons of sires used in the first year were also

deleted; the assumption was then made that sire effects were random
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and uncorrelated.

Date of birth was included as a covariate in the model. The
overall regression was fitted for the variance components analysis, as
fitting the within years regression was not expected to affect the
estimation of the variance components to any great degree. Date of
birth was re-coded from the beginning of the lambing season for each
year so that date of birth reflected the actual age of the lamb at

the time of recording.

The model may be expressed in matrix notation:
y =Xa +2Zb+e (4.2)

where

is an N x 1 vector of observed records

1<

L]

is a known N x p design matrix

1R

is an unknown p x 1 vector of fixed effects; including the
covariate, date of birth, and the subclass means of year, sex,

birth-rearing rank and dam-age group.

N

is a known N x q incidence matrix

Hog

is a non-observable q x 1 vector of random sire effects which
are assumed to be v N (0, Iog)
e is an unknown N x 1 vector of random residual effects which

are assumed to be v N (0, 102)

It is also assumed that,
cov (b, ) =0
and that,

y is v N (Xa, V) where V = zz'og + Iog_.
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B. The Computing Algorithm Used

The REML estimates of the variance components were generated by
iterating the equations given in (2.19) and (2.20). For the model of
(4.2) with just one random effect, other than the residual, the

equations which generate REML estimates are:

2D = gy - yxd® -y
N - p* (4.3)
and,
8§(r+1) _ (g.g)(r)
q - tr(T) (4.6)

where N is the total number of records on the trait being analysed,

p* is the rank of X, q is the number of sires, T is the matrix defined
in (2.21), which is estimated from the mixed model equations as shown
in the appendix, and é and é are solutions to the MME on each iteration.
With var (P) S Iog and var (g) = Iog, Henderson's MME to be solved in

this case are:

1<
-
L]
TN
Il
14
LA

PO Rk»

N
]
N
N

2 o2 '
+ 1 oe/cS (4.5)

TN
1<

Since solving (4.5) requires inversion of the left-hand-side

matrix, the equations for the fixed effects were absorbed.

cr Comparisons with the Method III and MIVQUE Estimates of the

Variance Components

To compare REML estimates of the genetic and phenotypic parameters
with estimates from other methods of estimation, the variance com-

ponents were also estimated by Henderson's Method III and MIVQUE,
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under the same model (4.2).

The MIVQUE's were obtained directly as the first iterate from the

REML Fortran computing program.

The Method III estimates were obtained from REG, a generalised
least squares program, which has been developed for use on the Prime

750 at Massey University by A.R. Gilmour.
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IT. ESTIMATION OF HERITABILITY

Heritabilities were estimated from the paternal half-sib correlation

using the REML estimates of the variance components. That is:

h2 =4 o2
S
=2 sys)
og + o (4.6)

Blair (1981) gives a method for estimating the standard error of

the heritability, SE (hz), that can be applied to any model, namely:

2 2 2 2 =2 2 2 <2
SE(h2)=h2 var(os) & var(os)+var(oe)+2cov(cs,oe) _ 2var(os)+cov(cs’oe)
(02)2 (02)2 e (02)2 o) 02(32 (02)2 e 0202
s s e s e s s e
4.7)

The variances and covariances of the variance components in (4.9) are

obtained from the variance-covariance matrix of 62. That is:
22N = 2 - 2 2 a2
var = var o] = var (o cov(o<4,0
(52) : (a2) (62,02)
2 2 =2 2
o] cov(o4,o var (o 4.8
2 (62,02) var(?) (4.8)

Under REML, vér(éz) is obtained from the following expression (see also
Searle, 1970; Corbeil and Searle, 1976a):

var(¢?) = [{(éz)]_l (4.9)
where I (éz) is the information matrix derived by Searle (1979b).
For the model (4.2) this is:

N-p-q
(02)2
e

1
var(g?) = 4|{ + ;E(tr[?z])} {(tr[?] - tr[?z])/oicg}
e

ter(r]-er[12])/0202} {(ex[(x - D2D/@H? | (4.10)

The elements of (4.10) correspond with those in (4.8). Accordingly
estimates of these terms and the REML estimates of the variance com-

ponents themselves, can be substituted in (4.7) to obtain éh'(ﬁz).
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However, time and computing difficulties curtailed the estimation
of these standard errors for the h?'s. Using an approximation method

instead, was not considered worthwhile.

Estimates of the Method III and MIVQUE variance component estimates
can also be derived from (4.6), and compared to the REML estimates of

h2.
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ITII. ESTIMATION OF THE CORRELATIONS

The relationship between the paternal half-sibs is also used to
estimate the correlations. The expression in (2.49) generates an
estimate of the genetic correlation and (2.48) is used for estimating
the phenotypic correlations. The REML estimates of the variance
components are substituted into these expressions. However, instead
of using sums of cross products, the covariance between two traits,

1 and 2, is obtained by making use of the well-known variance of a
sum rule:

~

- of g 22 -
o1 + o5 + 2 01’2 (4.11)

142
By setting up an additional variable (1 + 2) and after estimation of
the variance components for all variables, (4.11) can then be
rearranged to provide an estimate of the covariance. The REML
estimates of the sire and residual variances of 1, 2 and (1 + 2) can
be used to generate the sire and residual covariances. The pheno-

typic variance and covariance are then obtained as the sum of the

sire and residual components.

Thus, the genetic correlation is estimated as:

. %(og - cg - oé )
rg = 1+2 1 2
Y ot . a%
Sy Sy (4.12)
and the phenotypic correlation is estimated as:
42 +02 -2 -02 -gq2 -gq2)
i = Sle2 %142 %1 %1 %2 &
Y @2 492)(@? +52)
s e s e (4.13)

1 1 2 2
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Standard errors were not estimated for either rg ar rp because
the extent to which approximations need to be made to account for lack
of knowledge of the covariance terms, renders the standard error itself

unreliable.
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IV. ESTIMATION OF THE NON-GENETIC (FIXED) EFFECTS

A. The Models Used

Analyses of variance of the residuals of the liveweight data
indicated that some heteroscedasticity was present. This was removed
when the logarithms of the liveweight data were analysed. However,
because the tests of significance of the main effects and interactions
in the model were similar for both the liveweight and the log of the
liveweight analyses, it was considered that the heteroscedasticity was

unimportant for the purposes of estimating the environmental effects.

The lambs were maintained in one mob until weaning but separately
thereafter. Therefore, birthweight, docking weight and weaning weight
were analysed with both sexes together and the later liveweights and

the fleece traits were analysed within-sex.

The covariate, date of birth, was found to be heterogeneous across
years for the liveweights up to weaning. Accordingly, the regression
of liveweight on date of birth was fitted within-years for birth-
weight, docking weight and weaning weight but the overall regression

was fitted for the later liveweights and the fleece traits.

