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ABSTRACT

A restricted version of the Tietze Theorem is that
a continuous mapping of a closed subspace of a metric
space ranging in a closed interval may be extended to a
continuous function defined upon the whole metric space.
This may be viewed as a property of the closed interval
and is expressed by saying that the interval is an
absolute extensor. Thus, absolute extensors may be
viewed as a generalisation of real intervals, and many
of the desirable properties of intervals have been

generalised to the class of absolute extensors.

In 1951, Dugundji showed that every convex subset
of a locally convex linear topological space is an
absolute extensor, thus dramatically extending the

Tietze theorem.

In this thesis, a class of subsets of a normed
linear space is defined. This new class of sets includes
the convex sets and it is shown that these new sets are

also absolute extensors.
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Introduction

The first theorem concerning absolute extensors was
undoubtedly the Tietze extension theorem, a theorem which is
found in virtually every textbook of general topology, and
which is one of the fundamental theorems of modern analysis.
Yet, it was not until 1931 that Borsuk [1] introduced the
concept of absolute retracts and not until 1951 that Dugundji
(4] proved the first significant generalization of the Tietze
theorem. The first textbook of the subject was Hu's book
'"Theory of Retracts', Hu [7], in 1965. 0Until that time, the
only widely read texts to have mentioned such spaces were
Lefschetz, 'Topics in Topology', and Kuratowski, 'Topologie
I - II', each devoting a relatively small space to this import-

ant class of spaces.

It is difficult to understand why this should be so.
The theory is satisfying and elegant, the problems difficult
and challenging, and, as Hu [7] observes, 'the theory of
retracts serves as the natural link connecting combinatorial

topology and set-theoretic topology'.

A possible explanation for the slow development of the

basic concepts is that of the emphasis in the usual statement

of the Tietze theorem. The theorem is ordinarily viewed as a
statement concerning the class of all normal spaces, which of
course it is. But, and here the emphasis changes completely,

it is also a statement of a very important property of the unit
interval, and it is with this emphasis that the theorem is in
the spirit of the theory of absolute extensors. The Dugundiji
theorem (Th. 2.17) is an elegant and far reaching generalization

of the Tietze theorem.

The problem of extending continuous functions is closely
related to a problem which superficially appears to be of
quite a different nature. If {Ua : a€A} is an indexed family
of non-empty subsets of a set Y, then the axiom of choice

guarantees the existence of a function f : A = Y such that



f(a) € U, for each a € A. Suppose that A and Y are topolog-
ical spaces. May f be chosen so as to be continuous?
Chapter III is concerned with this problem and with relating

this problem to the problem of continuous extensions.

Due to the lack of general familiarity with the theory
of absolute extensors, Chapter I is devoted to the basic

definitions and the fundamental properties of these spaces.

Indexed coverings of a space are special cases of
indexed families of subsets, and certain results concerning
the properties of such collections are necessary for the
proofs of the fundamental theorems of the theory. Chapter
IT is devoted to the systematic treatment of certain types
of coverings and, since this provides all of the machinery
necessary for the proof of the Dugundji theorem, the
chapter concludes with a proof of this fundamental and

_important theorem (Th. 2.17).

Chapter III investigates the connexion between the
problem of finding continuous extensions and that of obtain-
ing a continuous choice function for an indexed family of

sets.

Chapter IV is concerned with proving the main theorem
concerning continuous choice functions. A new class of sets
is defined and it is then shown that the basic theorem of
Chapter III may be extended to include these sets. The
class thus provides a wide new class of metrizable

absolute extensors.

Another point deserves comment. Most authors define
an indexed collection of sets as a function having the
index set as domain and ranging in the set of all (non-
empty) subsets of some set. They then proceed to ignore
(at least notationally, and frequently philosophically as

well) their own definition. In this paper the definition 1is



used systematically in all statements and, more importantly,
in all proofs. I believe that the proofs become more precise
and 'cleaner' as a result. Agreement on this may depend

upon the reader's background and temperament.

Finally, as pointed out in the text, the Urysohn Lemma
remains the fundamental and perhaps the only tool for
constructing continuous functions 'from nothing'. For
this reason, and because of its fundamental importance in
the theory of absolute extensors, I have included a proof
of the theorem in the appendix, along with several definit-
ions and small theorems which do not seem to be a part of

every general topologist's vocabulary.



CHAPTER I: ABSOLUTE EXTENSORS

There are two problems of topology, closely related,
which have stimulated considerable research in the subject:
When can a given function be extended? When is a given space
a retract of some larger space? The definitions which follow

make precise these questions.

1.1 Definition: Suppose that X is a topological space, A

a subspace of X, and f : A = Y is a function. Then F : X =Y
is called an extension of f if and only if F(a) = f(a) for
all a € A.

1.2 The Extension Problem: Given A, X, Y and f as in

definition 1.1, under what conditions does there exist a

continuous extension of f?

1.3 Definition: Suppose that A is a subspace of X. A is

called a retract of X if and only if there is a continuous
function r : X = A such that r(a) = a for every a € A.

The function r is called a retraction of X onto A.

1.4 The Retraction Problem: Given X and A, is there a

retraction of X onto A?

1.5 Remark: It is clear that the retraction problem is a

special case of the extension problem. ULet Y = A and f be
the identity map iA : A —» A. Then there is a retraction of
X onto A if and only if there is a continuous extension of
f. In fact, the problems are 'equivalent', in a sense made

precise by lemma 1.7.

1.6 Remark: Pursuing the extension problem in one direction

leads to the discovery that in many important cases the
answer depends only upon the homotopy class of f. This is
the direction followed, for example, in Hu [6]. We shall

pursue a different approach here, leading to quite a



different theory for which we need only several of the basic
properties concerning the two problems. The following lemma

shows that the two problems are very closely related.
1.7 Lemma: Suppose that f : A = Y is continuous where A C X.
Then f has an extension F : X == Y if and only if Y is a

retract of adj(X,Y,f).

1.8 Remark: The space adj(X,Y,f) is described in the

Appendix I.
Proof of 1.7: Let W = adj(X,Y,f) and suppose that

r : W =Y is a retraction onto Y. Let p : X U Y =W
be the natural projection and define, for each x € X,
F(x) = r(p(x)). F is clearly continuous and, for

x € A, F(x) = r(p(x)) = r(£f(x)) = f(x). Thus F is a
continuous extension of f.

For the converse, suppose that F is a continuous
extension of f, and let w € W. Define r : W = Y as
follows: if w € Y, then r(w) = w. If w € Y, then
there is a unique x € X-A for which p(x) = w. Let r(w)
= F(x). Then certainly r : W = Y and r|Y is the ident-
ity on Y. It remains to show that r is continuous.
Consider the composition r o p : X U Y = Y. Then (rop)|X
= F and(r op)jY = iY and thus r o p is continuous.
Since p is a quotient mapping, it follows that r is

continuous.

1.8.1 Lemma: If X is a Hausdorff space and if r : X = A is

a retraction of X onto a subspace A, then A is closed in X.

Proof: Assume that {xv} is a net in A for which
lim X, = X. Since r is continuous and since limits are
unique, r(x) = r(lim xv) = lim r(xv) = 1lim Xy, = X.

Thus x € A, and A is closed in X.

1.9 Remark: Let P be a property of topological spaces. P

is called a hereditary property if P(A) is always implied
by P(X) and A € X. P is weakly hereditary if P(A) is



always implied by P(X) and A closed in X. If we restrict
ourselves to the class of Hausdorff spaces, then the
preceeding lemma shows that a retract of X shares all of
the weakly hereditary properties possessed by X itself. In
particular, if X is normal, then so is every retract of X.
Retracts, as one would expect, inherit many properties from
X other than the weakly hereditary ones. Hu [7] is an
excellent catalogue of such properties. Only one of these

is of interest to our work.

1.10 Definition: A space X is said to have the fixed point

property if and only if for each continuous function

f : X = X there is a point x € X for which f(x) = x.

1.11 Lemma: Suppose that X has the fixed point property

and that A is a retract of X. Then A has the fixed point

property.
Proof: Let r : X = A be a retraction of X onto A and
let £ : A = A be continuous. Since (for)is a

continuous map of X into itself, it follows that there
is some x € X for which f(r(x)) = x. Since x is in the
range of f, it must be that x € A, and so r(x) = x.

Thus f(x) = f(r(x)) = x, and so A has the fixed point

property.
1.12 Remark: The definition 1.1 of extension essentially
involves three objects: the spaces X and Y and the function

f. As previously remarked, concentrating attention on the
function f leads naturally into homotopy theory. In the
following, attention is focused on the spaces X and Y, lead-

ing to quite a different theory.

