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Abstract 

Project 1: Experiments by Piccirilli et al. (Nature, Lond. 343, 33-37 ( 1990)) 

have shown that the canonical RNA genetic alphabet, AUCG (or ATCG in DNA), is 

not the only possible nucleotide alphabet. In this work we address the question 

"Is the canonical alphabet optimal?" Computational tools are used to infer RNA 

secondary structures (shapes) from R A sequences of various possible alphabets, 

and measures of RNA shape are gathered with respect to alphabet size. Then, 

simulations based upon replication and selection of fixed sized RNA populations 

are used to investigate the effect of alternative alphabets upon RNAs ability to 

evolve through a fitness landscape. These results imply that for low copy fidelity 

the canonical alphabet is fitter than two, six and eight letter alphabets. Under 

high copy fidelity conditions, a six letter alphabet out-performed the four letter 

alphabets, which suggests that the canonical alphabet is indeed a relic of the RN A­

world. 

Project 2: on-coding RNA genes produce functional RNA molecules rather 

than proteins. One such family is the H/ ACA snoRNAs. Unlike the related C/D 

snoRNAs, these have resisted automated detection until recently. 

We develop an algorithm for screening the Saccharomyces cerevisiae genome 

for novel H/ ACA snoRNAs. To achieve this, we introduce some new methods to 

facilitate the search for non-coding RNAs in genomic sequences which are based on 

properties of predicted minimum free energy (MFE) secondary structures. The al­

gorithm has been implemented and can be generalised to enable screening of other 

eukaryote genomes. We find that use of primary sequence data alone is insuffi­

cient for identifying novel H/ ACA snoRNAs. The use of secondary structure filters 

reduces the number of candidates to a manageable size. On the basis of genomic 

location data, we identify three strong H/ ACA snoRNA candidates. These together 

with a further 47 candidates obtained by our analysis are being screened experi­

mentally and investigated (along with known H/ACA snoRNAs) using comparative 

genomic analysis. 
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Preface 

Motivation: RNA is a fascinating biopolymer, which is fundamental to all known 

cellular life-forms. It has both a coding role (like D A) and a functional role (like 

protein) in modern organisms. This means genotype and phenotype are encoded 

in the same molecule in contrast to the usual situation as laid out by the "central 

dogma of molecular biology" where genotype is encoded by DNA and phenotype 

is expressed in the form of protein. This has led several evolutionary biologists 

to hypothesise an ancient RNA-world stage in the evolution of modern life. In an 

R A-world R A preceded protein and DNA, by performing both a catalytic and 

carrier of genetic information role for these ancient life-forms. This circumvents the 

"which came first, the chicken or the egg?" problem with the role of chicken replaced 

by protein and egg replaced with DNA (Gesteland & Atkins, 1993; Gesteland et al., 

1999). 

Another R A related field is the study of "Ribonomics" which entails deter­

mining the genomic locations and sequences of functional RNA coding genes. This 

problem has proved difficult to solve, due to the fact that functional RNAs don't 

utilise start-stop codons or conserve sequence information to the same degree as 

proteins. In R A, the only usable signals are generally short protein recognition (se­

quence) motifs and/or a conserved secondary structure. The degree of cellular life's 

reliance upon functional RNA is still largely unknown. Whilst estimates of numbers 

of protein coding genes for many organisms are frequently cited, it is not known 

how many functional RNAs exist, or even the order of magnitude this is likely to 

be. Except for a few specific examples, such as the DNA-protein translators tRNA 

and r R A, few functional RN A groups have been categorised. However progress 

is being made in this direction, particularly now that comparative genomics tech­

niques, are being applied to this problem (Mattick & Gagen, 2001; Rivas & Eddy, 

2001; Dennis, 2002) . 

Thesis Outline: This thesis is comprised of three chapters. Chapter one IS a 

brief review of the current computational R A literature and provides essential 

background material to the rest of the thesis. 

Chapter two consists of an investigation into optimal genetic alphabet sizes. 

It begins with a "Context, Overview and Preliminary Results" section, followed 

by a manuscript which is currently in press, entitled "Optimal Alphabets for an 

RN A-world". 

Chapter three discusses attempts to computationally locate H/ ACA box ( a.k.a. 
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pseudouridylation guide) snoRNA coding genes in Saccharomyces cerevisiae. The 

chapter is primarily comprised of manuscripts. The first manuscript, which is cur­

rently in press, is entitled "A search for H/ ACA snoRNAs using predicted MFE 

secondary structures" and the second (unpublished) manuscript, entitled "Locating 

H/ ACA snoRNAs using a combination of comparative genomics and MFE structure 

prediction", consists of a preliminary investigation of using comparative genomic 

techniques to locate H/ ACA snoRNA coding genes. 

The appendix contains a published account, entitled "R A Folding Argues 

Against a Hot-Start Origin of Life", this is comprised of: (1) experimental work 

I carried out using equipment in the lab of Laurie Creamer at the Dairy Research 

Institute and, (2) a computer-based investigation I carried out into the properties 

of random R A sequences with respect to temperature and base-composition. This 

work is included to provide background material and is not to be examined. 
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CHAPTER 1 

Introductory Material 

1.1 RN A Chemistry 

1.1 . 1  Chemical Structure of RNA 

The biological polymers RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) 

are long strings of monomer units known as nucleotides. Each nucleotide base is 

composed of a base, a sugar and a phosphate group. The sugar and phosphate 

groups form a contiguous unit known as the sugar-phosphate backbone, which 

performs a structural role. In contrast, the information content of the molecule is 

encoded by the order of the different bases attached to the sugar group. 

The sugar-phosphate backbone is linked via a phosphate group joining the 5' 

carbon of one ribose (deoxyribose in DNA) unit and the 3' carbon of the adjacent 

ribose sugar. This imposes a directionality upon the molecule, the free ends are 

referred to as the 5' and 3' ends as one end has an un-bonded 5' carbon and 

the other an un-bonded 3' carbon. Sequences are generally written in the 5' to 3' 

direction (see F igure 1 . 1 ) . 

D A molecules are usually encountered as two complementary strands; R A, 

on the other hand, is often single stranded and can form intra-molecular interac­

tions driven by hydrogen bonding and stacking of paired bases . The most common 

nucleotide bases are cytosine (c), guanine (G), adenine (A) and uracil (U) (replaced 

by thymine (T) in D A), although other bases do exist such as pseudo-uracil ("Ill) 
and the synthetically produced complementary bases K and x (Piccirilli et al. , 

1990) . Bases are often classified as either one or two ringed nitrogenous units called 

pyrimidines (C, U and T )  or purines (A and G) respectively. 

Base-pairs within R A shapes are usually of the canonical Watson-Crick type, 

that are formed by three hydrogen bonds between C and G and two hydrogen bonds 

between A and U. "Wobble" pairing can also occur, this is a non-canonical pairing 
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Figu re 1 . 1 : A polyn ucleotide seq uence consist ing of a series of 5'- 3' suga r-phosphate 
l i n ks , forming a backbone from which nucleotide bases can protrude. I n  DNA, R 1 and 
R2 are -H and -CH3 respectively, whereas i n  RNA they are -OH and -H respectively. 
Hence the R1 grou p is the reason DNA is ca l led deoxyri bonucleic acid compared to 
ri bonuc leic acid and  DNA uses the base thym ine whereas RNA uses u raci l . 

between G and U that is often found in R;\A secondary structure. Probes of R;\A 

structure using X-ray diffraction, ;\MR and thermodynamic studies have revealed 

other non-canonical ( rare) pairings such as G with A, and U with C. 

1.1.2 Primary, Secondary and Tertiary Structure of RNA 

R N  A structure can be classified at 3 different levels of information content. The 

primaT'Y structure of an R A refers to the nucleotide sequence for that R NA .  

Secondar'Y structure refers to regions o f  self complemcntarity that an R N  A can 

for m  with itself. The definition of secondary structure is often restricted to nested 

bas -pairs ( non-nested interactions are known as "pseudo-knots" and are discussed 

further in section 1 .2 .1) and canonical plus wobble base-pairs and can be represented 

as a planar tree-like structure ( figure 1.8B) . Finally, tertiaT"!} structure of an RNA 

refers to the spatial arrangements of all elements of the RN A in three dimensions 

(see figure 1.2 for a graphical representations of primary, secondary and tertiary 

RNA structure). 
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Figure 1.2: Pr imary, secondary and tertiary structures of yeast phenyla lan ine tRNA. 
A: The sequence was obta ined from "The Genomic tRNA Database" ( Lowe & Eddy, 
1997b; Lowe, 2002). B: The secondary structure was i n ferred from an  a l ignment of 
yeast tRNA-PHE seq uences by RNAalifold (Hofacker et al., 2002), c i rcled bases indi­
cate neutra l mutations with respect to the displayed secondary structure. Pseudo-knots 
a nd non-canon ica l  base-pa i rs are i ndicated with a dashed l i ne connecti ng squared bases 
(Sundara l ingham & Rao, 1975). C: A cartoon representation of tRNA tertiary struc­
ture, based upon tertiary structures obta i ned from the Protei n  Data bank  Bank ( I D  
6TNA,1EHZ ) (Kim et al., 1974; Sh i  & Moore, 2000) .  

1 . 1 .3 Functional RN A s  

Preliminaries 

For the following discussion we will define a functional RNA (fR A) as any RNA 

performing a function other than encoding a protein or viral genome, i.e. it is func­

tional in its own right . Most fR As can be classified as either ribozymes and/or 

non-coding RNAs (ncRNAs). ncRNAs are cellular RNAs that perform a func­

tion other than encoding a protein. Classic examples of ncRNAs are the cellular 

translation apparatus formed in part by ribosomal R A (rR A) and transfer RNA 

(tRNA). This nomenclature is not universally agreed upon, ncR As have also been 

referred to as non-messenger RNA (nmRNA), non-protein-coding RNA (npcRNA) 

and possibly others . 
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snoRNA 
tmRNA 

si RNA 
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Figure 1.3: We wi l l  defi ne a functional RNA (fRNAs) as any RNA perform ing a 
function  other than encoding a prote in  o r  vira l  genome. Most fRNAs can be classified 
as at l east one of the 2 groups known as ri bozymes and/or non-coding RNAs (ncRNAs) . 
A few examples of each group are shown. 

Non-coding RN As 

Perhaps the most commonly h. 1wn and best characterised ncRNA is transfer 

RNA (tRNA), which, along with ribosomal RNA, is integral to protein synthesis. 

tRN A serves as an adapter molecule that translates protein coding genes from the 

4 letter nucleotide alphabet to the 20 letter protein alphabet. It has a character­

istic clover-leaf secondary structure and an L-shaped 3D structure, as pictured in 

figure 1 . 2B & C. 

Ribozymes: enzymatic RN A 

RNA was once thought to be a passive carrier of genetic information for viruses and 

as an intermediate during the translation of protein from DNA, however it is now 

known that some RNA molecules (ribozymes) are catalytically active. Examples 

of ribozymes which catalyse key cellular reactions are : the hammerhead ribozyme, 

ribonuclease P, self-splicing introns, hepatitis delta virus and the hairpin ribozyme 

(see Doudna & Cech, 2002 for an excellent discussion of these). In particular the 

ribosome itself is basically an RNA enzymatic machine (Nissen et al. , 2000) . 

In addition to "naturally" evolved ribozymes laboratory experiments have used 

a procedure known as SELEX (Systematic Evolution of Ligands by Exponential 

enrichment), to produce artificially evolved ribozymes by using successive rounds 

of affinity chromatography (selection) followed by polymerase chain reaction (PCR) 

(amplification) (Therk & Gold, 1990; Gesteland & Atkins, 1993; Szostak, 1993). 



5 1 . 1  RN A Chemistry 

1.1.4 The Central Dogma and functional RN As 

The historical "Central Dogma of Molecular Biology",  first posed in the early 1950s 

(Gesteland & Atkins, 1993), states that a DNA encoded gene is transcribed into 

messenger RNA (mRNA), which is subsequently translated into protein (See F ig­

ure 1.4). In general this concept holds, but is not the complete picture. There are, 

as yet, an unknown number of RNAs which do not serve a coding role, they are 

functional transcripts in themselves (Eddy, 2002). In addition, the dogma implies 

that each each gene has a single corresponding gene product, the discovery of "al­

ternative splicing" whereby introns (non-coding regions of a gene) are spliced in 

variable patterns also contradicts the dogma (Modrek et al. , 2001). 

Replication 

ONA 
T''""'ptioo Translation 

RNA----�Protein 

Figure 1.4: The Centra l Dogma of Molecu lar B iology: genes a re perpetuated as se­
q uences of nucleic acid, but usua l ly function by being expressed in the form of proteins 
(Gesteland & Atkins , 1993). 

Perhaps an adjustment to the Central Dogma which distinguishes between mes­

senger RNA (mRNA) and functional RNA (fRNA) would be useful (Dennis, 2002; 

Mattick & Gagen, 2001). By adding an extra branch to the diagram we illustrate 

that gene products may also be functional R As (See F igure 1.5). R As often need 

maturing in the form of covalent modification of certain key nucleotides. For exam­

ple mature ribosomal RNAs and transfer R As (rRNAs and tRNAs are an integral 

part of the cells machinery for synthesising protein) have a number of methylated 

ribose sugars and uridine isomers known as Pseudo-uridine (this is discussed further 

in Chapter 3). 

Translation 
mRNA----� Protein 

(transcription) 

Replication 

ONA 
RNA Processing 

fRNA 

Figure 1.5: The modern centra l dogma of Molecu lar Biology: genes are perpetuated as 
seq uences of nucleic acid, which function by being expressed in the form of proteins or 
matu re functiona l RNAs (Dennis, 2002; Mattick & Gagen, 2001). 
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Prebiotic Environment 

RNA World I 
Origin of Protein Synthesis I 

Origin of DNA 

I 
LUCA 

/A 
Bacteria Archaea Eukaryotes 

Figu re 1.6: A hypothetica l series in the origin of l i fe that incl udes an R NA-World stage, 
adapted from (Poole et al. ,  1999). 

1.1.5 The RNA-world 

The original hypothesis that RNA based evolution may have preceded DNA/protein 

synthesis , upon which current biota rely, was first proposed in the late 1960s by a 

number of d ifferent groups (Woese , 1967; Crick , 1968; Orgel , 1968). The subsequent, 

startling discovery that RNA has catalytic abilities (Kruger et al., 1982; Cech, 1986; 

Cech , 1987) has added significant weight to the theory and led to the coining of the 

term "the R A world" (Gilbert, 1986). 

All RNA-world hypotheses rely upon two basic assumptions; firstly that R A 

preceded protein as the main macro-molecular catalyst, and secondly that RNA 

preceded DNA as the main informational molecule. Hypotheses differ over aspects , 

such as , what forms pre-R A-world l ife may have taken (Joyce , 2002), the metabolic 

complexity of the RNA-world (Spirin , 2002), and the roles of various RNA cofactors 

(White , 1976; Jadhav & Yarus, 2002). 

An interesting corollary of this theory is that many of the metabolically active 

RNAs of today 's organisms may be relics or molecular fossils from the RNA-World 

(Poole et al., 1998; Jeffares et al., 1998). Additionally, it appears that the RNA­

world hypothesis is not compatable with the currently held belief that life originated 

in under-water volcanic vents. This is due to the fact that RNA cannot maintain 

a stable, active tertiary structure at high temperature, this is discussed in more 

detail in Appendix I (Moulton et al . ,  2000a). 
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1.2 RNA Informatics 

1.2.1 RNA Secondary Structures and Structural Elements 

Definitions. 

The primary structure of single stranded ribonucleic acid (RNA) is represented 

by a l inear sequence of the symbols S = s1s 2  · · · Sn, where each si  is one of the 

nucleotides A, U, C or G (although other bases do occur they are rare and usually 

ignored). The sequenceS is the primary structure of the RNA molecule. Recall that 

the bases can also form base-pairs, the Watson-Crick pairs are A w ith U, and C with 

G.  Additionally wobble G with U pairs are frequently allowed, other pairings exist 

but are infrequent and are ignored in preliminary investigations. 

RNA secondary structure is frequently represented as a planar graph (see F ig­

ure 1.8A, for an example), these satisfy a few basic criteria. 

DEFINITION 1 (RNA SECONDARY STRUCTURE GRAPH) An RNA secondary 

structure graph consists of an ordered set of vertices (a1a2 ···an )  which represent 

bases, and edges (aiaj) which represent adjacencies within the nucleotide sequence 

and hydrogen bonds between complementary bases. The adjacency matrix A of the 

secondary structure graph must satisfy the following constraints ( Waterman, 1995; 

Hofacker et al., 1998) : 

1. a i,i+l = 1 for 1 :::; i � n - 1 (This represents the sugar-phosphate backbone of 

RNA ) .  

2. V i there is a t  most one k =1- i ± 1 satisfying a ik = 1 (Nucleotide s i  and s k  are 

said to be paired). 

3. V a ik = 1 {k =1- i ± 1) then lk - il > 3 (Paired bases must be at least 3 
nucleotides apart due to torsional constraints on the backbone) .  

4. If aij = akl = 1 (i < j, k < l )  and i < k < j then k < l < j (This is the "no 

pseudo-knot" criterion that forces all base-pairs to be nested (see figure 1. 7 
for some example pseudo-knots) ) .  

A vertex k is interior to the base-pair ( i ,  j) if i < k < j ,  furthermore if there 

exists no base-pair (m, n) such that i < m < k < n < j then k is said to be 

immediately interior to ( i ,  j). 

DEFINITION 2 (THE COMPONENTS OF RNA SECONDARY STRUCTURES) 

RNA secondary structures can be decomposed into stacks, loops and external 

elements (Hofacker et al., 1998) . 
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A 

B 

Figure 1 .7: Two examples of non-nested base-pa ir ing, usua l ly ca l led pseudo-knots. A 
is an  example of a "simp le pseudo-knot" , B is ca l led the "kiss ing ha ir-pin s". These 
are examp les of structures that are not represented in a standard secondary structure 
graph .  

1.  A stack consists of nested, consecutive base-pairs. With indices satisfying. 
i < j and (i, j),(i + l,j 1 ),··· ,(i + k,j- k) and k:; �(j- i- 3). The 
length of the stack is k + 1 and the edge ( i, j) is the terminal base-pair of 

the stack. 

2. A loop is defined as a seqv.ence of consecutive, unpair-ed ver-tices immediately 

·interioT to a base-pair-. 

S. An external vertex is any unpaired verte:r: not contained in a loop. Consec­

utive external vr:Ttices aTe called external elements. 

LEMMA 1 (UNIQUE SECONDARY STRUCTURE DECOMPOSITIO!'." ) Any secondary 

str·uctuTe S can be uniquely decomposed into extenwl elements, loops and stacks 

(Ho.facker et al., 1g98). 

Proof. Each vertex involved in a base-pair belongs to a unique stack. All un­

paired vertices are either interior or exterior to a base-pair. Interior unpaired ver­

tices must belong to a loop, likewise exterior vertices must belong to an external 

element . Since each stack, loop and external element is unique, the decomposition 

is also unique. 

DEFINITION 3 (CHARACTERISATION OF LOOPS) The degree of a loop is defined 

as l+k, where k is the number of teTminal base-pairs that are internal to the closing 

base-pair (Hofacker et al ., 1998). 

1. Loops of degree 1 are called hairpin loops (H). 
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2. Loops of degree 2 are divided into two groups. Consider an external base-pair 

(i, j) and an internal base-pair (i + p, j - q), (i < p < q < j), where p and q 

are non-negative integers and vertices i + 1, · · · , i + p -1 and j -1, · · · , j- q + 1 

are unpaired. 

(a) A bulge (B) occurs when exactly one of p or q is equal to zero. 

(b) An internal loop (I) occurs when both p and q are greater than zero. 

3. Loops of degree 3 or more are known as multi-loops (M) . 

See Figure 1.8A for a graphical representations of characteristic loops. 

Representations of Secondary Structure. 

DEFINITION 4 (CLASSICAL REPRESENTATIONS) The nodes represent nucleotides , 

the edges (ai, ai+1) represent the sugar-phosphate backbone, all o ther edges represnt 

a base-pair. (see Figures 1. BA, C 8 D). The representation in Figure 1. BA is the 

more commonly used representation by biologists , representations in figures 1. BC & 
D have been used by theoreticians in the field for showing how a base-pair divides 

an RNA (for example , Waterman (1995)). 