First-order interactions were only found to be significant in a
few, isolated cases; hence all interactions were excluded from the
models. Age of dam was found to have no effect on the fleece traits
except lamb fleece weight and was therefore not included in the model
for estimating environmental effects on the hogget fleece traits.

Thus, 3 different models were fitted.

A general form of the mixed model is expressed in matrix notation

in (4.2). The particular specifications of the model in this section
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for estimating the fixed effects depend only on the composition of Xa.

Thus, a, the vector of unknown fixed effects, is now defined for the

3 models fitted.

To estimate the environmental effects for birthweight, docking

weight and weaning weight, o was defined as:

where,

(=% e} tHh irt

o

is

is

is

is

is

is

a

a

general mean

vector

vector

vector

vector

vector

of year effects

of sex effects

of birth-rearing rank effects
of dam-age group effects

of within-year regression coefficients of the

records on date of birth.

(4.14)

To estimate the environmental effects for lamb fleece weight and

the later liveweights (from April through to 2-tooth weight) for each

sex separately, o was defined as:

a

where,

[Ll El E' d' b]

(4.15)

b is the overall regression coefficient of the records on date

and with

b

of birth

the remaining terms in (4.15) as defined in (4.14).

L]

To estimate the environmental effect for the hogget fleece traits,

for each sex separately, o was defined as:

a

[ £" x* ]

(4.16)
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with,

all the terms in (4.16) as previously defined.

When the vector of observations y is assumed to be independently,

normally distributed with mean u and variance 02, then the random

variable:

N

=1 52 (4.17)
has a chi-square distribution with N degrees of freedom. The F dis-

tribution is the distribution of the ratio of two independent chi-
square variables divided by their respective degrees of freedom (Mood,

Graybill and Boes, 1974).

2

Assuming the REML estimates of OS

and cé to be the known parameter
values, the main effects and interactions in the model were tested

using an F-test of significance.

B. The Computing Algorithm Used

Assuming that the REML estimate of the vector of variance com-

“2

ponents, O T

, actually equals 0%, the "obvious'" REML estimator for a
given in (2.11) is identical to the best linear unbiased estimator

(BLUE) for a. The BLUE's of the fixed effects were estimated, using

the computing package, REG, as:

= @y (4.18)
where,

o R

v = (g gas + }ce) (4.19)

The standard error of the BLUE of & is estimated (see, for example,

~
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Searle, 1971a) as:

SE (&) = Q('\:fle \ (4.20)
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CHAPTER FIVE

RESULTS

Estimates of the heritabilities for the liveweight and fleece
traits are presented in Table 5.1. In many cases the estimates of h2
generated by the 3 methods are the same. The correspondence of the h?
estimates from the two methods is influenced to a large extent by the

fact that the Method III and REML estimators of OZ differ only in their

2

c are identical in both cases, namely,

denominators. The numerators of &
the total sum of squares (i.e., Z'Z) less the reduction in sums of
squares due to fitting the full model, (i.e., z'%é + z'gg). REML

uses N less the rank of g in the denominator of ag; whereas Method III
uses N less the rank of the full model (i.e., r(g) + r(g)). When N is
large relative to (r(g) + r(g)), the denominators will not be greatly

different and therefore the REML and Method III estimates of 02 will be

very similar.

The Method III estimates were used as the a priori values for the
MIVQUE estimates. Given the general similarity of the Method III and
REML estimates, it is not surprising to find the MIVQUE estimates of h2

in Table 5.1 are also similar.

Standard errors were not estimated for the h? estimates, as noted
in Chapter Four. However, the h? estimates from the 3 methods would
be within the range of the standard errors since the h? estimates them-

selves are the same in most cases.

The genetic and phenotypic correlations estimated with the REML
estimates of the variance components are presented in Table 5.2. In all

cases, except one (the estimate of the genetic correlation between
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character and break severity), the estimates of the correlations fall
within the parameter range from -1 to +1. The genetic correlation
estimates are higher than the estimates of the phenotypic correlations
in most cases; a trend commonly observed for the productive traits in

sheep. The estimates also agree generally in terms of sign.

There are a few unexpectedly high estimates in the table (e.g.,
the estimate of 0.8l for the genetic correlation between character and
staple length). It is noticeable that the few erratic correlation
estimates that occur, involve traits that are assessed subjectively.
Subjective assessment itself is well-known to be one of the causes of

error variance and could inflate the correlation estimate.

The use of the F statistic for tests of significance of the
fixed effects in the mixed models defined in (4.2) and (4.14) - (4.16)
was discussed in Chapter Four. Tables 5.3 and 5.4 indicate that
despite the presence of some heteroscedasticity, the significance of
the main effects and interactions is practically identical for the
liveweights and the logarithms of the liveweights. It was therefore

considered justified to estimate fixed effects on the liveweight data.

First-order interactions were found to be significant in a few
cases. The slope of the regression line was found to be significantly
different for different dam-age classes on birthweight and for different
birth-rearing rank classes on docking weight. However, they were non-
significant in all other cases; hence, the only within-class regressions
of date of birth fitted were the within-year regressions for birthweight,

weaning weight and docking weight.

The interaction of birth-rearing rank x age of dam on birthweight

was highly significant. An analysis of the effects indicated that
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older ewes maintain the birthweight of singles relative to twins better
than do younger ewes, Since the young (2-year-old) ewe is still growing,
it is to be expected that she may be less able to "buffer" the birth-

weight of twins than an older ewe can.

The interaction of year x birth-rearing rank on weaning weight
was highly significant. An analysis of the effects indicated that the
weaning weights of twin lambs relative to singles were considerably
lower in 1970 than the following 2 years. Given the adverse conditions
that occurred in 1970 (see Chapter Three) compared to the following
years, this interaction suggests that a poor year affects twins more

severely than singles.

Since these interactions appear to be understandable and because
the interactions were not systematic, they were excluded from the models
for estimating the fixed effects. The BLUE's of the fixed effects
under the different models (4.14), (4.15) and (4.16) are presented in
Tables 5.6, 5.7 and 5.8. The means and standard deviations for
each trait and the numbers of records analysed are also listed in the
tables. The term not applicable (na) appears in the table whenever

a non-genetic effect was not fitted for a particular trait.



102.

TABLE 5.1: ESTIMATES OF THE HERITABILITIES FROM DIFFERENT METHODS OF
VARIANCE COMPONENT ESTIMATION
Traitl :Zéoggs Heritability estimates :
REML Method III MIVQUE
BWT 1602 0.08 0.08 0.09
DWT 1598 0.05 0.05 0.05
WWT 1559 0.10 0.10 0.10
APR 1511 0.13 0.13 0.13
JUN 1455 0.14 0.14 0.14
AUG 1427 0.15 0.15 0.15
NOV 1398 0.24 0.25 0.24
2TH 1377 0.31 0.32 0.32
LFW 1560 0.19 0.19 0.19
HFW 1397 0.30 0.30 0.30
STL 1397 0.37 0.38 0.37
QNO 1396 0.56 0.55 0.56
CHR 1387 0.19 0.19 0.18
COoL 1387 0.26 0.26 0.25
BRS 1209 0.07 0.08 0.09

1. Abbreviations given in Table 3.2.

. . 2 2 focnad
2. Using the Method III estimates of I and of as a priori values.