1.13 Definition: Y is an extensor for X if and only if for

each closed subspace A of X and each continuous f : A = Y,

there is a continuous F : X = Y which is an extension of f.



1.14 Definition: Y is a retractor for X if and only if e(Y)

is a retract of X whenever e : Y = X is a homeomorphism of

Y onto a closed subspace of X.

1.15 Remark: Suppose that some embedding of Y into X is a

retract of X. Is Y a retractor for X? The following example

shows that the answer is generally 'no'.

1.16 Example: Let X = [0,1] U [2,3]) with the topology

inherited from the real line and let Y = [yl,y2] with the

discrete topology. Define embeddings e, and e, as follows:
el(yl) =0 e2(y1) = 0
el(y2) =2 e2(y2) 5l
Then el(Y) and e2(Y) are homeomorphs of Y which are closed
in X. el(Y) is easily seen to be a retract of X, but eQ(Y)
cannot be since any retraction r : X - e2(Y) must have

r(0) = 0 and r(1) = 1; It follows that r|[0,1] : [0,1] -
{0,1} is a retraction of the closed unit interval onto 1its

end points, which is impossible.

1.17 Lemma: If Y is an extensor for X, then Y is a retractor

for X.

Proof: Suppose e : Y = X is a homeomorphism of Y onto
a closed subset e(Y) of X. Then e_1 : e(Y) = Y is
continuous and so has a continuous extension f : X = Y.
Let r = (e o f) : X = e(Y). For x € e(Y), r(x) =

(e o £)(x) = (e o e_l)(x) = X, and so r is a retraction.

The following theorem shows that a non-normal space has

no interesting Hausdorff extensors.

1.18 Theorem: Suppose that Y is a Hausdorff space and that

X is a space which is not normal. Then Y is an extensor for
X if and only if Y consists of at most one point.
Proof: If Y has at most one point, then every function
to Y is continuous and so Y is an extensor for every

space.



Conversely, assume that Y4 and y, are distinct
points of Y, and that Y is an extensor for X. Since
X is not normal, there are disjoint closed sets A and
B which do not have disjoint neighborhoods in X.

Define f : AU B = Y by f(x)

Y4 if x € A and
f(x) = Yo if x € B. Let F : X = Y be a continuous
extension of f, and let N1 and N, be disjoint neighbor-
hoods of Y4 and Yy respectively in Y. Then F—l(Nl)

and F_l(N2) are disjoint neighborhoods of A and B
respectively, contrary to the choice of A and B.

Thus Y is not an extensor for X.

1.19 Remark: If, in the definition 1.13 of extensor,

attention is focused upon the space Y, then it becomes natural
to ask if Y may be an extensor for all spaces X. The pre-
ceeding Theorem 1.18 shows that the theory arising from such
questions would be uninteresting. Some restriction is

necessary.

1.20 Definition: Y is an absolute extensor (AE) if and

only if Y is an extensor for every metrizable space.

Similarly,

1.21 Definition: Y is an absolute retract (AR) if and

only if Y is a retractor for every metrizable space.

1.22 Remark: The restriction to metrizable spaces in these

definitions requires a certain amount of comment. In view
of Theorem 1.18, the more natural restriction would be to
normal spaces. However, the theory for metrizable spaces
develops in a much more satisfying fashion and, in addition,
there are certain cases in which AE's and AR's as defined
above operate 'properly' for a larger class of spaces.

The best results in this direction are due to Michael [10]

and are summarized in theorems 1.24 and 1.25 below.



Also, notice that every non-metrizable space Y is an AR
according to definition 1.21. As will be seen, there are

also many non-metrizable AE's.

1.23 Lemma: Every AE is also an AR.

Proof: Follows immediately from lemma 1.17.

The following theorems of E. Michael help to clarify
the situation when the spaces are other than metrizable.
Proofs of the theorems may be found in Michael [10] or in
Hu (7). Definitions of possibly unfamiliar terms may be

found in the appendix II.

1.24 Theorem: Suppose that Y is a metrizable AE. Then

a) Y is an extensor for every space which is both
fully normal and perfectly normal.

b) Y is an extensor for every fully normal space if
and only if Y is metrically complete.

c) Y is an extensor for every perfectly normal space
if and only if Y is separable.

d) Y is an extensor for every normal space if and only

if Y is both separable and metrically complete.

1.25 Theorem: Suppose that Y is a metrizable AR. Then

a) Y is a retractor for every space which is both
fully normal and perfectly normal.

b) Y is a retractor for every fully normal space if
and only if Y is metrically complete.

c) Y is a retractor for every perfectly normal space
if and only if Y is separable.

d) Y is a retractor for every normal space if and only
if Y is both separable and metrically complete.

e) Y is a retractor for every Tychonoff space if and

only if Y is compact.

Finally, the next two lemmas show that products and

retracts of AE's are again AE's.
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1.26 Lemma: A topological product of AE's is an AE.

Proof: Let Y, be an AL for each a € I, and let ¥
be a metrizable space with a closed subspace A.
If £ : A - ﬂ[Ya ca € I} is continuous, then

(na o f) is continuous for each @ € I, where T_ 1is

a
the natural projection onto Ya. Since Ya is an AE,
there is a continuous map Fa X - Ya such that

Fa(x) = ﬂa(f(x)) for each x € A. Define F : X -
ﬂ[Ya :a € I} by [F(x)Xa)

F_is continuous for each @ € I, it follows that F

Fa(x). Since (ﬂa o F) =

a
is continuous. For x € A, a € I, [F(x)]J(a) = Fa(x) =
na(f(x)) = [f(x)]J(a), and so F is an extension of f.
1.27 Lemma: A retract of an AE is an AE.
Proof: Assume that Y is an AE and that r : Y - Y1

is a retraction of Y onto a subspace of Y Let X be

a metrizable space and A a closed subspaci of X with
f: A~ Y1 a continuous function. Then f has an
extension F : X = Y. Let F1 = (r o F) : X — Yl'
For x € A, we have Fl(X) = r(F(x)) = r(£f(x)) = f(x),

and so F, is a continuous extension of f.

1
1.28 Remark: The classical Tietze extension theorem states
that I = [0,1] is an extensor for every normal space, and
so, in particular, I is an AE. The standard proof is based

upon the Urysohn lemma ( see appendix III), and is probably
the first theorem which is in the spirit of the theory of
absolute extensors. We shall exhibit the Tietze theorem as
a corollary of theorem 2.17, but it is of considerable
interest to note that the Urysohn lemma is still required
in the proof of the Dugundji theorem. The Urysohn lemma
remains the fundamental, and possibly the only, tool for

constructing continuous functions from 'nothing'.

Finally, we note that AE's are contractible and

locally contractible. Further, if a contractible space



is locally an AE, then the space itself is an AE. These
results were first proved by Hanner (5], but are more

readily found in Hu [7].

11
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CHAPTER II: INDEXED COVERINGS and the DUGUNDJI THEOREM

In this Chapter, certain properties of indexed
coverings are developed. The emphasis throughout is upon
the view that these coverings are certain types of functions.
Throughout this Chapter, Y will denote a topological space,
P(Y) the set of all subsets of Y, and A a non-empty set.
In Chapter III, we shall consider the case when A is also

topological.

2.1 Definition: An indexed collection of subsets of Y is a

function G from a set A, to be called the indexing set, to
the set of all subsets of Y, P(Y). The collection is a
covering of Y if and only if U{G(a) : a € A} = Y. The
collection is open if G(a) is open in Y for each a € A,
finite if the set A is finite, and closed if G(a) is closed
for each a € A. The closure, boundary, and interior
operators of Y are used to define the indexed collections

KG, BG, and IG by means of the equations

(KG)(a) = K(g(a))
(BG)(a) = B(G(a))
(16)(a) = 1(G(a))

for each a € A.

2.2 Definition: Suppose that G : A = P(Y) and H : B = P(Y)

are two indexed collections of subsets of Y. Then H is a
refinement of G if and only if there is a function
A : B = A such that H(b) < G(A(b)) for each b € B.

2.3 Definition: Suppose G : A - P(Y) is an indexed collection

of subsets of Y. G is said to be point-finite if and only if
{a : x € G(a)} is a finite set for each x € Y. G is locally
finite if and only if each point of Y has a neighborhood N
for which {a : G(a) N N # ¢} is a finite set. Notice that

KG is locally finite if G is.

