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Abstract 

The usage of superphosphate fertilizers, animal remedies and other material containing heavy 

metals (HMs) in agriculture and horticulture is a problematic issue resulting in accumulation of 

HMs in the soil. The presence of these HMs in soil leads to the induction of resistance of 

environmental bacteria to these heavy metals, and may co-select for resistance against a broad 

range of antibiotics (Abs). This co-selection may increase the health risk for both human and 

livestock because of resistance to the wide range of Abs. As well as direct health effects, an 

increase in Ab resistance may impose a significant burden on the livestock industry and primary 

production, leading to potential for immense social and financial losses. The current project was 

aimed to investigate resistance of soil-borne bacteria sampled from selected regions of New 

Zealand. Genetic diversity of these bacteria and molecular aspects of horizontal transfer of HM 

and Ab resistance genes to other bacterial hosts was also investigated. 

Soil samples with different history of usage, including pastoral and arable with high levels of 

HMs (e.g. cadmium (Cd) and zinc (Zn)) were collected from the Waikato region (WR), as well as 

soil from an area of native bush (background) as control. Waikato Region (WR) is one of the 

regions in New Zealand with high levels of HMs in soil, due to the regular use of HM-containing 

superphosphate fertilizers and animal remedies. Belmont Regional Park (BRP) airstrip soil was 

used as a novel site to explore bacterial communities’ resistance to HMs, and any co-selected 

Ab resistance. A comprehensive investigation was performed to simulate the soil environment 

contaminated with various levels of HMs to interrogate induced resistance to HMs and Abs in 

soil bacterial communities using microcosms with 6 week and 6 month incubation.   

The experiments carried out to investigate soil bacterial resistance to HMs and Abs were divided 

into two different categories, including physiological and molecular experiments. The 

physiological tests included plate culturing with a range of HMs and Abs concentrations and 

Pollution Induced Community Tolerance (PICT) analysis. Molecular investigations using Terminal 

Restricted Fragments Lengths Polymorphism (TRFLP) and Next Generation 16s rDNA were 
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conducted to determine the probable changes in bacterial community structures induced by 

selection pressure of HMs presence in soil samples. Cd resistance genes were detected in 

individual bacterial isolates using specific oligomeric DNA primers via the polymerase chain 

reaction (PCR). Horizontal transfer of these genes to new bacterial recipients was investigated. 

Finally, Cd resistant bacterial isolates involved in Horizontal Gene Transfer (HGT) were identified 

using 16s rDNA Sanger Sequencing.  

Results clearly showed that there were significant differences between the levels of resistance 

to HMs and Abs in bacterial isolates from WR’s pastoral and arable soils compared to 

background soil (native bush). Differences between BRP soil samples with higher levels of HMs 

compared to those with lower HMs concentrations, and also microcosms’ with a range of HM 

levels showed there were significantly greater number of bacterial isolates resistant to HMs and 

Abs in soils with the higher initial levels of HMs. Pollution Induced Community Tolerance (PICT) 

analysis provided complementary results in concordance with the results of plate culturing 

experiments and showed the higher levels of bacterial resistance to HMs and Abs in soils with 

the higher initial levels of HMs. 

Terminal Restriction Fragment Length Polymorphism (TRFLP) and 16s rDNA Next Generation 

Sequencing experiments investigated HM-induced bacterial communities structure changes and 

revealed significant differences among the bacterial community structures in the selected BRP 

and microcosms soil samples.  

The HGT experiments revealed the horizontally transfer of Cd resistance genes from donor 

isolates (from WR, BRP and microcosms soils) to a characterised recipient bacterial strain in 

vitro, suggesting these genes were carried by mobile genetic elements. 

Overall, the result of the current project showed that there were higher levels of bacterial 

resistance to HM and also to Ab occured while different levels of HMs were present in soil. In 

addition, higher levels of HM and Ab resistance induction occurred in presence of specific 

concentrations of HMs in microcosms’ soils. The bacterial community structures were changed 
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in the presence of various levels of HM in soil. The investigation of bacterial community 

structures changes in microcosms containing background soil samples were greater compared 

to the microcosms containing pastoral soils; it is concluded in higher changes in bacterial 

communities in soils in presence of selection pressure of HMs. Cd resistance genes located on 

mobile genetic elements were able to be transferred horizontally form donor bacterial starins 

to recipients and the transconjugants  showed resistance not only to Cd, Zn and/or Hg, but also 

to a range of Abs; it showed the possibility of spread of these HM resistance genes to the new 

bacteria in soil and conferring HM and subsequent Ab resistance in recepients. 
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Chapter 1, Introduction 

A range of human-related activities can result in the progressive accumulation of HMs in specific 

environmental compartments including the biosphere, and agricultural and horticultural soils, 

which sit at the base of the human food chain [1]. Permeation of HMs into the soil causes 

selection for bacterial HM resistance. It is now known that HM resistance frequently occurs 

together with co-selection toward antibiotic resistance, through the same or parallel 

mechanisms [2]. This co-selection for HM and Ab resistances introduces the potential for an 

increase in resistant microbial infections in both humans and livestock, which is one of the 

biggest threats to human health according to World Health Organisation (WHO) [3]. As well as 

direct health effects, an increase in Ab resistance may impose a significant burden on the 

livestock industry and primary production, leading to potential for immense social and financial 

losses [4]. 

In New Zealand and several other countries (including Australia and the United Kingdom), the 

long-term annual and widespread use of phosphate fertilisers since the mid-1940s has caused 

significant increases in the concentrations of the contaminant element Cd in productive soils [5]. 

This is in addition to increases in the nutrient elements (P, S and Ca). Accumulation is highest in 

the long-standing dairying regions of NZ, e.g. Waikato dairy farms, where the current average 

concentration of Cd in these soils is ~0.7 mg kg-1 compared with a background average of 0.16 

mg kg-1. 

More recently, the substantial use of zinc (oxide and sulphate) in sheep and cattle as a 

preventative for facial eczema (pithomycotoxicosis disease) has resulted in a rapid accumulation 

of zinc in soils of many farms in the upper North Island of New Zealand [6]. 

Mercury is another naturally occurring metal with a high toxicity for biota.  The mercury cycle in 

New Zealand is influenced equally by both natural (e.g. volcanic activities and soil mercury 

volatilization) and human-related activities (e.g. cement and steel manufacturing, fuel 
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consumption, waste deposition) and it is estimated that its emission is about 3000 kg/year over 

the whole country.  

Ab resistance is a growing issue. Even though New Zealand is not using many Abs directly, 

ongoing use of various other substances in farming is causing the problem to get progressively 

worse.  

For the current PhD project, environmental soil samples were collected from specific sites in two 

regions.  

 In the Waikato region (WR), sites were selected from the Waikato Regional Soil Monitoring 

Programme (with the assistance of the Waikato Regional Council). Sampling targeted three 

sites that are near to each other and share the same soil type, but have different land-use 

histories: a native (or background) soil, a property used for cropping (horticulture), and a 

property used for pastoral agriculture.  Total phosphorus, cadmium and zinc concentrations 

in these soils followed the order background < cropping < pastoral, corresponding to their 

individual histories. 

 In the Wellington region, a pastoral farm property located in Belmont Regional Park (BRP), 

which is owned and leased for farming by the Greater Wellington Regional Council was 

sampled. This site features a fertiliser storage bin and farm airstrip, and is of interest because 

it shows both substantial cadmium enrichment, and a distinct concentration gradient. Both 

of these features reflect the extent of spillage of superphosphate fertiliser during loading and 

take-off of topdressing aircraft.  Near to the fertiliser storage bin and aircraft loading area, 

cadmium concentrations are very high, and these progressively decrease with distance down 

the airstrip (Kim, N. unpublished results). This contamination gradient allowed investigation 

of how bacterial population and diversity might differ with Cd concentration at a real site.  
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This research also used spiking of soil samples (from the WR) with Cd, Zn or Hg in small 

laboratory microcosms. Spiking experiments had the advantage of allowing control over a single 

variable (e.g. the Cd concentration).  

The annual antibiotic usage in New Zealand is about 75 tons and about half of this amount is 

used in farms and livestock husbandries. In New Zealand, antibiotics themselves are not used as 

general growth promotants, and a strong emphasis is placed on ensuring that antibiotic residues 

do not enter food products such as milk [7].  

1.1. Aims and Objectives of This Project 

The four aims of this project were as follows: 

1. To establish, in selected soils, whether observable microbial resistance to Cd, Zn and Hg 

shows an association with agricultural land use history. 

2. To establish, in the same soils, whether parallel associations exist for resistance to selected 

Abs. 

3. To determine if HMR and co-selected AbR is associated with the presence and magnitude of 

contamination with Cd, Zn and Hg.  

4. To quantify and provide information to distinguish bacterial community structure 

differentiations due to selection pressure caused by HMs (Cd, Zn, or Hg) presence in soil.  

To explore Aims 1 and 2, soil samples were collected from farming areas in the Waikato and 

Wellington regions of New Zealand. Waikato samples were from nearby properties of the same 

soil type that had very different land use histories. One was a background (‘native’) soil, one was 

a long-term arable farm, and one was a long-term pastoral farm. Across these three land use 

types, additions of the metals and other trace elements from fertiliser, pesticide or animal 

remedy use increased in the order background (none) > arable > pastoral (most). Wellington 

region samples were from a farm airstrip site which has a long history of being used for fertiliser 

topdressing. This site (all of the same soil type) features a strong concentration gradient of the 
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contaminants found in superphosphate fertiliser. The most prominent anthropogenic 

enrichments in soils of the Waikato and Wellington farm sites are P, Ca, F, Cd, and U (from P 

fertiliser) and Zn (from three sources, depending on land-use).  

Mercury is not significantly enriched on Waikato region farmed sites, and so provided a useful 

comparator element.  For Hg in these samples, induction of resistance would be either natural 

or secondary to resistance induced by the other contaminants. 

Further investigations using microcosms comprising background and pasture soils spiked with 

Cd, Zn or Hg were performed. Due to soil availability these soils used for the microcosm 

experiments from a separate Waikato region site.  

Aims 3 and 4 were investigated using the bacterial isolates extracted from the soil samples from 

WR and BRP and also the soil samples from microcosms.  

Across the work various workups, chemical and biochemical measures were undertaken on 

selected samples to progress all four of the aims. 

1.2. Structure and Layout of This Thesis 

Chapters 1 and 2 are the introductory parts of the thesis. Chapter 1 provides the general 

background and research aims, and Chapter 2 is a literature review providing a more detailed 

overview of the study context and current research gaps. 

The research parts of this thesis, which took the form of four different studies, are presented as 

Chapters 3 to 7.   

 Chapter 3 provides details of all methodologies used. 

 Chapter 4 presents findings of investigations into bacterial HM and Ab resistance in WR and 

BRP soils. This part of project focuses on bacterial populations, and the resistance or 

tolerance of bacterial isolates to different concentration of HMs and Abs in the selected soil 

samples. The hypothesis was that there are higher number of bacterial population resistant 
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to HMs and Abs in soils with higher levels of HMs compared to those with lower 

concentrations of HMs. In addition, it was hypothesised that there are greater level of 

resistance to HMs and Abs in bacterial isolates from soils with higher levels of HMs.  

 Chapter 5 covers bacterial resistance to HMs and Abs in microcosms soils spiked with a range 

of Cd, Zn and Hg. This study focused on the bacterial community dynamics in microcosms, 

containing soil and various concentrations of the HMs, while incubating over a span of time. 

The hypothesis was that some specific concentration(s) of HMs could induce resistance in 

bacterial isolates while present in soil, and concentrations outside this range have different 

effects. 

 In Chapter 6 results are given for experiments examining bacterial community structures 

using DNA-based molecular methods, including TRFLP and Next Generation 16s rDNA 

Sequencing to investigate the probable differences into the bacterial genome and genes due 

to the presence of difference levels of HMs in their biosphere. This study focused on the 

genomic DNA extracted from the 6-week incubation microcosms’ soil and BRP selected soils 

to explore the presence and frequency of resistance genes to HMs and Abs in varied 

conditions.  

 In Chapter 7 results are presented for work investigating horizontal transfer of Cd resistance 

genes. This was examined by conjugating recipients with suitable Cd resistant bacterial 

donor cells. The hypothesis tested in this study was that genes encoding resistance to Cd 

were able to be transferred horizontally to other bacterial isolates and resistance induced 

in the new recipient of these resistance genes. 

Of these, Chapters 4 and 5 relates particularly to Aims 1, 2 and 3, and Chapters 6 and 7 relate 

to Aim 4. However, there is some overlap as all results are relevant. 

Each of the results chapters is provided with its own discussion. These are brought together in 

Chapter 8 as an overall discussion of key findings, conclusions, and recommendations. 
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Chapter 2, Literature Review   

2.1. Heavy Metals and Their Biological Effects 

Most HMs have a fundamental task in the life processes of microorganisms and higher organisms 

and act as essential elements in the environment. Heavy metals can be added to the 

environment by a variety of different human-related activities or natural processes [8, 9]. Heavy 

metal ions catalyse many complicated biochemical reactions in cells and form redox-active 

complex compounds, thus playing a substantial role as trace elements. Some HMs, such as Cd 

(with the exception of functioning as an essential element in the physiology of some bacterial 

species [10]), Hg, Ag, Al, Pb and Au, have no beneficial effect. Instead they bring about 

detrimental consequences in the cell.  

Some other metals, for instance cobalt, calcium, magnesium, zn, iron, manganese, sodium, 

copper, nickel, potassium and chronium are necessary elements for cellular metabolism and 

other life processes [10-15]. For example, Zn and magnesium are involved in stabilizing many 

enzymes, RNA and DNA via electrostatic forces [11, 16]. Iron, nickel and copper are required for 

redox reactions [10, 11]; and magnesium, iron, cobalt, chronium, copper and nickel are 

components of vital molecules involved in diverse biological reactions e.g. photosynthesis, 

vitamin B12 metbolism, urease, cytochrome and cytochrome-c-oxidase [10, 17, 18]. However, 

in high concentrations these ions can have toxic effects, by producing complex compounds in 

the cell. For example, the presence of high concentrations of metals in cells results in metal ions 

with higher affinity binding to thiol groups or oxygen sites than metals required for cell function. 

Essential cations like Zn2+, Cu2+ and Ni2+ can be toxic at higher concentrations [18-21].  

The formation of deleterious toxic complexes by some cations like Cd2+, Hg2+ and Ag+ makes 

them hazardous agents to all kinds of life [19, 22]. Fortunately, because of their unavailability to 

living cells in the environment, most HMs are not particularly harmful and do not have major 

toxic effects on biological processes. This is due either to the low concentration of these 
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elements in the environment or low solubility of the metals [10, 14, 16, 18, 21, 23]. For instance, 

tin, cerium, gallium, zirconium and thorium have low solubility and do not have any 

characterised influence on biological reactions [14]. Bio-availability and toxicity of metals in the 

environment is considerably influenced by environmental conditions such as pH, redox potential 

and organic matter content [10, 16, 18, 24, 25]. Briefly, oxygen levels and the concentration of 

organic matter act inversely; hence, higher concentration of oxygen and lower pH increase metal 

solubility, whilst higher concentrations of organic matter decrease metal solubility. Some metals 

are considered trace elements with low toxicity (e.g. iron, molybdenum and magnesium). Zn, 

nickel, vanadium, cobalt, copper, tungsten and chronium are also considered trace elements, 

but with more toxicity compared to the previous group [10, 14, 18, 26]. Cd, Hg, silver, arsenic, 

antimony, lead and uranium have few advantageous effects on organisms and are mostly 

considered as toxic metals [10, 12, 14, 17, 18, 24]. Since the focus of this thesis is on Zn, Cd and, 

Hg (members of Group 12 [IIb] of the periodic table), the role and importance of these metals 

on cells and biological processes are discussed.  

Zinc, as one of the most important and necessary elements for the living cells, can be found in 

the environment particularly as the divalent cation Zn2+ and is involved in diverse cellular 

processes. For example, as well as being found in a huge number of enzymes, Zn is an important 

part of DNA-binding proteins [11, 14, 15]. Zn is not active as a biological redox agent; so does 

not have any action in respiration [21]. Especially at high concentrations of Zn bacterial cells can 

absorb Zn by a fast and universal mechanism. This kind of accumulation uses several 

mechanisms including the CorA (MIT) Mg2+ transport system or MgtE system [14, 21]. 

Cadmium is more toxic than Zn because of differences in their chemical compounds solubility; 

for example the solubility is 1.4×10-29 Ksp (at 25°C) for CdS and 2.91×10-25 Ksp (at 25°C) for ZnS 

[14]. Cd can enter cells as divalent ions using uptake systems for manganese and some other 

metals and can be accumulated 3-15 times more in Cd-susceptible bacterial cells compared to 

resistant ones [11-13, 15, 19, 20, 23, 24]. The assumed mechanisms of the toxicity of Cd for living 
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cells imply an interaction with Zn metabolism, thiol-binding and protein denaturation, single 

strand breakage of DNA and interaction with Ca metabolism and membrane damage. Cadmium 

is probably able to enter yeast, bacteria and plant cells by using Mg, Mn and Ca uptake systems, 

respectively [10, 14, 16, 20, 22, 27].  

Hg2+ has the strongest toxicity on Escherichia coli of the 3 HMs studied in this project and the 

MIC is 0.01 mM; the rate of solubility of HgS is 6.38×10-53 Ksp (at 25°C) [12, 14, 27]. Mercury’s 

unique features include its redox ability (electrochemical potential of Hg(II)/Hg(0) is 430 mV at 

pH 7), and its low melting and boiling points, -39°C and 357°C respectively. Because of these 

characteristics and high probability of exposure of bacterial cells to toxic concentrations of this 

metal, resistance to Hg2+ is prevalent due to mer resistance determinants among bacteria [14]. 

Detoxification strategies by bacteria consists of reduction of Hg cations, which leave the cell by 

passive diffusion. This HM attaches to protein and enzyme thiols and inhibits their cellular 

functions [10-12, 16, 18, 22].  

2.2. Heavy metals in New Zealand 

Long-term and widespread use of phosphate fertilisers on New Zealand farms during the last 

several decades has caused major accumulation of Cd in patoral and arable soils. It has 

happened in parallel to increase of the nutrient elements levels (e.g. sulphur, and calcium) in 

soil. The highest levels of Cd accumulation has happened in the dairying regions of NZ with a 

long history of intensive livestock production, where the current average Cd concentration is 

~0.7 mg/kg compared with a background average of 0.16 mg/kg [5]. Early concerns about this 

issue were reviewed by Bramley in 1990 [28]. In the mid-late 2000s a Cadmium Working Group 

(CWG) was convened by the then Ministry of Agriculture and Forestry to consider the risks of Cd 

accumulation in NZ agricultural soil. A long-term National Cadmium Management Strategy was 

developed, which is overseen by a Cadmium Management Group (CMG) through the Ministry 

for Primary Industries. Warne (2011) and Cavanagh (2012) report that the recent average rate 
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of Cd accumulation in NZ soil is about 5 μg/kg soil/year, which is likely to be slightly lower than 

the historic accumulation rate for a number of reasons, e.g. the source of the phosphate rock 

which is used for manufacture of superphosphate and response of farmers to financial 

constraints [5, 29]. 

More recently, the substantial use of Zn (oxide and sulphate) in sheep and cattle as a 

preventative for facial eczema (pithomycotoxicosis disease) has resulted in a rapid accumulation 

of Zn in soils of many farms in the upper North Island of New Zealand [30]. Sowry (2011) showed 

that average Zn concentrations in Waikato farm soils have doubled (from 30 mg/kg to 60 mg/kg) 

in last decade, with about 10% of pastoral soils exceeding 100 mg Zn /kg. Sowry (2011) estimated 

60-100 percent of pastoral farms in the Waikato region use Zn compounds against facial eczema 

disease annually, most of which is excreted and deposited in the paddock (about 8500 

tons/year) [6]. Zinc accumulation happens more easily in allophanic and granular soils, because 

these soils are more adsorptive [31]. The most common type of Zn available in soil solutions and 

the main form responsible for Zn toxicity is Zn2+. Zinc also accumulates in many horticultural soils 

through use of Zn-containing fungicides (zinc dithiocarbamates) on various plant crops [30].  

Mercury is another naturally occurring metal with a high toxicity for biota. Common 

environmental forms of mercury are mercuric mercury (Hg2+), methylmercury (CH3Hg+) and 

elemental mercury (Hg0) [32]. The Ministry for the Environment commissioned reports on 

discharges of Hg to the New Zealand environment. Rumsby et. al. (2008, 2009) indicated the Hg 

cycle in New Zealand is influenced equally by both natural (e.g. volcanic activities and soil Hg 

volatilization) and human-related activities (e.g. cement and steel manufacturing, fuel 

consumption, waste deposition) and estimated its emission is about 3000 kg/year over the 

whole country. Of the various sources, the Hg naturally contained in superphosphate fertilizers 

is estimated to contribute about 40 kg of Hg to New Zealand soils each year [33]. This mass load 

is not enough to cause noticeable accumulation of Hg in New Zealand’s productive soils (the 
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comparative figure for Cd is 30-40 tonnes/annum). Overseas however, contamination of 

productive soils with Hg can become a problem. One common example is where Hg is discharged 

to local environments through its use at illegal (‘wildcat’) gold-mining sites [34].  

2.3. Metal Uptake Systems 

Metals enter eukaryotic and prokaryotic living cells by two different methods, either ATP-

dependent or ATP-independent. The first type needs the energy provided by ATP hydrolysis and 

is established by the cells in necessary and special situations. The second and more common 

process does not require ATP hydrolysis and is faster and less substrate-specific compared to 

the ATP-dependent process. ATP-independent metal transport works based on chemiosmotic 

gradients through the cytoplasmic membranes of bacterial cells [8, 10-15, 17, 19, 24, 35]. The 

first mechanism plays an important role in uptake and accumulation of HMs in the cell. However 

the ATP-independent uptake processes are more efficient either in terms of energy use and 

results in the influx of a wider range of metals. This may result in higher concentration of some 

metals in the cell, than result from energy-dependent mechanisms [14, 23]. The reason for the  

greater prevalence of ATP-independent metal uptake systems among microorganisms is 

probably due the lower biological cost that resistant cells invest in efflux pump encoding genes 

compared to specific uptake systems for each metal [20].  

The biochemical cycling of the metal ions is strongly influenced by bacterial metal resistance and 

the relative solubility and toxicity of the metals as well. In Gram-negative bacteria, Archaea and 

some yeasts, like Saccharomyces cerevisiae, Zn2+, Cd2+ and Hg2+can enter cells by a membrane-

integrated, nonspecific magnesium uptake system protein (CorA), a member of membrane 

inorganic transporters (MIT) family. In this process the metal cations are accumulated in the cells 

by the CorA  Mg2+ uptake system [13, 14, 16, 23].  

 In addition, there are energy-dependent metal channels, such as ATP-binding cassette (ABC) 

transporters, for the uptake of Zn2+, Ni2+, Fe2+ and Mn2+ [10, 12-15, 17, 23, 36]. Membrane-bound 
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P-type ATP-dependent transporter protein is active in carrying many metal cations into cells, for 

example, Zn2+, Cd2+, Ag+, Pb2+, Ca2+, Mn2+, Mg2+, K+ and Cu2+ [8, 10-15, 19-21, 23, 24]. Although 

the concentration of metals in the cells increases markedly, these non-specific transport 

proteins can lead to the uptake of high amounts of toxic HMs indiscriminately in contaminated 

environments [11, 20, 23]. This can facilitate a common reason for metal toxicity. The activity of 

enzymes can be blocked by binding to cations, such as Cd2+ and Hg2+, due to their binding to 

sulphydryl groups and producing sulphide substituents immediately after entering to the cells 

[10, 14-16, 25]. The toxic activities of some HMs can be observed by their interference with the 

physiological action of other metals, e.g. Cd2+ with Zn2+, Cd2+ with Ni2+, Cd2+ with Ca2+ and Zn2+ 

with Mg2+. These toxic features of HMs along with interference of metal oxyanions in action of 

fundamental metabolites and producing harmful products, such as chromate and arsenate, are 

strong selective pressures on microbes to develop HM resistance mechanisms [10, 12, 16, 17, 

23, 37]. 

2.4. Wide Range of Metal Resistant Organisms in the Nature 

There is mounting evidence that microbial biofilms show more tolerance to HMs and antibiotics 

than single microbial cells. This appears to be due to different structural and physiological 

transformations, which are in many aspects similar to the cellular processes of multicellular 

organisms [8, 16, 18, 36]. Biofilm production, as the most prominent lifestyle of microorganisms 

accumulating in a self-produced extracellular matrix in nature, is a tolerance strategy against 

HMs and antimicrobial substances. This kind of resistance can be varied in different biofilms 

based on the nature of the microorganisms and antimicrobial agents, and finally the 

environment conditions; as some examples, (i) metabolic differences among microbe 

populations is due to the different biofilm structures; (ii) the extracellular materials surrounding 

the biofilm influence on cells physiology; (iii) the biosorption of metal ions affects the metals 

movement; (iv) metal ions undergoing chemical reactions with extracellular matrix decreases 

their toxic properties [8, 10, 16, 37].  
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A wide range of organisms can tolerate an array of different HMs concentrations. For example, 

Gram-negative bacteria are more tolerant to metal ions and can protect the normal cellular 

functional pathways more effectively in comparison with Gram-positive bacteria. For example 

E. coli and Pseudomonas aeruginosa are able to tolerate Cd(II) several times more than Gram 

positive isolates like Staphylococcus aureus and Bacillus subtilis. Conversely, some Gram positive 

isolates are able to bind to Cu(II) significantly more compared to E. coli [11, 36, 38, 39]. 

Transportation of Cd ions attached to glutathione molecules with YCF1p protein is one example 

of metal resistance in Saccharomyces cerevisiae and multidrug resistance in human and many 

other eukaryotic cells may be a related product of YCF1p gene [14]. Candida tropicalis and C. 

albicans are widespread human pathogens which show dramatic resistance to some of HMs like 

Cd, Hg and Pb and are able to accumulate and remove Cd cations especially from aquatic 

environments [16, 25, 27]. The human pathogen Rhodotorula sp. are able to tolerate significant 

concentrations of metals in the range of under 100 mg 1-1[40]. The soil-borne human pathogenic 

fungus Trichosporon asahii is resistant to Cd2+ and is able to tolerate significant concentrations 

of this metal (10 mM) [25]. Different species of Aspergillus sp., such as A. aculeatus and A. 

foetidus, show high resistance to Cd and are able to improve the capability of their herbal host 

to bio-accumulate metal from contaminated soils [41, 42]. The species of Thiobacillus sp. 

resistant to Cd, Hg, Zn and Cu not only show significant resistance to these metals, but indicate 

potential to bio-remediate contaminated soils [12, 13, 17, 26].  

2.5. Metal Resistance Mechanisms 

Development of metal resistance in cells can be achieved by reducing metal availability and 

modifying cells constituents to protect vital cell components. This issue can be influenced by 

various factors such as specific characteristics of metal uptake mechanisms, the function that 

each metal performs in the cell during physiological reactions, and the structure and location of 

acquired genetic determinants of resistance on plasmids or chromosomes [10, 11, 16, 41]. The 

importance of the last factor is due to the differences between resistance systems induced by 
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plasmid, chromosomes or transposons genes. Plasmid-located resistance genes encoding 

metals’ toxic-ions efflux mechanisms can be transferred to new recepients by horizontal gene 

transfer mechanisms, e.g. conjugation, more easily than chromosome-located genes. The more 

convenient transfer of toxic-ion efflux mechanisms between bacterial cells, suggests that these 

mechanisms are plasmid-borne [8, 10, 22, 23].  

Although, some scientists recognise three different HM resistance mechanisms in 

microorganisms, others categorize these mechanisms into 5-6 different sorts including: (i) active 

efflux of toxic metal ions from cells; (ii) the intracellular or extracellular segregation of cations, 

especially those with affinity for sulphur groups of cellular components and accumulation as 

intracellular complexes by thiol-containing molecules; (iii) reduction of toxic metal ions to a less 

toxic oxidation state; (iv) HM exclusion using permeability barriers and (v) diminishing the 

sensitivity of cellular targets to toxicity of HMs [10-12, 14, 18, 19, 21].  

2.5.1. Active Efflux of Metals from Bacterial Cells  

Chromosomal or plasmid-encoded efflux mechanisms to transfer metal ions out of the cells can 

be considered as the most common metal resistance mechanisms among microorganisms [11, 

14]. These mechanisms are either energy-dependent or independent which can be observed in 

ionophores and uncoupling proteins which block efflux of ions by transforming the energy to 

heat instead of producing of ATP [11, 15]. There are various examples of the plasmid-borne 

systems in bacteria, such as Pb and Zn resistance caused by ZntA, ZiaA and CadA proteins in E. 

coli, Synechosystis sp. and S. aureus respectively [12, 13, 19, 21, 23]. Other examples of plasmid-

borne systems are ATP-independent Cd, Zn and Co resistance system of Alcaligenes sp. encoded 

by the czc operon [11, 14, 17, 18, 20, 23, 24, 36], ars operon-encoded resistance of S. aureus and 

E. coli to arsenic and arsenite as an ATP-dependent system [11, 15, 17, 20, 21, 24], and P-type 

cad operon-mediated resistance of S. aureus, E. coli and Bacillus sp. to cadmium and zinc [12, 

13, 19]. There is a group of metal efflux mechanisms designated as the RND family, powered by 
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the proton gradient involved in expelling the Cd, Zn, potassium, copper and magnesium ions 

outside the cell. Unlike the P-type transport system, which is able to expel metal ions from the 

cytoplasm, the RND is a special efflux system that transfers metal across the outer membrane 

and cell wall in Gram-negative bacteria; so designated as a trans-envelope transport system [14, 

15, 21, 23, 36]. 

The plasmid-mediated cad and czc systems are the most important Cd resistance mechanisms 

[14, 20]. The investigations proved the existence of two main different patterns, including a 

single cadA locus and a complex of the cadA, cadB and cadC loci involved in Cd resistance [11, 

12, 17, 19, 20]. The cadA protein which has many similarities with P-type and E1E2 ATP-

dependent metal transporting systems, acts as the main efflux agent [11]. It has been 

hypothesized that, on the other hand, CadC protein produces two cysteine domains that bind 

Cd2+ and makes these ions accessible to CadA in the cytoplasmic membrane [13, 15]. When Cd 

ions are present, CadA becomes phosphorylated and the high energy of this protein is stable 

until metal ion efflux. One of the novel examples of CadC function can be seen in E. coli; owing 

to lack of ion antiporters in this bacterium, Na+2 is delivered to CadA to be expelled out of the 

cell. In addition, it has been suggested that CadC binding to the cad promoter leads to 

downregulating transcription. A Cd resistance transposon Tn5422-encoding CadA and CadB has 

been found in Listeria species, which exist in a variety of environments such as food [11, 13, 15, 

17, 20].  

The czc system is a well-known example of an RND system, like cad, that can combine with the 

Mn+2 transport system and trigger the efflux of Cd. This system, which acts as a zinc-proton 

antiporter, is encoded either by plasmids such as pMOL28 and pMOL30 or chromosomal loci 

including czcA, czcB, czcC, czcD, czcI and czcN [11, 17]. However, the function of CzcI and CzcN 

proteins has not been demonstrated, the proteins encoded by the four first genes construct the 

efflux pump, constituting a membrane channel and transferring cations out of the cytoplasm via 

CzcA protein. This protein, as the biggest czc-encoded protein, acts like a proton tunnel and 
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provides metal transmission by a charged-relay mechanism. CzcA can induce resistance to Cd, 

Zn and cobalt. Presumably, binding ions from czcA and transferring them to the outer membrane 

is the function of czcB. This protein is probably responsible for metal specificity and has 8 

histidine residues for metal binding and removal of these residues reduces, but not eliminates, 

Zn resistance. CzcC, like CzcB, resides in the periplasm and acts as a sub-factor for the czc system 

to prepare the membrane channel and exports metal ions outside the cell. Lacking CzcC leads to 

sensitivity to Cd and to some extent to cobalt, but does not alter Zn resistance. CzcD as the 

product of a fragment located downstream of czcA, B and C genes, activates the efflux pump. 

The czcD gene is related to a large family of transporter proteins named CDF, which are mostly 

involved in Zn and cadmium transport [11-15, 17, 19, 20, 23, 24, 36]. Two members of this family 

act in S. cerevisiae to induce Zn and Cd resistance [14, 15, 23]. Detoxifying Zn from the cytoplasm 

by ZnT1-encoded efflux proteins is one example of a functioning CDF system in mammalian cells 

[14, 23].  

2.5.2. Intracellular and Extracellular Sequestration of Metals Using Protein Binding 

The most common metals undergoing intracellular sequestration are Cd, Zn and copper. They 

are accumulated in the cytoplasm of the cell to prevent their exposure to cellular constituents 

[11, 36]. Two good examples of this mechanism have been described in Synechococcus spp., and 

sewage isolates of Pseudomonas spp., which produce metallothionein and Cys-included proteins 

respectively [11-13, 19, 20, 24]. Synechococcus spp. carry the smtA and smtB genes. The 

metallothionein encoded by smtA gene binds to the metals. The product of the smtB gene has 

a regulatory function and impedes the transcriptional activities of smtA and prohibits of 

metallothionein production. The Cys residues of metallothionein absorb and accumulate metal 

cations. The Cys-enriched metallothioneins encoded by Pseudomonas spp. are active in binding 

and accumulating Cd ions in the cell [10, 11, 13, 20].  
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The extracellular segregation of HMs is achieved by attaching the metals to different complexes 

and inhibiting their ability to enter cells. This phenomenon has been found in a wide range of 

organisms such as bacteria, yeasts and fungi [11]. Constructing Cd complexes outside the cell 

leads to the resistance of some yeast and bacterial spp. like Citrobacter to this metal [11, 17]. 

Producing oxalate extracellularly and binding metal ions helps some fungal species to show 

resistance to copper and Cd [11, 41]. Strong attachment of glutathione to HMs results in 

diminished absorption of the nickel in resistant yeasts carrying the methylglyoxal resistance 

gene [10, 14, 23, 25, 37].  

2.5.3. Enzymatic Detoxification of Metals 

The efficiency of all metal resistance mechanisms against Cd has been demonstrated, except 

minimizing the toxic state of ions by enzymatic detoxification [11]. Metals, such as Cd, Zn, nickel 

and cobalt do not involve in enzymatic NADPH-related resistance. In addition, because of high 

toxicity and instability of these metals, the covalent states of these metals are not physiologically 

compatible with the living cells processes. Therefore, they undergo oxidation for being 

transformed to the neutral state. The best example of resistance by enzymatic detoxification 

and reduction to metal is with mercury. The resistance to this metal has been shown in several 

bacterial species such as S. aureus, E. coli, P. aeruginosa and some species of Bacillus spp. [11, 

12, 14, 19, 20, 25].  

Investigation has demonstrated the involvement of 5-6 genes of the mer operon in mercury 

resistance and there are two groups of organisms resistant to this metal, designated as narrow 

and broad spectrum resistance [10, 12, 14, 15, 17, 18, 20, 36]. The mer operon is found on 

plasmids or transposons in different bacteria, for instance transposons Tn501 in P. aeruginosa 

and Tn21 in Shigella flexneri, pTM314 plasmid in Thiobacillus ferrooxidans and pDU1358 plasmid 

in Serratia marcescens. [11, 12, 26, 36, 43]. The similarity of genes located on these plasmids 

and transposons is high. For example, merP and merT genes exist in all HgR resistant organisms 
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and are required for complete mercury resistance, whereas the presence of merC and merB 

varies in different oranisms [11, 15]. Detoxification of mercury is triggered by a group of proteins 

encoded by the mer operon as well as its transmission out of the cell. MerC and T, and P are 

considered transportation proteins, functioning in the cytoplasm and periplasm respectively. 

The results of mutagenesis of merT and merP revealed that these genes can function 

independently and merT products show more importance in inducing metal resistance. When 

there are no Hg ions in the cells, some regulatory genes are expressed and produce periplasmic 

binding proteins which participate in membrane transportation. These regulatory proteins then 

transfer the mercury ions out of the cell and transfer them to inner periplasmic space for 

subsequent detoxification. The periplasmic action of MerP supports survival of periplasm and 

inner membrane proteins containing thiol residues. The function of MerC is not clearly 

understood [11, 12, 14, 15, 17, 18, 20, 26, 36].  

Acquiring resistance to mercury, in addition to these transfer proteins, is related to two essential 

enzymes encoded by the mer operon, including organomercurial lyase and mercuric reductase. 