TABLE 5.2: ESTIMATES OF THE GENETIC (ABOVE DIAGONAL) AND PHENOTYPIC (BELOW DIAGONAL) CORRELATIONS BETWEEN
THE LIVEWEIGHT AND FLEECE TRAITS
\

Trait | BWT DWT WWT APR | JUN AUG NOV 2TH LFW HFW STL QNO CHR coL BRS
BWT 0.79| 0.7810.25| 0.04|| 0.02| 0.31}) 0.18| 0.80| 0.56 | 0.07 |-0.10| 0.27 | 0.23 ]| -0.43
DWT 0.47 0.50 (0.22 | -0.01 0.25| 0.21| 0.32| 0.47| 0.40 |-0.40| 0.14 |-0.42|-0.27 | -0.01
WWT 0.42 | 0.64 0.80| 0.38| 0.49 | 0.45| 0.50| 0.81 | 0.48| 0.02| 0.04| 0.00 |-0.05|-0.21
APR 0.36 | 0.53| 0.80 0.86| 0.91| 0.8 | 0.93| 0.62| 0.78| 0.16 | 0.14|-0.06 | -0.50 | ~0.27
JUN 0.31| 0.47 | 0.68|0.83 0.97 | 0.84| 0.85| 0.26 | 0.70| 0.18| 0.16 | 0.06 | -0.38 | -0.16
AUG 0.35| 0.50| 0.71]0.85| 0.86 0.84| 0.91| 0.28| 0.60| 0.07|-0.01|-0.07 |-0.39 | 0.15
NOV 0.29 | 0.39| 0.57)0.68| 0.69| 0.74 0.91 | 0.32| 0.54 | 0.45| 0.14| 0.30 |-0.10 | 0.02
2TH 0.27 | 0.38| 0.57|0.68 | 0.69 | 0.74 | 0.84 0.09| 0.50| 0.19 | 0.24( 0.06 |-0.34| 0.22
LFW 0.36 | 0.50| 0.65)0.52| 0.46 | 0.48 | 0.35| 0.32 0.59 | 0.35|-0.31| 0.38| 0.01 |-0.68
HFW 0.13 | 0.14 | 0.26 | 0.42 | 0.44 | 0.48 | 0.47 | 0.42| 0.32 0.74 | -0.33 | 0.64 | -0.03|-0.90
STL | -0.05|-0.08 |-0.02|0.12| 0.17 0.15 0.18| 0.16 | 0.08 | 0.37 -0.43 | 0.81| 0.09|-0.38
QNO 0.07| 0.12| 0.08)0.01| 0.02| 0.04| 0.02| 0.05|-0.05|-0.16 |-0.34 -0.40 | -0.13 | 0.70
CHR 0.03| 0.07| 0.08|0.17| 0.23| 0.24| 0.25 0.18| 0.15| 0.35| 0.32 | -0.02 0.44 | -1.01
COL 0.05| 0.08| 0.06|0.09| 0.10| 0.08| 0.11| 0.08| 0.09| 0.17| 0.11| 0.02| 0.37 =0.22
BRS 0.03| 0.03|-0.01|0.05|-0.11|-0.12|-0.08 |-0.06 | -0.05 | -0.22 |-0.17 | 0.14 | -0.18 | -0.08

A



TABLE 5.3:

SIGNIFICANCE OF

THE ENVIRONMENTAL EFFECTS ON THE

104.

LIVEWEIGHTS
APR JUN AUG NOV 2TH

. BT DHE EE F M F M F M F M F M

YR Kk Kk K% *k | k% k% | k% *k | kk *k | k% *k | k%
SEX *% *% *% na (na | na|na | na |[na na |na na |na
BRR %k Kk K% *k | k% *k | k% *k | kx * K% **% | NS
AOD Kk *% Kk *k | k% *% | *% *%k | k% **% | NS *% | NS
WIDOR *% *% *% na | na na | na na |na na |na na |na
T - na na na %k | kk %k | k% *k | kK *k | kk *k | k%
DOBxAOD *% NS NS NS | NS NS [ NS NS [ NS NS [NS NS | NS
BRRxAOD *% NS NS NS | NS NS | NS NS [ NS NS | NS NS [ NS
BRRxDOB NS **k NS NS | NS NS | NS NS | NS NS [ NS NS | NS
YRxBRR NS NS *% NS | NS NS | NS NS | NS NS | NS NS | NS
1. Abbreviations given in Table 5.7 for the main effects; following

these are the

liveweight.

interaction terms that were significant for any

*% Significant at the 1% level.

* Significant at the 57% level.

NS non-significant.

na not applicable - see text.




TABLE 5.4: SIGNIFICANCE OF THE ENVIRONMENTAL EFFECTS ON THE LOGARITHM OF THE LIVEWEIGHTS

L (APR) L(JUN) L(AUG) L(NOV) L(2TH)

1 L (BWT) L(DWT) L(WWT) F M F M F M F M F M

YR *% *% Kk Kk *k *% Kk *% * % *% *% *% *
SEX *% *% ek na na na na na na na na na na
BRR *k * % *k Kk Kk *% *k *k Kk Kk Kk *% NS
AOD *% *k Kk *k *% *% Kk *k Kk Kk NS * % NS
WIDOR *% *% *% na na na na na na na na na na
. na na na Kk Kk Kk *k *% * % *k *k *% *
DOB x AOD * NS NS NS NS NS NS NS NS NS NS NS NS
BRR x AOD * NS NS NS NS NS NS NS NS NS NS NS NS
YR x BRR NS NS *% NS NS NS NS | NS NS NS NS NS NS
BRR x DOB NS * NS NS NS NS NS NS NS NS NS NS NS

1. Abbreviations given in Table 5.7 for the main effects; following these are the interaction
terms that were significant for any trait.

*% GSignificant at the 17 level.
* Significant at the 57 level.
NS non-significant.

na not applicable - see text.

‘6ot
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TABLE 5.5: SIGNIFICANCE OF THE ENVIRONMENTAL EFFECTS ON THE FLEECE
TRAITS

LFW HFW STL QNO CHR CoL BRS

F M E |[|M F M F |M F M F M F M

YR *%k | kk | kk | k% | kk | kk | k% [*%k | ** | NS *k | kk | kk | kk
BRR kk | %% | NS | * (| NS | NS NS | NS NS | NS | NS | NS
AOD *k | %% | NS |NS [ NS |NS | NS |[NS | NS |NS | NS [NS | NS NS
*k | kk | kk | kk | Kk | kk | kk |kk | k% [ % *k | k%

0B NS | NS

YRxBRR | NS | ** NS | NS NS | NS NS |NS NS [ NS NS | NS NS | NS

1. Abbreviations given in Table 5.7 for the main effects; following
these is the only interaction to be significant for any fleece

trait.
**%* GSignificant at the 1% level.
* Significant at the 5% level.