2.4 Remark: The more usual definitions of the above concepts

refer to coverings as collections of sets, and the situation
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is at times cenfused. For example, suppose that for each
positive integer m, G(m) = Y. Is {G(m) : m € N} a finite
'cover' of Y? With our definition 2.1, G is clearly not
a finite cover, but using the 'set of sets' definition it is
not always clear how the author intends such a collection to

be considered.

Also, it should be noted that the unfortunate situation

concerning the use of adjectives is well established.

2.5 Definition: A normal topological space is paracompact

if and only if each open covering has a locally finite open

refinement.

Without question, the single most important topological
property of metrizable spaces, at least in the theory of

absolute extensors, is the following theorem of A.H. Stone.

2.6 Theorem: A metrizable space is paracompact.

Proof: See A.H. Stone [11].

The following theorem is due to J. Dieudonne ([3J.

2.7 Theorem: Suppose that Y is a normal space and that
U : A - P(Y) is a point-finite open covering of Y. Then
there 1is an open covering G : A = P(Y) of Y such that

KG(a) < U(a) for each a € A.
Proof: First suppose that A consists of only two
points. With no loss of generality, we may suppose that
A= (1,2}, Then Y - U(1) and Y - U(2) are closed sets
and disjoint since U is a covering. Thus, U(1) is an
open neighborhood of Y - U(2). Since Y is normal, there
is a neighborhood V of Y - U(2) such that KV < U(1).
Let G(1) = IV, G(2) = Y - KV. Then G is clearly an
open collection. Also,

KG(1) KIV € KV € U(1), and

KG(2) K(Y-KV) = Y-IKV C Y - (Y-U(2)) = U(2).
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Finally, G(1) U G(2) = IV U (Y-KV) € IV U (Y-IV) =Y

so that G is indeed a covering of Y.

The case when A is a finite set follows easily by

induction from the above.

Now suppose that A is infinite. Let “Fbe the set
of all indexed open covers F of Y such that
i) F : A = P(Y)
ii) for each a € A, KF(a) € U(a) or F(a) = U(a)
Define a partial ordering on “F by
F, @ F, if and only if F,(a) 2 F,(a) and
Fl(a) = F,(a) whenever KFl(a) c u(a).
It is immediate that the relation so defined upon F 1is
reflexive and transitive. We shall show that ‘¥ has
maximal elements relative to this partial order, and
that any such maximal element satisfies the conclusions

of the theorem.

Let /J/be a monotone set in“F, that is, if E and F

are any two covers in &/, then either Ea F or F a E.

We show that 47 has an upper beund in “F. For each
a € A, define G(a) = N{F(a) : F € &}. It will be shown
that G is the required upper bound.

i) G is a covering of Y: Assume the contrary and let
x €Y - U(G(a) : a € A}. Since the covering U is point
finite, there is a finite set B € A such that

x € U(a) for a € A-B.

For each b € B, let Fy € L such that x € Fb(b). This
is possible since, if x € F(b) for all F € J7 then
x € G(b), contrary to the choice of x. Since {Fb : b € B]
is a finite set of coverings, there is a covering F €,£7
such that F, @ F for each b € B.

Thus, since F(b) < Fb(b) for each b € B, it follows
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that x € F(b) for b € B. On the other hand, for

a € A-B, we have F(a) <€ U(a) and so, again, x € F(a)

by the choice of the set B. Thus, x € F(a) for any

a € A and this contradicts the fact that F is a covering
of Y.

Thus, G is a covering of Y.

ii) G is open: If F(a) = U(a) for all F € 47, then
G(a) = U(a) which is open.

Suppose that there is some [ € /C7 for which
KF(a) < U(a). For all E € Jf, either EQ F or F @ E.
If Ea F, then E(a) @ F(a), and so F(a) € N{E(a) : E a F}.
If Fa E, then F(a) = E(a), and so F(a) = N{E(a) : F a EJ.
Consequently, F(a) = N{E(a) : E a F} A N{E(a) : F a E}
= N{E(a) : E €} = G(a).

Thus G(a) is open.

It also follows that G is in the set ¥ . We now
show that G is an upper bound forAJ. Let F € Y.
Then G(a) = N{E(a) : E €L} < F(a). Also, if
KF(a) € U(a), then the argument in(ii) above shows that
G(a) = F(a). It follows that F @ G and so that G is an
upper bound for 7.

By Zorn's Lemma, “F has maximal elements. Let F be
any maximal element of “F. We show that KF(a) € U(a) for
each a € A.

Indeed, suppose that KF(b) N (Y-U(b)) # @ for some
b € A. Since F € 1?: it must then be the case that
F(b) = U(b). Let G(1) = U{F(a) : a # b} and G(2) = F(b).
Then G is surely an open covering of Y and so, by the
finite case, there is an open covering E : {1,2} = P(Y)
such that KE(1) € G(1) and KE(2) € G(2). ULet D: A - P(Y)
be defined by D(a) = F(a) if a # b, and D(b) = E(2).
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Then F @ D, but it is not the case that D a F, thus
contradicting the maximality of F. Hence, for all
a € A, KF(a) € U(a), thus completing the proof of the

theorem.

2.8 Theorem: Suppose that Y is paracompact and Hausdorff

and that U : A - P(Y) is an open covering of Y. Then there
is a locally finite open covering G : A = P(Y) such that
KG(a) € U(a) for every a € A.
Proof: Since Y is paracompact, U has an open locally
finite refinement. Let V : B = P(Y) be a locally
finite open covering of Y with A : B = A such that
V(b) € U(A(b)) for each b € B. By theorem 2.7 there is
an open covering W : B = P(Y) such that KW(b) < V(b)
for each b € B. Notice that, for any N € Y,
(b : wb)NNZpglc{(b : vib) NN # @}, and so W is

also locally finite.

For each b € B, W(b) € KW(b) € V(b) < U(A(b)).

Define G by G(a) = U{W(b) : b € k-l(a)]. It is true that
G(a) may be empty. In any case, KG(a) = KU{W(b) : b€ xda))

= u{kW(b) : b € A" 3(a)) < U(a).

G is clearly an open covering of Y. To see that G is also

locally finite, let x € Y and N be the neighborhood of x
for which {b € B : W(b) N N # @} is a finite set. But
G(a) N N # ¢ if and only if there is some b € B with

A(b) = a and W(b) N N # @. Thus, {a € A : G(a) N N # @)}
has no more elements than (b € B : W(b) N N # ¢}, and

this is finite. Thus G is locally finite.

2.9 Corollary: Suppose that Y is paracompact and Hausdorff.

Let N denote the positive integers and suppose that

V : N = P(Y) is an open covering of Y for which V(n) € V(n+1)

for all n € N. Then there is a closed locally finite covering

F : N = P(Y) of Y such that, for all n € N, F(n) € V(n) and
F(n) € F(n+1).

Proof: From the theorem 2.8 there is an open locally
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finite covering G : N = P(Y) for which KG(n) € V(n) for

n
each n € N. Define F(n) = 'Ul KG(i). Clearly F is
=

closed, F(n) € V(n), F(n) € F(n+1) for each n, and F is

a covering of Y.

Let x € Y and W be a neighborhood of x for which
{n : KG(n) N W # P} is finite. But F(n) N W # @ if and
only if there is some i < n for which KG(i) N W # @.
Thus the number of elements in {n : F(n) N W # @} does
not exceed {n : KG(n) N W # @} which is finite. Thus F

is locally finite.

It will be convenient te construct continuous functions
'in pieces'. To this end, it is required to know certain
conditions under which the resulting function is continuous.
The follwoing two theorems are perhaps better known than the
other results in this Chapter, but we shall use them frequently

and so include them here for completeness.

2.10 Lemma: If X and Y are topological spaces, F : A = P(X)

is a closed locally finte cover of X and f : X = Y is a
function such that le(a) is continuous for each a € A, then
f is continuous.
Proof: Suppose that M is closed in Y. Then =)y nr(a)
is closed in F(a) and hence in X. Thus,
keTlm) = xu{e Tt (M) noF(a) : oa € A}
u{k(£71(M) N F(a): a € al

= u{s l(m) n F(a) : a € a) = £ M)
Hence, f is continuous.
2.11 Lemma: Suppose that F : A = P(X) is an open cover of

X and that f : X = Y is such that f|F(a) is continuous for
each a € A. Then f is continuous.

Proof is immediate.

The most efficient method of 'piecing together' results

obtained locally is by means of partitions of unity. In the
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following, C*(X) denotes the bounded continuous real valued

functions having domain X.