DEFINITION 5 (TREE REPRESENTATION(S)) There are a variety of ways to rep­

resent RNA secondary structures as trees (Hofacker et al., 199B; Moulton et al., 

2000b) . Some compress substructures into single la be led vertices , which is equiva­

lent to the coarse-grained representations discussed on page 11. In figure 1. BB the 

secondary structure is translated into a rooted tree embedded in the plane. An ad­

ditional node (the diamond) is introduced in order to root the tree and a base-pair 

( i, j) is represented by a vertex x such that the children y1, · · · , Yk of x correspond 

to the base-pairs (i1, ji) · · · , (ik, Jk) immediately interior to (i, j). Unpaired vertices 

are leaves added to the vertex representing the closing pair of the loop containing 

the unpaired vertex. The tree representation is often used by people wishing to em­

ploy known tree results for secondary structure analyses. For example , tree metrics 

can be used as a measure of distance between secondary structures (Moulton et al., 

2000b) 

DEFINITION 6 ( DOT-BRACKET REPRESENTATION) This is a string of n paren­

theses and periods. A base-pair between nucleotides i and j is indicated by an open 

b racket ' ( ' at position i and a close bracket ') ' at position j. Unpaired nucleotides 

are indicated with a period '. ' (Hofacker et al., 1994) (See Figure 1. BE). This rep­

resentation is particularly suited for storage on a computer. 
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. . .  (((( . .  ((((( .((( . . .  ))) . .  ))))) . (((((((( . . . . .  ))) . .  ))))) . . .  )))) . . .  

F 

G H 
( ( ( ( ( (H)S) I)S)( ( ( (H)S)B)S)M)S) ( ((H) I)( (H)B) M) 

Figu re 1.8: Equ ivalent representations of an  RNA secondary structu re .  A: is genera l ly 
known as the "biological representation" and is the most common ly used representation .  
C and D: a re circ le a nd arch representations respectively of th is structure, note that 
representations A, C a nd D are isomorphic to each other. B: is a tree representation ,  
i nterna l  nodes indicate a base-pa i r  and leaves a re u npaired pos itions. The diamond­
shaped node is added to mainta i n  a rooted tree for structu res with externa l  e lements. 
E: is the dot-bracket notation, i n  which base-pa i rs are i ndicated by match ing paren­
theses in corresponding  positions in the stri ng, a nd unpa i red positions are indicated by 
periods. F:  is the mounta in plot representation. The mounta i n  plot corresponds wel l  
with the  dot-bracket notation. The plot i s  incremented by one for an  open ing bracket 
' ( ' , a nd decremented by one for a clos ing bracket ') ', otherwise the plot rema ins at 
the same he ight. G a nd H: are coarse-grai ned representations of the secondary struc­
tu re. Loops are condensed to their type (thus ignori ng size i nformation ) : ha i rp in (H), 
i nterna l  (1), bu lge (B) ,  mu lti-loop (M) and stack (S) . Since each loop is enclosed by a 
stack th is i n formation is often considered redundant a nd not i ndicated, which produces 
representation H. 
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DEFINITION 7 (MOUNTAIN PLOT REPRESENTATION) The bracket notation leads 

naturally to the mountain representation (see equation 1. 1 and figure 1. BE f3 F). 

This is a two-dimensional graph consisting of the points with x-coordinate k corre­

sponding to the k th nucleotide and y -coordinate Yk a count of the number of base­

pairs enclosing this nucleotide (Hogeweg f3 Hesper, 1984) (See figure 1. 8F). The 

mountain representation is useful for visualising and comparing structures (see fig­

ure 1. 2. 4 for an example), it has been used to derive a metric (Moulton et al., 

2000b) and also used to search genomic sequences for related secondary structures 

(section 3. 2) . 

Yo =0 
={ Yk + 1 if sk ='(' 

( 1 . 1 )  
Yk+t Yk -1 if sk =')' 

Yk otherwise. 

DEFINITION 8 (COARSE-GRAINED REPRESENTATION(S)) For many applications 

it is useful to ignore some of the data displayed in standard secondary structure 

representations. Coarse-grained representations, which, do not retain the full infor­

mation of the secondary structure are displayed in figure 1. 8G. This condensed form 

represents loops and stacks as a single character: 'H' for hairpin a loop, 'I' for an 

interior loop, 'B' for a bulge, 'M' for a multi-loop, and 'S' for a stack (Shapiro, 

1988) . A more compressed representation (shown in figure 1. 8H), is possible. This 

is obtained by considering only the loops, as each loop is always closed by a stack 

the 'S' is a redundant character for this form (Hofacker et al., 1994) . 

1 . 2 . 2  RNA Shape-Space 

Here we discuss a few generic properties of the mapping from RN A sequences 

to secondary structure. First, some new terminology needs to be introduced : The 

set of all sequences of a fixed length N, generated from a given alphabet (AUCG for 

example) is called sequence-space; The corresponding set of all secondary structures 

of fixed length ( N) is refered to as shape-space. Most of the following discoveries were 

found via a brute-force/exhaustive enumeration approach to explore the nature of 

the sequence to structure mapping (Gri.iner et al. , 1996). 

1. One shape, many sequences: R A sequence-space is significantly larger 

than RNA shape-space. The cardinality (size) of sequence-space is 4N (where 

N is the sequence length). By considering the dot-bracket alphabet, the car­

dinality (size) of shape-space has an upper bound of 3N. However, each left 
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parenthesis must have a corresponding right parenthesis, and if pseudo-knots 

are ignored, the brackets must also be nested, these considerations lead to 

a tighter upper bound, CN, the Nth term of the series called the Catalan 

Numbers (see equation 1.2). These bounds do not incorporate limitations on 

minimal stack and loop size. Recursions and generating functions which incor­

porate these have been used to show that the cardinality of R A shape-space 

is given by SN (see equation 1.3) (Schuster et al. , 1994; Waterman, 1995; Ho­

facker et al. , 1998). Analysis of results from exhaustive minimum free energy 

(M F E ) folding of sequences of a fixed length show that the number of shapes 

actually used is considerably lower than this upper bound (Griiner et al. , 

1996). 

SN rv 1.4848 X N-;3 X (1.84892)N 

(1 .2)  

(1.3) 

In conclusion, R A sequence-space grows by a factor of 4 for each base added 

to the length, however, RNA shape-space only grows by "' 2 for each added 

base. This means there are many more sequences than shapes and therefore 

many sequences are mapped to the same shape. 

2. Common shapes: On average there are �: sequences for each unique sec­

ondary structure, but some secondary structures occur more frequent than 

others. A common structure is defined as any structure that occurs more fre­

quently than the expected average. Analysis of results from an exhaustive enu­

meration search of a coarse-grained shape-space for all GC derived sequences 

of length 30 show that common structures form approximately 10% of the 

total shapes encountered, yet a total of 93% of the sequences fold into these 

structures (Griiner et al. , 1996; Fontana, 2002). 

3. Neutral Networks: These consist of sequences of the same shape which 

differ by 1-2 point mutations. Near est neighbours can "percolate" throughout 

sequence-space. Paths of structure-neutral mutations traverse sequence-space 

(see figure 1.9), thus a primary sequence can be completely altered but the 

same shape maintained (Schuster, 1993). 

4. Shape-space covering: Any random sequence has neighbours within a small 

distance (a Hamming distance for example, see section 1.2.3) of itself which 
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Figure 1.9: A neutral network linking common shapes. Sequences differing by a Hamming 
d istance of 1 (or 2)  from each other frequently map to the same common shape. Con­
sequently path s  of shape neutral m utations trave rse much of sequence-space (Schuster, 
1993; Fontana , 2002) . 

fold into all the common shapes (see figure 1. 10 for an illustration of this con­

cept) . For random sequences derived from the AUCG alphabet of length 100 

an average of 15 mutations was sufficient to recover all the common shapes 

(Schuster et al., 1994; Griiner et al., 1 996). This result is supported by an in­

teresting laboratory demonstration: Two structurally and enzymatically un­

related ribozymes class III self-ligating ribozyme and an HDV self-cleaving 

ribozyrne) had, within approximately 40 mutations of each other a novel ri­

bozyme that performed both catalytic tasks (Schultes Bartel, 2000). So not 

only are there "short" paths through sequence-space between different shapes 

there are also paths through sequence-space connecting functional elements. 

1.2.3 Metrics on RNA structures 

Measuring the degree of difference between different RNA structures is a useful tool 

for exploring properties of RNA shape-space .  In the special case of RNA primary 

sequences of the same length a natural measure is the Hamming metric .  This is 

a count of the number of positions in which two sequences of equal length differ 

(Hamming, 1950). In other cases an alignment cost is often computed (Waterman, 

1 995; Durbin et al. , 1998). For tertiary structures a minimised 'root mean square' 

(RMS) distance is generally used (Lesk, 1991). 

Ways to compute metric distances between RNA secondary structures are less 

obvious. If the structures are inferred from sequences of the same length and are in 

dot-bracket notation then the Hamming metric can be used. 
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Sequence Space Shape Space 

F igure 1. 10 :  An outl i ne  of the map from RNA sequence to shape, any random sequence 
has a ba l l  of neigh bours wh ich map to ( a lmost) a l l  com mon shapes (Schuster, 1993; 
Fontan a ,  2002) .  

A useful, but coarse metric, is the base-pair metric, this is defined as the cardi­

nality of the symmetric difference of the sets of base-pairs in 2 secondary structures, 

i .e. the number of base-pairs the structures do not have in common. 

Other popular methods to use are tree metrics, a tree representation of a sec­

ondary structure (T1) is transformed into another tree (T2) via a series of edit op­

erations such as node insertion/ deletion which have a predefined (often arbitrary) 
cost. dynamic algorithm has been developed to compute the mini­

mum cost an edit-path between any two trees (Shapiro, 1988; Shapiro & Zhang, 

1990) . The advantage of tree metrics is that structures of different lengths can 

be compared. Additionally, coarse-grained structures can used if global rather 

than local properties of shape-space are more relevant. A disadvantage of using tree 

metrics is that can be time consuming to compute for long sequences. 

Another metric that has proved useful is the mo·untain metric (Moulton et al., 

2000b; Edvardsson et al. , 2003) , these are essentially RMS values computed between 

the mountain plot representations of different secondary structures. For example, 

the mountain metric dM(A, B) between two structures A and B with corresponding 

mountain plot values and yf, ( 1 :S: i :S: is given by: 

N 
dM(A, B) := l)Yf- yf)2 

i=l 
(1.4) 

A flaw in this method is that additional external base-pairs are penalised sig­

nificantly more than extra internal base-pairs. A "fix" which is supposed to buffer 
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the effect of this problem is proposed in Moulton et al., (2000) , where a modified 

mountain plot is used to calculate the metric (compare equations 1.1&1.5). Unfor­

tunately, this seems to make little to no difference in many cases. For example, if 

A = ( ( ( ( ( ... ) ) ) ) ) and Ain = ( ( ( ( ..... ) ) ) ) is the same structure as A except 

with the innermost base-pair deleted and Aout =. ( ( ( ( ... ) ) ) ) . is A except the 

outermost base-pair is deleted, then the percent difference between dM(A, Ain) and 

dM(A, Aout) in both the fixed and unfixed versions is 53.6%. Ideally, a secondary 

structure metric (such as the Hamming and base-pair metrics) would return a per­

cent difference between d(A, Ain) and d(A, Aout) of or near zero. 

Advantages of the mountain metric are that it is fast and easy to compute, easy 

to implement, and rescaling can be used to compare structures of different lengths 

(Edvardsson et al., 2003) . 

Yo = 0 

Yk+I ={ 
1 

Yk + lk-!1 
1 

Yk- lk-tl 
Yk 

if k · l is a base-pair and k < l .  

if l · k is  a base-pair and k > l .  

otherwise. 

1 . 2.4 Prediction of RNA Secondary Structure 

Preliminaries 

(1.5) 

A current problem in bioinformatics is to computationally determine the secondary 

and tertiary structure of any R A sequence. Secondary and the resultant tertiary 

structures determine the function of the molecule, as has been shown by crystallo­

graphic studies of tRNAPhe (Kim et al., 1974). 

The folding of the one-dimensional primary structure into the three-dimensional 

tertiary structure can decomposed into two steps: 

1. Formation of the R A secondary structure by the Watson-Crick base­

pairings, G-C, A=U, and the weaker G-U pairs. 

2 .  Folding of the planar secondary structure into a three-dimensional tertiary 

structure in the presence of divalent metal ions such as Mg2+. 

The driving-force behind secondary structure formation is the stacking of base­

pairs. The formation of an energetically favourable stack base-pair (helical) region, 

however, also implies the formation of an energetically unfavourable loop region. 

This "frustrated" energetics leads to a vast number of helix and loop arrangements 

(Wuchty et al., 1999). 
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Secondary structure conservation is sufficient for maintaining an active tertiary 

structure. This is supported by well documented conservation of secondary structure 

in evolution (Griiner et al. , 1996; Sankoff et al. , 1978; Zuker & Le, 1990) . Thus 

a good point to begin the study of RN A structure is at the level of secondary 

structure. 

There are two dominant methods for inferring the secondary structure of R A :  

Comparative sequence analysis (Woese & Pace, 1993) and the minimisation of free 

energy (Zuker, 2000) .  Hybrids of these two methods have also been successful for 

some examples (Witwer et al. , 2001 ;  Hofacker et al. , 2002) . 

Comparative rather than energy methods , are more robust for large RNA 

molecules (Akmaev et al. , 2000; Le & Zuker , 199 1 ) .  However, using phylogenetic 

information to predict the secondary structure of RNA relies upon a sequence align­

ment and knowledge of the consensus secondary structure of homologous RNAs. 

This alignment step often requires labour intensive manual intervention (Woese 

et al. , 1983 ) .  

Often homologous RNA sequences (or structures) are unavailable, thus ren­

dering comparative techniques impotent. Hence the need for energy minimisation, 

which currently relies upon thermodynamic parameters and dynamic programming 

(or stochastic context free grammars) , to determine minimum and near minimum 

free energy secondary structures. 

Secondary structure prediction for a single RNA sequence 

Maximum Base-pairs: There are many ways to infer a secondary structure from 

a given RNA sequence , one of the simplest methods is to maximise the number of 

base-pairs (Waterman, 1995) .  Unfortunately the solution is not usually unique. For 

example , the phylogenetically inferred secondary structure of the 77 nucleotide his­

tidine tRNA (tRN A his ) has 22 base-pairs , but Waterman's algorithm finds 149126 

different secondary structures with 26 base-pairs (Wuchty et al. , 1999; Fontana , 

2002) . 

Minimum Free Energy (MFE) : Since RN A molecules comply to the laws 

of thermodynamics , it is theoretically possible to deduce the structure of an R A 

molecule from its sequence by locating the conformation with the lowest free energy. 

The advantage of this approach is that it does not require a multiple sequence 

alignment. 

Experimentally derived energy parameters are available for the contribution 

of an individual loop as a function of its size, its delimiting base-pairs , and the 

sequence of the unpaired bases. These are usually measured for T = 37°C and 

1M sodium chloride solutions. For the base-pair stacking the enthalpic (.6.H) and 
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entropic (L�S) contributions are known separately. Contributions from all other 

loop types are assumed to be purely entropic. This allows one to compute the 

temperature dependence of the free energy (6.G) contributions : 

6.G stack = 6.H37 stack - T 6.S37 stack , , 

6.Gtoop = -T 6.S37,toop 

Parameter Estimation: From studies of oligoribonucleotides Tinoco et al (1971)  

were among the first to experimentally estimate thermodynamic parameters for 

RNA secondary structure prediction . These values have recently been updated 

(Antao & Tinoco, 1 992; Mathews et al. , 1999) . An alternative to using laboratory 

techniques to determine thermodynamic folding parameters, is to use known biolog­

ical structures, and vary algorithm parameters until the correct secondary structure 

is predicted (Papanicolaou et al. , 1984) .  

I t  is not feasible to study the thermodynamics of every possible sequence and 

compatible structure ,  so a simplified model is necessary to estimate the folding 

properties of all sequences from data obtained using a limited number of sequences. 

The most popular thermodynamic model is the nearest neighbour model. Since 

hydrogen bonding and stacking are both short range interactions, the stability is 

assumed to depend only on the identity of the adjacent pairs (Borer et al. , 1974) . 

This model has been experimentally validated as a reasonable approximation for 

many cases (Kierzek et al. , 1986 ) .  The free energy contribution of loops and bulges 

are more difficult to estimate. Originally these regions were assumed to be solely 

dependent upon the number of unpaired nucleotides the loop contained. However 

the discovery of unusually stable tetra-loops (4-base hairpins) GNRA and UNCG have 

shown that this model needs expanding (Antao & Tinoco, 1992) .  

In 1981 M. Zuker and P. Stiegler published a recursive algorithm for obtaining an 

optimal folding for "large" R A sequences, the algorithm utilises thermodynamic 

parameters . It starts a systematic search in all sub-fragments for the lowest free 

energy structure containing at least one base-pair. The first pass will calculate the 

MF E structures of all possible subsequences of length 5 ,  the second pass will use 

these previously calculated values to find the MFE of all subsequences of length 6 .  

The algorithm is incremented until the MFE structure of the entire sequence has 

been calculated. The lowest free energy structures are calculated, for each fragment, 

with and without the constraint that the terminal nucleotides are paired, and stored 

in the matrices V and W .  
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( 1 .6) 

( 1 . 7) 

Where H(i , j ) ,  S(i , j ) ,  B (i , j ) ,  and M(i, j )  are functions that return free energy 

values dependent upon whether the base-pair between nucleotides i and j closes a 

hairpin loop, a stacked pair, a bulge/internal loop or a multi-loop respectively. This 

algorithm has been implemented in MFOLD (Mathews & Turner , 1999; Zuker et al. , 

1999) and RNAfold (Hofacker et al. , 1994) . 

The advantage of this algorithm over other methods is speed, but to keep the 

algorithm computationally feasible several simplifications had to be made. For ex­

ample, tertiary interactions such as pseudo-knot formation are ignored and only 

"nearest-neighbour" interactions are evaluated. A recent algorithm utilising a re­

cursive stoch&stic context free grammar (SCFG ) developed by Elena Rivas and Sean 

Eddy is now available which predicts pseudo-knots for short (::::; 100 nucleotides) 

RNA sequences (Rivas & Eddy, 2000b) . 

There are some problems associated with using MFE methods to predict RNA 

secondary structure. For example, the energy parameters which the folding algo­

rithm relies upon are inevitably imprecise . Hence, the true MFE structure might 

be one that is suboptimal with respect to the parameters used. In addition the 

ological structure may not be the MFE structure due to unknown constraints that 

may change relative energies, turning an otherwise suboptimal structure into the 

favourable one. Also, under physiological conditions sequences may m 

alternative states whose energy difference is small (Giegerich et al. , 1999) . 

A - c  } 
I \ 

U G L 
\ I 

A - U  } 
I I S ,  

C- G  } 
I I Sz 
u-- A } 
I I s3 

G- C 

Free Energy = L + S,+ 82+ S, 
= 3.45 - 0.55 - 4.05 - 0.55 
= -1 .70 kcal/mol 

Figure 1 .11 :  An example of how the free energy of an RNA sequence and structure is 
computed . 
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Secondary structure prediction using an alignment of RNA sequences 

Background: Comparative sequence analysis has been immensely successful in 

predicting secondary structure of functional R A molecules. It was used to predict 

the structure of tR As, rR As, and a number of ribozymes (Dirheimer et al. , 1995; 

Pace et al. , 1989; Woese & Pace, 1993). This form of analysis can be used to predict 

secondary structure pairings , and even some tertiary interactions . Many results are 

later verified when the structure of the molecule is solved using X-ray diffraction or 

nuclear magnetic resonance (NMR). For example the crystal structure of yeast Phe­

tRNA when solved by X-ray diffraction verified all predicted secondary structure 

interactions (Kim e t  al. , 1974). More recently the structure of P RNA has been 

predicted u ing this approach (Parsch et al. , 2000) . Several new structural elements 

such as pseudo-knots, non-canonical pairings and tetra-loops were proposed on 

the basis of comparative analysis, and have been substantiated by high-resolution 

experimental methods (Antao & Tinoco, 1992). 

Constraints upon secondary structure can be revealed by compensatory base 

changes. When a point mutation occurs in a double stranded region (which will 

generally be disadvantageous to the organism) then the process of natural selection 

ensures that those organisms preserving the original (better) secondary structure 

either through a reversal or compensatory mutation will have a better chance of 

surviving to the next generation (Parsch et al. , 2000) . 