NS non-significant.
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TABLE 5.6: ESTIMATES OF THE ENVIRONMENTAL EFFECTS (KG) ON THE
LIVEWEIGHTS WITH BOTH SEXES COMBINED
Abbrevi-
ation BWT DWT WWT
Mean (kg) X 4.39 10.08 21.08
Standard deviation
(kg) SD 1.09 2.76 4.24
No. of records N 1537 1534 1495
Year of Birth YR
1972-1970 72-70 -0.25 * 0.11 -0.45 * 0.25 -0.81 + 0.43
1972-1971 72-71 -0.65 + 0.12 4.54 * 0.26 -4.28 * 0.45
Sex SEX
ram-ewe M-F 0.28 * 0.05 0.68 + 0.10 +1.68 + 0.17
Age of Dam AOD
5-2 year olds 5-2 0.54 * 0.07 1.11 + 0.16 1.68 + 0.26
5-3 year olds - -0.02 + 0.06 -0.26 * 0.14 -0.26 + 0.24
5-4 year olds 5-4 -0.12 + 0.07 | -0.38 + 0.15 | -0.45 * 0.24
Birth/rearing rank BRR
single/single -
twin/single | SS-TS 0.93 +* 0.09 1.42 + 0.19 1.45 * 0.32
single/single -
twin/twin SS-TT 0.93 + 0.05 2.65 * 0.16 3.59 + 0.19
Within-year re-
gression of
weight on date oF
of birth DOB
1970 70 0.01 £ 0.01 -0.13 + 0.01 -0.21 * 0.02
1971 71 0.04 = 0.01 -0.25 * 0.01 -0.12 + 0.02
1972 72 0.03 £ 0.01 -0.13 * 0.01 -0.16 * 0.02




TABLE 5.7:

ESTIMATES OF THE ENVIRONMENTAL EFFECTS (KG) ON THE LIVEWEIGHTS FOR EACH SEX SEPARATELY

APR JUN AUG
1 F M F M F M
x 22.82 26.66 24.77 27.52 26139 25.52
SD 4.05 5.04 31195 5.25 4.03 4.53
N 710 672 709 617 708 590
YR
72-70 -1.70 * 0.32 3.63 £ 0.42 1.78 £ 0.32 7.65 * 0.44 4.11 * 0.33 6.53 £+ 0.76
72-71 -5.25 + 0.34 -1.65 * 0.44 -3.42 * 0.35 2.77 £ 0.45 -1.86 * 0.35 1152 = IORYLS
BRR
SS-TS 1.10 + 0.46 0.65 * 0.54 0.80 * 0.45 0.30 £ 0.55 0.90 * 0.46 0.43 + 0.51
SS-TT 2.24 £ 0.26 3.09 + 0.34 1.75 + 0.26 20270 12 01135 1.74 * 0.26 2.18 £ 0.32
AOD
5-2 0.47 * 0.36 1.31 £ 0.46 0.07 * 0.36 0.99 + 0.48 0.25 * 0.35 0.72 = 0.44
5-3 -0.62 * 0.32 -0.71 = 0.43 -0.91 * 0.32 -0.42 * 0.44 -0.90 * 0.32 -0.44 = 0.40
5-4 -0.49 + 0.33 -1.02 * 0.43 -0.67 * 0.33 -0.67 * 0.44 -0.88 * 0.33 -0.74 + 0.40
rDOBZ -0.13 + 0.01 -0.19 * 0.02 -0.13 * 0.01 -0.18 * 0.02 -0.12 * 0.01 -0.20 * 0.03
1. Abbreviations given in Table 5.6.
2. The overall regression (across years) of weight on date of birth was fitted for the later liveweights.

*801



fitted for the later liveweights.

TABLE 5.7: (continued)
NOV 2TH
1 F ’ M F M
x 30.68 32.62 41.98 43.86
SD 4.23 5.05 5.29 6.53
N 699 570 686 562
YR
72-70 1.32 + 0.44 -4.56 * 0.94 6.08 * 0.59 -3.84 + 0.68
72-71 -3.58 * 0.46 4.26 * 0.92 0.30 + 0.62 8.64 * 0.69
BRR
SS-TS 0.52 + 0.57 0.03 * 0.61 032 & 10k 71 0.12 + 0.76
SS-TT 1.05 + 0.31 1.62 + 0.39 1.38 + 0.40 1.03 * 0.47
AOD
5-2 0.32 + 0.43 0592 = 07558 0.31 % 0.54 1.42 * 0.65
- -0.69 * 0.39 0.05 = 0.48 1.56 * 0.49 0.25 * 0.59
5-4 1.01 + 0.40 -0.38 * 0.49 1.30 + 0.50 0.00 * 0.59
rDOBZ -0.10 = 0.01 -1.11 + 0.03 -0.10 * 0.02 -0.12 + 0.03
1. Abbreviations given in Table 5.6.
2. The overall regression (across years) of weight on date of birth was
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TABLE 5.8:

ESTIMATES OF THE ENVIRONMENTAL

EFFECTS (KG) ON THE FLEECE TRAITS FOR EACH SEX SEPARATELY

LFW
1
F M F M F M

x 1.21 1.23 1.86 1.84 10.99 10.05

SD 0.38 0.40 0.54 0.52 1.89 1.61

N 730 701 697 571 697 571

YR _
72-70 -0.10 * 0.03 -0.14 + 0.03 -0.74 * 0.04 -0.80 + 0.04 2.13 £ 0.22 1.03 £ 0.22
72-71 -0.55 * 0.03 -0.68 + 0.03 -1.52 + 0.04 -1.22 + 0.05 -0.49 + 0.23 0.08 +* 0.22
BRR
SS-TS 0.14 + 0.04 0.10 + 0.03 0.06 +* 0.04 0.04 + 0.05 -0.25 + 0.25 0.04 * 0.23
SS-TT 0.26 * 0.02 0.29 * 0.02 0.02 + 0.02 0.09 + 0.03 -0.48 * 0.14 -0.34 + 0.14
rDOBz -0.10 * 0.001 -0.01 + 0.001 -0.01 * 0.001 -0.01 + 0.002 -0.03 * 0.01 -0.02 +* 0.008
AOD3

5-2 0.10 + 0.03 0.13 * 0.03 na na na na

5-3 -0.02 + 0.03 -0.03 * 0.03 na na na na

5-4 -0.03 * 0.03 -0.04 * 0.03 na na na na
1. Abbreviations given in Table 5.6.