The mercuric reductase is encoded by the merA gene, located downstream of the transport 

genes of the mer operon. The organomercurial lyase hydrolyses the bond between mercury and 

carbon to produce mercury thiolate and substituting glutathione with cysteine ligands. The 

product of this reaction is then used by mercuric reductase. Hg ions undergo reduction by 

mercuric reductase in a NADPH-dependent reaction [12, 14]. Unlike the organomercurial lyase 

which is a monomer and acts slowly, mercuric reductase is a homodimer and functions rapidly 

and completely specifically to mercury. At the end of reaction, the reduced mercury is expelled 

from the cell [11, 12, 14, 17, 19, 20]. Lacking the organomercurial lyase encoding genes in 

organisms makes them to suffer from sensitivity to mercury, and the presence of these genes 

induce production of mercury resistance-related enzymes and also high resistant to Hg [11, 14]. 

The regulation of the mer proteins’ function is the responsibility of merR protein in the presence 

or absence of Hg ions. In the presence of Hg in the cell, an ion binds the Cys residues of merR, 
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which is attached to RNA polymerase binding sites of the promoter and induces an allosteric 

structural change in the merR binding sites and results in the attachment of RNA polymerase to 

the promoter and initiation of transcription. Expressing merA in yeast and different kinds of 

plants has been a great step toward the detoxification of HMs in environment especially 

agricultural soils [11, 12, 17, 19, 20].  

2.5.4. Metal Exclusion by Permeability Barrier 

Exclusion of metals by permeability barriers as a novel approach to preserve sensitive cellular 

components from harmful effects of HM ions, is achieved by conversion of the cytoplasmic 

membrane, cell wall and envelope of bacteria. As an example, a single mutation in the E. coli 

genome leads to a change in the cellular membrane channel protein porin, which results in 

exclusion of Cu (II). The ability of many bacteria to produce excess exopolysaccharides results in 

biosorption of several different cations. This function which is pH-dependent, helps bacteria 

such as Pseudomonas putida and Arthrobacter viscosus to prevent entry of toxic ions into the 

cell and interfering in important physiological processes [11, 22, 26, 36]. Membrane 

permeability results from conformational changes in membrane lipids and due to genes located 

on penicillinase plasmids in several S. aureus strains, prohibits entry of Cd cations and various 

other HMs [11, 20, 22]. A four gene operon in several Pseudomonas spp. encodes some 

membrane-integrated proteins. These proteins’ function results in general absorption of metal 

ions, saturation of periplasmic binding sites and inhibition of metal ions inflow to the cytoplasm 

[10, 12]. 

2.5.5. Reduced Metal Sensitivity of Cellular Components 

This mechanism, a non-biochemical natural resistance mechanism, induces resistance by 

decreasing the sensitivity of substantial cellular components to HMs or amplifying production of 

these components due to mutation in plasmid or chromosomal genes. These mutations reduces 

metal sensitivity and do not leave any effects on the respective components functionally [11, 
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20, 27, 36]. Increasing the production of cellular materials can be accomplished by changing 

regular cellular pathways to overexpress their componenets. Glutathione induces superficial 

resistance to HMs, such as Cd, Hg, copper and silver, presumably by inhibiting metal free radical 

production. An example of this mechanism has been described in E. coli with Cd ions. The 

bacterial resistant cells show a longer lag phase in sensitive cultures compared to subcultures in 

which the lag phase due to the establishing of resistance is shorter. This behaviour probably is 

because of DNA repair functions which have been damaged at the earlier exposure to Cd [11].   

2.6. Heavy Metals and Agriculture and Health Issues 

Environmental contamination, especially of soil, by HMs is one of the most important issues 

which endangers the environment and ecosystems, especially agriculture lands and aquaculture 

environments due to entering a huge amount of animal manure and water waste [18]. The most 

important HM contaminations in environment which endanger human ands animal health and 

trigger the resistance are copper, Hg, lead, Zn and Cd. Accumulation of HMs in biosphere, e.g. 

soil, is considered a leading issue endangering human and animal health [9, 12, 44]. Fertilizing 

agricultural land with organic or inorganic fertilizers, such as animal manures, sewage sludge 

and pesticides containing HMs and irrigation of farms with wastewater leads to the discharge of 

potentially large concentrations of metals into the soil. This is common, in developing countries, 

but also in developed countries. For example, arable soils are the most important HM 

contaminated environments in Britain [9, 18, 44]. Permeation of HMs into the environment due 

to agricultural activities and from fish farms, animal production and husbandry practices causes 

selection for bacterial HM resistance. The occurrence of metal resistance parallel with co-

selection toward antibiotic resistance in microorganisms underlines the importance of 

preventing the accumulation of metals and subsequent resistance in the environment. The co-

selection mechanisms of HMs and antibiotic resistances result in higher health concerns in 

human as well as imposing burdensome detriments to livestock industry and imposes immense 

losses socially and financially [21]. In spite of the potentially harmful effects of microorganisms 
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resistant to HMs in the environment, HM resistant bacterial species have potential for use in 

bioremediation of agricultural soils as do yeasts, fungi and plants species with metal resistance 

and bioaccumulation capabilities [14, 16, 17, 21, 26, 41, 42].   

2.7. Antibiotics and Environmental Quandaries 

The earliest antibiotics used in modern medicine were discovered from synthetic compounds 

from dyes [45]. The earliest records of the phenomenon of growth inhibation of some 

microorganisms by other microorganisms have been reported from 19th century. These 

observations led to the discovery of the first natural antibiotic in 20th century by Alexander 

Fleming [46]. Antibiotics are one of the most important and successful drugs historically, and 

have been faced with a great amount of resistance reactions among bacteria [47]. The first 

observation of resistance to an antibiotic was reported in 1950s [48]. The resistance to these 

drugs influences animal and human health in different aspects, e.g. getting difficult dealing with 

infectious diseases and other medical procedures resulting in immunosuppression. For example, 

tuberculosis caused by Mycobacterium tuberculosis is one of the diseases posing lots of 

treatment challenges due to multi-drug resistance [49]. Bacterial reaction to different antiobiocs 

can be categorised into susceptible, resistance and intermediate groups based on Minimal 

Inhibitory Concentrations (MICs) [47, 50]. The use of antibiotics can have a significant effect on 

natural environments because of the specific effects they might have on evolutionary resistance 

mechanisms. These effects can result in “biological pollution” due to the dissemination of 

resistance genes, located on transferable elements, among other bacterial species [47, 51-56]. 

Due to the transfer of antibiotic resistance genes among microorganisms, the diversity of these 

resistance elements might not be decreased by increasing the time and distance from the site 

of their direct selection. The abundance of bacterial isolates in environments, like farms and 

waste water treatment facilities makes them important sites for the selection of resistance 

mutations and propagation of microbial antibiotic resistance genes among strains and this 

process can be amplified in the presence of HMs [47, 51, 57-64].   
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2.8. Antibiotics in New Zealand 

The annual antibiotic usage in New Zealand is ~75 tons and about half of this is used in farms 

and livestock industries. The use of streptomycin on NZ farms was more than 1.2 tonnes per 

year in 2000s [65]. The lack of adequate information about antimicrobial resistance among 

bacteria in New Zealand farms and livestock husbandries, prompted the establishment of a 

working group under supervision of the New Zealand Food and Safety Authority (NZFSA) in 2005 

to monitor the issue in NZ agriculture [66]. Following this a comprehensive investigation was 

completed in 2009 to identify and measure the susceptibility or resistance of environmental 

bacteria to antimicrobial agents. The results showed some Salmonella isolates were resistant to 

streptomycin and sulphonamide and some E. coli isolates showed high resistance to ampicillin, 

chloramphenicol, tetracycline, streptomycin and sulphonamide [66].  

In New Zealand, antibiotics are not used as general growth promotants, and a strong emphasis 

is placed on ensuring that antibiotic residues do not enter food products, such as milk. Sick 

animals requiring treatment are typically isolated to prevent the infection from spreading, and 

their effluent is not delivered directly to the farm soil. For these reasons, at a broad-scale level 

the direct inputs of antibiotics to New Zealand productive soils are generally negligible and 

(where they do occur) only temporary. As organic compounds, antibiotics which do reach soil 

will also be subject to degradation [7]. By contrast, at a broad-scale many New Zealand soils 

have been receiving significant inputs of both cadmium and zinc, that are not degraded and 

largely remain in topsoil [Kim, N.D. Personal communication 16 April 2016; based on information 

provided by Dr Grant Northcott (Northcott Research Consultants, Hamilton)]. 

2.9. Antibiotics and Gene Function 

Prior to the introduction of the sulphonamides as the first generation of antibiotics in 1930s, the 

influence of human beings on the environment by introducing antibiotics was negligible. This 

period is named the pre-antibiotic or antibiotic naive era. However, antibiotic resistance had 
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been being induced in bacterial cells by exposure to naturally occurring antibiotics in the 

environment and the use of HMs to treat some diseases for a long period before the introduction 

of antibiotics (e.g. Hg was a common, long-standing treatment for syphilis) [67]. Resistance 

genes had been transferred horizontally and existed in non-antibiotic producer bacteria e.g. E. 

coli and some of Enterobacter sp. [47, 55, 64].  The presence of AbR genes in the genomes of all 

of the studied organisms shows that these genes have existed for a very long time before the 

human use of antibiotics [47, 56, 60, 68-70]. The role of the resistance genes in antibiotic 

producer microorganisms is preservation of the cell against the destructive effects of produced 

antibiotic. Conversely, there may be other roles for these genes in microorganisms with no 

ability to produce antibiotics, e.g. peptidoglycan recovery by chromosome-encoded β-

lactamases; preventing the destructive effects of antimicrobial compounds on bacteria and 

signal transduction in bacterial cells. Genes encoding various functions in bacterial cells would 

be active as resistance genes in the presence of antibiotics. For example, although the mexF 

gene, which encodes a multidrug efflux pump, increases the adaptation of Shewanella 

oneidensis cells to anoxic aquifer sediments, can induce resistance to chloramphenicol (Cm) and 

tetracycline (Tc) [47, 69, 71-73]. The parvome produced by some of bacterial isolates contains 

different bioactive molecules which act as antibiotics. Parvomes are multi-functional bioactive 

cellular compounds with low molecular weight in bacteria, plants and yeast cells. For example 

most Actinobacters are able to produce these molecules [64, 74]. Most of the resistance genes 

found to date are located on plasmids, integrons and transposons. Transferring these genes to 

new recipients results in no physiological function, other than to act as resistance determinants. 

It means these genes have acquired new function due to mutation without any changes in them 

structurally; this phenomenon is named exaptation. The family of TEM and CTX-M β-lactamases 

are well-known examples of this and it has been shown that these genes will experience 

antibiotic selection pressure in presence of antibiotics [47, 52, 56, 60, 64, 74-78].     
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2.10. Antibiotics and Resistance and Susceptibility Issues 

Susceptibility or resistance to a specific antibiotic is a complicated issue influenced by various 

factors. The resistance of parental (wildtype) generations are considered as intrinsic or natural 

resistance and acquired resistance. Generally speaking, if a strain shows less susceptibility to a 

given antibiotic compared to its parents, it would be considered as resistant regardless of the 

specific antibiotic MIC [47, 50, 51, 55, 56, 68]. These resistance mutations imply acquired 

resistance. On the other hand, if a strain represents higher susceptibility to an antibiotic in 

comparison with its prior generations, because of structural or functional features, it would be 

regarded as a susceptible mutant. There are several reports that this natural resistance is due to 

absence of cellular target, susceptible to antibiotics, or the presence of cellular barriers for 

antibiotics’ cellular permeability. These cellular barriers are regulated by the products of various 

genes involving in cellular physiological processes [60, 64, 68, 69, 79, 80]. As some examples: 

resistance to triclosan in Pseudomonas spp. carrying an insensitive allele of fabI encoding enoyl-

ACP reductase enzyme as a target of triclosan; resistance of Gram negative bacteria to the 

lipopeptide daptomycin because of reduced phospholipids with negative charge in the 

cytoplasmic membrane. This results in less antimicrobial activity due to less aptitude of Ca2+-

mediated binding of daptomycin to cytoplasmic membrane; resistance to the glycopeptide 

antibiotic vancomycin due to inability of transmission of these glycopeptides through the outer 

membrane in Gram negative bacteria [47, 68, 74, 80-82].  

High density genome mutant libraries are considered as suitable tools to investigate 

susceptibility or resistance of bacterial isolates to different antibiotics or drugs. These libraries 

have been produced by targeted insertion or random transposon mutagenesis in P. aeruginosa, 

E. coli and S. aureus. For instance, silencing all of the non-essential genes of E. coli has led to 

potential new targets e.g. thioredoxin (TrxA), thioredoxin reductase (TrxB), SapC, FabI, RecQ and 

DacA [47, 59, 60, 64, 68, 74].     
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Apart from the abovementioned heritable antibiotic resistance mechanisms, there are some 

non-heritable resistance mechanisms due to the physiological characteristics of bacteria 

including biofilm formation and bacterial persistence. Bacterial persistence is a phenotypic 

epigenetic trait of slow growth and antibiotic resistance. Some bacterial persisters challenged 

with antibiotics may survive and produce new generations due to their physiological processes 

after removal of antibiotics [47, 53, 57, 60, 62, 74, 83]. It has been shown that inducing some 

metabolic changes result in the susceptibility of bacterial persisters to aminoglycosides. For 

example, in the presence of high concentration of oxygen, persistence of M. tuberculosis against 

antibiotics is decreased due to producing reactive oxygen species (ROS). Clofazidime induced 

ROS can increase the susceptibility of bacterial isolates to this antibiotic even in low 

concentration of oxygen [47, 80].   

2.11. Antibiotics in Soil  

Using molecular methods e.g. PCR and metagenomics to detect antibiotic resistance genes is 

one of the best ways to investigate the genome of the bacterial population genome in soil. PCR-

based methods can detect known resistance genes, while metagenomics means the study of the 

collective genome using DNA analysis straight from the environment. It should be noted that 

there are difficulties in investigating soil, because of various heterogeneities in soil microhabitats 

due to chemical and physical factors even in a few square meters [47, 53, 55, 56, 59, 64, 71, 74, 

84].  

Metagenomic studies have revealed the presence of resistance genes in every environment 

investigated [47, 64]. These genes are mostly located on mobile genetic elements which can 

spread the resistance features among other bacterial strains, or are chromosomal which can be 

spread by transduction. Detecting the ampC gene, a chromosomal β-lactam resistance gene of 

E. coli and P. aeruginosa, can prove the presence of E. coli, but is not a threat to the environment 

as a mobile Ab resistance gene [47, 50, 52-54, 56, 70, 82, 83]. The transfer of chromosomal genes 
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to mobile elements is considered as an important issue, because this may introduce resistance 

genes to new hosts. Chromosome-located MDR genes in Gram negative bacteria exhibit this 

phenomenon. RND (tripartite resistance nodulation division) chromosomal genes are capable of 

transfer to IncH1 plasmid in Citrobacter freundii along with genes encoding New Delhi metallo-

β-lactamase 1 (NDM1, a carbapenemase) [50, 54, 68-70, 80, 83, 85].  

Because identification and inactivation of enzymatic reactions of well-known resistance genes 

will not provide a comprehensive understanding of resistance mechanisms, investigations of 

new resistance mechanisms play a more important role in improving our understanding of 

antibiotic resistance [47, 68].   

2.12. Antibiotics and Heavy Metals 

The prevalence of human and animal infectious diseases due to antibiotic resistant microbes is 

increasing worldwide. Using antibiotics as growth promoting agents has been proscribed in 

intensive animal production systems and it seems we are facing a post-antibiotic era [18, 50, 61, 

64]. The problem is not confined to using antibiotics and cannot be rectified by preventing their 

use. Selection for AbR can be triggered, or aggravated, by dissemination of HMs in the 

environment. The prevalence of HMs, which are used in organic and inorganic fertilizers, feed 

additives and pesticides, can increase AbR among microorganisms by co-selection [18, 36, 61, 

64, 70].  

The dissemination of antibiotic resistance genes can be influenced by physical forces e.g. wind 

and rainfal, animal behaviour, immigration and human proximity, and human activities, in 

conjunction with typical molecular gene transfer mechanisms like HGT [53, 64, 74]. Using metal 

contaminated fertilizers including sewage sludge and manure raises the concentration of HMs 

in soil and run-off of contaminated drainage increases the concentration of HMs in aquatic 

environments [53, 55, 57, 61, 62].  
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Genes encoding metal resistance and antibiotic resistance are often located on the same genetic 

elements. Metal resistance genes can act as indirect selective factors for antibiotic resistance. 

Some of these resistance genes act as biosynthesis genes in antibiotic producers and their 

products function as antibiotics; so, some of the metal resistance genes located next to these 

genes can regulate the expression of neighboring genes. [36, 53, 55, 57, 61, 64, 70, 76, 82, 86].  

Co-selection is coupled with two resistance mechanisms including cross-resistance and co-

resistance. Cross-resistance is related to physiological resistance mechanisms and provides 

tolerance to more than one antimicrobial agent e.g. antibiotics and HMs. The best examples of 

cross-resistance mechanisms are multi-drug efflux pumps which, rapidly extrude the toxic 

material out of the cells. Co-resistance describes two or more genetically linked genes encoding 

resistance and shows that these genes are located close to each other on a genetic transmissible 

element [18, 36, 55, 56, 58, 70, 76, 82, 83]. For example, the presence of genetic linkage of the 

tcrB gene encoding copper resistance, macrolide [erm(B)] and vanA gene encoding glycopeptide 

resistance in Enterococcus faecium. It means, copper in the environment can induce the 

resistance to antibiotics e.g. vanamycin as well as copper [18, 61, 68, 83, 87]. As another 

example, pUUH239.2 plasmid isolated from a clinical outbreak in Sweden carries genes encoding 

resistance to a range of antibiotics e.g. tetracycline, β-lactams and various metals e.g. silver and 

copper [61]. It is worthy of note that class 1 integrons are considered to accelerate co-selection 

of resistance to HMs and Abs because of the presence of gene cassettes causing resistance to 

Abs and HMs [50, 52, 53, 57, 60, 74].  

Genetic elements capable of acquisition and exchange of DNA fragments are called integrons. 

Bacterial isolates containing integrons show more tolerance in stressful conditions e.g. HM 

presence. For example, the multi-drug efflux pump CzcA which is active in expelling Zn2+ and 

Cd2+ out of the cell [18, 50, 52, 55, 64, 74, 82, 87]. Even though co-selection and less Ab 

susceptibility might happen in the presence of HMs , there are some reports indicating more 

susceptibility to antibiotics in the presence of HM ions [18]. Hӧlzel et al. (2012) showed decrease 
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of MIC for various Abs in presence of HgCl2. The influence of mercury on enzymatic degradation 

of Abs and also on the enzymes involved in DNA and RNA expression  and protein synthesis is 

supposed to be the reason of this observation [88].  

Principally, MIC is the least Ab concentration needed to inhibit bacterial growth; so, an increase 

in MIC indicates higher tolerance to an Ab in bacterial isolates. On the other hand, minimum co-

selective concentration (MCC) and minimal selective concentration (MSC) defines the required 

HM concentration which causes co-selection; thereby, the concentrations of HM greater than 

MCC are considered as probable co-selection agents [47, 58, 60, 61, 80]. Cd, Zn, Hg and copper 

have been found to be the most important co-selection factors in water and soil environments 

[18, 61]. Interestingly, in the presence of various antibiotics and metals, the minimal selective 

concentration (MSC) needed to trigger resistance in bacterial isolates is much lower than the 

required concentration in the presence of a single antimicrobial agent. Metals and antibiotics 

show synergetic influence on resistance selection. Additionally, the MSCs in the both states 

(single or combination) of antibiotics and HMs is significantly lower than MICs needed to inhibit 

bacterial growth [60, 61].     

In addition to co-selection for antibiotic resistance caused by HMs in environment, co-regulation 

of resistance genes might enhance tolerance of bacterial isolates to antibiotics. In this 

phenomenon antibiotic resistance genes are regulated by metal ions, leads to less susceptibility 

of bacterial cells to antibiotics. For instance, the soxS gene encoding the AcrAB efflux pump 

regulator in E. coli, is regulated by different ions e.g. Cr2O7
- and Cu2+ under oxidative stress, which 

results in more expression of soxS gene and increasing tolerance to different antibiotics, e.g. 

tetracycline, chloramphenicol [18, 36, 50, 60, 68, 76, 80, 82].  

2.13. Effects of Antibiotics on Microorganisms 

Antibiotics resistance can result from two different processes including Horizontal Gene Transfer 

(HGT) and mutation. In HGT, the genes coding for antibiotic resistance in environmental bacteria 
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are transferred to other bacterial strains. Since a wide range of bacterial isolates produce 

different antibiotic metabolites, they possess specific genes to protect their cell against their 

self-produced antibiotics [47, 52]. Two human pathogens, Kluyvera sp. and Shewanella algae 

carrying CTX-M β-lactamase resistance genes and quinolone resistance QnrA gene respectively, 

are examples of this phenomenon [47, 55, 70, 79, 82, 83, 89-91].  

 
Fig. 2. 1. Horizontal Gene Transfer versus Mutation. These are two methods of AbR genes 
transfer among bacterial cells (Image: Nester’s Microbiology: A Human Perspective [92]).  

Transfer of resistance genes to other bacterial isolates is influenced by different factors, e.g. 

connection of the gene donor and recipient, which is not a real head-on contact necessarily and 

needs positive selection for resistance-gene transfer. The original location of quinolone 

resistance qnrA gene in aquatic environments and its subsequent location on plasmids of 

recipient cells revealed that this kind of gene transfer can be accomplished in antibiotic 

contaminated aquatic environments [47, 52, 54-56, 83]. As another factor, influence of an 
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acquired resistance gene on acquiring another dispersed resistance gene is considered as 

founder effect factor and presumably is one of the most important factors of less variability of 

resistance genes in pathogens compared to natural environments [47, 56].  

Two different factors are involved in the stabilization of resistance genes in new hosts. The first 

one is being collaborated with the gene-exchange community, and the second one is fitness cost 

imposed on the recipient cell. the first one deals with occurring the mutations and their 

divergence and the second one is involved in extension and stabilization of resistance genes. 

Indeed, fitness costs means the pressures of the acquired resistance genes imposed on the host 

cell to make the cell physiologically compatible with the newcomer gene; hence, bacteria are 

able to acquire those mutations and resistance genes with the ability of compensation for this 

fitness cost [47, 52-56, 60, 69, 82, 83].  

2.14. Antibiotic Resistance Mechanisms 

Antibiotic resistance mechanisms can be grouped into three different categories: 

- Those that affect the target of the antibiotics using genetic mutation or post-

translational modification.  

- Those that alter the effective concentration of antibiotics. 

- Those that detoxify antibiotics by hydrolysis and modification [47, 50, 64, 68, 69, 79, 80, 

83].  

Modifications to antibiotics’ targets can be caused by mutation or protection of the target, 

substitution and enzyme alteration. Note that because of pleiotropy of mutated genes, 

resistance to antibiotics is not the only result of the mutation in genes [64, 74, 82, 83]. Examples 

of these respective mechanisms are that mutated bacterial topoisomerases produce QnrA 

protein and cause quinolone resistance, chimeric PBP proteins lead to beta-lactam resistance, 

and cell wall transformation leads into vancomycin resistance [72, 89, 91, 93-99].  
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Changes leading to reduction of antibiotics concentrations in target cells can be achieved by 

mechanisms which either modify or do not modify the structure of antibiotics. Obstructing 

antibiotics cell entry (e.g. P. aeruginosa resistance to imipenem due to absence of the OprD2 

transporter) and removing antibiotics from cells using efflux pumps are examples of mechanisms 

in which antibiotics remain structurally unchanged. Enzymatic inactivation of antibiotics and 

alterations in enzymes which activate antibiotics are the examples of mechanisms which change 

the structure of antibiotics e.g. isoniazid in M. tuberculosis can be used as a source of carbon 

and nitrogen. Also, Pseudomonas fluorescens grows on streptomycin (Sm), and Streptomyces 

venezuelae grows on Cm [68, 90, 96, 98, 100-102]. A wide range of cellular physiology can lead 

Abs resistance [47]. 

2.14.1. Inhibition of Target Accessibility 

Due to outer membrane barriers, Gram negative bacteria are intrinsically more resistant to the 

entrance of antibiotics into the cell compared to Gram positive bacteria [64, 68, 79, 82]. 

Although, hydrophilic antibiotics are able to distribute through outer membrane porin proteins, 

reduction in expression of genes encoding porin proteins (e.g. OmpF and OmpC) and 

substitution of them with channels with more selective features happens in a wide range of 

Gram negative bacteria (e.g. Enterobacters). This is considered as the reason for innate Gram 

negative bacteria resistance and their ability to be impermeable to antibiotics. However, it has 

been shown that the prior hypothesis involving drug binding sites in outer membrane drug 

channels was wrong [68, 69, 76]. For instance, it has been shown Entrobacteriaceae members 

like E.coli and Enterobacter spp, and Pseudomonas spp. and Acinetobacter spp. are resistant to 

recently introduced antibiotics e.g. carbapenems and cephalosporins, and that this is mediated 

by enzyme degradation of these antibiotics. Carbapenemase is the necessary enzyme for 

inactivation of carbapenem; so, if mutation happens in genes encoding porins which decrease 

porin production, parallel to lack of carbapenemase results in resistance of enteric bacteria to 

carbapenems [50, 68, 76].  
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Gram negative bacteria compared to Gram positive isolates have more variety of efflux pumps 

to excrete antibiotics and other drugs out of the cell. Over-expression of efflux pumps in Gram 

negative bacteria is an important resistance mechanism and results in resistance to a wide range 

of antibiotics [62, 68]. Some of the efflux pumps in bacteria, for example, Lmr, MdeA, FuaABC 

and KexD in Streptomyces aureus, Streptococcus mutants, Stenotrophomonas maltophilia and 

Klebsiella pneumoniae respectively can confer resistance to a range of drugs [68, 80]. 

Homotrimeric inner membrane pumps, E. coli AcrB pump and P. aeruginosa MexB pump, are 

examples of RND family MDR efflux pumps, which make a trilateral binding to AcrA and MexA 

periplasmic proteins and outer membrane transferal proteins like TolC and OprM, and act as 

multidrug efflux pumps [58, 60, 68, 69, 76, 80].  

Local and global regulator genes located beside the efflux pumps-encoding genes can control 

production of pumps. AraC-XylS gene regulator family members e.g. MtrA and RamA genes, are 

considered global regulators with a wide range of functions. MtrA and RamA are involved in 

increased transcription of Neisseria gonorrhoeae mtrCDE and Salmonella spp. acrAB-tolC [68, 

82]. Along with the efflux pump gene expression regulators, there are lots of MarR (multiple 

antibiotic resistance proteins) family repressor-encoding genes located next to transcription-

regulator genes which inhibit regulator genes functions, e.g. marR and ramR from E. coli and 

Salmonella typhimurium respectively. If MarR repressor proteins functions decrease, the 

overproduction of AraC-XylS transcription regulators, e.g. MarA, SoxS, RamA and Rob 

transcription regulator proteins from Entrobacteriaceae result in more MDR efflux pump 

production and suppression of porin protein function [47, 50, 68, 76, 82, 83].  

Gene expression of RND pumps is influenced and suppressed by a local repressor, TetR. AraC 

transcription factors act to regulate and suppress the TetR repressors. AraC genes, in turn, are 

suppressed by MarR global repressors. So, overexpression of AraC encoding MDR pumps, can 

occur in MarR repressors. Mutation can occur in local repressors and intergenic sites too (e.g. 

mutation can happen in the TetR local repressor genes located upstream of acrA (encoding 
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adaptor protein) and acrB (encoding efflux pump) resulting in their overexpression [64, 68, 82]. 

Mutation can occur in promoters too and change the promoter activity (e.g. a single bp mutation 

in the upstream region of mtrC of N. gonorrhoeae established a more active promoter and 

increased efflux pump expression [47, 68].  

Overexpression of efflux pumps production might happen in necessary conditions. In this 

mechanism, binding a molecule, like an antibiotic, to a transcriptional repressor protein is one 

of the most important mechanisms of resistance (e.g. acrAB in E. coli and Salmonella sp., and 

MtrCDE in N. gonorrhoeae and NorA in S. aureus). Structural analysis of the Rv1219 

transcriptional repressor protein from the TetR group which controls expression of the RV1219c-

Rv1218c transporter of ABC family revealed there are several multidrug binding pockets in this 

protein [68, 76, 80]. 

2.14.2. Mutation in Antibiotic Targets 

Preventing an Ab binding to its target is another Ab resistance mechanism. A wide range of 

antibiotics bind to their targets to restrict the target actions. Mutation in one copy of several 

target gene copies in bacterial cells results in multiplication of the mutant allele. For example, 

there are several copies of the 23S rRNA ribosomal subunit, targeted by linezolid; so selection 

for mutation with linezolid will lead to more proliferation of bacteria containing the mutated 

allele in Gram positive bacteria like S. aureus and S. pneumoniae [55, 68, 69, 103].  

Mosaic genes formed by recombination of DNA from the environment with resident genes and 

target protein modification are resistance mechanisms occuring via natural transformation. For 

example, penicillin resistance in S. pneumoniae is due to mosaic penicillin binding protein genes 

(pbp) can occur by recombination with Streptococcus mitis DNA [68, 97, 104].  

Attaining a gene homologous to the target is another antibiotic resistance mechanism, for 

example acquisition of the staphylococcal cassette chromosome mec element (SCCmec) in 

methicillin resistant S. aureus (MRSA). This element carries mecA gene encoding β-lactam 
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insensitive protein PBP2a allowing protein cell wall biosynthesis to occur although the native 

PBP action is inactive in the presence of antibiotic [64, 68, 75, 80, 105].    

2.14.3. Target Protection by Modification 

This mechanism does not change the Ab target by mutation, with addition of chemical residues 

compound to the target to prevent Ab binding to the target. There are no mutational changes 

in the target and means the target is protected from any changes induced by mutation [68, 76, 

105]. There are several examples of clinically important antibiotic resistance involving this 

mechanism, e.g. alteration of drug binding sites of macrolides, lincosamines and streptogramins 

by methylation of 16S rRNA by erythromycin (Ery) ribosome methylase (erm) family genes. Also, 

the recently discovered methylation of A2503 of 23S rRNA by Cm-florfenicol resistance (cfr) 

methyltransferase in different Gram positive and negative bacteria (e.g. S. aureus and E. coli) 

leads to resistance to various compounds including phenicols, pleuromutilins, streptogramins, 

lincosamides and oxazolidonones like linezolid [58, 68, 89, 104, 106].  

The plasmid-borne qnr genes encoding resistance to quinolone produce pentapeptide repeat 

proteins (PRPs) that bind topoisomerase IV and DNA to protect against quinolone. The 

interaction of PR proteins with complexes of quinolone and topoisomerase results in 

augmentation of quinolone efflux and inhibition of double-stranded DNA breaks [50, 68, 83].  

Targeting lipopolysaccharides (LPS) of the cell of Gram negative bacteria by polymyxin 

antibiotics (e.g. polymyxin B and E) is another example of a mechanism affecting targets. The 

long hydrophobic chain of these antibiotics binds to LPS and interacts in both inner and outer 

membranes. This group of antibiotics, also called colistin, has been used against infections 

caused by P. aeruginosa and Acinetobacter spp. and a range of Enterobacteriaceae [47, 68, 79]. 

Resistance to these Abs results in reduction of the LPS production-regulator gene expression 

and therefore less drug binding to the target [68, 104, 106].  
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Daptomycin resistance in S. aureus is an example of effect of point mutations to change the 

target. This antibiotic which is used against Gram positive infections, targets anionic 

phospholipids in the cytoplasmic membrane and enters the membrane and causes 

depolarization of intracellular contents when calcium ions are present [68, 107]. Resistance to 

this Ab can occur by point mutation to mprF (multiple peptide resistance factor) and 

modification of membrane phospholipids which results in membrane charge alteration and less 

daptomycin binding [68, 80, 105, 106]. 

2.14.4. Antibiotics Modification 

These Ab resistance mechanisms are as important as abovementioned mechanisms in bacterial 

populations and are categorized into two different groups [68, 104]: 

- The hydrolysis and inactivation of Abs. 

- Alteration of bacterial activity by adding chemical changes. 

In the first group, the process is production or acquisition of an enzyme with activity to cleave 

the Ab. The destroyed antibiotic will not be able to bind its target and, resistance to the Ab 

results. This resistance mechanism is very common against β-lactams, aminoglycosides, 

phenicols and macrolide antibiotics [68, 69, 104].  

Chemical changes can confer resistance to some antibiotics. Addition of chemical residues leads 

in structural modification of Abs and prevents the Ab bindings to its target. This phenomenon 

results from steric hindrance and is facilitated by bacterial enzymes (e.g. aminoglycoside-

modifying enzymes) [68, 104, 106]. There are a broad range of chemicals residues that can be 

added to the antibiotic structure by a wide range of antibiotic-resistance enzymes to inhibit their 

antimicrobial activities (e.g. nucleotidyl, ribitoyl, phosphate, and acyl groups). There are three 

different groups of aminoglycoside-modifying enzymes including, acetyltransferases, 

phosphotransferases and nucleotydiltransferases [68]. Aminoglycosides are not very tolerant to 

enzymatic changes, because of their size and the presence of several hydroxyl and amide groups 
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in their structures. All these three modifying enzymes can bind to aminoglycosides, although 

they have different affinities for specific aminoglycoside groups [68, 104]. The recently 

discovered genomic island encoding six different aminoglycoside-modifying enzymes from 

Campylobacter coli showed the resistance of this bacterial isolate to various aminoglycosides 

[68]. Another example of this mechanism has been found in some Actinomycetes species with 

rifamycin-resistance genes and involves a group of phosphotransferases [68, 106]. 

2.15. Antibiotics Used in the Project 

Tetracycline (Tc) was discovered as a natural product in 1945. Tc is bacteriostatic and binds to 

the 30S subunit of bacterial ribosomes and prevents introduction of new amino acids to the 

developing peptide chain [108]. Resistance mechanisms to Tc are efflux pumps, ribosomal 

protection and enzymatic inactivation [108]. The Tc resistance genes are tet family genes which 

associate with conjugative and transferable elements (e.g. tetA and tetE genes encode an outer 

membrane-associated efflux pump protein in Gram-negative bacteria) [109]. 

Chloramphenicol (Cm) was discovered and isolated from Sterptomyces venezualae in 1947 and 

in 1949 was synthesised as the first laboratory-synthesised Ab. Cm is bacteriostatic and inhibits 

protein chain elongation by suppressing the peptidyl transferase activity of the 50S subunit of 

the bacterial ribosome [110]. The most frequent resistance mechanism to Cm is inactivation of 

the Ab by attaching acetyl residues to hydroxyl groups of Cm, which inhibits binding of Cm to 

the 50S ribosomal subunit. This resistance mechanism is facilitated by Cm acetyltransferase 

encoded by cat genes.[111].  

Ampicillin (Amp) was introduced by a British company, Beecham, in 1961. Amp is bactericidal 

and can enter Gram positive and some of enteric bacteria. Amp inhibits transpeptidase enzyme 

activity and bacterial cell wall production required for binary fusion [112]. Resistance 

mechanisms against Amp include modifications of penicillin binding proteins (PBPs) in the cell, 
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reducing the affinity for Amp binding, and inactivation of extracellular Abs by β-lactamases (e.g. 

E. coli, has plasmid-borne amp genes, encoding β-lactamase enzymes) [113].   

Carbenicillin (Cb), like Amp, is a bactericidal β-lactam and its mode of action, in several aspects, 

is the same as ampicillin [114]. This Ab is more efficient at killing Gram-negative bacteria and is 

less susceptible to degradation by beta-lactamases compared to Amp. As with Amp, the most 

frequent resistance mechanism against carbenicillin is β-lactamase production (e.g. genes 

encoding resistance to carbenicillin by beta-lactamases production, are bl2c bro, bl2c pse1 and 

bl2c pse3 in P. aeruginosa, Acinetobacter sp., Salmonella enterica and Oligella urethralis) [115].   

Erythromycin (Ery) was discovered from a soil bacterium, Streptomyces erythraea and was 

introduced commercially with the name of Ilosone in 1952. This is a bacteriostatic Ab of the 

macrolide class and interacts with ribosomal 50S subunit, resulting in protein synthesis inhibition 

[116] [117]. The most frequent resistance mechanism to Ery is modification of its target site by 

a rRNA-methylating enzyme with elimination or reduction of Ery’s binding to its target. 