2.12 Definition: An indexed partition of unity on X is a

function P : A = C*(X) where

i) A is a non-empty set known as the indexing set
ii) 0 £ (P(a))(x) s 1 for each a € A and x € X.
iii) For each x € X, Z{(P(a))(x) : a € A} = 1.

Notice that P(a) is required to be continuous for each
a € A.

2.13 Definition: If V : A = P(X) is an indexed collection

of subsets of X and if p : A = C*(X) is an indexed partition
of unity, then p is said to be subordinate to V if and only

if p(a)|(x-v(a)) = 0 for all a € A.

The adjective 'indexed' will be frequently omitted in

the following.

The best result concerning the existence of partitions

of unity is the following theorem.

2.14 Theorem: Suppose that X is normal and that V : A = P(X)

is an open locally finite cover of X. Then there is a partition
of unity subordinate to V.
Proof: By theorem 2.7, there is an open covering
G : A = P(X) such that KG(a) < V(a) for each a € A.
By the Urysohn Lemma (see appendix III), there is a
continuous function q(a) : X - [0,1] such that

q(a)|KG(a) = 1 and q(a)|(x-v(a)) = 0.

Note that, since V is locally finite, each point
x € X has a neighborhood N such that {a€ A : q(a)|N #& 0}
is finite. In particular gq(a)(x) # 0 for only finitely
many a € A. Define (p(a))(x) = (g(a))(x)
Z{(q(b))(x) : b € A}
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It is clear that Z{(p(a))(x) : a € A} = 1 for each
x € X. By the above remarks, it follows that each
point x € X has a neighborhood N(x) such that p(a)|N(x)

is continuous, and so p(a) is continuous by lemma 2.11.

2.15 Corollary: If X is paracompact and Hausdorff and

G : A = P(X) is an open covering of X, then there is a
partition of unity subordinate to G.
Proof: By theorem 2.8, there is a locally finite open
covering V : A = P(X) such that V(a) € G(a) for each
a € A. There is a partition of unity subordinate to V,

and hence subordinate to G.

2.16 Theorem: Let X be a metrizable space and A a closed

subspace of X. Then there is an indexed open cover of X-A
such that i) U : X-A = P(X-A4)
ii) U is locally finite
iii) if a € B(A) and N is any neighborhood of a,
then {x : U(x) C N} is infinite.
iv) If a € A and if N is a neighborhood of a, then
there is a neighborhood N1 of a such that
U(x) © N whenever U(x) N N, # @.
Proof: Let d be a metric for the topology on X. For
x € X-A, let V(x) = S(x, d(x,A)). Then V : (X-A)=P(X-A)
2
is an open collection and is a covering since X-A is
open in X. By theorems 2.8 and 2.6, there is an open
locally finite covering U : (X-A) = P(X-A) such that
U(x) € V(x) for each x € (X-A). It remains to verify

that U also satisfies iii and iv.

Let a € B(A) and let N be any neighborhood of a.
Let r>0 be such that S(a,r) € N. Since a is a limit
point of X-A, there are infinitely many points x in X-A
such that d(x,a) < gﬁ. Since d(x,A) < d(x,a), it follows
that, for these points, V(x) <€ S(a,r) and, hence,
U(x) € v(x) € s(a,r) € N. Thus {x : U(x) < N} is

LIBRARY
MASSEY UNIVERSITY
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infinite and this verifies 1ii.

Suppose that a € A and that N is a neighborhood
of a. Let r>0 be such that S(a,r) € N and let N, =

S(a, Wu_). If U(x) N Ny # @, then V(x) N N1 # @ and
consequently, ;.. .y ¢ d(x,A) +r o d(x,a) +r.
’ 2 4 2 4

Thus, d(x,a) s E@ and hence,

U(x) € V(x) = S(x, d(x,A)) € S(x, d(x,a)) cS(x,7,) <

2 2

S(a,r) € N, thus verifying iv, and completing the proof

of the theorem.

The following theorem was the first to provide a really
large class of AE's. It provides a striking generalization
of the Tietze extension theorem and, together with the
Wojdyslawski embedding (theorem 2.21), provides an inter-
esting characterization of metrizable AE's. The theorem

is due to Dugundiji [7].

2.17 Theorem: A convex subset of a locally convex linear

topological space is an AE.

Proof: Let Y be a convex subset of the locally convex
linear topological space L. Let X be a metrizable
space, A a closed subspace, and f : A = Y a continuous

function. Further, let U:(X-A) = P(X-A) be the covering
of theorem 2.16. By theorem 2.14, there is a partition
of unity p subordinate to U, p : (X-A) = C#*(X-A). VLet
Xi : (X-A) = (X-A) be a choice function for U, that is,
ki(x) € U(x) if U(x) # @ and Xl(x) is an arbitrary
element of X-A if U(x) = @.

Let X2 : (X-A) = A be such that d(Xl(x),XQ(x)) <
2d(k1(x),A). Notice that p(x) = 0 if U(x) = @#. The
extension F of f is defined immediately by
E{p(y) (x)E(Ay(y)) : y € (X-A)} if x'€(X-A)

F =
S £(x) if x € A.
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Notice that the sum appearing in the definition
of F is always a finite sum since p is subordinate to
the locally finite covering U, and that F is trivially
an extension of f. It remains to show that F is contin-

uous.

Suppose first that x € (X-A). There is a neighbor-
hood N of x for which {y : U(y) N N # @} is finite.
Thus F|N is just a finite sum with continuous coeffic-.

ients and so is continuous on N and hence at x.

Let a € A and let V be a convex neighborhood of
f(a) = F(a). Since f is continuous on A, there is a
6 >0 such that f(y) € V whenever y € A and d(a,y) <¥6.
Let W be a neighborhood of a such that U(x) C S(a,%%)
whenever U(x) N W # #. W may clearly be chosen so
that W € S(a,d).

We now claim that if Xl(x) € W and U(x) # @, then
F(XQ(X)) = f(X2(x)) € V. 1Indeed, since U(x) # @, it
follows that Xl(x) € U(x) and so U(x) N W # #. Thus,
U(x) < S(a,%%), and, in particular, d(a,kl(x)) < §%.
Finally, d(X,(x),a) = d(k2(x),kl(x)) + d(kl(x),a) <5,
and so f(kQ(x)) € V.

Now let w1 be a neighborhood of a such that W1 c W

and U(x) € W for any x such that U(x) N W, # 9. It will

be shown that F(wl) c V.
Suppose that x € W, N (X-A), so that F(x) =

2{p(y)(x)f(k2(y)) : y € X-A}. Consider any y for

which (p(y))(x) # 0. Then x € U(y) and hence

U(y) N W, # @ and consequently U(y) © W. Thus, since

A, (y) €U(y), we have XA (y) €W and hence f(kQ(y))GV.

Since V is convex, it follows immediately that F(x)€V.

If x € W, N A, then d(x,a) < 8 since W

1 cwWwcs(a,d),

1
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and so, again, F(x) € V. Hence, F(wl) C V and so F is

continuous.

2.18 Corollary: With the notation of 2.17, if £ : A - L,
then F(X) C co(f(A))

Proof: 1s immediate from the definition of F.
2.19 Corollary: (0,1) is an extensor for every normal space.
Proof: By the theorem, [0,1] is an AE. Since, in

addition, [0,1] is metrizable, separable, and metrically

complete, the corollary follows from theorem 1.24.

2.20 Remark: Several points concerning the proof of theorem

2.17 should be noted. First is the use of the partition of
unity, the existence of which depended upon the Urysohn Lemma.
Secondly, the reader should note the heavy use of the axiom

of choice and its equivalents. The function Xl is directly
guaranteed by the axiom of choice, while Zorn's Lemma was

used in the proof of 2.7, upon which the covering U ultimately

depends.

The Dugundji theorem revived interest in a theorem which
had been known for some time. Kuratowski had noticed that a
bounded metric space may be isometrically embedded in the
Banach space of all continuous bounded real valued functions
defined on the space. In 1939, Wojdyslawski [13] showed that
the embedding is a closed subset of its convex hull. The

theorem is given here.

2.21 Theorem: Let X be a metrizable space and d a bounded

metric for the topology on X. There is an isometry
F : X = C*%(X) such that F(X) is closed in co(F(X)). 1In
addition, if X is separable, then so is co(F(X)).
Proof: Define F : X = C%(X) by F(x)(y) = d(x,y). Then,
[IF(x) - F(y)||= supl|F(x)(2)-F(y)(2)| : z € x}
= sup[ld(x,z)—d(y,z)l : z € XJ
£ d(x,y)
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But d(x,y) = |F(x)(y)-F(y)(z)| and so
HE(x)-F(y)|l= d(x,y) and F is an isometry.

