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ABSTRACT

The research reported 1in this thesis develops strategies for
applying self-tuning control theory to multivariable processes.
Self-tuning control of scslar processes is now reasonably well
established, and attention is being turned to the multivariable
problem, with its attendant computational burden to overcome, and
additional considerations such as interaction and decoupling.
This thesis suggests methods for dealing with these problems, and
implements the controllers on one of the readily available desk-

top microcomputer systems, providing a cheap yet effective

controller.

Tne research builds on the work of Clarke and Gawthrop [1975,
1979] on implicit controllers. The explicit schemes are derived
from controllers developed by Wellstead and others [1979,(a) and
(b)], using the work on multivariable controllers by Borisson
[1979] and 1latterly Koivo [1980]. The full multivariable
controller relies on standard techniques for pole placement

reported by Wolovich [1974].

The proposed controllers remove interactions between loops, and
other disturbances, and ensure that each loop output attains the
set-point required for that loop. 1In particular, the explicit
pole-placing controller requires a pole-placing calculation for
each loop, and removes the interactions with a minimum-variance-
like action, the resulting controller being modest in

computational needs.

A solution 1is also proposed for the full multivariable pole-
placing problem, which allows a comparison to be made between the
full multivariable solution and the simpler controllers proposed.
It is found that the full multivariable controller demands more
computation, but that the resulting control may be no different

from that achieved with the simpler controller.

(i)



The programs which are described are written in Fortran, in the
form of subroutines which are designed for incorporation into
existing control program suites. Alternatively, they may be run
with a dedicated supervisory program to handle timing, input and
output, display and‘storage of information. The subroutines are
general in their application, and the information they need for

any particular process may be established interactively using an

offline program.

Simulation results are presented which confirm the robustness of
the pole placing controller, and indicate that the proposed
techniques may be used to stabilise and control a wide variety of
processes; those which are non-minimum phase, certain non-linear
or unstable processes. On-line control of a commercial heat
exchanger process 1is reported, the process being similar to
others which have been reported, thus providing a point of
comparison of self-tuning control with other techniques. The
process is multivariable. Good control is achieved, particularly
in the face of perturbations to the process which result 1in
changes to the parameters of the model describing the process
behaviour, conditions under which some other controllers may not

be suitable.

This research has contributed techniques which may be applied
successfully to multivariable self-tuning control. Efficient
programs have been written which implement the controllers on a
microcomputer. Suggestions for future work include the
development of a program generator which will allow more compact
code to be developed, dedicated to a particular process, and
which will execute more quickly. Strategies which tetter enable
self-tuning controllers to deal with non-linear processes are

also of interest.

(i1)
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NOTATION

Boldface letters are used to represent polynomials, polynomial
matrices or matrices. A polynomial is an expression in the back-
ward shift operator q° . Thus:

2 -nA

A(q'1} = ag + a1q"1 * azq_ vee *aaq

np, is defined to be the order of the polynomial A. Polynomials
operate on process variables so that:

A(q~Dy(t)

agy(t) + ajq"1y(t) * s * anAq‘nAy(t)

aoy(t) + a1y(t~1) % san anAy(tﬂnA)

y is only defined at discrete time instants, y(t) being the
(sampled) value of y at the present time. y(t—1), y(t-2) e
represent values of y at previous sampling instants. The sampling
intefY81 is not explicitly stated. The dependence of a polynomial
on gq will be omitted for brevity unless ambiguity results.

A polynomial matrix may be represented equivalently by:
= = -nB
B = B, + Byq + ...+ Bpa
where tne B; are m x p matrices, or by:

By By, ... B1p

=
[

B

.- LR

mi Bmp
where the Bij are scalar polynomials of order ng.

The sca}ar quantity A(1) is the value of polynomial A evaluated
with q  =1.

Processes may be represented in Auto Regressive Moving Average
(ARMA) form by:

Ay(t) = g ¥Bu(t) + ¢ ¥Dv(t) + Ce(t) + a

A, B, C and D are polynomials (or polynomial matrices)
representing a scalar (or a multivariable) process. The process

time delay k is expressed as a whole number of sampling

intervals. y(t) is the process output, u(t) the controlled input,

v(t) a measured disturbance and e(t) a white noise sequence. d is.
an offset.

y(t|t-k) is the predicted value of y at time t, given information up to

and including time t-k.
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Principal symbols used in this thesis

k

i,j,l,m,n

A, B, C, D

A1, A2, B1, C1

A', B, D", A", B"

vit
e(t), e'(t), e"(t)
a, d'

H,C,RE
Fl’)
S1, S2

P’ P" Q! Q'! R’ s
L, H, B1, B2

g(t), ¢,(t), K

X, 0, x(t)

A, T, T
A5

time delay
indices

Process polynomials/polynomial matrices

Process output
Process set-point
Controlled input
Measured disturbance
White noise sequences
Offset values
Controller polynomials
Hu(t) + Gy(T) + Ew(t) = O
Multivariable pole placing polynomial
matrix
Polynomials for servo control
General polynomials

Scalar quantities

General vectors

Polynomials specifying poles for
pole placement

Observer polynomial
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Chapter 1
LITERATURE SURVEY

1.0 INTRODUCTION

The self-tuning principle and the present form of the self-tuning
regulator and controller may be attributed to Astrom and
Wittenmark [1973]. The idea of a self-tuning control system was
however proposed by Kalman [1958] and Peterka [1970].

1.1 SELF-TUNING REGULATOR BASED ON MINIMUM VARIANCE CONTROL

The self-tuning regulator was developed for systems with constant
but unknown parameters, and combined a recursive parameter
estimation scheme with a suitable control design ‘procedure.
Astrom and Wittenmark [1973] used a least squares estimator and a
minimum  variance control law. If the parameter estimates
converged, and if weak assumptions were made about the system tc
be controlled, it was shown that the control calculated
recursively from the estimated biassed parameters would converge
to the control 1law which could be calculated from a full
knowledge of the system parameters. The feedback regulator was
thus disturbance rejecting. The development of the self-tuning
regulator [Astrom_and Wittenmark, 1973], relied on an earlier
exposition of stochastic control theory [Astrom, 1970]. This
theory has Dbeen used to design regulators for the steady state
control of industrial processes and establishes the notation and
fundamental model structure which is used for developing the
self-tuning procedures. It is instructive to examine Astrom's

development of the self-tuning regulator.

Astrom and Wittenmerk's [1973] development has established a

pattern of analysis which 1is adhered to throughout the



literature. Essentially, results are derived first for systems
with known parameters. These results are combined with an
estimation scheme to give a self-tuning device, whose properties
in the presence of noise have then to be examined. This basic
idea has been called certainty equivalence, i.e. the use of a
control law for known parameters, which are then replaced by

¢
their estimates [Egardt, 1978].

1.1.1 The CARMA model.

The notation has been described earlier. In particular the
dependence of the polynomials on q—1 will be omitted for the sake
of clarity except where this becomes ambiguous. The description
given here relies on [Astrom, 1970], but also draws on [Astrom,

1977].

The single-input-sirngle-output case will be considered. The
controlled auto-regressive moving average model is so called
because without the control signal the model is identical to the
ARMA process which is commonly used in time series analysis [Box
and Jenkins, 1970]. The model is linear, and using the
superposition principle the process is characterised by two
terms, the first describing the process dynamics in response to a
control input u(t), while the second gives the response to e(t),
a sequence of independent normal random variables.

y(t) = [B1/A1]u(t-k) + [c1/A2]e(t) ceea(121)

The model can be simplified to that used by Astrom and Wittenmark
[1973] by introducing A = A1A2, B= B1A2, and C = C1A1 :

Ay(t) = Bu(t-k) + Ce(t) el (122)

It is always possible to assume that the polynomial € has all its



zeros inside the unit circle [Astrom, 1977]. If a minimum
variance control strategy is to be used, it is also necessary to
assume that the system is minimum phase (i.e. that the zeros of B
lie inside the unit circle). Further assumptions are that a bound
can be given to the order of the system and that the time delay
is known. The time delay is8 characterised by k which is the
integral part of T/h where T is the true time delay and h is the

sampling interval.

1.1.2 Optimal prediction and minimum variance control

Minimum variance control minimises the variance of the process
output in the presence of process noise, achieving this by
choosing the control variable so that the output of the k-step
predictor coincides with the desired output value. The result is
given in the separation theorem [Astrom, 1970]. The k-step
optimal predictor minimises the variance of the prediction error
in steady state. The analysis given below follows that of Astrom
[1970] and puts:

[c/a] = ¢ + q"¥[e/a) o (1.3)

where the polynomial G is of order n -1 and F is of order k-1.
Using (1.2) and (1.3):

y(t) ="Pe(t) + [BR/CJu(t-k) + [G/c]y(t-k)
= Pe(t) + y(t}t-k) oo (1.4)

It is now possible to define a control law governing the
behaviour of u(t), such that the variance of the output is as

small as possible. This is given by:

BFRu(t) + Gy(t) =0 e...(1.5)



1.1.3 Self-tuning

The self-tuning regulator was designed based on a certainty-
equivalence argument. The model of the process and its
environment is estimated recursively and the control determined
as 1f the estimated model was the true model. Consider the
special case where C=1. For this case, the parameters of the
model (1.2) may be explicitly determined by a least squares
algorithm, and a feedback control law applied. Astrom [1973]
showed that it is in general not possible to estimate all the
parameters of the model when the input is generated by a feedback
control law and one of the parameters is fixed to overcome this

possible difficulty.

It is now necessary to remove the assumption that C=1,
introducing a disturbance-rejecting controller. Use of the model

equation (1.4) results in the system description:’
y(t) = A"y(t-k) + B u(t-k) + e'(t) ceo (1.6)
where A® is of order n,-1 and B' is of order npg*k-1. The

disturbance e'(t) is a moving average of order k of the driving

noise e(t). The minimum variance strategy is then simply:
Aty(t) = B'u(t) = © cee (1.7)

The notation of Astrom and Wittenmark [1973] has been changed
slightly to allow the use of the backward shift operator. A least
squares method may still be used to identify the model, although
k more parameters have to be estimated. If these parameter
estimates converge then the corresponding regulator will converge
to a minimum variance regulator. The theorems establishing this

self-tuning property are given in [Astrom and Wittenmark, 1973].



1.1.4 Multivariable self-tuning regulators

The minimum variance self-tuning regulator described above has
been extended to deal with a class of multivariable systems
[Borisson, 1979]. The process is required to have as many inputs
as outputs, to have a minimum phase property, and to have an
impulse response starting with a non-singular matrix. The
development is exactly the same as in the scalar case, with the
change that polynomial matrices replace all the polynomials used
so far, and the variables become vector quantities. Various
matrix relationships have to be defined to overcome possible
difficulties in the manipulation of the equations. The most

important of these concern the k-step predictor. The process is

given by:

Ay(t) = Bu(t-k) + Ce(t) ....(1.8)
Introducing:

C = AP + g % . (1.9)

and also the matrices F and G given by:

... (1.10)

then C' may be defined using an analogue of equation (1.9) 1i.e.
C' = AFP' + q—kG' which with equation (1.10) gives F'C = C'F, and

these, with equations (1.8)-(1.10) give, with manipulation:

y(t) = C'_I(F'Bu(t—k) + G'y(t-k)) + Fe(t) c...(1.11)

Equation (1.11) serves to define y(t:t—k), and shows the noise to
be a moving average of order k, uncorrelated with u and y at time

t-k or earlier. In self-tuning, the algorithm estimates the

parameters of the model:



y(t) = A°y(t-k) + B'u(t-k) + e'(t) el (1.12)
and the control is computed from:
A'y(t) + B'u(t) = 0 eee.(1.13)

Borisson [1979] points out that if BO is non-singular,
transforming the system equation (1.8) so that u%t)=BOu(t) will
mean that each loop will have one dominant control signal which
will influence it before other control signals from other loops.
Each loop may be considered as a scalar case with feed-forward

disturbances from other loops.

1.2 IMPLICIT OPTIMAL SELF-TUNING CONTROLLERS

This class of self-tuning controller was described by Clarke and
Gawthrop [1975]). The possibility of optimally following set-point
changes was introduced, and in particular a cost was placed on
excessive control action, which is a problem associated with
minimum variance controllers at certain sampling rates. A
control costing, in addition to the cost of variation.in the
output variable, introduced concepts of optimal control. This
extended the limited minimum control objective of Astrom and
Wittenmark [1973], and at the same time dealt with problems of
non-minimum phase systems, which were excluded from consideration
under the earlier method. The necessary a-priori choice of one
system parameter was also seen as detracting slightly from the
self-tuning philosophy. Once again their controller dealt only
with single-input-single-output systems. A later paper [Clarke

and Gawthrop, 1979] summarised and expanded earlier work.



1.2.1 Prediction and control with known parameters
The process is described by the equation:
Ay(t) = Bu(t-k) + d' + Ce(t) el (1.18)

This is the same as equation (1.2) with the addition of the term
d', which gives the output of the system in the absence of any
inputs or noise. It is thus a true offset. Its introduction is of
practical significance in the case where transducer offsets have
to be dealt with. The cost function to be minimised is a

quadratic one-step criterion:
- 2 . 2
I = E{ (Py(t)-Rw(t-k))¢ + (Q"u(t-k))} e (1.15)

The control signal has to be calculated from a considers ion of
this cost function, which of course is impossible to calculate at
the time. The control signal has to be the best that can be
applied in an uncertain situation with the process subject to
disturbances. As with the self-tuning regulator, the
incorporation of a k-step predictor gives a disturbance rejecting
controller, although in this case it is the cost function params
that must be predicted. Uncertainty is due to uncertainty about
the process output. Equations (1.3) and (1.4) describe the
behaviour of the k-step predictor. The prediction error Fe(t) is
a moving average of order k, which is uncorrelated with y(t—k)
and u(t-k) at or earlier than time t-k. So it is possible to

write:

I = [Py(t!t-k)-Bw(t-k)]% + [Q'u(t-k)]% + E{[Pe(t)]?}
ee..(1.16)

The problem has thus been reduced to a deterministic optimisation
problem which may be solved [Clarke and Gawthrop, 1975], by

differentiation.




Following the above analysis, it becomes expedient to introduce

an auxiliary function described by:

g(t) = Py(t) + Qu(t-k) - Bw(t-k) = @B(tit-k) + £(t)
oo (117)

where Q=qO'Q'/bO. The prediction of this function depends on the

prediction of y:

B(tlt-k) = Py(t]t-k) + Qu(t-k) - Bw(t-k) ....(1.18)
and it can be shown that the criterion is minimised if:

#(tit-k) =0 ceea(1.19)

It is possible to complete this analysis by substituting the
predictor of (1.4) into (1.18), but it will prove more
instructive to follow Allidina and Hughes [1979], and return to

the process description (1.14):
Py(t) = {PB/A}q Xu(t) + {Pc/a}e(t) + {P/A}Q" ....(1.20)

The effect of the disturbance sequence {e} has to be dealt with
so this is separated into two sequences, one relating to future
disturbances about which nothing can be done, and one relating to

present and past disturbances.
{Pc/a} = P + g K{c/A} co..(1.21)

Use of equation 0.21) will give a detuned form of the optimal

predictor. Equations (1.17), (1.14), (1.19) and (1.21) are

combined to give:

#(t) = Pe(t) + {F/Cla’ + {BP/Clu(t-k) + {6/C}y(t-k)
+ Qu(t-k) - Bw(t-k) ve..(1.22)



Equation (1.19) gives the control signal which minimises the cost

function. Writing d=F(1)d' :

u(t) = {Rew(t) - ey(t) - a}/{BF + cqQ] ee..(1.23)
or:

u(t) = {Ru(t) - g (t+kit) - al/Q

By (t+klk) = {BP/Clu(t-k) + {e/cly(t-k) ... (1.24)

The representation of (1.24) was used by Clarke and Gawthrop
[1979], who explored various possibilities arising from it, which
highlight the effect that Q has in reducing the excursions of the
control signal. They pointed out that if the form of (1.24) is

used, Q may be varied on-1line without changirng any of the other

controller parameters.

1.2.2 Self tuning

Equation (1.22) is an expression for the prediction of the cost
function which incorporates the unknown process parameters and

may be re-expressed as:
cf(t+kit) = Gy(t) + Hu(t) + Bw(t) + offset ....(1.25)

This gives an expression which must be solved at each step for
the control signal u(t) (equation 1.16). The extension to the
self-tuning case uses the certainty-equivalence principle. The
unknown parameters are now G, H, and E which must now be

recursively estimated. If €=1, (1.18) and (1.21) give:

B(t+k) = XT(t)6 + e'(t+k) ver(1.26)
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Where 6 is a vector containing the unknown parameters, and X is a
vector containing the known functions of time.¢(t+k)is known

from equation (1.17). In the more general case when C is a polynomial:
g(t+k) = XT(t)0 + e'(t+k) + (1-C)B(t+k}t) ceea(1.27)

The control law sets ¢(t+k=t)=0 at each step, and assuming that
the parameters converge, they will converge to the true values

required to give the optimal control law.

Equation (L25) makes obvious the requirement that C have all
zeros inside the unit disc, as early incorrect values of

@(t+k k) should decay if control is to converge.

Clarke and Gawthrop [1979] present an alternative procedure for
self-tuning which has various useful merits. The ¢y(t+k:t) o fi
equation (1.24) is estimated. The following equations establish

the parameter estimation scheme:

ﬁy(t) = Py(t)

By(tit-k) = Gy(t-k) + BPu(t-k) - Tcyf (t-iit-k-i)

XT(t-k)e .. (1.28)

While the ¢y for inclusion in X is not known, a value for it

may be calculated at each step from the updated estimates and the
previous X vector, and included as though the prediction error
were white. Such an approach is common to many least squares
procedures, (see for example Panuska [1980]). The control signal

is calculated using equation (1.24).



1"

It has been noted that equation (1.28) is a self-tuning predictor
of the sequence ¢y’ and as such is divorced from the control law
used to generate u(t), which may be linear or non-linear. This
has a number of practical implications. Because there is no
expectation placed on u(t) to ensure convergence, constraints may
be placed on coentrol signal amplitude, or least squares
estimation may be started under manual control or .sing some
other controller, and the self-tuning loop only closed when

parameters have converged and it is apparent that satisfactory

control may be achieved.

Gawthrop [1977] extends the cost function to include rational
transfer function terms, where before polynomial terms were
required, which enables in the first instance, prefiltering of
the set point. More importantly however, it offers a method for
providing model reference adaptive control, inviting comparisons
with schemes proposed for example by Landau [1979]. A point which
emerges here is the necessity to cancel system zeros with
controller poles in MRAC schemes, precluding once again control
of systems with zeros in the unstable region, or giving rise to

unacceptable intersample behaviour.