Mutual Information Content : In order to detect compensatory mutations 

the Mutual Information Content ( H (m, n) )  of two columns m and n in an alignment 

is calculated. The frequencies of each base (Bi E {A,U,C,G}) in column m, fm(Bi )  
and column n, fn (Bj)  are counted, i.e. {fm (A) , fm (U) , fm (C) , fm(G) } .  Additionally, 

the joint frequencies of each combination of two nucleotides in positions m and n 

(and row k) of the alignment are also counted, fm,n (Bi , Bj ) ·  If the base frequencies 

in any two columns are independent of one another, then hmn is expected to equal 

1, otherwise hmn is expected to be greater than 1. Where, h is : 

(1.8) 

If columns m and n are perfectly covarying then fm,n (Bi ,  Bj ) = fm(Bi )  = fn (Bj )  
and if columns m and n are completely independent then fm,n (Bi , Bj ) = fm(Bi )  x 

fn(Bj ) ·  The mutual information content between columns m and n in bits is thus 

defined as: 

H(m, n) = 2::: fm,n (Bi , Bj ) X log2{hmn} ·  (1.9) 
B; ,Bj 
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The terms of H(m, n ) are 0 when there is no correlation between columns m 
and n and increase ( in absolute value) depending upon how well correlated m and 

n are and upon the number of sequences in the alignment (Durbin et al. , 1998; 

Mount, 2001; Eddy & Durbin, 1994; Gorodkin et al. , 1997) . 

RN Aalifold, A Hybrid Method :  Recently a group based in Vienna had some 

success with combining MFE and comparative approaches to secondary structure 

inference upon "sufficiently divergent" RNA sequences (Hofacker et al. , 2002) (see 

figure 1.2 .4) . The basic approach Hofacker et al. , (2002) have implemented is to 

condense an input alignment to a consensus sequence and use standard MFE folding 

upon the consensus sequence, the difference is in the evaluation of the cost function, 

bonus scores are given to those base-pairs where compensatory mutations have 

occurred. The method works well for RNA alignments which are sufficiently close for 

them to be aligned using standard algorithms (CLUSTALW for example (Thompson 

et al. , 1994) ) ,  but divergent enough that compensatory mutations can be observed 

in the alignment. 



A Known, MFE, alifold and Mlfold structures for a fragment of SSU rANA B 
80 

70 

60 

50 

40 

. 

� f ... � : :  
• : I : 

.. Il l 

_i \J-• :. : . L ._. 
-.. - :; 

1 1 80 1 280 1 380 1 480 

/"\ 
·, 

1 580 

- t\nown ::itructure 
" " "  MFE Structure 
- RNAalifold Structure 
- - Mlfold 

1 680 1 780 1 880 

,.--------- Schizosaccharomyces pombe 

Candida albicans 

Saccharomyces cerevisiae 

Underwoodia columnaris «.'f�· rb-0 c,0 
�� 

'!'--.0� rb-Aspergillus clavatus 

Rhizopus microsporus 

Monoblepharella mexicana 

�C:Jrl>-000 ov v0 �o c; �.-s rb--s�-�c; 
Cyanophora paradox� 0'9"-�,o\0 . rb-
Coccolithus pelagicu� V:-��v �� c§<.r 0 
Ammonia beccarii ==:J S� ,o 0 
Amblyospora connec� �c; rb-�'li-
Amblyospora sp. __j . 'i$-� 
Plasmodiophora brass� .:S.�" 
Spongospora subterra� 
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cerevisiae SSU rRNA ( nucleotides 1 179 to 1806 ) .  The minimum free energy secondary structure was inferred using RNAfold ( H ofacker 
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CHA PTER 2 

Genetic Alphabet S ize 
and the RNA-world 

"We not  only want to know how nature is (and how her transactions are 

carried thmugh), but we also want to reach, if possible, a goal which may seem 

utopian and presumptuous, namely, to know why nature is ;mch and not otherwise. " 

- A. Einstein. ( translated by A. Eschenmoser) 

2 . 1  Context , Overview and Preliminary Results 

This project attempts to answer the question- Why is a 4-letter genetic alphabet 

(ATCG in DNA, AUCG in RNA) used by all modern life on Earth? There is no obvi­

ous optimum at 4 and alternative alphabets are certainly possible (Piccirilli et al. , 

1990 ; Szathmary, 199 1 ;  Szathmary, 1992; Mac Donaill, 2002) To pursue this ques­

tion further we use the concept of an RNA-world,  within which RNA performed 

the major coding and catalytic roles of life page 6), and assume the 4-letter 

alphabet became fixed at this developmental stage. 

I was the principal author of the manuscript in this chapter "Optimal Alphabets 

for an RN A-world" . It discusses simulations and results produced by myself (Paul 

Gardner) in collaboration with Bar bar a Holland, Vince Moulton, Mike Hendy and 

David Penny who have each operated largely in an advisory role . The manuscript 

has undergone the review process and been accepted for publication with minimal 

adjustments in "Pmceedings of the Royal Society of London, series B' . I begin 

this chapter with an extended discussion of the simulations used to investigate 

optimality of different nucleotides. 
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2 . 1 . 1  

2.1 Context , Overview and Preliminary Results 

Simulation 1 :  Statistical Meas ures of RN A Secondary 

Structure 

Motivation: 

The work of Schultes et al. , ( 1999) and Seffens and Digby ( 1999) , suggests that 

functional RNAs (fRNAs) have lower free energy than one would expect by chance. 

Encouraged by this we thought it would be interesting to investigate the free ener­

gies of randomly generated RNAs from different alphabets. In particular , Schultes 

et al. , ( 1999) studied statistics such as fraction pairing (P) , the Shannon entropy 

(Q) , and average stem length and observed a statistically significant difference be­

tween fRNAs and their shuffled counterparts for each of these statistics. These three 

statistics are included in the following study along with a few of our own measures 

of secondary structure. 

Later research by Workman & Krogh ( 1999) and, Rivas & Eddy (2000) revealed 

that the earlier claims by Schultes et al. , ( 1999) and Seffens and Digby ( 1999) were 

flawed due to the shuffling techniques employed. They found that fRNAs that have 

been randomised using a shuffling routine that preserves the di-nucleotide frequen­

cies of the original RN As have no significant difference between the free-energy 

distributions of the fRNAs and randomised sequences. This is due to the fact that 

algorithms for inferring secondary structure by minimising the free-energy, evalu­

ate energies in the di-nucleotide domain (see figure 1. 11 for an illustration) . Hence, 

shuffled sequences with different di-nucleotide frequencies to their un-shuffied courl­

terparts show significantly different distributions of free-energy dependent statistics 

CWorkman & Krogh, 1999) . However , useful results can still be gleaned from such 

studies. 

Algorithm description and implementation 

A modified version of RNAfold1 is used here; RNAfold is distributed with the Vienna 

v1 . 4 package. A feature of this package that was found to be useful for this work 

is that it can infer secondary structures for sequences derived from artificial al­

phabets {A , B , C , D , E , F  , · · · } where A pairs B, C pairs D, E pairs F, etc . A global 

variable "energy _set" is used to determine the energy parameters used for each 

pair energy _set=1 uses G :  C energies for each base-pair , energy _set=2 uses A :  U 

energies and energy _set=3 alternates between G :  C and A :  U energy assignments. 

The default is energy _set=O for sequences generated from the AUCGK:X alphabet 

where A pairs U, C pairs G, the artificially synthesised nucleotides K: and x base-pair 

1 See Appendix II for information regarding software 
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(Piccirilli et al. , 1990) and a wobble G with U pair is also allowed. 1000 sequences 

of length 100 were generated with a uniformly distributed nucleotide composition 

for canonical and non-canonical alphabets, each was folded using RNAfold, and a 

variety of secondary structure dependent measures were calculated from the output 

(see figure 2 . 1 ) .  

Statistical measures 

The statistics considered here are: P, which is the fraction of paired bases within 

the optimal structure, S, the average length of the stems within a structure, and 

the free energy (M FE) of the inferred structures. P, S and M FE are all measures 

of the amount of pairing within the inferred structures. We have also used Q,  the 

Shannon entropy (defined in equation 2 . 1 )  of the base-pairing probability matrix 

[pij] which is calculated using the partition function (McCaskill, 1990). The value Pij 
gives the probabilty that base i pairs with base j in an R A sequence. The Shannon 

Entropy gives a measure of the number of alternative folds an RNA sequence can 

fold into. Also, F is used (known locally as the Gardner Uniqueness of Folding 

Function, GU F F) which is the Frobenius Norm of the base-pairing probability 

matrix (defined in equation 2 .2 ) . Q (and to a lesser extent F) are measures of how 

well defined a fold is. The Pij values for a "well-defined" structure (in other words a 

structure with little conflict in its assignment) are near to either zero or one, hence 

the function Pij log2 pij is zero for well-defined base-pairs (one can use L 'Hopital 's 

rule to prove this). A large Q therefore indicates significant conflict within the 

structure assignment and a potentially erroneous minimum free energy structure 

assignment. These measures are discussed in more detail in the paper later in this 

chapter (Gardner et al. , 2003) . 

Results 

N - 1  N 
1 

Q := 
Q

- 1  L L Pij log2 pij where, Qmax = 2N log2 N. (2. 1 )  
max i=l  j=i+l  

(2 .2 )  

The first thing we note when studying 'measures of secondary structure' versus 

'alphabet size ' plots is that there is no obvious optimum at 4 (see figure 2 . 1 & figure 

1 in the attached chapter). In fact they each monotonically increase or decrease with 

respect to alphabet size. However there are features one should note. For example, 
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the amount of base-pairing decreases and t he well definedness of t he structures 

increases (see Q and F) wit h  increasing alphabet size. Generally there is a significant 

difference between 2 and 4 letter alphabets, wheras t he transition from 4 to 6 is 

considerably less significant . 
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Average min imum  free energy (MFE) (A) ,  fraction of pa i red bases (B) ,  mean stem 
length (C)  a nd Shannon entropy (D) val ues were ca lcu lated from 1000 ra ndom se­
q uences generated by different a lpha bets and folded us ing a variety of different energy 
parameters. 
Mean  va l ues for seq uences folded usi ng only G :  C energy parameters are con nected with 
a sol id red l i ne ,  those folded us ing on ly A :  U energy parameters are joi ned by a dashed 
b lue l i ne, folds using a mix of A :  U and G :  C parameters are shown with a b lack " *" ,  the 
ca nonical a lphabet in  each case is shown with a b lue "o" . 

2 . 1.2 Simulation 2 :  Revolver 

Motivation 

T he previous section explored statistical measures of RNA secondary structures, 

which could be t hought of as exploring phenotype differences of alphabets in a pu­

tative RN A-world.  But perhaps a more relevant question is: "What are the abilities 

of different RNA coding regimes to evolve in an RNA-world?" To explore this fur-
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ther we construct a modified "flow-reactor" (Schuster, 2000; Gardner et al. , 2003) . 

A slight difference between the flow-reactor of Schuster (2000) and our algorithm 

(dubbed Revel ver) is in the expression of the fitness of individuals in the popula­

tion of RNAs. Inside the Schuster (2000) flow-reactor, the fitness of an individual 

determines its replication rate , whereas in Revel ver the fitness of the individual de­

termines its likelihood of survival to the next generation. Also, the Schuster (2000) 

flow-reactor is initialised with just one randomly generated sequence, Revolver is 

initialised with a number of random sequences. Even so, the empirical behaviour 

of these two systems appear to be quite similar. 

Algorithm description and implementation of Revel ver 

An initial population of RNA sequences is randomly generated from an alphabet 

of 2 ,  4, 6, or 8 letters. This is followed by successive rounds of amplification (with 

point mutations) and selection . The selection method is biased towards those RNAs 

folding into shapes "close" to a predefined target shape. This results in a population 

of sequences with MF E structures "close" to the target shape. 

This system models SELEX (systematic evolution of ligands by exponential 

amplification ) laboratory experiments, whereby RNA aptamers binding specifically 

to another molecule are artificially evolved . This is accomplished through succes­

sive rounds of the reverse transcriptase polymerase chain reaction (RT-PCR), am­

plification, and affinity chromatography, selection, upon a population of RNA 

sequences (Tuerk & Gold, 1990) .  

1 .  Initialisation: Revolver is initialised with a randomly generated population 

of RN A sequences. Each sequence is created in a character (nucleotide) by 

character fashion, each time a character is required it is randomly selected 

using a random number generator (rand ( )  in C) from the alphabet string. 

Structures are inferred using RNAfold from each of the nascent sequences for 

later fitness evaluation. The resultant random population then undergoes an 

amplification-selection step to generate the population at generation 1 .  

2 .  Amplification: Prior to a selection step A.F (amplification factor ) copies 

of each sequence are made. The algorithm used here copies each sequence 

character by character, each time a character is copied there is a probability 

(P) that a point mutation occurs. If a mutation does occur then a different 

character is randomly selected from the alphabet. 

3 .  Fitness evaluation: Secondary structure metrics are employed to calculate 

:Fi as detailed in equation 2.3 .  The function dmetric(Starget, Si ) returns a met-
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A 1 .  Initialise(); 

+ 
2. Amplify(); ----, 

+ 
3. Evai_Fitness() ; 

+ ··r"uooo. 
5. Print_results(); 
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F igure 2 .2 :  Revolver: A: A flowchart of the Revolver a lgori thm (see the text for a 
deta i led d iscussion of steps 1-5 ) .  
B :  A plot d isp lay ing averages from 4 timed tria l runs o f  Revolver. Each run timed 
1 0  repeats of Revolver on 1 0 , 5 ,  2 and 1 nodes of a 16 node Beowulf computer3 . 
The popu l ation size was 100, the ampl if ication factor 10 ,  the per site probab i l ity of 
mutation 0 .005 , a nd the number of generations 1 000 . Times in  h uman readable format 
a re shown with i n  the plot . This resu lt shows that Revolver sca les wel l  with the n umber 
of processors. 

ric distance between secondary st ructures S'target and St . dmax ( S'target · Si ) is 

the maximum dmetnc value betvYecn t he structure si and fixed S'targel · Hence 

if  Si = Starg t then dm tric = 0 and :Fi = 1 . 0  and if Si is very different to 

Sta.·get t hen c lmet ric = c lmax and :Fi = 0 . 0 .  Several metrics have been i nvesti­

gated and the base-pair metric was found to be the most di ·criminatory (see 

section 1 . 2 . 3 )  and therefore one we will use throughout this work. 

( 2 . 3) 

Population fitness: At each generation the population fitness is measured 

by the "mode" of the individual fitn sses. The mode is used as t he fitness 

distribution at each generation it is usually skewed to t he left (see figures 2 .4  

& 2 . 5) .  The mean and also the median were too sensitive to outl iers to  be 

useful measures of centrality for t his work. 

4. Selection: The selection process used here is known in the genetic algorithm 

community as roulette wheel selection which is a "stochastic ,  proport ionate 

method" that "samples with replacement" ( G oldberg, 1989) . Fitness values 
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Fi (see equation 2.3) are assigned to each sequence (i) in a population based 

upon how far the inferred structure was from the predefined optimum. Each 

sequence occupies a "slice of pie" (hence roulette wheel), of size Fi out of a 

total Ftot = 2::.::;=1 Fj . The probability of a sequence being selected is P(i)  = 2:.£: :Fi . A uniformly distributed random number R E [0, Ftotl is generated. 

If R lies between the cumulative fitnesses of the lh and (j + 1 )th sequences , 

then i is selected. This is repeated until the required number of sequences for 

the next population-to-be-amplified has been filled (Holland, 1975 ; Goldberg, 

1989; Man et al. , 1999). 

Parallelisation strategy: The original single-node (1 CPU) version of 

Revolver which was written in the C programming language was time consuming 

to run (see figure 2 .2) , as the fitness evaluation phase requires up to 1000 sequences 

to be folded at each generation. This was highly dependent upon the mutation rate. 

Therefore, a parallel version of Revolver was implemented upon a 16-node 

Beowulf cluster (see http : //sisters . massey . ac . nz) .  Using the C programming 

language, the Message Passing Interface (MPI)  and a "very robust queueing system" 

known as the Portable Batch System (PBS) to accomplish this (Kernighan & Ritchie, 

1988; Message Passing Interface Forum, 1994; Henderson & Tweten, 1996). 

A central dogma for saving computational time when computing in parallel 

is to minimise the amount of message passing between nodes (CPUs) . The ideal 

situation is to construct an "embarrassingly parallel" implementation of code where 

each node in the system operates independently of the other nodes . An extreme 

variant of this approach is the "poor man's parallelism" approach, which entails 

multiple instances of a serial code running simultaneously on multiple nodes. This 

approach has no communication over-heads and will scale perfectly with the number 

of nodes. 

W hen implementing parallel processes a master-slave arrangement is generally 

used as it comparatively simple to understand, debug and encode. The master­

slave arrangement defines a single node (usually 0) as the master whilst all the 

other nodes (1-N) serve as slaves. The task of the master node is usually to divide 

a job up between the slaves and collate the resultant data, the slave nodes process 

their assigned jobs and send a signal to the master upon completion. 

Revolver is amenable to a parallel implementation, there were several ways 

of doing this that were considered. At each generation the required number of 

fitness evaluation jobs could be farmed out to the slave nodes. The slaves would 

fold each received sequence and return the results back to the master node for 

the selection phase of the algorithm. However, since the average behaviour of the 
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different RN A coding regimes is of primary interest and Revolver is to be run 

several times for each parameter setting and results averaged over all the runs. 

Therefore it seems sensible for each node to calculate independent runs of Revolver 

and take an average over the runs from each node upon completion. This is then an 

"embarrassingly parallel" implementation of many Revolver runs. A further step 

could have been made by implementing Revolver using a "poor man 's parallel" 

however this would have resulted in serious problems whilst attempting to collate 

data from hundreds of repeats of the experiment . 

Times: The timing data of this implementation displayed in figure 2.2 shows 

that as expected the embarrassingly parallel implementation of Revolver scales 

very well with an increasing number processors. The communication overheads are 

minimal as the nodes only ever communicate with the master node at the end of 

an entire run when data is returned for the print step of the algorithm. 

Results 

It is wise to explore the parameter space of Revolver before comparing the "evolv­

abilities" of the different RNA alphabets. The parameters of interest are: the op­

timal shape, the per-site-probability-of-mutation (P) , and the effect of different 

base-pair energy parameters on the system. I will assume that the larger the popu­

lation size and amplification factor are the better the final results will be. But first 

let's study a single run of Revolver. 

A single run of Revolver: For this experimental run of Revolver we have 

used the base-pair metric to evaluate the fitness, the clover-leaf was the target 

structure, the alphabet used to generate sequences was the canonical alphabet 

(AUCG) , sequences were folded using RNAfold with the default energy parameters 

(energy _set=O) , the population size was fixed to 100, the amplification factor was 

10 and the per site probability of mutation (P) was 0.005. The results of this run 

are displayed in figures 2.3, 2.4 & 2.5. Observe in figure 2.3 that the fitness evo­

lution progresses in leaps separated by periods of no apparent progression towards 

the optimal structure. During the periods of no apparent progress, neutral and 

near-neutral mutations are accrued by the population. These provide a platform 

from which fitter mutants may spring. Much of the behaviour of a quasi-species 

is displayed by this data, whereby a population of mutants forms a "cloud" about 

a master sequence (or sequences) (Eigen et al. , 1988; Eigen et al. , 1989; Schuster, 

2000). 
It is interesting to consider the fitness distributions at generations 1, 630, 680 

and 1000. Generations 630 and 680 are either side of an adaptive leap and gen­

erations 1 and 1000 at opposing extremes with respect to population fitness and 
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Figu re 2 . 3 :  Revolver : The resu lts of a single run .  The target structu re is the clover- leaf 
(an  examp le "evolved" in this run is shown above) , the popu lation size was fixed to 
100, the ampl i fication factor was 10 for each generation , and the per site probabi l ity of 
mutation was 0 .005 . The plot shows how the mode f itness of the popu lation of RNA 
seq uences progresses as a function of generation in the flow-reactor. 
The arrows label led A,  B , C, and D i nd icate where the freq uency d istri butions of the 
fitness shown in figu res 2.4 & 2.5 were obta ined (generation 1, 630 , 680 and 1000 
respectively) . 

generat ion (sec figure 2 . 3 ) .  These are shown in figures 2 .4  & 2 . 5  and are discussed 

in detail below : 

• Gener-ation 1: The population of R i\As has only under-gone one selection step, 

consequently the resultant sequences are still near-random and the fitness 

d istribution is near-normal , yet still slightly skewed to t he left . 

On display in figure 2 .4A are t he three structures with fitness 0 .207,  which is 

t he mode all t he fitness values at this generation. Base-pairs in common with 

t he target shape are indicated with arrows. Note that each structure ha 3 

base-pairs in common with t he target and 9 extraneous base-pairs which are 

not-in-common with the target . As the target structure has 1 7  base-pairs t he 

fitness of these structures is evaluated by the following: 

'L - 1 9+( l 7-3) ""' 0 207 .r -
- (9+3)+17  ""' . . 