To show that F(X) is closed in co(F(X)), let
q € (co(F(X))-F(X)). Since q € F(X), there are a finite
number of points X € X and reals r, 2 0 such that
q # F(xi), Eri = 1 and q = EriF(xi). Let &§ > 0 be such
that 6 < %minlh—?(xi)uand let N = S(q,6) N co(F(X)).
It will be shown that N € (co(F(X))-F(X)).

To this end, assume that F(x) € N for some x € X.
Then || F(x,)-F(x)|| > 6 for each i and so d(x;,%) =
F(xi)(x) > 6 for each i. Thus.
Ha-FCOWN 2 |q(x)-F(x)(x)]| = |q(x)| = IZriF(xi)(x)l
= EriF(xi)(x) > Zr,;6 = 6 and so F(x) €N.
Hence, N C (co(F(X))-F(X)) and so F(X) is closed in
co(F(X)). As the assertion concerning separability is

not required in the following, the proof is omitted.

There are two important results which follow from the

theorem.

2.22 Theorem: A metrizable space is an AE if and only if

it is a retract of a convex set of a Banach space.
Proof: If X is an AE, then X is an AR by Lemma 1.23,

and so there is a retraction r : co(F(X)) —= F(X).

If X is a retract of a convex set, then X is an AE

by lemma 1.27.

2.23 Theorem: A metrizable AR is an AE.

Proof: If X is a metrizable AR then X is (homeomorphic

to) a retract of a convex set by Theorem 2.21.

2.24 Theorem: If X is a compact metrizable AE, then X has

the fixed point property.
Proof: Since X is compact, F(X) is closed in K(co(F(X)))
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which, by the theorem of Mazur [9], is itself compact.
Thus, there is a retraction r : K(co(F(X))) = F(X).
Since K(co(F(X))) has the fixed point property by a
Theorem of Tychonoff [12]), it follows from lemma 1.11
that F(X), and hence X, has the fixed point property.
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CHAPTER III: CONTINUITY OF INDEXED COLLECTIONS.

THE BASIC THEOREM.

3.1 Remark: We now turn to a problem which, at first sight,

seems quite removed from the problem of continuous extensions.
One formulation of the axiom of choice is as follows:

If C : X = P(Y) is an indexed collection of subsets of Y

such that C(x) # @ for each x € X, then there is a function

f : X = Y such that f(x) € C(x) for each x € X.

In case X and Y are both topological spaces, 1t 1is
natural to ask if f might not be continuous. There is an
intimate connection between this problem and the extension
problem which is clarified by theorem 3.12 below. In the
following P'(X) denotes the set of all non-empty subsets of X.

3.2 Definition: For V C X, st(V) = {2 € P'(X) : 2N V # ).

'st(V)' is read 'star of V'.

3.3 Definition: If X is a topological space, then

{st(Vv) : V open in X} is a sub-base for a topology on P'(X).
Unless the contrary is explicitly stated, P'(X) will be
assumed to be equipped with this topology which will be known
as the usual topology on P'(X).

3.4 Remark: If X and Y are topological spaces and if

C : X = P'(Y) is an indexed collection of non-empty subsets

of Y, then C may or may not be continuous. We will show

that continuity of C is related to the question of the
existence of a continuous choice function. Also, it should

be noted that the topology which we are using is not the

only useful topology. That it is the appropriate topology

for our purposes follows from Theorem 3.12. The interested
reader should consult Cech (2, Chapter vIi]J. In the following,
X and Y are topological spaces, and P'(X), P'(Y) are given the

usual topology.
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3.5 Lemma: Let C : X = P'(Y). Then C is continuous if and
only if {x € X : C(x) N G # @} is open in X for each G which

is open in Y.

Proof: Assume that C is continuous, and let G be open
in Y. Then st(G) is open in P'(Y) and, since C is
continuous, C_l(st(G)) is open in X. But,

C-l(st(G)) = {x € X : C(x) € st(G)]
= {x € X : c(x) NG # g}

Conversely, if {x € X : C(x) N G # @} is open in X,
then the set equalities above show that C_l(st(G)) is
open in X. Since {st(G) : G open in Y} is a subbase

for the topology of P'(Y), it follows that C is contin-

uous.
3.6 Lemma: Suppose that Y is a locally convex linear
topological space. Then {st(V) : V open and convex in Y} is

a subbase for the usual topology on P'(Y).
Proof: Let T denote the topology on P'(Y) which is
generated by {st(V) : V open and convex in Y}. Since
each of the sets in this collection is open in the usual
topology of P'(Y), it follows that T is weaker than the
usual topology. It will now be shown that, if G is open

in Y, then st(G) is in the topology T.

Let 2 € st(G), so that z NG# @, and let
Yo
open convex set U such that Ve € UC G. Since yOEUﬂZO,

€ Z N G. Since Y is locally convex, there is an

it follows that Z € st(U), and that st(U) is a subbasic
open set of T. Further, if Z € st(U), then Z N U # @

and so Z N G # # and hence Z € st(G). Thus, st(U)Cst(G).
Thus, st(G) is open in the T topology. Since the usual
topology is the weakest topology which contains

{st(G) : G open in Y}, it follows that T coincides with
the usual topology.

3.7 Remark: If Y is a linear space, then the operator co
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may be considered as a function co : P'(Y) = P'(Y).

3.8 Theorem: Suppose that Y is a locally convex linear

topological space. Then co : P'(Y) = P'(Y) is continuous.
Proof: Let U be an open set in Y so that st(U) is a
subbasic open set in P'(Y). Let Z € co_l(st(U)). It
will be shown that there is a neighborhood N of ZO
which lies in co *(st(V)).

Since Z € co_l(st(U)), we have co(Zo) € st(U)
and so co(Zo) N U # @. Let Yo € co(Zo) N U. There are

thus a finite number of points z,, 2, ..., 2_, and non-
1 2 n

negative reals Py ey T such that z; € Zo for 1 =

1, «.., N0, Zri =1, and y_ = zrizi.

Further, since Y is locally convex, there is an

open convex neighborhood V of O such that (yo-+v) c u.

Let Vi =z, ¢ V for each 1 = 1, ..., n, and let
N = st(Vl) n ... n0N st(Vn). Note that N is a basic open
set in P'(Y) and that zs € Zo N Vi for each i = 1, ..., n.

It follows immediately that Z € st(Vi) for each 1 =
1, ..., n and so ZO € N. Thus N is a neighborhood of
Zo in P'(Y).

Now, let Z € N. Then Z N vy # @ for each 1 =1, ...,n.
Let v, €znN A for each i = 1, ..., n, so that
v. = z, + w,, where w, € V. Then Xr.,v, = Zr.z. + Zr.w.
i i i i i'i i%i i1
=y, t (some point of V).

Hence, Zrivi € U and so co(Z) N U # @. Thus
co(z) € st(V), and this shows that N C co T(st(u)).

Hence co is continuous.

3.9 Remark: If Z is convex, then co(Z) Z. Hence the set

of convex subsets of Y is a retract of P'(Y). Since P'(Y)
is not generally a Hausdorff space, it cannot be immediately

concluded that the class of convex subsets of Y is closed
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in P'(Y) and, in fact, this is not generally so, as may be

seen from the following example.

3.10 Example: Let Y = RZ, Z, = {r : r is a rational, 0srs1}.
Then co(Z_) = (0,1] = K(Z_ ), but since K(Z_ ) N U # @ if and
only if Zo N U # @ when U is open, it follows that Z is in

the P'(R1) closure of the class of convex subsets of Rl,

although Zo is not convex.

3.11 Remark: The argument used in example 3.10 may be used

to show that Z and K(Z) never have disjoint neighborhoods in
P'(Y). Thus, if Y contains any set which is not closed, then

P'(Y) is not Hausdorff.
What has all of this to do with continuous extensions?

3.12 Theorem: Suppose that A is a closed subspace of X, and
that £ : A = Y. Define C(x) = {ff(xﬂ if x € A

Y if x € A
then C : X = P'(Y) is such that
i) The map F : X ® Y is an extension of f if and only
if F is a choice function for C.
ii) C is continuous if and only if f is continuous.
Proof:
i) is clear
ii) Suppose f is continuous. Let G be open in Y and
suppose that x_ is such that C(xo) nNG#@o. If
Xq € (X-A), then, since A is closed, there is a
neighborhood N of X such that N € (X-A). For each x€N,
C(x) = Y and so C(x) N G # @, i.e., Nc {x : aNc(x)#a}.
On the other hand, if X € A, then, since f is continuous,
there is a neighborhood N of X, such that f(NNA) € G.
Again, for x € (N-A), C(x) = Y, and so Nc {x : C(x)NG
# o).