Resistance genes for Ery include the ermAM genes found on plasmid pAM77 of Streptococcus 

sp. and confer resistance to macrolides, lincosamide and streptogramin-B [118].  

In the current project, I tried to include one representative of some of Ab classes. Carbenicillin 

and ampicillin which are from the same antibiotic class, penicillins, were chosen, because 

carbenicillin is more effective against a wide range of bacteria like Pseudomonads which show 

high resistance to ampicillin. By choosing these two Abs from the same class I tried to have a 

better contrast of penicillin class of Abs. 

2.16. Mechanisms of Transferring Resistance Genes by Horizontal Gene Transfer (HGT) 

Horizontal Gene Transfer (HGT) a major gene transfer mechanism plays an important role in the 

evolutionary changes and different kinds of resistance to antimicrobial compounds and HMs 

[119]. HGT was discovered in microorganisms in 1940s and since then its effect in variation of 

other organisms, including eukaryotes was revealed [120].   
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Some of the transmitted genes show a neutral effect in the recipient cell, especially in closely 

related cells [121]. The most important feature of a gene to be accepted in a new host is to be 

harmless to the recipient. Integrated genes are able to be expressed in the new host cell. 

Complete integration of the transmitted gene in the host cell leads in development of new 

phenotypes with new behaviours in the long term behaviors. If transferred genes have no 

specific function or are detrimental to the host cell, the horizontally transferred genes might be 

removed from the cell [119, 122, 123].  

2.16.1. HGT Mechanisms 

The most common mechanisms of HGT in prokaryotes are conjugation, transformation, 

transduction, and the recently discovered ones e.g. GTA (gene transfer elements) and cell fusion 

[119].  
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Fig. 2. 2. Mechanisms of gene transfer among bacterial cells. Conjugation (a) happens between 
donor and recipient cells, transferring single-stranded DNA. Cell fusion (b) transfers DNA bi-
directionally after bridge formation. Transduction (c) gene transfer by phage. Gene transfer 
agents (GTA) (d) are phages that only carry random fragments of host DNA. Transformation (e) 
DNA uptake from the environment. Endosymbiotic gene transfer (f) means incorporation of 
genetic material from an endosymbiotic or organelle into the host cell genome which are mostly 
eukaryotes. (Image: Soucy et. al., 2015 [119]).  

Physical contact of donor and recipient cells is important for HGT by conjugation. This contact is 

facilitated by a bacterial pilus [121]. With the exception of Agrobacterium conjugation to plant 

cells, HGT by conjugation happens among bacterial cells [124]. When conjugation occurs, a 

single strand of DNA is moved from donor to recipient cells [119]. 

Phage can facilitate HGT by transduction. Integration of donor genes into the phage genome 

leads to transfer of these genes to the recipient. General transduction and specialised 

transduction are two types of transduction which describe incorporation of a random fragment 
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of host DNA in the phage genome, or a specific section of host chromosome by an activated 

prophage [119, 125].   

GTA, found in both prokaryotes and archaea, has some similarities to the transduction system. 

GTAs evolve from prophages with inability to recognise and transfer their genes to encode their 

protein packaging [125]. These mobile agents transfer random fragments of host DNA to the 

new recipients. As a host chromosome-integrated system, GTA is involved in transferring genes 

mostly under the regulatory system of host. The small random fragments of host genome are 

transferred in capsids by GTAs to neighbouring hosts. Lang et. al. showed that transferring genes 

by GTAs has no advantage for the host, when its genes are transferred by GTA to other hosts, 

nor for GTAs encoding genes; this is suggested because there is no preference for GTAs to 

transfer their encoding genes to the new hosts, although how the GTAs gene remain under 

selection has not been explored yet. [125, 126]. An example of GTA-dependent gene transfer is 

the antibiotic resistance genes transfer from Rhodobacter capsulatus to other bacterial species 

[126].  

Cell fusion is considered as bi-directional gene transfer which occurs on the joining of two 

adjacent microorganisms’ cell membrane by several small bridges [127]. There are some 

similarities between conjugation and cell fusion systems, but the action of both cells as either 

donor or recipient of genes in cell fusion makes this system similar to sexual reproduction system 

in eukaryotes. The most common examples of cell fusion have been observed in archaea e.g. 

Haloferax volcanii and Sulfolobus spp. isolates or even between Haloferax isolates from distinct 

species [128-130].  
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Fig. 2. 3. Schmatic representation of cell fusion mating mechanism. (A) Two cells with close 
proximity. (B) Cytoplasmatic bridges between two cells. (C, D) Cell fusion is established (E) 
creation of a hetero-diploid cell, leading to (F) segregation of chromosomes and plasmids 
resulting in reversion to the original state, and (G) recombination between the chromosomes to 
create a hybrid cell. (Image: Noar and Gophna, 2013 [127]). 
 

The  Lateral Gene Transfer (LGT) system is the incorporation of whole or some parts of cellular 

organelles genetic component (e.g. chloroplasts and mitochondria) to their host cells genome 

[131]. Similar to LGT, endosymbiont bacteria in the eukaryotic cells are able to incorporate some 

part of their genome to the host genome and this is described as Endosymbiotic Gene Transfer 

(EGT). The presence of endosymbiont in the eukaryotic cells does not guarantee the occurrence 

of EGT, because EGT has not been demonstrated in some host-endosymbiont integrations [132]. 

As one of the common animals’ endosymbiont choanoflagellates, Monosiga brevicollis is an 

example of unicellular eukaryotes which obtain a broad range of genes encoding different 

treatments to carbohydrates and amino acids metabolism, HMs and antibiotics tensions and etc. 

by EGT [133].   

Hybridization and consecutive backcrossing with parent in, for example two different species of 

eukaryotes leads in incorporation some part of genes in the recipient cell and occurrence of 

introgression system [134]. This HGT system not only is one of the most common exchanging 

genes in plants, also its effects on human ancestors brain evolution has been proven [135]. 

2.17. DNA-related Molecular Techniques 
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DNA-related molecular methods, e.g. Polymerase Chain Reaction (PCR), Terminal Restriction 

Fragment Length Polymorphism, Sanger Sequencing and Next Generation Sequencing, are the 

in-situ methods providing the capability to detect, differentiate, categorise bacteria [136]. The 

following are the review of the molecular methods used in the current project. The molecular 

methods were used in this project to investigate bacterial community structures and groups in 

soil samples and probable differences among bacterial HM and Ab resistance genes in bacteria 

from soils with different history of usage and different levels of HMs. These methods were used 

along with the culture-based methods as only less than 1% of soil bacteria are culturable on 

common media and these number of bacteria are not the proper representative of the total 

phylogenetic diversity. The unculturable bacteria they play an important role to shape the 

structure of bacterial communities in soil, therefore, identification and abundance of these 

bacteria in soil is important [137]. 

2.17.1. Terminal Restriction Fragment Length Polymorphism (TRFLP) 

TRFLP analysis is applied to investigate the taxonomic composition of complex bacterial 

communities in soil according to variation in the 16S rDNA gene [138]. TRFLP analysis is used to 

interrogate the soil bacterial community structures and dynamics in response to variations 

induced due to various environmental factors, e.g. levels of HMs in soil. There are several reports 

of using TRFLP method to investigate complex bacterial communities in soil [139], sludge 

systems [140] as well as in human health and pathology research projects [141]. This method 

does not need cell culture-based methods, and provides comprehensive, fast and sensitive 

analysis to explore the structure and diversity of bacterial communities in various environments. 

TRFLP is cheaper than common nucleotide sequencing methods and does not need require 

genomic sequence information [142]. TRFLP amplifies 16S rDNA genes from extracted total 

genomic DNA using fluorescent labelled primers. The PCR product is subjected to digestion to 

obtain terminal restriction fragments with fluorescent labels at the 5’ ends [143].      
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2.17.2. The History of DNA Sequencing  

DNA sequencing technology has developed in a variety of ways since the invention of the early 

sequencing technologies of two-dimensional chromatography and chain-termination 

sequencing by Frederick Sanger et al. in 1977 [144]. The DNA sequencing method based on 

chemical modification developed by Maxam and Gilbert in 1977 [145]. In addition, capillary 

electrophoresis (CE)-based sequencing adopted in the first automated sequencing machine, 

AB370 by Applied Biosystems in 1987; this system employed a fluorescent labelling technique. 

These methods are recognised as the first generation of DNA sequencing. The Maxam-Gilbert 

method could not compete with the Sanger method because of its lower performance. These 

early sequencing technologies were precursors of more complicated technologies, used in the 

Human Genome project, which was provisionally completed in 2001 [146]. The massively 

parallel signature sequencing technique (MPSS) was a major breakthrough in sequencing 

science, reading a large number of overlapping short fragments of the genome simultaneously 

and represented the beginning of Next Generation Sequencing (NGS) of genomes [147]. 

Consequently, the price of fragment sequencing fell significantly and sequence data output 

increased. Sequencing technology in 2005 was able to sequence 1.3 human genomes per year, 

but it increased to 18000 human genomes in 2014.  

A wide range of NextGeneration Sequencing (NGS) methods have been developed, which differ 

based on the nucleic acids (DNA or RNA) and the organisms, tissue or environment they are 

obtained from. The common applications of NGS methods are in Genomics, Transcriptomics and 

Epigenomics.  

2.17.2.1. Genomics 

The most important methods related to genomics are whole-genome sequencing, genome 

resequencing, Exome Sequencing, de Novo Sequencing and Targeted Sequencing [146]. 

Resequencing methods are used to detect all the variations that exist in the genome across 
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individuals of a species, which were not demonstrated in a single index individual genome 

sequence [148].   

Sequencing of an organism’s genome without any reference sequence available is accomplished 

by de novo sequencing methods using contig (a conting is a group of overlapping DNA fragments, 

which represent the consensus residues of the sequence alignment, either nucleotide or amino 

acid) assembly. In this strategy, the sequenced fragments are aligned as contigs. The quality of 

de novo sequence data can be determined by the cohesion and length of these fragment 

sequences as well as the diversity of insert sizes of fragments used in library preparation [149, 

150]. Using a combination of fragments sizes helps to cover a wider range of structural variants 

and results in a more accurate sequencing data, especially for complex genomes.  

Targeted Sequencing refers to experiments which are aimed at sequencing specific genes or 

regions of genomes with higher coverage levels compared to whole genome sequencing, for 

instance 500x-1000x vs 30x-50x. This capability results in higher accuracy of rare variant 

detection and money saving compared to CE-based sequencing. Flexible and scalable kits for 

Targeted Sequencing help scientists to adjust the sequencing panels according to their 

experiments’ requirements [151].  

The Amplicon Generation method workflow leads to multiplexing the desired regions by PCR, 

followed by amplification and purification of the fragments. This is a flexible method to 

researchers’ demands including metagenomic studies of phylogeny of bacterial species using 

16S rRNA [152-154].       

Sequencing of total RNA (RNA-Seq) or other RNA fragments including mRNA, tRNA, rRNA, small 

RNA, noncoding RNA (ncRNA), targeted RNA and micro-RNA, can be done by transcriptomics 

methods [146]. In this method, the process is started by total RNA sample preparation and then 

rRNA deletion. This stage is followed by RNA reverse transcription to cDNA in order to prepare 

an NGS library. [155].  
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Epigenetics is study of heritable changes of phenotypic features due to changes in genes activity 

which is caused by external factors. These factors that make the genes to switch on or off are 

including DNA methylation, small RNA-mediated regulation, DNA-protein interaction, histone 

modification and etc. [146, 156].  

2.18. NGS systems 

There are several NGS systems, e.g. SOLiD and Ion Torrent PGM (Personal Genome Machine), 

GS FLX Titanium and GS Junior of Roche Company, and Genome Analyzer, HiSeq and MiSeq 

series of Illumina Company. The novel NGS machines with Massively Parallel Sequencing 

technology were introduced following the human genome project (e.g. the Genome Analyser 

machine, the 454 machine and SOLiD [Sequencing by Oligo Ligation Detection]) [146]. 

2.18.1. Illumina NGS Systems 

Massively parallel signature sequencing (MPSS) was one of the earliest NGS methods developed 

in 1990s. This method used adapter ligation and adapter decoding to sequence DNA and was 

susceptible to sequence specific bias [147]. The high complexity of this method resulted in no 

commercial representation of this method in a specific sequencing machine. Lynx Therapeutic 

Company representing this technology along with Solexa Company were amalgamated to form 

Illumina and led to the development of SBS technology [146].    

The Genome Analyser (GA) was introduced in 2006 with output of about 1 Gb per run. Its 

efficiency enhanced dramatically in a few years and reached 85 Gb per run.  

The Illumina HiSeq and MiSeq machines, introduced in 2010s, and progressively improved in 

2014 and the lowest price per base ever [146, 157]. The Illumina HiSeq and MiSeq are based on 

the base-by-base sequencing method and DNA colony sequencing method. Using P5/P7 primers 

and adapters which have multiplexing incorporation, the HiSeq and MiSeq machines are able to 

sequence thousands of samples concurrently [158]. The only difference between these 

machines is the magnitudes of the reads of HiSeq (300 million) compared to MiSeq (25 million). 
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There are two laser apparatuses and four filters to detect the four different nucleotide types in 

these machines and sequencing quality is influenced by the distribution of bases. This happens 

because of cross-talk among of the 4-types nucleotides’ emission spectra [157].  

The MiSeq machines (used for the current project) not only have lots of HiSeq systems’ traits 

allow it to sequence various kinds of samples, they are also specially designed to handle bacterial 

genome and amplicon sequencing as well as ChIP-Seq and clone checking. It is able to complete 

the sequencing process in addition to library preparation and quality measurement in less than 

10 hours [159, 160]. Nextra and Illumina 16S V3-V4 library preparation methods are used in this 

instrument by a combination of this instrument with other automated systems e.g. Agilent 

Bravo, Tecan, Hamilton Banadu, etc. The more effective performance of this system in contig 

assembly compared to HiSeq systems has been achieved by improvement of reads lengths in 

this system. Higher output and on-instrument data analysis feature of MiSeq are the advantages 

of this system versus the Ion Torrent PGM system [146].   

Illumina sequencing by synthesis (SBS) technology consists of 4 stages including library 

preparation, cluster generation, sequencing and finally data analysis. In the first step, random 

fragmentation of DNA or cDNA, followed by 5’ to 3’ adapter ligation produces the sequencing 

libraries. These two tasks can merge into one step by tagmentation which enhance the 

sequencing output significantly. Tagmentation is the name of a library preparation method 

which uses Tn5 transposase to fragment in vitro DNA instead of using chemical ligation [161]. 

The adapters are oligos which are bound to the 5’ and 3’ ends of fragments while preparing the 

sequencing library. In the second step, the flow cells containing the surface-bound oligos, which 

are complements of the adapters, are loaded with the library fragments. A bridge amplification 

process will lead to fragment amplification and insertion into different clonal clusters. The 

process starts by leaning over the strand and binding other end of the ligated strand with 

another promoter to another complementary oligonucleotide on the flow cell surface which 

results in making a bridge. Same as PCR, replication of this process which consists of 
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denaturation and extension cycles, leads to generation of millions of similar fragments which 

produce specific fragment clusters [162, 163]. Illumina uses SBS technology which is an exclusive 

terminator-based method. In this method the single reversible terminator bases (RT-bases) are 

detected as their incorporation into the DNA strands. All of 4 cleavable fluorescent-dye labelled 

dNTPs and removable blocking groups are available in each cycle of process and one only base 

act as complementary to the template strand [164]. The labelled dNTPs are detected by laser 

excitation and imaging procedures using charge-coupled device (CCD) [146, 165]. The last step 

is analysing the obtained data of sequencing. In this stage, the obtained sequence will be aligned 

to a reference genome. By aligning the data, various analyses can be done such as single 

nucleotide polymorphisms (SNPs) and insertion deletion (indel) identification, and read counting 

for RNA-related experiments, phylogenetic and metagenomic analyses and etc. [146].   

2.18.1.1. Illumina NGS Technology Features 

One of the most important features of Illumina NGS is Paired-End (PE) sequencing method. In 

this method, both ends of DNA fragments are sequenced and aligned as forward and reverse 

reads. The importance of this method is in high accuracy of sequencing because of duplicate 

reads, enabling researchers to find indels, removal of PCR duplicates and other errors which are 

difficult or impossible to detect in single strand reads [163]. Producing more SNV calls is another 

advantage of Illumina NGS technology [146, 166].  

There are lots of similarities between NGS and Capillary Electrophoresis (CE) sequencing; in 

both, incorporation of fluorescently labelled deoxyribonucleotide triphosphates (dNTPs) in a 

DNA strand within DNA sequencing cycles are catalysed by DNA polymerase, and fluorophore 

excitation results in recognition of each labelled nucleotide. In addition, there is a fundamental 

difference between the two techniques which makes their outputs quite distinct. The difference 

in the number of DNA fragments which are sequenced simultaneously, which is one fragment in 

CE sequencing and millions in NGS methods [146].  
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Compared to CE Sanger Sequencing methods, NGS uses a simpler and more rapid library 

preparation protocol. While the early library preparation methods took 1-2 days and were 

involved in making DNA or RNA random fragmentation, selecting fragments based on their size 

on gels, ligation of oligonucleotides to their specific platforms, PCR amplification etc., the new 

methods need only ~2 hours to prepare the library which are mostly PCR and gel free. To prevent 

the common errors in previous methods while working on CG/AT rich fragments, promoters and 

homopolymeric regions, NGS does not use PCR [146, 167].  

In addition to the high output of NGS methods which is obtained at the end of experiment, the 

capability of this method to run multiplex libraries makes this a suitable method to increase the 

throughput of the experiments. This feature helps different index DNA fragments to get 

sequenced simultaneously in the span of one sequencing run. During the data analysis the 

sequencing data are separated and sorted out in distinct datasets based on the related index 

fragments and aligned to the related references [163].   

2.18.2. NGS Applications in Microbiology 

The applications of NGS to microbiology, especially environmental microbiology, include the 

detection and identification of bacterial isolates, and measurement of gene expression. A broad 

range of microbial genomes have been sequenced so far, but these data reveal just a small 

amount of information about microbial populations. There are many non-essential genes which 

differ among various strains, including pathovars of a species. To explore the genetic variation 

among bacterial communities more sequencing could reveal the key genetic factors involved in 

pathogenicity, drug resistance and susceptibility, ecological behaviours, phylogenetic relations, 

etc. [168].  

One of the earliest examples of using NGS to investigate the genome of bacterial species was 

using the Roche 454 GS20 sequencer to explore the genome of Myxococcus xanthus, a soil-borne 

proteobacterium with social motility and cooperative predation. The project aimed to find 
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mutations resulting from different starvation periods triggering production of fruiting bodies, as 

a starvation-resistance behaviour [169].  

Using metagenomic studies of microbial populations in various environments helps the 

understanding of unculturable microbes. With metagenomics the genes of unculturable bacteria 

encoding specific traits like metabolic features and drug resistance can be sequenced and 

compared with reference genomes. [168].  

The impact of NGS systems, as precise and speedy methods, on different fields of microbiology, 

from environmental to clinical, has been substantial. There are a broad range of investigations 

on identification, categorizing, management and control of bacterial, fungal and viral diseases 

of plant, animal and human which have been accomplished or are in progress around the world 

because of the novel properties of NGS systems in reduction of sequencing costs and high 

accuracy [170].  

2.19. Knowledge gaps 

There are several knowledge gaps about bacterial resistance to HMs and Abs in the presence 

of elevated levels of HMs in soil. Some of these gaps are: 

 Explicit mechanisms involved in the resistance of bacteria to HMs and subsequent 

resistance to Abs. 

 If mechanisms of resistance to a given HM will lead to different mechanisms of 

resistance to different Abs, and if these differ among various classes of bacteria.   

 If resistance to Abs induces resistance to HMs too, or this is only the way coselection 

occurs, from HM resistance to Ab resistance. 

Some of the knowledge gaps that were covered by the current thesis are: 

 Comprehensive comparison of bacterial resistance to HMs and Abs in soils with 

different history of usage. 



50 
 

 Comprehensive investigation of bacterial resistance to HMs and Abs in microcosms 

and if examination of bacterial resistance to HMs and Abs can act as a simulation of 

bacterial HM and Ab resistance in a real soil environment. 

 Bacterial community structure changes (due to presence of elevated levels of HMs in 

soil) investigation using both TRFLP and/or 16S rDNA sequencing and on soil samples 

with different history of usage.    

The following flow chart (Figure 2.4) illustrates the key concepts discussed in the literature 

review chapter. 

 

Fig. 2. 4. Flow chart summarising the key concepts discussed in the literature review chapter and 
their relevance. 
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Chapter 3, Methodology  

Figure 3.1 illustrates different methods and steps used in the current project. 

 
Fig. 3. 1. Flow chart summarising different steps and methods used in the current project. 
Various equipments and consumables used in this project are listed in Table 3.1. 
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Table 3. 1. Equipments and consumabeles used for the current project.  

Product Brand Location 

90 mm round petri-dishes  LabServ™ Lower Hutt, NZ 

96-well polystyrene microtiter plates  CELLSTAR® Dunedin, NZ 

Bovine Serum Albumin (BSA)) Thermo Fisher Scientific Lower Hutt, NZ 

Brain Heart broth  Bacto™, Becton Dickinson Auckland, NZ 

Cycloheximide  Sigma-Aldrich® Auckland, NZ 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich® Auckland, NZ 

DNA Isolation Kit  Mo Bio PowerSoil® Auckland, NZ 

Dream Taq PCR Buffer, dNTPs, Forward 
and Reverse Primers and DreamTaq DNA 
polymerase 

Thermo Fisher Scientific Lower Hutt, NZ 

Electronic 8-channel pipette Eppendorf Auckland, NZ 

Falcon tubes LabServ™ Lower Hutt, NZ 

High-resolution Continuum-Source Atomic 
Absorption Spectrometer 

Analytik Jena ContrAA® 700  

ICP Multi-Element Standard Solution IV Certipur® Auckland, NZ 

Labelled and unlabelled primers Thermo Fisher Scientific Lower Hutt, NZ 

Lysozyme Sigma-Aldrich® Auckland, NZ 

Manual colony counter Chiltern® Auckland, NZ 

MspI oligonucleotide restriction enzyme Thermo Fisher Scientific Lower Hutt, NZ 

Nitric acid Baker Auckland, NZ 

Nutrient agar Difco™ Auckland, NZ 

PCR grade nuclease-free water Dnature Gisborne, NZ 

pH meter ORION™ 420A Lower Hutt, NZ 

plate reader FLUOstar® OPTIMA BMG 
LABTECH 

Auckland, NZ 

Polypropylene micro-centrifuge tubes Eppendorf Lower Hutt, NZ 

R2A broth LAB M™ Ltd. Lancashire, UK 

Reasoner’s 2A (R2A) Agar OXOID™ Lower Hutt, NZ 

Refrigerated incubator shaker Innova™ 4230 Auckland, NZ 

Spectrophotometer DeNOVIX® DS-11FX+ Auckland, NZ 

sterile 0.45 µm syringe filters MILLEX®-HV Auckland, NZ 

Tetracycline, Chloramphenicol, 
Carbenicillin, Erythromycin, Ampicillin and 
Streptomycin 

Sigma-Aldrich® Auckland, NZ 
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3.1.  Soil Samples  

3.1.1. Waikato Region (WR) 

Three sets of soil samples, with each set including samples originating from pastoral, arable and 

native bush sites were collected from the Waikato Region (WR) in collaboration with the 

Waikato Regional Council (WRC) based on standard soil sampling protocols [171, 172]. Samples 

were collected from the upper soil horizon from 0-10 cm depth in a representative way and 

aggregated to provide sufficient mass (  ̃20 kg) for a range of experiments [173]. Sampling was 

done in different seasons from February 2014 to June 2015. A total of five different rural 

properties were sampled (Table 3.2) and these were drawn from the larger set that makes up 

WRC’s ‘Regional Soil Quality Monitoring Programme’ [174]. All sites and regional boundaries are 

shown in Figure 3.1.  These soil sampling sites were chosen as sites which receive high levels of 

HMs including Cd and Zn due to usage of high levels of HM-containing compounds on them 

annually.    

 
Table 3. 2. WR soil sampling sites sampled for this study. EW stands for Environmental Waikato. 

Samples Acronym Time Native bush site Arable site Pasture site 

1st sample lot WRSS1 Feb. 2014 EW-73 EW-85 EW-69 
2nd sample lot WRSS2 Aug. 2014 EW-73 EW-86 EW-135 
3rd sample lot WRSS3 June 2015 EW-73 EW-85 EW-69 

 
Under arrangements made between the WRC and property owners who participate in regional 

soil monitoring, confidentiality is maintained around the exact locations of privately-owned 

sampling sites, but more general areas can be identified. 

Samples from sites EW-69, EW-73, EW-85, EW-86 and EW-135 (Table 3.1 and Figure 3.1) were 

used in the project. These samples were collected from Pukekawa and Tuakau, on properties 

that were nearby each other, to ensure a match of the soil type. The soil series for all samples 

was Patumahoe Clay Loam, in the ‘granular’ soil order (N. Kim, personal communication). 

Pastoral soil samples were collected from WRC sites 69 and 135, which are livestock production 

sites with a long drystock history. The arable cropping soil samples (WRC sites EW-85 and EW-
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86) were from sites used in horticulture and have a long history of potato and onion cropping 

(Figure 3.1). Both arable cropping and pastoral sites have received regular inputs of products 

containing HMs, in particular Cd from superphosphate fertiliser and Zn from facial eczema 

remedies (in pastoral soils) and Zn-containing fungicides (in horticultural soils). Soil samples 

from a native bush site were collected from WRC site EW-73 at Alexandra Redoubt Rd Reserve, 

Tuakau, Waikato, which has been covered in bush for more than 100 years and not received any 

inputs of products containing HMs.  

 
Fig. 3. 2. Locations of the soil sampling sites in WR (Image: courtesy of Kim N., et. al., 2015). 
 
The sites’ soil structure and chemical information was assessed in collaboration with WRC by Hill 

Laboratories Ltd., Hamilton, New Zealand. Briefly described methods for these assessments are 

shown in Table A1.1, Appendix 1.   
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3.1.2. Belmont Regional Park soils (BRP) 

Soil sampling from the BRP (GPS Coordinates -41° 11' 24.00" S and 174° 52' 30.00" E), close to 

Wellington city, was performed at a pastoral livestock farm with granular soil and a fertiliser 

storage shed adjacent to an airstrip. Sampling was performed in December 2016 and April 2017 

from eight sub-sites, 10 m apart, starting from the beginning of the airstrip (Figure 3.3) 

representing a gradation of fertilizer concentrations along the airstrip (Kim, N., pers. comm.). 

Sub-samples (n=10) of the upper soil horizon (0-10 cm) were collected in a straight line transect 

at each sub-site using a 10 cm-depth foot corer. Sampling was performed from least to most 

contaminated sub-sites. BRP’s sampling location and sampling scheme are illustrated in Figures 

3.2 and 3.3. 

 

 
Fig. 3. 3. Belmont Regional Park map and airstrip location. Image: Imagery ©2018DigitalGlobe, 
Google Map 
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Fig. 3. 4. Sampling scheme at Belmont Regional Park airstrip. (image: Kim, N. Used by 
Permission). 
 

The BRP sub-sites soil structure and chemical information was assessed by Hill Laboratories 

Ltd., Hamilton, New Zealand, using the methods described in Table A1.1, Appendix 1. 

Soil samples from WR and BRP were kept at the most for 12 hours in the dark in air impermeable 

bags at 4 °C until commencement of laboratory studies. Water content and Ph of the soil 

samples were measured on arrival. 

3.2. Extraction of Soil Bacteria and Preparation of Serial Dilutions 

Soil samples were first sieved (aperture= 5 mm) to remove large soil particles, such as stones 

and plant debris [175]. The moisture content of the soil samples was measured by overnight 

drying 1 g of each sample and subtracting the dry weight from the 1 g initial wet weight [176, 

177]. Soil samples (10 g, dry weight) were then added to a 200 mL Schott bottle containing 90 

mL of sterile 1X Phosphate Buffered Saline (PBS) buffer (pH=7.0) and shaken at 200 rpm and 4 
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°C for 1 hour using a refrigerated shaker incubator. All of the pH adjustments for the PBS buffer 

and other reagents used in this study were performed using a pH meter and 0.1 M HCl and 

NaOH. Six universal bottles washed with 50% nitric acid, containing 9 mL of sterile 1X PBS buffer 

were allocated to each soil sample to make serial 10-fold dilutions [178]. 

3.3. Preparation of HMs Stocks and Abs 

Initial stocks of metal solutions were made in distilled water to reach the concentrations of 1 M 

for Cd and Hg ions, and 5 M for Zn ions, using CdCl2 (MW=183.31 g mol-1), ZnSO4.7H2O 

(MW=287.55 g mol-1) and HgCl2 (MW=271.52 g mol-1). The pH of metal solutions was adjusted 

to neutral with 0.1 M NaOH and solutions were autoclaved (121 °C, 15 min, 1 bar). These were 

used as source solutions for HM additives to media to culture soil bacteria. The high water-

solubility of these HMs’ salts made them suitable options for bacterial culture-based 

experiments [179-183]. 

Five different Abs of various Abs groups, including Tetracycline (Tc), Chloramphenicol (Cm), 

Carbenicillin (Cb), Erythromycin (Ery) and Ampicillin (Amp) were used to prepare the Ab stocks. 

These Abs are members of the tetracyclines, chloramphenicol, antipseudomonal penicillins, 

macrolides and penicillins groups respectively. Initial stock concentrations of 0.2 g mL-1 of these 

Abs were prepared in dimethyl sulfoxide (DMSO). The Abs stocks were sterilised by passing them 

through sterile 0.45 µm syringe filters and stored at -20 °C [184, 185].  

3.4. Plate Culturing 

3.4.1. Media 

Reasoner’s 2A (R2A) Agar was used as a general solid culture media using 90 mm round petri-

dishes. A high number of soil and water bacteria are slow growing and can be suppressed by 

faster growing isolates if they are cultured in more nutritious media e.g. Nutrient Agar [186]. 

After sterilisation (121 °C, 15 min, 1 bar), media (~37 °C) were poured into petri-dishes (20-25 
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mL) to make basal media and HMs and Abs supplemented media plates. HMs and Abs were 

added to the madia and when required supplemented with HMs or Abs. 

3.4.2. HMs and Abs Additives Concentration for Plate Culturing Using R2A Agar  

A range of HM and Ab concentrations were added to R2A Agar plates using the stock solutions 

of HMs and Abs (Abs addition at ~37 °C). Final HM ion concentrations were used 1, 0.1, 0.01 and 

0.001 µg mL-1 for CdCl2, 5, 1, 0.1, 0.01 and 0.001 µg mL-1 for ZnSO4, and 0.1, 0.01 and 0.001 µg 

mL-1 for HgCl2. The following equation was used to calculate the volume of 1 or 5 molar initial 

metal compound solution to be added per L kg-1 of media/soil: 

Equation 3.1: 

𝑖 =
𝑋 × 1000000

1000(𝑀/(𝐶/100))
 

Where i is the volume of metal compound solution (mL) to be added to one litre of media or one 

kg of soil, X is the preferred final concentration of metal in media/soil by mM, M is the molarity 

of metal’s initial stock, C is the percentage of metal atoms in its 1 M compound solution.  

A range of concentrations of Abs (dissolved in DMSO) were used as media additives at 

concentrations of 20, 100 and 200 µg mL-1. Based on the literature these concentrations are the 

average concentrations to determine the bacterial resistance to Abs [187]. 

3.4.3. Cycloheximide Additive 

A concentration of 100 µg mL-1 of cycloheximide was added to the basal, HM and Ab-

supplemented media before pouring the plates to prevent the growth of fungi and yeasts [188, 

189], which spread over the plate surface inhibiting the growth of bacteria and obscuring 

colonies to be counted. A 100 mg mL-1 stock of cycloheximide solution in DMSO was prepared. 

After sterilisation of the solution by filtration through sterile 0.45 µm syringe filters, 1 mL of that 

stock solution was added per litre (final concentration of 100 µg mL-1 of cycloheximide) of media.  
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3.4.4. Plate Spreading of Aliquets of Serial Dilutions 

A 100 µL aliquot of each serial dilution, 10-2 to 10-8, of extracted soil bacteria from 10 g (dry 

weight) in PBS buffer was spread on plates containing basal, HM- or Ab-supplemented media in 

triplicate. Plates were incubated at 25 °C for 14 days [188, 190]. 

3.4.5. Colony Counting and Colony Forming Units (CFU) Calculation 

Colonies on plates were counted using a manual colony counter [191, 192].  

The total Colony Forming Units (CFU) of plates containing 10-300 colonies were counted, 

because of lack of precision counting colonies >300 per plate. Counting colonies on plates with 

less than 10 colonies can lead to statistical errors [193]. The mean values from each set of three 

replicates were calculated and total CFU obtained per g of soil dry mass using the following 

equation: Equation 3.2: 

𝐶𝐹𝑈𝐷𝑀 =
𝑁 × 𝐷 × 100

𝑇𝑊𝑤 − 𝑆𝑊𝑤
 

Where CFUDM is CFU per soil dry mass, N is number of colonies per plate, D is inverse dilution 

factor, TWw is total weight of soil, which is for example 1 g, and SWw is the weight of water in 

the soil. The total CFU (CFUT) in 1 g of soil was determined using the following equation:  

Equation 3.3: 

𝐶𝐹𝑈𝑇 =
𝐶𝐹𝑈𝐷𝑀

𝑇𝑊𝑤
 

3.5. Morphology Assessment and Gram Classification of Selected Bacterial Isolates 

Approximately 100 independent colonies from plates, containing a range of HMs and Abs, were 

selected from each soil sample of WR and BRP soil, and categorised in various groups based on 

their morphological features (Table 3.3). The selected bacteria were selected from all of the 

morphological categories, not only the dominant morphologies [194].  
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Table 3. 3. Morphological descriptors used to describe bacterial colonies. 

Whole colony Edge Elevation Surface 

Punctiform Entire Flat Smooth, Glistening 
Circular Undulate Raised Rough 
Rhizoid Lobate Convex Wrinkled 
Irregular Filamentous Pulvinate Dry, Powdery 
Filamentous Curled Umbonate  

 
Gram staining to differentiate the selected isolates into Gram negatives and Gram positives was 

carried out by both methods of Gram staining and use of 3% KOH solution [195, 196]. 

3.6. 6-Week and 6-Month Microcosms  

3.6.1. Soil Samples 

Microcosm experiments were performed in two separate stages and sets of experiments, the 

first involving 6-week incubations, and the second with 6-month incubations. The 6-month-

incubation microcosms was performed to determine if any changes would occur in the profile 

of bacterial communities and diversity over a longer incubation period compared to the 6-week 

incubation. The pastoral soil-contained microcosms with 6-month incubation was used to 

investigate the bacterial community structure changes in presence of different levels of HMs in 

comparison with the bacterial community dynamics in native bush soil-contained microcosms 

incubated for 6 months [197-199].  

The native bush soil sample from sites EW-13 was used for 6-weeks and 6-month microcosms’ 

experiments, and EW-24 were used for 6-month microcosms’ experiments. The sample from 

EW-13 was a sandy loam soil from Taupo, with a long history of plantation forestry. This soil was 

classified as an Immature Orthic Pumice soil and contained relatively low contamination levels, 

because little fertiliser is used on plantation forestry. This soil can be considered as ‘close to 

natural.’ Sample EW-24 was a clay loam soil from Coromandel (West of Whangapoua) from a 

property used for dry-stock farming, containing higher levels of Cd, Zn and other contaminants. 

This soil was classified as a Typic Orthic Brown Soil.  
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3.6.2. Preparing Microcosms 

Polypropylene boxes with 500 g capacity (Dimensions L=20, W=15, H=5 cm) were used as 

containers for the microcosms with 10 x 1 mm diameter drainage holes in the bottom, and 5 x 

10 mm ventilation holes in the lids to avoid excess soil moisture. Soil samples (300 gram) were 

added to each microcosm container after the removal of large stones, debris etc. by sieving 

(aperture= 5 mm) (Figure 3.5). 

 
Fig. 3. 5. Microcosms stored in a 25 °C incubator room. 