• Gener-ation 630: The distribution shown in figure 2 .4B is approximately bi-
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Figu re 2 .4: Plots A&B show the fitness d istri butions of a s ing le run of Revel ver 
at generations 1 a nd 630 respectively (see figu re 2.3 ) .  I nset i nto plot A are the 4 
structu res (n umbered 1, 2 ,  3 & 4) which have the mode fitness (0 .207) at generation 
1, the arrows ind icate base-pa i rs in common with the target structu re .  L ikewise the 3 
structu res ( numbered 1, 2 & 3) i nset into plot B are the struct u res with the mode 
fitness (0 .786) at generation 680 , the arcs ind icate the base-pa i rs requ i red before these 
sequ ences have a n  opt imal fitness of 1 .000 . 
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Figu re 2 .5 :  Plots C&D show the fitness d istr ibutions of a s ing le run of Revolver 
at generations 680 a nd 1000 respectively (see figure 2 . 3). I nset i nto p lot C is the 
structu re which has the mode fitness (0.867) at generation 680. The c i rcled bases 
i nd icate structu re-neutra l  mutations with i n  the popu lation of sequences with this shape 
(care of RNAalifold) . Li kewise the structu res i nset i nto plot D a re the structu res with 
the mode fitness (0 .970) at generation 1000. The a rcs ind icate the base-pa i rs requ i red 
before these sequences have a n  opt ima l  fitness of 1 . 000 . 

modal with the current dominant sequences with :F = 0 .  786 under pressure 

from sequences with :F = 0.867. There is a definite tail on the left of the 

distribution showing the "elderly" and recent deleterious mutations in the 

population, these will be eroded away with time. 

Each of the three structures with :F = 0 .  786 at generation 630 are shown. 
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Each has 11 base-pairs in common with the optimal structure, but 6 base­

pairs are still required (shown with dotted arcs) to map these structures to 

the target. The fitness of these structures was evaluated like so: 

'L = 1 - 0+( 1 7-1 1 ) ,....., 0 786 .r 1 1+ 17 ,....., . . 

• Generation 680: By generation 680 the competition between the sequences 

with F = 0.786 and F = 0.867 for space in the flow-reactor is inevitably being 

won by the latter sequences which have been more successful at being selected 

(see figure 2.5C) . Although the former are still present in the population it is 

unlikely that they will return to their earlier levels. 

The unique structure with the mode fitness of 0.867 is shown. A total of 17 

unique sequences fold into this structure , each of which was derived from 

the same common ancestor. As several sequences folding into the same struc­

ture were available , RNAalifold (Hofacker et al. , 2002) was used to infer the 

structure shown here. This program displays structure-neutral mutations (see 

the circled nucleotides in figure 2.5C) . These mutations are indicated by the 

circled nucleotides. The structure has 13 base-pairs in common with the 17 

base-pairs of the target structure , and has no extraneous base-pairs. The fit­

ness is therefore: 

'L = 1 - 0+( 1 7- 13) ,....., 0 867 .r 
13+ 17 ,....., . . 

• Generation 1000: The fitness distribution at generation 1000 (shown in fig­

ure 2 .5D) is definitely skewed to the left. The mode fitness is 0.970 yet in­

dividuals folding into the target structure with maximal fitness of 1.000 are 

present. 

A total of four different structures mapped to the mode fitness of 0.970 at 

generation 1000. Each has 16 base-pairs in common with the clover-leaf target ,  

thus requiring just one more base-pair before the full clover-leaf is obtained. 

The sequence folding into the clover-leaf structure is displayed in figure 2.3. 

It is of interest to note that the sequences in generations 630, 680 and 1000 

share a common ancestor (structure 1 shown in figure 2.4A). 

Revolver and various shapes: Figure 2.6 displays the results of several runs 

of Revolver with a variety of shapes as the target structure. We have used relatively 

short (length=47) sequences to keep the computation time low and avoided tetra­

loops (hairpins of size four), many of which are given a bonus score by RNAfold 

with the canonical alphabet , which may confer a towards this this alphabet. We 

have used : a single-stemmed structure which maximises the number of base-pairs , a 

double stemmed structure which is reminiscent of the consensus H /  ACA snoR A 
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structure, a Y-shaped structure that is one of the simplest shapes with a multi­

loop, and a clover-leaf shape which displays all the characteristics of the modern 

day tRNA (see figure 1 .2) . 

The curve corresponding to the clover-leaf shape stands out considerably from 

the rest. The other three curves climb much more steeply over the first 1 00 gener­

ations with the single-stem being the steepest followed by the dual-stem then the 

Y -shape. Then each of these three curves reaches a plateau above which the mean 

population fitness does not rise. The height of each plateau for the Y-shape, dual­

stem and single-stem is related to the number of base-pairs in the target (which is 

a factor in the evaluation of the base-pair metric). The clover-leaf curve in contrast 

has still not reached a plateau after 1000 generations, it is climbing steadily and 

will probably reach a plateau higher than the other structures after a 1000 more 

generations. 

We selected the clover-leaf structure for further studies as it displays behaviour 

which is potentially useful for discriminating between different parameter settings 

(alphabet size and probability of mutation for example) and is related to the well 

known tRNA secondary structure. 

Revolver and RNAfold energy parameters: Earlier results (see figure 2 . 1 )  

show that direct measures of R A secondary structure are very ensitive to varying 

the energy parameter selection and that these measures monotonically decrease 

(or increase) with alphabet size. Yet the Revolver mean population fitnesses for 

different energy parameters show quite different results (see figure 2 .7) .  The fitness­

values decrease rapidly with increasing alphabet size when no CG energy parameters 

are used (energy_set=1, see figure 2 . 1B) .  This implies that at least one "strong" 

(CG type base-pair) is required for any alphabet to evolve to complex phenotypes . 

The alphabets that contain at least one base-pair with CG pairing strength 

(energy _set={2 , 3},  see figure 2 . 1  C) show a dramatic increase in alphabet fitness 

for the transition from a two to four letter alphabet-size. Yet ,  the alphabet fitnesses 

do not alter considerably for the four to six alphabet-size transition . However , the 

alphabet fitnesses decrease in the six to eight transition. Therefore , an optimum 

exists for either a four or six letter alphabet size. 

For CG energy-parameters the fitness peaks at the four letter alphabet size (best 

observed in figure 2 .7C) .  W hereas, the peak shifts for the AUCG, AUCGKX and mixed 

(AU+CG) energy-parameters to the six letter alphabet size. These indicate that the 

focus of further investigations should be upon whether four or six letter alphabets 

were optimal in an RN A-world (see "Optimal Alphabets for an RNA-world" , sec­

tion 2 .2  for further discussion and to observe the affects of varying mutation rates 

upon these results). 
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Figu re 2 . 6 :  Revolver: the resu lts of a n  average over 100 repeats of Revolver run for 
1000 generations with 4 d ifferent target structu res . The popu lation size was fixed to 
100,  the amp l ification factor was 1 0  for each generation , and the per site probabi l ity of 
mutation was 0 .005 . 
it seems that as a general ru le-of-thumb the more "complex" structu res a re more d iff icu lt 
for a n  RNA popu lation to evolve toward . As the clover- leaf was the most difficu lt shape 
(stud ied here ) to achieve it was selected for fu rther study. Hence we are assuming that 
active shapes in  the RNA-world had a certain degree of "complexity" , and that active 
sha pes in the RNA-world were diff icu lt to make .  Addit ional ly, the clover- leaf d isplays 
many of the characteristics of the modern day ncRNA known as tRNA.  
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Revolver :  various alphabets and energy sett ings 
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Figure 2 .  7 :  Revolver: the resu lts of a n  average over 100 repeats of Revolver with 
severa l d ifferent energy parameters. The target structu re was the clover- leaf, the pop­
u lation size was fixed to 100, the ampl i fication factor was 10 for each generation , and 
the per site probabi l ity of mutation was 0 .005. 
Plot A disp lays the mean popu lation fitness versus generation for severa l d ifferent 
a l phabets and RNAfold energy sett i ngs. 
P lots B&C show the mea n popu lation fitnesses as a function of a lphabet size (with 
error bars i nd icati ng 1 standard deviation either side of the mean ) . A dashed red l ine 
con nects the poi nts u sing only CG energy parameters, the dotted b l ue l i ne con nects the 
poi nts us ing on ly AU energy parameters . A sol id black l ine connects the poi nts using 
AU+CG energy parameters and a blue "o"  shows va lues for the canon ica l  a lpha bet AUCG 
and the AUCGKX a l phabet . P lots B&C display the same data , the d ifference is that i n  
plot C the AU energy parameter data i s  ignored. This d isplays the a l phabet fitnesses at 
a better resolution . 
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2 . 1 .3 Simulation 3: RiboRac e 

Algorithm description and implementation 

Motivation: Interesting results may be gleaned by allowing two (or possibly more) 

alphabets compete for space in the flow-reactor. The advantages of this experiment 

are that an outcome can be determined in fewer generations than with Revolver, 

and it could also discriminate between the 4 and 6 letter alphabets at a better 

resolution than with Revolver. 

The major differences between Revolver and RiboRace occur at the initialisa­

tion stage and in the parallel implementation strategy. The parallelisation is less 

CPU time efficient but provides a saving in human time for the data accumulation 

and analysis phase (compare figures 2 .2A & 2.8A) . 

Initialisation: RiboRace, like Revolver, is initialised with a randomly gen­

erated population of RN A sequences. The resultant population consists of 50 se­

quences generated by each of the two input alphabets. 

Parallelisation strategy: The strategy used to parallelise Revolver whilst 

providing excellent scaling and greatly increased run time for many repeats of 

Revolver was limited in a number of ways. Firstly, in order to keep the compu­

tational load balanced on each of the available nodes in the system, the number 

of times an experiment was run had to be a factor of the number of nodes. Sec­

ondly , collating data at the end of an experiment could be troublesome and time 

consuming. Either , a large amount of data could be passed back to the master node 

from the slaves, or the data could be dumped in a node specific file. Neither option 

was particularly appealing . Subsequently, I decided that trading algorithm speed 

for researcher time at the data analysis phase was worth the trouble of implement­

ing a new algorithm. Now the required number of computationally intensive tasks 

(foldings) at each generation are farmed out by the master node to x slave nodes. 

From figure 2.8B note that the new strategy scales well with the number of nodes. 

Results 

For a broad range of mutation rates ( 10-4 - 2 x 10-2) the 4 letter AUCG defeats the 

AUCGKX in a race for space in the flow-reactor (see figure 2.9B) . Then the mutational 

load becomes too great for the 4 letter alphabet at which time it no longer passes 

sufficient information to following generations. The 6 letter alphabet is more robust 

to this information melt-down. In fact, a higher mutation rate is advantageous to 

the 6 letter alphabet as paths to points in sequence space from a random start 

are longer , therefore "faster" movement through the space is advantagous (see fig­

ure 2.9A) . At a mutation rate of '"'"' 0.4 the mutational load becomes so large that 
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no information is passed to the offspring. Consequently the population is essentially 

re-initialised at each generation. The 4 letter alphabet has a higher propensity for 

base-pairing than the 6 letter alphabet (see figure 2.1) , consequently it is more likely 

to have base-pairs in common \Vith the target structure than the 6 letter alphabet. 

Therefore the size of the 6 letter group is eroded over time. 

These RiboRace results appear to contradict the earlier results gathered from 

Revolver (shown and discussed later in this chapter (Gardner et al. , 2003)) .  The 

RiboRace results suggest that a 6 letter alphabet is optimal when mutation rates 

are high, and that the 4 letter alphabet is optimal for low and extremely high 

mutation rates. Much of the mutation range shown in figure 2.9 were not explored 

with Revolver, however the results that were gathered suggest that the 6 letter 

alphabet should have been optimal in the mutation rate range 0. 001-0.006 and from 

0.006 upwards the 4 letter alphabet should dominate. It is likely that these results 

are an artifact of the RiboRace system (or perhaps buggy code, although this has 

been extensively studied) , due to the relatively few generations (generally 15-30) 

before an alphabet dominates the system. 

Future experiments for RiboRace are runs initialised with a sequences that fold 

into a fixed structure, no mixing of the alphabets for a number of generations 

and a less stringent selection proceedure could be used. Once these results have 

been studied a variety of different competing alphabets can be explored to 

determine optimal conditions for each. 
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Figu re 2 .8 :  RiboRace :  A: An outl i ne of the RiboRace a lgorithm .  The code is essent ia l ly 
the same as Revolver.  The differences a re that the popu lation is i n it ia l ised with two 
a lphabets i n stead of one, and there is a n  extra Stop condition ; Stop if one of the 
a l pha bets fi l l s  100% of the flow reactor or if the generation l im it of 1000 has been 
reached . 
B: Timing data of a si ngle run of RiboRace on the HELIX Beowulf computer 
(http : I /helix . massey . ac . nz) ,  the clover- leaf was the target structure, the popu la­
tion size was 100 (50 stri ngs generated from each of the AUCG and AUCGKX a lphabets) , 
the amp l i fication factor was 10  and the m utation rate was 0 .005 ,  the experiment was 
repeated 10 times with d i fferent i n iti a l  populat ions. Wa l l  times were averaged over 3 
runs. Times i n  human readable format are ind icated with in the plot. 
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Figu re 2 .9 : A: Seq uences spaces of 2, 4, and 6 letter a lphabets each map onto the 
same shape space . The card ina l ity of each space is shown as a fu nction of sequence 
length (N ) .  Exhaustive ana lysis of MFE  structu res show that l itt le of shape space is 
actua l l y  rea l ised (Gri.i ner et al. ,  1996) . As the sequ ences generated from the 4 letter 
a lpha bet are a subset of sequences generated by the 6 letter a l pha bet , then a l l  of the 
MFE structu res for the 4 letter seq uences can be rea l ised by 6 letter seq uences. Hence, 
MFE  shape space for the 2, 4 and 6 letter a l pha bets can be viewed as a series of nested 
sets. 
B: RiboRace : AUCG vs AUCGKX. The left axis a nd sol id l ine shows the proportion of 
times the AUCG defeats the AUCGKX in a race to fi l l  the flow-reactor from 500 repeats 
of Ri boRace .  The right axis and dashed l i nes shows the mean n umber of generations 
requ i red for the 2 a l phabets to defeat the other . The population size is 100, ampl i fication 
factor 10, ta rget shape the clover- l eaf for and range of different per-site-probab i l it ies­
of-mutation are u sed . 
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Experiments have shown that the canonical AUCG genetic alphabet is not the only possible nucleotide 

alphabet. In this work we address the question 'is the canonical alphabet optimal?' We make the assump­

tion that the genetic alphabet was determined in the RNA world. Computational rools are used to infer 

the RNA secondary structure (shape) from a given RNA sequence, and statistics from RNA shapes are 

gathered with respect 10 alphabet size. Then, simulations based upon the replication and selection of 

fiXed-sized RNA populations are used to investigate the effect of alternative alphabets upon RN A's ability 

to step through a fimess landscape. These results show that for a low copy fidelity the canonical alphabet 

is finer than rwo-, six- and eight-lener alphabets. In higher copy-fidelity experiments, six-lener alphabets 

outperform the four-lener alphabets, suggesting that the canonical alphabet is indeed a relic of the 

RNA world. 

Keywords: genetic systems; ribozymes; systematic evolution of ligands by exponential amplification 

(SELEX); RNA world 

1 .  INTRODUCTION 

For current models of the origin of modem life an obliga­

tOry step is an RNA world (Gesteland et al. 1 999). This 

is a point in time when RNA was the predominant biomo­

lecule and served both as the carrier of genetic information 

and as the primary catalyst for metabolism. These days 

coding is predominantly carried out by DNA, and meta­

bolic processes by proteins. However, several key roles are 

still performed by RNAs, leading to the suggestion that 

some coding and metabolic aspects of current living sys­

tems are relicts of the RNA world (Szathmary 1 992; Poole 

el al. 1 998; Jeffares ez al. 1 998). 

In the RNA world the genotype and the phenotype are 

expressed in the same molecule. The genotype refers to 

the sequence of nucleotides within the molecule and the 

phenotype can be viewed as the specific three-dimensional 

conformation of the catalytically active functional RNA 

(fRNA). As a result, the 'fimess' of a ribo-organism can 

be inferred from the phenotype (Higgs 2000; Joyce 2000). 

In the case of RNA, the stabilizing forces conferred by the 

formation of a secondary structure are much greater than 

those conferred by the rearrangement of secondary struc­

tural elements in three-dimensional space (Griiner e1 al. 
I 996). This fact is supported by the well-documented 

secondary-structure conservation in fRNAs (Sankoff e1 al. 
I 978; Hofacker et al. I 998; Eddy I 999; Parsch e1 al. 
2000) . Thus, primary to secondary structure mappings are 

relevant for studies of evolution in the RNA world. How­

ever, an RNA can fold into many near-optimal secondary 

structures (Zuker 2000; Higgs 2000). ln other words, the 

genotype does not specify a unique phenotype. Part of our 

study is 10 find the conditions under which RNA 

· Author for correspondence (P.P.Gardncr@masscy.ac.nz). 

sequences are expected to fold into a small number of 

stable structures without the assistance of chaperones. 

Based on our current knowledge, an RNA world would 

have been dominated by four coding nucleotides-the rwo 

pairs A : U and C : G (although other ribonucleotides may 

have also been involved as cofacrors in catalysis; White 

I 97 6). A natural series of questions relevant to under­

standing the RNA world include the following. 

(i) Are rwo pairs of nucleotides optimal? 

(ii) Is there an advantage of a four-nucleotide system 

over rwo nucleotides (one pair, either A : U or 

C :  G)? 

(iii) If four is better than rwo, then is six better than four, 

and eight better than six? 

Some researchers have used rools from organic chemis­

try to investigate the properties of non-canonical RNA sys­

tems (here we will refer 10 the AUCG alphabet as 

canonical and 10 the alternatives as non-canonical) such as 

those with differing nucleotide bases and alternative sugar 

groups (Rich 1 962; Switzer et al. 1 989; Piccirilli et aL 
1 990; Bain e1 al. 1 992; Eschenmoser 1 999). Compu­

tational experiments have been used to compare non­

canonical RNA systems (Szathm:iry I 99 I ,  I 992; Gruner 

el al. I 996). Szathm:iry (I 99 1 ,  1 992) in particular has 

posed the question 'what is the optimal size for the genetic 

alphabet?' He concludes that the four-letter genetic alpha­

bet is a 'frozen evolutionary optimum' that was determ­

ined in the RNA world. More recently Mac D6naill 

(2002) investigated the optimality of the nucleotide 

alphabet in terms of error minimization using informatic 

techniques; he concluded that the canonical alphabet is 

one of the 'better' possibilities. We explore this question 

further in the context of maps from RNA primary 

Proc. R. Soc. Lond. B 02pb088 1 . 1  e 2003 The Royal Socie1y 
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structure to RNA secondary structure and from RNA sec­
ondary structure to ribo-organism fimess. 

In panicular, we consider two new approaches to 
exploring the implications of different alphabet sizes. First, 
we investigate the average properties of secondary struc­
tures derived from both canonical and non-canonical 
RNAs, and, second, we study how random structures 
evolve towards some predefined structures for each of the 
alternative alphabet sizes. From the frrst investigation we 
discovered that, while different alphabets lead to second­
ary structures that have very different properties, beyond 
some obvious conclusions, it is difficult to determine 
exactly which of these propenies would have been optimal 
for the RNA world. However, using a 'flow-reactor' 
simulation (Fontana & Schuster 1 998) inspired by system­
atic evolution of ligands by exponential amplification 
(SELEX) experiments (Tuerk & Gold 1990), we show 
that in the RNA world the canonical four-letter {two base 
pair) alphabet outperforms the non-canonical alphabets 
under several sets of evolutionary conditions. 

2. STATISTICAL MEASURES OF THE RNA 
SECONDARY STRUCTURE 

We study the statistical properties of the 'molecular 
morphospace' (Schultes ez aL 1 999) of random RNA with 
respect to alphabet size. We use a modified distribution 
of VIENNA v. 1 .4, in particular the dynamic programming 
algorithm, RNAFoLD (available from www.tbi.univie. ac.atl 
-ivo!RNN). This program uses empirically derived energy 
values to infer a minimum free-energy secondary structure 
from a single RNA sequence (Hofacker ez aL 1 994). Note 
that, while RNAFoLD may not always predict the 'exact' 
biological RNA secondary structure {Zuker 2000), we are 
interested in only the average behaviour of different RNA 
coding regimes, and, therefore, any inaccuracies inherent 
in this method are not expected to have a significant effect 
upon our results (Moulton ez al. 2000a) . Another 
important point is that using statistical measures to dis­
criminate between different alphabet sizes is generally 
'easier' than discriminating between evolved and random 
sequences, at least for the canonical alphabet (Rivas & 
Eddy 2000; Schatmer 2002). Hence, for this work, fruitful 
results may be obtained by studying random sequences. 