Thus {x : C(x) N G ¥# 2} must be open, and so C is

continuous by Lemma 3.5.
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Conversely, let C be continuous and let X € A,
Let G be a neighborhood of f(xo) in Y. Since
C(xo) = {f(xo)}, it follows that X € {(x:c(x)NGc#n}.
Since C is continuous, there is a neighborhood N of
Xy in X such that N < {x : C(x) N G # @}. Thus, for
x € (NN A), C(x) = {f(x)} and c(x) N G # ® and so
f(x) € G. Thus f(N N A) € G and so f is continuous

on A.

3.13 Remark: Consequently, it is now seen that the problem

of finding continuous extensions is a special case of find-
ing continuous choice functions for continuous indexed
collections. The remainder of this chapter is devoted to
proving the basic theorem 3.20 on continuous choices, along
with certain lemmas necessary to prove the main theorem 4.3

which extends the basic theorem 3.20.

3.14 Lemma: Suppose that C : X = P'(Y) is continuous. Let
D(x) = K(C(x)) for each x € X. Then D : X = P'(Y) is contin-

uous.
Proof: Let G be open in Y. Then K(C(x)) N G # @ if
and only if C(x) N G # @. Thus {x : D(x) N G # B} =

{x : c(x) N G # ¢} and so D is continuous.

3.15 Lemma: Suppose that C : X = P'(Y) is continuous and

that A is a closed subset of X. Further suppose that
f : A=Y is continuous. Let D : X = P'(Y) be defined by
D(x) = {{f(xﬂ if x € A Then D is continuous.
C(x) 1if x € (X-4)
Proof: Let E(x) = [{f(x)} if x € A Then E is contin-
{Y if x € (X-A4)
uous by theorem 3.12. Also, {x : D(x) N G # gl =
{x : cx) N eg# @}l N {x : E(x) N G# @) and so D is

continuous.

3.16 Lemma: Let C : X = P'(Y) be continuous and let G be
open in Y. If D(x) = C(x) N G for all x € X, then
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D : X = P'(Y) is continuous.
Proof: Let H be open in Y. Then {x : D(x) N H # @} =
{x : c(x) N eGNH # @) and so D is also continuous.

3.17 Lemma: Suppose that Y is a metric space, that

C : X = P'(Y) is continuous, and that r > 0. Let f : X = Y

be a continuous function such that C(x) N S(f(x),r) # @

for each x € X. Define D : X = P'(Y) by

D(x) = C(x) N S(f(a),r). Then D is continuous.
Proof: Let G be open in Y and let x_ € {x : D(x)NG#pl
Since C(xo) n S(f(xo),r) NG # @, there is a real s > 0
such that s < r and C(xo) n S(f(xo),s) NG # P. Let
s € C(xo) n S(f(xo),s) N G. Let

Wy o= {x o cx) N os(E(x),s) N6 # ¢)

1
W, {x : £f(x) € s(f(xo>,r-s)1.

Note that W1 is open, since C is continuous, and

W, is open since f is continuous. Thus W1 n W2 is a
neighborhood of X Finally, let x € W1 N LP® Then,
for all y € S(f(xo),s), we have

d(y,f(x)) < d(y,f(xo)) + d(f(xo),f(x)) < s+r-s-=r.
Thus, S(f(xo),s) C S(f(x),r) and consequently,
L N W, < {x : c(x) N sS(£(x),r) N G # @}. Hence, D is
continuous.

3.18 Lemma: Suppose that Y is a normal linear space and

that X is metrizable. Suppose that C : X = P'(Y) is
continuous, and that C(x) is convex for each x € X. If
r > 0, then there is a continuous function f : X = Y
such that, for each x € X, f(x) € S(C(x),r).
Proof: Let U : Y = P(X) be defined by
U(y) = {x : y € s(c(x),r)} = {x : c(x) N s(y,r)#0}.

It is clear, since C is continuous, that U is an
open covering of X. By Theorem 2.8, there is a locally
finite open covering V : Y = P(x) such that V(y) < U(y)
for each y € Y. By Theorem 2.14, there is a partition
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of unity p subordinate to V. Define f(x) =
Z{p(y)(x)-y : y € Y} for each x € X. Notice that the
sum is finite since p(y)(x) # @ for only finitely many
y. In fact, each x € X has a neighborhood N such that
f|N is defined by a finite sum, and so f is continuous

on X.
Finally, if p(y)(x) # 0, then x € V(y) € U(y)
and so y € S(C(x),r). Since S(C(x),r) is a convex set,

it follows that f(x) € S(C(x),r).

3.19 Remark: Notice here again the fundamental use of

partitions of unity which in turn depend upon the Urysohn

Lemma. The following is due to Michael [1u].

3.20 The Basic Theorem of Continuous Choices: Suppose that

X is metrizable and that Y is a banach space. Let

C : X = P'(Y) be continuous and such that C(x) is a closed
convex subset of Y for each x € X. Then there is a contin-
uous function f : X = Y such that f(x) € C(x) for each

x € X.

Proof: It is proposed to inductively construct a
sequence of functions fi : X = Y such that
a) fi is continuous for i = 1, 2,

b) ||f; (%) - £;_, (|| < 1/ i-2 for i = 2, 3, ...
&) |lex) - £,6)|| < /i for io= 1, 2, ...

Construction of f1: In Lemma 3.18, choose r = %.

The conclusion of the lemma yields f1 satisfying

a and c.
Inductive Hypothesis: f,, ..., f_ have been constructed
1 n
which satisfy a, b, and ¢ above, for each i = 1, ..., n.
. . _ 1
Construction of fn+1' Define B(x) = C(x)f\S(fn(x), én).

Then B(x) # @ for all x € X by part c of the inductive

hypothesis, and B : X = P'(Y) is continuous by lemma
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3.17, since both fn and C are continuous. Also, B(x)
is convex for each x € X since it is the interaction

of two convex sets. Thus, by lemma 3.18, there is a

continuous function fn+1 : X = Y such that
f (x) € S(B(x), 1 n+1) for each x € X. Thus,
n+l 1° 1 3 3 1 1
"f (x)-f (R)||] § —— + — = = =, <

n+1 n ” 2n+1 2n 2n+1 m 2n-1 2n—1

and ||C(x)-f (x)” < 1/2n+1. Hence fn satisfies a,

n+1l
b, and c above.

+1

@
Hence there is a sequence of functions [fn]

n=1
satisfying a, b, and ¢c. By b, the sequence is uniformly
Canchy. Since Y is a Banach space, there is a contin-
uous £ : X = Y such that f(x) = lim f (x) for each

n—e
x € X. By c, and since C(x) is closed in Y for each
x € X, it follows that f(x) € C(x) for each x € X,

thus completing the theorem.

3.21 Corollary: If X and Y are as in theorem 3.20 and if

D : X = P'(Y) is continuous, then there is a continuous
function f : X = Y such that f(x) € K co(D(x)) for each
x € X.

Proof: Let C(x) = K co(D(x)) for each x € X. By

lemmas 3.14 and 3.8, it follows that C is continuous.

3.22 Corollary: A closed convex subset of a Banach space

is an AE.
Proof: Let Z be a closed convex subset of a Banach
space Y and A a closed subset of a metrizable space
X. If f : A= 2 is continuous, let C(x)={{f(x)] if x€A
Z if x € (X-A)
C is continuous by Theorem 3.12 and so there is a

continuous F : X = Z such that F(x) € C(x) for each x € X.

3.23 Remark: It should be noted that 3.22 is weaker than
the Dugundji theorem (Th. 2.17).
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CHAPTER IV: THE MAIN THEOREM

This Chapter is devoted to extending the basic theorem
on continuous choices. We define a new class of sets, which
includes the class of convex sets, and show that the basic
choice theorem still holds for this extended class. As a

consequence, we have a new class of AE's.

Throughout this section, Y will denote an arbitrary

Banach space.