A comparison with the Smith Predictor [Smith, 1959] is also
presented by Gawthrop [1977] for the special case where P=R=1.
The comparison is invited by the least squares prediction of the
output performed by the k-step predictor. The use of a self-
tuning controller to overcome the dead time removes some of the
objections associated with the Smith Predictor, particularly its
requirement for a parallel system model, which precludes its
application to open loop unstable processes, and its sensitivity
to system parameter drift. This last advantage of self-tuning
systems is of course one of the major motivations for their use

generally.
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1.2.3 Closed loop behaviour

The certainty-equivalence approach makes it possible to examine
the behaviour of the entire closed loop system when the
controller is included in the loop, assuming that the parameters
being estimated have converged to their final values. This
technique may be used to analyse the response of the controlled
system to disturbances and set point changes, and also for
classical analysis of the closed loop transfer function for
sensitivity results and stability margins. The closed loop
transfer functions are derived by combining equations 0.23) and

(1.14), ignoring the steady offset value:

{BP + AQly(t)
{BP + AQlu(t)

BRw(t-k) + {BP + QCle(t)
Aw(t) - Pe(t) ....(1.29)

Most systems to be controlled are continuous, and analysis of the

unnderlying continuous system behaviour is important.

The closed loop transfer function can be used to ensure the
correct steady state behaviour of the controlled system [Allidina
and Hughes, 1979), [Hesketh, 1980]. If the steady state
relationship between the set point and the process output is
considered, and assuming the noise disturbance has zero mean (no
offset) equation (1.29) can be re-written in terms of estimated
parameters using the relationships B=(H-QC)/F, A=(PC—q_kG)/P to

give:
(PH-q"¥QC)y(t) = R(H-QC)w(t-k) + e'(t) e - (1 $30)

Using a stendard result, the steady state relationship is
obtained by evaluating (1.30) with gq=1. Correct steady state set
point attainment can be ensured by appropriate choice of R(1),
and hence R. R can be adjusted on-1line if care is taken to also
adjust the associated estimated polynomial BE=-BRC to maintain

convergence of the estimated parameters.
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1.2.4 Multivariable self-tuning controller

The methods of Borisson [1979] have been applied to the self-
tuning controller to extend it to the multivariable case
[Hesketh, 1980], [Koivo, 1980]. As in section 1.1.4, this
extension can be made dependent on the re-stating of equations
with polynomial matrices replacing the polynomials, and with
vectors replacing scalars [Koivo, 1980]. In this way, the
analysis follows almost exactly the original analysis of Clarke
and Gawthrop (1975), and hence that of sections 1.2.1 and 1.2.2.
The most notable requirement is the k-step predictor of section
1.1.4 (equations (1.9)-(1.11), [Borisson, 1979]). In the
equivalent of 0.21) there is a requirement that P and C commute,
and so P is limited to be a polynomial, not a matrix polynomial.
In the final self-tuning form, the parameters to be identified

are those of the equation:
#(t+kit) = €y(t) + Hu(t) + Bw(t) cee(1.31)

This is the same as (1.25), the sca ar version. As usual, these
parameters are identified as though the noise were white, and the

control signals computed from:
Hou(t) = -1 L6, y(t-1) + DH.u(t-1) + TEw(t-1) + a'}

e (1.32)

In order to ensure set-point attainment, it is necessary to
introduce integral behaviour into the controller structure
[Koivo, 1980], which may be done by setting Q = (1—q—1)I, or by
using a difference structure. This latter technique has also been
used for controllers based on more conventional estimation

[Sandoz and Wong, 1978], where y(t) is replaced by y(t)-w(t), and
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u(t) by u(t)—u(t-1). The multivariable extensions reported by
Hesketh [1980] form part of the research reported in this thesis

and will be discussed in Chapter 2.

1.3 IMPLICIT POLE ASSIGNMENT SELF-TUNING CONTROLLERS

Controllers of this kind have been dealt with by Allidina and
Hughes [1980] and by Astrom and Wittenmark [1979]. Allidina and
Hughes based their scheme on the implicit controller of Clarke
and Gawthrop [1979]. Pole placement algorithms are dependent on
the closed loop behaviour of the system, and their analysis

depends heavily on the certainty equivalence principle once

again.

1.3.1 Pole assignment based on the optimal self-tuning controller

Equatior1(1.30) gives the closed loop transfer function for the
implicit controller. If A  is a polynomial with the desired

poles then P and Q have to be specified so that:

BP + AQ = A . - AI2E)

L 3
Equation (1.33) establishes requirements on orders of the

polynomials:

np=mg -1, m=ng- 1, mo= ;o +tng-1 ..(1.34)

As A and B are not known equation 0.33) cannot be solved
directly but must be re-expressed in terms of estimated

parameters. Multiplying (1.33) by F and using the fact that
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H=BF+QC, with equation (1.21) gives:

FA_ = PH - g ¥cQ oo (1.35)

Eéuation (1.35) is the relationship established by Allidina and
Hughes [1980] which must be solved at each control step for the
polynomials P and Q, this procedure introducing additional
computational requirements into each step of the control loop.
However, as the matrices involved in the solution of the
simultaneous equations are in nearly upper triangular form, the
computational burden can be tolerated. Steady state requirements
are assured once again by calculating the steady state loop gain

with q=1, and adjusting the gain as necessary.

1.3.2 Deterministic -pole assigning controller

Implicit controllers for pole-zero placement have also been
described by Astrom and Wittenmark [1979]. Their approach is more
direct than that of Allidina and Hughes. A general form for a

linear regulator is:
Hu(t) + Gy(t) + Bw(t) =0 e...(1.36)

Equation (1.36) of course is the same as equation (1.25). The
problem is to find H, G and E. Astrom considered processes
without any noise disturbances, i.e. e(t)=0, so the process to be

considered is (with d=0 also):
Ay(t) = Bu(t-k) oo 1 537)

Combining (1.26) and (1.37) gives the closed loop transfer

function:
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(HA + ¢ ¥BG)y(t) = -BRw(t) veen(1.38)

Zeros which are not desired in the final closed loop transfer
function must be cancelled, and to this end B is factorised to
give B=B+B_ where B+ contains zeros corresponding to unstable
modes which cannot be cancelled. Also it is necessary to
introduce Ay to balance polynomial orders on both sides of the
equation below (Astrom and Wittenmark interpret this as an
observer polynomial, and it is interesting to compare this to P

in equation (1.35)). For pole placement it is necessary to solve:

H'A + ¢ ¥B7G = AjA, cee(1.39)

where H=H'B~. To develop an explicit algorithm, (1.39) is
multiplied throughout by y(t), and combined with equation (1.37)

to give:
Amloy(t) = H'Bu(t-k) + B Gy(t-k) = B (Hu(t-k) + Gy(t-k))

....(1.40)

Equation (1.40) is now in a form suitable for least squares
identification and hence for self-tuning control. The presence
of B does pose certain estimation problems, and of particular
interest is the case where B =1 i.e. where all process zeros have
been cancelled. This results in a particularly simple control
scheme, which has limitations in that it is not suitable for non-
minimum phase systems, and it does not deal with stochastic
disturbances. Astrom showed that the controller will develop
integral action to deal with constant offsets although these can

be dealt with by direct estimation.
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1.4 EXPLICIT SELF-TUNING CONTROLLERS WITH POLE ASSIGNMENT

Astrom and Wittenmark [1979] designated controllers as being
"implicit" or "explicit": explicit schemes identify a process
model, from which the control signal may be calculated, while
implicit schemes identify parameters from which the control may
be derived without a process model (usually the controller
parameters themselves) A1l the schemes discussed before now have
been implicit schemes. Explicit schemes lend themselves more
directly to cases where the control signal is derived from

considerations of the transfer function of the system.

Astrom [1980] presented closely allied implicit and explicit
pole assigning control schemes for deterministic processes. The

implicit case has been discussed in section 1.3.2.

1.4.1 Deterministic Pole-Assigning Controller

As before, the explicit schemes are applicable to processes
described by (1.37) with a controller of the foirm of (1.36). IL52
no process zeros are to be cancelled, (1.38) gives the closed
loop transfer function, and appropriate poles are selected by

choice of a characteristic equation Ap. Then:

HA + q"¥BG = AjA, eea(1.41)

The above equation has to be solved for H and G, which constitute
most of the controller parameters. E is selected so that E=KAg,
the K being a scaling factor to ensure the correct steady state

gain for the process, calculated from the estimated parameters

with q=1.

For the case where all the process zeros are cancelled, H is
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replaced by B, containing the factors of H remaining after the
cancellation, and the simultaneous equations to be solved are

determined from:

AH' + g TG = AyA, ceea(1.42)

Complete selection of closed loop zeros is possible, all the
process zeros having been cancelled. E is chosen as E=BmAO and
the correct gain will be ensured if AO is normalised so that

A0(1)=1.

Astrom and Wittenmark [1980] have discussed certain properties of
the control system given by equation (1.41), including the
correctness of the parameter estimates, and local stability about
the stationary solution. They also showed, by means of example,
the degradation in control in the presence of a constant bias
(i.e. non-zero d), and overcame this by using the method of
Clarke and Gawthrop [1975], of estimating this offset, which
could then be taken into consideration when computing the control

signal.

The straightforward presentation of these algorithms provides an
insight into the behaviour of such systems. However,
factorisation techniques may be required for their solution, and
it is more general to consider the behaviour of processes in the
presence of noise diéfurbances. The extension to these cases has

been given by Wellstead et al [1979,a,b,cl

1.4.2 Stochastic Pole-Assigning Regulator

Controllers of this type have been discussed by Wellstead,
Edmunds, Prager and Zanker [1979], and by Wellstead, Prager and
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Zanker [1979].The first paper proved the self-tuning property
for the general pole-zero assignment case, while the second
Jjustified an unusual model structure which uses leading zeros in
polynomials to cater for time delays, and with self-tuning of the
parameters is able to model systems with variable time delays. In

both of these papers only the regulator was considered.

This regulator was developed to deal with problems of large
amplitude control signals, and with difficulties encountered when
gain limitations are placed on the control signals, although it
should be noted that the formulation proposed by Clarke and
Gawthrop [1979] deals with these cases. The ability of the pole
placing algorithms to reduce gain, although with an increase in
output variance, and to overcome problems encountered with

conditional stability was demonstrated.

If the process model of (1.2) is considered, Wellstead et.al.
showed that multiplying both sides of the equation by a suitably

chosen polynomial T can yield the alternative structure:

(14 ¥A")y(t) = B"u(t-k) + CTe(t) eeo.(1.43)
(Throughout this section the notation of Wellstead et al has been
changed to correspond with the notation already defined). The
controller is described by:

Hu(t) + Gy(t) =0 c.o..(1.44)
Combining (1.43) and (1.44) gives the closed loop description:

{(1+q7¥a")B+q ¥B €}y(t) = HCTe(t) ee.(1.45)

The aim of pole/zero assignment is to force the closed loop

system to be:
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Amy(t) = Boe(t) ....(1.46)

This determines the following set of simultsneous equations which

must be solved for the controller parameters H and G:
) ~kge ~kns =
B,{ (1+q “A")H+q “B°G} = A HCT e (1.47)

Suitable choice of H and G can reduce equation (1.47) to the
minimum variance regulator of Astrom [1973], but of more interest
is the detuned minimum variance controller described by Wellstead
et al [1979 a], +n which case, the detuning or "tailoring" of the
variance is achieved by using the following identity in the k-

step predictor:

{cP/A} = ® + g %{c/A} ...(1.248)
Where the detuning is achieved by introducing the polynomial P.
Following a now-familiar analysis, U.48) and (1.43) give

finally:

Py(t) = Pe(t) + {BR/C}u(t-k) + {c/cly(t-k) ....(1.49)
Equation (1.49) can now be seen to be a special case of the
controller proposed by Clarke and Gawthrop [1979], with Q=R=0 (so
making it minimum variance), and ¢=Py(t) This special case has
been re-expressed in a form suitable for use in an explicit
scheme. In particular, if P is chosen with the special stiructure:

_ -kpe

P_1+q P ..--(1.50)

and assuming the noise is white (C=1):

y(t) = Pe(t) + BPu(t-k) + (G-P*)y(t-k) c...(1.51)

Equation (1.51) makes very clear the explicit nature of the model

to be identified, and shows also the modification of the system
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poles by P. For the self-tuning case then, the model to be

identified is:
y(t) = A®y(t-k) + B"u(t-k) + e" e...(1.52)

which is the saﬁe as equation ﬁ.6). As is normal in self-tuning
the parameters are identified as though the noise were white,

and the control signal is derived from:
(A"-P")y(t) + B®u(t) = O E - & SE)

where equation (1.53) now differs from equation (1.7) in the
addition of the detuning polynomial P°'. Wellstead, Edmunds,
Prager and Zanker [1979] prove that the self-tuning principle
applies for the detuned minimum variance case. As can be seen
from the above analysis, the control signal still depends on the
inversion of B, and so this controller will not deal with non-
minimum phase systems. For such systems, the complete pole
placing algorithm is necessary. In the self-tuning situation the
parameters of (1.52) are once again identified (using some least-

squares algorithm), and H and G are calculated by solving:
-k - ~kpwn _ "
(14" "A")H + ¢ B"G = AT e...(1.54)

Once determined, H and G are used in equation (1.44) to derive
the control signal. The orders of the polynomials are nAn=nA—1,
and npr=ng-1. Once again adherence to the self-tuning principle

has been proved .

1.4.3 Pole assigning regulator with varying time delays

The case where the time delay may be varying is dealt with by
Wellstead, Prager and Zanker [1979], who introduced a novel model

structure with zeros in the leading coefficients of the
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polynomials to cater for the process delays. This structure is
only allowable with certain algorithms, such as that used for
pole assignment. The process is assumed to be described by (1.2)

and the controller by (1.44), giving the closed loop description:
{aB+q ¥Bely(t) = HCe(t) e (1.55)

The closed loop poles are shifted to the locations defined by A

by requiring:

AH + ¥BG = A,C ceea(1.56)
which may now be solved for H and G, which have orders nG=nA—1
and nH=nB+k—1. During self-tuning, the noise is assumed to be

white (€=1), and the process modelled by:
A'y(t) = B'u(t) + e'(t) eeeo(1.57)

The order of B' Las to be extended to zccommodate k zero
coefficients corresponding to the time delay. The equation to be

solved for pole placement is:

HA® + GB" = A_ ....(1.58)

The control signal defined by (1.44) is applied to the process.
Variable time delays are dealt with by re-estimating the
coefficients of B", which results in a conceptually and
notationally simple structure, the price paid for this being the
additional elements of B' which have to be estimated, and of H

which have to be calculated.

1.4.4 Servo self-tuners

Clarke and Gawthrop [1979] have described a self-tuning
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controller where the control signsl applied to the process has a
polynomial dependence on the reference input (equation (1.24)).
Astrom [1980] has also described self-tuning controllers for
deterministic systems (equation (1.36)) Possibly the most
frequently used technique to ensure set point attainment has been
to insert digital integrators into the control loop. Wellstead
and Zanker [1979] have used the classical design technique of
set-point feedforward to build on the pole assigning regulator
described in section 1.4.2 in such a way as to decouple the
regulator and servo sections. Their arrangement is best

illustrated by means of a block diagram.

s2 |} z(t) l e(t)
> Si REGULATOR PROCESS >
r(t) ik il / C y(£)

x(t) y(t)  ut) u(t)

¥

Figure 1.1 Servo control system

The above block diagram serves to define the two transfer
functions S1 and S2 in addition to the named signals. The process
is assumed to be described by equation (L43), while the

operation of the regulator is described by:

u(t) = {e/mly(t) ....(1.59)

Using the block diagram, a transfer function for the closed 1loop

system is easily obtained as:

{(1+q7*a")+q*BG}y(t) = -BCTe(t) + H{(1+q"¥A")S1-q KBS2} r (1)
....(1.60)
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The regulator is treated using the methods of section 1.4.2. The

servo property is assured by setting y(t)=e'(t), eliminating the
effects of r(t):

s1 = g Fs and s2 = {(1+q"¥A*)/B)s veee(1.61)

S is a transfer function which defines the desired servo
response. The extension to the self tuning case also relies on
the regulator case. Equation (1.52) may be extended to include
x(t) and z(t), once again using the block diagram to define the
functions. The parameters to be identified are defined by the

equation:

y(t) = A%"y(t-k) + B"u(t-k) + Lx(t-k) + Kz(t-k) + e"(t)
c.o..(1.62)

Servo compensation is achieved by suitably selecting z(t) and

x(t) at each time step:

2(t) = {(1-q"FL)/m}sr(t)

]

x(t) = g ¥sr(t) oo (1.63)
H and G are calculated using equation (1.54) and are used in

equation (1.59) to provide the regulator part of the control

signal.

Wellstead and Zanker [1979,c] have reported that L and K cénverge
to their unbiased values of A" and B" respectively, which,
together with the biased parameter estimates of equation (1.62)
provides a way of obtaining the true system parameters of A, B
and C. It was argued that this provided an on-line maximum
likelihood estimation algorithm. It can also be seen from
equation (1.61) that difficulties may be encountered when
inverting KN (in (1.63)) due to its dependence on B. Wellstead
and Zanker [1979,c] show by example how B may be included as a
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factor in the numerator of 8 to avoid such difficulties.

1.5 APPLICATIONS

The practical viability of a particular technique becomes
apparent once it has been applied in a variety of situations. The
following section provides a review of some reported
applications, concentrating particularly on techniques which may
have some important influence on the research presented in this

thesis.

1.5.1 Implementation

By virtue of their nature, self-tuning regulators require the use
of a computer or microprccessor, and with the technological
advances and cost of the latter device the use of a digital (DDC)
algorithm can now frequently be justified. Of particular interest
therefore is the implementation by Clarke and Gawthrop [1979],
and colleagues, of a self-tuning controller using a microcomputer

system. This was constructed with the following requirements in

mind:

1. Portability;

2. Bulk-storage availability,
for programs and datsg

3, Standard instrumentation
compatability (e.g. 4-20 ma
current loops); and

4. Suitable high level language
capability.

The hardware was a custom built microcomputer based on an Intel
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SBC 80/10 single board computer, with 16K bytes of RAM memory,
EPROM, two floppy disk drives and analogue interfaces.

The software consisted of a Control Basic interpreter, a disk
monitor and machine language utility programs. Most of these
software facilities are now provided in other commercially
available microcomputer systems, except for the interrupt
handling capability, (and in particular foreground/background
operation within the same program), and the multi-tasking
capability. The importance of the ability to modify programs on

site, provided by the use of BASIC, was stressed.

Clarke and Gawthrop, [1979] have reported several applications of
their controller. Set point attainment was usually ensured by
the introduction of an integrator. Extreme non-linearities (pH
control) could be handled, altrnough satisfactory results required
the inclusion of an inverse non-linearity and safeguards at the
ends of the range. Examination of the underlying continuous
process gave insights into the closed loop behaviour, confirming
the choice in the pH control of a relatively long sample
interval. It is worth noting that a longer sample interval will
also require less accurate delay determination. Control of a
batch chemical reactor also benefitted from offline estimation,
for example during the start-up phase. A particular need was
expressed for analysis of the behaviour of a linear self-tuning
controller acting on a non-linear process, and linearising about
the operating point.