3.6.3. Microcosms- 6-Week Set 

The first microcosm experiment involved a total incubation period of 6 weeks. Topsoil from WRC 

site EW-13, with no or limited HM pollution history was used for this part of experiments. Each 

prepared microcosm was spiked by one of the five concentrations of CdCl2, ZnSO4.7H2O or HgCl2 

in triplicate to reach the final concentrations of Cd ions of 5, 10, 50, 100 and 200 mM, Zn ions by 

20, 50, 100, 200 and 300 mM, or Hg ions by 0.5, 1, 5, 10 and 50 mM. The selected concentrations 

cover the Landcare Research recommended limit concentrations for metals in New Zealand soil 

[197, 200, 201]. Three microcosms were assigned as controls and received no spiked HMs. HM 

stocks were prepared as described in Section 3.4.2. Each microcosm had a tray to collect the 

drainage fluid. Aliquots of 300 mL of sterile distilled water were spiked with the appropriate 
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amount of metal stock solution and this was sprayed onto the microcosms’ soil. A negative 

microcosm control, containing distilled water with no metal additive was allocated to the 

experiment. Microcosms were left for 6 hours and then their drainage fluids were collected for 

metal concentration analysis by Atomic Absorption Spectrophotometry. The microcosms were 

incubated for six weeks at 25 °C.  

A total amount of 10 g (dry weight) of each microcosm soil sample was mixed with 90 mL of 

sterile PBS buffer and was shaken in a shaker incubator with 200 rpm for 1 hour.  Aliquots of 100 

µL of 10-fold serial dilutions of 10 g (dry weight) samples of the microcosms’ soil were cultured 

on plates containing one of two concentrations of HMs (0.1 and 1 µg mL-1 for Cd and Zn, and 

0.01 and 0.1 µg mL-1 for Hg) or one concentration of Abs (20 µg mL-1 for Tc and Cm, 100 µg mL-1 

for Cb and Ery, and 200 µg mL-1 for Amp) as well as control plates (no added metal or Ab) in 

triplicate at time zero and two-weekly intervals. Plates were incubated at 25 °C for 2 weeks and 

colony counting was performed [176, 177, 202]. Morphology assessment of bacterial isolates 

from the plates and pH measurement of soils was performed at time 0 and every other culture 

round and compared to colonies from control microcosms [202-204].   

The soil of the microcosms was mixed every week using sterile spatulas [176]. Weekly moisture 

measurement of the microcosms’ soils was performed and adequate water was added to 

maintain constant soil moisture of about 20±5% (the original soil sample’s moisture content) 

[177].  

Duplicate 10 g of soil samples were added to 50-mL Falcon tubes, one for Pollution Induced 

Community Tolerance (PICT) and another one for DNA extraction for Terminal Restriction 

Fragment Length Polymorphism (TRFLP) tests and stored at 4 °C and -20 °C respectively.  

3.6.4. Microcosms- 6-Month Set 

Two types of soils were used for 6-month microcosms. These soils were from site EW-13 which 

was considered ‘close to natural’ in its soil contaminant status, and site EW-24 with a long history 
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of dry stock grazing, which contained medium levels of specific contaminants, most notably Cd 

and Zn. The same processes and experiments were carried out for the 6-month microcosms as 

for the 6-week series, but with an incubation period of six months, and the plate culturing being 

performed at time 0 and every 2 months. The 6-month microcosm work was performed to 

determine if any changes would occur in bacterial communities and diversity over a longer 

incubation period compared to the 6-week incubation. The aim of using 6-month microcosms 

with pastoral soil was to investigate the bacterial community structure changes in presence of 

various levels of HMs in comparison with the bacterial community structure changes in native 

bush soil-contained microcosms incubated for 6 months.  

One potential limitation to be noted, for this part of the project, when making comparisons is 

that two different soil types were involved in the 6-month microcosm work.  The ‘near natural’ 

soil from site EW-13 was in the ‘Pumice’ soil order (with the texture classification of ‘sandy 

loam’), whereas the sample from EW-24 was a ‘Brown’ soil (texture: clay loam). The second soil 

contained higher organic matter and clay content.  Presence of these soil components would be 

expected to reduce the bioavailability of anthropogenic Cd and Zn in soil EW-24, compared with 

that expected if the same total concentrations were present in a pumice soil. This difference was 

eliminated in experiments involving other soils (Table 3.1) which were all the same soil order 

(‘Granular’) and type.  

Texture and chemical information of EW-13 and EW-24 soil samples was assessed by Hill 

Laboratories Ltd., Hamilton, New Zealand, using the methods briefly described in Table 3.2. 

Soil samples (10 g) from each 6-month microcosm was collected in 50 mL Falcon tubes at time 

0, and every two months thereafter. Duplicate 10 g soil samples were added to 50-mL Falcon 

tubes, one for Pollution Induced Community Tolerance (PICT) and another one for DNA isolation 

for Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis and stored at 4°C and 

-20°C respectively.  
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3.7. Microcosms’ Leachate Metal Concentration Analysis  

Metal concentrations of drainage fluids collected from microcosm trays were analysed using 

Atomic Absorption Spectrophotometry (see below). Based on the initial metal concentrations 

added to the microcosms, two different methods of metal concentration analysis were 

performed. Flame AAS (air/acetylene) was used for higher-level determinations [205], and 

Graphite-Furnace AAS was used to quantify metals present at concentrations below detection 

limits of the flame technique [206]. Samples of the negative-control microcosms drainage were 

used as negative controls for this part of the analysis. Starting levels of HMs were measured and 

the result are shown in Table 5.1. 

After collection and prior to analysis, samples were preserved by adding sufficient analytical 

reagent (AR) nitric acid to achieve a final acid concentration of 0.5%. The analysis was carried 

out against suitably prepared matrix-matched standards on a high-resolution Continuum-Source 

Atomic Absorption Spectrometer. Testing carried out in graphite-furnace mode made use of 

appropriate matrix modifiers. Determinations were carried out at wavelengths of 228.8018 nm 

for Cd, 213.8570 nm for Zn, and 253.6519 nm for Hg, which are primary absorption lines for the 

three elements [207]. Standard solutions were prepared by dilution from ICP Multi-Element 

Standard Solution IV for Cd and Zn, and 0.1 M HgCl2 solution for Hg. Standards and blank 

solutions were prepared using distilled water and preserved with AR nitric acid (final strength 

0.5%). 

3.8. Sequential Extraction of HMs 

This analytical procedure of HMs extractions from microcosms soil samples was performed to 

assess the absorption of HM cations to the soil particles [208]. The method had five different 

stages, during which more strongly absorbed ions could be extracted on each successive step. 

The first step is to extract the exchangeable ions in water, and here just this step was performed. 

Eight mL of 1M MgCl2 (pH=7.0) was added to 1 g of soil air dried overnight in 15 mL Falcon tubes 
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with vigorous shaking for 60 minutes at room temperature. Tubes were spun at 1000 rpm to 

remove soil residues and an aliquot of 5 mL of the supernatant was transferred to a new 15 mL 

Falcon tube containing 10 mL of deionised distilled water. Suitable standards were prepared 

(using the mentioned method above) and each sample’s HM concentrations were measured by 

HR-CS Atomic Absorption Spectrophotometer. The negative control microcosms leachate were 

used as negative control for these determinations. 

3.9. Purification and Storage Selected Isolates  

All the selected isolates (n=900 for each WR soils set, n=300 for each BRP soils, and n=600 for 

each microcosm set) grown on R2A agar plates, containing a range of HMs and Abs, were sub-

cultured and purified by streaking them onto R2A Agar plates. These were a total number of 100 

bacteria isolated from each WR soil sample, and 50 isolates were selected from plates with lower 

(Cd 0.1 mM, Zn 1 mM, and Hg 0.01 mM) and 50 isolates were selected from plates with higher 

(Cd 1 mM, Zn 5 mM, and Hg 0.1 mM) concentrations of HMs. These isolates were a total number 

of 100 bacteria selected from plates with each metal (50 isolates from plates with lower HM 

concentration and 50 isolates from higher concentration of HM). These isolates were a total 

number of 150 isolates per each microcosm (50 bacterial isolates selected from plates with each 

HMs including Cd 1 mM, Zn 5 mM and Hg 0.1 mM). A total number of 50 HM-sensitive bacterial 

isolates from each soil sample from WR, BRP and microcosms and were selected from plates 

with no added HM. These sensitive isolates were then cultured on plates with the mentioned 

concentrations of HMs to validate their sensitivity to the HMs. A few colonies of each 

morphotype were used to prepare a liquid culture to prevent selection of atypical variant clones. 

These purified single colonies were added to 5 mL R2A broth (pH=7.0), and re-cultured in a 

shaker incubator for 48 h at 25 °C. These liquid culture stocks were stored at -80 °C in 30% (v/v) 

glycerol [178].  
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3.10. Pollution Induced Community Tolerance (PICT) Analysis 

The tolerance of a community of bacteria to a range of antimicrobial agents at various 

concentrations was determined by a microtitre plate culturing-dependent method called 

Pollution-Induced Community Tolerance (PICT) [209, 210]. The PICT test was carried out for soil 

samples taken from WR, BRP, and the 6-week and 6-month microcosms. R2A broth was used as 

a common substrate for soil bacterial communities. 

 
Fig. 3. 6. Flow chart illustratind different steps of PICT analysis 
 

3.10.1. Measuring the Cation Content of Media 

The concentrations of cations in media, may be higher than the cation content human or animal 

blood, and may induce higher MIC reactions to Abs. The cation content of culture media should 

be checked before plate culturing [193], and the results are more comparable with in vivo Abs 

activity results [193, 211]. Based on manufacturer’s information, the content of MgSO4 in R2A 

broth media was 50 mg L-1 corresponding to a ~10 mg L-1 Mg2+, which is equivalent to the Mg2+ 

content of blood. The Ca2+ content of the R2A broth media was measured by Atomic Absorption 

Spectrophotometry and determined to be about 20 mg L-1. Mg2+ and Ca2+ concentrations in R2A 

agar was taken from the manufaturer’s information. The chemical contents of R2A agar and R2A 

broth media used in this project are listed in Table 3.4. 
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Table 3. 4. R2A agar and broth chemical contents 

Typical formulation Oxoid® R2A agar LAB M™ R2A broth 
g L-1 

Yeast extract 0.5 0.5 
Meat peptone 0.5 0.5 
Casein hydrolysate 0.5 0.5 
Glucose 0.5 0.5 
Starch 0.5 0.5 
Dipotassium hydrogen 
phosphate 

0.3 0.3 

Magnesium sulphate 0.024 0.05 
Sodium pyruvate 0.3 0.3 
agar 15 - 
pH at 25°C 7.2 ± 0.2 7.2 ± 0.2 

 

3.10.2. Initial Bacterial Cell Stock Preparation 

A 10 µL aliquot of an overnight culture of purified isolates (described in Section 3.4) was added 

to 25 mL of autoclaved R2A Broth media in 50mL screw-capped and 50% nitric acid-washed 

universal bottles. The bottles were incubated at 25 °C for 48 h in a shaking incubator (200 rpm) 

[212]. A 100 µL aliquot of the liquid culture was cultured on basal R2A agar and incubated at 25 

°C for 48 h, to check culture purity.  

3.10.3. Bacterial Cell Density Adjustment 

The density of bacterial inoculum was measured and set spectrophotometrically —OD=0.1 at 

600 nm wavelength— at 1×108 cells by adding adequate amount of fresh R2A broth. 

Spectrophotometer OD measurement validation was performed using a McFarland 0.5 turbidity 

standard. The turbidity standard solution was made by mixing 1 mL of 48mM barium chloride 

dihydrate (BaSO4-2H2O) solution with 199 mL of 1% sulphuric acid (H2SO4) and shaking 

vigorously. Its optical density (OD) was measured using both spectrophotometer and plate 

reader at 600 nm and showed 0.1 absorbance, proving both the prepared standard turbidity 

solution and spectrophotometer OD measurement accuracy [193].  

To reach the desired number of bacterial cells in liquid culture of 5×105 mL-1, 1:200 dilution of 

stationary phase of bacterial cultures were prepared —100 µL of liquid culture with OD=0.1 in 
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19.9 mL of fresh liquid media [213, 214]. Since the OD absorption can be different for various 

bacterial isolates with different cell size, shape and colour, the precise number of colonies mL-1 

at a given OD for each bacterial isolate was determined; therefore, a 10 µL aliquot of each 1:200-

diluted liquid culture was added to 990 µL fresh R2A broth and a 100 µL aliquot was spread on 

the surface of basal R2A agar. The number of colonies was counted (between 10-300 colonies) 

and CFU was determined for the 100 µL-volume positive control at the time zero point using the 

following equation:  

Equation 3.4: 

𝐶𝐹𝑈 =
𝐶 × 10

10−𝐷
 

Where CFU is the total number of individual colonies grown from 100 µL of liquid culture; C is 

number of colonies per plates; 10-D represents the number of 10-fold dilution of liquid culture 

which is D=2 here; 10 (µL) represents the liquid culture aliquot volume diluted by 1:100. This 

scenario helped to monitor the precise number of individual cells/CFU of each bacterial isolate 

that were added to the microtiter wells [193]. 

3.10.4. Preparation of Heavy Metals (HMs) and Antibiotics (Abs) Stock Solutions 

To measure the MIC (the lowest concentration of antimicrobial agents inhibiting visible 

planktonic cell growth), the desired range of HMs and Abs concentrations were selected based 

on literature reports and standard MICs for bacterial isolates reported by EUCAST respectively 

[215]. Stock solutions 1000X stronger than required final concentrations of HMs and Abs were 

prepared; these concentrations included 0.1, 0.5, 1, 5, 10, 20, 100, 200 and 500 µg mL-1 

(dissolved in DMSO) for Abs. Final HM ion concentrations of 0.0001, 0.001, 0.01, 0.1, 1, 2, 5 and 

10 mM of Cd using CdCl2, 0.001, 0.01, 0.1, 1, 2, 5, 10 and 20 mM of Zn using ZnSO4.7H2O, and 

0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 2 and 5 mM of Hg using HgCl2, were prepared in sterile 1.5 

mL polypropylene micro-centrifuge tubes [216].  
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3.10.5. Plate Preparation and Incubation 

A 100 µL aliquot of  the prepared extracted bacterial dilution with ~5×105 bacterial cells per mL 

was added to each well of microtiter plate containing 99 µL of 2× R2A broth [213]. To test if 

there are ~5×105 mL-1 bacterial cells, aliquots of 100 µL of extracted bacterial dilution was 

cultured on basal R2A agar and the number of CFUs was calculated using Equation 3.4 [193]. A 

1 µL aliquot of HMs or Abs (prepared as described in Section 3.10.4) was added to the allocated 

wells in triplicate, as were negative and positive controls. OD adjustment was performed before 

inoculation of plates wells with HMs and Abs (as described in Section 3.10.3).  

S. aureus NCTC 12973 was added to the experiment batches as a quality control, and resulting 

data compared with the EUCAST databases [17, 42]. Incubation was performed in a shaking 

incubator at 25 °C and 200 rpm for 72 h. OD reading from each well were recorded at time zero, 

before inoculation of wells with antimicrobials to monitor the possible OD changes due to 

antimicrobial agents addition, and at 6h intervals [212]. EC50 was calculated for each batch of 

results. Growth monitoring by plate culturing and measurements of metals’ bioavailability was 

carried out after 72 h incubation by the methods described below (Sections 3.10.7 and 3.10.8). 

A half-filled 5 L beaker of water was put in the shaking incubator to provide enough humidity to 

prevent the liquid culture drying out. 

3.10.6. Plate Reading 

Plate reading was performed at time zero and 6-hour intervals using a plate reader at 600 nm. 

The data from the plate reader was normalised by establishment of linear relation of the plate 

reader with the spectrophotometer used for initial OD adjustment at 600nm wavelength [216]. 

Bacterial resistance was quantified as MIC based on the obtained MIC results at the exponential 

growth phase and data was analysed according to the EUCAST ECOFF (epidemiological cut-off) 

recommendations. To generate ECOFF values for Abs at least 250 isolates from each soil sample 

needs to be subjected to the MIC evaluation [217-219]. D’Costa et. al. (2007) and Bhullar et. al. 
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(2012) reported that Ab resistance in soil bacteria is defined as growth at 20 µg mL-1, which is 

used for all bacteria and all classes of antibiotics [220, 221]. EC50 was calculated by GRAPHPAD 

Prism 6 software and Log (inhibitor) vs. response, Variable slope (four parameters) method. 

3.10.7. Growth Monitoring 

Agar plate culturing of the liquid growth in the microtiter plates was performed on R2A plates 

with the same method, in order to monitor the plate reader OD accuracy, and also the growth 

of the bacterial population in the presence of HMs and Abs after 72 h incubation [193]. Aliquots 

(100 µL) from each triplicate well were mixed and an aliquot of 100 µL of the cell mixture was 

cultured on basal R2A agar plates, after suitable dilution based on their OD. The equation 3.3 

was used to calculate the number of bacterial colony forming units in each culture. The agar 

plate culturing helped to monitor and compare between the number of viable versus senescent 

bacterial cells in the microtiter plates liquid culture [193]. The positive and negative controls 

mentioned in Section 3.11.5, were used here too. Bacterial biofilm formation can be induced in 

the presence of low levels of Abs. However, this feature of some bacterial classes was considered 

as a natural characteristic which may or may not affect the accuracy of the bacterial growth in 

liquid media, since each assay was prepared consistently this phenomenon was not expected to 

significantly influence the data collected. On the other hand, this feature was outside the scope 

of this thesis.  

3.10.8. Measuring Heavy Metals (HMs) Bioavailability in Plate Wells   

Due to the supposition that absorption to the surface of microtitre plates wells by some HM ions 

might have occurred, HMs bioavailability in polystyrene microtiter plate wells was measured 

after the incubation time using Atomic Absorption Spectrophotometry (AAS). After mixing 

triplicate wells including those for the positive and negative controls, and inoculated wells with 

each concentration of HMs, bacterial cells were precipitated by spinning at 3000 rpm for 5 
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minutes. The supernatants after serial dilution detectable by the AAS, were applied to the 

machine. 

3.11. Broth Microdilution (BM) Analysis 

A BM experiment was performed for the selected isolates purified from WR, BRP, and 

microcosm (described in Section 3.9). MIC and EC50 values of HMs and Abs for each bacterial 

strain were determined from this data. Figure 3.7 illustrates different steps of BM analysis. 

 

Fig. 3. 7. Flow chart illustrating different steps of BM analysis. 
 

3.11.2. Plate Preparation  

MIC was examined for a range of Abs and HMs concentrations. A 99 µL aliquot of liquid culture 

(cell density adjustment was explained in Section 3.11.3) was dispensed to each well of 96-well 

polystyrene microtiter plates using an electronic 8-channel pipette [193, 213]. A 1 µL aliquot of 

the Abs and HM stocks was added as antimicrobial additives to the wells of 96-well plates in 

triplicates. An aliquot of 1 µL DMSO/99 µL fresh broth media, positive (growth without any 
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antimicrobial additives) and negative (sterile; fresh media without bacterial cells) controls were 

included in triplicate. S. aureus NCTS 12973, a standard sensitive control strain was added to 

each batch as a quality control. The S. aureus  control strain’s MIC test values were compared 

with the EUCAST (European Committee on Antimicrobial Susceptibility Testing) epidemiological 

cut-off databases in order to quality control [193, 213, 217]. According to culture-based 

investigations of Ab resistance in soil bacteria, the defined level of antibiotic resistance in soil 

bacteria is growth at > 20 µg mL-1 [217, 220, 221]. The whole process for each bacterial isolate 

was completed in ≤1 h based on the EUCAST MIC test recommendations, to prevent experiment 

errors due to bacterial cell divisions [215, 222, 223]. 

The time-zero plate reading was performed at 600 nm before inoculation of the plates’ wells 

with a range of HMs and Abs to monitor OD changes due to antimicrobial agents addition [193].  

Plates were incubated in a shaking incubator at 25 °C and 200rpm for 72 h [212]. Other methods 

used for PICT analysis, e.g. measuring the Cation content of media, initial bacterial cell stock 

preparation, bacterial cell density adjustment, preparation HMs and Abs stocks, were performed 

as described in sections 3.10.1-3.10.5.  

3.12. Molecular Experiments    

3.12.2. Soil DNA Extraction  

Total genomic DNA of soil samples, (from WR and BRP sites, and 6-week and 6-month 

microcosms) was extracted to allow genetic/genomic analysis, including 16s rDNA Sequencing, 

and Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis. Microbial DNA 

suitable for Polymerase Chain Reaction (PCR), genotyping and Next Generation Sequencing 

(NGS) was extracted from soil samples using Mo Bio PowerSoil® DNA Isolation Kits [224] 

following the manufacturer’s protocol [225]. Briefly, 0.25 g of each soil sample was added to 

PowerBead tubes and gently shaken. A 60 µL aliquot of Solution C1 (contains SDS and other 



73 
 

compounds required for cell lysis) was added to each tube and mixed vigorously for 10 minutes. 

Tubes were spun at 10000 rpm for 30 seconds.   

Quantitative and quality assays control of the extracted DNA samples were achieved by 1.5% 

agarose gel electrophoresis in 0.5% TBE (Tris-Borate-EDTA) buffer, and also dsDNA 

spectrophotometry for A260/280nm (preferably 1.7≤) and A260/230nm (preferably 2.0≤) ratios 

to detect impurities, primarily humic acids and proteins [226, 227].  

3.12.3. 16s rDNA Sequencing 

In order to investigate the diversity of the bacterial communities in soil samples, 16s rDNA 

sequencing was performed [228]. Total genomic DNA samples from 6-week microcosms spiked 

with Cd 100, Zn 200 and Hg 50 µg mL-1, and the BRP B17, B14 and B10 sub-sites were sent to the 

Massey Genome Service hub of NZ Genomics Ltd., Palmerston North.  Illumina 16S V3-V4 rRNA 

library preparation and Illumina MiSeq 16s rDNA sequencing test was performed on these 

samples. The quality control for 16s rDNA sequencing and the subsequent analysis was done 

with SolexaQA++ and QIIME software tools to generate a comprehensive taxonomic overview 

of the soil samples bacterial communities. 

3.12.4. Terminal Restriction Fragment Length Polymorphism (TRFLP) 

Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis is a technique used to 

study complex microbial communities based on variation in length of restriction fragments of 

the 16S rRNA gene. TRFLP analysis can be used to examine microbial community diversity, as 

well as structure and community dynamics, in response to changes in different environmental 

parameters or to study bacterial populations in natural habitats [229].  

Genomic DNA of WR and BRP, and 6-week and 6-month microcosms soil samples was extracted 

for TRFLP analysis by the method described in Section 3.13.1 [225].  
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Quality control of DNA samples was performed by trial PCR reactions using unlabelled 16s rDNA 

gene-specific primers with the same sequence as the labelled ones used for sequencing, and 2% 

agarose gel electrophoresis (100 V, 40 min). A negative control containing no DNA template was 

included with these PCR reactions. PCR reaction contents are listed in Table 3.5. 

Standard TRFLP primers have been designed to amplify a selected region of the 16S rRNA gene 

of the bacterial soil community DNA, the amplified product was approximately 1000 bp long. 

The 63F forward primer was labelled at its 5’-end with 6-FAM™ phosphoramidite dye-labelled 

(blue) —5’-CAG GCC TAA CAC ATG CAA GTC-3’— [230] and the 1087R reverse primer was VIC® 

phosphoramidite dye-labelled (green) —5’-CTC GTT GCG GGA CTT AAC CC-3’— [231]. The 

maximum absorption and maximum emission of the labels were respectively at 494 nm and 522 

nm for 6-FAM™ (6-carboxyflourescein) and 538 nm and 554 nm for VIC® [232]. PCR product 

quality was assessed by ethidium bromide staining after running the PCR product on a 2% 

agarose gel (100 V, 40 min) [233].  

Table 3. 5. PCR contents to prepare TRFLP test DNA fragments. 

Component Reaction 

volume  

Base 

concentration 

Final 

concentration 

Dream Taq PCR 

Buffer 
5 µL 10X 1X 

dNTPs 1 µL 10 mM 200 µM 

Forward primer 1 µL 0.05 µM 10 pM 

Reverse primer 1 µL 0.05 µM 10 pM 

Template DNA Variable  Variable <1000 ng 

DreamTaq DNA 

polymerase 
0.25 µL 5U µL-1 1.25 U 50 µL-1 

PCR grade 

nuclease-free 

water 

To 50 µL - - 
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Table 3. 6. PCR conditions to amplify desired DNA fragments for TRFLP 
analysis. 

Step Temperature °C Time  Number of cycles 

Initial 
denaturation 

95 3 min 1 

Denaturation  95 30 sec 
30 Annealing  55 30 sec 

Extension  72 1 min 
Final extension 72 20 min 1 

 
A 25 µL aliquot of PCR product (~200ng PCR product) was digested with 2 µL of 10U µL1- MspI 

restriction enzyme (Thermo Fisher Scientific). 0.3 µL acetylated Bovine Serum Albumin (BSA) 

(Thermo Fisher Scientific) at 37 °C for 3 h and subsequent 30min enzyme deactivation at 65 °C 

and a final fast cooling at 4 °C [233]. This step generated fluorescently-labelled terminal 

restriction fragments. Restriction fragment lengths were measured by detection of terminal 

fluorescent labelled fragments’ analysed by ABI3730 Capillary Genetic Analyser at Massey 

Genome Service, Palmerston North. The output was a series of peaks of various sizes and heights 

that represents the profile of each sample [234]. The enzyme digestion products visualised for 

quality control purposes by analysing on a 2% agarose gel run at 100 V for 40 minutes. A negative 

control without DNA template was included for the PCR reactions, as negative control of enzyme 

digestion. 

The Applied Biosystems 3730 series DNA Analyzer is used as strong electrophoresis system for 

TRFLP analysis. This machine (available at Massey Genome Service and used in the current 

project) is a multi-capillary system. TRFLP data analysis was performed with GeneMapper® 

software v.4.1 for peak analysis and PRIMER v.7 (Plymouth Marine Laboratory) for analysis of 

relative abundance of terminal restriction fragments as a proportion of a total peak height of all 

the Terminal Restriction Fragments (T-RFs) in that profile. GeneMapper software v.4.1 contains 

the required analysis parameters to recognise complex Terminal restriction Fragments (T-RF) 

patterns and provide a comprehensive fingerprint from metagenomics samples [142]. Three-

Way ANOVA was used for statistical analysis to compare the abundance of the T-RFs between 
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samples. A total of 30 PCR reactions were executed using the conditions shown in Table 3.6 

[233]. 

3.12.5. PCR Reaction Using Specific Primers 

Two of the most common genes encoding Cd resistance in bacterial isolates were amplified using 

two specific primer pairs. A total number of 900 purified, Cd resistant bacterial isolates showed 

Cd resistant in HM’s BM experiments (Sections 3.11) were tested in this way. 

Total bacterial genomic DNA was extracted from these isolates by the boiling method [235]. 

Briefly, 2 mL of overnight cultures of bacterial isolates in R2A Broth was centrifuged in 10000 

rpm to pellet the cells. The cells pellets were re-suspended in 500 µL of TE buffer (Tris-EDTA 

buffer, pH=8) and boiled and ice cooled three times for 5-minute intervals. A final concentration 

of 100 µg mL-1 of lysozyme was added to the Gram positive bacterial cell suspension and 

incubated in a 37 °C water-bath for 3 h with occasional shaking [236]. The same boiling method 

protocol was performed for Gram negative bacteria. The boiled and ice cooled tubes were spun 

in 13000 rpm for 10 minutes and 200 µL of supernatant with extracted DNA was transferred to 

a clean 500 µL polypropylene microfuge tubes and stored at -20 °C. The quality of the extracted 

DNAs was quantified using dsDNA spectrophotometry at A260/280 nm and A260/230 nm ratios 

to detect impurity, and 1.5% agarose gel electrophoresis in 0.5% TBE buffer [226, 227].  

The targeted czcA [237] and cadA [238] genes were amplified using the PCR reaction 

components listed in Table 3.5, and primers detailed in Table 3.7 under the PCR conditions listed 

in Table 3.8. The czcA gene encodes an RND family efflux pumps involved in bacterial resistance 

to Cd2+, Zn2+ and Co2+ [239]. The cadA gene encodes efflux pumps involve in expelling Cd2+ from 

bacterial cells [240, 241]. Negative controls with no DNA template was included in these PCR 

assays. The PCR products were visualised via 2% agarose gel electrophoresis run at 100 V for 40 

minutes in 0.5% TBE buffer. 
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Table 3. 7. Sequence of the oligonucleotide primers used to amplify Cd resistance genes 

Targeted 
gene 

Primers Sequence (5’-3’) Length of 
amplified 
fragment 
(bp) 

Reference 

czcA Upstream (czcAF) GGSGCGMTSGAYTTCGGC 252 Kaci et.al., 
2014 Downstream 

(czcAR) 
GCCATYGGNYGGAACAT 

cadA Upstream 
(cadA1) 

CAAAYTGYGCRGGHAARTTYGA 1052 Oger 
et.al., 
2001 Downstream 

(cadA2) 
AACTAATGCACAAGGACA 

 
Table 3. 8. PCR conditions to amplify Cd resistance encoding genes 

Step 

czcA cadA 

Temperature °C Time 
Number 
of 
cycles 

Temperature °C Time 
Number 
of 
cycles 

Initial 
denaturation 

94 5 min 1 94 5 min 1 

Denaturation  94 30 sec  
35 

94 1 min  
30 Annealing  58 1 min 52 1 min 

Extension  72 1 min 72 2 min 
Final 
extension 

72 7 min 1 72 5 min 1 

 
3.12.6. Identification of Bacterial Isolates using 16S rDNA Sequencing 

The bacterial isolates carrying either czcA or cadA Cd resistance genes were identified by 16S 

rDNA sequencing. DNA extraction with the boiling and ice cooling method, and DNA quality 

control by spectrophotometry and agarose gel electrophoresis was achieved as described in 

Section 3.13.5. The specific primers, unlabelled 63F and 1087R [230, 231] (Section 3.13.4), were 

used in PCR reactions to amplify the 16S rDNA regions of the bacterial isolates’ genomes. PCR 

reactions were performed using the PCR reaction components shown in Table 3.5 and under the 

PCR conditions described in Table 3.8. DNA ethanol precipitation method was performed 

following the PCR reactions to concentrate and purify of the PCR products.  

The quality and quantity of PCR reaction products were performed spectrophotometry and 

agarose gel electrophoresis. PCR products were sent to Massey Genome Service for 16S rDNA 
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sequencing by ABI3730 DNA Analyzer. The 16s rDNA sequence data from the raw reads for each 

bacterial isolate were compared to the data bases at NCBI to find the most similar species. 

3.13. Investigation of Genetic Mobility of CdR from Isolates by Horizontal Gene Transfer 

3.13.2. Replica Plate Mating 

A streptomycin resistant (SmR) and Cd sensitive Pseudomonas aeruginosa ICMP 6286 

(International Collection of Microorganisms from Plants (ICMP), Landcare Research, New 

Zealand) as a recipient strain was streaked on a Nutrient agar plate and incubated at 37 °C 

overnight. A single colony of P.  aeruginosa was used to prepare an overnight broth culture in 

Brain Heart broth with shaking at 200 rpm and 37 °C to reach the log phase growth [242-244]. 

The incubation duration was 18 h and following by a 6 h of high temperature incubation at 48 

°C. The high temperature heat shock was performed to enhance the chance of horizontally 

transfer of gene during conjugation with the donor bacterial isolates by inactivating the 

restriction system of the recipient strain [245-247]. An aliquot of 100 µL of the fresh overnight 

culture was used to seed a lawn cultured on well-dried BH agar (containing 2% agar) and left to 

dry [248, 249].  

Freshly overnight culture of bacterial isolates as donor strains, were patched using sterile 

toothpicks onto 2% Nutrient agar plates concurrent with preparation of recipient cells cultures. 

Plates were incubated at 37 °C for 24 h to reach log phase growth. The donor strains test for 

ability to transfer CdR were those bacterial isolates carrying czcA or cadA genes as determined 

by PCR reactions described in Section 3.13.5. Squares of sterile velvet cloth were used to print 

the donor cells onto the recipient inoculated on BH agar plates containing 100 µg mL-1 of 

Streptomycin (Sm) (sulphate salt) and 1 mM CdCl2 (prepared as described in Section 3.3). The 

sensitivity of the donor bacterial strains to the concentration of 100 µg mL-1 of Sm was 

determined prior to cell mating. An Sm sensitive P. aeruginosa strain and a bacterial isolate 

without either czcA or cadA Cd resistance genes were used as negative controls. Plates 
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containing mated bacterial cells were incubated at 37 °C for 24 h and the growth of 

transconjugant patches was scored quantitatively [187]. 

The presence of the horizontally transferred czcA and czdA genes in transconjugant strains was 

investigated with PCR reactions using the specific primers to amplify these resistance genes as 

described in Section 3.12.5. Negative controls containing no DNA template was included for the 

PCR reactions. The PCR products were visualised on a 2% agarose gel run at 100 V for 40 minutes 

in 0.5 x TBE buffer. 

3.13.3. Heavy Metal and Antibiotic Resistance Examination of the Recipient Strains 

To ascertain the resistance characteristics of transconjugant strains, fresh overnight patches 

were replica plating onto plates with HMs or Abs. Resistance of strains to some selected 

concentrations of Cd (1 and 0.1 mM), Zn (5 and 1 mM), Hg (0.1 and 0.1 mM) and a range of Abs 

(20 and 100 µg mL-1 of Tc, Cm, Ery, Cb and Amp) was assessed according to the method from 

Section 3.4 [193, 248, 250].  

3.14. Statistical analysis 

Statistical analysis to find differences between different variables was conducted using ANOVA 

(ANalysis Of VAriance). ANOVA analysis was used to test the differences among bacterial CFUs, 

MIC and EC50 values of Pollution Induced Community Tolerance (PICT) and Broth Microdilution 

(BM) analysis, the number of TR-F reads in TRFLP analysis, and number of 16S rDNA gene reads 

related to the relative abundance of each bacterial phylum in 16S rDNA sequencing. This 

statistical analysis method compared the means of samples or groups in order to make 

inferences about, for example, bacterial CFUs means. Dependent and independent variables and 

co-variates were introduced to the ANOVA analysis. Depending on the number of independent 

variables in each analysis, two-way or more way analysis of variances was conducted. The 

dependent and independent variables and co-variates introduced to ANOVA analyses are listed 

below for each experiment: 
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 Three-way ANOVA analysis was conducted for total bacterial count of Waikato Region 

soil samples. Soils sets, soils history of usage, and soils’ initial HM concentration were 

introduced to the analysis as independent variables. The dependent variable was 

bacterial CFU. Monthly mean temperature and rainfall during the sampling months, soils 

moisture content, pH of soils, total C and N content of soils, and Olsen P values were 

introduced to the analysis as co-variates.   

 Four-way ANOVA analysis was conducted for resistant bacterial counts of Waikato 

Region’s soil samples on plates with HM and Ab additives. Soil sets, soils history of usage, 

initial HM concentrations of soils, and HM or Ab concentrations in media were 

introduced to the analysis as independent variables. The dependent variable was 

bacterial CFU. Monthly mean temperature and rainfall during the sampling months, soils 

moisture content, pH of soils, total C and N content of soils, and Olsen P values were 

introduced to the analysis as co-variates. 

 Two-way ANOVA analysis was carried out for total bacterial count of Belmont Regional 

Park sub-sites soil samples. Soil samples with their distance from the storage fertiliser 

and initial HM concentrations in soil samples were introduced to the analysis as 

independent variables. The dependent variable was bacterial CFU. Soils moisture 

content, pH of soils, total C and N content of soils, and Olsen P values were introduced 

to the analysis as co-variates. 

 Three-way ANOVA analysis was conducted for count of resistant bacteria from Belmont 

Regional Park sub-sites’ soil samples on plates with HM and Ab additives. Soil samples 

with their distance from the storage fertiliser, initial HM concentrations in soil samples 

and HM or Ab concentrations in plates were introduced to the analysis as independent 

variables. The dependent variable was bacterial CFU. Soils moisture content, pH of soils, 

total C and N content of soils, and Olsen P values were introduced to the analysis as co-

variates.  
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 Three-way ANOVA analysis was conducted for Pollution Induced Community Tolerance 

(PICT) test of bacteria extracted from Waikato Region and Belmont Regional Park soil 

samples. Soil samples, history of soils usage (for samples from Waikato Region) or sub-

sets (for Belmont Park soil samples), concentrations of HM and Abs in microtitre plates 

were introduced to the analysis as independent variables. The dependent variable was 

MIC or EC50 value. 

 Three-way ANOVA analysis was conducted for Broth Microdilution (BM) test of bacteria 

selected from Waikato Region and Belmont Regional Park soil samples. Soil samples, 

history of soils usage (for samples from Waikato Region) and distance of sub-sets from 

the fertiliser storage (for Belmont Park soil samples), concentrations of HM and Abs in 

microtitre plates were introduced to the analysis as independent variables. The 

dependent variable was MIC or EC50 value. 