4.1 Definition: Let EC Y and t 2 0. The class of sets

@(t,Y) is defined by E € @(t,Y) if and only if for each
. n

CE if x € co([xi]i=1) then

n
finite subset [x.]._
1°1=

1
Ik - Ef s ¢t max[“xi—xj“ : 1 <£i, 3§ s n}.
4.2 Remark: The definition indicates that convex combin-
ations of points may 'escape' from E, but not too far. If

E is closed, then E € J(0,Y) if and only if E is convex.
Consider the two plane sets V and U. The first is in
G(t,RQ) for some t < %, the exact values of t depending
upon the size of the included angle. The second figure

is not in(I(t,RQ) for t < %. The main theorem applies
only to sets in (t,Y) for t < %. It should be noted that
the two figures are compact one-dimensional homeomorphic
AE's. Although the figure U is locally'GTt,R2) for t < %,
a later example will provide a compact one-dimensional

AE which is not locally(f(t,Y) for any t < %.

Further, it should be noted that a set consisting of
two points in the plane is in (I(%,RQ) but not in d(t,Rz)
for any t < %, and so, in that sense at least, the main

theorem cannot be improved.

4.3 The Main Theorem: Suppose that X is a metrizable

space and that Y is a Banach space. Let 0 < t < % and
let A : X = P'(Y) be continuous. If A(x) is closed for
each x € X and if A(x) € a(t,Y) for each x € X, then there
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is a continuous function f : X - Y such that f(x) € A(x)
for all x € X.
Proof: Let N denote the natural numbers and let s be
a real number such that 2t < s < 1. Let a be a real
number such that
4,4) a > X s > 1
k=0

and 4.5) A(x) N S(0,a) # @ for at least one x € X.

Define V : N = P(X) by V(n) = {x€x:A(x)NsS(0,a"”) #a}.

Then V is open since A is continuous, and V is a

covering of X since U{S(O,an) :n € N} = Y. Also, since
an+1 > an, it follows that V(n) € V(n+1) for all n € N.
By Corollary 2.9, there is a covering F : N = P(X) such
that

4.6) F(n) <€ V(n) for all n € N
4.7) F(n) <€ F(n+1) for all n € N
4.8) F(n) is closed for each n € N
4.9) F is locally finite

It is proposed to construct a sequence of functions

[fn}:_l with the following properties:

4.10) fn : F(n) = Y is continuous for all n € N
4.11) £ (x) € A(x) for all x € F(n) and for
all n € N
4.12) IFn(x)“ < a"?! for all x € F(n) and for
all n € N
4.13) f__,|F(n) = £ for all n € N.

The construction of such a sequence will proceed by

induction.

Construction of f1: This will also be an inductive
construction. Define go(x) = 0 for all x € F(1).
Note that “go(x)-A(x)" = inff||ly]] : v € A(x)} < a for

all x € F(1), since F(1) € V(1) ={x€ X : A(x)NS(0,a)# @}
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Assume that the functions ggs -+ By have been
defined and that the following properties are satisfied:
b,14) g ¢ F(1) = Y is continuous for k = 0,1, .., n
4.15)||gk(x)—A(x)” < sXa for each x € F(1) and
k=0, 1, .., n
4.16) ”gk(x)-gk+1(x)||S sXa for each x € F(1) and
k=0, 1, .., n-1

Define B : F(1) = P'(Y) by B(x) = A(x)(\S(gn(x),sna)

for all x € F(1). Note that B(x) # # by 4.15, and that
B is continuous by Lemma 3.17. Hence, by corollary

n+1l F(1) =~ ¥
such that gn+1(x) € K(co(B(x)))for each x € F(1). Since
g

3.21, there is a continuous function g

) € KS(gn(x),sna), property 4.16 follows immediately.

It remains to verify 4.15 for the function 841"
Let € > 0. Then there is a y € co(B(x)) for which
||gn+1(x)—y||< €. Since y € co(B(x)), there are a
finite number of points {yi}g_l C B(x) and such that
p . . . .
y € CO([yi]izl)' Notice that if 1 < i, § < p, then
“yi—yj||< 2s™a since B(x) C S(gn(x),sna). Thus, we
have
leq 1 ()-20O| = llg,,, GO-y|l + |ly-aC)||
< e + tmaxl]y;-ygll 14,3 sp)
s € + t-2s" a, since A(x)€e@(t,Y).
Thus, llgn+1(x)—A(x)|| s t'QSr-la < Sn+1a since 2t < s by
the choice of s, and this verifies 4.15.
-]
Hence, there is a sequence of functions {gi]i=1
which satisfy properties 4.14-4,16. The sequence 1is
uniformly Cauchy by 4.16 and hence fl(x) = 1lim gi(x)
i —~o
defines a continuous function f1 : F(1) = Y. We must

verify that f1 satisfies 4.11 and 4.12.

Verification of 4.11: Let€ > 0 and let M be such that
Ikl(x)-gn(x)" < € for all n > M and all x € F(1).
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Then, ||f,(x)-A(x) || = ”fl(x)-gn(x)||+ llg, (x)-A(x)|

€ + sa for all n > M and all

x € F(1)

A

Thus , “fl(x)—A(x)”
closed in Y, it follows that fl(X) € A(x) for each
x € F(1).

0 and, since A(x) is assumed

Verification of 4.12: for all x € F(1), we have

n-1
”fi(X)“ = ”f1(X)_go(X)" < "fl(x)—gn(x)" - kf!gk+1(x)—gk(x)"

-]

< "fl(x)-gn(x)" + k?Jlgk+1(x)—gk(x)H for all n €N.

k 2
Thus, ||f,(x)|| = Z|l g  ,(x)-g (x)]| < a § st < a‘.
k=0 k=0
This completes the construction of fl'
Inductive Hypothesis: Assume that functions fl""’ fn
have been constructed which satisfy properties 4.10- °
4.13 for all n = ng.
. . . . IR
Construction of fno+1. Define C : F(no+1) P'(Y)
by C(x) = [fn (x)} if x € F(n_)
o
K(x) 1f % € F(no+1)-F(no)
Since F(no) is closed in F(no+1) and since fn is
continuous, it follows from Theorem 3.12 that® C is
continuous. Also note that C(x) is closed and C(x) €
(@(t,Y) for each x € F(no+1).
The construction of frl ol is by induction.
o

Let h_ : F(no+1) = Y be defined by ho(x) = 0 for
X GnF(no+1). If x € F(no) then ”ho(x)-C(x)“ = ”fn (||

otl o

< a by u4.12.



37

If x € F(n_+1)-F(n_), then ”h (x)-Cc(x)|| = "ho(x)—A(x)”
< an°+1, since F(no+1) c v(n +1) =

{x€X:A(x) N S(0,a n +1) # Q}. Thus for all x € F(no+1),
we have “ho(x)-C(x)“‘<an0+1.

Assume now that functions ho’ hl’ 500 g hp have
been defined which satisfy the following conditions:
4.17) hy s F(no+1) - Y is continuous for

k=1, ..., P
4.18) by (x)-c(x)|| <'s
and k = 1, ..., p
4.19) "hk+1(x)-hk(x)" s sXa"o*t! for al1

X € F(no+1) and k = 1, ..., p-1

kano+1 for all x € F(no+1)

Define D : P(no+1) = P'(Y) by D(x) = C(x) N
S(hp(x),span°+1). Note that D(x) # @ by 4.18 and
that D is continuous by lemma 3.17. Thus, by

corollary 3.21, there is a continuous function

hp+1 : F(no+1) - Y such that hp+1(x) € K(co(D(x)))
for each x € F(no+1). Thus we need to verify that
h satisfies 4.18 and 4.19.

pt1l

Verification of 4.18: Let x € F(n +1) and € > 0.

Then there is a y € co(D(x)) for wh1ch||h (x)—y|y<e.

Also, there are a finite number of points [y }q 1CD(X)
such that y € co({yi}i=1 . Notice that if 1 Sl, jSq
then||yi-yj” < 2span°+1, since D(x) < S(hp(x),span0+1).

Hence, ||h (x)-C(x)|| = ||In +1(x) yl| + |ly-c(x)||

pt+l
< € + t max["yi-yj"= 151, j<q}

< € + t.QSPan°+1,

c(x) el@(t,Y).
Thus, ”hp+1(x)—C(x)" s t.psPalotl  gPtlgnotl.

since

since 2t < s by the choice of s.
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no+1),

Verification of 4.19: Since h +1(x) € KS(h (x),spa

it follows immediately that "hp (x)-hp(xﬂls sPalo’?,

+1

[ <]

Thus, there is a sequence of functions {hk]k=1

which satisfy 4.17-4.19. By 4.19, the sequence

converges uniformly, and thus f (x) = 1lim h,(x)
ng,+1 e k

defines a continuous function fn

F(n_+1) — Y.
° o

+1

We now show that fn satisfies properties 4.11-4.,13.

otl

Verification of 4.11 and 4.13: Observe that

IEHO+1(X)-C(X)” < ano+1(x)-hk(x)“ + |In, (x)-c Gl

k_n.+1

< || £ (x)-h, ()| + s"a’o’" for all

n_+1
o
k € N and x € F(no+1). Thus, |Eno+1(x)-C(x)" = 0 for

all x € F(no+1). Since C(x) is closed for all x, it

follows that f (x) € C(x). TFor x € F(n_), then,
neotl o

fno+1(X) = fno(x) and fno(x) € A(x) by the induction

hypothesis. For x € F(no+1)—F(no), we have C(x) = A(x),
and so again fno+1(x) € A(x).