However, in most cases the emphasis has not been on the
application of any particular technology, but on the performance
of the self-tuning algoritnm. ¥ost of the applicatiors have used

a process control minicomputer.
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1.5.2 Testing the ‘algorithms

Astrom and co-workers have reported applications of the minimum
variance regulator with various plants. Astrom et al [1977]
envisage three clearly defined ways in which the algorithm may be
used. In the first, the algorithm is applied at the start when
the dynamics of the system are unknown. Once the controller is
operating satisfactorily, its use may be discontinued in favour
of the more simple application of the controller so derived.
However, the second use of the algorithm would be for periodic
retuning of the controller, after which it is once again
disconnected as before. In the third case, the controller is

used continuously, to cope with continuously varying parameters.

The above paper gives brief descriptions of applications,
reported more fully elsewhere, of the minimum variance version of
the algorithm, applied to the control of a paper machine in one
case, and of an ore crusher in the other. The second case is of
interest because the process control computer was remote from the

site, modem communicstion being used for the link-up.

A quadratic criterion admirably expresses the requirements of
controllers which act as autopilots for steering tankers.
Kallstrom et al [1979] report the use of self-tuning controllers
using these criteria for such control. Controllers were reported
which used a minimum variance criterion, and which solved a
Riccati equation on-line so as to penalise excessive rudder
movements in controlling heading error. A variable structure
algorithm for controlling turning was also used. In a situation
where full scale trials are so expensive, the use of simulations
for prior evaluation of controller behaviour was shown to good

advantage.

Ledwich [1979] also reports simulations of control of the
excitation of a sychronous generator, the control scheme derived

from considerations of convergence of the algorithm. In this
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case, a minimum variance control law produces unacceptably large
control signal amplitudes, while a one-step quadratic criterion
has other unacceptable effects. The need to solve a Riccati
equation to apply a full quadratic criterion is avoided by

rescaling the gain of a controller using a minimum variance law.

The use of a quadratic criterion and the solution of the
resulting Riccati equation on line is again reported by Buchholt
and Kummel [1979] in the control of a highly non-linear pH-
neutralisation process. The identified parameters, and input and
output values are used to form a state-space model for which an

optimal strategy is computed.

The work of Kershenbaum and Fortesque [1978] in controlling
process plant, foretold the widespread use of variable forgetting
factors to avoid the extreme sensitivity which results when an
exponential forgetting factor is applied for long periods when
little excitation is applied to the system, during which time
hardly any information is available to the controller about the
process dynamics. Whatever method is used, it is important to

ensure that the covariance matrix remains bounded.

Keviczky et al [1978] have implemented a multivariable version of
a minimum variance-like controller for blending of cement raw
material. Their approach, using polynomial matrices, is similar
to that of Borisson [1977], who applied multivariable self-tuning
control to the header box of a paper machine. These methods have

been taken up by Koivo [1980], whose paper was described earlier.

1.6 COMPARISON OF ALGORITHMS

There are numerous w&ays in which the situation in which self-

tuning control is applied may be varied. These may be summarised

as:
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varying the identification method;
varying the control law;
using implicit or explicit schemes or

varying the process which is being controlled.

Two studies have been reported which formally set out to compare
the performance of self-tuning algorithms, [Kurz, Isermann and
Schumann, 1980], [Jacobs and Saratchandran, 1980]. Simulations of
the controlled process were used in both these studies. Kurz et
al used an analog computer to simulate the process, and a digital
minicomputer for the control. A noise generator ensured repeat-
ability of the conditions for each process. Jacobs and
Saratchandran used a totally digital simulation to obtain this

repeatability for their Monte Carlo simulations.

The simulations of Jacobs and Saratchandran differed from those
of Kurz et al in that they attempted to present a simulation
study which could lead to conclusions having some general relia-
bility. To this end, the parameter estimation scheme and the
controllers were related to a state-space structure, with the
parameters given as additional states, to be estimated with an
extended Kalman filter. Separate estimation of states and
parameters [Nelson and Stear, 1976] gave similar results. The
controlled process was limited to first order, and a factorial

design varying the three parameters in the model:
y(t) + ay(t-1) = bu(t-1) + e(t) + ce(t-1)

yielded eight classes of process, for :al(1 or }al>1, sgn(b)
known or unknown, and {c:>1 or yc)<1. Kurz et al on the other
hand chose eight different processes which exercised the ability
of the controllers to perform in different situations. The

processes possessed the following properties:

- low pass

- low pass, one zero outside unit circle
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- damped oscillations

- damped oscillations with time delay
- all pass

- integral

- oscillating unstable

- monotone unstable

Recursive least squares and recursive maximum likelihood were
combined with six different control schemes - two minimum
variance, two deadbeat, one PID and one pole assignment, giving a
total of twelve different adaptive schemes. One of the problems
in comparing controllers desigﬁed to different criteria is how to
make the comparison between them. Kurz et al [1980] used r.m.s.

values of both the process input and process output.

Jacobs and Saratchandran [1980] compared schemes based on cost
function minimisation, namely the optimal k-step ahead
controller, and the controller of Clarke and Gawthrop [1975)
which is a k-step ahead controller based on certainty
equivalence. In these cases, the cost function provides a direct
means of comparison. The costs are bounded below by the cost
incurred when a controller is designed with full knowledge of the
parameters, and bounded above by the cost of a controller where
no adaptation is allowed to take place. The optimal controller is
the "more optimal” of the two, so that where the results were
distinguishable, it performed better. In other cases, the
simpler-to-implement self-tuning controller is to be preferred.
It is of interest that neither controller coped with processes

characterised by }a:>1 AND sgn(b) uncertain.

Kurz et al [1980] also recommend different controllers for
different situations. Adaptation was generally very quick,
particularly for recursive least squares. The pole assignment
controller, although imposing a relatively heavy overhead as
regards computational requirements, is recommended where a wide

influence on control behaviour is required.
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Chapter 2
SELF-TUNING ALGORITHMS

2.0 INTRODUCTION

Chapter Two presents the self-tuning algorithms used in the
research reported in this thesis. The multivariable controllers
are presented in such a way that scalar processing techniques may
be used for their implementation. Principal amongst these is a
pole assigning algorithm, which may be used in full, or
simplified slightly by assuming that the main control input to a
particular loop may be taken to have an effect on that loop
before disturbances from inputs to the other loops. The pole
assigning controllers are explicit control schemes. An implicit
scheme is also presented which extends a self-tuning controller

with a one-step quadratic criterion to deal with multivariable

systems.
2.1 POLE PLACING MULTIVARIABLE SELF-TUNING CONTROL

First the structure of the equations which are to be used will be
established. A statement of the control problem will be followed
by its solution for certain classes of processes, and the
similarity between these solutions and those for the scalar case
will be established. The scalar representation will be used to

develop alternative results, and to point out relationships to

other controllers.
2.1.1 Process Description

It is necessary to establish the structure of the equations
representing the multivariable system. Following the lead of
other researchers [Sandoz and Wong, 1978], the state space
representation will be used as a basis for a suitable structure,
and from this will be derived the equations to be used for the

self-tuning controller. The state space equations are:
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x(k+1) = &x(k) + Au(k) + Tw(k)
y(k) = ¥x(k) + ¢ (k) e (2.01)

where x(k) is the n-dimensional state, u(k) is the m-dimensional
inpﬁt, y(k) the p-dimensional measured output, w(k) is the r-
dimensional state noise and L (k) the p-dimensional cutput noise.
If these equations are given in phase canonical form, it is
possible to eliminate the state vector and express them in terms
of the system inputs and outputs [Nelson and Stear, 1976]. This
results in the familiar Auto Regressive Moving Average (ARMA)
representation. The paper of Nelson and Stear [1976] is important
because it provides the link between the state space and the ARMA

forms.
Ay(t) = g ¥Bu(t) + ce(t) e (2.2)

A, B and C are polynomial matrices, capzable of being represented

in two ways, for example:

B11 DRI B1m-]

LP1 . aw Bpm --00(203)

Here the Bij are scalar polynomials. An alternative way of

representing the same matrix is:

1

B=By+* Bqg '+ .....+ Bgq" eo-(224)

The B; are p x m coefficient matrices. A and C have the same form
as this, consistent with maintaining the appropriate

representation for the process, i.e.
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A=T+q A+ L.
B=By+q !By + .....
Ci= L+ q i€y + coone ....(2.5)

The different inputs to different loops may have different delays
associated with them, but all are grouped into a single delay k

so that:

Ak

k = min-lJ

ij} ....(2.6)
This may mean that some of the scalar polynomials in the input
driving matrix may need to have leading zeros to cope with the

additional delay associated with that input as described in

Section 1.4.3.

In the controller development it is possible now to incorporate
the k-step predictor for a multivariable system given by Borisson
[1979] and Koivo [1980]. However, the work by Wellstead, Prager
and Zanker [1979] and Astrom and Wittenmark [1979] suggests a

more direct approach which will be followed here.

2.1.2 Multivariable Controller
The process to be controlled may incorporate measured disturbance
terms which are fed forward, and measurement offsets. This

results in the following representation:

Ay(t) = ¢ ¥Bu(t) + ¢ ¥Dv(t) + a + ce(t) L (2.7)
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where A, B, C and D are polynomial matrices as described above,
the v(t) are measured disturbance variables, and d is a diagonal
matrix containing the offsets for each loop. It will further be

assumed that there is one input to each loop, i.e. m=p.

The controller assumes a general form, and incorporates the set

point w(t).
Hu(t) + Gy(t) - Bw(t) + Pv(t) = 0 e...(2.8)

H, G, B and F are polynomial matrices. It is possible to select E
so that it has polynomials only on the diagonal i.e. E=diag{Eii}.

The following analysis is given for the i 'th loop only, all

loops being treated in the same way. Reducing the "i"th loop to

scalar terms:

k

_ -k -k
B3y (t) + Agys(t) + o = q7¥Byjui(8) + o7 By jus(t) + ..

+ d.

it Ciiei(t) + cijej(t) + ...

....(2.9)

In the same way the controller may be expressed using scalar
polynomials as:
Hiiui(t) = —Hijuj(t) - . - ciiyi(t) - Gijyj(t) - e

+ Eiiwi(t) - Fiivi(t) - Fijvj(t) = e seswldJtl)

Combining these two equations gives the expression for the closed
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loop behaviour of the process and the controller together:

-kB..@. )y () +

(Hii‘ii*q 11611)v4(t) + (Hy;A 1379 " P16y

I
(H11B13 ii 1J)u () + ...,

-k -k
+ q (Hy;D;,-B. F . )v,(t) + o7 (H ;D 157Bid 1J)v %) = ...

-k
+q Bllgllwl(t) + Hgdg + B Coie(t) + ... ceea(2.11)

Equation (2.11) gives the requirements placed upon the various
scalar polynomials. Before stating these explicitly however, it
is instructive to examine a minimum variance controller with

feedforward terms to see how these are handled.

2.1.3 Scalar Minimum Variance Regulation with Feedforward

The minimum variance controller is examined at this stage to
determine how the feedforward terms may be dealt with. It is

assumed that the process may be described by the linear

difference equation:

A"y (t) = o FB=[u(t) + x(t)] + ¢ ¥D="v(t) + a" + ce(t)
.(2.12)

The process input (controlled variable) is the composite signal

[u(t) + x(t)]. It is written in this way to explicitly define the
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feedback portion u(t),and the feedforward portion x(t% of the
signal. It is possible to loosely assign certain operations to
each portion, although as will be seen, this assignment is only
arbitrary. For the purposes of the present development, u(t) will
be concerned with regulation and set-point attainment, while x(t)
will be used for disturbance rejection and elimination of the

offset.

A k-step prediction of the output which incorporates noise values
far enough in the past to be determined, is formed using the

identity:
C/A" = ® + g F{e/a"} e (2.13)
Combining this with the process description (equation (2.12)):
y(t) = ¢ ¥{B=/a"}[u(t) + x(£)] + g7 ¥{p"/Aa" Jv(t) + {1/A"}a"
+ Pe(t) + ¢ *{e/a"}e(t) cee.(2.14)

e(t) is unknown, but e(t-k) may be calculated from already-

measured variables using equation (2.12). Eliminating e(t-k):

_k{B'F/CI[u(t) + x(t)] + q‘k{

y(t) = q n'r/c]v(t)

+ o ¥{e/ely(t) + {Fr/cld" + Pe(t) e.e..(2.15)

e(t) is uncorrelated with any of the other variables, so the
cross products vanish when computing the variance E{y(t)zl.

Minimum variance is achieved for the control signal:

[u(t) + x(t)] = -{e/B"Fly(t) - {D"/B"}v(t) - {1/B"}q"
....(2.16)

Without the offset, this is the same as the result given by
Astrom et al [1977]..Equation (2.16) serves to define u(t), which
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is required for regulation, and x(t) which is the feedforward
signal required for disturbance rejection of v(t). It is
immaterial whether the offset d is dealt with by u(t) or x(t%
Because it is constant (or only slowly varying), the term {l/B}d"
can be replaced by {1/B(1)]d where B(1) is B evaluated with g=1.
For computational simplicity, d" will be considered with x(t).

The feedforward signal is given by:
B"x(t) + D®v(t) + d" =0 i (2570

The minimum variance nature of this action is important, as x(t)
is used to cancel disturbance effects before they can appreciably
perturb the process. Equation (2.17) should be compared with the
original process description, equation (2.12), and its similarity

to part of that equation noted.

2.1.4 Pole-Placing Controller

The signal u(t) in equation (2.16) is used to eliminate as much
of the noise as possible. The minimum variance controller per-
forms this task at the expense of sometimes excessive control
signal amplitudes. This may be overcome by appropriately selec-
ting the poles of the closed loop transfer functioﬁ to obtain a
satisfactory compromise for the particular system. It is now
possible to return to equation (2.11) to provide a multivariable
pole-placing controller. It is necessary to eliminate the effect
of the off-diagonal polynomials in the expression for the closed
loop system behaviour, which will result in a diagonal-dominant
decoupled system. The polynomials appearing in the diagonal terms
are chosen according to a pole placing law. Specifically, H.. and

ii
G;; are chosen to satisfy:

-k _
HijAj; + QB3G5 = CyAn, ....(2.18)
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If it is to be possible to set the off-diagonal elements to zero,
then:

HijAgs + 9 "Bji€;5 = 0

BBy - Bty = O

Hvi2ie - Bmag ~ ©

BiiPij - BiiFiy = 0 ceee(2.19)

These conditions will be able to be met only if the following

is true:

(i) The zeros of Bii(z) are outside the unit disk
(ii) k=1

The first condition means that the polynomial will be invertible,
a condition which must be met if the off-diagonal polynomials are
to be calculated. If k>1 then a non-causal control action results

in eliminating the cross-coupling effect of yj(t).

In general it is not possible to expect these conditions to be
met, and some mechanism to deal with these situations must be

found. Such a mechanism was outlined by Hesketh [1980].It is

possible to select:
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€5 B4 5(1)/B;5(1)

=
i

15 = Hy3By5(1)/B;5 (1)

|
I

i1 = My3D55(1)/B55(1)

n

Fi; “iiDij(1)/Bii(‘) ....(2.20)

In general the above selection will result in imperfect
decoupling of the loops, as the off-diagonal terms will be zero
only in’ the steady state. As will be demonstrated with examples
however, the resulting arrangement will be diagonally dominant,
complete decoupling being achievable only for certain special
cases. Attempting to decouple the loops as described above
decreases the amount of computation necessary for the
multivariable processes, as each loop is dealt with as though it

were a separate scalar process.

Of more concern is the possible loss of the self-tuning property
that may result from the approximations described above. While
this property is undoubtedly lost at times, it will be shown in
Chapter 4 that such loss is minimal, the controller being robust
enough to deal with the approximations in all but the most severe

situations. This is easily illustrated using simulations.
To ensure set-point attainment, the offset terms must be
eliminated, and this robustness is achieved as in equation (2.16)

by introducing an auxiliary control signal for each loop such

that:
x;(t) = —di/Bi(1) e (2.21)

The control signal applied to the loop is thus [ui(t)+xi(t)].
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2.1.5 Self Tuning On-Line

During self-tuning it is assumed that C=I, i.e. that the process
noise is white. If the controller has the self-tuning property,
then despite this assumption, the estimated model parameters will
converge to values which give the correct closed loop behaviour

(i.e. that determined from the off-line model), [Astrom, 1973].

A model incorporating a k-step predictor may be derived if the
time delay is known a-priori. However, Wellstead et al [1979,b]
proposed an alternative model structure in which leading zeros
are incorporated into driving polynomials to cater for delays.
Because these leading zeros are identified, variable delays can
be dealt with. There is also a small computational advaniage for
subsequent pole placing calculations [Allidina and Hughes, 1980].

Under the assumption that C=I, the online model is:
A'y(t) = ¢ 'BMu(t) + qTIDTV(t) + a + e(t)
n,e=n, nB.=nB+k-1 nD-=nD+k—1
o)
A pole placing controller is calculated using
Hu(t) + Gy(t) - Bw(t) = O ) e...(2.23)
where the E=diag{Eii} polynomials are selected according to

desired controller properties, and scaled so that correct set

point attainment is assured, and H and G are derived from:
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' _1 A =
Hi;A'55%q B ;G5 = Ay

H,; - HiiB'ij(1)/B'ii(1) J#i
Gy; = By;a'y5(1)/B'55(1) Jti
Fi; = B30, (1)/B,5(1) For all j oe..(2.24)

At each interval, the parameters of equation (2.22) are estimated
using the Kalman Filter U-D measurement update algorithm

[Bierman, 1976]. Equations(2.23%%2.24)are used to derive the

control signals u(t).

2.1.6 Set Point Attainment

Set point attainment is ensured by removing the effect of the
steady state offset, and by ensuring that the closed 1loop
transfer function for each loop, which relates the set point to
the output for that loop, has unity gain. The "decoupling” of the
. loops means that a change to the operating point of one loop will
not effect the set point attained on another loop, at least once

the transients have decayed. Equation (2.21) gives the steady

state offset control:

u'y(t) = u,(t) - 4,/B,.(1) v...(2.25)
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The closed loop transfer function for the "i"th loop is:

y;(8) = o B B /(AN +q7 B 6y T (1)

= g7 By Ry /0, bwy(2) cee.(2.26)

The process zeros (Bii) can be cancelled if they are included as
factors in A . However, this can lead to problems with non-
minimum phase processes. Whether B;; is cancelled or not, E;;

must be selected to ensure an overall gain of 1, i.e.:

E;; = (1)/08" ;5 (NE" (1) - e (BT

11 mi

where B*.. is the unscaled polynomial. R’

- jj may be chosen in

various ways depending on the desired response of y(t) to w(t).
To retain the flexibility this gives, E'ii is chosen along with
A, ; when the controller is specified. Two cases are particularly
worthy of mention.

(1) B1'55 = Ap;

In this case a servo controller results which has a
behaviour very similar to that of the controller

described by Wellstead and Zanker [1979,b].
(i1) B2'55 = (1 + g7 + g2+ ..0)

This ensures a gradual application of the control
signal following a sudden set-point change. The
conservative nature of the resulting control action
probably Jjustifies the adoption of this polynomial as
the default selection. Note also that if a selection of

E'=B1°.B2’' is made, a ramp response can be obtained
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following a step change in w(t).

