Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigating the Bacteriocin Library of *Lactobacillus plantarum* A-1

Patrick James Main

2014

Investigating the Bacteriocin Library Lactobacillus plantarum A-1

Presented in partial fulfilment of the requirements for the degree of:

Master of Science

in

Microbiology

at Massey University, Manuwatū Campus

Palmerston North

New Zealand

Patrick James Main

2014

Abstract

Bacteriocins are a highly diverse group of ribosomally synthesised, antimicrobial polypeptides produced by nearly all bacterial and archaeal species. Individual bacteriocins typically exhibit a narrow phylogenetic range of activity, but collectively inhibit a wide range of species through a variety of mechanisms. Glycocins are uncommon bacteriocins with rare, *S*-linked glycosidic bond;, currently there are only four characterised glycocins.

Preliminary characterisation of the bacteriocin ASM1 from *Lactobacillus plantarum* A-1 was reported by Hata *et al.* in 2010. ASM1 is structurally similar to GccF, a glycocin produced by *L. plantarum* KW30. Like GccF, ASM1 has two covalently linked N-acetylglucosamine moieties, one of which is attached through a rare *S*-glycosidic bond.

Due to its structural similarity, it was hypothesised that ASM1 would have similar inhibitory activity to GccF. Experiments showed that the two bacteriocins have almost identical inhibitory activity and both glycocins rely on their GlcNAc moieties to inhibit target cells.

The range of species inhibited by ASM1 was shown to be wider than previously thought. The inhibitory activity, however, varied considerably even between strains in a species.

The ASM1 gene cluster was established by sequencing and Southern hybridisation to be located on a 11,905 bp plasmid pA1_ASM1. An *in silico* analysis of the ASM1 gene cluster showed it to have the same operonic organisation similar as the GccF cluster, and overall DNA sequence identity of 75%.

i

A second active bacteriocin gene cluster was detected in the *L. plantarum* A-1 genome. A synthetic peptide, named ASM2, corresponding to this bacteriocin was partially characterised. ASM2 has 82% amino acid sequence identity to the recently identified bactofencin A produced by *L. salivarius* DPC6502.

A brief *in silico* analysis of proteins from the A-1 bacteriocin library and their orthologues provided some evolutionary context for the glycocins of *Lactobacillus* and gave hints as to the evolutionary history of the four characterised glycocins.

ASM1 is one of four characterised glycocins and this work has increased the overall knowledge of glycocins. Identification of a novel secondary bacteriocin in *L. plantarum* A-1 shows the complexity of bacteriocin systems and provides many avenues for future research regarding bacteria that produce multiple bacteriocins.

Acknowledgements

Special thanks to the following people

Dr. Mark Patchett & Dr. Gillian Norris

For their guidance, support and encouragement

Trevor Loo & Soyean Ahn

For their assistance in experiments and novel techniques

Ami Main

For her patience, love and tolerance

Andrew Kerr & Rebecca Smith

For reducing the monotony of long incubation times

The rest of X-Lab

For advice, camaraderie and further technical assistance

The Institute of Fundamental Sciences at Massey University

For providing the facilities and tools that made it all possible

Contents

Abstract
Acknowledgements iii
Contents v
List of Figures ix
List of Tables xii
List of Abbreviations xiii
1.0 Introduction1
1.1 Lactic acid bacteria1
1.2 An introduction to bacteriocins1
1.3 Classification of bacteriocins5
1.4 Range of activity
1.5 Modes of activity 9
1.6 Applications of bacteriocins 12
1.7 Genetics of bacteriocins 15
1.8 Glycosylated bacteriocins 19
1.9 ASM1 22
1.10 Aims of research 23
2.0 Methods and materials 25
2.1 Bacterial methods 25
2.1.0 <i>Lactobacillus</i> overnight cultures
2.1.1 Enterococcus faecalis overnight cultures 25
2.1.2 Glycerol stocks 25
2.1.3 Novobiocin mutants 25
2.1.4 <i>L. plantarum</i> growth and bacteriocin production