 Three-way ANOVA analysis was conducted for quantification of bacterial resistance in 

microcosm trials. Soil sampling from microcosms at appropriate intervals (2 weeks or 2 

months), concentration of HM additives to the microcosms and HM or Ab 

concentrations in media were introduced to the analysis as independent variables. The 

dependent variable was bacterial CFU. Soils moisture content, pH of soils samples at 

time 0 and every 2-week or 2-month interval, total C and N content of soils, and Olsen 

P values were introduced to the analysis as co-variates. 

 Three-way ANOVA analysis was conducted for Pollution Induced Community Tolerance 

(PICT) test of bacteria extracted from soil samples of 6-week and 6-month incubated 

microcosms. Soil sampling from microcosms at appropriate intervals (2 weeks or 2 

months), concentration of HM additives to the microcosms and HM or Ab 

concentrations in microtitre plates were introduced to the analysis as independent 

variables. The dependent variable was MIC or EC50 value. 
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 Three-way ANOVA analysis was conducted for Broth Microdilution (BM) test of bacteria 

selected from soil samples of 6-week and 6-month incubated microcosms. Soil sampling 

from microcosms at appropriate intervals (2 weeks or 2 months), concentration of HM 

additives to the microcosms and HM or Ab concentrations in microtitre plates were 

introduced to the analysis as independent variables. The dependent variable was MIC 

or EC50 value. 

 Three-way ANOVA was conducted for Terminal Restriction Fragment Length 

Polymorphism (TRFLP) analysis of Waikato Region and Belmont Park samples. Soil 

samples, history of soils usage (for samples from Waikato Region) and distance of sub-

sets from the fertiliser storage (for Belmont Park soil samples), and soils HM 

concentrations were introduced to the analysis as independent variables. The 

dependent variable was the number of T-RFs reads. Three-way ANOVA was conducted 

for Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis of soil samples 

from microcosms. Soil samplings at appropriate intervals (2 weeks or 2 months), initial 

soils HM concentrations and concentration of HM additives to the microcosms were 

introduced to the analysis as independent variables. The dependent variable was the 

number of T-RFs reads. 

 Two-way ANOVA was conducted for the 16S rDNA analysis of Belmont Park soil samples. 

Sub-sets soil samples with their distance from the fertiliser storage and soils HM 

concentrations were introduced to the analysis as independent variables. The 

dependent variable was the number of 16S rDNA gene reads related to the relative 

abundance of each bacterial phylum. Two-way ANOVA was conducted for the 16S rDNA 

analysis of 6-week incubated microcosms at 6-week interval. Soil sample’s initial HM 

concentrations and HM additive concentrations to the microcosms were introduced to 

the analysis as independent variables. The dependent variable was the number of 16S 

rDNA gene reads related to the relative abundance of each bacterial phylum.     
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Results  

The results of the experiments investigating the hypotheses and aims of this project are 

presented in Chapters 4-7. The following flow chart summarises the different studies and 

experiments of the current project. 
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Chapter 4, Results Part 1 

4.1. Study 1: Investigation of Bacterial Resistance in Waikato Region and Belmont Regional 

Park Soils  

4.1.1. Introduction 

New Zealand agricultural soils are subject to a range of contaminant inputs, of which inorganic 

contaminants in phosphate fertilisers and animal remedies are of special interest due to their 

capacity to accumulate over time [251, 252]. Accumulation of HMs in soil can introduce bacterial 

resistance to these HMs, as well as increasing the risk of occurrence of Ab resistance via cross 

or co-resistance [253-255]. 

As examples, Cd concentrations in soils of Waikato dairy farms are on average 5 times higher 

than their natural background levels after 7 decades of accumulation from phosphate fertilisers 

[5, 256]. The national average concentration of Cd in soil in New Zealand is about 0.35 mg kg-1. 

This average concentration of Cd consists of 0.43 mg kg-1 for pastoral soils, 0.24 mg kg-1 for arable 

soils, and 0.16 mg kg-1 for native bush soils [257]. Average Zn concentrations have doubled 

during the last 2-3 decades through the widespread use of zinc as a preventative for facial 

eczema [30, 258]. Mean figures also hide the fact that some farms and areas have accumulated 

more Cd or Zn than others. For example, although the average concentration of Zn in Waikato 

soils is now 60 mg/kg, 11% of farms show levels exceeding 100 mg kg-1, which has been 

suggested as a guideline for protection of soil microbial processes [259, 260]. These high levels 

of Cd and Zn in Waikato soils (Figure 4.1) can lead to resistance to these HMs and subsequent 

co-selection for Ab resistance in these soils’ bacteria. 
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Fig. 4. 1. Regional map of topsoil cadmium levels (M. Taylor et. al., 2007). 

 

The aim of this Chapter was to: 

1. To establish, in selected soils, whether observable microbial resistance to Cd and/or Zn 

shows an association with agricultural land use history, and (if so) in which microbial 

classes (morphological). 

2. If such resistance has led to increased resistance to antibiotics. 

The approach was to examine resistance to a range of Cd, Zn and Hg concentrations, and to 

representative Abs, including Tc, Cm, Ery, Cb and Amp. This involved exploring if there are any 
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differences between the levels of soil bacteria resistant to the HMs and Abs, which were isolated 

from soils with higher levels of HMs compared to those from soils with lower amount of HMs. 

The methodology used for this chapter is described in Sections 3.1-3.5 and 3.9-3.12, 

Methodology Chapter. In short, plate culturing, BM and PICT tests were applied to investigate 

the effect of soil HM concentrations on soil microbial resistance in soil samples from selected 

regions in New Zealand. Figure 4.2 illustrates different steps of methods used to investigate the 

aims of Chapter 4. 

Fig. 4. 2. Flow chart illustrating different steps of methods used for investigations of Chapter 4. 
 

4.1.2. Physicochemical Properties of the Soil Sampling Sites.  

The three sets of soil samples collected from the Waikato Region (WR) and used for this project 

were categorised as Clay Loam soils with granular structure (M. Taylor, Personal 

Communication). Chemical analysis of representative samples revealed the concentration of the 

three HMs of interest. Cd concentration was higher in pastoral soils (sites EW-69 and EW-135) 

compared to arable (sites EW-85 and EW-86) and native bush (control) soil (site EW-73). Other 

physicochemical features of WR soil sampling sites from which these three soil sample sets were 

collected are listed in Table 4.1 and Table A2.1 of Appendix 1.  
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Table 4. 1. WR soil sampling sites physicochemical information. 

Site No. EW-73 
(Native bush) 

EW-85  
(Arable) 

EW-86  
(Arable) 

EW-69  
(Pasture) 

EW-135 
(Pasture) 

Annual rainfall (mm) 1400 1400 1400 1400 1400 
pH 5.60 6.07 5.74 5.01 5.76 
Total C (%) 8.00 3.79 3.40 10.10 8.63 
Total N (%) 0.48 0.30 0.30 0.94 0.84 
C:N 16.7 12.5 11.4 10.8 10.3 
Olsen P * 6.00 110 89.0 54.0 73.0 
Cd * 0.09 0.54 0.49 0.82 1.11 
Hg *  0.19 0.31 0.42 0.20 0.21 
Zn * 27.00 39.00 40.00 65.00 62.00 
Fe *  28000 42000 53000 59000 39000 
P *  290 1850 1540 2300 2500 

*mg kg-1 of dry soil 

 

At Belmont Regional Park (BRP) 8 sites (labelled B10-B17) were sampled at 10 m intervals along 

a transect running the length of a farm airstrip. These were categorised as Clay Loam soils with 

granular structure [261]. The Cd concentration showed a sharp increase from down-hill sub-site, 

B10 (assumed to be closest in soil nutrient/mineral composition to the BRP farm paddocks 

“background” state), to the top-hill sub-site, B17 which was closest to the fertiliser storage 

bunker (Figure 3.4). HM concentrations and other physicochemical properties of these sub-sites 

soil samples are detailed in Table 4.2 and Table A2.2 of Appendix 1.  

Table 4. 2. BRP sub-sites soil samples physicochemical information. 

Site No. B10 B11 B12 B13 B14 B15 B16 B17 

pH 5.90 6.80 5.90 6.70 6.70 6.40 5.50 6.10 
Olsen P * 90.0 96.0 135 180 217 228 265 569 
Total C (%) 6.00 5.20 6.40 5.70 6.00 5.90 7.00 8.60 
Cd *  1.14 1.15 1.83 2.70 3.40 3.80 4.10 7.20 
Hg *  0.109 0.076 0.091 0.079 0.103 0.081 0.129 0.125 
Zn *  49.0 48.0 60.0 59.0 68.0 73.0 77.0 95.0 
Fe *  19700 13400 21000 18000 19200 18300 20000 17100 
P *  3300 2100 5000 6300 7700 8500 12300 22000 

*mg kg-1 of dry soil 
 

4.1.3. Total Bacterial Counts of Waikato Region’s Soil Samples 

Following isolation of the soil bacteria (see Table 3.2), bacterial colonies were counted and CFU 

were calculated for each soil sample set. Three-Way ANOVA analysis of the bacterial counts from 

each soil and comparison of mean values using BONFERRONI correction for multiple 
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comparisons was carried out. Soils sets, soils history of usage, and soils’ initial HM concentration 

were introduced to the analysis as independent variables. The dependent variable was bacterial 

CFU. Monthly mean temperature and rainfall during the sampling months, soils moisture 

content, pH of soils, total C and N content of soils, and Olsen P values were introduced to the 

analysis as co-variates. ANOVA showed the number of viable bacterial cells in pastoral and arable 

cropping soils was higher compared to the soil from the control (native bush) site (P < 0.05) for 

each WR region soil sample sets (WRSS1, the first sampling date in February 2014; WRSS2, the 

second sampling date of August 2014; WRSS3, the third sampling date of June 2015) (Figures 4.3 

and A2.1, Appendix 2). There were higher numbers of bacteria in pasture soils compared to 

arable soils for each of these soil sample sets. There were no significant differences in total 

numbers of bacteria in pasture, arable and background soils between sampling dates, although 

the purpose of using soil samples from the different dates was to examine if there is any 

different among the number of bacteria in soil in different seasons. WR’s monthly mean 

temperature and rainfall during the sampling months, including February, June and August, was 

introduced to the ANOVA as covariates, although including these values in the analysis made no 

differences to the number of significant p-values.   

 
Fig. 4. 3. Total number of CFU (per gram of dry soil) from WRSS1 
pastoral, arable and native bush soil samples, and selected on R2A agar. 
*p < 0.05 compared to background soil bacteria total CFU; †p < 0.05 
compared to arable soil bacteria total CFU.  
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4.1.3.1. Resistant Bacterial Counts of Waikato Region’s Soil Samples on Plates with HM 

additives 

Plate culturing of WRSS1, WRSS2 and WRSS3 on R2A agar containing a range of concentrations 

of Cd, Zn and Hg was performed. Four-way ANOVA analysis was conducted and soil sets, soils 

history of usage, initial HM concentrations of soils, and HM concentrations in media were 

introduced to the analysis as independent variables. The dependent variable was bacterial CFU. 

Monthly mean temperature and rainfall during the sampling months, soils moisture content, pH 

of soils, total C and N content of soils, and Olsen P values were introduced to the analysis as co-

variates. The ANOVA analysis for these bacterial CFU ratios for WRSS1 (Figures 4.4-4.6) showed 

there were higher HMR CFUs/total bacterial CFU ratios for pastoral soil bacteria compared to 

those from background soil (p < 0.05). Similar results were determined for those bacteria from 

WRSS2 and WRSS3 (Figures A2.2-A2.4, Appendix 2).  

4.1.3.1.1. Plates with Cadmium Additive  

Four-way ANOVA analysis was conducted and soil sets, soils history of usage, initial HM 

concentrations of soils, and Ab concentrations in media were introduced to the analysis as 

independent variables. The dependent variable was bacterial CFU. Monthly mean temperature 

and rainfall during the sampling months, soils moisture content, pH of soils, total C and N 

content of soils, and Olsen P values were introduced to the analysis as co-variates. Significant 

(p<0.05) differences were observed between CdR/total bacterial CFU ratios of WRSS1 pastoral 

and arable soils, pastoral and background soils, and also arable and background soils on plates 

with concentration of Cd 0.001 mM (Figure 4.4). In all cases the former were higher than the 

latter. Ratios of CdR bacteria increased with decreasing Cd concentration, and differences 

between soils were statistically significant at all Cd concentrations below 0.1 mM. In terms of 

land use types, the highest ratios (most relative resistance) were found for pastoral soils, 

followed by arable soils, with background soils showing the lowest proportion of CdR to total 
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bacteria. This outcome is consistent with the fertilisation history and Cd content of the three soil 

types, which also follow the order pastoral > arable > background. However, when plated onto 

increasing concentration of Cd in the agar plates, on the plates with higher Cd, the number of 

bacterial isolates resistant to these concentrations of HMs was less compared to when the levels 

of these HMs are lower; thereby, the ratio of HMR/total bacterial CFUs on higher concentrations 

of HMs is less than the ratio on lower HMs concentrations. Both this pattern, and the pattern of 

increasing ratios with decreasing HM concentrations, were also seen for Zn and Hg (see below). 

Similar results were determined for WRSS2 and WRSS3 (Figures A2.2, Appendix 2). There were 

no significant differences between the ratios of CdR/total bacterial CFU between WRSS1, WRSS2 

and WRSS3 collected on different dates. Overall, the land-use types with the higher Cd level 

present in the soil have higher ratios, so, have more resistant bacteria as a percentage of the 

total culturable bacteria present compared to arable and background on each sampling date. 

However, when the concentration of Cd in plates is increased, the ratios of CdR/total decreases 

with increasing Cd concentrations in the plates.   

 
Fig. 4. 4. Ratios of CdR/total bacterial CFU (per gram of dry soil), selected on a 
range of Cd concentrations, for the three soil samples collected in the WR. (*p < 
0.05 compared to background soil CdR CFU/total bacterial CFU ratio selected on 
the same Cd concentration; †p < 0.05 compared to arable CdR/total bacterial 
CFU ratio selected on the same Cd concentration). 
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4.1.3.1.2. Plates with Zinc Additive 

In this case, investigations of resistance levels were carried out at five Zn concentrations to 

examine a wider range of Zn concentrations. The result of four-Way ANOVA analysis for 

ZnR/total CFU ratios of WRSS1, WRSS2 and WRSS3 bacteria showed the same overall patterns 

as for Cd. Ratios in pastoral and arable soils were significantly (p < 0.05) higher than those in 

background soils; and ratios in pastoral soils were significantly higher than those of arable soils. 

There was also one significant difference between Zn 1 mM-resistant/total bacterial CFU ratios 

of WRSS1 and WRSS2 pastoral soils (Figure 4.5). This result could be viewed as an outlier.  

 
Fig. 4. 5. Mean ratios of ZnR/total bacterial CFUs, selected on a range of Zn 
concentrations, for WRSS1. *p < 0.05 compared to background ZnR/total 
bacterial CFU ratio selected on the same HM concentration; †p < 0.05 compared 
to arable ZnR/total bacteria CFU ratio selected on the same HM concentration; 
ᵠp < 0.05 compared to the second pastoral soil HgR/total bacterial CFU ratio 
selected on the same HM concentration.  

 

As for Cd, and for Zn the highest ratios are seen at the lowest HM concentrations on the agar 

plates; and the pattern of most to least resistance follows the order pastoral > arable > 

background soils. As with Cd, the latter pattern is consistent with Zn concentrations in the three 

soil types, with pastoral soils having the highest levels (with most anthropogenic Zn presumably 

from facial eczema treatments), arable next (with the anthropogenic component from Zn-

containing fungicides), and background soils the lowest. 
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4.1.3.1.3. Plates with Mercury Additive  

Tests relating to Hg were carried out at three concentrations. Four-Way ANOVA analysis showed 

that at one or more of these, there were significantly (p < 0.05 or lower) higher ratios of 

HgR/total bacterial CFUs from pastoral soils compared to background soils. Furthermore, there 

were significant differences between pastoral and arable soils, and arable and background soils 

(Figure 4.6). The highest relative resistance was again at the lowest exposure concentrations. 

Results for Hg are therefore consistent with those of Cd and Zn.  

 
Fig. 4. 6. Mean ratios of HgR/total bacterial CFUs, selected on a range of Hg 
concentrations, for WRSS1. *p < 0.05 compared to background soil HgR/total 
bacterial CFU ratio selected on the same HM concentration; †p < 0.05 compared 
to arable soil HgR/total bacterial CFU ratio selected on the same HM 
concentration; ᵟp < 0.05 compared to the second arable soil HgR/total bacterial 
CFU ratio selected on the same concentration of HMs; ᵠp < 0.05 compared to 
the second pastoral soil HgR/total bacterial CFU ratio selected on the same HM 
concentration.  
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In addition, similar to the metal plates, the lower concentrations of Abs have significantly higher 

ratios of AbR/total bacterial CFUs compared to the higher concentrations. Similar results were 

determined for WRSS2 and WRSS3 (Figure A2.5). 

Similar to the HMs results, four-Way ANOVA showed there were significantly higher TcR/total 

bacterial CFU ratios of WRSS1 pastoral soils compared to those from arable soils (p < 0.05) (20 

µg mL-1). In addition, results showed higher Tc 20 and 100 µg mL-1-resistant/total bacterial CFU 

ratios of WRSS1 farmed (pastoral and arable) soils compared to those from background soil (p < 

0.05). The similar results were determined for WRSS2 and WRSS3 (Figure A2.5). In addition, in 

one case, significantly greater Tc 100 µg mL-1-resistant/total bacterial CFU ratios of WRSS1 

pastoral soil compared to those from WRSS2 pastoral soil were determined (p < 0.05).  

The ratios of CmR/total bacterial CFUs are shown in Figure 4.6. As for Tc, there were higher Cm 

20 µg mL-1-resistant/total bacterial CFU ratios of WRSS1 pastoral soil compared to those from 

the arable soils (p < 0.05). In addition, the result showed greater Cm 20 and 100 µg mL-1-

resistant/total bacterial CFU ratios of WRSS1 pastoral and arable soils compared to those from 

background soil. Similar results were determined for WRSS2 and WRSS3 (Figure A2.5).  

Likewise, analysis of the proportions of Ery, Cb and Amp were performed, and the results are 

presented in Figures 4.6. There were significantly higher Ery 20 µg mL-1-resistant/total bacterial 

CFU ratios of WRSS1, WRSS2 and WRSS3 pastoral soils compared to those from arable soils (the 

same overall patterns as for Tc and Cm on all three sampling occasions. Differences between 

resistant/total bacterial CFU ratios consistently reached p < 0.05 or less statistical significance. 

Differences in AbR/total CFU ratios between farmed and background soils were significant at 

the concentration levels (20 and 100 µg mL-1). The results revealed significant differences 

between CbR/total bacterial CFU ratios of WRSS1, WRSS2 and WRSS3. The result showed there 

were higher Cb 20 µg mL-1-resistant/total bacterial CFU ratios from WRSS1, WRSS2 and WRSS3 

pastoral soils compared to those arable soils (p < 0.05). Moreover, there were significantly 
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greater Cb 20 and 100 µg mL-1-resistant/total bacterial CFU ratios of WRSS1, WRSS2 and WRSS3 

pastoral and arable soils compared to those from Background soil. Significantly higher Amp 20 

µg mL-1-resistant/total bacterial CFU ratios of WRSS1, WRSS2 and WRSS3 pastoral soils 

compared to those from arable soils were determined (p < 0.05). Higher Amp 20 and 100 µg mL-

1-resistant/total bacterial CFU ratios of WRSS1, WRSS2 and WRSS3 pastoral and arable soils 

compared to those from Background soil were revealed (Figure 4.7).  
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Fig. 4. 7. Mean ratios of AbR/total bacterial CFUs, selected on a range of Abs concentrations, 
for the WRSS1. The Ab concentrations are per µg mL-1. *p < 0.05 compared to background 
soil AbR/total bacterial CFU ratio selected on the same Ab concentration; †p < 0.05 compared 
to arable soil AbR/total bacterial CFU ratio selected on the same Ab concentration; ᵠp < 0.05 
compared to the second pastoral soil AbR/total bacterial CFU ratio selected on the same 
concentration of Ab. 
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4.1.4. Total Bacterial Count for Belmont Regional Park Sub-sites’ Soil Samples 

Bacterial plate culturing on basal R2A Agar was carried out for soil samples from the Belmont 

Regional Park (BRP) sub-sites as detailed in Section 3.4. Following the colony counting, the 

number of bacterial CFUs was calculated for each soil sample using Equation 3.2. The exact 

distance of the sub-sites from the start of the airstrip is illustrated in Figure 3.3 of the 

Methodology chapter.  

Two-way ANOVA was used to compare the differences between the total bacterial CFUs from 

basal R2A agar plates. Soil samples with their distance from the storage fertiliser and initial HM 

concentrations in soil samples were introduced to the analysis as independent variables. The 

dependent variable was bacterial CFU. Soils moisture content, pH of soils, total C and N content 

of soils, and Olsen P values were introduced to the analysis as co-variates. There were significant 

differences between total bacterial CFUs of B10 sub-site (70 m from the start of the airstrip) 

compared to those from B16-B17 sub-sites. In addition, significant differences between total 

CFUs of B11 sub-site compared to those from B17 sub-site were observed (p < 0.05) (Figure 4.8). 

 
Fig. 4. 8. Total Plate Counts of bacteria (per gram of dry soil) from Belmont 
Regional Park sub-sites soil samples (*p < 0.05 compared to B17 soil bacteria total 
CFU; †p < 0.05 compared to B16 soil bacteria total CFU). 
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4.1.4.1. Counts of Resistant Bacteria from Belmont Regional Park Sub-sites’ Soil Samples on 

Plates with HM additives 

Plate culturing of BRP on R2A agar containing a range of concentrations of Cd, Zn and Hg was 

performed. Three-Way ANOVA analysis was carried out and soil samples with their distance 

from the storage fertiliser, initial HM concentrations in soil samples and HM concentrations in 

plates were introduced to the analysis as independent variables. The dependent variable was 

bacterial CFU. Soils moisture content, pH of soils, total C and N content of soils, and Olsen P 

values were introduced to the analysis as co-variates. ANOVA analysis for these bacterial CFU 

ratios (Figures 4.8-4.10) showed very similar trends to the BRP soils, in that soils with higher HMs 

concentrations (B17 and B16 sub-sites) had significantly higher ratios of HMR/total CFU 

compared to the sub-sites with lower HM concentrations (B11 and B10, i.e. further away from 

the start of the airstrip). In addition, there were significantly higher ratios of HMR/total bacterial 

CFU when the soils were plated onto agar plates containing lower concentrations of HMs (p < 

0.05) (Figures 4.9-4.11).  

4.1.4.1.1. Plates with Cadmium Additive 

Three-Way ANOVA analysis was carried out and soil samples with their distance from the storage 

fertiliser, initial HM concentrations in soil samples and Ab concentrations in plates were 

introduced to the analysis as independent variables. The dependent variable was bacterial CFU. 

Soils moisture content, pH of soils, total C and N content of soils, and Olsen P values were 

introduced to the analysis as co-variates. Similar to the results from the WR soils, the soils with 

higher concentrations of HM had higher ratios of CdR/total bacterial CFUs compared to the soils 

with the lower concentrations of HMs. Furthermore, the result revealed that there were higher 

Cd 0.1mM-resistant/total bacterial CFU ratios of B17-B16 sub-sites compared to those from B11-

B10 sub-sites. Lower Cd 0.1 mM-resistant/total bacterial CFU ratios of B17 sub-site compared to 

those from B12 sub-site were determined. Lower Cd 0.01 mM-resistant/total bacterial CFU 
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ratios of B10-B14 sub-sites compared to those from B16-B17 sub-sites were ascertained. Cd 

0.001 mM-resistant/total bacterial CFU ratios were significantly lower for the B10-B14 sub-sites 

compared to those from B17 sub-site. In addition, there were lower Cd 0.001 mM-resistant/total 

bacterial CFU ratios of B10-B13 sub-sites compared to those from B16 sub-site. Lower Cd 0.001 

mM-resistant/total bacterial CFU ratios of B10-B12 sub-sites compared to those from B15 sub-

site were also found (p < 0.05) (Figure 4.9).  

 
Fig. 4. 9. Mean ratios of CdR/total bacterial CFUs, selected on a range of Cd concentrations, for 
BRP sub-sites soil samples. *p < 0.05 compared to B17 soil bacteria CFU ratio selected on the 
same Cd concentration; †p < 0.05 compared to B16 soil bacteria CFU ratio selected on the same 
Cd concentration; ᵠp < 0.05 compared to B15 soil bacteria CFU ratio selected on the same Cd 
concentration. 
 
 

4.1.4.1.2. Plates with Zinc Additive  
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resistant/total bacterial CFU ratios of B10-B14 sub-sites compared to those from B17 sub-site 

were determined. Also, lower Zn 0.1mM-resistant/total bacterial CFU ratios of these sub-sites, 
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except for B14, compared to those from B16 sub-site were revealed. The result showed lower 

Zn 0.1mM-resistant/total bacterial CFU ratios of B10-B11 sub-sites compared to those from B15 

sub-site. Additionally, there were lower Zn 0.01mM-resistant/total bacterial CFU ratios of B10-

B14 sub-sites compared to those from B16-B17 sub-sites. The result showed lower Zn 0.01mM-

resistant/total bacterial CFU ratios of B10-B12 sub-sites compared to those from B15 sub-site. 

Statistical analysis revealed that there were lower Zn 0.001mM-resistant/total bacterial CFU 

ratios of B10-B15 sub-sites compared to those from B17 sub-site. Lower Zn 0.001mM-

resistant/total bacterial CFU ratios of B10-B13 compared to those from B16 sub-site were also 

determined. Lower Zn 0.001mM-resistant/total bacterial CFU ratios of B10-B12 sub-sites 

compared to those from B15 sub-site were revealed (p < 0.05) (Figure 4.10). 

 
Fig. 4. 10. Mean ratios of ZnR/total bacterial CFUs, selected on a range of Zn concentrations, for 
BRP sub-sites soil samples. *p < 0.05 compared to B17 soil bacteria CFU ratio selected on the 
same Zn concentration; †p < 0.05 compared to B16 soil bacteria CFU ratio selected on the same 
Zn concentration; ᵠp < 0.05 compared to B15 soil bacteria CFU ratio selected on the same Zn 
concentration. 
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4.1.4.1.3. Plates with Mercury Additive  

Three-way ANOVA analysis showed there were lower Hg 0.001mM-resistant/total bacterial CFU 

ratios of B10-B14 sub-sites in comparison with those from B17 sub-site. In addition, there were 

lower Hg 0.001mM-resistant/total bacterial CFU ratios of B10-B13 sub-sites compared to those 

from B16 sub-site. Moreover, there were significant differences between Hg 0.001mM-

resistant/total bacterial CFU ratios of B10-B12 sub-sites compared to those from B15 sub-site. 

Significant differences between Hg 0.001mM-resistant/total bacterial CFU ratios from B10-B11 

in comparison with those from B14 sub-site, were determined (p < 0.05) (Figure 4.11). 

There were lower Hg 0.01mM-resistant/total bacterial CFU ratios of B10-B12 sub-sites 

compared to those from B17 sub-site, as well as significant differences between those from B10-

B11 compared to those from B16 sub-site (Figure 4.11).  

 
Fig. 4. 11. Mean ratios of HgR/total bacterial CFUs, selected on a range of Hg concentrations, for 
BRP sub-sites soil samples. *p < 0.05  compared to B17 soil bacteria CFU ratio selected on the 
same Hg concentration; †p < 0.05 compared to B16 soil bacteria CFU ratio selected on the same 
Hg concentration; ᵠp < 0.05 compared to B15 soil bacteria CFU ratio selected on the same Hg 
concentration; ᵟp < 0.05 compared to B14 soil bacteria CFU ratio selected on the same Hg 
concentration.  
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4.1.4.2. Resistant Bacterial Counts of Belmont Regional Park Sub-sites’ Soil Samples on Plates 

with Ab additives 

Examination of bacterial resistance on a range of Abs (Tc, Cm, Ery, Cb and Amp) was performed 

for BRP sub-sites soil samples and the results were analysed by three-Way ANOVA (Figure 4.12). 

Results showed that the soils with higher levels of HMs (B17 and B16) had significantly higher 

AbR/total bacterial CFUs compared to the soils with lower concentrations of HMs (B11 and B10). 

In addition, similar to the HM-contained plates, the lower concentrations of Abs have 

significantly higher ratios of AbR/total bacterial CFUs compared to the higher concentrations 

(Figure 4.12).  

Statistical analysis showed there were lower ratios of Tc 20 or 100 µg mL-1-resistant/total 

bacterial CFU ratios from B10-B13 sub-sites compared to those from B16-B17 sub-sites. 

Moreover, bacterial CFUs from B10-B11 sub-sites soils, which were resistant to Tc 20 or 100 µg 

mL-1, differed from those isolated from B15 sub-site (p < 0.05) (Figure 4.12).  

Additionally, there were lower ratios of Tc 200 µg mL-1-resistant/total bacterial CFU from B10-

B12 sub-sites compared to those from B17 sub-site. There were also lower Tc 200 µg mL-1-

resistant/total bacterial CFU ratios from B10-B11 sub-sites compared to those from the B16 sub-

site (p < 0.05). 

The result of plate culturing for BRP soil samples on a range of Cm showed there were lower 

CmR/total bacterial CFU ratios from B10-B12 compared to those from B17 sub-site. The plate 

counts also revealed lower CmR/total bacterial CFU ratios from B10-B11 sub-sites compared to 

those from the B16 sub-site (p < 0.05) (Figure 4.12).   

There were significantly lower Ery 20 and 100 µg mL-1-resistant/total soil bacterial CFU ratios of 

B10-B13 sub-sites compared to those from B16-B17 sub-sites. In addition, the result revealed 

lower Ery 20 µg mL-1-resistant/total bacterial CFU ratios of B14 sub-site compared to those from 
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B17 sub-site. Significantly lower Ery 20 µg mL-1-resistent/total soil bacterial CFUs ratios of B10-

B12 sub-sites compared to those from B15 sub-site were determined (Figure 4.12).  

Statistical analysis showed there were significantly lower Cb 20 µg mL-1-resistant/total bacterial 

CFUs ratios for B10-B14 sub-sites compared to those from B16-B17 sub-sites, except for those 

from B14 sub-site which differed only from those relating to the B17 sub-site (p < 0.05) (Figure 

4.12). Ratios of Cb 100 and 200 µg mL-1-resistant/total bacterial CFU from the B10-B12 sub-sites 

were lower compared to those from the B17 sub-site, except for those from the B12 which 

showed significant difference only compared to those from the B17 sub-site (p < 0.05). 

Three-Way ANOVA revealed significantly lower Amp 20 and 100 µg mL-1-resistant/total bacterial 

CFUs ratio for the B10-B12 sub-sites compared to those from the B16-B17, except for those from 

the B12 sub-site, with significant difference only to those from the B17 sub-site. Lower Amp 200 

µg mL-1-resistant/total bacterial CFUs from the B10-B11 sub-sites compared to those from the 

B17 sub-site were also recorded (p < 0.05) (Figure 4.12). 
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Fig. 4. 12. Mean ratios of AbR/total bacterial CFUs, selected on a range of Ab concentrations, for 
BRP sub-sites soil samples. The Ab concentrations are per µg mL-1. *p < 0.05 compared to B17 
soil bacteria CFU ratio selected on the same Tc concentration; †p < 0.05 compared to B16 soil 
bacteria CFU ratio selected on the same Tc concentration; ᵠp < 0.05 compared to B15 soil 
bacteria CFU ratio selected on the same Tc concentration.  
4.1.5. Pollution Induced Community Tolerance (PICT) 

Samples of bacterial communities isolated from the WR soil sample sets and the BRP sub-sites 

were subjected to PICT analysis as described in Section 3.10 using a range of Cd, Zn, Hg, Tc, Cm, 
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Ery, Cb and Amp concentrations. The exponential growth rate of bacteria at 12-hour of 

incubation was recorded and was used to calculate MIC and EC50 –by the Log (inhibitor) vs. 

response, Variable slope (four parameters) method– for the HMs and Abs used in this 

experiment.  

Fig. 4. 13. Flow chart illustrating steps of PICT assay. 
 

4.1.5.1. Waikato Region soils 

PICT analysis of MIC and EC50 for Cd, Zn and Hg for bacterial consortia isolated from WRSS1 

indicated MIC and EC50 values were greater for HMs for bacterial consortia from pastoral soil 

compared to those from background soil (Figures 4.14 and 4.15).  

In addition, PICT analysis of MIC and EC50 for Tc, Cm, Ery, Cb and Amp for bacterial consortia 

isolated from WRSS1 revealed larger MIC and EC50 values for Abs for bacterial consortia from 

pastoral and arable soils, compared to those from background soil (Figures 4.16-4.17). The MIC 

values determined for bacterial isolates (according to EUCAST ECOFF recommendations [218])  

from pastoral soil were higher than the 20 µg mL-1 threshold defined for Ab resistance in soil 

bacterial for all of the five Abs [217, 220], while MICs were lower than this threshold for bacteria 

from arable soil for Tc, and also for background soil for Tc and Cm. 

PICT analysis of MIC and EC50 for the HMs for bacteria from WRSS2 and WRSS3 showed there 

were significant differences, similar as for WRSS1, between the HMs’ MIC and EC50 values for 

pastoral soils compared to those from background soils. PICT analysis of MIC and EC50 with the 



105 
 

five Abs for bacteria isolated from WRSS2 and WRSS3 also produced greater Abs’ MIC and EC50 

values for bacterial communities from pastoral and arable soils compared to those from 

background soils (Figures A2.6-A2.13). 
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Fig. 4. 14. Mean MIC values of PICT assay with Cd, Zn and Hg for 
bacteria from WRSS1. Ȣp < 0.05 compared to HM MIC values for 
bacteria from background soil. 
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Fig. 4. 15. Mean EC50 values of PICT assay with Cd, Zn and Hg for 
bacteria from WRSS1. Ȣp < 0.05 compared to HM MIC values for 
bacteria from background soil. 
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 Bacteria from WRSS1 

Fig. 4. 16. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and 
Amp for bacteria from WRSS1. Ȣp < 0.05 compared to Abs MIC values 
for bacteria from background soil. The dash line defines AbR level of 
soil bacteria. 

0

5

10

15

20

25
MIC TcȢ

Ȣ

0

5

10

15

20

25 MIC CmȢ
Ȣ

0

5

10

15

20

25

30
MIC EryȢ

Ȣ

0

5

10

15

20

25

30

35
MIC CbȢ

Ȣ

0

5

10

15

20

25

30

35

Pasture Arable
cropping

Background S. aureus
NCTC 12973

MIC AmpȢ

Ȣ



108 
 

A
b

 c
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
L)

 

 

 

 

 

 
 Bacteria from WRSS1 

Fig. 4. 17. Mean EC50 values of PICT assay with Tc, Cm, Ery, Cb and 
Amp for bacteria from WRSS1. Ȣp < 0.05 compared to Abs MIC values 
for bacteria from background soil. 
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4.1.5.2. PICT Analysis of Bacteria Consortia from Belmont Regional Park Soils 

The result of PICT analysis for bacteria isolated from three sub-sites of BRP (B17, B14 and B10) 

are shown here as these soil samples were collected from start (B17), middle (B14) and end 

(B10) of the BRP airstrip and represented the highest, intermediate and lowest concentrations 

of HMs amongst the eight BRP sub-sites soils.  

PICT analysis of HM’s MIC of Cd, Zn and Hg for bacterial consortia from BRP sub-sites samples 

B17, B14 and B10 showed there were significant differences between these HMs MIC and EC50 

values for bacterial consortia from B17 (highest in situ concentrations of Cd and Zn) and B14 

soils compared to those from B10 soil (lowest in situ concentrations of Cd and Zn). Furthermore, 

it was revealed that there were significant differences between the HMs’ MIC values of bacterial 

consortia from B17 soil compared to those from B14 soil (Figures 4.18).  

The EC50 values for HMs for bacterial consortia from B17 soil were greater than those from B10 

soil (Figure 4.19).  

PICT analysis of Ab’s MIC of Tc, Cm, Ery, Cb and Amp produced MIC and EC50 values for bacterial 

consortia that differed between all three sub-sites (Figure 4.20 and 4.21). The MIC values 

determined (according to EUCAST ECOFF recommendations [218]) for bacteria isolated from 

B17, B14 and B10 soils were higher than 20 µg mL-1 threshold defined for Ab resistance in soil 

bacterial for all of the five Abs [217, 220].  