The controller may be less flexibly but more definitely endowed
with servo properties by incorporating the reference signal as a
feedforward term [Astrom et al, 1977; Wellstead and Zanker,
1979]. This has the disadvantage of increasing the number of

parameters to be estimated during self-tuning.

2.1.7 Unmeasured Disturbances

Disturbance rejection has been ensured by incorporating
disturbance terms into the controller equation (2.23). If vi(t)
is unmeasured, then it must be estimated as though it were part
of d;, the constant offset. This will suffice if v;(t) changes
only slowly or infrequently. The re-estimation of di results in

behaviour akin to a slow integral action.

Recovery following a change in vi(t) (or di as it must now be
considered) may be accelerated if some adjustment of d; be made
outside the least squares algorithm (Kalman Filter). It has been
found that the most successful way of making the adjustment has
been to use the error from set point [yi(t)-wi(t—k)]. The

adjustment to‘di is made as:

d;(t+11t) = a () + ai[yi(t) - wi(t—k)] ' ....(2.28)

Note the timing of the change, which is made before the parameter
estimation, as a time update to the Kalman filter estimate, the
updated estimate then being smoothed by the Kalman filter
measurement update routine. The a; are arbitrary parameters
related to the required rate of response to disturbance changes,

and may be considered as "reset"” parameters. Default values of
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0.01 are assigned to these parameters.

2.1.8 Restatement of the Multivariable Controller

Clarke and Gawthrop [1975], have suggested that the single 1loop
controller may be extended to the multivariable case by
considering that the inputs to, and the outputs from all
interacting loops behave as though they were disturbances to the
loop in question. Borisson [1977], describing the system using
polynomial matrices, deals similarly with the problem, but
assumes that disturbance effects from the inputs to other loops
have a delayed action apon the loop in question, so as not to
impede calculation of the control signal. Hesketh [1980] extends
the Clarke/Gawthrop controller to deal with the multivariable

case in the same way.

Equation (2.23) is used to calculate the control signals once H

and G are known. Rewriting (2.23):

- - -

nygo bpo oo | | 9

hn10 =l hnnO L “n
- — ~

. -[q_1H1+Q‘232+---]u(t)+Ew(t)—cy(t)—rv(t) canel 2a29)

These simultaneous equations must be solved to give the control

inputs to the two loops.



45

Borisson [1977] made the simplifying assumption that the effect
of the input to one loop is delayed before it is experienced at
another loop, implying that hij0=o’ the leading zero in the
polynomial delaying the application of the signal until the next
sampling instant. The coefficient matrix of (2.29) then becomes
diagonal. In the general case, equation (2.29) is solved by
triangularisation using the same routine as is used to solve for

H and G.

2.1.9 Non-Minimum Phase

The inversion of the polynomial B implicit in control schemes
described above is not possible if B is non-minimum phase. The

situation may be dealt with in one of two ways.
The simplest action is to leave the zeros uncancelled but to
normalise the polynomial so that in the steady state its effect
is multiplication by unity. B(1) must be normalised to unity,
j.e. the B polynomial must be divided by B(1), as illustrated
below.
Normal inversion

Bx(t) = 1

x(t) = 1/B = (1-byq" 'x-...)/b0 eere(2.30)

No zero cancellation

Bx(t) = B(1)B"x(t) = 1
B'x(t) = 1/B(1) ee..(2.31)

B(1) is a scalar. B'x(t) has the same steady state value as x(t).
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An alternative approach is to cancel only those factors of B
which are non-minimum phase, but this requires factorisation of
the polynomial. However, it is possible to break up the

polynomial as follows:
Bx(t) = (Bi+q™ B2)x(t) = 1
x(t) ~ 1/(B1+B2) ....(2.32)

B can if necessary be broken down into a number of sequences each
delayed by a different number of samples. There is a physical
justification for this approach. A frequent cause of a non-
minimum phase polynomial is a fractional process delay, resulting
for example in a small value of by. If the polynomial is broken
up as shown above, it has the effect of applying a signal to the
process which while incorrect for disturbance cancellation in the
current sampling instant will produce the correct effect after
the next sampling instant. The additional delay associated with
B2 will result in increased variance, which may be quantified

using methods described by Astrom [1970].

2.2 IMPLICIT MULTIVARIABLE CONTROLLER:

There are times when the requirements placed upon a controller
are admirably specified by a cost function which weights both
output error (from a set point), and input effort. The resulting
optimality, combined with the appealing concept of implicit
controller design, make the Clarke/Gawthrop controller an
attractive proposition. A multivariable scheme based on their
design has been proposed by Koivo [1980]. Previous work by
Borisson [197?] had laid the groundwork for this development, and
prompted a controller proposed by Hesketh [1980]. Clarke and
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Gawthrop [1975] had indicated how multivariable extensions could

be catered for.

This section will show how the scalar controller design can be
used to obtain an implicit multivariable controller, following

the methods of the previous section for explicit controllers.

The equation development bears a marked similarity to that
followed in developing the equations for minimum variance

control (equations (2.12) to (2.17)). The process is described
as by (2.12) as:

Ay = g ¥Bu(t) + ¢ ¥Dv(t) + 4 + ce(t) cee(2.33)

Using (2.13), a prediction of y(t) given by (2.15) is
obtained. This is modified by "detuning" as described by
Wellstead et. al. [1979a]. Their detuning concept may be

incorporated into the structure of the implied self tuning

controller by writing:

Py = q X{(BR/C)u(t) + (DE/C)v(t) + (6/C)y(t)]
+ (B/c)a + Pe(t)

e...(2.34)

2.2.1 Self-tuning:

Equation (2.34) defines the auxiliary function ¢y described by

Clarke and Gawtnrop [f975]. The parameters of this equation are

identified in the self-tuning procedure as follows:

Py = @, = o K[Hu(t) + Bv(t) + ey(t)] + a' - Ze;f
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]

Where: a' = F(1)d H = BF E = DF ee..(2.35)

2.2.2 Closed Loop

Clarke and Gawthrop [1979] show that the loop may be closed, and
a one step quadratic criterion imposed by exerting a control

signal given by:
Qu(t) = Rw(t) - gy - sv(t) - kd' e...(2.36)

The detuned minimum variance control imposed by the introduction
of P in equation (2.34) is thus extended with the Q weighting on
u(t). The R polynomial is necessary to ensure correct set point
attainment [Allidina and Hughes, 1979], while the S polynomial
will ensure disturbance rejection [Hesketh, 1980], and the offset

term is included for the same reason, with K to be determined.

Equations (2.35) and (2.36) are inserted into the system equation
(2.33) to obtain the closed loop transfer functions relating the

output from the loop to the set point, disturbances, offset and

noise.
[Den] y(t) = BR o ¥w(t) + (BQ-BS)q ¥v(t) + (Q-HKq ¥)a

+ (p/c)(Qc+H)e(t)

with [Den] = PH + PQC-q ¥cQ eee(2.37)

The various transfer functions have to be taken one at a time,
and for each, a decision made as to the desired effect of the

input signal in question on the output.
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2.2.3 Set Point Atteinment

The transfer function relating y(t) to w(t) should be unity to

ensure set point attainment for the loop. Thus:
H(1) R(1) = [Den](1) ....(2.38)

Apart from the normalisation of R, this does not impose further
restrictions upon the choice of R, and some of the comments made

about the B polynomial for the pole placing controller (Section
2.1.6) would apply here.

2.2.4 Disturbance Rejection

Disturbance rejection will remove interactions between loops, and

also remove the effects on a loop of measured disturbances. This

is ensured by setting:
EQ - HS = O - - EYaeE )

S must be chosen (or at least scaled) appropriately, [Hesketh,
1980].

2.2.5 0ffset Elimination:

The scalar quantity K must be chosen so that:
(1) -H(1) K =0 ....(2.40)

It is assumed that the offset term d changes only infrequently or
slowly, so that estimation of d can be used to eliminate its
effect. The value of d will include the steady state value of any
disturbances which are not measured. The re-estimation of d

following any change in its value can be accelerated as described
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in section 2.1.7.

To maintain stability while the values of R and S are being

changed, the changes are introduced gradually as for example:

Rnew = n01d10'8+o‘2[nen](1 )/H(1 )R(?)C()].d} s oo .(2.41)

2.2.6 Other loop inputs as disturbances

Difficulty is likely to arise if the input to one loop is the
disturbance for another, which is usually the case in
multivariable systems. As a result, inputs have to be determined
simultaneously, and until all are known, the disturbance effects
that each will have on another loop cannot be assessed. Borisson
[1977] suggested that the problem may be overcome by delaying the
effect of any input on any other loop. This does degrade
disturbance rejection, the amount of degradation experienced
depending on the process being controlled. However, such a

procedure enables the scalar representation to be retained.

2.2.7 Summary

The implicit contreller identifies the parameters of equation
(2.35). The controller is termed "implicit" because these
parameters are associated with the controller, rather than with a
process model. These identified parameters are then used to
calculate the input to the process using equation (2.36). Some
additional controller parameters, which are not identified, have
to be specified by the operator for this equation (Q, R, S, K).
Set point attainment, offset elimination, and disturbance
rejection are ensured by suitably adjusting the values for R, S

and K. The one step criterion:
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= £{g?)

[
I

Py + q-k(Qu - Bw + Sv)

A
[

is minimised by this controller.

2.3 FULL MULTIVARIABLE POLE-PLACING CONTROLLER

Equation (2.2) expresses in ARMA form the model of the process to
be controlled, and the paper by Nelson and Stear [1976] relates
the parameters of this model to the observable canonical state-

space representation. The ARMA form is repeated for convenience

as:

A'y(t) = g KB'u(t) + €'e(t) ve..(2.42)
A regulator for this process taxes the form of:

Hu(t) + 6y(t) = 0O ee..(2.43)

where H and G are polynomial matrices to be determined. For the
single-input-single-output case discussed in section 1.4.3, BH=HB
so that it is possible to derive a polynomial equation to be
solved for the controller parameters. However, in the
multivariable case these polynomial matrices do not commute, and
it becomes necessary to define additional polynomial matrices so
that for example H'B=B'H. Nultivariable minimum variance
controllers have been designed using a suitable artifice similar
to that above, [Borisson, 1979; Koivo, 1980]. It is not fruitful
to define H' and B®* as above, and an alternative method may be

employed to find H and G. The method will be outlined below.
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2.3.1 Self-tuning case

The separation theorem [Astrom, 1970] asserts that the control
law may be derived as for the noise-free case, and the self-
tuning principle states that the control law calculated from the
biassed parameter estimates will converge to the control law that
would have been derived using a k-step predictor, with a full
knowledge of the noise process. For the self-tuning case, let the
parameters which are estimated (i.e. the biassed parameters), be

the parameters of the model:
Ay(t) = ¢ 'Bu(t) + e(t) ee..(2.48)

The B polynomial has zero coefficient matrices to cater for time
delays, while e(t) is a white noise sequence. This may be re-
formulated for ease of manipulation when there are an equal

number (m) of inputs and outputs:

u(t-2) Em @ 1 cees 0 O u(t-3) 0
u(t-1)] =| .... 0 © e O @ u(t-2) F | 1T pu(t-1)+e(t)
.. Gl . e wm® I O i ’
y(t-1) m— o g O 1 y(t-2) 0
y(t) «eer By By ... Ay Ay y(t-1) Bg
i.e. x(t) = - D x(t-1) + B u(t-1)~+¢@ﬂ

....(2.45

The pole-placement design procedures of Wolovich [1974] may be
applied to the pseudo-state-space form of equation (2.45). The
requirement placed on D and B, is that this pair of matrices be
controllable, as this representation must be transformed to a

controllable companion form for the analysis that follows. The
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controllability matrix is

2
J = [R,DR,DE, ...] ....(2.46)
which must be of full rank if thé pair (D,E) is controllable. If

J is full rank it is possible to form:

Q o [Q.,Q.D,Q-Dz, "']T ....(2-47)

where Q' is composed of the last m rows of J-1. Following the

analysis of Wolovich [1974, p78—79] for scalar processes, and the
subsequent extension to multivariable processes, it is apparent

that the transformation x'=Qx yields:

x'(t) = QDQ 'x'(t-1) + QBu(t-1) ....(2.48)

where

O ----- ERC R R N )
0 I ..
-1 _
QDQ -
......... svessenses O I O
.................. 0 0 I
LR O O LR A2' A1

e...(2.49)
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(2.48) and (2.49) make it clear that a controller of the form
u(t-1) = Px'(t-1) ....(2.50)

may be used to modify the parameters of A1ﬂ A2'." so that the

resulting polynomial matrix haé the same parameters as some model

polynomial matrix with suitable poles, i.e. we can require

1

x'(t) = [QDQ™ "+QEF]x'(t-1) = A x'(t-1) ....(2.51a)

which because of the form of QE reduces to the following when the

last m rows of (2.51a) are chosen:

[ ... @0 ..= Ay A1'] o A [ ...00... Ao Apy]

e...(2.51b)

The m input signals may be calculated from

ult-1) = Px" (1) = F Qx(t-1) o (Zo57)

x(t-1) is defined in equation (2.45) and it is apparent that
(2.52) is now of the same form as (2.43), i.e. it defines
polynomials H and G which are required by the pole placing

controller. The full pole placing algorithm may now be given.

1. Estimate the parameters of equations (2.44) and (2.45).
These parameters are estimated using the same estimation
procedure as that described for the previous multivariable
algorithms.

2. Form the Q matrix using equations (2.46) and (2.47).

5} 2 Transform the D matrix as in equation (2.49).
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4. Calculate F, using equation (2.51).
Sie Apply the control defined by equations (2.52) and (2.43).

The full sparse matrices descdribed by equations (2.45) and (2.49)
need never be formed in their entirety, but their structure
defines a set of operations which must be performed. Two matrix
inversions are required, but one at least - that of J defined by

equation (2.46) - is of a relatively sparse matrix, and not too

arduous.

The resulting structure of the matrices of equation (2.49) is of
interest, particularly for a scalar process where one of the
matrix inversions may be avoided, the algorithm reducing to the
same complexity as that described in section 1.4.3. The resulting
structure of equation (2.49) is illustrated in Appendix A, where
some numerical examples of the pole-placing calculations are also

presented.

2.3.2 Set point attainment

The regulator described above will not in general ensure set-
point attainment if the set-point is non-zero, and will not
remove steédy-state offsets or the effects of load changes to
unmeasured disturbance variables. It is assumed that the set-
points will be held steady between changes, and that offsets and
other disturbances are slowly varying. The analysis is further
simplified by the fact that the model polynomial matrix is
usually a diagonal matrix, so that interactions between loops may
be minimised by the regulator. Constant offsets and unmeasured
disturbances are incorporated into an offset term for each loop,

all the offsets being gathered into a vector d. This vector is
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estimated by the Kalman Filter measurement update routine, but an
integral-like action may be introduced by a time-update of d

between measurement updates. This time update takes the form:
da(tit=-1) = W[y(t)-w(t-k)] + da(tlt) e...(2.53)

W is a diagonal weighting matrix which determines the "reset"”
rate of the integral action, and w(t) is the vector of set-

points.

Knowledge of the set-points and offsets enables the process

control input to be calculated as follows:

ug(t) = u(t) + BN (1) [ag(1)w(t) - ] co.o(2.54)

where u(t) is the control action required by the pole-placing
regulator, and the remaining terms ensure offset elimination and
unity gain of the steady-state transfer function relating y(t)

and w(t).
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Chapter 3
METHOD

3.0 INTRODUCTION

The tangible product of this research is a suite of programs for
control of a process using self-tuning methods. Having been
written for research purposes, the programs are necessarily
flexible and easy to change, although less efficient than a
dedicated program would be. A high level language (1966 ANSI
Standard FORTRAN) has been used, and all the control routines
have been written as subroutines, care being taken to use only
"Basic Fortran" statements which would make them as portable as
possible from machine to machine. A main program, which calls the
control subroutines, is assumed to exist, and to incorporate all
the machine-dependent functions such as handling of disk files,
timing operations, and all input and output (communication with
both process and operator). This makes it possible to merely add
these subroutines to many existing control programs for any
control loops which require them. In cases where there was no
suitable control program in existence, it has been necessary to

write one.

Section 3.1 describes the programs which have been written, while
the computer systems on which these programs have been
implemented are dealt with in section 3.2. Finally section 3.3
introduces the processes which have been controlled in the course

of this research.
3.1 PROGRAMS

The programs were originally written for an implicit self-tuning
control scheme, and the same structure has been used since for
explicit pole placing algorithms, and other DDC schemes. It has

thus been found to be very general in its application. The
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programs for the explicit case will be used to introduce the
structure of the routines, and then it will be shown how this

structure may be modified to incorporate other controllers.
3.1.1 Explicit pole-placing algorithms

A main subroutine establishes the COMMON areas for the data
structures, and a calling sequence for other subroutines in the

program suite. Data areas in the main subroutine have been set

aside for the following:
(i) Process variables.

Process variables are stored in a single one-dimensional
array, each variable comprising the present value, and
several values from previous sample intervals, i.e. a
variable x(t) is stored as a sub-array [x(t),x(t—1),x(t—
Z)n.]. The position of each sub-array within the main array
is identified by a variable pointer. Current variable
values, to be passed between the control subroutines and the
main program, are extracted and held in separate arrays,
which may be integer arrays in anticipation of their use
with A/D and D/A circuitry. Variable pointers are held in a

separate integer array.
(ii) Model parameters.

Up to n model parameters for each of m loops are held in an
n X m array. The covariance matrix for the identification
routine is decomposed using the UDU' factorisation, and for
each loop the U and D covariances are stored as a single one
dimensional array, the overall array for m loops having m
columns. Arrays are also required for the model polynomials
for each loop, which establish the pole positions, and the

observer polynomials which operate on the set points.
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(iii) Parameters which control program execution.
(iv) Work area.

This area is set aside for operations associated with matrix

inversion for pole placement.

A1l other variables, such as loop counters and temporary working

variables, are local to the subroutine in which they are used.

Functional overview of programs

A main subroutine exercises overall control, and a logic flow

description of this subroutine is given below.

Subroutine EXSTC
If this is the first call to EXSTC then
begin
Read the following parameters from disk file:
- counts for certain operations
- model and observer polynomials
- variable pointers (determining process structure)
initialise variables (e.g. covariances)
end
else
begin
establish set-points (predetermined sequences, or
entered by operator)
for each loop
shift all variables (time update), and enter
new variable values (from calling program)
for each loop
perform UDU' measurement update parameter estimation

for each loop
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perform such control calculations as can be done
for loops separately
complete control calculations for multivariable process

prepare variable arrays for return to calling program

end

end.

Description of subroutines to perform above functions

As described above, each subroutine is called repeatedly for each
of the process loops. At each call, the pointers to the
parameters and variables are changed to accord with the
particular loop under consideration. The more important
subroutines are listed below, with a brief description of the

function of each one.

(i) Miscellaneous functions.

Certain standard operations used by many of the other subroutines
are defined as subroutine or function calls. These operations
include polynomial evaluation and multiplication, and the
movement of polynomial values from one polynomial to another. The
movement of values is important because it is used in the time
updating gf loop variables. Rather than change the numerous
pointers, the entire variable space is moved with respect to the
pointers. For time critical applications, when using a Z-80 based
microcomputer, the operation may be performed in a small
assembler subroutine which makes use of the Z-80 block transfer
machine code instruction. Apart from time updating, block
transfers are used to exchange pointer arrays for different

loops, and parameter arrays for the identification and control

routines.
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(ii) Establishing set points.

