Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

DYNAMICAL SYSTEMS MODELS FOR GROWTH OF RYEGRASS AND CLOVER

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS AT MASSEY UNIVERSITY

> Tracey Flux February 20, 1998

Abstract

This thesis presents models formulated to describe ryegrass and clover growth independently, with the long-term goal of constructing a unified ryegrass/clover model. The purpose of this unified model will be to address the questions of co-existence of ryegrass and clover when grown together, and persistence of ryegrass in these mixed pastures.

An overview of the problem and background of the biology is provided. This may be particularly useful for the reader with no prior knowledge of ryegrass or clover biology.

A physiologically-based model for ryegrass growth is investigated. This model is a modification of that proposed by Johnson and Thornley [14] who only consider the vegetative growth phase. The modified model accounts for the reproductive growth phase. Some numerical results, with and without reproduction, are presented. These results show that increased growth occurs when reproduction is included.

A model for ryegrass growth based on tiller numbers is then investigated. This model has far fewer state variables than the above-mentioned physiologically-based model, although only vegetative growth is considered. The differential-delay equations which result from the mathematical formulation of this model are presented. Mathematical analysis of these equations reveals two steady states: a zero steady state and a finite steady state. A threshold condition that determines which of these two steady states is eventually reached is given. The effects of harvesting the growth are also studied using numerical simulation.

Two models for clover growth, both of which are structurally similar to the second ryegrass model, are described. However the first clover model does not have any inbuilt delay mechanisms. Mathematical analysis of these models also shows the existence of two steady states: a zero steady state and a finite steady state. Again, a threshold condition determining which of these is eventually reached is given. There is little difference between the results from the two clover models, even when the numerical simulations from harvesting are considered.

Finally, a summary is given of the models studied and an indication of possible extensions to these models. A suggestion as to how a unified ryegrass/clover model might be formulated is also given.

Acknowledgements

I would like to thank Professor Robert McKibbin for his excellent guidance, and for the enthusiasm and patience he has shown during the course of this work.

I am greatly indebted to Harry Clark, Paul Newton and Ken Louie from AgResearch Limited, Grasslands for providing me with the opportunity to work on this interesting research project.

I would like to express my sincere gratitude to Ken for his considerable help during the production of this thesis, and to Harry for his much appreciated assistance with the biology.

Finally, a special thank you to my family and friends for their continuous support and encouragement.

Contents

A	cknov	wledgements	v
Ta	able o	of Contents	v
\mathbf{Li}	st of	Figures vi	ii
Li	st of	Tables	x
1	Intr	oduction	1
	1.1	Description of the problem.	2
	1.2	Survey of previous work	4
	1.3	This work	6
2	A P	hysiologically based Grass Model	8
	2.1	Model description	8
	2.2	Calculations (simulations) 1	.6
		2.2.1 Method of calculation	.6
		2.2.2 Initial conditions	.6
	2.3	Results of calculations 1	.6
	2.4	Harvesting	21
	2.5	Summary and Comments	26
3	АТ	iller based Grass Model 2	27
	3.1	Model Description	27
	3.2	Numerical solutions	31

	3.3	Steady States and Stability	33
		3.3.1 Nondimensional Model	33
		3.3.2 Steady States	34
		3.3.3 Local Stability	35
	3.4	Global stability	44
	3.5	Harvesting	45
	3.6	Summary and comments	48
4	AG	rowing Point based Clover Model	49
	4.1	Model Description	50
		4.1.1 First Model - without delay	50
		4.1.2 Second Model - with delay	55
	4.2	Numerical solutions	56
	4.3	Steady State Analysis	58
		4.3.1 Without delay	59
		4.3.2 With delay	65
	4.4	Global Stability	73
	4.5	Harvesting	74
	4.6	Summary and Comments	76
5	Sun	nmary	77
	5.1	Conclusions	77
	5.2	Further Work	78
Bi	bliog	graphy	80

List of Figures

1.1	Grass plant and clover plant	3
2.1	A grass plant	9
2.2	Varying P_m over time	15
2.3	Structural dry mass components and leaf area indices vs time \ldots .	17
2.4	Total structural weight and leaf area index vs time	18
2.5	Projection of trajectories onto W_i - W_S planes	19
2.6	Total structural weight and leaf area index with different initial con-	
	ditions	20
2.7	Structural dry mass components and leaf area indices vs time with	
	harvesting	22
2.8	Total structural weight and leaf area index with harvesting	23
2.9	Projection of trajectories with harvesting	24
2.10	Total structural weight and leaf area index with changed initial con-	
	ditions for weight	25
2.11	Total structural weight and leaf area index with changed initial con-	
	ditions for leaf area indices	25
2 1	Cross plant with tillers	97
3.1		21
3.2	Conceptual diagram of tiller-based grass model	28
3.3	Likelihood of parent tiller giving rise to a daughter vs parent tiller	
	mass density	29
3.4	Time plot of tiller-based grass model	32
3.5	Projection of trajectories of tiller-based grass model	33

3.6	λ real for 'extinct' state	37
3.7	Graph of v against $-\sin 2v \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	38
3.8	λ real for 'finite' state \hdots	41
3.9	Graph of v against $\frac{1}{2}\sin 2v$	43
3.10	Bifurcation diagram for tiller-based grass model	44
3.11	Tiller number density against time with different initial conditions .	45
3.12	Size vs time with 30 day harvest	45
3.13	Different harvesting regimes for tiller-based grass model	46
3.14	Tiller number density vs days between harvest	47
3.15	Growth rates of tiller-based model	47
4.1	A clover plant	49
4.2	Clover model interactions	50
4.3	Viable buds, incipient branches and growing points vs time	57
4.4	Projection of trajectories	58
4.5	λ real for 'extinct' steady state $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \hfill \ldots \hfill \hfill \ldots \hfill \$	69
4.6	λ real for 'finite' steady state $\ .$	72
4.7	Trajectories (Without delay)	73
4.8	Trajectories (With delay)	74
4.9	Harvesting (Without delay)	75
4.10	Harvesting (With delay)	75

List of Tables

2.1	Derived variable definitions for Johnson/Thornley model	14
2.2	Parameter definitions for Johnson/Thornley model	14
3.1	Parameter values for tiller-based grass model	31
4.1	Parameter values for clover model	54

÷