2. Overall regression coefficient

3. Age of dam not fitted in model

na. not applicable - see text.

of the fleece traits on date of birth.

for the hogget fleece traits.
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TABLE 5.8: (continued)
QNO BRS
1
F M F M F M F M
X 48.02 47.65 4.01 4.14 4.03 4.13 2.18 3.11
SD 1.90 2.01 0.80 0.77 0.66 0.65 0.99 1.33
N 698 569 690 568 695 563 547 51813
YR
72-70 -1.63+0.28 -0.17+0.31 -1.08+0.08 0.19+0.09 -0.89 +0.07 -0.51+0.08 0.87+0.10 1.99+0.11
72-71 -0.71%0.29 -1.61%0.32 -1.04+0.08 0.16+x0.09 -0.85 #0.07 -0.02+0.08 1.02+0.09 1.60+0.11
BRR
SS-TS -0.4610.28 -0.10+0.28 -0.01+0.10 0.08+0.11 0.10 *0.09 0.05+0.09 -0.02+0.15 0.18%0.15
SS-TT 0.09#0.15 0.26+0.18 -0.05+0.05 0.09+0.07 0.01 *0.05 0.07+0.06 0.11+x0.08 0.09+0.09
rDOBz -0.04+0.01 0.03+0.01 -0.01#0.003 -0.01+0.004 -0.004+0.002 -0.01+x0.003 0.01+x0.003 0.01+0.01
AOD3
5-2 na na na na na na na na
5-3 na na na na na na na na
5-4 na na na na na na na na

1. Abbreviations given in Table 5.6.

2. Overall regression coefficient of the fleece traits on date of birth.

3. Age of dam not fitted in model for the hogget fleece traits.

na. not applicable - see text.
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CHAPTER SIX

DISCUSSION

s, NON-GENETIC EFFECTS

The estimation of non-genetic effects is useful for explaining
some of the variation between the phenotypic records of individuals
and also to adjust records for these effects prior to their use in
estimating B.V.'s. Clarke and Rae (1976) observe that the increase in
accuracy of the B.V. estimate that may be gained from adjusting for
these non-genetic effects, depends on the accuracy with which the
effects themselves can be estimated. This, in turn, depends on how
well the different environmental levels can be identified and the
animals divided into these classes (e.g., twins and singles; rams and
ewes), how well the effect can, in fact, be estimated for each of these
classes and how much the effect actually varies between individuals

within each class.

In this study the non-genetic effects estimated from each of the 3
models defined in Chapter Four, were found to be significant for most
of the traits described by the model. The best linear unbiased
estimates (BLUE) of the environmental effects are presented in Tables
5.6, 5.7 and 5.8 for the 3 models used. The standard errors are
relatively high in many cases, particularly in the few cases where a
non-significant effect has been estimated (e.g., the effect of SS-TS
on 2-tooth liveweight is 0.12 * 0.76 for the rams, although in this

specific case BRR is shown to be non-significant in Table (5.3)).

Year-of-birth effects, although significant, are specific to the

flock and year of study in which they are measured, and cannot be
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generalised (as correction factors in Sheeplan, for example). Never-
theless, it is interesting to note that, although 1970 had a large
adverse effect on the lambs growth relative to 1971, particularly in

the early stages of the lambs' growth, that 1972, in fact, had an even
greater negative influence, although the difference is much smaller.
This same trend is generally evident for the fleece weights in Table
(5.8). The fleece quality traits also seem to have been most adversely
affected in 1972 and least in 1971. There is also a noticeably larger
effect of year of birth on the ram than the ewe lambs for the fleece

traits and the later liveweights.

The effect of sex on birthweight, docking weight and weaning weight,
when the lambs were still being grazed together, is shown in Table 5.6.
As expected, the ram lambs have an advantage for liveweight at these
ages. The REML estimates obtained here are somewhat lower than previous
estimates reviewed in Table 2.2 for weaning weight. There do not appear
to be any previous estimates of environmental effects on birthweight or

docking weight.

From Tables 5.6 and 5.7 it appears that until August (10 month)
liveweight lambs with a young dam are at a disadvantage relative to
lambs with older dams. After August, the effect of age of dam is not
as large nor as consistent. It is also apparent that a 5-year-old

ewe is a disadvantage to the lamb relative to 3 and 4 year-old dams.

By subtracting the estimates for the (5-4) year-old ewe from the
(5-3) and (5-2) year-old age-of-dam effects in Tables 5.6 - 5.8 an
indication of dam-age effects relative to the 4 year-old ewe may be
obtained. These can then be compared with the age-of-dam effects

from previous studies (in Table 2.2) and those used for Sheeplan (in
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Table 2.1), since the mature ewe class largely comprises 4 year-old

ewes.

There seems to be general agreement of the BLUE's of age-of-dam
effects on weaning weight from this study and the estimates previously
obtained. The ''derived" BLUE's of 1.23 for (4-2) year-old ewes and
0.19 for (4-3) year-old dam-age effects, agree well with the values of

1.3 and 0.2, respectively, which are currently used by Sheeplan.

The estimates of environmental effects after weaning have been
made within-sex in this study, although this is not the case for the
other estimates reviewed in Tables 2.1 and 2.2. It appears that the
corresponding BLUE's of age-of-dam effects on liveweight are lower for
the females, and higher for the males, than the previous combined-sex
estimates. However, the standard errors are quite high relative to
the BLUE's. Sheeplan currently makes the same adjustment to hogget
liveweight for age-of-dam effects to both sex classes in dual-purpose

breeds.

The adjustments made to the post-hogget liveweights for age-of-dam
effects are smaller, in relation to the size of the animals. This
reflects the lessening influence of the dam with increasing age of the
progeny. The BLUE's obtained in this study for 2-tooth weight indicate
age of dam has a relatively small effect by this stage. In fact, Table
5.3 indicates these effects are non-significant for ram lambs both as

hoggets and as 2-tooths.

Hogget fleece traits are not significantly influenced by age-of-dam
effects, as Table 5.5 shows, and these were not, therefore, included in
the model. Sheeplan also makes no adjustment to hogget fleece weight

for age-of-dam effects. Lamb fleece weight is, however, significantly
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influenced by age-of-dam effects. The BLUE's are slightly larger for
males than females. There does not appear to be any previous estimates

to compare with in the Romney.

Birth-rearing rank has a significant effect on the liveweights and
fleece weights up to the hogget stage. The effects on 2-tooth weight

and the hogget fleece quality traits are generally less significant.

The BLUE's of the effects of birth-rearing rank on weaning weight
agree well with the findings from previous studies. The BLUE's for
hogget liveweight for each sex separately are generally lower in both
cases than the previous estimates obtained with the 2 sexes combined.
The effect of birth-rearing rank on ewe hoggets estimated in this study
appears to be particularly large and is, in fact, higher than the

estimates in Table 2.2.