Various routines have been used, the choice of each depending on
the application of the controller at the particular time. For
experimental purposes, the set points may be changed according to
some predetermined rule (e.g. a square wave, random numbers), or
they may be read from a sequential disk file at appropriate time
instants. In other situations, the set points may be changed in

response to a demand from the process operator.
(iji) Parameter estimation.

Parameter estimation routines establish the correct vectors and
covariance matrices. The parameters are estimated using a
measurement update routine based on a UDU' factorisation
(Bierman, 1976). "Covariance windup" is avoided by using a

variable forgetting factor [Fortesque et al, 1978]. The actual

formula used was:
FORGET = 1 - A*¥PHI*PHI/Mean(PHI*PHI) eeeo(301)

A is a constant parameter, and PHI is the Kalman filter
innovation. In an actual operating situation, the trace of the
covariance matrix is checked from time to time to ensure that it
does not become too large, and if necessary the matrix is scaled

to reduce the trace to an acceptable value.
(iv) Controller parameter calculation.

The equation:

-1 _
AH + q° 'BG = A, . -Eere)

has to be solved for the parameters of the H and G polynomials.

This equation is re-expressed as a set of simultaneous equations

giving:
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These equations are solved by triangularisation of the parameter
ratrix. The resulting parameters are then used by the control
routine to establish the control input for the loop in question

using the methods described in Section 2.1.
(v) Display and return of values to the main program.

The display and recording of process behaviour is ideally
performed in the main program, but it is possible to incorporate
a display routine as part of the self-tuning controller,
particularly if display of model parameter variation is desired
so that convergence may be examined. Usually, a simplified
display is produced during a run, and a detailed analysis is made
possible by producing graphs off-line from a disk file where the
loop variables and parameters have been logged. Any variables
that have to be returned to the main program have to be scaled

and placed in the appropriate data areas at this point.

Offline parameter entry

The self-tuning controller still requires the prior choice of a
number of parameters which establish the bounds of its operation.

These parameters are stored in a disk file for use by the control
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routines. This disk file may be set up using any standard text
editor program, but it is more convenient to follow a question
and answer process to create the required file. This interactive
procedure relies on an offline program. Figure 3.1 shows an

example of the dialogue followed by this routine.

NO. LOOPS, NO. STEPS, STEP LOOP CLOSED :
INITIAL R MATRIX (DIAG) :

LOOP 1

NO. DISTURBS,MODELORDER,PROCESSORDER,DELAY :
<Y> = INTEGRAL, ELSE <RET>

NA NB NC ND NG NH

2 1 2 1 1 2 ..RETYPE ELSE <RET>
OBSERVEE POLYNOMIAL PARAMETERS :

MODEL PARAMETERS :

POINTERS TO Y,U,W,ZE,ZA ARE 1 11 21 31 41
FEEDFORWARD POINTERS START AT 101

ENTER POINTERS FOR 2 DISTURBANCES :

NO. STEPS BETWEEN SAMPLES :

LOOP 2

etc.

FIGURE 3.1 Offline Dialogue to define controller
(N.B. The <:> is a prompt for operator input)

3.1.2 Programs for Implicit Self-tuning.

The programs for the implicit self-tuning controller use exactly

the same structure as those described in section 3.1.1, and many
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of the routines are the same. The main changes are in the re-
definition of the data sets, and the determination of the
controller parameters and the control signal itself. Rather than
describe the entire set of routines, this section will highlight

the differences from the pole-placing routines of section 3.1.1.

Data storage areas

The polynomials P,Q,R and S which define the cost function
weightings (equation2.36) have to be defined, in place of the
model polynomial A and the observer polynomial E required for
pole placement. All other data areas are unchanged, although the
parzemeters to be estimated will be those used for cost functiorn

prediction, rather than the parameters of the process model.

Program logic flow description

The main subroutine is identical to that used for explicit self-
tuning, and which is described in section 3.1.1. Only the data

areas have to be redefined.
The parameter estimation routines require different vectors for
parameters and variables. The UpU'measurement update routine
estinates the parameters of THETA, where:

Py(t) = THETA*X

X = [u(t-—k),...,y(t—k),...,¢y(t-1),...,v(t—k),...]'
Following the estimation of the parameters, the parameters of the

weighting polynomials P,Q,BR and S have to be adjusted as

described in section 2.2. An additional subroutine is defined to
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perform this adjusting operation.

The controller subroutine(s) are simpler for this implicit
algorithm than for the explicit pole-placing algorithm. The
control subroutine performs the operation defined by equation

(2.41), calculating u(t). ‘

The remaining operations for return of the correct values to the

calling program, and for display and data logging, are the same

for both implicit and explicit controllers.

The same structure has formed the basis for programs used for
identification and control with other algorithms. Any unnecessary
subroutines are omitted, and those defining key functions are
changed. The common basic structure means that the programs have
met the requirement of flexibility required for research

purposes.

3.2 COMPUTER SYSTEMS

During the course of the research, the programs were run on two
different computer systems. The simulations were performed on a
PDP11/34 minicomputer, and on-line laboratory experiments used a
Cromemco microcomputer. The use of a microcomputer is of interest

as it emphasises the suitability of these low cost devices for

such control.

3.2.1 MINICOMPUTER IMPLEMENTATION

The nardware comprised a PDP 11/34 minicomputer with 64K words of

memery, and RLO1 disk drives. The EIS (Extended Instruction Set)
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was available, but floating point operations were implemented in
software. A Tektronix 4010 terminal with a storage screen was
available for graphics output, and the graphs were recorded on a

hard-copy unit associated with this terminal.

The operating system is RSX 11M, and programs were written in
standard FORTRAN. ISIS, a simulation language for continuous

systems, was used for some simulations.

3.2.2 MICROCOMPUTER IMPLEMENTATION

Hardware

The arrangement of the microcomputer hardware is shown in Figure
3.2. The microcomputer was a Cromemco System 2, based on a Z2-80
microprocessor, with 48K bytes of random access memory, two 5.25
inch diskette drives, and a standard visual display unit without
graphics. A low cost dot matrix printer was attached to the
system, and graphical output was performed offline onto a pen

recorder using D/A outputs.

Connection to the process used a Cromemco interface board which

provides:

analog inputs (8 bits, +-2.54 volts)
analog output (8 bits, +-2.54 volts)
bit digital input

o O N3 3

bit digital output

The analog outputs were converted to current loop signals for
transmission to the process. Instrumentation amplifiers and low-
pass analog filters were used on the low level signals from the

process(e.g temperature measurements using copper-constantan
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thermocouples).

The flow rate measurement produced digital impulses of varying
frequency. These impulses were sensed directly on one bit of the
digital input port, and counted during a fixed time interval.

Each reading returned to the process was the average of five

repeated measures.

Real time operation relied on impulses from a variable frequency

oscillator, which were sensed on another bit of the digital port.

A1l the control loops incorporated smooth nonlinearities, and no

attempt was made to linearise these.

Software

The software relied on the CDOS operating system [Cromemco,
1978], which is a superset of the CP/N operating system [Digital

Research, 1978] and which provides ANSI Standard FORTRAN X3.9-
1966.

Processing Requirements

The number of control loops which can be implemented on a single
CPU is 1imited by the time taken to process each loop, and the
storage requirements. The processing time for the self-tuning
controller was 100-400 milliseconds/loop depending on order.

Storage requirements for programs and data areas are given below

in Figure 3.3.
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Self-tuning controller

---------------- 21489
Working Storage
1340 bytes/loop
---------------- 17469
Variable storage
2201 bytes
---------------- 15268
PROGRAM

8327 bytes
---------------- 6941
FORTRAN LIBRARY

6941 bytes
________________ 0

Fig. 3.3 Memory Requirements

3.3 PROCESSES CONTROLLED

For simulation purposes, the ISIS simulation language was made to
represent the process to be controlled. For some simulations,
ISIS was replaced by a discrete simulation program, written

especially for this purpose. The microcomputer implementation of
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the controller was tested in the laboratory using a commercial

heat exchanger.
3.3.1 Simulations

The manner in which the control subroutines are written permits
any other routine to represent itself as the process to be
controlled. The use of ISIS [1980], a continuous simulation
language, offers the advantages that the underlying continuous
nature of many processes may be accurately simulated, and that
the full power of a carefully developed simulation language may
be used to investigate the behaviour of the processes being
controlled. Processes may be endowed with non-linearities or time

varying parameters, and ISIS provides good graphical facilities.

RSX 11/M provides intertask communication directives. These
directives have been used to create a hand-shaking protocol for
passing parameters between tasks. In this case one of the tasks
is ISIS, simulating the process to be controlled. The second task
comprises a small program which calls the control subroutines
described earlier. ISIS is an interactive language, providing
FORTRAN-1ike facilities in addition to the simulation language
functions. An additional language function has to be defined,
written in FORTRAN (the host language) and linked into the main
ISIS task for the purpose of communicating with the control taék.

ISIS and the controller task execute concurrently.

For discrete simulations, the program which communicates with
ISIS is replaced by a simple discrete simulation program. In this
case, the display and reporting functions provided in the control
subroutines are used. During a simulation run, model parameters
and process variables are stored in a disk file for later

examination and graphing.
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3.3.2 Heat exchanger

A heat exchanger combination was used to provide a simple yet
representative example of a real process. This process is very
similar to that used by Davison [1980] to evaluate the
performance of multivariable tuning methods. The choice of this
process was motivated by the use at the New Zealand Dairy
Research Institute of a similar heat exchanger to control
temperature and viscosity of milk concentrate being passed from

an evaporator to a spray drier.

Figure 3.4 is a schematic diagram of the heat exchanger
combination which is to be controlled. The purpose of the control
is to produce an output flow of water from heat exchanger 2, at a
prescribed flow rate and temperature. The 4-20 ma current loop
control signals regulate a pneumatically controlled steam valve
to manipulate the steam flow to heat exchanger 1, and a thyristor
controller driving a D.C. motor and pump which varies the

flowrate of the output water from heat exchanger 2.

Heat exchanger 1 is a shell-and-tube heat exchanger. A
thermodynamic steam trap is installed on the condensate line from
the exchanger. Mains water is delivered to the exchanger by a
pump driven by an induction motor and once heated this water
passes through a holding chamber and a valve which controls the
flow to heat exchanger 2, which 1is a parallel plate exchanger.
After passing through heat exchanger 2, the heating water is
delivered to the drain. Mains supply water to be heated is
delivered to heat exchanger 2 by a D.C. motor controlled pump,
whose speed is regulated by a thyristor control unit.
Measurements are made of the outlet flow rate and temperature of

the outlet water.

A water removal system .ensures that the steam is saturated,

although there is reason to doubt the efficiency of its
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operation. The hold up vessel and pipe lengths produce time
delays in both loops of the system. There is no linearisation of
the effect of the control signals, and the fact that the steam
process is a total condensation system implies that the dynamic
behaviour of the steam process will be nonlinear. Hysteresis of
the steam control valve is a major source of non-linearity. The
differential equations describing the temperature loop will be
"stiff" because of the diffusion effects. Considerable
perturbations are introduced by periodic operation of the steam
trap, and there are other minor sources of non-linearity or

disturbance.

Normal Operating Conditions

Steam supply pressure 200 kPa

Output water flow from heat exchanger 1 15 litres/minute
Output water flow from heat exchanger 2 0.5-5 litres/minute
Temperature of cold water supply ~20 deg.C.

Output water temperature, heat exchanger 2 20-70 deg.C.

The system is perturbed from its normal operating condition by
altering the output water flow rate from heat exchanger 1 to 10
litres/minute. This operation has the effect of altering both the
time delay, and the parameters of the process model, and provides
the facility for testing the controllers' capacity to deal with

process changes.



72

Chapter 4
RESULTS

4.0 INTRODUCTION

Programs have been writtern which implement three different
controller schemes, as developed in Chapter 2. These controllers

will be referred to as follows:
#1. Implicit algorithm. This is described in section 2.1.

#2. Explicit pole placing algorithm. This is described in
section 2.2. This includes the assumption that B and

Hy are diagonal matrices.

#3. Explicit pole placing algorithm. This is described in
section 2.2 and removes the assumption of #2 above that

B, and HO are diagonal matrices.

This chapter presents simulations which establish the behaviour
of particularly controller #3, both for single loop and
multivariable systems, and for processes with measured
disturbance terms, the effects of which must be eliminated by the
control action. The differences between controllers #2 and #3
for multivariable systems are demonstrated. Some results are
presented for controller #1, other results for similar
controllers being available elsewhere. Suitable strategies for
specifying the desired controller behaviour will become apparent.
Finally, the application of these controllers to a commercial

heat exchanger will be described.
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4.1 SIMULATIONS WITH IMPLICIT SELF-TUNING CONTROLLER

The implicit self-tuning controller implements the control scheme
of Clarke and Gawthrop [1979], incorporating approximations
suggested by Hesketh [1980] to extend the controller to deal with
multivariable processes, by decoupling the loops and ensuring

steady state set-point attainment.

The controller has been described in Section 2.2. The following
simulations shown in Figures 4.1 and 4.2 illustrate the effects

of interactions, disturbances and set point errors.

Disturbance rejection is illustrated by simulating the scalar

process:

Ay(t) = q_1Bu(t) + q_1Dv(t) + Ce(t)
with:

A=1-0.5¢"" B=1+1.5¢"" € =1-0.2q""

D = 0.3+0.5q '

Set point w(t) and disturbance v(t) are varied as shown in Figure
4.1 e(t) is a uniformly distributed random noise sequence on the
interval (-0.05, 0.05). The adjustments to R and B for set point
error and to S for disturbance rejection are not made until step
200. Consequently, a comparison may be made between the behaviour
of the system with and without these adjustments. The initial

controller parameters are chosen as:

Following step 200 there is some convergence to new parameter
values as a result of the adjustment to S, and then the benefits
of the disturbance rejection become apparent, as evidenced by the

changes to the control input u(t) in response to changes to the

disturbance v(t).
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The disturbance rejection illustrated above may be used in the
case of a multivariable process to effectively decouple the two
loops. The following simulation will demonstrate this. The

process to be simulated may represented in block-diagram form:

uy T 1/[32+s+1} - V1

0.25 0.2 |O.3

L_‘_"\

ug‘—®-m———) 1/{8(0-23”)]}*—*—— 2y,

For the purpose of modelling the process shown in this block
diggram, uy and y, are treated as disturbances to loop 2, and Yo
is treated as a disturbance to loop 1. The controller parameters

for both loops are chosen as:
P=0.3 Q=0.7 R=0.3 S1=0.1 S2=0.1

Elimination of set-point error is ensured by adjustments to R anc
B, while adjustments to S1 and S2 are used for removing the
effects of interactions between the loops. To enable comparison
between the performances of the controller with and without these
adjustments, no adjustment is made until step 200. The results of
this simulation are presented in Figure 4.2. It is apparent that
neither loop will attain the correct set-point value unless the
adjustments to the polynomials are made, in the absence of any
integral behaviour. The interaction between loops (particularly

the effect of loop 2 on loop 1) is also apparent.

At time step 200, following the initial adjustment of the
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polynomials, there is rapid convergence resulting in good set-
point following from that point on. The removal of the
interaction effects is apparent from the changes in the control

inputs to the two loops.

An alternative way of ensuring set-point attainment is to include
a factor (1-q_1) in the Q polynomial. However, incorporation of
an integrator in this way, or by operating on incremental control
variables rather than their absolute values degrades the
transient performance of the controller [Morris, Fenton and

Nazer, 1977].

4.2 SIMULATIONS USING EXLICIT POLE PLACING CONTROLLER

In Chapter 3 it is described how an interactive offline program
is used to establish a disk file defining the parameters of tne
controller, and the parameters which describe certain aspects of
the process which are to be assumed by the controller. The
specification of the controller for each process may be
completely defined by describing the parameters which are placed
in the disg file. Apart from the counters and pointers which
establish the significant events during the run and the variable
combinations for each loop, the following are the critical

parameters which have to be specified for the controller:

1. Initial error variances. These are set to an arbitrary
large value for the start of the run (for rapid initial
convergence in the absence of good initial parameter
estimates), and adjusted by the Kalman Filter routine to
appropriate values during the run. Different initial values
could be selected to enable investigation of the effect of

different initial values.
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2. The order of each polynomial for each loop. Default

values are suggested, based on process order.

3. The maximum delay for each loop.

4. Whether the controller is to have integral prcperties or

not.

5. Observer polynomial (AO) and model polynomial (Am) for

each loop. A defines the pole placements.

. Sampling rate for each loop.

4.2.1 Single loop processes

Kurz, Isermann and Schumann (1980) described several single loor
processes which they used for comparison of various parameter
adaptive control schemes. Some of these processes have been
simulated using either the continuous simulation language ISIS,
or a discrete simulation program, the control inputs to the
processes being determined by the self-tuning controller running

as a concurrent task.

The output of the process, which is the controlled variable, is
the sum of the actual process output, and the output of a noise
model. This accords with the process model used by Astrom (1970,

page 173). The noise model used for all processes is:
- 2 2
E(s)/V(s) = (s°+1)/(s"+s+1) e...(4.1)

V(s) is a sequence of steps the amplitude of each being

determined by a random number generator, and changed at each

sampling interval. E{e(t)eT(t)}=O.O133.
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In addition to the noise, some of the processes were subjected to

an offset. This is indicated where appropriate. OFF=0.3.

Simulation summary

[A] Low pass behaviour, non-minimum pha'se ﬁN\HW 2 sec. 5arnP|ww9).

Transfer function 1/(1+2.5s)(1+3.75s)(1+5s)
Simulation model Y''"'=0.0213(U+0FF-Y)-0.24Y"
-0.8667Y""'
Controller Am=1—0.8q'1
A1

Sampling interval 2 secs

Delay k=1
[B] Low pass behaviour
Transfer function 1/(1+2.5s)(1+3.75s)
Simulation model Y''=0.1067(U+OFF-Y)-0.6667Y"
Controller Am=1—0.8q_1

a1

Sampling interval 2 secs

Delay k=1
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[C] Damped oscillating behaviour

Transfer function

Simulation model

Controller

(1+25)/(1+3s)(255%+55+1)
E'''=0.01333(U+0FF-E)-0.10667E"
-0.53333E""

Y=E+2E'

(a) & (¢) A,=1-0.8q"" -,

- -1
(b) A,=1-0.9q

Sampling interval (a) & (b) 3 secs
Sampling interval (c) 6 secs

Delay k=1

[D] Process [C] with time delay

Transfer function

Simulation model

Controller

_95
e Gc(s)
As before with U=DELAY(9,U1)

A =1-0.8¢7"

Ap=1+q71+q72

Sampling interval 3 secs

Delay k=4



[E] A11 pass behaviour (discrere model).