	2.1.5 Bacteriocin activity assays (broth and agar)	27
	2.1.6 GlcNAc protection	28
	2.1.7 Competent Escherichia coli cells	28
	2.1.8 Competent Lactobacillus cells	29
	2.1.9 Transformation of <i>E. coli</i> XL1	30
	2.1.10 Transformation of <i>L. plantarum</i> strains	30
:	2.2 DNA methods	31
	2.2.0 Agarose gels	31
	2.2.1 PCR	32
	2.2.2 Restriction digests	33
	2.2.3 Southern blots	33
	2.2.4 Sequencing	34
	2.2.5 Bioinformatics	34
	2.2.6 Plasmid DNA extraction from Lactobacillus species	35
	2.2.7 Plasmid DNA extraction from <i>E. coli</i>	36
	2.2.8 Genomic DNA extraction from <i>Lactobacillus</i> species	36
	2.2.9 DNA quantification	38
	2.2.10 Plasmid isolation from agarose gels	38
:	2.3 Protein methods	39
	2.3.1 Protein purification	39
	2.3.2 Bradford assays	40
	2.3.3 SDS-PAGE protein separation	41
3.0 Cha	racterisation of ASM1	43
3	3.1 ASM1 purification	43
3	3.2 ASM1 characterisation	44
	3.2.0 Data processing and presentation for growth curves	44

3.2.1 IC ₅₀ of ASM1	46
3.2.2 Environmental effects	47
3.2.3 GlcNAc protection	51
3.2.4 ASM1 fragment analysis	54
3.3 ASM1 and Lactobacillus species	56
3.4 ASM1 and Enterococcus faecalis	57
3.5 pA1_ASM1 Sequencing	59
3.5.0 Extension of the core ASM1 sequence	59
3.5.1 The ASM1 operon	60
3.5.2 asmH - The putative immunity gene	62
3.5.3 asmA - The glycosyltransferase	63
3.5.4 asmB - The ABC Transporter	64
3.5.5 <i>asmC</i> - A putative thioredoxin	65
3.5.6 <i>asmD</i> - A second thioredoxin protein	65
3.5.7 <i>asmE</i> - A putative response regulator	66
3.5.8 <i>asmF</i> - The ASM1 bacteriocin	67
3.5.9 Overlapping genes in the <i>asm</i> cluster	67
3.5.10 Circularising the sequence	69
3.6 Isolation of pA1_ASM1	70
3.6.0 Determining the plasmid location	70
3.6.1 Isolating the plasmid	71
3.7 Transformation of <i>Lactobacillus</i> strains	72
4.0 Bacteriocins of <i>Lactobacillus plantarum</i> A-1	74
4.1 Novobiocin-induced mutants	74
4.1.0 Mutant selection by lack of inhibition	74
4.1.1 Identification of secondary activity	76

4.1.2 Verification of plasmid absence	77
4.2 Investigating other A-1 bacteriocins	78
4.2.0 Secondary substance cluster identification	78
4.2.1 ORF identification in ASM2	79
4.2.2 orf1 - Domain of unknown function	80
4.2.3 <i>orf2</i> - Putative thioredoxin	81
4.2.4 orf3 - ABC Transporter	81
4.2.5 orf 4 - Bacteriocin ASM2	82
4.2.6 ASM2 activity spectrum	83
4.2.7 Synthetic ASM2	85
4.2.8 Comparison of A-1 and N1 growth and bacteriocin production .	86
4.2.9 Activating the plantaricin cluster in <i>L. plantarum</i> A-1	87
4.3 Bioinformatic analysis of selected bacteriocin-associated proteins in <i>L. plantarum</i> A-1	90
4.3.0 Bioinformatic analysis of bacteriocin peptidases	90
4.3.1 Bioinformatic analysis of bacteriocin thioredoxin-like peptides.	98
4.3.2 Bioinformatic analysis of bacteriocin structural peptides 1	.02
4.3.3 Bioinformatic analysis of bacteriocin glycocyltrasferases 1	.05
5.0 Conclusions and future work 1	.08
6.0 Appendices 1	.13
7.0 References	.15