The effect of birth-rearing rank on liveweight also decreases
with increasing age. Sheeplan makes the same adjustment to liveweight
records for birth-rearing rank effects to both sexes. The BLUE's
obtained here for April and August liveweight are generally slightly
lower for both sexes than the estimates Sheeplan uses for the corres-—
ponding autumn and winter liveweights. The effect of birth-rearing
rank declines, relative to the weight of the animal, with increasing
age. In the males, birth-rearing rank was not found to have a

significant effect on 2-tooth weight in this study.

Birth-rearing rank has a significant effect on lamb fleece weight
with the effect being similar for both sexes. The effect on the
hogget fleece traits is more variable and frequently non-significant
as Table 5.5 shows. The BLUE's for hogget fleece weight in Table 5.8

are lower than the estimates used by Sheeplan) however, they are in
=
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fairly close agreement with the estimates of Baker et al. (1974). The
difference between the sexes for birth-rearing rank effects on the fleece
traits is quite variable; 1in some cases the effect is greater on the

ram and less on the ewe, in other cases it is greater for the ram, and in
a number of cases it is negative in one sex and positive in the other.
The estimates of birth-rearing rank effects on fleece quality traits
obtained by Chopra (1978), although not reported here, also tended to

be variable.

The BLUE's for the regression of the liveweight and fleece traits
on date of birth of the lamb were found to be significant in most cases
(Tables 5.3 and 5.5). In comparing these estimates with the results
from the previous studies reported in Table 2.2 and from Sheeplan in
Table 2.1, note that the regressions in these tables are expressed as
the regression of liveweight on the age of the lamb. Since date of
birth is equivalent to negative age, the estimates in Tables 2.1 and

2.2 will be opposite in sign to the BLUE's in Tables 5.6 - 5.8.

The within-year regression coefficients were fitted for birthweight
through to weaning weight. The estimates pertaining to weaning weight
generally agree with the estimates in Tables 2.1 and 2.2, although the
1970 regression is higher than the range of previous estimates. There
is also a significant, and relatively large, difference between the
within-year regression coefficients from the 3 years for weaning weight
in Table 5.6. This is also evident amongst the within-year coefficients
for birthweight and docking weight. Note that the regression of birth-
weight on date of birth is opposite in sign to the regressions for all
the other liveweights. This is possibly caused by ewes carrying lambs

later in the season, when feed supplies are better; thus, being able to
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divert extra resources to the foetus in the late stages of gestation.
Although gestation length is fairly stable in the ewe, there may also
be some increase in birthweight associated with a longer gestation

period.

The overall regression coefficients on date of birth were obtained
for the later liveweights and fleece traits on a within-sex basis.
There is generally good agreement between the BLUE's for the regression
of hogget fleece weight on date of birth with the Sheeplan estimates in

Table 2.1 and the estimates reported from previous studies in Table 2.2.

There is, however, some disagreement between the estimates in these
tables for the regression of the later liveweights on date of birth and
the corresponding BLUE's obtained in this study. There are large within-
sex differences in the BLUE's which are not evident in the within-sex
estimates used by Sheeplan, nor in the combined-sex estimates in Table
2028 The BLUE for the regression of hogget fleece weight on date of
birth in ram lambs is particularly different. Further evidence of

such differences would be required to substantiate them.

In general, the BLUE's of this study have agreed reasonably well

with previous estimates.
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IT. HERITABILITY

The heritability estimates for the traits under study are presented
in Table 5.1. As discussed in Chapter Five, the 3 methods (REML,
Henderson's Method III and MIVQUE) used to estimate h? are in good
agreement; it is the values of the estimates themselves that are of

interest in this chapter.

Growth traits in the Romney are considered to have medium to high
heritabilities (Dalton and Rae, 1978). The estimates of h? for the
liveweight traits that are used in Sheeplan are based on the results of
some of the earlier studies in Table 2.3 (e.g., Ch'ang and Rae, 1961,
1970) . The h? estimates of the liveweight traits in Table 5.1 from
the present study are lower than many of these previous estimates.

It is, however, a noticeable trend in Table 2.3 that in more recent
years the h? estimates of liveweight traits in the New Zealand Romney
(e.g., Baker et al., 1974; Eikje, 1978b; Baker et al., 1979) are also
lower and in many cases are in good agreement with the estimates of ~
this study. The h? estimates of liveweight in the Polish Romney given
in Table 2.3 (e.g., Radomska and Klewiec, 1975, 1976) are also generally

lower than the early New Zealand Romney estimates.

There have not been many estimates for h? of birthweight in the
Romney. The REML estimate of 0.08 is considerably lower than the
range of estimates (from 0.19-0.35) from Blair (1981) for the New
Zealand Romney, but is similar to the estimate of 0.013 from Radomska
and Klewiec (1975) for the Polish Romney. Further estimates are
required before a trend can be substantiated although it appears likely
that birthweight has a low-medium h2. Dalton and Rae (1978) suggest

it would be useful to have more knowledge of the h? of birthweight.
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Several studies (e.g., Hight and Jury, 1970; McCutcheon, 1981) have
shown that birthweight has an important effect on lamb mortality rates

and lambing difficulty.

The particularly low estimate of h? for docking weight of 0.05 in

Table 5.1 is probably largely due to the wide variation in age at

2

docking discussed in Chapter Three. This would increase ae relative
to 05 and therefore decrease hZ2, There appear to be no previous

estimates of h2 at docking. Variability of environmental factors,
such as the age of the lamb, are typical at docking in New Zealand;
thus docking weight is not regarded as a useful trait for predicting

B.V., nor as a basis for selection.

In fact, both birthweight and docking weight are recorded under
variable conditions in New Zealand. A more uniform environment (e.g.,
if animals are housed at lambing; as is done in some other countries)

would be expected to increase h2.

Until after weaning, thé young lamb is particularly influenced by
the maternal environment. Thus, DOR (including DDR) estimates of h2
can be expected to be higher than PHS estimates; as discussed in
Chapter Two (section IIB). The DOR h? estimates of weaning weight
are all about 0.2 while most of the PHS estimates fall in the 0.1-0.2
range, including the REML estimate of 0.l from this study. Eikje
(1978b) observes that the PHS estimate is a better measure of the h2
of the lamb's own genetic potential and that individual and maternal

effects on weaning weight should be considered as 2 separate traits.

Sheeplan also uses information, if available, on autumn liveweight
(March-August) and winter liveweight (May-August) for predicting B.V.

for weaning weight, although these are of less importance than weaning
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weight itself and spring liveweight (September-November). The REML
estimates of h? in Table 5.1 for liveweight from April to August, when
the lambs are, on average, 7 through to 10 months old, are generally
lower than the corresponding estimates in Table 2.3 from other studies.
The trend for h? to increase as the lamb gets older is maintained, with

the REML estimates increasing from 0.13-0.15 during this period.