Transfer function

Simulation model

Controller

[F] Integral behaviour
Transfer function
Simulation model

Controller

Noise

(1-4s)/(1+4s)(1+10s)

E''=0.025(U+QFF-E)-0.35E"
Y=E-4E'

A,=1-0.8q""

AO=1

Sampling interval 2 secs

Delay k=1

1/s(145s)
Y''=0.2(U-Y")
A,=1-0.8¢7"
A1

Sampling interval 1 sec

Delay k=1

E{e(t)el(t)}=0.0033
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[6] Unstable behaviour

Transfer function 1/(1+45s)(1-2s)
Simulation model Y''=0.1(E-U)+0.3E'
Controller Am=1—0.8q_1

Ay=1

Sampling interval 1 sec

Delay k=1

The same first order model polynomial is used for all processes,
which consequently display the required exponential rise
following a set-point change. Where the process order is greater
than 1, zeros are appended to the polynomial to obtain enough
simultaneous equations to solve for all variables. For these

simulations, AO was not varied to obtain any other responses.

The results of these simulations are presented in Figs. 4.%2-4.8

for processes [A] to [F] respectively. Some significant points

are worthy of comment.

Processes [A] and [B] present no difficulty to the controller,
which is designed to handle non-minimum phase systems. Process
[C], at the sampling rate of 3 secs selected by Kurz, Isermann
and Schumann [1980], requires a rather vigo rous controller
action, which is not alleviated by changing the model polynomial.
However, changing the sampling rate to 6 secs has a marked effect
with very little controller action necessary. Retaining the 3 sec
sampling rate, and introducing a pure time delay [D] has no
appreciable effect on the controlled process, apart from
increasing the variability as expected [Astrom, 1970]. Process
[D] is chosen to illustrate the parameter convergence, as shown

in Figure 4.6 a-e. Process [E] with all-pass behaviour is readily
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controlled, and again the beneficial effects of increasing the
sampling time can be demonstrated. In this case, changing the
model polynomial will also reduce the variations of the control
signal, because of this process's unusual response to sudden

changes in the control signal.

Processes with integral behaviour, like [F], and with unstable
characteristics like [G] pose a problem if the self-tuner is
starting without any prior information about the process
parameters, as control is poor until a satisfactory parameter set
is established, during which time the controlled variable may
diverge from the set point. The integral behaviour is readily
identified, and such processes cause difficulty only when an
unknown offset term is present at the start. The unstable process
poses a 1little more difficulty at the beginning, but once the
initial transients are past, the controller performs quite
adequately (Figure 4.9). Controllers #2 and #3 are thus able to

cope with a variety of processes, providing good control.

4.2.2 Choice of observer and model polynomials

Wellstead and Zanker [1979] have shown how the pole placing self-
tuning controller may be extended to incorporate servo properties
at the price of inéreasing the number of parameters to be
identified. If it may be assumed that the poles of the process
are correctly placed by the controller, the observer polynomial
Ay may be used to affect the transient response of the controlled
system, as suggested in Section 2.1.7. Changing this polynomial
is a simpler (and less definite) approach than that of Wellstead
and Zanker, but as will be shown, one which can adequately effect
control. A process simulated by Wellstead and Zanker [1979] may

be used to demonstrate the effects of changing this polynomial.
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Transfer function 25exp(-0.016s)/s
. -1 B -1
Discrete process (1-q~ Dy(t)=q “(1+1.5q" Hu(t)

*(1-0.5q_1)e(t)

Sampling rate 100 ms
Delay k=2
Noise E{e(t)eT(t)}=O.O133

Simulations are performed for a variety of combinations of the
observer and model polynomials. However, before comparisons may
be made between different runs, difficulties in making
quantitative comparisons between the performances of different
controllers must be overcome. Because a degree of model-following
is called for, the penalty function should be calculated based on
excursions from the desired trajectory and consequently, the

trajectory is taken to be:

Ayg(t) = a7 Kagw(t) .. (4.2)

where w(t) is the required set point for the loop. Comparisons
between systems can be made over a specified time interval during
which time identical changes to the set point value are made for

each system. Two measures are presented:

MSE(y) = (y(t)-y4(t))?/nsteps

MSE(u)

(u(t)-u(t-1))2/nsteps . (4.3)

The first is the mean square error of the output from the desired

trajectory, calculated from equation (4.2). The second measure is



expected to have a non-zero value,

comparison of the control effort required by different

controllers on the same process.

Performance summary

Figure 4.10 a-e shows the responses of the process with a
representative group of controllers.

summary is given in Table 4.2. Each cell contains the two

A complete performance
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and can only be used for

measures, MSE(y) and MSE(u), scaled upward by a factor of x1000.

TABLE 4.2

Effect of different observer and model polynomials

MSE(y) and MSE(u) values

Model polynomial Ap

1

1-0.8q"
Observer polynomial Ay
A, 83.54 2.263
A, (1+g7") 78.50 2.727
-1 -6
Aulylseg ™" . aag ) 47.80 0.695
1 32.58 0.457

(147 32.65

0.478

52.36

39.92

19.96

52.36

39.92

13.72

12.02

4.944

13.72

12.02
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In summary, the transient behaviour of the controlled process
is influenced by the choice of the model and observer
polynomials in a manner described by equation (4.2). In this way,
factors of the denominator and numerator may be cancelled, to
ensure close set-point following (the servo-mechanism problemL
or appropriate factors may be left uncancelled in either the
numerator (to affect transient response), or in the denominator

(to affect process dynamics).
Disturbance rejection

Disturbance rejection relies on the feedforward of measured
disturbance terms so that control action may be taken to
counteract their effect, a capacity which is important in
developing a multivariable controller, as it is the mechanism
whereby irteractions between loops may be removed. This allows
decoupling of the loops, each then responding to its own set-

point or command input.

Processes [C], [D] and [F], described previously, are modified to

include disturbance terms.
[c']
. ., -1 =2 -3
Discrete model (1-1.654q  +1.022q" “-0.2019q 7 )y(t)
=47 1(0.1098+0.0792q" " -0.0229¢™? )u(t)
. —1(0 -1 -2
q .1+0.05q™ '-0.01q"“)v(t)
Model polynomial 1-0.8q'1

Observer polynomial 1
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[p']
Discrete model (1-1.654q 1+1.022972-0.2019¢™2 )y (t)
=q™2(0.1098+0.0792q™ ' ~0.0229q"2 Ju(t)
+q72(0.1+0.05q™1-0.01q"2)v(t)
Model Polynomial 1—0.8q'1
Observer polynomial 1
[F']
Discrete model (1-1.9418¢"1+0.9418¢ %)y (t)
=q”"(0.0088+0.0086q ' )u(t)
+q™ 1 (0.0005+0.00049™ 1 )v(t)
Model polynomial 1—0.8q'1

Observer polynomial 1

For all models, a noise term (1—0.5q_1)e(t) is added, e(t) being
a random noise sequence. For models [C'] and [D']L
Eie(t)eT(t)}=O.O133. For model [F'] the noise variance used was
0.0033 because of the low gain of the process, this value keeping
the excursions of the control input within reasonable bounds. The
results of the simulations are presented in Figures 4.11 - 4.13.
The effects of the disturbance term in each case may be assessed
by comparing the value of MSE(y) and MSE(u) for each of the
processes, with and without the disturbance term. (A1l values

have been multiplied x1000).



102

TABLE 4.3
Effect of disturbance rejection

MSE(y) and MSE(u) values

With disturbance Without disturbance

MSE(y) MSE(u) MSE(y) MSE(u)
[c'] 44.38 32.53 45.57 14.56
[p'] 68.29 36.50 61.79 16.33
[F'] 40.38 1000.0 36.61 758.5

The vigourous control effort is required by process [F'] because
of the low gain of the process (small sampling interval). In all
cases, the MSE(y) value is changed little by the addition of the
disturbance, indicating good disturbance rejection by the
controller. That this satisfactory behaviour is due to controller

action is evidenced by the increased values of the MSE(u) terms.

The controller for the system [F'] also shows that it is possible
to place a hard 1limit on the excursions of the control signal
with the explicit form of the self-tuning controller. The effect
of limiting u(t) is to induce a more gradual initial movement of
the controlled variable following a set-point change, which in
turn would be reflected in an increase of the NMSE(y) term,
although MSE(u) would obviously be decreased. Such a ha?d limit
can have adverse effects if applied when disturbance elimination

is required.



Var -

y(t)
w(t)
u(t)
v(t)

Var

y(t)
w(t)
u(t)
v(t)

Min

=9

-9

-6
-2

Max

— O W W

'

103

L Ll Ll

Process (D')
Underdamped process with time delay

Disturbance Rejection

=
80 140 200 260 320
Steps
FIGURE 4.11
Process (C') Underdamped process
Disturbance Rejection
-
L] L A L
80 140 200 260 320
Steps
FIGURE 4.12



Var

y(t)
w(t)
u(t)
v(t)

Min Max

=9 3
-9 3
-12 12
-3 9

104

80

L L

140 200

FIGURE 4.13

Process (F') 1Integral behaviour
Disturbance Rejection

260

Steps .

320




105

4.2.3 Multivariable Processes

Borisson [1979] and Koivo [1980] have used simulations of
multivariable systems to illustrate the behaviour of their
multivariable controllers. The same processes have been chosen to
illustrate the benhaviour of the pole-placing self-tuning
controller, and simulations of additional processes will be used

to illustrate different features of these controllers.

The simulations which will be described use the same control
subroutines as the online control system. The ranges and limits
placed on variables have been determined to accord with the use
of analogue circuitry. Where necessary, values of noise variances

have been adjusted to suitable levels.

[Process 1]

The first process is a model of the head box of a pagper machine,

and is taken from Borisson [1979].

Ay(t) = ¢ 'But(t) + e(t)

where
1-0.99101q"" 8.80512E-3q |
A..—_
-0.80610q""  1-0.77089q"
i K
0.89889  -4.59329e-3
B:

L19.39O 0.88052

The noise conditions selected were E{e(t)eT(t)]=diag{3.3E—3,3.3E—
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3}. The model and observer polynomials were varied for different
simulations. Figures 4.14 - 4.17 present the results of the
simulations, while the relative performances of the different
controllers may be summarised in the following table, where the
entries are the values of MSE(y) and MSE(u) for each of the two

loops. For any simulation the ‘same polynomials have teen used on

both loops.

TABLE 4.4

Control of head-box model

Model polynomial A

[1-0.8¢"1] [1]

A, Polynomial MSE(y) MSE(u) MSE(y) MSE(u)
[1-0.8¢7"] 21.95 15.97 67.33 4008

29.78 19570 KAXEX XXNXX

(1] 14.88 4.062 8.992 83.71

4.062 1078 18.17 39083

A1l values have been multiplied x1000. The very large values are
due to the excessive spikes in the control signal at set-point
changes. The values **¥¥¥ yere so large as to be meaningless, and
the controller specification for which they occurred would
generally not be used. The control of this Process [1] poses no

particular difficulties.
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[Process 2]

[Process 2] is a non-minimum phase system, introduced by Koivo

[1980].
Ay(t) = g7 Bu(t) + e(t)
0.5q

1-0.9q~ 0.2+q~ 1

0.5¢"' 1-0.2q" 0.25  0.2+q"

1}

The noise is chosen to satisfy E{e(t)eT(t)} diag{8E-4,8E-4}.
The open loop poles are qq = 1.163 and q, = -0.060. Owing to the
value of the first, the open loop sysfem is unstable. The system

is also non-minimum phase as both the zeros (-1.429 and 3.333)

are outside the unit circle.

That this is an intractable system to control is evidenced by the
difficulty experienced by Koivo [1980] in maintaining the value

of y, at a set point of 0. Careful placement of the closed loor
system poles is necessary to ensure stability. Results are

presented in Figure 4.18 for the following controller:

Loop 1:  Ay=1 A =1-0.9q"

Loop 2:  An=1 A_=1-0.8q""
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The system is able to follow all the set-point commands, and the
standard of control achieved is quite satisfactory. The ability
of the controller to stabilise unstable processes, demonstrated

for the single loop case, is now extended to multivariable

processes.

[Process 3]

Borisson [1979] introduced the process described below, which is
very similar to process [2] described above, but incorporates a
time delay.
_ =2
Ay(t) = q Bu(t) + Ce(t)

1-0.9q¢""  0.5q 10

1-0.2q"~ o 1

1-0.2q"" -0.4q""

1-0.8q""

with Efe(t)eT(t)} = [3.3B-3 3.3E-3
3.38-3 6.6E-3
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The open loop zeros are -0.060 and 1.163 and this process is

consequently unstable. The following controller is used:

Loop 1: Mg A =1-0.5¢"

Loop 2: Ay A,=1-0.5q""

This process is easier to control than Process 2, but the delay
in the action of the input variables now means that any
disturbances which take effect before a change in control can
counteract them cannot be eliminated. The y interactions provide
such disturbances, and their effect can be seen in Figure 4.19

which presents the results of the simulation.

4.2.4 Processes with changing parameters

Tne self-tuning controller is particularly important for the
control of processes where the parameters of the process change
with time, which may be due for example to changes in raw
material being processed, or to some change.in the operation of
the plant, or to non-linearities where the linearised process
model changes with the set-point. In this section, the same basic
multivariable process is adapted to simulate process changes and

the behaviour of the controlled process is examined under

conditions of:

(a) A sudden change to one of the model parameters.
(b) A sudden time delay change.

(c) A non-linearity.
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Process:

Ay(t) = q"?Bu(t) + Ce(t)

1-.772¢"1+.391q72  -0.070q""-0.115¢7%
A:
0.047¢"1+0.077¢"%  1-1.021q"'-0.016q72
0.400+0.256q" ! 0.240+0.058q""
B:
0.268+0.096q" " 0.801+0.192g" "
_ . _
1-0.5q 0
c:
-1
0 1-0.2q

Noise: Efe(t)el(t)} = diag{3.3E-3,3.3E-3}.

1

Controller: A =1-0.8q  and Ap=1 for both loops.

The self-tuning algorithm identifies 12 parameters for each loop,

nn'’ Anm’ Bnm (3

parameters each, allowing for the delay), and the offset d. A

comprising the polynomials A ., (2 parameters), B
variable forgetting factor is used, which varies between
0.95<f<1.00. Allowing a greater range of forgetting factors would
increase the convergence rate, but necessitate other checks on

the condition of the covariance matrix where a noisy process
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(with errors which decrease the forgetting factor) is held at a
fixed set point (with little new information about process
dynamics).

Process changes:

(a) Changes to model parameters

The By, polynomial is changed to O.4—O.2q_1 at time step 225.

(b) Changes to time delay

The time delay for loop 1 is set at k=1 for the first 225 steps,

and then changed to k=2 for the remainder of the run.

(c) Nonlinearity

(1) yq(t)

y1(t) + O.2y1(t—2)u1(t—2)

(i1) Y1(t) = y1(t) + 0.2y2(t—2)u1(t-2)

Both cases are simulated.

Simulation results:

These may be summarised in a table where the entries are the pair

of values [MSE(y),MSE(u)] for each of the two loops. The values
have been multiplied x1000.
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TABLE 4.5

Effect of process changes

Loop 1 Loop 2
MSE(y) MSE(u) P?SE(y) MSE(u)
No changes [19.72,7.863] [13.24,2.251]
Parameter changes [18.37,10.91] [28.00,6.886]
Time delay change [18.31,45.41] [57.59,97.03]
Non-linearity (i) [34.75,14.84] [17.49,3.768]
Non-linearity (ii) [90.61,26.61] [22.66,9.587]

Figures 4.20 - 4.24 depict graphically the process responses. For
the no-change case,(Figure 4.20), the interaction between the
loops is evident in the behaviour of the control inputs necessary
to maintain the correct set-points. Disturbance rejection is
good, but noticeable due to the delayed response to an input

change, and the fact that some interactions are not delayed.

Figure 4.21 shows the effect of changing the gain of loop 2 at
time step 225. Re-estimation of the parameters is rapid following

the change with the variable forgetting factor operating.

A sudden delay change of an integer number of time steps is a
severe test of a controller, and the effects of this are shown in
Figure 4.22. Control is lost for 4 or 5 time steps, following
which the controller overcorrects for the perturbation, and then
recovers as the re-estimation of parameters takes effect. A
gradual time delay change is a more usual situation, which would
be manifested as progressive model parameter changes. The non-
minimum phase characteristics which may accompany such changes

are no problem because either the controller relies on a pole
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placing design, or for the interactions, the possibility of non-

minimum phase polynomials has been allowed for (Chapter 2).

Two non-linearities of different severity are used in obtaining
the results for Figures 4.23 and 4.24. The controller linearises
its model about the operating point of the process, and this
model must change as the set-points are altered. The degraded
behaviour before the parameters are re-estimated is evidenced by
the errors which occur at set-point changes. A cautious
controller, producing slow response to a set point change, has an
advantage in these situations, allowing more time for parameter
re-estimation. Suitable choice of the observer polynomial
provides the necessary caution, which is valuable in real

applications.

4.2.5 Differences between pole placing controllers

In Section 2.1.9 it was shown how the calculation of the control
inputs to the process involves the inversion of the Hy matrix,
and how using the simplifying assumption, due to Borisson [1979]
that BO is a diagonal matrix, (i.e. disturbances due to inputs to
other loops have a delayed effect), H, becomes diagonal.
Controller #2 assumes that Hy is diagonal, while controller #3
removes this assumption, at the price of the additional

computation to invert Hj.

Simulations are presented to illustrate the difference in the
performance of the two controllers #2 and #3, using the process
of section 4.2.4. These results are shown graphically in Figures
4.25 - 4.29, and Table 4.6 shows the values for MSE(y) and MSE(u)
for each of the two loops for the different controller

specifications. The table entries have been multiplied x1000.
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TABLE 4.5

Comparison of controllers #2 and #3

Controller #2

MSE(u)

17137
1520

2219
743 .4

Controller #3

Loop #

MSE(y)
1 509.4
2 398.6
1 -
2 -
1 T1.34
2 115.8
Loop #

MSE(y)
1 55.11
2 15.99
1 .
2 =
1 26.42
2 15.10

MSE(u)

328.8
205.4

27.50
21.34
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A,=1-0.5q"!
MSE(y) MSE(u)
34.83 238.2
14.32 35 .41
49.73 292.5
18.98 122.2
33.29 230.6
15.21 9.680
e
A _=1-0.5q
MSE(y)  MSE(u)
57.87 41.08
14.96 19.83
46.38 110.6
18.22 95.31
24.76 16.14
22.47 7.486
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Once again the sensitivity of MSE(y) and ¥SE(u) to a few large
excursions of y or u is apparent. The difference between the
controllers is most clearly seen in the case where A0=Am=1.

The difference is very marked in the graphical presentation
(Figures 4.25-4.29). A critical change to the control input to a
loop has to be modified in the next time sfep when the result of
the control input change to the other loop is known. This sets up
a sequence of changes which is fueled by either a set point
change, or by attempts to eliminate noise effects. Suitable pole
placement and the selection of an observer polynomial to give a
conservative action produces'a suitable controller, although

obviously the behaviour of #3 is generally more acceptable.
4.2.6 The self-tuning property

The self-tuning principle [Astrom and Wittenmark, 1973] asserts
that if the closed loop system converges, it will converge to
that which would be obtained if the controller were designed with
full a priori knowledge of the process parameters. In this case,
if the delay k=1, the residual error sequence will converge to
the system driving noise sequence.([Astrom, 1970] deals with the

case for k>1).