List of Figures

Figure 1.2.1	Schematic of the environmental dynamics of bacteriocin producing bacteria 4	ļ
Figure 1.5.1	Diagrams showing bacteriocin activity mechanisms)
Figure 1.5.2	Schematic of the proposed activity of nisin binding to Lipid II 12	L
Figure 1.7.1	Schematic of nisin operon, component localisation and bacteriocin synthesis	5
Figure 1.8.1	Schematic of the primary structure of the glycosylated bacteriocin Glycocin F 20)
Figure 1.9.1	Proposed alignment of the sequenced Glycocin F cluster and the ASM1 cluster	3
Figure 3.1.1	RP-HPLC profile with absorbance peaks 43	3
Figure 3.1.2	SDS-PAGE gel showing relative sizes of ASM1 and GccF 44	1
Figure 3.2.1	ASM1 IC ₅₀ at 30°C and pH 6.5 without data averaging or smoothing 45	5
Figure 3.2.2	ASM1 IC ₅₀ at 30°C and pH 6.5 46	5
Figure 3.2.3	Comparison of ASM1 and GccF at 30°C and pH 6.547	7
Figure 3.2.4	ASM1 IC ₅₀ at 30°C and pH 5.0 48	3
Figure 3.2.5	ASM1 IC ₅₀ at 30°C and pH 7.5 48	3
Figure 3.2.6	ASM1 IC ₅₀ at 37°C and pH 6.5 \dots 49)
Figure 3.2.7	ASM1 IC ₅₀ at 25°C and pH 6.5 \ldots 50)
Figure 3.2.8	Soft agar assay showing specific protection by N-Acetyl Glucosamine 52	L
Figure 3.2.9	GlcNAc – induced recovery of <i>L. plantarum</i> ATCC 8014 52	2
Figure 3.2.1	0 Residual activity of ASM1 peptide fragments 54	1
Figure 3.2.1	1 Residual activity of the N-terminal fragment (1-32) of the ASM1 peptide	5
Figure 3.5.1	Schematic of sequenced ASM1 gene cluster in <i>L. plantarum</i> A -1 60)
Figure 3.5.2	Dot-plot showing sequence similarity between pA1_ASM1 and the <i>gcc</i> cluster	L

Figure 3.5.3 Alignment of proteins encoded by <i>asmH</i> and <i>gccH</i> ,	
putative immunity genes 6	52
Figure 3.5.4 Conserved domains of <i>asmA</i> as predicted by BLASTP 2.2.29 (NCBI) 6	63
Figure 3.5.5 Conserved domains of <i>asmB</i> as predicted by BLASTP 2.2.29 (NCBI) 6	64
Figure 3.5.6 Conserved domains of <i>asmC</i> as predicted by BLASTP 2.2.29 (NCBI) 6	65
Figure 3.5.7 Conserved domains of <i>asmD</i> as predicted by BLASTP 2.2.29 (NCBI) 6	65
Figure 3.5.8 Conserved domains of <i>asmE</i> as predicted by BLASTP 2.2.29 (NCBI) 6	66
Figure 3.5.9 Alignment of the ASM1 and GccF prepeptides	57
Figure 3.5.10 Sequence differences between <i>gcc</i> and <i>asm</i> clusters with protein translations6	58
Figure 3.5.11 Plasmid map of recognised ORFs in pA1_ASM16	59
Figure 3.6.1 Southern Blots using <i>asmA</i> PCR product as fluorescent probe	71
Figure 4.1.1 Novobiocin-treated <i>L. plantarum</i> A-1 cultures overlaid with a sensitive strain suspension	74
Figure 4.1.2 Residual bacteriocin production by novobiocin mutants N1 - N6	76
Figure 4.1.3 Agarose gels showing primer products from A-1 and N1 - N6 pDNA extracts	78
Figure 4.2.1 Putative ASM2 operon 8	30
Figure 4.2.2 Conserved domain present in <i>orf1</i> of ASM2 predicted by BLASTP 2.2.29 (NCBI) 8	30
Figure 4.2.3 Conserved domain present in <i>orf2</i> of ASM2 predicted by BLASTP 2.2.29 (NCBI) 8	31
Figure 4.2.4 Conserved domains present in <i>orf3</i> of ASM2 predicted by BLASTP 2.2.29 (NCBI) 8	31
Figure 4.2.5 Sequence similarity between the ASM2 and Bactofencin A peptides 8	82
Figure 4.2.6 Putative structure of the ASM2 peptide with cysteine-cysteine disulfide bond	85
Figure 4.2.7 Agar plate treated with supernatants and pure bacteriocins	85
Figure 4.2.8 Graph of OD ₆₀₀ and pH of A-1 and N1 cultures over 24 hours	86