Hogget liveweight, or spring liveweight as it is called in Sheeplan
(Clarke and Rae, 1976), is another important trait in dual-purpose
breeds such as the Romney. Hogget liveweight is regarded as having a
high h?; Sheeplan uses a value of 0.35. The REML estimate for the h2
of hogget liveweight obtained in this study of 0.24 is noticeably lower.
It does, however, agree well with some of the later estimates in Table
2.3 (e.g., Baker et al., 1974; Baker, 1977; Baker et al., 1979).

This appears to be a similar trend as was observed with weaning weight.
Given the particular importance of these 2 liveweights as selection
criteria in the Romney, it is necessary to have reliable estimates of

h? available for use in selection plans.

The estimate for h? of 2-tooth liveweight in Table 5.1 is also
somewhat lower than would be expected from previous studies. Rae
(pers. comm.) comments that estimates have usually been in the 0.4-0.5
range in contrast to the REML estimate of 0.31 obtained in this study.
Although few estimates have actually been reported for 2-tooth body
weight itself, Blair (1981) did find that the h2 of liveweight based on

average lifetime records of the ewe were in the range of 0.26-0.48.

It is evident from this discussion of the h? estimates for live-
weight that, although they tend to be 0.1-0.2 units lower than many of

the estimates in Table 2.3, they are generally in closer agreement with
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some of the more recent estimates. Furthermore, the trend of in-
creasing h? of liveweight with increasing age of the lamb is clearly

supported by this study.

The estimates of h2 amongst the fleece traits tend to be higher
with the measurable traits, such as the fleece weights, and lower for
the subjectively assessed traits such as character. Colour is an
exception; having a moderate h? estimate despite being an overall

subjective assessment for the colour of the fleece as a whole.

There do not appear to be any previous estimates of h? of lamb
fleece weight available in the literature. It is therefore impossible
to compare the estimate obtained in this study using REML estimates
of the variance components. The estimate of 0.19 represents a fairly

low heritability.

Hogget fleece weight is a particularly important trait in the
Romney and it is therefore an advantage that the h? estimate obtained
here of 0.3, has been substantiated by many of the previous studies in
Table 2.3. These estimates are in fact relatively stable compared to

the h? estimates for the liveweights and other fleece traits.

In the Romney, traits associated with fleece quality are less
important than fleece weight, however, certain quality traits do have
some influence on price. McPherson (1982) found that the effect of
style grade on price was governed almost exclusively by the colour of
the wool despite the fact that style is purported to reflect character,
medullation, uneveness and other factors as well (Wickham, 1982a).
Whiteness of the wool is particularly important in some of the end-uses
of Romney wool such as carpet manufacture. The estimate of h? of

colour of 0.26 is comparable with most of the estimates in Table 2.3
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which suggests colour may be reasonably heritable.

The estimate of 0.56 for the h? of quality number also compares
with other estimates for this trait in Table 2.3. The subjective
assessment of quality number as a measure of wool fineness is now being
discarded in preference to objective assessment of fibre diameter.
Although the relationship between these 2 traits is not direct, the
genetic and phenotypic correlations are commonly in the medium to high
range (ross, 1964; Sumner, 1969; Blair, 1981); although some low
estimates of the correlation have also been obtained (e.g., Chopra,
1978) . Thus, quality number is often used as an indicator of fibre

diameter.

Character and break severity both have low h? estimates in Table
5.1. The estimates of h? for character from previous studies in Table
2.3 vary markedly. However, neither of these two traits are important

selection criteria for the Romney.
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ITI. CORRELATIONS

Correlations between different traits are particularly important
in a dual-purpose breed, such as the Romney, where improvement in
several productive characteristics are required simultaneously. In
the Romney, both high fleece weight and increased meat production are
important objectives. High levels of meat production are dependent
on high growth rates and increased reproductive performance. In this
study, liveweight and fleece data have been analysed. The genetic
correlations between the liveweight traits and fleece weight are of

particular interest in the Romney.

Improvement through selection is also enhanced by decreasing the
generation interval. Wickham (1982b) stresses the importance of early
breeding in sire-producing flocks. In this respect, the phenotypic
correlations between the liveweight traits and between the fleece
weight traits are important. Early selection of individuals for say,
lamb fleece weight, will be of little advantage if the correlations
(both phenotypic and genetic) between lamb fleece weight and hogget

fleece weight are low.

The genetic and phenotypic correlations estimated us%zg REML for
the liveweight and fleece traits are presented in Table a72</ The
phenotypic correlations between the liveweights are generally high or
medium-high. The genetic correlations between the liveweights are

consistently high from weaning, although those involving birthweight

and docking weight are more variable.

There are few estimates of either genetic or phenotypic correlations
between birthweight or docking weight and other traits, and appear to be

none for the New Zealand Romney. Radomska and Klewiec (1975) have
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estimated correlations of birthweight with weaning weight, hogget
liveweight and greasy fleece weight. Their estimates of the pheno-
typic correlations are in all cases lower than the estimates from this
study. It is difficult, however, to compare with their genetic
correlation estimates involving birthweight since these are outside
the -1 to +1 range for a correlation in 2 of the 3 cases. If the
correlation between birthweight and weaning weight is as high as this
study suggests then more use could be made of birthweight as an early
selection criterian in situations where weighing lambs at birth is

practical.

The estimates of the genetic correlations between weaning weight
and later weights in Table 5.2 are generally lower than the previous
estimates reviewed in Table 2.5, although still in the medium-high
range. Given the importance of weaning weight as a selection objective
this is an important advantage. The genetic correlations of weaning
weight with lamb and hogget fleece weight are also strong and positive;
another very useful trend in terms of improvement. The estimates of
the phenotypic correlations between weaning weight and the later live-
weights and fleece weights are also high and agree well with the

estimates in Table 2.4.

Hogget liveweight is an important liveweight trait that is in-
corporated in the selection index of Sheeplan. It is therefore useful
to note that hogget liveweight is not only genetically and phenotypically
highly correlated with 2-tooth weight, but also with hogget fleece
weight. Weaning weight, hogget fleece weight and number of lambs
born are the other 3 traits in the index. The estimates of the genetic
and phenotypic correlations between hogget liveweight and the other live-

weights in Table 5.2 are generally comparable with the previous estimates
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in Table 2.4.

The estimates of the genetic correlations between staple length
and the liveweights in Table 5.2 is somewhat variable although always
positive. The corresponding estimates in Table 2.5 tend to be positive
and medium to strong. The phenotypic correlation estimates between
staple length and liveweight are low and variable, which is also found

for the estimates presented in Table 2.4.

The other fleece traits studied, are subjectively assessed traits
and are of less importance as breeding objectives. Quality number is
an exception insofar as it reflects fibre diameter, which is relatively
important in the Romney. Quality number, character and break severity
have low and variable estimates of their phenotypic and genetic
correlations with the liveweights. The phenotypic correlation
estimates involving colour are also low and variable, however, the
genetic correlations between colour and the liveweights are low to

med ium.