PICT analysis of the HM’s MIC for bacterial consortia from other BRP sub-sites soils, including 

B16, B15, B13, B12 and B11, showed there were greater HMs’ MIC values for bacteria from B16-

B15 soils compared to those from B10 soil, except for Hg MIC value for bacteria from B15 soil. 

In addition, there were greater HM’s EC50 values for bacterial consortia from B16 soil compared 

to those from B10 soil (Figures A2.14 and A2.15, Appendix 2). 

There were greater Ab’s MIC and EC50 values for bacteria from B16-B15 soils compared to those 

from B10. In addition, there were higher Tc and Cm MIC values for bacterial consortia from B13-

B12 soils compared to those from B10 soil (Figures A2.16 and A2.17, Appendix 2). 
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Fig. 4. 18. Mean MIC values of PICT assay with Cd, Zn and Hg for bacteria from BRP 
B17, B14 and B10 soils. Ȣp < 0.05 compared to HM MIC values for bacteria from B10 
soil; ʵp < 0.05 compared to HM MIC value for bacteria from B14 soil. 
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 Bacteria from BRP sub-sites soil samples 

Fig. 4. 19. Mean EC50 values of PICT assay with Cd, Zn and Hg for bacteria from BRP B17, 
B14 and B10 soils. Ȣp < 0.05 compared to HM MIC values for bacteria from the B10 soil. 
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 Bacteria from BRP sub-sites soil samples 

Fig. 4. 20. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and Amp for bacteria from 
BRP B17, B14 and B10 soils. Ȣp < 0.05 compared to Abs MIC values for bacteria from B10 
soil; ɻ p < 0.05 compared to HM MIC value for bacteria from B14 soil. The dash line defines 
AbR level of soil bacteria. 
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Fig. 4. 21. Mean EC50 values of PICT assay with Tc, Cm, Ery, Cb and Amp for bacteria 
from BRP B17, B14 and B10 soils. Ȣp < 0.05 compared to Abs MIC values for bacteria 
from the B10 soil. 
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4.1.6. Quantitation of Susceptibility to HMs and Abs by Broth Microdilution (BM) Analysis 

Determination of susceptibility to HMs and Abs by BM assay for HMR bacterial isolates from WR 

soil sample sets and BRP sub-sites soil samples was performed using Cd, Zn, Hg, Tc, Cm, Ery, Cb 

and Amp. The exponential growth rate of bacteria after 12 h of incubation was recorded and 

was used to calculate MIC and EC50 –by Log (inhibitor) vs. response, Variable slope (four 

parameters) method– of the HMs and Abs used in this experiment. Three-Way ANOVA was 

performed to investigate the associations between the MICs and EC50s of different HMs and 

Abs and different sampling sites. Figure 4.21 illustrates different steps of BM analysis. 

 
Fig. 4. 22. Flow chart illustrating BM analysis steps. 

  
4.1.6.1. BM Assay for Waikato Region (WR) Soils 

The BM assays indicated greater MIC values for Cd, Zn and Hg for the HMR bacteria from WRSS1 

pastoral and arable soils compared to those from background soil. These isolates were selected 

from the plates with HM concentrations, 0.1 and 1 mM of Cd, 1 and 5 mM of Zn and 0.01 and 

0.1 mM of Hg.  As would be expected there were higher MIC values for Cd, Zn and Hg for HMR 
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bacteria from WRSS1 pastoral, arable and background soils compared to the HM-sensitive 

isolates from each soil sample (Figure 4.23).  

Similar to the above-mentioned significant differences determined for MIC values, there were 

significant differences between the HMs’ EC50 values for the isolates from different land uses 

of the WRSS1 samples (Figure 4.24).   

There were lower MIC values of Cd, Zn and Hg for bacteria from WRSS1 background soil  and 

selected on plates containing Cd 0.1mM, Zn 1mM and Hg 0.01mM, compared to those from the 

same soil sample and selected on plates with the higher concentrations of each HM, including 

Cd 1mM, Zn 1mM and Hg 0.1mM. (Figure A2.18, Appendix 2).  

The result for HM EC50 values showed there were lower HMR bacteria from WRSS1 background 

soil and selected on plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM, compared to those from 

plates with the higher concentration of each HM. (Figure A2.19, Appendix 2). 
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 Isolates from WRSS1 and selected on plates with shown concentration of HM 
Fig. 4. 23. Mean MIC values from BM assay with Cd, Zn and Hg for HMR isolates from 
WRSS1. *p < 0.05 compared to HM MIC value for HMR isolates from the same soil; Ȣp 
< 0.05 compared to HM MIC value for HMR isolates from background soil. 
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Fig. 4. 24. Mean EC50 values from BM assay with Cd, Zn and Hg for HMR isolates from 
WRSS1. *p < 0.05 compared to HM EC50 value for HMR isolates from the same soil; Ȣp 
< 0.05 compared to HM EC50 value for HMR isolates from background soil. 
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than this threshold for those bacteria from background soil for Tc and Cm. Furthermore, it was 

also found the mean MIC and EC50 values for all five Abs for the HMR isolates from WRSS1 

pastoral, arable and background soils were greater than those for the HM-sensitive isolates from 

each WRSS1 soil sample (p < 0.05) (Figure 4.25).  

Moreover, there were higher Abs’ EC50 values for the HMR isolates from WRSS1 pastoral and 

arable soils compared to those from background soil. Greater Abs EC50 values for the HMR 

isolates from WRSS1 soils compare to those HM-sensitive isolates from each soil sample were 

determined (Figure 4.26).   

Lower Ab mean MIC values were determined for all five Abs for isolates from WRSS1 background 

and arable soils and selected on plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM compared to 

those selected on plates with the higher concentrations of these HMs (Cd 1 mM, Zn 5 mM and 

Hg 0.1 mM) (Figure A2.20, Appendix 2). Mean EC50 values’ differences for all five Abs were 

significant between isolates from WRSS1 background and arable soil and selected on plates with 

Cd 0.1mM, Zn 1mM and Hg 0.01mM compared to those from plates with the higher 

concentrations of these HMs (Figure A2.21, Appendix 2).   

Similar results were also determined for the HMs and Abs’ MIC and EC50 values for HMR isolates 

from WRSS2 and WRSS3 samples. The data only for the WRSS1 set is presented here and data 

for WRSS2 and WRSS3 soil sets are shown in Appendix 2. There were no significant differences 

between the determined HM and Ab’s MIC and EC50 values from BM assays in relation to 

isolates from the three soil samples sets, WRSS1, WRRS2 and WRSS3 (Figures A2.22-A2.37).   
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 Bacteria isolated from WRSS1 and selected on plates with shown concentration of HM (mM) 

Fig. 4. 25. Mean MIC values for BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates from 
WRSS1. *p < 0.05 compared to Ab MIC value for HMR isolates from the same soil; Ȣp < 0.05 
compared to Ab MIC value for isolates from background soil and selected on the same HM 
concentration). The dash line defines AbR level of soil bacteria. 
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 Bacteria Isolated from WRSS1 and selected on shown concentration of HM (mM) 

Fig. 4. 26. Mean EC50 values for BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates from 
WRSS1. *p < 0.05 compared to Ab EC50 value for HMR isolates from the same soil; Ȣp < 0.05 
compared to Ab EC50 value for isolates from background soil and selected on the same HM 
concentration. 
 

 

0

20

40

60

80

100 EC50 TcȢ Ȣ Ȣ
Ȣ Ȣ Ȣ

* * *

0

20

40

60

80

100 EC50 CmȢ
Ȣ Ȣ

Ȣ ȢȢ

* * *

0

20

40

60

80

100 EC50 EryȢ Ȣ Ȣ
Ȣ Ȣ Ȣ

* * *

0

20

40

60

80

100

120 EC50 CbȢ Ȣ Ȣ
Ȣ Ȣ Ȣ

* * *

0

20

40

60

80

100

120

C
d

  1
m

M

Zn
  5

m
M

H
g 

0
.1

m
M

Se
n

si
ti

ve
 is

o
la

te
s

C
d

  1
m

M

Zn
  5

m
M

H
g 

0
.1

m
M

Se
n

si
ti

ve
 is

o
la

te
s

C
d

  1
m

M

Zn
  5

m
M

H
g 

0
.1

m
M

Se
n

si
ti

ve
 is

o
la

te
s

Pasture Arable cropping Background S.
aureus
NCTC
12973

EC50 Amp
Ȣ Ȣ Ȣ

Ȣ Ȣ Ȣ

* * *



121 
 

4.1.6.2. BM Assay for Belmont Regional Park (BRP) Soils 

MIC determinations with HMs by BM assay with isolates from three BRP sub-sites (B17, B14 and 

B10) showed the Cd, Zn and Hg MIC values for HMR isolates differed between all three sub-sites. 

In addition, there were significant differences between Cd, and Zn and Hg MIC values for HMR 

bacteria from B17, B14 and B10 sub-sites compared to the HM-sensitive isolates from the same 

soil samples (Figure 4.27). The purpose of showing results for these three sub-sites here (while 

the results for other sub-sites are shown in Appendix 2) was that these sub-sites soil samples 

were collected at the start, middle and end of airstrip at BRP and also the concentrations of HMs 

were decreased from B17 to B10 and represented the highest (at B17) intermediate (at B14) and 

lowest (at B10) concentrations of HMs in BRP airstrip sub-site soil samples. 

It was determined that there were higher Cd, Zn and Hg EC50 values for HMR bacteria from BRP 

B17 sub-site compared to those from B10 sub-site. In addition, there were greater Zn EC50 

values for CdR and ZnR bacteria from B17 soil compared to those from B14 soil. There were 

greater Cd, Zn and Hg EC50 values for HMR bacteria from B17, B14 and B10 soils compared to 

the HM-sensitive bacteria from the same soil samples (Figure 4.28). 

No significant differences were determined between the HMs MIC and EC50 values of BM test 

for HMR bacteria from B17, B14 and B10 sub-sites compared to those from the same samples 

and selected on plates with the higher concentrations of HMs, including Cd 1mM, Zn 5mM and 

Hg 0.1mM (Figures A2.38-A2.39, Appendix 2). 
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 Isolates from BRP and selected on plates with shown concentration of HM (mM) 

Fig. 4. 27. Mean MIC values of BM assay with Cd, Zn and Hg for the HMR isolates from BRP. *p < 
0.05 compared to HM MIC value for HMR bacteria from the same soil; Ȣp < 0.05 compared to 
HM MIC value for the bacteria from B10 soil and selected on the same HM; ʵp < 0.05 compared 
to Ab MIC value for the bacteria from B14 soil and selected on the same HM concentration. 
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Fig. 4. 28. Mean EC50 values of BM assay with Cd, Zn and Hg for the HMR isolates from BRP. *p 
< 0.05 compared to HM MIC value for the HMR bacteria from the same soil; Ȣp < 0.05 compared 
to HM MIC value for the bacteria from B10 soil and selected on the same HM; ɻ p < 0.05 compared 
to Ab MIC value for the bacteria from B14 soil and selected on the same HM concentration. 
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from B17, B14  and B10 soils were higher than 20 µg mL-1 threshold defined for Ab resistance in 

soil bacterial for all of the five Abs [217, 220], while these were lower than this threshold for 

those sensitive bacteria from each soil sample. Additionally, higher Abs MIC and EC50 values for 

HMR bacteria from B17, B14 and B10 compared to the HM-sensitive bacteria from the same soil 

samples were determined (Figures 4.29 and 4.30).  

There were no significant differences between the Abs MIC and EC50 values for HMR bacteria 

from B17, B14 and B10 soils and plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM compared 

those from plates with the higher concentrations of the HMs (Figures A2.40 and A2.41, Appendix 

2).  
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 Isolates from BRP and selected on plates with shown concentration of HM (mM) 

Fig. 4. 29. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for the HMR isolates from 
BRP. *p < 0.05 compared to Ab MIC value for HMR isolates from the same soil; Ȣp < 0.05 
compared to Ab MIC value for the bacteria from B10 soil and selected on the same HM 
concentration; ʵp < 0.05 compared to Ab MIC value for the bacteria from B14 soil and selected 
on same HM concentration. The dash line defines AbR level of soil bacteria. 
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Fig. 4. 30. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for the HMR isolates 
from BRP. *p < 0.05 compared to Ab MIC value for HMR bacteria from the same soil; Ȣp < 0.05 
compared to Ab MIC value for the bacteria from B10 soil and selected on the same HM 
concentration; ʵp < 0.05 compared to Ab MIC value for the bacteria from B14 soil and selected 
on the same HM concentration.  
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MIC and EC50 determination of HMs BM assay for other sub-sites of BRP soil samples, including 

B16, B15, B13, B12 and B11, showed there were greater HMs MIC and EC50 values for HMR 

bacteria from soils with higher HM concentrations (e.g. B16) compared to those from soils with 

lower HM concentrations (B10). There were greater HMs MIC and EC50 values for HMR bacteria 

from all of these BRP soils compared to the HM-sensitive bacteria from each soil sample. In 

addition, no significant differences was determined between HMs MIC and EC50 values for  

bacteria from B16, B15, B13, B12 and B11 soils and plates with Cd 0.1mM, Zn 1mM and Hg 

0.01mM compared to those from the same soils and plates with the higher concentrations of 

HMs (Figures A2.42-A2.45, Appendix 2).  

MIC and EC50 determination of the Abs BM test for BRP B16, B15, B13, B12 and B11 soil samples 

showed there were greater values for HMR bacteria compared to the HM-sensitive bacteria 

from each soil sample. There were greater Abs MIC and EC50 values for HMR bacteria from B16, 

B15, B13 and B12 soils compared to those from B10 soil. Additionally, it was shown that there 

were no significant differences between Abs MIC and EC50 values for bacteria from B16, B15, 

B13 and B12 soils and selected on plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM compared to 

those from plates with the higher concentrations of the HMs (Figures A2.46-A2.49, Appendix 2).    

Overall, there were higher MIC and EC50 values determined for bacterial isolates from soils with 

higher HM concentrations (e.g. B17) compared to those for isolates from soil samples with lower 

HM concentrations (e.g. B10). It means soils with higher HM concentrations produce HMR 

bacteria with higher Ab resistance than soils with lower HM concentrations. In addition, there 

were higher MIC and EC50 values determined for HMR bacterial isolates compared to sensitive 

bacterial isolates. 

 

4.1.7. Bacterial Colony Morphological Groups  

Isolates from WR and BRP soil samples were selected and categorised according to their colony 

morphological features.  
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4.1.7.1. Waikato Region Soil Samples’ Bacterial Morphology 

HMR bacterial isolates (n=900 for soil sample set) from WR three soil sample sets were 

categorised into 22 different groups based on their morphological characteristics and Gram 

staining (Figures 4.31 and 4.32). The 22 morphological groups are described in the Table 4.3.  

Morphological category number 1 consists the largest fraction of CdR and ZnR isolates from 

pastoral soils. The most common colony morphology group of ZnR and HgR isolates from arable 

soils, belongs to two morphological groups (numbers 1 and 2), and this was also true for HgR 

isolates from pastoral soils. Morphological groups numbers 1 and 5 include the most common 

colonies for CdR isolates from arable soil, as well as ZnR isolates from background soil (Figure 

4.31).  

Table 4. 3. Description of bacterial colony morphologies. 

 Gram 
Reaction 

Colour Whole 
colony 

Edge Elevation Surface 

1 Negative yellow circular entire pulvinate smooth 
2 Negative pale yellow circular entire pulvinate smooth 
3 Negative pink circular entire pulvinate  smooth 
4 Negative white circular entire pulvinate smooth 
5 Negative cream circular entire pulvinate smooth 
6 Positive cream circular entire pulvinate rough 
7 Negative yellow circular entire flat rough 
8 Negative cream circular entire flat smooth, glistening 
9 Positive white circular entire pulvinate dry, powdery 
10 Negative yellow rhizoid lobate flat smooth 
11 Negative white irregular curled flat smooth, glistening 
12 Positive cream circular undulate flat dry, powdery 
13 Negative cream rhizoid lobate flat smooth 
14 Positive cream rhizoid undulate raised rough 
15 Negative cream rhizoid lobate convex smooth, glistening 
16 Negative white punctiform curled flat smooth 
17 Negative reddish circular entire flat smooth 
18 Negative reddish circular entire umbonate smooth, glistening 
19 Negative white irregular undulate umbonate wrinkled 
20 Negative yellow irregular undulate umbonate wrinkled 
21 Negative Yellow, red top circular entire umbonate smooth, glistening 
22 Negative cream irregular undulate flat wrinkled 
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4.1.7.2. Belmont Regional Park Sub-Sites Soil Samples’ Bacterial Morphology  

HMR isolates (n=300 for each sub-site soil sample) from BRP sub-sites soil samples were 

categorised into 22 different groups based on their morphological characteristics and Gram stain 

reaction (Figures 4.33 and 4.34). The 22 morphological groups are described in Table 4.3.   

The highest proportion of bacterial isolates belonged to group 1 (Table 4.3), and colony 

morphology groups of 2 and 3 were the next most common (Figure 4.33). 
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Fig. 4. 31. Proportion of WR soil sample sets’ bacterial isolates stratified by Gram stain reaction. 
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Fig. 4. 32. Percentage of WR soil sample sets’ colony morphology groups selected on R2A agar with designated HMs. 
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Fig. 4. 33. Proportion of BRP sub-sites soil samples’ bacterial isolates stratified by Gram stain reaction.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cd Zn Hg Cd Zn Hg Cd Zn Hg Cd Zn Hg Cd Zn Hg Cd Zn Hg Cd Zn Hg Cd Zn Hg

B10 B11 B12 B13 B14 B15 B16 B17

G
ra

m
 s

ta
in

in
g 

gr
o

u
p

s 
(%

)

Isolates from BRP sub-sites soil samples selected with designated HMs

Gram positive

Gram negative



133 
 

 
Fig. 4. 34. Percentage of BRP soil samples colony morphology groups selected on R2A agar with designated HMs.
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4.1.8. Discussion 

The physicochemical properties of the soil samples collected from WR pastoral and arable 

cropping farms and the background site are listed in the Table 4.1. For soil types and major 

variables, the three sites are more similar than different, because they were specifically selected 

as nearby sites with the same soil type, but different land uses. Levels of organic matter, total P 

and trace elements reflect the histories of land management practices that have occurred on 

the three properties since land clearance. One property stayed as an undisturbed ‘background’ 

site (still covered with native bush), one has been used as a pastoral farm, and the third has been 

used as an arable (cropping) farm.  

The concentration of heavy metals including Cd and Zn increased from native bush soils to 

pastoral soils. For pastoral soils the two main sources are superphosphate fertilisers which 

contain elevated P, S, Ca, Cd, F and U; and facial eczema remedies for curing sporodesmin 

toxicity, which contain high Zn content [251, 252]. In arable soils the main sources of Cd and Zn 

are superphosphate fertilisers (for Cd, as for pastoral soils), and Zn-containing thiocarbamate 

fungicide sprays. Use of superphosphate is usually lower on arable compared to pastoral soils, 

and the elemental analysis of these samples reflect this typical situation.  

The Belmont Regional Park (BRP) site was different. Samples from this site (all the same soil 

type) were collected from near a fertiliser storage bin and along a farm airstrip, used for aerial 

topdressing. Loading and take-off operations involve spillage, and the farm airstrip site reflects 

this history.  

At the BRP site there is a strong concentration gradient in superphosphate-related contaminants 

moving from subsites nearest the loading area (B17 and B16; maximum levels) and down the 

runway (decreasing levels).  However, even at a distance from the loading area Cd and Zn levels 

are substantially higher than levels on broad-acre farmland sites including the WR sub-samples 
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[262]. The levels of total carbon (%) from B17 to B10 sub-sites are slightly reducing, however, 

the levels of Cd and Zn in B17 and B16 soils are dramatically higher than other sub-sites [251]. 

In addition to total concentrations there are various factors that may influence bioavailability of 

the contaminants to various organisms. Some of these are general soil factors. In this work the 

WR soil types were matched, and so the main differences would come down to soil factors that 

have changed with different land management regimes. These include soil fertility and organic 

matter, of which the microbial content itself is a part. Soil fertility is linked to the fertilisation 

history, additional nitrogen inputs from clover fixation and animal effluent, and physical factors 

such as soil aeration or compaction. The levels of P (phosphorus) (as a factor which may increase 

the bioavailability of Cd and Zn in soil thorough an increase in soil fertility) in pasture soils (sites 

no. 69 and 135) is higher compared to arable soil (sites no. 85 and 86) [262]. The levels of organic 

material in Waikato region pastoral soils are higher than the arable soils, reflecting organic 

matter depletion in the latter [251]. Impacts on availability are harder to determine for several 

reasons. Some soil-related factors could work in opposition to each other. Cd and Zn bind to 

organic matter, usually reducing their bioavailability. Pastoral soils have more organic matter, 

but also have higher total Cd and Zn. Higher levels of Cd and Zn in pastoral soil could compensate 

for the higher levels of organic material [251].  

However, more importantly, bioavailability is partly determined by interactions between the 

living organism and its soil environment. Bioavailability can also be defined in different ways. 

The bioavailability measured as the relative proportion taken up within an organism can be 

significantly different from the bioavailability determined by a weak chemical extraction. 

Overall, no specific assumptions could be made about the potential influence of bioavailability 

at the outset in this work. However, results consistently suggest that effects on microbial 

populations follow the order pastoral soils > arable soils > background soils. This order is the 

same as for the total contaminant concentrations in these soils. This suggests that any 
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differences in actual bioavailability of contaminants between the three different land uses to 

their microbial populations were not significant enough to noticeably influence the results. 

Plate culturing of bacteria isolated from WR soils, showed the bacterial CFUs in pastoral soils 

were significantly higher than those from arable cropping and also higher than native bush soils. 

Theoretically, the higher levels of organic matter, nitrogen and phosphorus levels in pastoral soil 

may allow a higher bacterial population density. Wortmann et. al., 2008 [263], reported the 

stability of soil bacteria populations with short term changes of soil physicochemical properties. 

According to Acosta-Martinez et. al., 2010 [264], we can interpret that, based on the long term 

history of the land usage for the Waikato region pastoral, arable and native bush sites, bacterial 

populations have adapted to the different levels of carbon, nitrogen, phosphorus and other 

contaminants in these soils.  

Plate culturing for this project showed there were no significant differences between bacterial 

numbers in WRSS1 compared to the other two sets, except between the arable soils from WRSS1 

and WRSS2 (sites no. 85 and 86). This result could be viewed as an outlier. It was only evident in 

one pair and at one concentration, and the values of the respective ratios differed by only 8% 

(less than difference seen for different soil types). However, it may also reflect a seasonal 

difference in the two microbial populations, as a similar result was found for Hg. These three soil 

sample sets were collected during different seasons at different temperatures and mean water 

content, although the acidity (pH) was not significantly different in these soils. The mean 

temperature and rainfall during February, the month of collection of Waikato 1st set were 18.8  Cͦ 

and 68.7 mm. Corresponding values were 9.8  ͦC and 103.4 mm in August (2nd set), and 9.5  ͦC and 

113.2 mm in June (3rd set). It appears that changes in soil bacteria numbers are resistant to 

periodic changes soil moisture and temperature [265, 266]. Hermans et.al. (2017) [267], and 

Fierer and Jackson (2005) [268], reported that variation in soil environment has a more 

substantial effect on soil bacterial communities than climate changes. It also has been suggested 

that soil moisture content and pH are likely the main factors affecting bacterial community 
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structures [269], along with the different levels of metal contaminations in soils as one of the 

main factors affecting bacterial communities diversity [270].    

To reflect the higher levels of Cd and Zn and other factors affecting the bioavailability of these 

HMs in pastoral soils compared to arable soils, plate culturing on media with a range of Cd, Zn 

and Hg concentrations and control plates (with no added HMs) was performed. There were 

higher ratios of HMR:total CFU from pastoral soils compared to arable and background soils. 

This observation suggests that while the long term usage of Cd and Zn-contained compounds 

increase levels of heavy metals in soil, bacterial resistance or tolerance to specific metals occurs. 

It has been suggested that bacterial resistance or tolerance to Cd would result in higher levels 

of resistance to Zn and Hg too, due to pleiotropic mutations and/or resistance genes encoding 

proteins involved in causing resistance to multiple metals (e.g. czc gene encoding cellular efflux 

pumps for Cd, Zn and Co) [23, 271-275]. The data indicates there were more HgR bacteria in 

pastoral soils compared to those from arable and background soil, although there is no 

significant differences in the levels of Hg in pastoral soils compared to background soil; and Hg 

levels, in fact, were found to be highest in arable soils. According to the review of Harrison et. 

al., 2007 [16] about the effects of multidrug resistance among bacterial communities, it can be 

suggested that the main factor for the higher level of bacterial resistance to Hg –based on plate 

colony counts– for pastoral soils’ bacterial isolates compared to arable, is the higher levels of Cd 

and Zn in these soils compared to arable soil. A repeat of the pattern of the relative resistance 

following the order pastoral > arable > background is interesting, because in the case of Hg, 

levels in all soil samples were within their normal background ranges (Table A2.4, Appendix 2). 

there is no specific evidence for significant enrichment of Hg in farmed soils [276]. This may 

indicate that resistance to Hg seen in these samples has been co-selected through exposure to 

other contaminants. In addition to Cd (phosphate fertiliser) and Zn (facial eczema remedies) 

other enriched elements in farmed soils include the nutrient elements N, P and S, the major Ca, 

and the trace of elements F, U, La, Ce, Y, Tl, Mn, Mo and Ag [251]. 



138 
 

Plate culturing of bacteria isolated from WR soil samples showed higher levels of bacterial AbR 

in pastoral soils compared to arable and background soils. According to the higher levels of Cd 

and Zn in pastoral soils compared to the two other soils, it can be interpreted that the higher 

levels of resistance to these HMs can induce the co-selection of resistance to these Abs. This 

observation is similar to the observations reviewed by Baker-Austin et. al., 2006, and the findings 

reported by Li et. al., 2017, Zhou et. al., 2016, and Zhao et. al., 2019 [36, 253, 277, 278], although 

Hau et. al., 2017 [279], suggested that multilocus sequence type lineage is more likely to be the 

reason for methicillin resistance in Staphylococcus aureus (LA-MRSA) ST5 than Zn co-selection in 

livestock farms. They suggest that likely there is a direct relationship between the multilocus 

genetic lineage and transfer of HMs resistance determinants. 

Plate culturing for bacteria isolated from BRP soil samples was performed and the result showed 

the number of bacterial CFU was more in soils with the lower levels of accumulated Cd and Zn 

compared to the sub-sites with higher levels of HMs (Figure 4.10). High levels of HMs 

accumulation in B17 soils can result in higher HMR bacterial population as well as bacterial 

communities diversity, especially in soils with HMs levels much higher than bacteria’s threshold 

of tolerance to HMs [269, 270]. This is more likely to occur in soils with huge levels of non-

essential HMs with no biological functions, e.g. Cd and Hg; although it has been reported that 

Cd is categorised as an essential metal for a few bacterial species [10, 280].  

Plate counts from BRP soils revealed that the proportions of HMR and AbR bacteria amongst 

total CFU from the sub-sites with higher levels of Cd and Zn were greater than at the sub-sites 

with lower levels of HMs (Figures 4.11-4.18). In addition to the higher levels of Cd and Zn in soils 

closer to the fertiliser storage at BRP (B17 downward), the higher level of P (phosphorus) maybe 

a factor increasing the bioavailability of Cd and Zn [251]. However, no major differences in the 

levels of organic materials (as a factor reducing the bioavailability of Cd and Zn in soil) were 

determined through the BRP sub-sites soil [262]. The higher levels of extractable and 

bioavailable Cd and Zn can be lead to higher levels of bacterial resistance to these HMs, as well 
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as other HMs, e.g. Hg, and a range of antibiotics owing to the various resistance mechanisms, 

due to the same cellular efflux pumps and presence of resistance genes on the same genetic 

elements [16, 36, 253, 277, 278].   

The PICT assays of bacterial communities from WR and BRP soils revealed there were greater 

MIC and EC50 values for HMs and Abs in WR pastoral soils consortia compared to those from 

background soil. Similarly higher MIC and EC50 values for BRP soils with higher HMs compared 

to B10 soils (with the lower concentrations of HMs). According to the determined higher levels 

HMs in pastoral soils and previous reports [281-283], it is interpreted that higher levels of HMs 

in soils can lead to higher levels of HM resistance in bacterial isolates. This co-resistance for Ab 

can occur in bacterial isolates with different levels of Hm resistance [284]. The determined Ab 

MIC (recommended by EUCAST ECOFF [218]) for the bacteria isolated from WR pastoral and 

arable soils was higher than those determined for background soil, these MIC values where 

higher than 20 µg mL-1 threshold for all of Abs MIC values for pastoral soil bacteria and for Ery, 

Cb and Amp for arable and background soils. The higher MIC and EC50 values determined for 

pastoral and arable soils compared to background soils reflected the effects of higher levels of 

HMs in these soils and the subsequent induced Ab resistance in the bacterial isolates present in 

these soils [285]. The higher levels of Cd and Zn in WR pastoral soils and their higher 

bioavailability due to higher levels of P in pastoral soils may be the main factors involved in co-

selection of Abs resistance in presence of the HMs resistance and higher HMs and Abs MIC and 

EC50 values [255, 283]. There were higher Abs MIC and EC50 values determined for bacteria 

isolated from BRP soil samples with higher levels of HMs (B17) compared to those with lower 

levels of HMs (B10), however, all of the Abs MIC were higher than 20 µg mL-1 threshold for soil 

bacteria resistance. This finding supports the observation of higher bacterial Ab resistance 

associated with higher levels of resistance to HMs [283, 286]. In addition to the higher levels of 

the HMs at sub-sites B17 and B16, the higher levels phosphorous in these soils led to more 
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bioavailability of the HMs involved in bacterial resistance development and increases the 

potential of subsequent Abs MIC and EC50 [255].  

HMs’ MIC and EC50 values determined by the BM method for HMR isolates from WR soils 

showed there were significant differences between those for bacteria from pastoral and arable 

cropping soils compared to those for bacteria from background soils. Isolates from pastoral and 

arable soils, which contain higher levels of HMs, were more resistant to the HMs with higher 

MIC and EC50 values [282, 287, 288]. The levels of Ab resistance in HMR isolates is likely higher 

due to the potential Ab co-selection. This may occur because of various mechanisms, e.g. co-

location of resistance gene [254, 282, 287]. Henriques et. al., 2016 [283], suggest that the levels 

of Abs resistance occurrence in bacteria are significantly related to the levels of HMs in 

environment. The higher levels of Cd and Zn in pastoral soils and their higher bioavailability due 

to higher levels of P in pastoral soils may explain the subsequent co-selection of Abs resistance 

in presence of the HMs resistance [255, 283].   

Greater MIC and EC50 values for bacteria from WR’s pastoral and arable soils compared to those 

for bacteria from background soil were determined. The higher levels of HM resistance in 

bacteria from pastoral and arable soils (with higher initial levels of HMs) can lead to higher levels 

of Ab resistance in bacteria [283, 287]. According to D’costa et. al. (2007) and Bhullar et.al. 

(2012) [220, 221], the percentage of bacteria categorised as Resistant amongst HMR isolates 

were significantly higher than the HM sensitive bacteria, which this observation supports the 

interpretations for HM and Ab co-resistance phenomenon.    

BM assay with bacterial isolates from BRP soils showed there were significantly higher MIC and 

EC50 values for both HM and Ab for isolates from the sub-sites with in situ higher levels of HMs 

(B17 and B16) compared to the sub-sites with lower concentrations of HMs. In addition, 

according to bacterial resistance definition as growth at 20 µg mL-1 [220, 221], there were 

significantly higher proportion (%) of HMR and AbR bacteria in B17 and B16 soils compared to 

those from soils with lower HMs. As with WR soils bacteria, higher levels of HMs in soils and 
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subsequent higher bacterial HM resistance may lead to higher levels of Ab resistance in bacteria 

according to the previous surveys [255, 283, 286, 287] (Figures 4.32-4.36; and Figures A1.35-

A1.48, Section A1.5, Appendix 1). The MIC and EC50 values of Abs were higher in the bacteria 

from the sub-sites with the higher levels of Cd and Zn accumulations. The higher levels of the 

HMs at B17 and B16 sub-sites, in addition to the higher levels phosphorous in these soils 

resulting in more bioavailability of the HMs, explains bacterial resistance development and 

subsequent Abs resistance [255, 283].  

The bacteria isolated from WR and BRP soils which showed initial resistance to HMs, were 

examined to determine their Gram staining reactions and colony morphologies. Based on these 

examinations bacteria collected from these soils were categorised into 22 different groups 

(Table 4.32). Of these 18 out of 22 groups of bacteria were determined as Gram-negative. 

According to the previous surveys [289, 290], the outer membrane in Gram-negative bacteria is 

actively involved in excluding antimicrobial agents from penetrating the cells. The interpretation 

of this observation is supported by the unique feature of Gram-negative bacteria. There were 

significantly fewer morphological groups for bacteria isolated from BRP B17 and B16 soils 

compared to those from B10 soil. Higher levels of HMs in these soils could have been the main 

reason for the lower bacterial diversity detected in these soils. Others have reported fewer 

groups of bacteria can tolerate these high levels of HMs in soil [291]. 

In conclusion, the results of the present study showed that the abundance of the bacterial 

isolates resistant to different levels of HM and Abs is greater in soils with high levels of HMs, 

compared to the abundance of those bacteria from soil samples with lower levels of HMs. In 

addition, the isolates from soil samples with high levels of HMs show greater resistance to 

various concentrations of HMs and Abs compared to those from soil samples with lower levels 

of HMs.  
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Three sets of soil samples from Waikato region were used for the current project and each set 

included three soil samples of pastoral, arable cropping and native bush as background. The 

results from these three soil sets were very similar and showed very similar trends. Considering 

that the levels of Cd, for example, in these three soil sets were in the average range of those 

shown in the map in Figure 4.1 [257]. The results of the investigations on Belmont Regional Park 

B10 and B11 sub-sites (the sub-sites with the most distance from the fertiliser storage at the 

start of airstrip) are clearly comparable with the results of pastoral soils from Waikato region 

with similar trends. It is concluded that the results obtained from the Waikato region and 

Belmont Regional Park soil samples are transferrable to other farms and soil samples around 

New Zealand, however, more investigations on more soil samples from wider regions of New 

Zealand is required to confirm this.  
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Chapter 5, Results Part 2 

5.1. Study 2: 6-weeks and 6-months Microcosms Bacterial Resistance Investigations 

5.1.1. Introduction 

Many HMs have a fundamental role in the metabolism of microorganisms and act as essential 

elements in the environment. HMs are added to the environment by a variety of different 

human-related activities (such as industrial or sewage waste streams) or natural processes (such 

as volcanic depositions). Accumulation of these HMs in soil can lead to bacterial resistance to 

HMs and also co-selection for antibiotic resistance [8, 9]. HMs are generally immutable and 

nondegradable in soil [292]. Soil microbiological factors, e.g. bacterial community structure, are 

also affected by HMs [16]. Soil microcosms are novel tools to explore, on a small and controlled 

scale, the factors involved in inducing resistance to HMs in soil bacteria in a small, controlled 

scale [293].   

Bacterial community dynamics were investigated in microcosms, containing soil sources from 

sites EW-13 native bush (Background) and EW-24 pasture to which various concentrations of Cd, 

Zn and Hg were added and incubated for either 6-week or 6-month. These two time periods 

were used to investigate the bacterial community structures changes over a shorter and longer 

period of time. The objective of this chapter was to investigate whether specific concentration(s) 

of HMs would induce resistance in bacterial isolates while present in the bacterial biosphere. 

5.1.2. Methodology 

The methodology used for this chapter is described in Sections 3.2-3.9 and 3.11-3.12 of the 

Methodology Chapter. In short, preparation of microcosms, plate culturing, analysis of 

microcosms leachate HMs concentration, BM (Broth Microdilution) and PICT (Pollution Induced 

Community Tolerance) analyses were applied to investigate various HM concentrations on soil 

microbial resistance and bacterial communities. In this part of the investigation of bacterial 

consortia and dynamics in soil in the presence of various levels of HMs, two types of soils with 



144 
 

different initial levels of Cd and Zn were used. The objective of using two different soils was to 

investigate if there were any differences between the levels of induced HM and Ab resistance in 

bacteria from microcosms containing pastoral and background soils. Incubation for 6 months 

was performed to investigate changes in the bacterial consortia and dynamics compared to 6 

weeks incubation. The HMs concentrations added to the microcosms were 5, 10, 50, 100 and 

200 mM (1.182, 2.236, 11.82, 22.36 and 44.72 mg kg-1) of Cd, 20, 50, 100, 200 and 300 mM (3.78, 

9.46, 18.93, 37.87 and 56.79 mg kg-1) of Zn and 0.5, 1, 5, 10 and 50 mM (0.1, 0.2, 1.0, 2.0, 10.02 

mg kg-1) of Hg. Figure 5.1 illustrates different experiments and steps for this chapter.  