The comparison of the residual noise sequence and the driving
noise sequence provides a test for self-tuning when both

sequences can be determined, i.e. during simulations.

The choice of controller polynomials to decouple the loops
involves certain approximations, which must jeopardise the self-
tuning nature of the controller. In order to test whether the
self-tuning property is retained, the process described below is
simulated, and the driving noise and residual noise sequences

compared.
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Process simulated

Ay(t) = o 'Bu(t) + Ce(t)
where

A=1+ [0.786 -0.030|q " +| -0.368 0.318|q72
0.000 0.755 ~0.050 0.000

_ 1 -1 =2)

B= |0.554 0.213]| q"' + | 0.323 0.081| q

0.213 0.213 0.081 0.081

_ 1

C=1I+[-0.5 0.0]q
0.0 -0.2 |

and the model polynomial is:

A, = I+ (-0.3 0.0|q”"
0.0 -0.3
Noise

e1(t) and e2(t) are both uniformly distributed randor sequences

on the interval -0.25<e(t)<0.25, i.e. with variance .0104.

Calculation of residuals

The residuals are calculated as y(t)-r(t), where r(t) is the

required value of y(t), given by:
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FIGURE 4.30
Check of self-tuning property
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where w(t) is the set point, Am is the model polynomial and E the
observer polynomial described in Chapter 2. The residuals will be
correct in the steady state, but will not have the true values

following set-point changes.

The results of the simulations are shown in Figures 4.30 and
4.31. The first shows the behaviour of the system being
simulated. Note that the run includes set point changes, when it
is to be expected that the noise and residuals will be different.
Also note that only 320 steps are simulated, after which time it

is unlikely that the parameters will have completely converged.

The noise and residuals are shown superimposed on the same axes
in Figure 4.31. For much of the run, the noise and residuals for
the two loops are indistinguishable, showing that the self-tuning
principle is inviolate. As expected, the two traces diverge
following set-point changes, but rapidly converge following this

perturbation.

In all the simulations that have been described in this chapter,
the residuals corresponding to those depicted in Figure 4.31 have

been used as a measure for comparison of the controllers.

4.2.7 Full Pole-Placing Algorithm

A new full multivariable pole-placing controller has been
described in section 2.3, and this controller may be used as a
standard against which to compare the other algorithms which have
been proposed, and for which results have been presented in this

chapter.
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The closed loop behaviour of a system incorporating the full
multivariable pole placing controller has been examined by

simulating the following process with the controller:

Ay(t) = " ¥Bu(t) + Ce(t)

= — - - =

a=[1 0] + |-0.78 0.0%0]|q '+ [0.368 0.300] q72
0 1 0.000 -0.755 0.000 0.050
_ -1 i 1.2, [ 1 .-3
B = 0gq . 0.500 0.200| q72 + | 0.300 0.080 ] q
| 0-100 0.080 0.040 0.200
_ -1
c = |[1-o0.5 0
-1
0 1 - 0.5q

B has roots given by q=5.127 or q=0.273, and consequently the
process is non-minimum phase. The controller is required to place
the closed-loop system poles at locations consistent with the

model polynomial:
A, = [1-05q" o0

0 1 - 0.5q"1

Set point attainment and elimination of offset error has been
described in section 2.3. In order to make a comparison with
controller #3, simulations for which have already been presented,
the system is simulated with various noise levels. The results of

the first simulation are presented in Figure 4.32, (a) and (b),
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for the full multivariable controller and controller #3
respectively. White noise with a variance of 8.3E-5 is present on
both loops. The results for the two controllers are very similar,
the most noticeable difference being the interaction effects
between the two loops. In the case of the full multivariable
controller, both loops exhibit an interaction effect which
persists until steady state conditions can be asserted, although
this effect is small and quite acceptable, the controller being
designed primarily as a regulator. Controller #3 on the other
hand has been designed for rapid elimination of disturbance
effects, and this is apparent in its behaviour. The transient

behaviour of loop 1 is also marginally better for controller #3.

The variance of the noise is increased to 0.01 for both loops,
and simulation results presented in Figure 4.33 (a) for the full
multivariable controller, and Figure 4.33 (b) for controller #3.
The difference in the interaction effects is not now so apparent,
with no clear advantage to either controller. The vertical axis
scale may be expanded to permit closer examination of the system
behaviour, and Figure 4.34 (a) and (c) present the responses for
loops 1 and 2 with the full multivariable controller, while
Figure 4.34 (b) and (d) show the responses for loops 1 and 2 with
controller #3. Only very minor differences are apparent at

distinctive points on the graphs.

The process control inputs produced by controller #3 display no
increase in activity over those of the full multivariable
controller,-even though controller #3 was designed with a
minimum-variance-like control action to remove interactions. The
interactions are not of a minor nature, as evidenced by the

considerable controller effort required for their elimination.
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4.3 CONTROL OF HEAT EXCHANGER

The self-tuning controller has been applied to control of a
commercial heat exchanger. The use of this process was motivated
by the use at the Dairy Research Institute of a heat exchanger to
control temperature and viscosity of milk concentrate being
passed from an evaporator to a spray drier. Single loop PID
controllers have been applied to the same problem, and the
results contrasted with those for self-tuning. [Hesketh and

Chaplin, 1981].

Simulations were used to establish suitable controller parameters
without the need for tedious and expensive runs on the actual

plant, before applying the controller on-line.

4.3.1 Heat exchanger process

The process has been described in Section 3.3.2, but its

description may be summarised for convenience. There are two

loops to control:

- FLOW LOOP

N/

interaction

|

———————~J- TEMPERATURE LOOP [——=

The only major interaction is between flow and temperature. The
inclusion of other interactions, requiring the identification of

parameters close to zero, can degrade rather than improve the
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performance. The presence of time delays means that it is
immaterial whether the input to the flow loop, or the output from
the flow loop is used to anticipate future changes in the
temperature. There is an interaction of temperature on flow, due
to viscosity changes, but this interaction is small, and the
rapid response of the flow to input changes makes the flow loop
an easy loop to control, the interaction effects being removed

quite satisfactorily by the feedback controller.

4.3.2 Simulation of heat exchanger

Software is required for manual operation of the equipment for
startup procedures, and to enable transducers to be tested and
calibrated, and variable values scaled to ensure that the model
is well conditioned. The self-tuning controller programs contain
the necessary routines for least-squares identification, although
these estimates will be biassed because the noise terms are

ignored.

If the identification procedures are extended to include a noise
model [Panuska, 1980], and the manual operation replaced by
random perturbations, a model for the process may be identified.
The rate of response of loop 1 required a 2 second sampling
interval, but for loop 2 this was unacceptable because the time
delay would have required too many sample intervals for its
representation, and the—process gain would have been ridiculously
low, representing hardly any change in each sampling interval.
The following simplified model for the heat exchanger was

obtained:

Sampling interval = 2 seconds for loop 1, 4 seconds for loop

Ay(t) = ¢”'Bu(t) + e(t)



where the matrices may be partitioned to give:

1+0.1665q~ !

Ay

Ay = -0.0256q"'+0.847q72

A = 1-1.5598q7 1 +0.6056q72

By = 0.4552-2.2159""

B,, = -0.0200+0.0064q™ ' -0.0035q"2-0.0084¢™>-0.0052q 4

B, =By =0

Noise: Ele(t)et(t)} = diag(0.0133,0.0133).

The form of B,y arises because these polynomials were identified
with leading zeros to cater for time delays. However, the
temperature loop responds reasonably quickly to changes in flow
rate, and following a change to the steam valve, shows a small
immediate response, with a larger effect after 20 seconds. Terms
in the noise model were considered small enough to ignore for the
simulation. Although the temperature loop had an apparent 20

second delay, the above model gave the best fit.
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4.3.3 Simulation results

Figure 4.35 presents the simulation results for the following

controller:
Loop 1: A = 1-0.8q-1 Ay = 1+q—1‘ Delay k=1
Loop 2: A = 1—0.3q_1 Ay = 1’*...+q'4 Delay k=4

Loop 1 requires two simulations steps for every one step of loop
2. A noticeable feature of the simulation is the vigourous
controller action required by loop 2. It has been shown in
previous simulations that this may be reduced by appropriate
selection of the poles or by changing the sampling interval of
the loop in question. Consequently, simulations were performed
for different sampling intervals and model polynomials for loop
2. Table 4.6 summarises the performance, presenting values of
MSE(y) and MSE(u) (x1000). As the performance of the loop 1
controller was satisfactory, the same controller was used for all
runs. Figures 4.35 (g), (h) and (i) show the results of the

remaining heat exchanger simulations.
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TABLE 4.6

Heat exchanger simulations

control interval control interval
(4 secs) (8secs)
MSE(y) MSE(u) MSE(y) MSE(u)
Am=1-0.3q"" 8.004 1.387 7.545 1.927
28.46 13883 16.73 1218
Am=1-0.8q"" 12.91  3.559 8.335 1.354
49.16 231.6 29.04 164.9

4.3.4 Results of on-line experiments

On-line experiments with the heat exchanger were conducted for

two different situations.
(a) No perturbation to the process.

The flow rate of the heated water through the first heat
exchanger was held constant at 15 litres/minute. The set points
to the two loops were varied (flow rate and temperature of heated
water from second heat exchangerL The loops are subject to
significant interaction effects. The temperature loop is subject
to disturbances frow the action of the float trap which removes

condensate from the first heat exchanger.
(b) Perturbing the process.

The flow rate of the heated water through the first heat
exchanger was held constant at 15 litres/minute for the first
1400 seconds. The flow rate was then adjusted suddenly to 10

litres/minute, which changes the parameters of the process model
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and also changes the time delay of the temperature control loop.
The interaction effects and unmeasured disturbances are still

present.
Summary of Controller Parameters.
(1) Self-tuning controller Loop 1 (flow rate)

Process model order 1

time delay 2 sample intervals

Observer polynomial (E) ‘I+q_1

Desired model 1—0.8q_1
Sampling interval 2 seconds
Interactions 0

(ii) Self-tuning controller Loop 2 (temperature)

Process model order 2

Time delay 4 sample intervals

Observer polynomial (E) 1+q-1+q—2+q-3+q_4+q'5+q‘6
Desired model 1-0.5q_1

Sampling interval 4 seconds

Interactions 1 (flow rate)

Notes:

The process model is obviously of reduced order (see for example
Baur and Isermann [1977] who identified a third order model for a
single similar heat exchanger). The time delay can be variable
for the form of the model identified, the value given above
merely placing an upper bound on the value used in the model. The

observer polynomial is conservatively chosen to give a gradual



152

change following a set point alteration. The desired model is
first order (less than the order of the process model). The
zeroth order model would also be permissible, higher order
coefficients being assumed zero as appropriate. Although this is
a multivariable controller, different sampling rates on different

loops are permitted.

TABLE 4.7

Performance summary
MSE(y)

Process .00441 Loop 1
Perturbation .03316 Loop 2

No Process 00481 Loop 1
Perturbation .04226 Loop 2

Graphical analysis

Figure 4.36 shows the behaviour of the system with a change to
the process at 1400 seconds. Control is unaffected by the change.
The price paid for.this performance is the vigoiyirous manipulation

of the steam valve. See also Appendix B.

Figure 4.37 shows performance in the absence of any change to the
process. The effects of changes to the flow rate are apparent, as
are the disturbance effects arising from float trap operation.
Note how the self-tuning controller reduces the effects of the
interaction. Another much smaller interaction effect is also
demonstrated - the effect of changing viscosity on the flow as
the temperature is changed. It is not necessary to include this
interaction in the model as the effect is small, and the

controller deals with the fast responding loop easily.
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In order to reduce the action of the control input to loop 2,
changes were made to the control interval and to the model
polynomial. Figures 4.38 - 4.40 depict graphically the results
when these changes are made. A1l other controller parameters

remain unchanged.

(i) Loop 2
Model order 2
Time delay 2 sample intervals

Observer polynomial 1+...+q—6

Desired model 1-0.5q_1

sampling interval 20 seconds

(ii) Loop 2
Model order 2
Time delay 4 sample intervals
. -6
Observer polynomial 1+...+q
Desired Model 1-O.84q'1

Sampling interval 4 seconds

(iii) Loop 2 PROCESS CHANGE AT TIME 1800
Model order 2
Time delay 3 sample intervals

Observer Polynomial 1+...+q-6

Desired model 1-0.4q""

Sampling interval 6 seconds
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Comments

The model polynomial of loop 1 was chosen to giveé a relatively
slow response on this loop so that the disturbance effect on loop

2 would be reduced over any single control interval.

No significant improvement to the system behaviour was found when
the model order was increased. Consequently, the minimum order

that gave good control was selected.

There is no pure time delay, and consequently the controller will
behave well for a range of values. It is important to specify a
time delay long enough, or there is a marked deterioration in the
controller performance. However, because of the use of leading

zeros in the polynomials, specifying too long a delay can make

the model over-parameterised.

As a general policy, the desired model poles should be chosen so
that the controller has a fast response, and can eliminate noise
effects. The slower controller (Figure 4.39) was unable to

respond quickly enough to reduce the variability.

A shorter sampling interval generally produces better control.
However, making the sampling interval too short can greatly
increase the controller effort; to a degree that might not be
acceptable. This is due to a low process gain, or small values in
the B polynomial. While the pole placing control law is chosen to
reduce variability of u(t), a certain amount of controller effort
is necessary to maintain the self-tuning property and ensure that

the residual errors are not too large.
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4.3.5 Online implicit control

The implicit controller described in Chapter 2 was also used for
online experiments with the heat exchanger. The use of this
controller highlighted the objections to the use of "optimal
control” methods for such controllers. The choice of the
weighting polynomials to produce a satisfactory system response
is not a trivial task. For a non-linear and badly behaved process
such as this, considerable experimentation is required before a

satisfactory response may be achieved.

Figure 4.41 shows the behaviour of the heat exchanger for the

following controller:

Loop 1
P=1-0.9"" Q=3-2.7¢" R-=0.1
Loop 2
P = 2.8-1.4q" Q=25 R=0.1 §-=0.1

The output from loop 1 (flow rate) interacts with loop 2, and is

treated as a disturbance to this loop.

The control of flow rate is good, as expected, because this
variable is easy to control. The response following a set-point
change is governed by the polynomial (L%L9q_1). This polynomial
is present in the closed loop transfer function as a "dominant
pole”. Of interest is the very clear change in the control input
to the flow loop to counteract the interaction due to the

viscosity change of the water as the temperature changes.

The control of the temperature loop is not very good, and some
tendency to oscillation is apparent. Despite considerable

experimentation, the temperature control could not be improved,
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demonstrating the difficulty of choosing the appropriate
weighting polynomials to achieve suitable system response. The
results for this implicit controller contrast with those for the
pole placing controller, which is more robust, and where the
actual closed loop behaviour is specified. The importance of
relating the weighting polynomials to Some other control
objective such as pole placement [Allidina and Hughes, 1980]
becomes apparent, although this nullifies the computational

advantages enjoyed by the implicit algorithm.



162

P=1-0.9q
Q=3-2.7q
R=0.1

Motor signal
|

T B | T —
— i 1

E 1 ! :

~ — 4 e == b

— = 1

~ 4 ___:____._Ti__{,ww = = e =

Q t : e

E : ! ! f
=S INEE

g 2 — 1 ol i S !-‘1\-J =

2 S 4 ak .

P=2.8-1.4q
Q=2.5
R=0.1
S=0.1

Steam valve

ifT”!H
]

il
|
.l
>
4

Temperature (deg.C)
3
!
||JIIS1HIIJ
1
{l
|
[
|

!
U
.. Lo oal

3600
Time (secs)

1
—p
A W |
N .
|
i
|
|
|

o__
— i |
(0e) :
o
o

FIGURE 4.41

Heat Exchanger Control

Implicit Controller



163

Chapter 5
DISCUSSION & CONCLUSIONS

5.0 INTRODUCTION
The study of adaptive control systems has matured, and the
results presented in Chapter 4 for implicit and explicit control

schemes shows the suitability of self-tuning methods for control

of multivariable systems.

The controller based on implicit identification of the controller
parameters provides a system which is economical in terms of
programming requirements and execution time, while the concept of
identifying the controller parameters directly is conceptually
attractive. However, the need to formulate the model so that
it is expressed in terms of the controller parameters places some
limitations on this method at present, while the explicit schemes
offer greater freedomr to choose the control law and formulate the

algorithm.

Pole placing control algorithms are robust [Astrom, 1980], and
attractive for certain processes because the controller
parameters specified bear a direct relationship to the response
which may be expected from the controlled system. Optimal or sub-
optimal methods have the advantage of providing a criterion by
which their performance may be evaluated. The one step
minimisation of the cost function is sub-optimal, and some
processes may benefit from a full solution of the Ricatti
equation combined with an explicit identification process. The
extra computational effort involved nullifies some of the

attractiveness of the method.
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5.1 Discussion of results

In Section 4.1 it is demonstrated that for one of the implicit
control schemes which can at present be employed, suitable
adjustment of the weighting polynomials of the cost function can
result in good disturbance rejection; and that this may be used
to achieve satisfactory control of a multivariable process using
methods proposed in Chapter 2. The transient interactions may be
greatly reduced, and generally the decoupling of the loops is
good, while the steady state interactions may be eliminated
without the use of an integrator. A similar technique has been

used to ensure steady state set-point attainment [Allidina and
Hughes, 1980].

The ability of tne explicit pole placing controllers to control a
variety of processes has been demonstrated in Section 4.2.1. In
summary, unstable processes may be stabilised (provided the
process response may be kept bounded while a set of model
parameters is established initially), and processes with time

delays, non-minimum phase or all pass properties are readily

controlled.

For processes which are unstable or show integral behaviour, it
would be necessary in practice to ensure the boundedness of the
response by providing a good set of initial parameter estimates.
This raises the question of sensitivity of the controller tc
changes in the parameters during the initial re-estimation. For
some initial estimates, the process output remains bounded, while
for others control is poor for several steps at this stage. This

remains an open question.

The mechanism used for disturbance rejection in the pole placing
scheme is motivated by that used for the implicit algorithm. If
the process is non-minimum phase, then the B polynomial cannot be
inverted as required, and some approximation is required. The

zeros of this polynomial may be ignored, and only the steady
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state effect considered, which leads to transient errors, which
however may generally be small and short-lived. Alternatively,
the single non-minimum phase input may be replaced by several
minimum phase inputs with different delays, which degrade
performance in a quantifiable way using techniques described in
Astrom [1970]. Any deviation from the desired trajectory or set-
point introduced by these approximations is corrected by the
controller, such correction being influenced by the selected pole
positions, so that the excessive controller action of minimum

variance controllers may be avoided.

The simulation results presented in Figure 4.5 make it clear that
the position of the selected poles do not necessarily influence
the controller effort required to effect control. As a result of
self-tuning, the residual errors converge to the system drivirg
noise [Wellstead, Edmunds, Prager and Zanker, 1979], regardless
of the pole positioning. If the process has very low gain, then
violent control action will still be required. This can be
alleviated by increasing the process gain, which is achieved for

discrete processes by increasing the sampling interval.