A feature of RNAFoLD that we exploit throughout this 
paper is that it allows the prediction of secondary struc­
tures for sequences generated from artificial alphabets; 
ABCD . . .  (where A pairs B, C pairs D, and so on). We 
restrict our attention to alphabets with two, four, six and 
eight letters since, as discussed in Szathm:iry { 1 992), there 
are only 23 = 8 unique hydrogen-donor/acceptor configur­
ations between any two complementary nucleotides and a 
nucleotide that can be either purine or pyrimidine, yield­
ing 1 6  unique letters and eight nucleotides. Owing to time 
and space considerations, we will consider a maximum of 
only eight lette.rs. Alphabets with an odd number of bases 
are not considered as this requires two different bases to 
compete for a complementary site during replication; the 
base with lower affinity would be lost after just a few gen­
erations. There are four energy-parameter options that 
RNAFoLD uses: the default {0) uses parameters for the 
canonical alphabet, otherwise it folds sequences generated 
by an artificial alphabet with { I )  G :  C, (2) A :  U or (3) 
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alternating G : C and A : U energy-parameter assignments 
for the base pairs AB, CD, . . . .  

Statistics were gathered from 1 000 randomly generated 
sequences of fixed length N = 1 20 for all possible 
RNAFoLD energy-parameter selections (see figure 1 ) .  The 
statistics shown are: P, the fraction of paired bases within 
the optimal structure; Q, the Shannon entropy of the 
base-pairing probability matrix (pij is calculated using the 
partition function; McCaskill 1990), defined by 

-
1 

N - 1  N 
I 

Q : 
= Q 2: 2: Pii log2P;j where, Q...,. = 2Nlog2N; 

nlax l • l j • i + l 

and F (known locally as the Gardner uniqueness of folding 
function), that is the Frobenius norm of the base-pairing 
probability matrix, defined by 

Q is intended to be a measure of how well defmed the 
predicted secondary structure is-a high Q value indicates 
uncertainty in the structure assignment, with many alter­
native structures near to optimal, whereas a low Q value 
indicates a well-defmed assignment. Note from the melt­
ing curves for Q that, as the temperature increases Q also 
initially increases until a threshold is reached when the 
number of valid structures starts to decrease until the only 
possible assignment is the completely unfolded structure 
(see Schultes ez aL ( 1 999) for further discussion) . Unlike 
the Shannon entropy, F will distinguish between a 'well­
folded' stable secondary structure and a completely 
unfolded molecule. From figure I we see that base pairing 
(P) decreases as the alphabet size increases. For example, 
the canonical alphabet has an average fraction of paired 
bases of 0.54 whereas the maximums for the six- and 
eight-letter alphabets were 0.43 and 0.34, respectively. 
This can be explained by the fact that there is a higher 
probability of any given base matching its complement 
with a smaller alphabet. Similarly, the measure of dis­
order, Q, is lower indicating a lower degree of strucrural 
uncertainty with increasing alphabet size. 

Comparing the canonical alphabet and the ABCD 
alphabet with RNAfold energy parameter 3 we obse.rve 
that the canonical alphabet has more base pairing, owing 
to the additional G : U pair that is allowed in the canonical 
system. As a consequence of this there is also more uncer­
tainty (larger Q values) in the predicted structure. 

Each statistic is sensitive to the energy-parameter selec­
tion to varying degrees, and is therefore also sensitive to 
the base composition, which we keep constant (on 
average). ln particular note that a regime containing solely 
A : U pairing clearly has insufficient pairing potential to 
maintain RNA secondary structures (from random 
sequences) of any complexity. From this we note that any 
pairing regime must contain at least one pair of G : C type 
to be viable. 

Earlier work in this area has shown that a four-letter 
alphabet would have been a significant improvement upon 
a two-letter alphabet (Fontana ez al. 1993; Schuster I 993; 
Griiner ez aL 1 996). Although ribozymes generated from 
two-letter alphabets have proven to be adequate enzymes 
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Figure ! .  Average RN A  secondary structure statistics from I 000 randomly generated sequences with respect to alphabet size 
(a-c) and melting cuiVes (d-f). The sequence length is fixed to 1 2 0  nucleotides and the temperature is 37 oc (a-c). (a-c) The 
solid line connecting the diamonds corresponds to all base-pain; assigned an energy value equivalent to a G : C pair; the 
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energy parametern was used; open circles, the canonical (AUCG) alphabet. (d-f) Crosses, points corresponding to the 2-letter 
alphabets AU (dotted line) and CG (solid line); open circles, the canonical alphabet; plus signs, the 4-letter alphabet with 
mixed energy parametern (no G : U base pain;); diamonds, the 6-letter alphabet with mixed energy parametern; squares, the 8-
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(Reader & Joyce 2002), the results presented here show 

that the differences in the statistics between the two- and 

four-letter alphabets are marked, but the differences 

between the four- and six-letter alphabets are considerably 

less so. This suggests that a two-letter alphabet (if one 

ever existed) would have been rapidly outcompeted by a 

four-letter one. But does the same argument hold for the 

four- vernus six-letter situation? 

3. EVOLVING RNA IN SILICO 
Having described some statistical properties of random 

sequences we now consider the impact of alphabet size on 

the ability of a population of sequences to evolve towards 

a predefined target structure. We compare the ways in 

which various non-canonical RNA systems evolve through 

a fitness landscape. To achieve this we constructed a 

modified 'flow reactor'. This is a stochastic discrete-time 

model, with capacity limited to a fixed number of 

sequences (Fontana & Schuster I 998). This system mod­

els SELEX laboratory experiments, where the goal is to 

Pro<. R. Soc. L<md. B 

artificially evolve RNA aptamern binding specifically to 

another molecule (Tuerk & Gold 1 990). For SELEX 

experiments the final shape(s) is generally unknown; how­

ever, since it is difficult to infer computationally how well 

an RNA will bind to another molecule, a target structure 

is defmed in advance. Then the probability of survival to 

the next generation is made a function of the distance to 

the target. 

At generation zero the flow reactor is fLIIed with a pool 

of randomly generated sequences; successive rounds of 

amplification with replication error, followed by selection, 

are used to generate 'evolved' sequences with a corre­

sponding shape that is near some target strucrure (see fig­

ure 2a). The probability of selection is a function of the 

fimess (W), which is dependent upon the distance 

between the secondary structures of the individual (S;) 
and the target (S..,.,J. As a distance measure we use the 

base-pair metric (d8p(S,....,, S;)), which is a count of the 

base pairs that two secondary structures (S..._..., S;) of 

equal length do not have in common (see Moulton et al. 
(2000b) for a technical description). When compared with 
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(a) randJm RNA sequences 

pool of RNA sequences � selection protocol --E�----, 
enriched pool repeat cycle 

'evolved' sequences 

(b) 

Figure 2. (a) An outline of the simulated flow reactor, 
adapted from Szostak ( 1 993). (b) A biological representation 
of the target structure. 

alternative metrics such as the hamming distance and 

mountain metric (Moulton et al. 2000b) the base-pair 

metric showed better discrimination between phenotypes 

within the evolving population. The metric is scaled to 

take values bounded by 0 and I ,  with I being a perfect 

match to the target structure and 0 being a structure with 

no base pairs in common with the optimal structure: 

W= I _ dsp(S, .... ..,S;) . 
max(d8p(S""1 • ..,S;)) 

The selected target, the clover leaf (see figure 2b), con­

tained no tetra-loops (wltich may confer an advantage to 
the canonical alphabet of Amao & Tinoco ( 1 992}}, had a 

reasonable degree of 'structural complexity' (which would 

be important for function in the RNA world} and dis­

played many of the characteristics of a modem ribozyme. 

Our preliminary studies showed that the empirical behav­

iour of the flow reactor is largely independent of the 

energy parameter used (data not shown); this is in contrast 

to the data in § 2. For all the following experiments we 

use alternating A : U and C : G energy parameters for the 

artificial alphabets. 

Fontana & Schuster ( I  998) note that the evolution of 

this system progresses in leaps towards the target struc­

ture, interspersed with periods of no apparent adaptive 

progress, during wltich neutral mutations arc accrued 

before the next adaptive step. Here, we are more inter­

ested in how possible non-canonical RNA alphabets might 

perform against each other in an RNA world, so we aver­

age over many runs to eliminate the noisy effects of the 

adaptive leaps. 

The function that infers a secondary structure is compu­

tationally intensive (O(N'), where N is the sequence 

length), and is called many times. To ensure that the com­

putations were completed in a timely fashion we con­

structed an implementation of the flow reactor that ran 

on I 0 nodes of an lntel-based BEoWULF CLUSTER (code 

available upon request} . 

4. COMPUTATIONAL RESULTS 

We define the population fimess (W(i)) as the modal 

fimess of all the individuals in a population at generation 

Proc. R. Soc. Lond. B 

i. Figure 3a was generated by taking the mean W(i) of 

I 00 runs of the flow reactor for the two-, four-, six- and 

eight-letter alphabets. The flow reactor was run for 1 000 

generations and the probability of mutation at each site 

during replication was 0.0 I .  Inset is a plot of the mean 

population fimess at generation I 000 as a function of 

alphabet size showing an optima for the canonical alpha­

bet for this particular parameter set. 

The data in figure 3b were generated by collecting the 

mean population fitnesses at generation I 000 for mutation 

rates ranging from 0 to 0.0 1 .  Observe that the four-letter 

alphabets outperformed the alternatives for ltigh mutation 

rates. But, as the mutation rate decreases, first the four­

letter (ABCD) alphabet then the six-letter alphabet our­

perform the canonical alphabet. In an RNA world it is 

unlikely that the mutation rate was low, therefore we can 

conclude that in this world the canonical RNA alphabet 

was indeed superior to the alternatives considered here. 

Only when the copy fidelity increased were the four-letter 

alphabets outperformed by the six-letter alphabets, wltich 

is in agreement with the results of Szathmary ( 1 992). But, 

by comparing the canonical and non-canonical alphabets 

where the only difference is that wobble (G : U) base pairs 

are allowed, we can conclude that allowing wobble pairing 

for the six-letter alphabet will reduce the advantage of a 

six-letter alphabet over a four-letter alphabet. 

5. DISCUSSION 

We have presented a novel approach to investigating the 

optimal alphabet size in the RNA world. We know that 

the six- and eight-letter alphabets can cover just as much 

(if not more) of shape space as the canonical (AUCG) and 

non-canonical (ABCD) four-letter alphabets, but it would 

seem from our simulations that the paths from random 

shapes to our target through sequence space are shorter 

for the four-letter regimes when the copy fidelity is rela­

tively low. Otherwise the peak shifts to the six-letter alpha­

bet. Although tltis effect may not be as sigrrificant as 
shown here, owing to the fact that we use the base-pair 

metric, which penalizes extraneous base pairs, from figure 

I we observe that the four-letter alphabet generally has 

more base pairs than the larger alphabet sizes. Thus, we 

conclude that the canonical alphabet was very likely to 

have been optimal in the RNA world but could indeed 

be outcompeted (as Szathmary ( I  99 1 ,  1 992) has already 

suggested) by an alternative six-letter system under a high 

copy fidelity regimen (although the effects of wobble pair­

ing have not been taken into account here). In addition, 

copy fidelity decreases with increasing alphabet size 

(Szathmary 1 992; Mac Donaill 2002) so it is more realistic 

to compare high-fidelity two- and four-letter alphabet fit­

nesses with low-fidelity six- and eight-letter alphabet fit­

nesses. This would have the effect of increasing the fidelity 

range where a four-letter alphabet outcompetes a six­

letter alphabet. 

Ribozymes are usually much larger and more complex 

than the structure that we use as a target in the flow reac­

tor. Using a more complex structure as the target will 

improve discrimination between the alphabets. However, 

experiments to study larger structures will take longer to 

compute owing to the complexity of the RNA-folding 

algorithm. 
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Figure 3. (a) Evolving towards a target structure. Results were gathered from the flow reactor (see § 4) for two-, four-, six­

and eight-letter artificial genetic alphabets and the canonical AUCG alphabet. The probability of mutation is 0.009 and the 
population size is maintained at 1 00.  The inset is a plot of the alphabet fitness, which is defined to be mean population fitness 
at generation 1 00 0  as a function of alphabet size. (b) The mean population fimess at generation 1 000 as a function of the 

probability of mutation per site. The results are for two-, four-, six- and eight-lener artificial alphabets (represented by crosses, 
addition signs, diamonds and squares, respectively) and the canonical AUCG alphabet (circles). 
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These experiments do not, however, take into account 

the additional metabolic cost of using longer alphabets. 

But if we observe four- and six-letter alphabets performing 

in an almost indistinguishable manner then one can argue 

that four is optimal owing to the added difficulty of syn­

thesizing an additional base pair (although ribozymes may 

have been more specific). For the larger 1 0- 1 6-letter 

alphabets not included in this study the general trend is 

an asymptotic approach to a low fimess (data not shown). 

Additionally, the amount of base pairing with larger alpha­

bets decreases to negligible levels, although the effects of 

hydrophobic interactions between bases may alter these 

conclusions (Wu el al. 2000). 
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CHAPTER 3 

Automated 

Identification of 

Pseudouridy lation 

Guide snoRNA Genes 

Little Eo-Peep has lost her sheep, 

And doesn't know where to find them; 

Leave them alone, and they 'll come home, 

Wagging their tails behind them. 

-Mother Goose nursery rhyme about lost sheep. 

3.1 Context and Overview 

This project relates attempts to computationally identify "pseudouridylation guide 

small nucleolar RN As" (H/ ACA snoRNAs). To date, 44 pseudouridines have been 

identified on yeast rR As (see Table 3 . 1 )  and 1 7  H/ ACA snoRNAs hav been 

shown to guide modification of 21 of these (Ofengand & Fournier, 1998; Samarsky 

& Fournier, 1999) . Based on this data we suspect that perhaps 10-20 yeast H/ ACA 

snoRNAs remain to be identified. The H/ ACA snoRNAs maintain 4-6 short primary 

motifs and a global secondary structure which may provide sufficient information 

for a genome wide search for candidate H/ ACA snoR A Genes (see Paper 2, figure 

1 ) .  
The follwing chapter is composed of two papers, Paper 2 h as  been published in 

"Bioinformatics" and Paper 3 is a draft detailing a comparative genomic approach 

to snoRNA gene identification. Paper 2 describes an algorithm for locating yeast 

pseudouridylation guide snoRNAs , results from a genomic scan by an implementa­

tion of the algorithm are discussed. Paper 3 describes phylogenetic or comparative 
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genomic approaches for further analyses of results from the genomic scan algorithm 

described in Paper 2. Results from applying this technique are discussed. 

The authors of paper 2 (Edvardsson et al. , 2003)  are Sverker Edvardsson,  myself 

(Paul Gardner) ,  Anthony Poole, Mike Hendy, David Penny and Vincent Moulton. 

Edvardsson and myself are joint first authors . Edvardsson developed the majority of 

the code with assistance and much discussion with myself (and our fellow authors) .  

I did the majority of the data-gathering and analysis o f  the primary and secondary 

structure elements of our training data-set. The original manuscript was drafted by 

myself which has been completely re-written by successive rounds of proof-reading 

by the authors. The other authors have operated in a largely supervisory capacity. 

The supplementary material (Tables 3 . 1-3 .5 ,  referred to in paper 2 as tables 1-5) 

are appended after paper 2. 
Paper 3 discusses the use of comparative genomics to further reduce false­

positives and increase confidence in the genomic scan for H/ ACA snoRNAs detailed 

in Paper 2. This paper is currently solely authored by myself but others may be 

added as their contributions are included. 
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ABSTRACT 

Motivation: Noncoding RNA genes produce functional 
RNA molecules rather than coding for proteins. One such 
family is the H/ACA snoRNAs. Unlike the related CID 
snoRNAs these have resisted automated detection to 
date. 
Results: We develop an algorithm to screen the yeast 
genome for novel H/ACA snoRNAs. To achieve this, we 
introduce some new methods for facilitating the search 

for noncoding RNAs in genomic sequences which are 
based on properties of predicted minimum free-energy 

(MFE) secondary structures. The algorithm has been 
implemented and can be generalized to enable screening 
of other eukaryote genomes. We find that use of primary 
sequence alone is insufficient for identifying novel H/ACA 
snoRNAs. Only the use of secondary structure filters 
reduces the number of candidates to a manageable size. 

From genomic context, we identify three strong H/ACA 
snoRNA candidates. These together with a further 4 7 can­

didates obtained by our analysis are being experimentally 
screened. 
Contact: vincent.moulton@lcb.uu.se 
Supplementary Information: Tables 1-5 referred to in 
the text can be downloaded from httpJ/RNA.massey.ac.nz/ 
fisher/ 

INTRODUCTION 
The number of genes identified that code for noncoding 

RNAs is growing rapidly (Eddy, 2001 ;  Erdmann e1 al., 

200 1 ;  Meli et al., 200 1 ). While tabor-intensive molecu­

lar biological approaches have been successful in identi­

fying noncoding RNAs (Hiittenhofer et al. , 200 1 ;  Lagos-

*To whom correspondence should be addressed. 
1 Bolll authors conlribuled equally to this work. 

Bioinforma tics 19{7) 19 Oxlord Univers�y Press 2003; all rights reserved. 

Quintana et al., 200 I ;  Lau er al., 200 I ;  Lee and Ambros, 

200 I ), it is preferable to carry out initial RNA gene pre­
diction in silica, as is common with protein-coding genes, 
e.g. (Delcher er al., 1 999). 

Standard search methods such as BLAST (Altschul 
er al., 1 990) have been used in comparative searches 

of bacterial genomes for novel RNAs (Argarnan er al. , 

200 1 ;  Rivas er al., 200 1 ;  Wa�sarrnan et al., 2001 )  and 

in searches for novel small regulatory RNAs in animals 
and invenebrates (Pasquinelli et al., 2000). ln addition, 
programs for RNA gene finding are available; for example, 
the programs tRNAscan-SE (Lowe and Eddy, 1 997), 
QRNA (Riva� and Eddy, 200 1 ;  Rivas et al., 2001 ), and 

RNAMotif (Macke et al., 2001 )  have been successfully 
applied in whole genome searches for novel RN As. 

The imponance of primary sequence for the finding 
of new RNAs is clear, and was employed heavily in a 

comparative search for noncoding RNAs in E.coli (Rivas 
et al., 200 1 ). However, in general, standard homology 
searches are not suitable for finding RNA�. Thus suc­
cessful searches have tended to use techniques such 
as neural networks (Caner et al., 200 I ), pattem-ba�ed 

descriptors (Macke et al., 200 I )  and covariance models 
(Eddy and Durbin, 1 994; Lowe and Eddy, 1997, 1999) 
which incorporate RNA secondary structure information. 

ln this paper we investigate an alternative approach 
for incorporating secondary structure information into 

RNA searches. Secondary structure is amenable to math­
ematical analysis making minimum free-energy (MFE) 
structure prediction using algorithms such a� dynan1ic 
programming possible. ln consequence programs such 

as VIENNA (Hofacker et al., 1 994) and Mfold (Zuker 
et al., 1 999) can quite accurately predict secondary 
structure. Even so, Rivas and Eddy (2000) determined 
that a general search for noncoding RNAs in genomes 
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using MFE structure stability alone is unlikely to succeed 
since background noise is too high. 

However, in (Collins et al., 2000) the discovery of an 
RNase P candidate in the maize chloroplast genome wa� 
detected using an ad hoc combination of comparative 
genomics and MFE structure comparison. Encouraged 
by this result, we developed the RNA shape comparison 
techniques described in (Moulton et al., 2000) and 
incorporated them into an algorithm that we present 
here which screens the budding yeast Sacclwromyces 
cerevisiae genome (Goffeau er al., 1 996) for H/ACA 
snoRNAs. Our method is similar to that used by Lowe 
and Eddy ( 1 999) in their successful computational screen 
of the S.cerevisiae genome for the related CID snoRNAs, 
which employed a probabilistic model a� opposed to MFE 
structure prediction. 