 
Fig. 5. 1. Flow chart illustrating different steps and experiments of Chapter 5. 
 

5.1.3. Physicochemical Properties of the Soil Sampling Sites. 

Soil samples collected from a site near Taupo with a long history of plantation forestry and a 

sandy loam soil structure (Site EW-13) was used for the 6-weeks and some 6-months 

microcosms. Pastoral soil from Coromandel (West of Whangapoua) from a property used for 

dry-stock farming with clay loam soil (M. Taylor, Personal Communication) (Site EW-24) was 

used for the remaining 6-months microcosms. Chemical analysis of representative samples 

indicated the concentration of the three HMs of interest in the soil used as starting material for 

the microcosms (Tables 5.1; and Table A3.1, Appendix 3).  
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Table 5. 1. EW-13 and EW-24 sites soil samples 
physicochemical properties. 

Soil property EW-13 EW-24 

Annual rainfall (mm) 1750 1887 
pH 5.90 5.40 
Total C (%) 5.10 8.20 
Total N (%) 0.36 0.63 
C:N 14.2 13.0 
Olsen P * 40.0 14.0 
Cd * 0.13 0.29 
Hg *  0.05 0.07 
Zn * 19.4 32.0 
Fe *  4500 38000 
P *  1090 830 

*mg kg-1 of dry soil 

5.1.4. Quantification of Bacterial Resistance in Microcosm Trials 

5.1.4.1. Microcosms Incubated for 6-weeks (6WM) 

5.1.4.1.1. Plate culture for HMR 

Bacteria from samples of microcosm soil sampled at time 0 and 2 weeks intervals were plate 

cultured on plates with a range of HMs and control plates. Total CFUs were calculated for each 

soil sample, using Equation 3.2. 

At time 0, the ratio of CdR/total number of soil bacteria from the 6-week-incubated Cd-spiked 

microcosms (6WCdM) increased from the control microcosm to Cd 50 mM-spiked microcosm 

and then decreased in Cd 100 and 200 mM-spiked microcosms. There were significantly smaller 

CdR/total bacterial ratios for control microcosms compared to those from Cd-spiked 

microcosms (p < 0.05). The ratios of CdR/total bacteria in Cd-spiked microcosms at Time 0 were 

significantly less compared to those from the same microcosms after 6 weeks. For instance, this 

ratio was about 1.5 times greater for bacteria from the Cd 50 mM-spiked microcosms at 6-weeks 

compared to those at Time 0. Similar trends were determined for the 6-week-incubated Zn-

spiked and 6-week-incubated Hg-spiked microcosms (6WZnM and 6WHgM) (Figures 5.2-5.4, 

Appendix 3).  
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Fig. 5. 2. Mean ratios of CdR/total bacterial CFU, selected on plates with two concentrations of 
Cd for 6WCdM. *p<0.05 compared to the CdR/total bacterial CFU ratios in Cd-spiked 
microcosms; †p<0.05 compared to the CdR/total bacterial CFU ratios in the same Cd-spiked 
microcosms at the 6-week interval.  
 
 

 
Fig. 5. 3. Mean ratios of ZnR/total bacterial CFU, selected on plates with two concentrations of 
Zn for 6WZnM. *p<0.05 compared to the ZnR/total bacterial CFU ratios in Zn-spiked microcosms; 
†p<0.05 compared to the ZnR/total bacterial CFU ratios in the same Zn-spiked microcosms at 
the 6-week interval. 
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Fig. 5. 4. Mean ratios of HgR/total bacterial CFU, selected on plates with two concentrations of 
Hg for 6WHgM. *p<0.05 compared to the HgR/total bacterial CFU ratios in Hg-spiked 
microcosms; †p<0.05 compared to the HgR/total bacterial CFU ratios in the same Hg-spiked 
microcosms at the 6-week interval. 
 
5.1.4.1.2. Plate Culture for Abs 

The mean ratio of AbR/total number of CFU from the 6WCdM at Time 0 increased from the 

control microcosms to Cd 50 mM-spiked microcosms and then decreased in the Cd 100 and 200 

mM-spiked microcosms (Figure 5.5). There were significantly smaller AbR/total bacterial ratios 

for control microcosms compared to those from Cd-spiked microcosms (p < 0.05). The ratios of 

AbR/total bacteria in Cd-spiked microcosms at Time 0 were significantly less than those from 

the same microcosms after 6 weeks. For example, the ratio for TcR bacteria from Cd 50 mM-

spiked microcosm after 6 weeks of incubation was two times greater than that from the same 

microcosm at Time 0 (Figure 5.5). The same trend was observed for the microcosms spiked with 

a range of Zn and Hg concentrations. The highest ratios for the other Abs (Cm, Ery, Cb and Amp) 

were recorded from the same HM-spiked microcosms which were Cd 50 mM, Zn 200 mM and 

Hg 1 mM (Figures A3.1-A3.2, Appendix 2).  
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Fig. 5. 5. Mean ratios of AbR/total bacterial CFU, selected on a concentration 
of Abs for 6WCdM. *p<0.05 compared to the AbR/total bacterial CFU ratios in 
Cd-spiked microcosms; †p<0.05 compared to the AbR/total bacterial CFU 
ratios in the same Cd-spiked microcosms at the 6-week interval. 
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5.1.4.2. Microcosms containing Background or Pasture Soil Incubated for 6 months (B6MM 

and P6MM)  

5.1.4.2.1. Plates with HMs Additive 

Plate culturing of bacteria from B6MM and P6MM from samples taken at Time 0 and 2 months 

intervals was performed. Samples were cultured on R2A media with a range of HM 

concentrations. For bacterial CFU calculation Equation 3.2 was used.  

The ratios of CdR/total CFUs from both B6MCdM (background soil-contained Cd-spiked 6 

months incubated microcosms) and P6MCdM (pastoral soil-contained Cd-spiked 6 months 

incubated microcosms) at Time 0 increased from the control microcosms (0 mM Cd) to the Cd 

50 mM-spiked microcosms and then decreased for the Cd 100 and 200 mM-spiked microcosms 

(Figures 5.6-5.11). The CdR/total bacterial CFUs ratios from the control microcosms were smaller 

compared to those from Cd-spiked microcosms (p < 0.05). The ratios of CdR/total bacterial CFUs 

in Cd-spiked microcosms at Time 0 were significantly less compared to those from the same 

microcosms after 6 months (p < 0.05). For example, this ratio was   ̃1.5 times greater for Cd 50 

mM-spiked B6MM after 6 months compared to Time 0. The ratio of CdR/total CFUs was   ̃1.2 

times greater for Cd 50 mM-spiked P6MM after 6 month compared to Time 0. A trend of 

increasing CdR/total CFU ratios was determined in the background soil-contained microcosms 

at the 2 and 4 month time points, although they were not significantly different to the ratio at 6 

months. The trend of increase of CdR/total CFU ratios plateaued in the 2-month to 6-month 

interval. Similar trends were determined for the microcosms spiked with a range of Zn and Hg 

concentrations (Figures 5.6-5.11).  
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Fig. 5. 6. Mean ratios of CdR/total bacterial CFU, selected on plates with two concentrations of 
Cd for B6MCdM. *p<0.05 compared to the CdR/total bacterial CFU ratios in Cd-spiked 
microcosms; †p<0.05 compared to the CdR/total bacterial CFU ratios in the same Cd-spiked 
microcosms at the 6-month interval. 
 

 
Fig. 5. 7. Mean ratios of CdR/total bacterial CFU, selected on plates with two concentrations of 
Cd for P6MCdM. *p<0.05 compared to the CdR/total bacterial CFU ratios in Cd-spiked 
microcosms; †p<0.05 compared to the CdR/total bacterial CFU ratios in the same Cd-spiked 
microcosms at the 6-month interval. 
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Fig. 5. 8. Mean ratios of ZnR/total bacterial CFU, selected on plates with two concentrations of 
Zn for B6MZnM. *p<0.05 compared to the ZnR/total bacterial CFU ratios in Zn-spiked 
microcosms; †p<0.05 compared to the ZnR/total bacterial CFU ratios in the same Zn-spiked 
microcosms at the 6-month interval. 
 

 
Fig. 5. 9. Mean ratios of ZnR/total bacterial CFU, selected on plates with two concentrations of 
Zn for P6MZnM. *p<0.05 compared to the ZnR/total bacterial CFU ratios in Zn-spiked 
microcosms; †p<0.05 compared to the ZnR/total bacterial CFU ratios in the same Zn-spiked 
microcosms at the 6-month interval. 
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Fig. 5. 10. Mean ratios of HgR/total bacterial CFU, selected on plates with two concentrations of 
Hg for B6MHgM. *p<0.05 compared to the HgR/total bacterial CFU ratios in Hg-spiked 
microcosms; †p<0.05 compared to the HgR/total bacterial CFU ratios in the same Hg-spiked 
microcosms at the 6-month interval. 
 

 
Fig. 5. 11. Mean ratios of HgR/total bacterial CFU, selected on plates with two concentrations of 
Hg for P6MHgM. *p<0.05 compared to the HgR/total bacterial CFU ratios in Hg-spiked 
microcosms; †p<0.05 compared to the HgR/total bacterial CFU ratios in the same Hg-spiked 
microcosms at the 6-month interval. 
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5.1.4.2.2. Plates with Abs Additive 

The AbR/total bacterial CFU ratios for B6MCdM and P6MCdM increased from those from the 

control microcosms at Time 0 to those for the Cd 50 mM-spiked microcosms and then decreased 

in the Cd 100 and 200 mM-spiked microcosms. The AbR/total bacterial ratios for control 

microcosms were significantly smaller compared to those from the Cd-spiked microcosms (p < 

0.05). The ratios of AbR/total bacteria in Cd-spiked microcosms at Time 0 were less than those 

from the same microcosms after 6 months (p < 0.05). For example, this ratio was >2 times 

greater for TcR bacteria in Cd 50 mM-spiked B6MM and   ̃1.3 times greater for Cd 50 mM-spiked 

P6MM at the 6-month endpoint compared to Time 0 (Figures 5.12-5.13). The CdR/total CFU 

ratios increased in the B6MCdM at the 2 and 4 month time points, but not significantly different 

compared to those at 6 months (Figures 5.12-5.13). A similar pattern was observed in pasture 

soil microcosms. Similar trends were determined for the microcosms spiked with a range of Zn 

and Hg concentrations (Figures A3.3-A3.6).  
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Fig. 5. 12. Mean ratios of AbR/total bacterial CFU, selected on Abs for 
B6MCdM. *p<0.05 compared to the AbR/total bacterial CFU ratios in Cd-
spiked microcosms; †p<0.05 compared to the AbR/total bacterial CFU ratios 
in the same Cd-spiked microcosms at the 6-month interval. 

0%

5%

10%

15%

20%

TcR/Total CFU

†
†

† ††
* * * *

0%

5%

10%

15%

20%

CmR/Total CFU

††
†††

* * * *

0%

5%

10%

15%

20%

25%

EryR/Total CFU

††
†

††* * * *

0%

5%

10%

15%

20%

25%

CbR/Total CFU

†††††
* * * *

0%

5%

10%

15%

20%

25%

C
o

n
tr

o
l

C
d

 5
 m

M

C
d

 1
0

 m
M

C
d

 5
0

 m
M

C
d

 1
0

0
 m

M

C
d

 2
0

0
 m

M

C
o

n
tr

o
l

C
d

 5
 m

M

C
d

 1
0

 m
M

C
d

 5
0

 m
M

C
d

 1
0

0
 m

M

C
d

 2
0

0
 m

M

C
o

n
tr

o
l

C
d

 5
 m

M

C
d

 1
0

 m
M

C
d

 5
0

 m
M

C
d

 1
0

0
 m

M

C
d

 2
0

0
 m

M

C
o

n
tr

o
l

C
d

 5
 m

M

C
d

 1
0

 m
M

C
d

 5
0

 m
M

C
d

 1
0

0
 m

M

C
d

 2
0

0
 m

M

Time 0 2 Months 4 Months 6 Months

AmpR/Total CFU

††
†††* * * *



155 
 

R
at

io
 o

f 
A

b
R

/T
o

ta
l C

FU
 (

%
) 

 

 

 

 

 
 P6MCdM 

Fig. 5. 13. Mean ratios of AbR/total bacterial CFU, selected on Abs for 
P6MCdM. *p<0.05 compared to the AbR/total bacterial CFU ratios in Cd-
spiked microcosms; †p<0.05 compared to the AbR/total bacterial CFU 
ratios in the same Cd-spiked microcosms at the 6-month interval. 
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5.1.5. Pollution Induced Community Tolerance (PICT) Analysis 

The PICT analysis was performed to investigate MIC and EC50 values for HMs and Abs for 

bacterial consortia in the microcosms’ soil samples. Data from PICT analysis can be used as a 

precise scale to compare with data from the BM analysis which investigated the MIC and EC50 

values for HMs and Abs for individual bacterial isolates. The PICT analysis of bacterial consortia 

isolated from 6WM and B6MM and P6MM soils was performed using a range of concentrations 

of the 3 three Hms and 5 Abs used previously. The exponential growth rate of bacteria at 12-

hour of incubation was recorded and was used to calculate MIC and EC50.  

5.1.5.1. PICT Analysis for 6-Weeks Microcosms (6WM) 

5.1.5.1.1. Analysis Using HMs 

PICT analysis for MICs and EC50s for Cd, Zn and Hg for bacterial consortia from 6WCdM (6-

weeks-incubated Cd-spiked microcosms) showed there were larger Cd MIC and EC50 values for 

bacterial consortia from Cd-spiked microcosms compared to those from control microcosms (p 

< 0.05). Lower MIC and EC50 values for Cd were determined for bacterial consortia from 6WCdM 

at Time 0 compared to those for consortia from the same microcosms at the 2, 4 and 6 weeks 

sampling point (Figures 5.14-5.16). Similar trends were observed for MIC and EC50 values of Cd, 

Zn and Hg for bacterial communities from 6WZnM and 6WHgM (Figures A3.7-A3.12, Appendix 

3).  
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Fig. 5. 14. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from 6WCdM. *p < 
0.05 compared to Cd MIC and EC50 values for bacteria from Cd-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. 
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Fig. 5. 15. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from 6WCdM. *p < 
0.05 compared to Zn MIC and EC50 values for bacteria from Cd-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. 
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Fig. 5. 16. Mean MIC and EC50 values of PICT analysis with Hg for bacteria from 6WCdM. *p < 
0.05 compared to Hg MIC and EC50 values for bacteria from Cd-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. 
 
5.1.5.1.2. Analysis Using Abs 

PICT analysis of MIC and EC50 for Tc, Cm, Ery, Cb and Amp for bacterial consortia isolated from 
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determined for bacterial consortia (according to EUCAST ECOFF recommendations [218]) from 

6WM soil were higher than the 20 µg mL-1 threshold defined for Ab resistance in soil bacterial 
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for all of the five Abs at 2, 4 and 6-week time-points [217, 220], while these were lower than this 

threshold for Tc and Cm at Time 0. 
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 Bacteria from 6WCdM 

Fig. 5. 17. Mean MIC and EC50 values of PICT analysis with Tc for bacteria from 6WCdM. *p < 
0.05 compared to Tc MIC and EC50 values for bacteria from Cd-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WZnM 

Fig. 5. 18. Mean MIC and EC50 values of PICT analysis with Tc for bacteria from 6WZnM. *p < 
0.05 compared to Tc MIC and EC50 values for bacteria from Zn-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WHgM 

Fig. 5. 19. Mean MIC and EC50 values of PICT analysis with Tc for bacteria from 6WHgM. *p < 
0.05 compared to Tc MIC and EC50 values for bacteria from Hg-spiked microcosms at the same 
timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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5.1.5.2. PICT Analysis of 6-month microcosms Containing Background and Pasture soil (B6MM 

and P6MM) 

5.1.5.2.1. Analysis Using HMs 

PICT determination of MICs and EC50s for Cd, Zn and Hg for bacterial consortia from B6MCdM 

and P6MCdM found greater MIC and EC50 values for HMs from bacterial consortia from Cd-

spiked microcosms compared to those for bacteria from control microcosms (p < 0.05). Lower 

Cd MIC and EC50 values were determined for bacterial consortia from B6MCdM and P6MCdM 

at Time 0 compared to those for bacteria from same microcosms after 2, 4 and 6 months 

incubation (Figures 5.20-5.25). Similar trends were determined for MIC and EC50 values of Cd, 

Zn and Hg for bacterial consortia from B6MZnM, B6MHgM, P6MZnM and P6MHgM (Figures 

A3.25-A3.36, Appendix 3).  
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 Bacteria from B6MCdM 

Fig. 5. 20. Mean MIC and EC50 values (mM) of PICT analysis with Cd for bacteria from B6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Cd MIC and EC50 values for bacteria from Cd-
spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MCdM 

Fig. 5. 21. Mean MIC and EC50 values (mM) of PICT analysis with Zn for bacteria from B6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Zn MIC and EC50 values for bacteria from Cd-
spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MCdM 

Fig. 5. 22. Mean MIC and EC50 values (mM) of PICT analysis with Hg for bacteria from B6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Hg MIC and EC50 values for bacteria from 
Cd-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values 
for bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MCdM 

Fig. 5. 23. Mean MIC and EC50 values (mM) of PICT analysis with Cd for bacteria from P6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Cd MIC and EC50 values for bacteria from Cd-
spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MCdM 

Fig. 5. 24. Mean MIC and EC50 values (mM) of PICT analysis with Zn for bacteria from P6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Zn MIC and EC50 values for bacteria from Cd-
spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MCdM 

Fig. 5. 25. Mean MIC and EC50 values (mM) of PICT analysis with Hg for bacteria from P6MCdM. 
Cd concentrations are mM. *p < 0.05 compared to Hg MIC and EC50 values for bacteria from 
Cd-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values 
for bacteria from Cd-spiked microcosms at 2, 4 and 6 month. 
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for bacterial consortia from B6MZnM, P6MZnM, B6MHgM and P6MHgM are shown in Appendix 

3 (Figures A3.37-A3.60, Appendix 3). The MIC values determined for bacterial consortia 

(according to EUCAST ECOFF recommendations [218]) from B6MM and P6MM soils were higher 

than 20 µg mL-1 threshold defined for Ab resistance in soil bacterial for all of the five Abs at 2, 4 

and 6-month time-points [217, 220], while these were lower than this threshold for Tc and Cm 

at Time 0. 
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 Bacteria from B6MCdM 

Fig. 5. 26. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
B6MCdM. Cd concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for bacteria 
from Cd-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 
values for bacteria from Cd-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from B6MZnM 

Fig. 5. 27. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
B6MZnM. Zn concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for bacteria 
from Zn-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 
values for bacteria from Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from B6MHgM 

Fig. 5. 28. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
B6MHgM. Hg concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for 
bacteria from Hg-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Tc MIC and 
EC50 values for bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines 
AbR level of soil bacteria. 
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 Bacteria from P6MCdM 

Fig. 5. 29. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
P6MCdM. Cd concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for bacteria 
from Cd-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Tc MIC and EC50 
values for bacteria from Cd-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from P6MZnM 

Fig. 5. 30. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
P6MZnM. Zn concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for bacteria 
from Zn-spiked microcosms at the sam etimepoint; Ȣp < 0.05 compared to Tc MIC and EC50 
values for bacteria from Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from P6MHgM 

Fig. 5. 31. Mean MIC and EC50 values (µg mL-1) of PICT analysis with Tc for bacteria from 
P6MHgM. Hg concentrations are mM. *p < 0.05 compared to Tc MIC and EC50 values for 
bacteria from Hg-spiked microcosms at the same timepoint; Ȣp < 0.05 compared to Tc MIC and 
EC50 values for bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines 
AbR level of soil bacteria. 
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microtitre plates were introduced to the analysis as independent variables. The dependent 

variable was MIC or EC50 value. 

5.1.6.1. Microcosms Incubated for 6-weeks (6WM) 

5.1.6.1.1. BM Analysis with HMs 

Lower Cd MIC and EC50 values were determined for HMR bacterial isolates from control 

microcosms (with no added HM) compared to the isolates from HMs-spiked microcosms. In 

addition, there were lower Cd MIC and EC50 values for the HMR bacterial isolates from HMs-

spiked microcosms at Time 0 compared to those from the same microcosms after 6 weeks of 

incubation (Figure 5.32). Lower Cd MIC and EC50 values found for HM-sensitive bacterial isolates 

from 6WM spiked with HMs compared to the HMR isolates from the same microcosms (p < 

0.05). Similar trends were determined for MIC and EC50 values for Zn and Hg in the bacterial 

isolates from HMs-spiked 6WM (Figures 5.33 and 5.34). 

5.1.6.1.2. BM Analysis with Abs 

Tetracycline (Tc) 

Similar to what was determined for the HM resistance profile of isolates from the 6-week 

microcosms, there were significantly higher MIC and EC50 values for Tc for the HMR isolates 

from HMs-spiked 6WM at 6 weeks compared to those from isolated at Time 0 (p < 0.05). There 

were lower MIC and EC50 values for Tc for HMR bacterial isolates from control microcosms 

compared to those for isolates from HMs-spiked microcosms. Moreover, lower MIC and EC50 

values for Tc were determined for the HMR bacterial isolates from HMs-spiked microcosms at 

Time 0 compared to those from the same microcosms after 6 weeks incubation (Figure 5.35). 

Similar trends were determined for MIC and EC50 values for the other Abs (Cm, Ery, Cb and 

Amp) for these isolates (Figures A3.61-A3.64, Appendix 3). The MIC values determined for 

bacterial isolates (according to EUCAST ECOFF recommendations [218]) from 6WM soil were 
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higher than 20 µg mL-1 threshold defined for Ab resistance in soil bacterial for all of the five Abs 

at 2, 4 and 6-week time-points [217, 220], while these were lower than this threshold for Tc at 

Time 0. 

5.1.6.2. Background and Pasture soil-contained 6-month microcosms (B6MM and P6MM) 

5.1.6.2.1. BM Analysis with HMs 

There were significantly lower Cd MIC and EC50 values for the HM-sensitive bacterial isolates 

from B6MM and P6MM compare to those for the HMR isolates from the same microcosms (p < 

0.05). Higher Cd MIC and EC50 values were determined for the HMR bacterial isolates from the 

HM-spiked microcosms compared to those for the HMR bacteria from control microcosm. 

Furthermore, lower Cd MIC and EC50 values were determined for the HMR bacterial isolates 

from HMs-spiked microcosms at Time 0 compared to those for HMR bacteria isolated from the 

same microcosms after 6 months of incubation (Figures 5.36 and 5.37). Similar trends were 

determined for MIC and EC50 values of Zn and Hg for the bacterial isolates from B6MM and 

P6MM (Figures A3.65-A3.68, Appendix 3). 

5.1.6.2.2. BM Analysis with Abs 

There were significantly lower Tc MIC and EC50 values for the HM-sensitive isolates from HMs-

spiked B6MM and P6MM compared those for the HMR isolates from the same microcosms (p < 

0.05). Lower Tc MIC and EC50 values were determined for the HMR isolates from control 

microcosms compared to those for the HMR isolates from the HMs-spiked microcosms. There 

were lower Tc MIC and EC50 values for the HMR isolates from HMs-spiked microcosms at Time 

0 compared to those determined for the HMR isolates from the same microcosms and after 6 

months of incubation (Figures 5.38 and 5.39). Similar trends were determined for MIC and EC50 

values of Cm, Ery, Cb and Amp for the bacterial isolates from B6MM and P6MM (Figures A3.69-

A3.76, Appendix 3). The MIC values determined for bacterial isolates (according to EUCAST 

ECOFF recommendations [218]) from B6MM and P6MM soil were higher than 20 µg mL-1 
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threshold defined for Ab resistance in soil bacterial for all of the five Abs at 2, 4 and 6-week 

timepoints [217, 220], while these were lower than this threshold for isolates HMR isolates from 

B6MM for Tc at Time 0. 
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 Isolates from 6WM and selected on plates with indicated concentration of HM (mM) 

Fig. 5. 32. Mean MIC and EC50 values (mM) of BM analysis with Cd for HMR isolates from 6WM. *p < 0.05 compared to Cd MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Cd MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Cd MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. 
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 Isolates from 6WM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 33. Mean MIC and EC50 values (mM) of BM analysis with Zn for HMR isolates from 6WM. *p < 0.05 compared to Zn MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Zn MIC AND EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Zn MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. 
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 Isolates from 6WM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 34. Mean MIC and EC50 values (mM) of BM analysis with Hg for HMR isolates from 6WM. *p < 0.05 compared to Hg MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Hg MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Hg MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. 
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 Isolates from 6WM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 35. Mean MIC and EC50 values (µg mL-1) of BM analysis with Tc for HMR isolates from 6WM. *p < 0.05 compared to Tc MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Tc MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Tc MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from B6MM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 36. Mean MIC and EC50 values (mM) of BM analysis with Cd for HMR isolates from B6MM. *p < 0.05 compared to Cd MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Cd MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Cd MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 
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 Isolates from P6MM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 37. Mean MIC and EC50 values (mM) of BM analysis with Cd for HMR isolates from P6MM. *p < 0.05 compared to Cd MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Cd MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Cd MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
MIC

Ȣ
Ȣ

ȢȢ
ȢȢ

** * * * * * *

† †
†

† †
† †

†
†

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cd  1 mM Zn  5 mM Hg 0.1 mM Cd  1 mM Zn  5 mM Hg 0.1 mM Cd  1 mM Zn  5 mM Hg 0.1 mM Cd  1 mM Zn  5 mM Hg 0.1 mM

Control microcosm Sensitive
isolates

Cd 50 mM microcosm Sensitive
isolates

Zn 200 mM microcosm Sensitive
isolates

Hg 1 mM microcosm Sensitive
isolates

S. aureus
NCTC
12973

EC50

Time 0 6 months

ȢȢȢȢȢȢ

* * * * * * * *

†
†

† † † † † † †



178 
 

Tc
 c

o
n

ce
n

tr
at

io
n

 (
µ

g/
m

L)
 

 

 
 Isolates from B6MM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 38. Mean MIC and EC50 values (µg mL-1) of BM analysis with Tc for HMR isolates from B6MM. *p < 0.05 compared to Tc MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Tc MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Tc MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from P6MM and selected on plates with Indicated concentration of HM (mM) 

Fig. 5. 39. Mean MIC and EC50 values (µg mL-1) of BM analysis with Tc for HMR isolates from P6MM. *p < 0.05 compared to Tc MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Tc MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Tc MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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5.1.7. Microcosms leachate metal concentration analysis 

The concentration of HMs in drainage leachate samples collected from 6WM, B6MM and P6MM 

trays after 6 hours of incubation were analysed by Atomic Absorption Spectrophotometry (AAS). 

The result showed Cd, Zn and Hg were adsorbed strongly to the background soil particles in 

6WM after 6 hours of incubation. In general, less than 1% of the added HMs were detected in 

the microcosms’ drainage after 6 hours of incubation (Table 5.2).  

Leachate HMs analysis for B6MM and P6MM implied that HMs concentrations were increased 

in soils from both B6MM and P6MM by addition of a range concentrations of HMs to 

microcosms. The amount of adsorption of HMs to the soil particles was higher in microcosms 

with pastoral soil microcosms. It shows the substantial adsorption of HMs to the soils particles. 

(Tables 5.3).
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Table 5. 2. Leachate HM concentration analysis of 6WM after 6 hours of incubation.   

Microcosm Microcosm 
HM conc. 
(mg L-1) 

Original volume 
of added HM 
stock (L) 

Total HM 
originally 
added (mg) 

Total HM left in 
drainage after 
adsorption (mg) 

Total HM lost 
by adsorption 
(mg) 

Increase of 
HM conc. in 
soil (mg kg-1) 

HM total 
adsorption 
(%) 

Cd-spiked Control 0.3 0 0.0026 -0.0026 0 0 
 1 0.3 0.3 0.0087 0.29 1 97.09 
 5 0.3 1.5 0.011 1.48 5 99.26 
 10 0.3 3 0.019 2.98 10 99.36 
 50 0.3 15 0.084 14.91 50 99.43 
 100 0.3 30 0.19 29.80 99 99.36 
Zn-spiked Control 0.3 0 0.011 -0.011 0.0 0 
 20 0.3 6 0.043 5.95 19.9 99.26 
 50 0.3 15 0.057 14.94 49.8 99.61 
 100 0.3 30 0.065 29.93 99.8 99.78 
 200 0.3 60 0.22 59.77 199.3 99.62 
 300 0.3 90 0.40 89.59 298.6 99.54 
Hg-spiked Control 0.3 0 0 0 0.0 0 
 0.5 0.3 0.15 0.0038 0.14 0.5 98.93 
 1 0.3 0.3 0.0077 0.29 1.0 98.75 
 5 0.3 1.5 0.038 1.46 4.9 98.55 
 10 0.3 3 0.077 2.92 9.7 98.52 
 50 0.3 15 0.38 14.61 48.7 98.50 
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Table 5. 3. Leachate HM concentration analysis of B6MM and P6MM after 6 hours of incubation. 
Microcosm Microcosm 

HM 
Microcosm 
HM conc. 
(mg L-1) 

Original volume of 
added HM stock (L) 

Total HM 
originally 
added (mg) 

Total HM left in 
drainage after 
adsorption (mg) 

Total HM lost by 
adsorption (mg) 

Increase of HM conc. 
in soil (mg kg-1) 

HM total 
adsorption (%) 

B6MM Cd-spiked Control 0.3 0 0 0 0 0 
  5 0.3 1.5 0.28 1.28 4.27 85.47 
  10 0.3 3 0.61 2.34 7.83 78.30 
  50 0.3 15 3.16 11.81 39.38 78.76 
  100 0.3 30 6.09 23.93 79.77 79.77 
  200 0.3 60 14.20 45.74 152.46 76.23 
 Zn-spiked Control 0.3 0 0 0 0 0 
  20 0.3 20 0.54 5.47 18.25 91.26 
  50 0.3 50 1.56 13.41 44.71 89.42 
  100 0.3 100 3.10 26.83 89.43 89.43 
  200 0.3 200 5.56 54.47 181.58 90.79 
  300 0.3 300 8.10 81.87 272.90 90.97 
 Hg-spiked Control 0.3 0 0.001 0 0 0 
  0.5 0.3 0.5 0.031 0.11 0.39 79.11 
  1 0.3 1 0.058 0.24 0.80 80.56 
  5 0.3 5 0.26 1.23 4.11 82.24 
  10 0.3 10 0.56 2.43 8.11 81.13 
  50 0.3 50 3.92 11.07 36.93 73.86 
P6MM Cd-spiked Control 0.3 0 0 0 0 0 
  5 0.3 1.5 0.19 1.30 4.35 87.06 
  10 0.3 3 0.44 2.55 8.51 85.13 
  50 0.3 15 2.51 12.49 41.63 83.27 
  100 0.3 30 6.00 23.99 79.98 79.98 
  200 0.3 60 11.45 48.55 161.83 80.92 
 Zn-spiked Control 0.3 0 0 0 0 0 
  20 0.3 20 0.53 5.46 18.21 91.07 
  50 0.3 50 1.25 13.74 45.82 91.65 
  100 0.3 100 1.80 28.19 93.98 93.98 
  200 0.3 200 4.02 55.97 186.59 93.30 
  300 0.3 300 6.23 83.76 279.22 93.07 
 Hg-spiked Control 0.3 0 0.001 0 0 0 
  0.5 0.3 0.5 0.01 0.13 0.44 89.20 
  1 0.3 1 0.043 0.25 0.85 85.51 
  5 0.3 5 0.14 1.35 4.51 90.28 
  10 0.3 10 0.32 2.67 8.91 89.10 
  50 0.3 50 1.60 13.39 44.63 89.28 



183 
 

5.1.8. Sequential extraction of HMs 

Sequential extraction of HMs from B6MM and P6MM soils samples after 6 months of incubation 

using MgCl2 to detect the exchangeable ions by AAS was performed. Mercury was more strongly 

bound onto the soil compared to Cd and Zn, so the 1 M MgCl2 exchangeable fraction is always 

≤3% of the total. Cadmium is at the other end of the scale, with a range of   ̃63-98% exchangeable 

fraction, and zinc was about 14% on average. These results indicated that in terms of potential 

for release of HM ions into soil pore-water, the order is Cd >> Zn >> Hg (Table 5.4). Toxicity is 

influenced by that order, but microbes may often be able to access the metals that are bound 

to the soil phases less affected by 1 M MgCl2, as well as this fraction, that is the ‘most’ readily 

available. Mercury for example is strongly bound to soil organic matter.  Microbes could well 

have access to that Hg, to the extent they consume soil organic matter, and are part of the 

organic matter pool themselves.  
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Table 5. 4. HMs exchanable ions extracted from B6MM and P6MM after 6 months of incubation. 
Microcosm Microcosm 

HM 
Microcosm HM 
conc. (mg L-1) 

Measured HM 
conc. (mg L-1) 

HM adsorped to 
soil (mg kg-1) 

1 M MgCl2 exchangeable 
fraction 

B6MM Cd-spiked Control 0.021   
  5 0.13 4.27 76.89 
  10 0.21 7.83 65.32 
  50 1.13 39.4 69.38 
  100 2.17 79.8 65.42 
  200 4.03 153 63.26 
 Zn-spiked Control 0.027   
  20 0.063 18.3 8.38 
  50 0.13 44.7 7.37 
  100 0.20 89.4 5.50 
  200 0.41 182 5.46 
  300 0.66 273 5.85 
 Hg-spiked Control <0.05   
  0.5 <0.05 0.39 < 3 
  1 <0.05 0.80 < 3 
  5 <0.05 4.11 < 3 
  10 <0.05 8.11 < 3 
  50 <0.05 33.6 < 3 
P6MM Cd-spiked Control 0.05   
  5 0.17 4.35 97.75 
  10 0.29 8.51 82.00 
  50 1.34 41.6 77.87 
  100 2.74 80.0 82.46 
  200 5.75 162 85.27 
 Zn-spiked Control 0.46   
  20 0.42 18.2 56.67 
  50 0.46 45.8 24.59 
  100 0.37 93.9 9.57 
  200 0.72 187.0 9.29 
  300 1.10 279.0 9.46 
 Hg-spiked Control <0.05   
  0.5 <0.05 0.44 < 3 
  1 <0.05 0.85 < 3 
  5 <0.05 4.51 < 3 
  10 <0.05 8.91 < 3 
  50 <0.05 44.6 < 3 

 

5.1.9. Discussion 

The physicochemical properties of the soil samples from microcosms with Waikato region 

pastoral and background soils are listed in the Tables 5.1 and A3.1 (Appendix 3). The soil types 

and major variables of the two sites are different and have had different land uses. Levels of 

organic matter, total P and trace elements reflect the histories and land management practices 

that have occurred on the properties since land clearance. One property stayed as an 

undisturbed ‘background’ site (still covered with native bush), and the second one has been used 

as a pastoral farm. The soil sample from native bush site was a sandy loam soil, classified as an 

Immature Orthic Pumice soil. Sample from pastoral site was a clay loam soil classified as a Typic 
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Orthic Brown Soil. These two sites were the sampling sites available at the time of performing 

the investigation, however, they have had different soil types. It was found that the history of 

land usage and levels of HMs concentrations were more substantial factors, influencing HM and 

Ab resistance levels in soil bacteria, rather than soil types. The background and pastoral soils 

with different levels of HMs concentrations were included in the 6-month microcosms to be able 

to contrast the levels of HMR and AbR bacteria in bacterial consortia and also individual isolates.  

The concentration of heavy metals including Cd and Zn increased from native bush soils to 

pastoral soils. For pastoral soils the two main sources of elemental change were superphosphate 

fertilisers, which contain P, S, Ca, Cd, F and U; and facial eczema remedies, which contain 

elevated Zn [251, 252].  

The levels of P (Table 4.33) (as a factor which increase the bioavailability of Cd and Zn in soil 

thorough an increase in soil fertility) in pasture soils (site EW-24) is higher compared to 

background soil (site EW-13) [262]. The levels of organic material in Waikato region pastoral 

soils are higher than the background soils, reflecting organic matter depletion in the latter [251]. 