The simulations of multivariable processes (Section 4&&3) also
make use of process models that have been reported elsewhere
[Borisson, 1979; Koivo, 1980]. The model of the headbox of a
paper machine shows that when a very strong interaction exists,
as evidenced by the large off-diagonal term in the B matrix,
([Process 1], Section 4.2.3), vigourous control action may be
necessary to maintain the self-tuning property as described
above. In this case the simulations show that the vigourous
action on loop 2 may be reduced by suitable placement of the
poles of loop 1, reducing the excursions of uy(t) and hence
reducing the interaction effect on loop 2. The simulations by
Koivo [1980] show very large excursions of u2(t), and while no
claim is made here regarding the appropriateness of the pole

placing controller for this particular process, the beneficial
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effects which may result from its use for this and other

processes are apparent.

[Process 2] is non-minimum phase and unstable. The simulation of
this process presented by Koivo [1980] shows that his yo(t) was
not maintained at the set péint of O following a change to the
set point of loop 1, and no change is made to the set-point of
loop 2. However, having simulated the process, it is obvious that
it is a severe test of an adaptive controller. Figure 4.18 shows
that complete control of both loops of this process is possible

with the proposed pole-placing algorithm.

Changes to the parameters which describe a process may be
accommodated by self-tuning controllers, although the degradation
in the control during re-estimation of the parameters depends on
the particular process being considered, as discussed above. The
self-tuning controller is best suited to processes whose
parameters may change, but not instantaneously. In the case of a
non-linear process for example, a gradual change may be ensured
by a slow set-point change, allowing some re-linearisation about

each point.

The simplifying assumption that By is a diagonal matrix suggested
by Borisson [1979] avoids the inversion of the Hy matrix when the
control inputs are calculated, (section 2.1.9). This slight
computational advantage has to be weighed against the degradation
in control performance this produces for some processes [Chapter
4, Figures 4.25-4.29]. For some processes such as the heat
exchanger used for the on-line tests of the controllers, the
inputs to each loop may have very little effect on any other
loop, and this simplification is valid. However, where a loop
input may have a large interaction effect on another loop, this
interaction has to be countered by adjustments to the control
inputs at subsequent time intervals, each adjustment introducing
a further perturbation of its own, with the result illustrated in

Figure 4.29 (a), which should be compared with Figure 4.29 (v),
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when the additional inversion was performed.

To verify that a controller has the self-tuning property, it is
possible to compare the residual noise sequence and the driving
noise sequence if a simulation is being performed, to check
whether the gwo converge as the self-tuning principle asserts
they should [Wellstead et al, 1979 (a) and (b)]. This is
particularly necessary when some approximations have to be made
in the implementation of the controller. It has been shown in
Figure 4.31 (Section 4.2.6) that reasonable convergence of the
two sequences is achieved by the proposed pole placing controller
for the multivariable process considered, i.e. that these noise
sequences converge for each loop. As has been described above, it
is this adherence to the self-tuning property that may exact a

penalty when a noisy process with low gain is being controlled.

A self-tuning controller has also been proposed based on full
multivariable pole-placement (Section 2.3). The method draws on
techniques for pole-placement given by Wolovich [1974] for
continuous processes expressed in state-space form. It has been
shown how the discrete polynomial matrices may be rearranged into
a form which allows advantage to be taken of the same matrix
properties which make possible the pole-placement for the
continuous process models. For the scalar problem, this method
yields results which are identical to those obtained from the

polynomial approach [Appendix A].

While more computation is required for the full multivariable
solution than for the other controllers which have been proposed,
the computational burden is not necessarily prohibitive for
process control, particularly if a controller were dedicated to a
particular process enabling the elimination of many of the
general features incorporated into the programs used for this
research. Advantage may be taken of more powerful microprocessor
systems. To efficiently tailor a controller for a process, a

program generator can be of great assistance, and this need not



168

of course be limited to generzting programs only for self-tuning.
Such a program generator is the subject of corntinuing work.
Interestingly, more compact code has been generated for the

matrix than for the polynomizl solution.

Very little difference has bteen demonstrated betweern the closed
loop behaviour resulting fror use of tne full multivariable
controller, and that resulting from use of tne simplified
controller. Even though for tre simpler controller @ minimum-
variance-like technique was used to eliminate the effects of
interactions between loops, there was no accompanying increese in
the controller action required for the process that was

simulated.

The system comprising two comrercial heat excrangers provided the
opportunity to demenstrate many of the properties cescribed ebove
for a realistic process. As witr. many of tne simulations, similar
_processes have beer. used elsewrere {e.g. Devisor, 1980?, enabling
comparisons to be drewn. The results presented for tre
experiments witn the neat exchranger reinforce many of the points

already discussed, in particulzr:

The value of simuletions of the 1rocess has beer
demonstrated, even for trne situatiorn where the rprocess wes
non-linear, and where € simplified lineer model was used.

The control strategies which haé to te &

Q.

opted for the

control of tne real anc simulated processes were similar.

The process was non-lineer, witr diffusior effects as has
been described in Chapte: 3, and may be operated ir such &
way that the procesc model parameters and tire delay change
during use. The self-tuning controller proved to bte
particularly suited to control of the rrocess under these

conditions.

When the delay between samples was small, resulting in low
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gain, the predicted vigo rous control action was evidenced
as has been discussed above (see Figure 4.36). It is also
evident that this excessive action may be reduced by
increasing the sampling interval, as in Figure 4.38. It is
shown in Figure 4.39 that selection of a pole to give a very
damped response may not greatly decrease the controller
action, but may introduce other undesirable effects due to
the inability of the controller to rapidly correct other

deviations from set point, due for example to interactions.

In controlling the heat exchanger process, great difficulty
was experienced in the use of the implicit controller
minimising a one step criterion. It is felt that the one-
step criterion is probably inappropriate for this particular
process, and that a controller based on a complete solution
of the Riccati equation may be more successful though

computationally less attractive.

5.2 Methods employed

The programs which have been used have been written with the aim
of obtaining a compromise between fast execution and economical
program size, to enable them to be efficiently implemented on a
microcomputer. Of necessity, the structure has had to be made as
flexible as possible to enable different ideas to be tested
quickly and easily. That this has been achieved is evidenced by
the use of this same structure for other control schemes ranging
from three-term controllers to optimal controllers, and for
parameter identification programs. In their present form the
routines are also suitable for incorporating into other control

program suites, such as the one described by Sandoz and Wong

[1978].
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Although the routines have all been written in Fortran, the code
produced by the Cromemco CDOS Fortran compiler is suitable for
storing in EPROM memory. The arrays and variables of course have
to be stored in random access memory. The subroutines in this
form are suitable for execution in a single-board microcomputer
system (based on a Z-80 microprocessor). The price paid for this
economy is the loss of the recording, graphing and interactive
facilities offered by a system with disks and a graphics
terminal. That the programs can realistically execute on one of
the standard microcomputer systems so readily available, is felt

to be an important practical result of this research.

So that the program size may be further reduced while the speed
of execution is also improved, a program generator could be used
to generate in-line code which would be dedicated to use on &
particular process. The use of the generator would make this
tailoring of the programs for each process feasible. This would
eliminate any redundancy in array storage space, and the use of
pointers and generalised program loops for dealing with the
polynomials. Standard subroutines such as that for estimation of

parameters could be re-coded in assembler language.

The use of a full simulation language (ISIS) for simulations with
a controller is a powerful facility. The structure of tne
subroutines, written so that they could be incorporated into

other controller program suites, facilitated the use of ISIS.

5.3 Relationship to other self-tuning control schemes

Self-tuning schemes have divided into those employing implicit
methods, and those which explicitly identify parameters. Implicit
self-tuners are usually based on a minimum variance control law
[Astrom and Wittenmark, 1973], or on the control scheme proposed

by Clarke and Gawthrop [1975, 1979] which overcomes the objection
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non
to the minimum variance control that it cannot deal with,minimum
phase systems. Multivariable controllers for the minimum variance
controller have been proposed by Borisson [1979] and used for
control of cement raw material blending by Keviczky et al [1978].
Koivo [1980] has described a multivariable controller derived

from that of Clarke and Gawthrop [1979].

The implicit controller which has been developed in this thesis
uses the method of disturbance feed-forward to deal with
multivariable plant, hinted at by Clarke and Gawthrop [1975] and
Astrom et al [1977]. The difficulties associated with this method
have been addressed, [Hesketh, 1980]. Experience with this
controller suggests that for some processes, the problem of
relating the weighting polynomials of the cost function to the
closed loop behaviour which results, particularly with the one-
step cost function minimisation, can mitigate against the
acceptance of this controller for use with such processes. The
work of Allidina and Hughes [1980] relating the cost function
polynomials to the pole placement problem may be important ir

this regard.

Explicit identification of the process parameters has been used
to extend the one-step minimisation used by Clarke and Gawthrop
[1979] to a full solution of the Riccati equation [Buchholt and
Kummel, 1979], or to a "more optimal" k-step design method
[Jacobs and Saratchandran, 1980], with attendant increases to the

computational requirements of such methods.

The pole-placing techniques of Wellstead et al [1979 a,b,c] also
use explicit methods, providing a robust mechanism which deals
adequately withrﬁinimum phase systems, and which may be extended
to deal with multivariable processes, although at the cost of
considerable computation. The burden of calculating the
controller parameters is the chief fault of the pole-placing
self-tuners, particularly when self-tuning is so suited in other

ways to low-cost microprocessor implementation. This thesis has
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presented a method for designing a pole-placing controller which
follows the principle of using feedforward terms to deal with
interactions between loops, and at the same time does not impose
an excessive computational burden. The proposed controller
provides a simplified "decoupling” of the loops, so that the
output for each loop is related by a scalar transfer function to
the set-point for that loop. Set point attainment is ensured by
appropriate selection of an "observer polynomial” (in the
terminology of Astrom [1980]), which is made possible by the
decoupling described above. A full solution of the pole-placing
problem has also been presented, and this allows a comparison of
the simplified decoupling method with a full multivariable
solution, which shows that there may be very 1little difference

between the two.
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APPENDIX A
Numerical examples of pole-placing controller design.
1. Scalar process, polynomial approach.

Consider the process described by the difference equation

(1-0.5¢" 1)y (t) = (0g7'+1.0472+1.5¢" 2 u(t) + e(t) ....(A1)

i.e. a process which has a time delay k=2 sample steps, and which
is non-minimum phase. Note that it is assumed that these values
are biassed estimates from the least squares parameter estimation
procedure. The required closed-1loop response of the controller

and process is defined by the model polynomial

Ay = 1-0.8q7 oo (A2)

Equations (AB) and (A4) describe the regulator and the closed
loop transfer function obtained by substituting (A3) into (A1).

Hu(t) + Gy(t) = O ' vee.(n3)
-1 -1 -2 -3 _ \
[(1-0.5¢" ' )H + (0q~ '+1.0q"“+1.5¢ 7)€Jy(t) = He(t) ....(A4)
The characteristic equation should be equated to the model

polynomial, and the resulting polynomial equation solved for the

coefficients of H and G giving:

1.0 0.0 0.0 o.oﬂ no 1.0 !
-0.5 1.0 0.0 0.0 nt | =]-0.8

0.0 -0.5 1.0 1.0 n2 0.0

0.0 0.0 -0.5 1.5 gl 0.0 ....(A5)



174

The solution is

[ho nt n2 g0]T = [1.0 -0.3 -0.112 -0.037]T ... (86)

2. Scalar process, matrix approach.

The process described by equation (A1) may be re-expressed in

matrix form as:

u(t-2) 0.0 1.0 0.0 u(t-3) 0.0
u(t-1) = 0.0 0.0 0.0 u(t-2) | + [1.0 |u(t-1)
y(t) 1.5 1.0 0.5 y(t-1) 0.0

x(t) = D x(t-1) + e u(t-1)

e (A7)

The observability matrix and its inverse are given by:

—

0.0 1.0 0.0
J-[e,de,%] = | 1.0 0.0 0.0

0.0 1.0 2.0
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0.0 1.0 0.0
el - 1.0 0.0 0.0

-0.5 0.0 0.5 ....(a8)

e -

This permits the formulation of the matrix Q used for the

similarity transformation x'=Qx.

q -0.500 0.000 0.500
Q@ - |qp | = | 0.750 0.000 0.250
qD° 0.375 1.000 0.125 ....(n9)

The transition and driving matrices of the transformed state

equations are given by

0.0 1.0 o.o'w 0.0
epe~! = | 0.0 0.0 1.0 Qe =1 0.0
0.0 0.0 0.5 1.0 ....(A10)

It is of interest to note the structure of these matrices; in
particular, the last row has coefficients of O for the terms in
u(t-2) and u(t-3) but THE COEFFICIENT OF y(t)IS UNCHANGED BY THE
TRANSFORMATION, i.e. THE TRANSFORMATION WILL NOT CHANGE THE
COEFFICIENTS OF THE PROCESS CHARACTERISTIC EQUATION.

The last row of the QDQ-1 matrix is required to be [0.0,0.0,0.8]
to produce the pole required by the model polynomial (A2). Thus

the controller is given by:
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F. = [0.0 0.0 0.3]

u(t-1) = Px'(t-1) = P Qx(t-1)

F.Q = [0.112 0.300 0.038] coe(A11)
This defines exactly the same controller as that described by
equation (A6),allowing for the re-ordered vector. It should be
noted that, because of the structure of the matrices given in
(A10), computation of F, follows immediately the parameters of

equations (A1) and (A2) are known. Only computation of Q is

required to complete the controller given by (A11).

3., Multivariable controller.

A multivariable pole-placing controller will be designed for the

process shown in the flow diagram below (omitting noise terms).

ul o

A 4

For a sampling interval of 1 second and a delay k=2 sampling
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intervals this is described by the difference equations:

1

+

0.368 0.000(q"
0.000 0.368}

0.506 0.242[q™>

A=|10 + [ -1.368 0.582|q
0 1 0.000 0.786
_ -2
B = |[0.708 0.340]q +
0.340 0.340

0.242 0.242

2

c...(A12)

Following the same analysis as for the scalar case the following

matrices may be calculated:

D = 0.
0.
0.
0.
0.
0.
0.
0.

—_

O O O O O

000
000
000
000
000
000
50€
242

0.000
0.000
.000
.000
.000
.000
.000
.000

O O O O O O O O

- O O o

o O O O

.000
.000
.000
.000
.000
.000
.242
242

.000
.000
.000
.000
.000
.000
.000
.000

O O © o O o O

.000
.000
.000
.000
.000
.000
.708
340

0.000
1.000
0.000
0.000
0.000
0.000
0.340
0.340

O O O O O o

.000
.000
.000
.000
.000
.000
.000
.368

o O O O

—_

.000
.000
.000
.000
.000
.000
.368
.000

o O O O o

—_

.000
.000
.00C
.000
.000
.000
.582
.786
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O O O O O

0.535
0.
-0.
-0.
0.
0.
0.
-0.

0.000
0.000
.000
.000
117 0.
071
0.
0.

0.368
0.
0.
0.
0.
0.
0.000
0.

0.000 0.000
0.000 0.000
.000 0.000
.000
.000
.000
.000
.000

1.000
.000
.000
.000
.000

o O O O

.000
.000
.000
.000
000
.045
0.000
0.698

o O O

—_

535
163

0.000
0.698
0.000
-0.497
0.000
0.353
0.000
0.461

163
384
113
276
000
519
000

0.000
0.368
0.000
0.000
0.242
0.242
0.000
0.000

000
000
000
506
242

000

1.000 0.000 0.000 O
0.000 1.000 0.000 O
0.000 0.000 0.000 O
0.000 0.000 0.000 O
0.000 0.000 0.708 O
0.000 0.000 0.340 O
0.708 0.340 1.277 O
0.340 0.340 0.509 O
1.000 0.000 0.000 O
0.000 1.000 0.000 O
0.000 0.000 0.000 O
0.000 0.000 0.000 O
0.000 0.000 -3.615 3
0.000 0.000 3.615 -5
0.000 0.000 3.034 -3
0.000 0.000 -2.034 6
0.000 0.000 3.034-3.
0.000 0.000 -3.034 6
0.000 0.000 0.535 -0
0.000 0.000 -0.535 1
0.000 0.000 -0.385 O
0.000 0.000 0.385 -0
1.000 0.000 -0.723 O
0.000 1.000 0.723 -1
-1.368 0.000 1.000 O.
0.479 -0.786 0.000 1
0.368 0.000 -1.368 O.
0.163 0.368 0.462 -0.
0.708 0.340 0.000 O.
0.340 0.340 0.000 O.
0.470 0.242 0.735 O.
0.206 0.242 0.368 O.

.000
.000
.000
.000
.340 1
.340 O.
.509 1
.509 O

.000 O
.000 ©
.000 O.
.000 O
615 3
276 -3.

.108

535 1
291
.385 1
.922 -1.965
723 2.303
.423 -2.302

.000 O
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.000
.000
.000
.000
277
509
.190
275

o O O O

.000
.000
000
.000
.034
034

.034 -1.454
.108 1

-454

034 -1.454

1.454
.045
.045
.965

-1

000 0.000
.000
.000
.000
.000
.000
.000

.000

000 1
786
000
000
340
340

o O O O O

O O O O O O O o

—_

= 1IC) © @

O O o O

o W O O O o

.00C
.000
.000
.000
-509
-509
275
275

.045
.505
.965
.868
.303
262 |

.000
.000
.000
.000
.000
.000
.000
.000
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e ' = [0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 |
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 -0.%68 0.000 1.366 0.000
0.000 0.000 0.000 0.000 -0.176 -0.368 -0.521 0.786
QE - [ 0.000 0.000 |
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
0.000 1.000

ee..(A13)

Examining QDQ_1 it is apparent that while the coefficients on the
diagonals of the new characteristic polynomial coefficient
matrices are unchanged from those of the original matrices, the
off-diagonal coefficients do change as a result of the
transformation, necessitating the computation of all the matrices

in the multivariable case. Requiring



A,
0.000
¥, - | 0-000
-0.193
FQ - 0.319

1-0.8q""

L

0.000 0.000 0.000
0.000 0.000 0.000

0.000 -0.567 0.000

0.136 0.521 0.013 -0.293 0.086 0.791 -0.076

0 1-0.8q"
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0.366 0.000 -0.567 0.000
0.176 0.369 0.521 0.013

S

0.269 -0.269 -0.587 0.587

....(A14)

Tnis last matrix contains the parameters of the multivariable

pole-placing controller.



Motor signal

Flow (litres/min)

APPENDIX B

Heat Exchanger Response with Three-Term Control
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Hesketh and Chaplin (1981) have described the behaviour of

the heat exchanger process

control of both the self-tuning controller,

reported in this thesis under

and so as to

provide a comparison, two three term controllers, one for

each loop.

The behaviour with the three term controllers

is reproduced here to illustrate the severity of the dist-

urbance which results when the flow through the first heat

exchanger is changed from 15 litres/min to 10 litres/min.

This emphasises the capability of the self-tuning controller.
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FIGURE B]

loop 1 with three-term control
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