METHODS 
Our search strategy for novel snoRNAs in the S.cerevisiae 

or yeast genome uses known HIACA snoRNAs to form 
primary and secondary structure models. Then we make a 
sequential search for novel snoRNAs in both directions of 
the yea�t genome, passing candidate sequences obtained 
with the primary structure search through various sec­
ondary structure fi lters. The sequences that pass through 
all of these fi lters are then scored using both primary and 
secondary structure information. 

Training data set 

SnoRNAs (small nucleolar RNA�) are named because of 
their localization to the eukaryote cell nucleolus. They fall 
into two families, the CID box family and the H/ACA 
box family (reviewed in Weinstein and Steitz, 1 999). 
Within the HIACA family there is signifi cant conservation 
of predicted MFE secondary structures, but very limited 
conservation of primary sequence Ganot er al., 1 997a,b). 

The H/ ACA box family guide site-specifi c isomerization 
of rRNA (Ni er al. , 1 997; Ganot et al. , 1 997a), whereby 
uridine (U) is converted to pseudouridine (W) (reviewed 
by Ofengand and Foumier, 1 998), see Figure 1 .  To date, 
44 pseudouridines have been identifi ed on yea�t rRNAs 
(Table 1 )  and 1 7  HIACA snoRNAs have been shown 
to guide 2 1  of these (Ofengand and Foumier, 1 998; 
Samarsky and Foumier, 1 999). Ba�ed on this data we 
suspect that perhaps 1 0-20 yeast H/ACA snoRNAs have 
yet to be identifi ed. 

We obtained a data�et of 16 yeast HIACA snoRNA 
sequences from the Yea�t SnoRNA Database (Samarsky 
and Foumier, 1 999). These had been identifi ed primarily 
by biochemical techniques (Ganot et al., 1 997a; Ni er al., 
1 997) and are provided with demonstrated or predicted 
locations for H and ACA motifs and rRNA interactions. 
The sequences flanking the pseudouridylation sites in 
rRNA are obtained from (Ofengand and Foumier, 1 998) 
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Fig. I. Schematic of the consensus primary and secondary structural 
elements of the HI ACA box snoRNA. Note the hairpin-hinge­
hairpin-tail secondary structure and the internal loop structures 
tenned the pseudouridylation pockets (Ganot et al., 1 997b). The 
interaction of these pockets with rR A is also shown. \jli refers to 
the parts of the snoR A that are complementary to the rRNA. 

where information regarding pseudouridines in yeast 
rRNA is presented. We did not include snR9, snR30 or 
snR37 in our training data. For snR9, no capacity for 
guiding pseudouridylation has been a%igned, and snR30 
is involved in rRNA cleavage, not pseudouridylation. 
snR37 is 386nt long and does not compare well with the 
snoRNAs in the training set. 

Primary structure search 

The primary structure search algorithm sequentially 
identifi es part� of the yea�t genome harboring various 
primary structural motifs, separated as detailed in Fig­
ure 2. The algorithm fi rst searches for an H-box. This 
motif is a sequence of the form A Nt A N2N3N4 N5 with 
N; E { A ,  U, C, G} ,  Nt -1 C, N3 -1 G, and either N4 = A  
or Ns = A .  Once a candidate H-box is identifi ed, it is 
scored using a probabil istic model that we constructed 
using the snoRNA data�el. Ln particular, we compute a 
similarity score between the putative H-box and each 
of the known H-boxes (presented in Table 2) using the 
frequencies of nucleotides at positions (Nt N2N3N4N5) 
(presented in Table 3). The similarity between the putative 
H-box and each known H-box is computed a� follows; the 
two sequences are placed one above the other, matches 
are given a score of 200, mismatches are scored according 
to the nucleotide frequencies at positions (Nt N2N3N4N5) 
(e.g. if the putative sequence has a G in position N1 which 
mismatches it is scored 8 1 .25) and the scores are added, 
in a similar fashion to the profi le matrix method used 
by PSI-BLAST (Altschul er al. , 1 997). U the maximum 
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Fig. 2. Primary structure model used to search for putative snoRNAs 
consisting of an H-box, an ACA-box (here denoted A HA-see text) 
and four regions of complementarity to the rRNA subsequences 
flanking some pseudouridylation site on rR A (denoted by \jJ 1 \j/2 
and \j/3\j/4). Our model requires: X +  Y + 14 � 142; 16 � X � 
70: r ;;. 30; 3 � z3. Z4 � IO; z3 + Z4 ;;. 9: 20 � v � 
100; 1 1  � W � 1 7; 3 � Z t . Z2 � 10; Zt + Z2 ;;> 9. 

of these similarities exceed� the threshold value of 800 
(obtained using a leave-one-out analysis), the H-box is 
accepted and this similarity score is recorded for the 
H-box. Ln addition, 200 is added to the similarity in ca�e 
a complete match is obtained between the putative H-box 
and an H-box that occurs at lea�t twice for the known 
snoRNAs (e.g. snR I 89 and snR34). Although such an 
H-box would be accepted without this bonus, the addition 
is made since the similarity is used later when scoring the 
fi nal candidates. 

After locating a high-scoring H-box, the algorithm 
searches downstream for ljJ3 and ljJ4 motifs. These are two 
sequences that are almost complementary to the sequences 
flanking a pseudouridylation site in the yeast rRNA, see 
Figure I (these motifs are listed in Table 1 ). Similar 
complementary motifs were also employed by Lowe and 
Eddy ( 1 999) in their search for CID snoRNAs. To look 
for a putative ljJ3 motif, a known ljJ3 motif is directly 
compared with the yeast genome. The comparison is 
considered a match if either the sequences are identical or 
there is at most one wobble, where a wobble corresponds 
to a C or an A in ljJ3 lining up to an U or a G in the genome, 
respectively. The wobble corresponds to a non-canonical 
ba�e pairing between the H/ACA snoRNA and the rR A. 
Such pairings occur for the known snoRNAs. The same 
comparison is performed for the ljJ4 motif. The lengths of 
the ljJ3, ljJ4 motifs (Z3 and Z4 in Figure 2), which were 
inferred by analyzing the snoRNA dataset, are reqttired 
to be between three and ten ba�es, and the sum of their 
lengths must always exceed 8. If ljJ3, ljJ4 motifs are found 
in the correct locations (given by X and Y in Figure 2), then 
the algorithm continues to search for the ACA sequence. 
To reduce any confusion from now on we denote this 
sequence by AHA, where H can equal A, U or C. The 
AHA box is exactly 14 bases from the beginning of the 
ljJ4 motif, a distance that is conserved for all known yeast 

snoRNAs (Ganot et al., 1997b) and, if found, the complete 
H-AHA region is pa�sed to the secondary structure fi lters 
described in the next section. Failure to locate a down­
stream motif in the above procedure in general results in a 
continuation of the sequential search for another H-box. 

A search for HJACA snoRNAs 

Fig. 3. Secondary structure model of HJACA snoRNA. It consists of 
two 'mountains' with widths as indicated. 

Secondary structure filters 

The H-AHA region identifi ed by the primary structure 
fi Iter is passed through several secondary structure fi lters 
to reduce false positives. 

A secondary structure model for yeast H/ACA snoRNA 
was derived using MFE structure prediction (Zuker and 
Steigler, 1 98 1 ). For each known snoRNA two sequences 
consisting of the H-AHA region together with a sequence 
of length I 00 or 120 ba�es upstream from the H-box 
were formed and then folded using the RNAfold function 
of the VIENNA v. 1 .4 package (Hofacker et al., 1 994). 
The option 'no dangling ends', improved the folds. 
Upstream lengths of I 00 and 1 20 gave a good signal, even 
though these do not correspond exactly to those for the 
known snoRNAs. The dynamic length was necessitated 
because the 5' end of a putative snoRNA sequence cannot 
be determined a priori in the yeast sequence. 

The resulting structures were represented by mountain 
plots (see Moulton et al. , 2000), which are based on 
the representation of Hogeweg and Hesper ( 1 984). This 
type of plot allows a simple connection between primary 
and secondary structure. The mountain plot consists of 
the points with x-coordinate k corresponding to the 
kth nucleotide and y-coordinate Yk equaling the number 
of base-pairs enclosing this nucleotide (see Figure 3). 
When we compare structures whose underlying sequences 
have different lengths, we normalize the corresponding 
mountain plots, scaling the x-coordinates to lie between 
0 and I and the y-coordinates so that the total area under 
the graph equals one. In practice, mountain plots are 
represented by the vector containing the y-coordinates Yk 
corresponding to each nucleotide k, whereas normalized 
mountains plot are represented by vectors of a suitably 
large fi xed length N, that contain the y-coordinates y; of 
the normalized mountain plot at x-coordinates -j,, I :::;; 
i :::;; N. To obtain the. e normalized vectors we employed 
splines. 

Good similarity was observed between the normalized 
mountain plots of the known snoRNA data�et (Figure 4). 
The signifi cant common structural features were incorpo­

rated into a secondary structure model consisting of two 
'mountains' separated by a hinge region, the position of 
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Fig. 4. Normalised mountain plots (L=IOO) for the 1 6  yeast 
snoRNAs. The thick line represents the mean structure for the whole 
snoRNA dataset. 

which roughly corresponds to the H-box (Figure 3). As a 

preliminary coarse fi Iter, the sequence comprising of the 
H-AHA region identifi ed previously, with eitherL = 100 
or 1 20 upstream bases, is folded. The resulting mount:ain 
plot is accepted only if it ha� a local minimum (corre­

sponding to the hinge position) within ± 1 1  bases of the 
H-box, the height of this minimum is at most 4 above the 

H-box, the width of the left mountain exceeds SO ba�es 
(fulfi lied automatically for the right mountain, see Fig­
ure 2), and above IIJ3 and IIJ4 the graph is high enough 

(>4) and also non-zero between these two motifs. 
Those candidates displaying these coarse criteria 

are then passed through more-sensitive fi Iters. The 
fi rst fi Iter computes a squared distance from it� nor­

malized mountain plot to a mean snoRNA structure 

(d = 'Lt=l  (y; - yf)2, where y; is the normalized struc­

ture and yf is the mean nom1alized snoRNA structure 

taken over the training dataset). Figure 4 displays this 

mean snoRNA structure for the case L = I 00. The 
distance d between a known snoRNA and the mean 

snoRNA is typically about I SO (see Figure S) so that low 

values of d are not expected for candidate snoRNAs. Even 

though distances for candidate snoRNAs are expected to 
be about the same as for known snoRNAs (see Figure S), 
a candidate snoRNA is still allowed to pass through this 
fi Iter if d < 300. 

A second fi Iter uses the observation that known snoRNA 
structures whether obtained using the old (v 1 .3 )  or new 
(v 1 .4) folding parameters (Mathews e/ al., 1 999) provided 

in the VIENNA package were similar-a property that we 
did not observe in general for random sequences (data 
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Fig. 5. Distance d from the 16 known snoRNAs to the mean 
snoRNA structure. The dotted lines represent the standard devia· 
tions (± I SO). A candidate structure will pass if d < 300 for either 
L =  I OO or L =  1 20. 

not shown). This may be because a small penurbation in 
parameters does not signifi cantly change stable secondary 
structures. We implemented a stability fi Iter that com­

pares normalized mountain plotS generated for candidate 

snoRNA sequences using both the old and new folding pa­

rameters. Ln particular, we compute the distances dold and 
dnew for the 'old' and ·new' normalized mountain plots. 

Only candidate snoRNAs satisfying ldold - dnew l < 300 
are accepted. 

Scoring the output 

The last stage computes a score based on both primary 
and secondary structure for each candidate snoRNA. A 
score for the AHA-box is added to the H-box similarity 
score described earlier. The H in the AHA-box is scored 
according to: A = 6.2S, V = 1 8.7S, C = 7S and G 
is not allowed (ba�ed on frequencies from the training 

dataset; see Table 2). The scores are added a� described 
in the section above and then tran. formed into a number 
0 �  P1 � I . 

As part of the score we also computed three other 

quantities P2 . P3 and P4 defi ned as fol lows (see Figure 2 
and Table 4). If X � 40 then we put P2 = I ,  else P2 = O.S. Furthermore, if 66 � X + Y � I 00 then we 
put P3 = I ,  else P3 = O.S. The score is also ba�ed on 
the perfom1ance of the secondary structure. The average 

distance d is computed for the training dataset. For a 
putative snoRNA if [d - d[ > d, then we put P4 = 0, 

else P4 = (d - [d - d[ )fd. Thus, the closer d is to the 

average d, the higher the score. The putative snoRNA is 
only accepted if both Pt > 0.8 and P4 > 0.6S bold. 
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The total score P,0, of the candidate snoRNA is then 
computed using the formula 

Pror = l OO [ W 1  P 1  + w2P2 + W3 P3 + W4 P4 ] ' 
W1 + W2 + W3 + W4 

where w 1 = IO, w2=2, w3= l ,  and w4=2. The values of 
the weights w; were obtained by optimization using 
the Nelder-Mead method (see e.g. Kelley, 1 999) on the 
training dataset. Only if P101 > 70 is the structure 
accepted. All snoRNAs in the training dataset satisfy 
P101 » 70 (see Figure 6). 

Final processing 

In ca�e we target snoRNAs also having the complementary 
pair \jJ 1 and \jJ2, a special procedure is called. This looks 
for the motifs ljJI and \jJ2, that fulfi U the criteria V � 20 
(the majority have V in the range 30-40) and 1 1  � W � 
1 7  (the majority have W = 1 4)-see Figure 2 and Table 4. 

RESULTS 
We have implemented the strategies and fi lters described 
above in a C program (Fisher). This is available via 
electronic mail [sverker.edvardsson @mh.se]. 

\jJ-pair assignments 

In the known yeast H/ACA snoRNA dataset, no two 
snoRNAs have been demonstrated to guide the same 
pseudouridylation (Table I ). However, of the snoRNAs in 
our dataset, only 1 3  of 22 a�signed \jJ-pairs perform the 
corresponding pseudouridylation (see Table 2) and snR3 
is potentially capable of more than one pseudouridylation 
at the 3' pocket (W3 ljJ4). We therefore examined the 
known snoRNAs for redundancy, using our primary struc­
ture engine to search for all \jJI \jJ2- and W3 \jJ4-pairs within 
these (see Table 5). We used the following constraints: 
25 � V � 45 and 1 3  � W � 16 (see Figure 2). Our 
algorithm locates all the a�signed \jJ-pairs except 39, cor­
responding to snR34 (Table 2). The reason is the unusually 
large distance W = 38. A potential stem involving 24 + 2 
ba�es lies between snR34's ljJ2 and the H-box. Despite 
this feature, it is reasonable to a�sume that functionally 
important spatial determinanL� are preserved (W. Decatur, 
J. Ni, and M. Fournier, pers. commun.). This is the only 
such situation known to exist for the yea�t snoRNAs. Our 
examination of sequence complementarity between the 
rRNA and the ljJI W2 and ljJ3\jJ4 sequence pairs in the 5' 
and 3' pseudouridylation pockets of the known HIACA 
snoRNAs reveals extensive potential for functional re­
dundancy (Table 5).  For instance, pseudouridylation of 
Uws6 in the 25S rRNA subunit (23 in Table I )  is guided 
by snR44 (Ganot et al., 1 997a; Samarsky and Foumier, 
I 999), yet our analysis (Table 5) suggests that snR3 1 ,  
snR33, snR36 and snR49 are also potentially capable of 
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guiding this pseudouridylation. Furthermore, we fi nd that 
many of the known HIACA snoRNAs can potentially 
guide more than 2 pseudouridylations. 

A test scan through a randomized genome sequence 

In order to investigate the performance of our search strat­
egy with respect to false positives we created a random­
ized test genome sequence. To conserve the approximate 
frequencies of A, U, C and G, our test genome wa� cre­
ated by copying a sequence of length 540 000 bases from 
the yeast genome. The sequence was shuffud using an 
algorithm that preserves dinucleotide frequencies (Work­
man and Krogb, I 999; Altscbul and Erikson, 1 985). For a 
sequence of length N, this is performed by randomly se­
lecting pairs of triplets of the fom1 XQY and XPY and 
then exchanging Q and P. This is repeated I O N  times. We 
then added all 1 3  snoRNAs that have \jJ3 \jJ4-pairs (Table 2) 
to create the fi nal test genome. A complete scan through 
this genome took about a day on an AMD Atblon 1 .4 Ghz 
which wa� reasonable for testing purposes. 

The total number of hits obtained by the primary search 
was 66 600, which demonstrates that it is unrealistic to 
only consider the primary motifs of H/ACA snoRNAs. 
However, several of these were actually at the same H­
box position. This redundancy occurs since the search can 
locate several different ljJ3 \jJ4-pairs and AHA-boxes. For 
each H-box we only kept hits with highest primary score 
(i.e. IOO(w1 P1 + w2 P2 + w3 P3)/(w1 + w2 + w3)). After 
the initial secondary structure fi lters have been applied, we 
are left with 1 5  428 bits. 

The scores P,0, for these hits are plotted in Figure 6. 
The squares indicate the scores obtained for the known 
snoRNAs, which were planted within the fi rst 54 000 ba�es 
of the test genome. Out of the 1 5  428 hits, 2397 have total 
scores greater than 70. We observe in Figure 6 that the 
snoRNAs have scores well above most of the other bits. 
The snoRNA with the lowest score was ranked 1 92. Thus, 
to hit all of the known snoRNAs we need to accept 1 79 
false positives. The fi nal requirement that both (PI > 0.8) 
and {P4 > 0.65) hold simultaneously, further reduced 
the number of false positives to 96. Thus, out of the 
1 5  428 distinct hits, 96 false positives remained, giving a 
performance of ( 1 5  4 1 5  - 96)/ 1 5  4 1 5  = 99.4% (searching 
the reverse complemented test genome gave 99.3%). 

Unfortunately, snR8 does not satisfy ( P1 > 0.8) and 
( P4 > 0.65). Of course, this last fi Iter could be relaxed 
in order to hit snR8, but then we would need to deal with 
many more false positives. After considerable testing, we 
concluded that the balance between the number of false 
positives and false negatives was acceptable. 

Screening the yeast genome with Fisher 

The yea�t genome is approximately 1 2  Mb, which is about 
20 times larger than our test genome, and we must search it 
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Fig. 6. The total score ( P10, ) for the hits in the shuffud test genome. 
The left fi gure shows the whole test genome consisting of 540 000 

bases. The snoRNAs were planted amongst the fi rst 54 000 bases. 

This pan is enlarged on the right The total scores for the 13 '113 '�'4-
snoRNAs are marked with squares. For a normal search we only 
accept hits with scores above 70 (marked with the bold line). 

in both directions. Thus, from the results above we expect 
Fisher to yield perhaps ten quite highly ranked novel 
snoRNAs and about 4000 false positives. 

In order to decrease this rather large number of ex­
pected false positives we created a reduced yea�t genome 
sequence of approximately 3.5 Mb. This consisted of 
the NotFeature.fa�ta fi le (produced by removing all 
regions corresponding to ORFs listed in the yea�t ORFs 
fi les), obtained by ftp from the Saccharomyces Genome 
Databa�e (Cherry et al., 200 1 ), together with the known 
introns in yeast obtained from the Ares lab Yea�t lntron 
Databa�e version 2.0 (Davis et al., 2000). This not only 
reduced the expected number of false positives to about 
1000, but also saved signifi cant CPU time (run time was 
about one week). 

Instead of the approximately I 000 false positives/novel 
snoRNAs that we expected for the reduced yeast genome, 
we in fact found 579. These candidates were further 
examined and reduced in number by considering their 
scores and performing some manual processing, such 
as checking primary and secondary structures. We also 
checked the high ranking candidates regarding their 
genomic context. Amongst the 579 candidates, we only 
found 3 1  snoRNA structures having both a Wt W2- and a 
W3 W4-pair. To create a list of 50 candidates for experi­
mental screening, we also added another 1 9  of our most 
interesting W3 W4-candidates. 

We now discuss these 50 hits in more detail. In Figure 7 
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Fig. 7. An example of a typical hit in the yeast genome. This 
panicular hit has both a '�'t '�'2 (32) and a '�'3'�'4-pair (2). Reading 
left to right, the bold motifs in the above sequence are: "'" '112, H­
box, '113, '114 and AHA-box. 

we present an example of a putative snoRNA that Fisher 
located in the yeast genome. The motifs: w, W2, H-box, 
W3 W4 and the AHA-box are marked in bold. It� W-pairs 
are W1 W2=32 and W3 W4=2 (see Table I ); these have 
not been previously a%igned to any known snoRNA. The 
distances between the motifs are V = 61 ,  W = 1 7, 
X = 27 and Y = 91 (see Figure 2). The secondary 
structure, that exhibits the typical double mountain, is also 
displayed in Figure 7.  Encouragingly, the highest scoring 
candidates showed a clear over-representation of W-pairs 
that are not assigned to known snoRNAs, wherea� hits 
with lower scores more often bad W-pairs that are already 
a�signed to known snoRNAs. 