Figure 4.2.9 Segments of agar plates treated with supernatant from either A-1 or N1 87
Figure 4.2.10 Agar plates showing inhibition caused by ASM1 and PlnEF 88
Figure 4.2.11 Agar plates showing inhibition caused by GccF and PlnEF 89
Figure 4.3.1 Relationship between the ABC transporter gene and its role in the cell $.90$
Figure 4.3.2 T-COFFEE multiple sequence alignment of bacteriocin Peptidase_C39 domains
Figure 4.3.3 T-COFFEE Alignment of bacteriocin leader sequences
Figure 4.3.4 Phylogenetic tree of Peptidase_C39 domains
Figure 4.3.5 T-COFFEE multiple sequence alignment of thioredoxin-like domains 100
Figure 4.3.6 6 T-COFFEE alignment of ASM1 and GccF structural peptides 102
Figure 4.3.7 Manual sequence alignment of four glycocins 103
Figure 4.3.8 T-COFFEE alignment of the four glycocin structural peptides 104
Figure 4.3.9 T-COFFEE multiple sequence alignment of glycocin glycosytransferases 106

List of Tables

Table 1.3.1 Class I and II bacteriocins 6
Table 2.2.1 PCR Primers used and their source 32
Table 2.3.1 HPLC Purification protocol buffers 40
Table 2.3.2 Protein gel electrophoresis protocols 42
Table 3.3.1 Range of activity of the ASM1 peptide against Lactobacillus species 56
Table 3.4.1 E. faecalis response to ASM1 and GlcNAc 57
Table 3.7.1 Efficiency of transformation into L. plantarum NC8 NC8
Table 4.2.1 Inhibition caused by bacteriocins and
supernatants against a range of strains
Table 5.0.1 Summary of bacteriocins important to this work 111
Table 6.1.1 PCR probing protocols 113
Table 6.1.2 PCR pTRK669 probing protocols 113
Table 6.1.3 PCR protocols for A-1 sequencing products 113

List of Abbreviations

аа	Amino Acid
ABC	ATP Binding Cassette
ATCC	American Type Culture Collection
ATP	Adenosine Triphosphate
bac	Bacteriocin minus
	(mutants lacking expected bacteriocin production)
BLAST	Basic Local Alignment Search Tool
bp	Base Pairs
cd	Conserved Domain
Da	Dalton
dH_2O	Distilled Water
DNA	Deoxyribonucleic Acid
dNTP	Deoxyribose nucleotide triphosphate
DSM	Deutsche Sammlung von Mikroorganismen
	(German Collection of Microorganisms)
DUF	Domain of Unknown Function
et al.	<i>et alteri</i> (and others)
EtOH	Ethanol
g	standard gravity (9.81 ms ⁻²)
GccF	Glycocin F
gDNA	Genomic DNA
GlcNAc	N-Acetyl Glucosamine
GRAS	Generally Regarded As Safe
GTase	Glycosyltransferase
НРК	Histidine Protein Kinase
HTH	Helix-Turn-Helix
IC ₅₀	Concentration required to inhibit 50% of the population
LAB	Lactic Acid Bacteria
LB	Luria Broth
Μ	Molar (moles per litre)
min	minute
MUSCLE	Multiple Sequence Comparison by Log-Expectation
MRS	de Man, Rogosa and Sharpe medium
MRSA	Methicillin Resistant Staphylococcus aureus
NCBI	National Centre of Biotechnology Information
NZRM	New Zealand Reference Culture Collection, Medical Section
OD ₆₀₀	Optical Density at 600 nm wavelength
ORF	Open Reading Frame

PCR	Polymerase Chain Reaction
рН	Negative log ₁₀ of proton concentration
RP-HPLC	Reverse-Phase High Pressure Chromatography
rpm	revolutions per minute
RT	Room Temperature
SDS-PAGE	Sodium Dodecyl Disulfate Polyacrylamide Gel Electrophoresis
T-COFFEE	Tree-based Consistency Objective
	Function For alignment Evaluation
TE	Function For alignment Evaluation Tris-EDTA
TE TRX	Function For alignment Evaluation Tris-EDTA Thioredoxin
TE TRX TSB	Function For alignment Evaluation Tris-EDTA Thioredoxin Tryptone soya broth
TE TRX TSB UV	Function For alignment Evaluation Tris-EDTA Thioredoxin Tryptone soya broth Ultraviolet
TE TRX TSB UV VRE	Function For alignment Evaluation Tris-EDTA Thioredoxin Tryptone soya broth Ultraviolet Vancomycin resistant <i>Enterococci</i>