Verification of 4.12: We have

Ol = llE, L, (0-h ()| s LR IR

“fn +1 n +1
o o
k-1
gy, 0o 0l
=
(x)—hi(xllfor all k.

- -]
* "fno+1(")‘hk(")” ) LY

I
1=0

=4 +1 @ 1 not+2
Thus, ”fno+1(x)” sifghi+1(x)-hi(x)||$ano ifos <a o' “,
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This completes the construction of the sequence

(-]
{fi}izl' Define f : X = Y by f(x) = fn(X) for
x € F(n). The definition is unambiguous by 4.13,
and f is continuous since F is a closed locally
finite covering of X. Finally f(x) € A(x) by u4.11.

This completes the proof of the main theorem.

4.20 Corollary: If K is a closed subset of a Banach space
Y, if 0st<%, and if K EG(t,Y) then K is an absolute

extensor.

Proof: Let £f : A = K be continuous, where A is a
closed subspace of a metrizable space X. Define
B : X = P'(Y) by
Blx) = {{f(x)} if x € A
K if x € X-A.
Then B is continuous by lemma 3.12 and B has a contin-

uous choice function by the main theorem.

4.21 Corollary: If K € G(t,Y) and if K is closed, then K

is contractible and locally contractible.

4.22 Corollary: If K € @(t,Y), t<X, and if K is compact,

then K has the fixed point property.
Proof: Follows from theorem 2.24, since K is a

compact metrizable AE.

4.23 Example: A compact one dimensional metrizable AE
which is not even locally @(t,Y) for t<%: Let I=(0,1]
and F : I = C(I) be the Wojdyslawski embedding, i.e.,

F(x)(r) = |x-r|. Then certainly F(I) is an AE, but
F(I) € @(t,c(I)) for 0St<Y%, as may easily be seen from
the graph on page Uu0.

The dotted graph is %F(a) + %F(b), and the distance
from this to F(I) is easily seen to be %|a-b|.
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Example L4.23: The solid graphs represent F(a) and F(b).
The dashed graph is % F(a) + % F(b). The distance from
% F(a) + % F(b) to any other point in F(I) may not be less
than %||F(a) - F(b)|]. Thus, F(I) € @(t,c(I)) for any

t < %,even though F(I) is a compact one dimensional

absolute retract.
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APPENDIX I: THE SPACE ADJ(X,Y,f)

Definition: The topological sum of two topological spaces

X and Y is the topological space X + Y given as follows:
The underlying set is the disjoint union of the sets X and
Y. The topology is the set {V U W : V open in X and W open
in Y}.

In particular, note that X and Y are both embedded as
closed subsets of X + Y, and are considered in the natural

way as subsets of X + Y.

Definition: Suppose that A € X and that f : A = Y is

continuous. The space Adj(X,Y,f) 1s the quotient space

of X + Y under the identification of x and f(x), i.e.,

Adj(X,Y,f) = X + Y, where E is the equivalence relation
E

given by <x1,x2> EEw X =%, or fx1=fx or £x.=x. or fx2=x

2 1 +2 1

Denote by p the quotient mapping from X + Y to
AdF(X,Y,£).

Lemma: If A is closed, then p|Y is a homeomorphic embedding
of Y as a closed subspace of Adj(X,Y,f).
Proof: p|Y is easily seen to be injective. To see
that it is closed, let F be a closed subset of Y.
Then p-l(p(F)) = f_l(F) U F which is closed in X + Y.
Since p is a quotient map, it follows that p(F) is
closed in Adj(X,Y,f). Consequently, p|Y is a homeo-
morphism and(p|Y)(Y)is closed in Adj(X,Y,f).

As usual, Y is identified with p(Y) and so

considered to be a subset of Adj(X,Y,f).
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APPENDIX II: SOME STANDARD DEFINITIONS

Definition: A subset K of a topological space X is a G6

if and only if K is the intersection of a countable number

of sets, each open in X.

Definition: A topological space X is perfectly normal if
and only if each closed set of X is a G5‘
Definition: If V : A = P(X) is an indexed collection of
subsets of X, sty : X = P(X) is defined by

stv(x) =U{v(a) : x € V(a), a € A}.
Definition: Vis a star refinement of W : A = P(X) if and

only if sty : X = P(X) is a refinement of W.

Definition: X is fully normal if and only if each open
cover W of X has a star-refinement which is also an open

cover.
Theorem (Stone [11]) X is fully normal if and only if X
is regular and each open cover has a locally finite

refinement which is also an open cover.

Definition: X is metrically complete if and only if there

is a metric for the topology of X which is a complete metric.
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APPENDIX III: THE URYSOHN LEMMA

Theorem: Let XO and X, be closed subsets of a normal

1
space X. There is a continuous function f : X - [0,1]
such that leo = 0 and le1 = 1.

Proof: ©Let D be the set of dyadic rationals between

0 and 1, i.e. D = [l% : p, q positive integers with
2

p~<2q]. An indexed collection of open sets
A : D= P(X) is defined inductively on q as follows:
g=1: Normality of X permits the choice of an
open set A(%) such that
X, © A(%s) < KA(%) < X-X

1
g=n+1: Choose, using normality, for each
p=2k+1, k=1,2,...,2n—2 an open set A(Z%%%) such that
2
k 2k+1 2k+1 k+1
KA(;EJ < A(2n+1) = KA(2n+1) < A(zn }

and, for k=0 and k=2n—1,

1

1 1 _

X, < M=) © xal) < alom )
+1 +1

KA(Qn'l) c A(gi__;l) c KA(gz__;ij c X-X..

on 2n+1 2n+1 1

Observe that the collection A satisfies
a) if r € D, s € D and r<s, then KA(r) < A(s)
b) for all r € D, X, © A(r) € KA(r) < X-X,.
Define f : X = [0,1] by
£(x) = 0 if x € A(r) for all r € D
sup{r € D : x € A(r)} otherwise.
Note that fIXo = 0 and fIX1 = 1 follow immediately
from (b). It remains to show that f is continuous.

Let x € X.

Case 0<f(x)<1: Let €>0 be given. It may be
assumed that 0< f(x)-€ and f(x)+€<1. Choose T11< €
such that f(x)+‘n1 € D and n2<:€ such that f(x)-n2€ D.
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Since f(x) = sup[r €D : x €& A(r)}, it follows that

x € A(f(x)+n1). Further, by replacing n, with n2é

if necessary, it may be supposed that x & KA(f(x)-nQ).

Consequently A(f(x)+ﬂ1) N (X—KA(f(x)-nz)) is an open

neighborhood of x. If y is any element of this

neighborhood, then f(y) = sup{r€D:y@A(r)} and so
f(x)-€ < f(y) < f(x)+¢€

and so f is continuous at x.

Case f(x)=0: Let € >0 be given and choose
N € D such that 0 < 11 < min(€,1). For y € A(7M),
f(y) = sup{r € D : y € A(r)} s ns€, or f(y) = 0

and consequently f is continuous at x.

Case f(x)=1: Let € >0 be given and choose

N € D such that o < m < min(€,1). We may assume
that x € KA(1-1m). Thus, for y € X-KA(1-1m), we
have f(y) = sup{r € D : y € A(r)} 2 1-11 > 1-€

and so, again, f is continuous at x.
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NOTES ON NOTATION

The symbols K, B, and I denote the closure, boundary,
and interior operators in a fixed topological space. The
complement of A in X is written as ¥ - A, and parentheses
are frequently omitted where not necessary. Thus, for

example, KIV-A means K(I(V))-A.

In a metric space, S(a,r) denotes the set of points
whose distance from the point a is less than r. Slightly
less standard is the use of S(A,r), where A is a non-
empty set to denote the set of points whose distance from
the set A is less than r. Note that S(KA,r) = S(A,r).
Even less standard, but very useful, is the notation
“All to denote inf{lla“ : @€ A} when A is a subset of a

normed linear space.

Other notation conforms to standard mathematical

usage and should require no explanation.
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