Both the 50 candidates and the known snoRNAs are 
broadly distributed on the yea�t genome, with all chromo­
somes possessing either known snoRNA� or candidates, 
or both. Chromosome XV is notable in that it carries the 
genes for four known snoRNAs, and is also the chromo­
some with the largest number of candidates located along 
it� length. Most of our top candidates are located in chro­
mosomes X II-XVI. 

Three of our candidates were found to have especially 
interesting genomic locations. Two are located in the 
introns of the genes for the yeast ribosomal proteins, 
RPL43A and RPS I I A (both genes contain one intron 
only). We consider this to be a strong indication that these 
two candidates are indeed snoRNAs, since the majority of 
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intronic snoRNAs are found in the introns of ribosomal 
protein genes (Maxwell and Foumier, 1995) and, in 
yeast, all intronic snoRNAs except one are in ribosomal 

or ribosome-associated proteins (Samarsky and Fournier, 
1 999). An examination of orthologous ribosomal proteins 
in other organisms revealed no additional information, 
though (Higa et al., 1999) have demonstrated that the 
human and mouse Rpsl I genes house U35 (a CID family 
snoRNA) in the third intron (the yeast RPSJ lA gene 
has only one intron). A third candidate was located in 
the ORF coding for the snoRNP U3 protein MPP lO. 
This candidate is not intronic, and completely overlaps 
the coding sequence. This arrangement has been recently 
demonstrated for the CID family snoRNA U86, in yeast 
(Filippini et al. , 200 1 ). Given this demonstration of 
completely overlapping sooRNA-protein coding genes, 
and the fact that the host gene for our candidate is 
also involved in snoRNA-dependent rRNA processing, we 
consider this hit to be a good candidate for a borw fide 

snoRNA. This suggests that future genomic searches may 
require the entire genome sequence. 

DISCUSSION 
We have presented an algorithm for searching the yea�t 
genome for H/ACA snoRNAs. It is reasonably fa�t and 
can be tuned to produce a manageable number of good 

candidates. 
The method we describe could in principle be applied 

to any family of R A� with low level conserved sequence 
and well-conserved secondary structure. However, it 
might be that it works well for HIACA snoRNAs since 
the corresponding structure is quite simple; more studies 
need to be made to determine whether the method works 
for more complex structures. Ln any ca�e. some of the 
methods we have developed might still be usefully 

incorporated into existing search strategies. 

Two issues warranting discussion are the number of 
false hit� and overtraining. For the test genome described 
in the result� section our strategy had an perfom1ance of 
99.4%, but this also required the introduction of one false 
negative (snR8). Since we did not include snR9, snR30, or 
snR37 in our training data, it is likely that our approach 
will not hit all known HI ACA snoRNAs, but it will 
hopefully recover most, as per the computational screen 
for yea�t CID snoRNAs (Lowe and Eddy, 1 999). We are 
as yet unaware how iteration (adding verifi ed candidates 
to the training dataset) will affect the ability of our method 

to identify new HIACA snoRNAs, and it is not possible to 
predict how many iterations will be required to recover the 
majority of H/ACA snoRNAs in yea�t. However, since it 
was found that the known snoRNAs were close to the top 
in the candidate list for the test genome, partial screening 
might be expected to effectively recover the majority of 
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additional HIACA snoRNAs. 
In terms of immediate application of our algorithm to 

other organisms, the human genome provides an important 

data set for which genome sequence and a sizeable 
number of characterized H/ACA snoRNAs is available 

(International Human Genome Sequencing Consortium, 
200 I ;  Venter et al., 200 I ). Preliminary work on the 

known human HIACA snoRNAs indicates greater H­
box and secondary structural homogeneity than for yeast. 

However, since the human genome is about 250 times 
longer than the yea�t genome and since time complexity 

for folding a sequence with n bases is O (n3), the search 
may become too slow if too much secondary structure 
fi ltering is required. This could be offset by, for example, 

adapting the scanning algorithms described in Rivas and 
Eddy (2000) or by parallelizing the search. Perhaps more 
importantly with regards to folding, the accuracy of MFE 
structure prediction can depend quite heavily on the length 

of the subsequence of the genome that is being folded. 
Even so, we empha�ize that the ability of the predicted 

structures to provide signal for discovery of new RNA 
family members is more important than their correctness. 

Ln conclusion, as additional sequence data for yeasts 

becomes available (Souciet et al., 2000), it should be 
possible to not only identify known snoRNAs in other 
yeasts using BLAST (Cliften et al., 200 I ;  Cervelli et 

al. , 2002), but also to evaluate a list of candidates by 
genome comparison. This has two inlplications. First, 
preliminary evidence that a candidate is a snoRNA 
can be gathered bioinformatically, as opposed to using 
labor-intensive experinlental screening. Second, we can 
potentially reverse our approach and establish the site 
of pseudouridylation. While this does not replace the 
importance of experimentally determining the position of 
pseudouridylation, it does mean that our methods can 
in principle be applied in reverse order in cases where 
there is comparative data available but no experimentally 
detem1ined pseudouridylation sites. We are currently 
developing this strategy, together with a comparative 

pseudouridylation map for rRNA alignment� that may aid 
in assigning confi dence to HIACA snoR As identifi ed by 
comparative genome analysis. 
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3.2 . 1 

Table 3.1 :  

Supplementary material: A search for H /  ACA snoR­

N As using predicted MFE secondary structures 

Regions that are reverse complementary to those flanki ng the yeast rRNA pseudouridy­
lation sites (see F igure 1) . Col u m n  one conta i ns our label l i ng system for Ill-pa i rs .  The 
locations of rRNA u rid ines targeted for mod ification by H/ ACA snoRNAs are g iven in 
col umn  2 ,  see (Samarsky & Fou rn ier, 1999) Positions are n umbered accord ing to the 
rRNA sequences i n  the Saccharomyces Genome Database (Cherry et al. , 2001 ). The 
reverse complementary motifs of the rRNA are tabu lated i n  co l umns three and fou r  
(Ill-pa i r ) .  Parts o f  these motifs ( i nc lud ing poss ib le wobbles) are expected to b e  found i n  
snoRNA pseudouridylation pockets. The last colu mn gives predicted or  demonstrated 
Ill-pa i rs for the known snoRNAs .  Ill-pa i r  39 (U2826 ) m ight be i ncorrectly assigned to 
snR34 (W=38) ,  see Resu lts section . Ill-pa i r  27 (U2133 ) is probably a lso incorrectly 
assigned to snR3,  see Table 2. 

W-pair label \11-site w ,  >�'3) '�'2 '�'• l snoRNA 
1 8S Subunit 

I u106 AACGAUAACU UUUAAUGAGC snR44 
2 u,2o GGAACUAUCA UAAACGAUAA 
3 U2u UUUUUUAUCU UAAAUACAUC 
4 U302 AUAGGGCAGA UUUGAAUGAA 
5 u466 UAUUUAUUGU CUACCUCCCU snRI89 
6 u632 CCCAAAGUUC CUACGAGCUU 
7 U759 UUGAACACUC AUUUUUUCAA 
8 u766 GCCUGCUUUG CACUCUAAUU 
9 Uggg GACGGUAUCU UCAUCUUCGA snR31 
10 U u s 1  GAGUCAAAUU GCCGCAGGCU 
1 1  Uus7 CGUGUUGAGU AAUUAAGCCG snR36 
12 U t t 9 t  UCCCCGUGUU GUCAAAUUAA snR35 
13  U t 290 AUCACUCCAC ACUAAGAACG 
14 U t 4 1 5  GUUAUUGCCU AACUUCCAUC 

25S Subunit 
15 u776 CUCUUACUCA UCCAUCCGAA 
16 Ug6o CUGCUAUCCU GGGAAACUUC snR8 
17 Ugss GAGCUUCUGC UCCUGAGGGA 
18 Ugss UUACCUCAUA ACUGAUACGA snR8 
19 Uggo CGCUUUACCU UAAAACUGAU snR49 
20 Utoo• AACCUCUAAU UUCGCUUUAC snR5 
21 Ut042 UAAAGUUUGA AUAGGUCAAG snR33 
22 U10s2 CUUACAUAUU AAGUUUGAGA 
23 U1 0s6 ACUUCUUACA UUUAAAGUUU snR44 
24 u1 1 1 o AUGGCCCACU AAGCUCUUCA 
25 Ut t 2 4  UCUGCUUACC AAAUGGCCCA snR5 
26 U2129 AUUAGACAGU GAUUCCCCUU snR I I  
27 U2133 UUUAAUUAGA GUCAGAUUCC snR3? 
28 u2 1 9 t  GCACUGGGCA AAUCACAUUG snR32 
29 U22ss AAGAGAGUCA GUUACUCCCG 
30 U226o UUAAGAGAGU UAGUUACUCC 
31 U22s4 UACCUUAAGA GUCAUAGUUA snR3 
32 U2266 GCUACCUUAA GAGUCAUAGU 
33 U2314 CUCGUUAAUC UUCAUGCGCG 
34 U234o A A A UA�A uuLA A UGG 
35 U2349 GGUUUCGCUA UAGUAGAUAG 
36 U2351 GUGGUUUCGC GAUAGUAGAU 
37 u241s AACUAGAGUC GCUCAACAGG 
38 U273s UCAUGGUUUG UUCACACUGA snR189 
39 U2s26 UGACUGCCAC GCCAGUUAUC snR34? 
40 U2s6s GACAUCGAAG UCAAAAAGCA snR46 
41 U2sso AUUAUAUUAA ULa;GA<;AUCG snR34 
42 U2923 u A UGGGUG CAAUCCAACG snRIO 
43 U2944 AAACCCAGCU <;c;UUCCCUAU snR37 
44 U2975 AGGGUAAAAC ACCUGUCUCA snR42 
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Tab le 3 . 2 :  The snoRNA tra i n i ng dataset . The numbering convention for the demon­
strated (d) and  predicted (p) W-pa i r  ent ries a re defined in Table 1 .  For snR3 the W-pa i r  
27p is predicted i n  the Yeast SnoRNA Data base (Samarsky & Fou rn ier ,  1 999) and has  
not been demonstrated . For snR34 the W-pa i r  39p may be an incorrect assignment -
see Resu lts section . 

snR5 25d 
snRB 1 6d 
snR10 
snR11  
snRS1 
snRS2 
snRSS 
snRS4 S9p 
snRS5 1 2p 
snRS6 
snR42 
snR44 lp 
snRJ,6 J,Od 
snRJ,9 1 9p 

snR189 5p 

H box 

A GA CCAA 
A GA GCAA 
A GA A CA A  
A GA UA A A  
A GA U UA A  
A GA UAGA 
A GA U UGA 
AOAA UAA 
A GA UCA U 
A A A A CJ\J\ 
A GA UA A A  
A UA UUUA 
A A A U UA A  
A GA UUA U  
A GA A UA A  

20d A CA 
J8d A UA 
42d A CA 
26p A CA 
9d A CA 

2Sd A CA 
21 d A CA 
J, l d  A CA 

A CA 
1 1 d  J\ UA 
44d A CA 
2Sp A A A  

A CA 
A CA 

SSp A CA 

Table 3 . 3 :  Frequencies of nuc leotides used to score H-boxes (see text) . 
% N1 
u 
c 
G 

6 .25 
0 

81 .25 

62.50 
6 .25  
6 . 25 

43.75 
37 .50 

0 

6.25 
0 

12 .50 

12 .50 
0 
0 

Table 3 .4 :  D istances for demonstrated or pred i cted W-pa i rs .  See F igure 2 for definit ion 
of V, W, X a nd  Y. Mu lt ip le d istances for X and  Y a re possib le for snR3 ,  snR5, snR8 ,  
snRll and snR44. S ince X+ Y is h its occu r for various W :3 motifs. 

snoRNA V w X Y 11 snoRNA V w X y 
snRS 27 4S snR5 4 1  1 4  4 0  5 1  

ss 37 41 14 4 5  4 6  
snRS 37 1 5  2 1  71 4 1  1 4  50 41 

87 1 5  ss 59 4 1  11, 56 ss 
snR 1 1  - S2 4 S  4 1  14 69 22 

- - S6 S9 snRJO - 25 73 
- - 53 22 snRS1 - - 26 70 

snRS2 - - 24 ss snRSS - - S2 ss 
snR34 - - 2S 44 snRS5 29 1 6  - -

snRS6 - - 2S 4 0  26 1 6  - -

snR42 - - 61 59 snR44 ss 1 4  S2 4 5  
snR4 6 S7 14 - ss 14 4 7  so 
snR49 S2 14 - snR1S9 ss 1 5  2 6  60 
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Table 3 .5 :  The com puted resu lts of a W-pair search for the known snoRNAs in our 
dataset. See Table 1 for the defi n it ion of our W-pair entries ( 1-14 represent the pseu­
douridyl ation sites on the sma l l  rRNA subun it ,  15-44 the l arge subun it ) . Under l i ned en­
tries correspond to pseudouridylation sites i n  the Yeast SnoRNA Database (Samarsky & 
Fournier ,  1 999 ) ;  The l etters p and d stand  for predicted and demonstrated assignments, 
respecti ve ly. Bracketed entries have no correspond i ng  W 1 Wrpa ir. 

snoRNA 

snR5 25d 
snR8 1 6d 

snRlO 
snRll 26 
snR31 21 
snR32 
snR3:3 1 ,  4 ,  14 ,  20, 23, 33 
snR34 
snR15 m 
snR36 1, 14 ,  1 1, 23, 24 
snR42 3 
snR44 1l2 
snR46 !t.01 
snR49 2, 3, JJ!J2 

snRl89 !i12 

8, 20d, 33, (38} 

1 1 , 
1 , 

1 8d 

(33) 
23 

2 / d, 30 
(12), (31), (ild} 

1 1 d  
ill 
!lllP. 

9, 1 4 ,  1 1  
4 , 23 

J.§p_ 
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3.3 Paper 3 (Draft}, Locating H/ ACA snoRNAs 

using a combination of comparative genomics 

and MFE structure prediction 

Author: Paul P. Gardner 

Year: 2003 

Introduction 

To date the location of non-coding RNA (ncRNA) genes using computational tools 

has proved to be a difficult problem. However, specific cases have yielded interesting 

results, for example, tRNAs with tRNAscan-SE (Lowe & Eddy, 1 997a) , C/D box 

snoRNAs with snoscan (Lowe & Eddy, 1999) , and a general algorithm using base 

composition statistics in the hyper-thermophile M. jannaschi (Klein et al. , 2002; 
Schattner, 2002) . The difficulties inherent in ncR A gene identification are due to 

the fact that ncRN As generally conserve a secondary structure more than a pri­

mary structure. Proteins, on the other hand strongly conserve a primary sequence. 

However, secondary structure prediction has proved to be a computationally com­

plex problem and the accuracy of any inference decreases with increasing sequence 

length. In addition, to scan for a specific ncRNA, a secondary structure model 

must be known a priori, which requires several biochemically characterised (and 

preferably aligned) examples (Eddy, 2001 ;  Eddy 2002) . 
Comparing homologous genes from a variety of carefully selected organisms pro­

vides an extra dimension of information. The detection of neutral mutations with 

respect to homologues genes can prove very informative. For example, a mutation 

(approximately ) every third base is a strong indicator of a protein coding gene, and 

mutations which conserve an underlying secondary structure are a strong indicator 

for structural RNA genes. In order to use comparative genomics for the identifica­

tion of non-coding RNAs, candidate species for genome sequencing projects must 

be selected which are not too close (and therefore unlikely to yield any significant 

information) but are not too divergent (and therefore signal is likely to be lost in 

noise) (Cliften et al. , 200 1 ;  Cliften et al. , 2002 ) .  Using this concept should vastly 

reduce the number of false positives likely to be the result of any computational 

screen for ncR As. In fact, some progress has been made in this direction by Sean 

Eddy 's group (Rivas & Eddy, 2000c; Rivas & Eddy, 200 1 ;  Rivas et al. , 200 1 ) .  
I n  this paper we study characteristic H/ ACA box small nucleolar RN As (snoR­

As) elements in a group of partially sequenced (2 to 4-fold shotgun coverage) 
Saccharomyces genomes (Cliften et al. , 200 1 ) .  We use a modified version of Fisher 
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Figu re 3 . 1: Saccharomyces Phylogenetic Tree (Ku rtzman & Robnett, 1998) . 
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(Edvardsson et al. , 2003) to locate candidate H/ ACA snoRNA genes in S. cere­

vi,siae, then use the heuristic string matching algorithm, BLAST to identify homolo­

gous genes in genomic data for S. rnikatae, S. kudriavzevii, S. bayanus, S. castellii, 

S. kl1tyveri (see figure 3 . 1  for a phylogeny) . Unfortunately, the Saccharomyces se­

quence data is not freely available for download, however a limited BLAST server 

has been implemented which we can access . 

Methods and Results 

Comparative analysis of known S. cerevisiae H/ ACA snoRNAs 

In order to test whether the use of comparative sequence analysis to filter candidate 

snoRNAs was viable, a study of the known snoRNAs has been made. The list of 

known snoRNAs used in Edvardsson et al. , (2003) 1 ,  has been updated, two newly 

discovered S. cerevisiae snoRNAs labeled here as snR161  and snNOG2. snNOG2 is 

intronic to a GTPase protein called NOG2, so for want of a better name we have 

dubbed it snNOG2 (W. Decatur and M .  Fournier, pers. commun. ) . 

BLAST has been used to identify snoRNA homologues in each of the newly 

sequenced Saccharomyces species (see figure 3 . 1 ) . It is known that the best (lowest) 

BLAST score is not necessarily the closest phylogenetic match (Koski & Golding, 

2001 ) . However, in each of the results shown in table 3 . 6  there was just one low 

scoring match. Hence, it is unlikely that the results of Koski and Golding (2001 ) 

are a factor in this work. 

1 see section 3.2 .  
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As the results in table 3 .6 show, the majority of the known snoRNAs are well 

conserved ,  particularly across the cerevisiae group (also known as the sensu stricto 

complex in the literature ( James et al. , 1997) ) (see figure 3 . 1 ) .  The essential snR10 

sequence i s  particularly well conserved, snR33 however i s  not , homologous snR33 

genes were only discovered in S.kudriavzevii and S. bayanus. 

It is interesting to note that according to the phylogeny shown in figure 3 . 1  

S. rnikatae and S. cerevisiae share a common ancestor more recently than the rest of 

the sequenced Saccharomyces species, yet BLAST results for the snoRNAs suggest 

S. kudriavzevii is closer to S. cerevisiae. This indicates that either there are gaps in 

the S. rnikatae sequences, or that the number of snoRNA genes has been reduced in 

S. rnikatae since the cerevisiae and rnikatae lineages diverged. 

The resultant homologous sequences were aligned using clustalW (Thompson 

et al. , 1 994) , and RNAali fold (Hofacker et al. , 2002) was used to infer a consensus 

secondary structure using a combination of free-energy and comparative informa­

tion (see figure .3 .6) . As an example an alignment of snR36 is shown in figure 3 . 2  and 

annotated secondary structures of snR34 and snR36 are shown in figure 3 .3 .  The 

alignment shows that the variable positions of the H and ACA sequence motifs are 

not conserved even between the different Saccharomyces species. In a comparative 

study of vertebrate U17  snoRNA Cervelli et al. ( 2002) note that the nucleolar lo­

cabsation signal AHA, is not conserved in several species of turtle , instead it appears 

as a GCA, yet the mature U l7 is still functional. 