The genetic and phenotypic correlations between pairs of the
fleece traits are more variable than the correlations between the live-
weight traits, and there is less consistency in terms of sign and size

of the genetic correlation relative to the phenotypic correlation.

Lamb fleece weight has a high genetic and a medium phenotypic
correlation estimate with hogget fleece weight. It has already been
noted that hogget fleece weight is a very important selection criteria
in the Romney and a reasonable positive phenotypic correlation means
early selection of lambs using fleece weight records may be of benefit.
However, given the stronger correlation between weaning and later live-

weights, and the importance of this trait also as a selection criterian
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in the Romney; preliminary selection based on liveweight is probably
more efficient. The positive correlations between liveweight and

fleece weight are important in this context.

There are few previous estimates available of correlations be-
tween lamb fleece weight and other fleece traits in the Romney. The
genetic correlation of 0.80 between lamb and hogget fleece weight
obtained by Baker (1977) is larger than the estimate of 0.59 obtained
here, although both represent a high correlation. The estimates of
the correlations between lamb fleece weight and fleece quality traits
measured on the hogget fleece in Table 5.2 are variable in size, but

generally low and in the expected direction.

The genetic correlation estimates in Table 5.2 of hogget fleece

weight with the other fleece traits are high for staple length, character

and break severity; medium for quality number and low for colour.
The estimates in Table 2.5 are generally medium to high for staple
length and quality number, but are quite variable for the other sub-
jective traits. The estimates obtained in this study of the genetic
correlation between hogget fleece weight and other fleece traits are
therefore in agreement with the common range of estimates obtained in

earlier studies.

The phenotypic correlations between hogget fleece weight and the
other hogget fleece traits are generally lower than the genetic
correlations, but agree in terms of sign. An exception is the pheno-
typic correlation between hogget fleece weight and colour which is
slightly larger and positive compared to the low, negative genetic
correlation. There is general agreement also between the estimates of

this study and the corresponding estimates in Table 2.4.
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The correlations between fleece weight and quality number could be
antagonistic if a reduction in fibre diameter is a selection objective.
However, this is not always an objective in Romney flocks; it is
usually sufficient to just maintain the average fibre diameter of the

flock below a certain 'ceiling'" level.

Character is not now regarded as an important selection criterian,
therefore, the low variable correlations associated with it are of less
importance. Since colour can be important in the Romney, as noted
earlier, the negative genetic correlation between hogget fleece weight
and colour found in this study, which is supported by the few estimates

in Table 2.5, is undesirable, although it is small.

The estimates of the genetic and phenotypic correlations between
staple length and the fleece quality traits are consistent in terms of
sign and similar in terms of size. The estimates fall within the
common range of estimates reviewed in Tables 2.4 and 2.5. Staple
length, in itself, is not a very important selection criteridn, although
short fibres in the staple may cause processing problems; for example,
in worsted yarn manufacture (Wickham, 1982a). Increased staple length
is, as noted before, positively correlated with an increase in fleece
weight which is an advantage. The negative correlation between staple
length and quality number found in this study is lower than the estimates,
both genetic and phenotypic, previously obtained. Negative correlations
between fleece quantity traits and quality number are antagonistic in
most Romney breeding-ewe flocks and fibre diameter needs to be monitored
accordingly. However, depending on the end-product (e.g., carpet wools)
they may, in fact, be used to advantage. Generally speaking, however,
it is important in the Romney to keep a check on fleece quality traits

when selecting for increased fleece weight.
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CHAPTER SEVEN

CONCLUSION

This study was concerned with the estimation of variance compon-
ents using REML; a new method of estimation with respect to analysing
sheep breeding data in New Zealand. The estimates of the variance
components were then used to generate estimates of the heritabilities,
phenotypic and genetic correlations, and the BLUE's of the non-genetic

(fixed) effects.

In a dual-purpose sheep breeds, such as the Romney, where both
meat and wool production are important selection objectives, a selection
index approach is an efficient method of genetic improvement. Accord-
ingly, Sheeplan uses a selection index for dual-purpose breeds which
incorporates number of lambs born, weaning weight, spring (hogget)

liveweight and hogget fleece weight (Clarke and Rae, 1976).

In most cases, the parameter estimates from this study were in
general agreement with the results from previous studies and also
generally agreed with the parameter values currently used by Sheeplan.
However, the h? estimates of the liveweight traits were found to be
lower than those used by Sheeplan, although they were relatively com-
parable with the more recent h? estimates of liveweight in other
studies. Genetic parameters may change with time; hence, it is
possible that the h? of liveweight has decreased in the Romney. If h?
of liveweight is, in fact, lower than the Sheeplan parameters, then
current selection response for liveweight may not be as rapid as would

be expected from Sheeplan.

The genetic correlation estimates between WWT and the liveweights
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from JUN to 2TH were also found to be lower than the values used by
Sheeplan. However, these results have not been supported by other
studies. The genetic correlation between WWT and NOV (hogget) live-
weight is of particular interest since it is involved in the Sheeplan

selection index.

With the exception of these differences, it is interesting to note
that the REML parameter estimates of this study were generally similar
to the results of previous studies where other estimation methods
(notably Henderson's Methods; Henderson, 1953) have been used. The
close similarity, in this study, of the REML h? estimates with the
Method III h? estimates is also of interest, especially since Method

IIT has the desirable feature of unbiasedness, which REML does not.

The efficiency with which a selection index actually identifies
the individuals of higher genetic merit, is affected by the reliability
of the parameters included. Thus, accurate data collection and
reliable parameter estimates are important. Genetic and environmental
changes in the population, technological improvements which improve
data collection and processing and the development of new estimation
methods with specific desirable properties, makes it worthwhile to
periodically re-estimate the genetic and phenotypic parameters of the

population.
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APPENDIX

Obtaining T from the Mixed Model Equations (MME)

Solving Henderson's MME, as part of the REML algorithm discussed
in Chapter Four, yields the inverse of the left-hand-side matrix,

namely:

= .

At [ x B

]

xl

N
]

R

e

Z'X 2'Z + Io2/g?
B =S > e 8

e
=

where A is a symmetric matrix with full rank under the subclass means

model of (4.2).

Following Searle (1968), the right-hand submatrix of é-l will be:

M= (22 + 102/02 - 230" x'2]7
Now,
for D = 162 from (4.2) and T = (I +2'S2D)” of (2.21),
pT=@ " +2'sD)7
and,
for § = K71 - K xR !
where R = ;ag from (4.2)

it is readily shown that,

z'sz = 1/67 [2'z - 2'X(X'07X'Z]

so that,
M= [p7162 + z'5282] 7!
~ ~ [ ~ ~~ e
=D T 1/52
~ ~ e
That is,

~=1 Ay AN A
the lower right-hand submatrix of A contains T ¢ /02 and therefore

2
s
multiplying the elements of this submatrix by Gg/ag yields T.
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