The hairpin-hinge-hairpin-tail secondary structure motif is well conserved 

the majority of the snoRNAs (see figure 3 .6) . Of particular note is the secondary 

structure of snR34, which a.s discussed in Edvardsson et al. ( 2003) page 57  

of this document) has a stem between the region o f  complementarity with rRNA 

H box ( labeled "Stem Inserf' in figure 3 .3) . This stem increases the 

nucleotide distance between \}12 and the H box from a well conserved 14 (±2) in 

the other snoRNAs to 38 in snR34 , additionally th{� stem is conserved and contains 

neutral mutations. 
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cerevisiae group out-group 
S.mikatae S. kudriavzevii S. bayanus S. castelli S. kluyveri 

snR3 - 9 .0c-37 5 .3e-33 4 .9e-05 0.0048 (-) 
snR5 6. 3e-20 1 .4e-33 8 .9e-32 8 . 7e- 15  6 .5e-06 (4 .0e-05)  
snR8 7. 8e-34 2 .2e-34 1 .4e-31 l .Oe- 14  3 . 5e-07 ( - )  
snRIO 6 .5e-45 2 .2e-46 4 .6e-44 4.8e-23 6 .3e-26 (3 .6e-23 )  
snRl l  3 . 2e-46 4 .4e-26 9 .4e- 13  - (-) 
snR31 3.9e-38 2 .7e-32 - 1 . 3e- 1 2  6 .6e-06 (0 .0047) 
snR32 7.6e-25 7 .0e-29 l . l e-27 7. l e-09 1 . 2e-06 (0 .0053) 
snR33 - 1 . 3e-27 1 . 4e-27 -
snR34 7 .0e-37 1 .8e-35 - l . l e- 12  7. 1e-17  (7 .6e-13 )  
snR35 - 8 .5e-31 5 .6e-28 1 . 3e-14 4 .5e-07 (0 .00043) 
snR36 1 . 5e-22 3 .4e-20 - 3 .8e-13  2 .4e-07 ( 6.4e-10 )  
snR42 2 . 4e-17  3 .6e-41 4 .0e-43 6 .7e- 1 1  5 . 7e-08 (3 . 1e-07 )  
snR44 3. 7e-37 8 .8e-34 1 .9e-31 7 .5e- 1 1  1 . 7e-09 
snR46 1 .6e-28 2 .6e-26 2 . 6e-30 1 .4e-05 1 . 5e-05 (0 .075) 
snR49 5 .3e-23 1 . 2e-22 9 .8e-23 8.3e-09 7 .4e-05 (7 .6e-07) 
snR161  1 . 3e-22 9 .7e-20 1 .4e-17 2 .8e-05 
snR189 1 .6e-30 5 .2e-29 3 . 8e-29 1 .6e-08 ( - )  
snNOG2 2 .0e-43 1 .6e-47 3 .3e-45 4 .6e- 17  5 . 7e-17  ( 1 . 2e-41 )  

Table 3 .6 :  B LAST E-va l ues (the expected number of sequence matches of t h is qua l ity 
(Aitschu l  et al. ,  1990 ) )  between S.cerevisiae and other Saccharomyces are shown for 
pa i r-wise a l ignments between the 18 known s noRNAs and  their respective h omologues 
genes (when present) . The 5 Saccharomyces species sequenced by C l iften et al. , 2001 
were u sed here .  Absence of a ny h its of s ign if icance is i nd icated with a "-" . 
To investigate the feasib i l i ty of  improv ing the qua l ity of the resu lts a second search 
of the S.kluyveri genome with the S.castelli results was made. The resu lts a re shown 
in brackets. Th is approach met with l imited success, on ly snR36 and  snR49 had more 
sign i ficant h its than the origin a l  search with S.cerevisiae sequences. Th is was not too 
suprising as both the S.cerevisiae and S.castelli l i neages d iverged from the S.kluyveri 
l ineage at a pproximately the same time (see figure 3 . 1 ) . 
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. .  (( ( ( . . . .  (( . .  ( ( ( ( ( ( ( ( ( . (((( . . . . . . . . . .  )) ) )  ) ))))  . .  ) ) ) )  . ) )  . ( ( ( . . . .  ( 
S .  c erev i s i ae U U G C CCUGUGCCUCGCUCGGUUGUUAAUUGCCAA • • •  UAUUACGAUCUUGAGCUGGAUGACAAAA 
S. mikatae U U G C C CUGUUCCUCG CUCGGUUGUUAAUUGUCAA • • •  UAUUACA.AUCUUGAGCUGGAUGUCAGAG 

S. kudri avzev i i  . U G C C C U G UGCCUCGCUCG.AUUGGUAAUUAUCAA • • .  U A UUACAAUCUUGAGCUGGAUGAUUG . G 
S .  CaS t e  l l i U U G C C CUGUGCCUCGCUCGGUUG AAGUUUCUCUAC C AUAUUUCAAU CUUGAGCUGGAUGAUUC . .  

* * * * * * * *  * * * * * * * * *  * * *  * *  * * * * * *  * * * * * * * * * * * * * * * *  

( ( ( ( ( ( ( ( . . . . .  ) ) ) ) ) ) ) ) )  . . . . .  ) )  . . .  ) ) ) )  . . . . . . . . . . . .  (((((((( . . . . .  ( ( ( . 

S .  c e revis iae A A A UA AA A AUACA UUUUAUUUUUUUGAUC.U CGGG DJmJ!:Iu . .  UAGACUUCUUUGAGlU CG 
S .  mika t a e  U A C G A C A AUUAACUUUGUUUGCU . GAUCAAUGGG • •  UAGACUUCUUUGAGUACG 

. .  UAGGCUuCUUUGAGUA CG 

AUAAACUUCUUUGAGUA C G  

S . kudriavz ev i i  
S .  c as t e  l L i  G AAUUUUUCUUCUGAA AAUUUCUU • .  AUUU 

S . c erevi s i a e  
S . mikatae 
S . kudriavze v i i  
S .  c as t e l l i  

* *  * * *  ** * *  * * * * * *  * ** * *  * * * * * * * * * * * * * *  
H box W3 

( . ( ( ( ( ( ( . . . . . . . . . . . . . . . .  ) ) ) ) ) )  . . .  )) . ) ) )  . . .  ) ) ) )  . ) ) ) )  . . . . . .  . 

A G G A UA U C G CUAUUUUUAUCUCA CGGUAUCGUAUU . G UAAUUAG A A C G UC U CI· C A  

A G G A U A C C AUUCUUUUU . UCUCA CGGUAUCGUAUU . GUAAUUAGAAUGUCUC · · U A  
A G G A UA UCAUUAGUUUU . •  C U C A CGAUAUCGUAUU . GUAAUUAGAA UGUCUC · · C A  
AAUGUAUCGCUUUUUUU • .  UUCACGAUAUUAUUUUUGUAAUUAG A A CGUUUC · · • •  

* *  * * * * * *  * * * * * * * *  * * *  * * * * * * * * * *  * *  * * *  * *  
W4 AHA box 

Figu re 3 . 2 :  An a l ignment of homologous snR36 genes ( Ci i ften et al. , 200 1 ) ,  homolo­
gous sequences were identif ied using  BLAST (Aitschu l  et al. , 1990) and a l igned us ing 
CLUSTALW (Thompson et al. , 1994) . The RNAalifold seconda ry structure is shown 
i n  dot-bracket notation a bove the a l ignment. Conserved positions i n  the  a l ignment a re 
i nd icated with a ' * ' below . .  
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Figure 3 .3 :  I nferred structures for s nR34 and snR36 .  C i rc led n ucleotides ind icate a neu­
tra l  m utation with respect to secondary structu re .  A base-pair with both nuc leotides c i r­
cled shows that compensatory mutations have ma inta ined th is base-pa ir .  Characteristic 
structu ra l  e lements of snoRNAs are the ha i rpin -h inge-ha i rpin-ta i l  secondary structures 
( l a be l ed i n  italics) , the regions of complementarity to rRNA:W I/W2  and W;,j\1!4 ,  which 
reside i n  the same bu lges (pseudou ridylation pocket) , the H box in the h inge region and 
the AHA box in the tai l .  
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Comparative analysis of the 50 Fisher candidates 

Encouraged by the comparative analysis of the known snoRNAs, we have used 

this approach to study the 50 candidates mentioned in Edvardsson et al. , (2003). 

Three candidates of particular interest were the two intronic to the ribosomal pro­

teins (RPL43A and RPSl lA ) and the candidate completely overlapping the coding 

region of the snoRNP U3  protein MPPlO. Unfortunately neither of these "inter­

esting" candidates has been conserved, the host-genes of the intronic candidates 

are conserved yet the introns are mutated far more than one would expect for a 

snoRNA based upon the earlier study. The candidate overlapping MPPlO is also 

not conserved which is surprising as this sequence is thought to encode a protein 

in S. cerevisiae. 

The results for the conserved candidates are shown in table 3. 7 and secondary 

structures in figure 3.7. Only the cerevisiae group were used for this study as these 

have been shown in the previous section to be sufficiently close (in evolutionary 

terms) to locate homologous snoRNA genes, yet sufficiently divergent for gene­

neutral mutations to appear. Comparing secondary structures of the known and 

candidate snoRN As we note that many of the candidate snoRN As do not conserve 

the classical hairpin-hinge-hairpin-tail secondary structure. In fact only candidates 

35 and 37 maintain this structure. But upon analysis of the position of primary 

motifs within the secondary structures (see figure 3.4), our confidence in these 

candidates decreases. The predicted regions of complementarity to rRNA ("W 1_4) 
do not occur within the same bulge as they do in the majority of known snoRNAs 

(compare with figure 3.3) . In fact the predicted H box isn't in the hinge region in 

either of the candidates, as it is in most of the known snoRNAs. This suggests that 

Fisher is not yet selective enough and requires further training. 

Fisher verO . 1  and comparative genomics 

As a result of the analysis of the 50 likely candidates in the previous section an 

updated version of the Fisher verO . 0 snoRNA search algorithm has been imple­

mented (Fisher verO . 1 ) .  The new algorithm does not weight H/ AHA box primary 

information as highly as the previous version. The original version modelled an H 

box as: AN1AN2N3N4N5 ( Ni E {A, U, C, G} ) . With N1 =f. C, N3 =f. G, and either 

N4 = A or N5 = A. The updated version no longer restricts the N1 and N3 po­

sitions in the motif or the H position of the AH A box. In addition the heights 

of the regions of complementarity ("W l/W2 and 1]!3/"W 4 )  are restricted to the same 

height ( ±3nucs) in the mountain plot of the MFE secondary structure. This forces 

candidates to have regions of complementarity in the same bulge and/or stem of 
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snC37 

3 

snC35 � ( :J AHA box 

Figu re 3 .4 :  I nferred structu res for sno-cand idates 35 a nd 37 . C i rc led n ucleotides i nd i­
cate a neutra l mutation with respect to secondary structure . A base-pa i r  with both 
n uc leot ides c i rc led i nd icate compensatory mutations have mainta ined th is base-pair .  
The positions of the primary motifs \[! 1 _ 4 ,  H & AHA boxes are i nd icated . 

the inferred secondary structure. addition the filters restricting secondary and 

primary structures to score above a threshold (P1 > 0 .8 and P1 > 0.65 ,  see page ?? ) 
were removed. Fisher verO . 1 was run upon the not-feature+introns S. cerevisiae 

data set and produced thousands of candidate snoRNAs. Candidate sequences with 

matching regions in S. kudriavzevii with E-values less than 10-10 and length greater 

than 1 50 were used for further analysis. These matching regions in S.rnikatae and 

S. bayarms were identified for the conserved candidates if they existed. These were 

folded using RNAalifold, and those fitting the cl&'3sical hairpin-hinge-hairpin-tail 

snoRN A shape were considered extremely likely candidates. 

After analysing over 75% of the candidates identified by Fisher verO . 1 only 

one candidate (snC53) passed all the filters for sno-likeness. This candidate is dis­

played in figure 3 . 5  and matches many of the characteristics of the known snoRNAs. 

However, when the sequence was used to probe 20J-Lg of total S. cerevisiae RNA ex­

tract , it was not detected at the predicted size as a PCR product using a northern 
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candidate S. mikatae S. kudriavzevii S. bayanus 
snC3 4.7e-19 9.3e-16 2.8e-17 

snC l l  7.1e-06 3.4e-10 -
snC15 4.0e-23 2.6e-22 1 .6e-17 
snC16 5.4e-14 1.9e-12 -
snC22 3.9e-16 4.1e-18 5.1e-14 
snC27 l.Oe-17 8.1e-21 1.8e-20 
snC35 2.9e-25 6.4e-20 2.3e-22 
snC37 3.0e-20 4.0e-26 2.3e-18 
snC38 3.1e-22 7.6e-27 5.5e-25 
snC39 6.2e-21 7.6e-14 1.5e-13 
snC42 7.1e-17 5.8e-15 -
snC43 3.4e-16 8.4e-10 1.6e-08 
snC45 1.3e-26 1.4e-23 4.0e-29 
snC46 8.3e-32 - 5.0e-25 
snC47 3.6e-29 1.6e-28 4.3e-28 

Tab le 3. 7: Comparative sequence ana lysis of the 50 Fisher verO . 0 candidates. BLAST 
E-va lues for pa i r-wise a l ignments of the 15 conserved candidates a n d  their homologous 
in S. mikatae, S. kudriavzevii and S. bayanus are shown. The absence of any homologues 
is i n d icated by a "-" . 

blot analysis. W hereas the known snoRNAs that were used as a positive control 

were detected (A. Idicula , pers. commun.). Which means that based upon biochem­

ical evidence, it is unlikely that snC53 is a novel snoRNA. 

Discussion 

It is pleasing to note that the hairpin-hinge-hairpin-tail secondary structure of 

H/ ACA box snoRNAs is conserved in general. This was consistently detected by 

using alignments of the 4 cerevisiae group Saccharomyces: S. cerevisiae, S. mikatae, 
S. kudriavzevii and S. bayanus (where sequences were available ). This increases the 

likelihood of success if a comparative genomic screen for H/ ACA box snoR As is 

employed. Exceptions that did not conserve the canonical secondary structure were 

snRl l and snNOG2. snRl l consistently fails to form a stem between the H box 

to 1lJ 3 motifs, yet still functions according to biochemical evidence (Samarsky & 

Fournier, 1999). snN OG 2 displays a secondary structure closer to a hairpin-hinge­

hairpin-hinge-hairpin-tail motif (see the structure labeled snNOG2 in figure 3.6) 
and therefore is not detected by genomic scans for the classical H/ ACA snoRNA 

secondary structure. The other newly verified snR161 on the other hand was de­

tected by Fisher 0 .  0 but was conferred a poor score due to its primary structure 

and consequently wasn't included in the list of 50 candidates. 
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Figure 3 .5 :  The extremely l i ke ly cand idate identif ied by Fisher verO . 1 and endorsed 
by comparative genomic a na lysis. lt resides on S.cerevisiae chromosome IV between 
an ORF  of "unknown function" (YDL159W-A) and a putative RNA  hel icase of the 
DEAD box fam ily (DH H l ) .  Homologues were located i n  S.mikatae, S. kudriavzevii and  
S. bayanus. Th is i s  the most l i ke ly cand idate to date based u pon conserved secondary 
structure and  primary snoRNA motifs. 

Upon reflection, this project has suffered from one basic limitation: we have 

assumed the characteristic snoR.NA primary and secondary motifs are conserved 

by the yet-to-be-discovered-snoRNAs.  Yet both the new snoRNAs, snR161 and 

snNOG2, show that this assumption is false, and has meant that novel snoRNAs 

were been neglected by this strategy. In addition, the characteristic primary and 

secondary structures of the snoRN As is not a very selective signal for genomic 

scans. Particularly the A-rich primary motifs ANANNAA and AHA in a genome which 

has 60% A+U content . Hence, by chance alone we expect approximately 3 million 

subsequences of the yeast genome to match the H box. Perhaps a future successful 

screen for snoRNAs will follow the approach of Rivas & Eddy, 2001 ,  by classi­

fying aligned sequences derived from related species as either coding (protein or 

structural RNA) or non-coding on the basis of neutral mutations with respect to 

a gene-product. In fact at least one novel S. cer-evisiae snoRNA has been located 

by these techniques (McCutcheon & Eddy, 2003) . However, the snoRNA found by 

McCutcheon & Eddy's study was also discovered by Fisher verO . 1, but was in 

the 25% of candidates that had not undergone the comparative analysis phase. 
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Above figu res show secondary structu res pred icted from a l ignments of homologous H/  ACA snoRNA genes. The structu res were inferred 
using RNAa l ifold (Hofacker et al. ,  2002) .  Where ava i l ab le homologous genes from the fol lowing yeasts were used : 5. cerevisiae, 5. 
mikatae, 5. kudriavzevii, 5. bayanus, 5. castellii, 5. kluyveri (C i i ften et al. ,  200 1 ) .  The 5' end of each sequence is ind icated with an arrow. 
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Figure 3.7 :  
Above figu res show secondary structu res pred icted from a l ignments of the 15 conserved candidate snoRNA genes. 
The structu res were inferred using RNAa l ifold (Hofacker et al. ,  2002) .  The yeasts used for th is study were 5. cerevisiae, 5. mikatae, 5. 
kudriavzevii, and 5. bayanus (C i iften et al. ,  2001 ) .  The 5' end of each sequence is ind icated with an arrow. 
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Postscript 

4. 1 Future Directions 

Comparative Genomics 

Computational scans for RN A coding genes can be enhanced by using comparative 

genomic techniques to identify neutral mutations with respect to a gene product, 

thus increasing confidence in a prediction. This has been shown in Riv&s et al. , 

2001 ,  in a test upon E. coli. Ideally a similar approach could be used to identify 

H/ ACA specifically. A combination of a Fisher (Edvardsson e t  al. , 2003) and QRNA 

(Rivas & Eddy, 2001 )  type analysis that takes alignments as input rather than 

a genome has a much greater chance of success than our current work. However, 

this project relies heavily upon the availability of Saccharomyces sequence data. 

A group based in France have made sequences from 13 Hemiascomycetous yeast 

species freely available (Feldmann, 2000) , one of which is S. bayanus which may be 

close enough in evolutionary terms to use for a comparative analysis. 

Significance of Secondary Structure S ignal for RN A Gene 

Finding 

When using computational genomic screens to locate RNA genes often the most 

discriminatory signal comes from an inferred secondary structure (Lowe & Eddy, 

1 997a; Edvardsson et al. , 2003) .  But are all secondary structure signals equal? For 

example is a clover-leaf (tRNA) shape a better signal than a dual stem (H/ ACA 

snoRNA) shape? I suspect that the dual-stem is a more common shape than the 

clover-leaf, therefore a genomic search for c lover-leaf shapes is likely to contain less 

false positives than a search for the dual-stem. 

I propose to use RNAfold (or equivalent) (Hofacker et al. , 1 994) to fold subse­

quences of a fixed length from a sequenced genome. Course-grained shapes and a 
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Complexity 

Figu re 4 . 1 :  We hypothesise that the complexity of an RNA secondary structu re is i n­
versely proportiona l  to its frequency in  genomic sequences. 

yet-to-be-developed complexity measure can t hen be used to empirically classify 

the resultant structures (see figure 4 . 1 ) .  It is possible that previous work by Ieyer 

and Giegerich ( 2002) will prove useful for this project.  

M i f o l d : reliably inferring RNA structure using mutual infor­

mation 

C urrent implementations that predict R �A secondary structure from an aligument 

using mut ual information measures (introduced in chapter 1 ( equations 1 . 8 aud 
1 .9 ,  page 19) and in equations 4 . 1  and 4 . 2) ,  are limited in t hat a structure must be 

known a priori and are susceptible to noise. This is due to the fact that the mut ual 

informat ion is generally evaluated over all possible base-pairs rather thau j ust the 

canonical pairs (see equations 4 . 1 & 4 . 2 ) .  

H ( m .  n ) = L fm .n ( Bi , Bj ) X log2 { h mn } · ( 4. 1 )  
B; . Bi 

Bi E {A , U, C , G }  ( 4 . 2 )  

A toolbox called Ml f old is being developed for t he mathematical pack­

age , MATLAB . To reduce noise, a modified mutual information measure is used 

where H(m ,  n ) is only evaluated over the canonical base-pairs: ( Bi ,  BJ ) E 

{ (A , U ) , (U, A) , (C , G) , (G , C) , (G , U) , (U, G) } .  A mountain-plot is constructed using 

max A I  I (m) = max,., ( H ( m , n ) )  values, with the further restrict ion that maxJ\ 1  I (m )  
exceeds a threshold T ,  i .e.  maxM ! (m)  > T ( see figure 4 . 2 ) .  
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F igure 4. 2 :  A figu re generated by Mlf old ( E .  Freyhu lt ,  pers. commun . )  from 40 se­
q uences produced by RNAinverse (ava i lab le with the VIENNA package (Hofacker et al. ,  
1994 ) ) ,  a l l  the seq uences i n  the a l ignment have the clover- leaf a s  a n  M FE structu re .  
The f igure on  the  left shows H(m,  n ) , spi kes show a l ign ment positions m and n where 
H ( m ,  n ) is greater than the th reshold 0 .3 .  The mounta in-plot on the right is incre­
mented by : sgn(n - m ) x (maxn ( H(m ,  n ) ) )  {::::=::} maxJI.f J (rn ) > 0 .3 .  Below the 
mounta in-plot is a colou rmap showing the rel at ive frequencies of each nuc leotide i n  
each position o f  t he  a l ignment .  
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