Impacts on availability are harder to determine for several reasons. Some soil-related factors 

could work in opposition to each other. Cd and Zn bind to organic matter, usually reducing their 

bioavailability. Pastoral soils have more organic matter, but also have higher total Cd and Zn. 

Higher levels of Cd and Zn in pastoral soil could compensate for the higher levels of organic 

material [251].  

However, more importantly, bioavailability is partly determined by various interactions between 

living organisms and the soil environment. Bioavailability can also be defined in different ways. 

The bioavailability measured as the relative proportion taken up within an organism can be 

significantly different from the bioavailability determined by a weak chemical extraction [294]. 

Overall, no specific assumptions could be made about the potential influence of bioavailability 

at the outset in this work. However, the results consistently suggest that effects of HMs levels 
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on microbial populations follow the order pastoral soils > background soils. This order is the 

same as for the total contaminant concentrations in these soils. This suggests that any 

differences in actual bioavailability of contaminants between the two different land uses to their 

microbial populations were not significant enough to noticeably influence the results. 

Plate culturing of bacteria isolated from 6WM showed the ratios of HMR/total bacterial CFUs in 

control microcosms were significantly lower than those from HM-spiked microcosms. Gremion 

et. al., 2004 [295], reported the presence of HMs in microcosm soil as the most drastic factor by 

which bacterial population and communities are changed. There are reports indicating the 

presence of high levels of HMs in soil for a short period of time can induce resistance reactions 

in the bacterial communities, although adaptation to HMs stresses can also happen over longer 

periods of time, especially with levels much higher than bacterial tolerance thresholds as exists 

in the microcosms used here [264, 270]. Caliz et. al., 2011 [202], reported that the bioavailability 

of HMs is a substantial factor in effectively inducing bacterial resistance, along with the potential 

toxicity of the HMs, which is Cd and Hg > Zn in this study. Soil moisture content is likely the 

important factor affecting bacterial community induced HM resistance which was kept 

consistent in the current investigation [269]. High levels of exchangeable HMs can lead to the 

higher levels of bacterial resistance to these HMs, as well as other HMs, and a range of antibiotics 

owing to various resistance mechanisms, e.g. same cellular efflux pumps and presence of 

resistance genes on the same genetic elements [16, 36, 253, 277, 278].     

The levels of Ab resistance in bacteria isolated from 6WM were significantly higher in HM-spiked 

microcosms’ soil compared to those from control microcosms. This suggests that inducing 

different levels of HM resistance in bacterial consortia in the presence of these HMs in soil can 

lead to co-resistance of various Abs [36, 253, 277, 278, 296].   

Resistant bacterial counts from B6MM and P6MM showed the HMR/total bacterial CFU ratios 

were significantly higher in HM-spiked microcosms compared to those from control microcosms, 
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and these ratios were greater in P6MM compared to those from B6MM. It suggests that the long 

term usage of HM-contained compounds, e.g. facial eczema remedies, and the higher levels of 

Cd and Zn in pastoral soil used in P6MM has resulted in higher levels of HM resistance in bacteria 

isolated from pastoral soil [16]. In addition, different levels of carbon, nitrogen, and 

contaminants in this pastoral soil compared to the background soil, affects the levels of HM 

resistance in bacteria. It is suggested that bacterial resistance to Cd and Zn would result in 

greater levels of resistance to Hg too, due to various mechanisms, e.g. cellular efflux pumps [23, 

271-275]. It means resistance to Hg happens in bacterial isolates which have Cd and Zn 

resistance mechanisms as efflux pumps. The levels of Hg in the soil samples used in this study 

were not higher in pastoral soils compared to background soil, but this feature can be 

interpreted as the main factor responsible for higher level of bacterial resistance to Hg for 

bacterial isolates from pastoral soils (with the higher levels of Cd and Zn concentrations) 

compared to background soil [16].     

Similar to 6WM, the levels of HMR/total bacterial CFU ratios in both B6MM and P6MM were 

increased from Time 0 to the 2-month interval. The increase in this ratio was slower from 2 

months onward in B6MM, while this ratio was almost same at 2, 4 and 6 months in P6MM 

(Figures 5.5-5.10). It suggests the adaptation of soil bacteria in both soil-type microcosms to the 

different levels of HMs present in soil after a period of time [264, 270]. While bacteria in 

background soil continue to develop resistance with a slower trend after 2 months of incubation 

compared to earlier incubation periods, the HM and Ab resistance of the bacterial consortia is 

mostly stable after 2 months of incubation compared to shorter incubation periods. It can be 

interpreted as the presence of higher levels HM and Ab’s resistance mechanisms in bacterial 

consortia in pastoral soils which results in faster adaptation to high levels of HMs in soils, while 

these mechanisms continue to develop also after 2 month of incubation, although with a slower 

trend compared to the earlier period of incubation. Several reports mention the levels of 

exchangeable HMs in soil decrease over time, as we observed here from 2 months’ incubation 



188 
 

onward [295, 297]. However, Acosta-Martínez et. al. (2010), suggested the bacterial adaptation 

to HMs happens in similar timeframes [264].    

The MIC and EC50 values of HMs determined by the BM method for HMR isolates from 6WM 

soils differed between those for isolates from HM-spiked microcosms compared to those for 

isolates from control microcosm soils at Time 0 and after 6 weeks of incubation (Figures 4.49-

4.51; and Figures A2.7-A2.11, Appendix 2). Isolates from HM-spiked microcosms soils had higher 

MIC and EC50 values for HMs with p-values as low as < 0.001 [282, 287, 288].  

Greater MIC and EC50 values of Abs for 6WM soils’ HMR isolates compared to those for HM-

sensitive bacteria from the same microcosms soil were determined. Higher levels of HM 

resistance in bacteria can lead to higher levels of Ab resistance in bacteria [283, 287]. Ab 

resistance threshold in soil bacterial isolates is defined as growth at 20 µg mL-1 for all classes of 

Abs [217, 220]. According to this, the percentage of isolates categorised as resistant amongst 

HMR isolates were significantly higher than the HM sensitive bacteria, verifying the HM and Ab 

co-resistance phenomenon.    

The results of BM analysis for bacteria from B6MM and P6MM soils showed there were 

significantly higher HM and Ab’s MIC and EC50 values for bacteria from the HM-spiked 

microcosms at Time 0 and after 6 months of incubation compared to those from control 

microcosms. There were initial higher levels of HM and Ab’s MIC and EC50 values for bacteria 

from P6MM microcosms compared to those from B6MM at Time 0, due to initial lower levels of 

HMs in background soil used for B6MM. In addition, according to the recommendations [217], 

there were significantly higher proportions of HMR and AbR bacteria in HM-spiked microcosms 

soils compared to those from soils of control microcosms. Similar to 6WM soils’ bacteria, higher 

levels of HMs in 6-month microcosms’ soils lead to the higher bacterial HM resistance, thereby, 

it may lead to higher levels of Ab resistance in bacteria according to the previous surveys [255, 

283, 286, 287]. 
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The results of PICT analysis of bacterial consortia for samples from 6WM, B6MM and P6MM soils 

revealed that there were greater HMs and Abs’ MIC and EC50 values for HM-spiked microcosms 

compared to those from control microcosm soil. The presence of higher levels of HMs in HM-

spiked microcosms soils and also based on previous reports [281-283], it is interpreted that 

added different concentrations of HMs into microcosms soils leads to higher levels of HM 

resistance in soil’s bacterial isolates. This project’s results and previous reports [281-283], can 

be interpreted that similar processes occur in the wider environment. Co-resistance for Ab can 

occur in bacterial isolates with different levels of HM resistance [284]. 

The analysis of HMs concentrations in the microcosms leachate at the time of 6 hours of 

incubation showed strong adsorption of Cd, Zn and Hg to the soil particles (Tables 5.2 and 5.3). 

It means the levels of HMs in microcosms soils were raised significantly and only a small amount 

of HM ions were detected in the microcosms leachate. The levels of organic matter in soil could 

be one of the main factors involved in HMs adsorption to the soil particles and subsequently 

may reduce the levels of bioavailability of HMs in soils [251].    

The levels of exchangeable HMs ions in 6 months microcosms were determined. The aim of this 

analysis was to determine the levels of bioavailable HMs in microcosm soils after 6 months of 

incubation (Table 5.4), although bioavailability is also determined by interactions between the 

organisms and soil environment [251]. It can be interpreted that bacteria could be able to access 

the HM ions bound to soil particles more than those detected as exchangeable ions. However, 

this analysis used here is one of the methods to determine the available HM ions affecting soil 

bacteria and development of resistance [193]. 

In conclusion, this project showed that the ratios of HMR and AbR/total CFU bacteria are higher 

in soil samples with higher levels of HMs compared to those with lower concentrations. The 

bacteria subjected to the selective pressure of HMs in soil show higher resistance to different 

levels HMs and Abs. These findings support the hypothesis of this study that the levels of HM 
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and Ab resistance in soil bacteria is increased by elevated concentrations of HMs in the 

environment.  
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Chapter 6, Results Part 3 

6.1. Study 3: Molecular and DNA Sequencing Investigations  

6.1.1. Introduction 

In response to accumulation of heavy metals in soils, some microorganisms including bacteria 

develop a range of resistance mechanisms, which work to reduce the impact of metal toxicity, 

as well as co-occurrence of antibiotics resistance. Several lines of evidence suggest that 

resistance to different kinds of HMs and Abs can occur in the presence of resistance genes. These 

genes induce resistance to HMs and Abs, posing a threat to both human and animal health. The 

focus of Study 3 was to investigate bacterial communities’ structures in soil samples from WR, 

BRP, 6WM and 6MM. This was investigated using a Terminal Restriction Fragment Length 

Polymorphism (TRFLP) protocol. Further, selected BRP soil samples and 6WM soil samples, 

spiked with different levels of HMs were used as representative samples for investigations of 

bacterial communities’ structure and metagenomic differences using Next Generation 

Sequencing (NGS) analysis. Genes profile differences which may have occurred due to presence 

of HMs in soil and involvement of these genes in the occurrence of HM and Ab resistance were 

investigated as described in this chapter. TRFLP and NGS are the established tools for these 

explorations [298-301]. Bacterial community structures in soil are changed in the presence of 

elevated levels of HMs and this can change lots of phenotypic characteristics of bacteria in soil. 

For example, levels of bacterial reproduction, introduction of extracellular compounds involved 

in biofilm production, introduction of tolerance features in the soil bacteria to a given HM or 

other HMs, and Metabolism changes of bacterial cells. Bacterial community structure changes 

can affect the quality of farmland and affect the quality and quantity of plant and animal 

production. Expanding knowledge to know which bacterial groups are affected more by HM 

levels in soil and its environmental and financial consequences are of importance, and justify 

conducting investigations on bacterial community structure in soils with elevated levels of HMs.   
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6.1.2. Methodology 

The methodology used for this chapter is described in Section 3.12 of the Methodology Chapter. 

In short, soil DNA extraction, TRFLP and 16s rDNA were employed. In this part of the molecular 

investigation of soil bacterial communities’ structure, selected BRP and 6WM soil samples with 

various levels of HMs, were used. The representative samples from BRP were B10 (70 m from 

the start of the airstrip), B14 (30 m from the start of the airstrip) and B17 (at the start of the 

airstrip) for 16s rDNA sequencing. The samples for 6WM were from 100 mM Cd-spiked, 200 mM 

Zn-spiked, 50 mM Hg-spiked and Control microcosms for 16s rDNA sequencing. The microcosms 

samples were selected according to the toxicity of the HMs, Hg > Cd > Zn to bacteria and their 

probable effect on bacterial community changes in soil. The samples from 200 mM Zn-spiked 

microcosm was chosen as Zn-microcosm representative; it was the same concentration which 

showed highest ratios of ZnR/total bacterial CFU compared to other microcosms spiked with a 

range of concentrations of Zn. The sample from 100 mM Cd-spiked microcosm was chosen as 

Cd-microcosm representative; it was one concentration higher than the concentration which 

showed highest ratios of CdR/total bacterial CFU compared to other microcosms spiked with Cd. 

The sample from 50 mM Hg-spiked microcosms was chosen as Hg-microcosm representative; it 

was two concentrations higher than the concentration which showed highest ratios of HgR/total 

bacterial CFU compared to other microcosms spiked with a range of Hg concentrations.  

Figure 6.1 illustrates different steps and experiments used for Chapter 6. 
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Fig. 6. 1. Flow chart illustrating different steps and experiments of Chapter 6.  
 

6.1.3. Terminal Restriction Fragment Length Polymorphism (TRFLP)  

DNA extraction from the soil samples and PCR reactions targeting the bacterial 16s rDNA gene 

and restriction endonuclease digestion of these amplimers using MspI was performed (Section 

3.12.3). The TRFLP samples were applied to an ABI3730 Capillary Genetic Analyser. The raw data 

were processed on GeneMapper software and non-metric Multi-Dimensional Scaling (NMS) 

analysis was performed with PRIMER v. 7 software using the Bray-Curtis similarity index [233]. 

The data for bacterial community structures were analysed by three-way ANOVA. Soil samples, 

history of soils usage (for samples from Waikato Region) and distance of sub-sets from the 

fertiliser storage (for Belmont Park soil samples), and soils HM concentrations were introduced 

to the analysis as independent variables. The dependent variable was the number of T-RFs reads. 

Three-way ANOVA was conducted for Terminal Restriction Fragment Length Polymorphism 

(TRFLP) analysis of soil samples from microcosms. Soil samplings at appropriate intervals (2 

weeks or 2 months), initial soils HM concentrations and concentration of HM additives to the 

microcosms were introduced to the analysis as independent variables. The dependent variable 

was the number of T-RFs reads. 
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6.1.3.1. Waikato Region soil samples 

Soil samples collected from WR, including pastoral, arable and background soils of WRSS1, 

WRSS2 and WRSS3 were analysed in this part of the study. The result of NMS analysis of WR soil 

communities’ structure, analysed according to the abundance and size of bacterial T-RFs, 

showed there were >80% similarity between the bacterial communities from background soils 

on one hand and those from pastoral and arable soil on the other hand. There were >40% 

similarity between bacterial communities from background, pastoral and arable soils. Three-

Way ANOVA analysis determined that there were significant difference between the relative 

abundance of T-RFs in background soils’ bacterial communities compared to those for pastoral 

and arable soils (p < 0.05) (Figure 6.2). 

 

Fig. 6. 2. NMS analysis plot of TRFLP relative peak height for WR soils’ 
bacterial communities’ data, using the Bray-Curtis similarity index. 
Significant difference (p < 0.05) between the two clusters characterised 
with >80% of similarity.    

 

6.1.3.2. Belmont Regional Park soil samples 

A total number of 8 pastoral soil samples collected from the airstrip at BRP were analysed in this 

part of the investigation. The result of NMS of data from BRP soil samples’ bacterial communities 

showed there was >80% similarity between the bacterial communities from B17 and B16 soils. 



195 
 

In addition, there were >80% similarity between the bacterial communities from B10-B15 soil 

samples. The data determined that there were >40% similarity between all of bacterial 

communities from BRP soils. Three-way ANOVA showed there were significant differences 

between the relative abundance of T-RFs in B17 and B16 soils’ bacterial communities compared 

to those form other BRP soil samples (p < 0.05) (Figure 6.3). 

 
Fig. 6. 3. NMS analysis plot of TRFLP relative peak height for BRP soils’ bacterial 
communities’ data, using Bray-Curtis similarity index. Significant difference (p 
< 0.05) between the two clusters specified with >80% of similarity.   

  
6.1.3.3. TRFLP Analysis of Soil DNA from 6-week Microcosms 

6.1.3.3.1. Cd-spiked microcosms (6WCdM) 

The result of NMS of data from 6WM bacterial communities showed at Time 0 there were 60-

80% similarity between the bacterial communities from control, 5 and 10 mM Cd-spiked 

microcosms. In addition, bacterial communities from Cd 50, 100 and 200 mM microcosms were 

> 80% similar at Time 0. At week 2, the Cd spiked communities appear to be transitioning 

towards greater similarity with each other. After 4 and 6 weeks the bacterial communities from 

most of Cd-spiked communities were >80% similar and only 60% similar to the control 

microcosm’s bacterial communities. Three-Way ANOVA showed that there were significant 

differences between the relative abundance of bacterial T-RFs in the control microcosm 
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compared to those from 50, 100 and 200 mM Cd-spiked microcosms’ bacterial communities at 

Time 0, and 2, 4 and 6-week timepoints; and also those from all of 6WCdM at 6-week time-point 

(p < 0.05) (Figure 6.4).  

6.1.3.3.2. Zn-spiked microcosms (6WZnM) 

The NMS result on data from 6WM soil samples revealed that bacterial communities from 

control, 20 and 50 mM Zn microcosms were 60-80% similar at Time 0 and 2 weeks. The bacterial 

communities from 100, 200 and 300 mM Zn microcosms were >80% similar at Time 0 and 2-

week time-points. After 4 or 6 weeks the bacterial communities from 20 and 50 mM Zn and 100, 

200 and 300 mM Zn microcosms became more similar and less similar to the control. Three-Way 

ANOVA revealed that there were significant differences between the relative abundance of 

bacterial T-RFs in the control microcosms compared to those from 100, 200 and 300 mM Zn at 

Time 0 and 2-week timepoints and also all of the 6WZnM at Time 0 and after 2, 4 and 6 weeks 

of incubation (p < 0.05) (Figure 6.5).  

Hg-spiked microcosms (6WHgM) 

The NMS analysis of 6WHgM soil samples’ bacterial communities revealed that there were >80% 

similarity between bacterial communities from control, 0.5 and 1 mM Hg microcosms, and also 

between communities from 5, 10 and 50 mM Hg microcosms at Time 0. The similarity of the 

communities from control microcosms to other Hg-spiked microcosms changed to >60% after 2 

weeks. The bacterial communities from 0.5, 1, 5 and 10 mM Hg microcosms showed >80% 

similarity after 2 weeks. In addition, the communities from 1, 5, 10 and 50 mM Hg were >80% 

similar at 2-week timepoint. After 6 wees, the similarity of control microcosm’s communities to 

other microcosms reduced by >40%. The communities from 0.5 and 1 mM Hg microcosms were 

>80% similar after 4 and 6 weeks. Moreover, communities from 5, 10 and 50 mM Hg microcosms 

showed >80% similarity. Three-Way ANOVA showed there were significant differences between 
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the relative abundance of bacterial T-RFs in the control microcosms compared to those from 

6WHgM at 2, 4 and 6-weeks timepoints (p < 0.05) (Figure 6.6).  
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Fig. 6. 4. NMS analysis plot of TRFLP relative peak height for 6WCdM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the clusters specified with >60% of similarity compared to the control microcosms’.    
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Fig. 6. 5. NMS analysis plot of TRFLP relative peak height for 6WZnM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the clusters specified with >60% of similarity compared to control microcosms’. 
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Fig. 6. 6. NMS analysis plot of TRFLP relative peak height for 6WHgM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the clusters specified with >60% similarity compared to control microcosms’.
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4.3.3.4. 6-month microcosms soil samples 

Cd-spiked background soil microcosms (B6MCdM) 

NMS of data from B6MCdM soil samples showed there was >40% similarity between the 

bacterial communities from control microcosm and those from Cd-spiked microcosms. There 

was >60% similarity between the bacterial communities from Cd-spiked microcosms soils at 

Time 0 and after 2, 4 and 6-months of incubation. There was >80% similarity between bacterial 

communities from Cd 5 and 10 mM-spiked microcosms at Time 0 and after 2, 4 and 6-months of 

incubation. Similarly, there was >80% similarity between Cd 50, 100 and 200 mM-spiked 

microcosms at the mentioned time intervals. Three-Way ANOVA analysis showed there were 

significant differences between the relative abundance of bacterial T-RFs in the control 

microcosms compared to B6MCdM soils’ bacterial communities at all of the time intervals (p < 

0.05) (Figure 6.7).  

Zn-spiked background soil microcosms (B6MZnM) 

The NMS of data from B6MZnM soil samples revealed that there was >40% similarity among all 

of the bacterial communities from Zn-spiked background soil microcosms at Time 0 and after 2, 

4 and 6 months of incubation. There was >60% similarity between the bacterial communities 

from B6MZnM at Time 0 and after 2, 4 and 6-months of incubation. In addition, there was >80% 

similarity between the bacterial communities from B6MZnM spiked with 20 and 50 mM 

concentrations of Zn at Time 0 and after 2, 4 and 6-months of incubation. Likewise, there was 

>80% similarity between B6MZnM spiked with 100, 200 and 300 mM of Zn at all of the 

mentioned time intervals. Three-Way ANOVA analysis showed there were significant differences 

between the relative abundance of bacterial T-RFs in the control microcosms compared to those 

from Zn-spiked B6MM at Time 0 and after 2, 4 and 6 months of incubation (p < 0.05) (Figure 

6.8).  
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Hg-spiked background soil microcosms (B6MHgM) 

The NMS of data from B6MHgM soil samples showed that there was >40% percent similarity 

among the bacterial communities from control microcosms compared to those from the 

B6MHgM. Similarity of >60% was determined between Hg-spiked microcosms at Time 0 and 

after 2, 4 and 6 months of incubation.  In addition, there was >80% similarity between bacterial 

communities from Hg 0.5 and 1 mM-spiked microcosms on one hand and those from Hg 5, 10 

and 50 mM-spiked microcosms at Time 0. Similarity of >80% was detected between bacterial 

communities from B6MHgM spiked with 1, 5, 0 and 50 mM concentrations of Hg after 2 months 

of incubation, however, there was >80% similarity between Hg 0.5 and 1 mM-spiked microcosms 

at the 2-months time interval. In addition, there was >80% similarity between bacterial 

communities from Hg 0.5, 1, 10 and 50 mM-spiked B6MHgM after 4 months of incubation, 

however, similarity of >80% was detected between bacterial communities from Hg 5, 10 and 50 

mM-spiked B6MHgM. At the time interval of 6 months of incubation similarity of >80% was 

determined between all of the B6MHgM, although, the same similarity level was detected 

between those from Hg 5, 10 and 50 mM-spiked B6MHgM. Statistical analysis using three-Way 

ANOVA showed there were significant differences between the relative abundance of bacterial 

T-RFs from control microcosms compared to those from B6MHgM at Time 0 and after 2, 4 and 

6 months of incubation (p < 0.05) (Figure 6.9).  

Cd-spiked pastoral soil microcosms (P6MCdM) 

The NMS of data from P6MCdM soil samples showed there was >40% similarity among the 

bacterial communities from control microcosm and those from Cd-spiked microcosms. There 

was >60% similarity between the bacterial communities from Cd-spiked microcosms soils at 

Time 0 and after 2, 4 and 6 months of incubation. Similarity of >80% was detected between 

bacterial communities from Cd 5 and 10 mM-spiked microcosms at Time 0 and after 2, 4 and 6-

months of incubation. Similarly, there was >80% similarity between Cd 50, 100 and 200 mM-
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spiked microcosms at the mentioned time intervals. Three-Way ANOVA statistical analysis 

showed there were significant differences between the relative abundance of bacterial T-RFs 

from control microcosms compared to those from the P6MCdM soils (p < 0.05) (Figure 6.10).   

Zn-spiked pastoral soil microcosms (P6MZnM) 

The NMS of data from P6MZnM soil samples showed there was >40% similarity among the 

bacterial communities from control microcosm and P6MZnM at Time 0 and after 2, 4 and 6-

weeks of incubation. There was >80% similarity between the bacterial communities from 

P6MZnM soils at all of the time points. Similarity of >80% was detected between bacterial 

communities from Zn 20 and 50 mM-spiked microcosms on one hand and those from Zn 100, 

200 and 200 mM-spiked microcosms on the other hand at all of the time intervals. Three-Way 

ANOVA showed there were significant differences between the relative abundance of bacterial 

T-RFs in the control microcosms compared to those from P6MZnM at Time 0, and after 2, 4 and 

6 months of incubation (p < 0.05) (Figure 6.11).  

Hg-spiked pastoral soil microcosms (P6MHgM) 

The NMS of data from P6MHgM soil samples’ bacterial communities revealed that there was 

>20% similarity among the bacterial communities from control microcosms and all of the Hg-

spiked microcosms. In addition, there was >60% similarity between P6MHgM at all of the time 

intervals. Similarity of >80% was determined between bacterial communities from Hg 0.5 and 1 

mM-spiked microcosms and also between those from Hg 5, 10 and 50 mM-spiked microcosms 

at all of the time intervals. Three-Way ANOVA determined that there were significant 

differences between the relative abundance of bacterial T-RFs from the control microcosms 

compared to those from P6MHgM at Time 0 and after 2, 4 and 6 months of incubation (p < 0.05) 

(Figure 6.12).  
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Fig. 6. 7. NMS analysis plot of TRFLP relative peak height for B6MCdM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms. 
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Fig. 6. 8. NMS analysis plot of TRFLP relative peak height for B6MZnM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms. 
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Fig. 6. 9. NMS analysis plot of TRFLP relative peak height for B6MHgM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms. 
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Fig. 6. 10. NMS analysis plot of TRFLP relative peak height for P6MCdM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms. 
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Fig. 6. 11. NMS analysis plot of TRFLP relative peak height for P6MZnM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms. 
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Fig. 6. 12. NMS analysis plot of TRFLP relative peak height for P6MHgM soils’ bacterial communities’ data, using Bray-Curtis similarity index. Significant difference (p < 0.05) 
between the cluster specified with >60% similarity compared to control microcosms.
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6.1.4. 16s rDNA Next Generation Sequencing  

6.1.4.1. Belmont Regional Park soil samples 

Analysis of NGS of metagenomic 16s rDNA gene of bacterial communities from selected BRP soil 

samples by QIIME (Quantitative Insights Into Microbial Ecology) software, v.2, showed there 

were significant differences between the number of reads of this gene, related to the relative 

abundance of each bacterial phylum, in B10 (70 m from the start of the airstrip) and B14 (30 m 

from the start of the airstrip) soil samples compared to those in B17 (at the start of the airstrip) 

soil sample (p < 0.05). Figure 6.13 illustrates the diversity of bacterial communities in the 

selected BRP soils at the level of phylum. The most abundant phyla detected belonged to 

Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria and Chloroflexi, Acidobacteria and 

Chloroflexi were the phyla that differed most among the samples (p < 0.05). Table 6.1 lists the 

p-values for comparisons of the number of 16s rDNA gene reads in B10 and B14 compared to 

B17 for the taxonomical levels, including phyla, class, order, family, genus and species. The data 

are only shown to the level of phylum (Figure 6.13) due to the huge number of groups detected 

in lower taxonomic levels, e.g. class, order, etc. The highest differences amongst BRP samples 

were detected for Acidobacteria Verrucomicrobia, Bacteroidetes and Chloroflexi.       
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Fig. 6. 13. Chart depicting assignment of sequenced metagenomic Next Generation 16s rDNA 
gene to various bacterial phyla for selected Belmont Regional Park soil samples. B10 (70 meters 
from start of the airstrip), B14 (30 meters from start of the airstrip), and B17 (0 meters from 
start of the airstrip). P values compared to B17 sample.  
 

Table 6. 1. Comparison of NGS of bacterial 16s rDNA gene reads in various taxonomical levels 
from B10 and B14 soil samples compared to B17 soil from BRP. 

Taxonomy levels B10 B14 

Phylum p=0.018 p=0.039 

Class p = 0.0015 p = 0.031 

Order p < 0.001 p = 0.0221 

Family  p < 0.001 p = 0.0217 

Genus  p < 0.001 p = 0.0149 

Species p < 0.001 p = 0.0146 
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p = 0.039p = 0.018 
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4.3.4.2. 6-week microcosms soil samples 

Analysis of the metagenome by NGS of 16s rDNA genes for bacterial communities from selected 

6WM soil samples by QIIME software was performed. The samples were control, Cd 100 mM, 

Zn 200 mM and Hg 50 mM-spiked microcosms taken after 6 weeks of incubation. There were 

significant differences between the number of reads for 16s rDNA gene, related to each bacterial 

phylum, for the HM-spiked soil samples compared to those for control sample (p < 0.05). Figure 

6.14 illustrates the diversity of the bacterial communities in the selected 6WM soils at the level 

of phylum. Similar to the most abundant detected phyla in the BRP soil samples, the most 

abundant phyla determined in the 6WM soil samples were Proteobacteria, Bacteroidetes, 

Actinobacteria, Acidobacteria and Chloroflexi. Table 6.2 lists the p-values for comparison of the 

number of 16s rDNA gene reads in Cd, Zn and Hg-spiked 6WM soil samples for the lower 

taxonomical levels, including phylum, class, order, family, genus and species.  
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Fig. 6. 14. Chart depicting assignment of sequenced metagenomic Next Generation 16s rDNA 
gene to various bacterial phyla for 6WM selected HM-spiked microcosms (Cd 100 mM, Zn 200 
mM and Hg 1 mM, as well as control) microcosms soil samples. P value compared to Control 
sample. 
 
Table 6. 2. Comparison of bacterial 16s rDNA gene reads in various taxonomical levels of Cd, Zn 
and Hg-spiked 6WM soil samples compared to control microcosm soil. 

Taxonomy 
levels 

Cd 100 mM-spiked 
6WM 

Zn 200 mM-spiked 
6WM  

Hg 50 mM-spiked 
6WM  

Phylum p=0.009 p=0.038 p<0.001 
Class p = 0.008 p = 0.030 p < 0.001 
Order p = 0.007 p = 0.020 p < 0.001 
Family  p = 0.006 p = 0.015 p < 0.001 
Genus  p = 0.006 p = 0.010 p < 0.001 
Species p = 0.006 p = 0.010     p < 0.001 

 

6.1.6. Discussion 

TRFLP analysis of bacterial 16s rDNA gene profiles is a trusted technique for comparing soil 

microbial community structures [302, 303]. The statistical analysis investigated the distribution 
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of variation in the T-RFs associated with various levels of HMs in different soil samples. There 

are some reports indicating that HMs present in soil impose changes on bacterial community 

structures and these changes are for almost all of T-RF abundances of bacterial communities 

[298-300]. However, Gough and Stahl (2011) [304] contradicts this. The TRFLP analysis on the 

samples from Waikato region, Belmont Regional Park, 6-week microcosms and 6-month 

microcosms showed that higher levels of HMs in soil result in greater changes in the bacterial 

community structures in soil. 

TRFLP fingerprinting of WR soil samples revealed that higher levels of HMs in pastoral and arable 

soils compared to background soil were associated with distinct bacterial community structures 

suggesting the selection of particular species in the presence of high levels of HM. According to 

several published studies the high levels of HMs in pastoral and arable soils had been a selective 

influence on lots of bacterial taxa in these soils [304-307]. Based on the result in the current 

study, there were higher levels of Cd and Zn in pastoral and arable soils compared to background 

soils, which resulted in relatively distinct clusters of T-RFs abundance in pastoral and arable 

samples, though there was >80% similarity between these soils (Figure 4.90). This finding is in 

concordance with the report of Brodie et. al. (2002) [308]. 

The soil samples collected from BRP pastoral sub-sites were subjected to TRFLP analysis to 

explore associations between HM profile and bacterial T-RFs variations. Macdonald et. al. (2011) 

[306], suggested TRFLP analysis as a robust tool to perform the analysis of microbial diversity in 

soils with similar land use. TRFLP analysis of the BRP soil samples showed that higher levels of 

Cd and Zn at B17 (at the start of the airstrip) and B16 (10 m from the start of the airstrip) (See 

Section 4.1.3) had more variation in bacterial T-RFs abundance compared to other BRP sub-sites 

soil samples (Figure 4.91). This result indicates the direct relationship between the effect of 

higher levels of HMs in soil and greater changes in bacterial community structures [306].    
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Bacterial 16s rDNA gene TRFLP analysis was performed on the 6WM soil samples spiked with a 

range of Cd, Zn and Hg. Lazzaro et. al. (2006) [309], reported 16s rDNA gene TRFLP analysis was 

an effective tool to investigate the effects of HMs causing changes in soil bacteria community 

structures in microcosms during short and long term incubation.  

There were significant differences between the control microcosms’ soil bacterial profiles 

compared to those from Cd, Zn and Hg-spiked microcosms, especially for those with higher 

levels of HMs and after longer periods of incubation (Figures 4.92-4.94). Various studies have 

reported the effects of HMs on soil bacteria communities’ structures was effectively investigated 

by TRFLP fingerprinting [309, 310]. Li et. al. (2014) [310], reported that 30 days of incubation of 

soil spiked with HMs had major influence on bacterial community structures in microcosms.   

ANOVA analysis of 6MM soil bacteria TRFLP data showed there were significant differences 

between T-RF abundances in control microcosms compared to HM-spiked ones, especially in the 

microcosms spiked with the higher levels of HMs. T-RF variation was greater compared to 

control in the samples from HM-spiked microcosms with longer incubation periods (4 and 6 

months).  

Metagenomics is considered a sophisticated tool to analyse DNA extracted from environmental 

samples e.g. soil. This method is used to investigate the bacterial community structures in soil 

without the requirement of in vitro cultures [311, 312]. Practically, only less than 1% of soil 

bacteria are able to be cultured in vitro, therefore, the importance of metagenomics to provide 

a clear picture of bacterial communities’ structure in soil samples is evident [313, 314]. 

Metagenomics involves the exploration of gene composition of bacterial communities; 

therefore, this method provides a much wider view than phylogenetic perspectives alone from 

the sequencing of 16S rDNA gene in individual bacterial isolates [315-317]. The descriptive 

phylogenetic relations of uncultured bacteria and evolutionary profiles of bacterial community 

structures are some examples of the application of metagenomics [301]. In the present study, 
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bacterial communities’ structures in representative samples from BRP soils, and also selected 

6WM soil samples spiked with Cd, Zn and Hg were subjected to metagenomic 16s rDNA 

sequencing.  

High-throughput NGS of metagenomic 16s rDNA is an established method to describe the 

diversity of bacterial communities in soil samples [267] and was employed for this purpose in 

the current study. Comparatively, there are a huge number of reports of bacterial community 

structures utilising DNA-fingerprinting methods [268, 312], however the number of studies 

employing DNA sequencing are still rare [267, 318-322]. The 16s rDNA sequencing data 

presented in this thesis demonstrate that sequencing of bacterial metagenomic 16S rDNA 

fragment using NGS is an effective tool to investigate bacterial communities structures in soil 

samples containing various levels of HMs. Vierheilig et. al. (2015) [323], suggested that NGS 

remains a strong molecular research method which can change the fundamentals of the current 

knowledge about bacterial community structures in different environments. 

There are some reports suggesting of NGS 16s rDNA analysis has higher power compared to 

TRFLP fingerprinting tools to provide a clearer insight of bacterial community structures in soil. 

For example, Suzuki et. al. (2019) [324], cited that Lopes et. al. (2011) [325] compared the 

microbial diversity of organic and conventional paddy soils using PCR-DGGE analysis, and 

suggested that although these analyses provided useful information, but the techniques utilised 

for the bacterial communities structures investigations remained inadequate to provide a full 

perspective of bacterial diversity in soil samples compared to high-throughput NGS 16s rDNA 

sequencing. This report is in concordance with the report of Lynch et. al. (2012) [326] on 

bacterial phylogenetic investigation using NGS of 16s rDNA gene.  

Hermans et.al. (2017) [267] reported that there are fundamental relationships between the 

levels of HMs and evolution of bacterial community structures in soil. In the current study, 

employing 16s rDNA sequencing analysis revealed that bacterial community compositions in the 
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BRP soil samples had sustained some levels of evolutionary changes under the selection 

pressure of HM contaminants. There were significant differences between the relative 

abundance of the major phyla in B10 (lowest concentrations of HMs, 1.14 and 49 mg kg-1 of dry 

soil for Cd and Zn, respectively) and B14 soil samples in contrast with B17 soil sample (highest 

concentrations of HMs, 7.2 and 95 mg kg-1 of dry soil for Cd and Zn, respectively). The most 

prevalent bacterial phyla in BRP soil samples were Proteobacteria, Bacteroidetes, 

Actinobacteria, Acidobacteria and Chloroflexi, though a wide number of other bacterial phyla 

were determined. Aislabie and Deslippe (2013) [35], and Fierer at. al. (2007) [327], reported 

Proteobacteria, Actinobacteria and Acidobacteria as the most numerous bacterial phyla in soil 

samples. There were some bacterial groups which were not able to be classified to a particular 

phylum (  ̃ 10% of determined phyla in B17 and microcosms soils, and   2̃0% in B10 and B14 soils). 

There are reports in concordance with this finding (Janssen (2006) [328] and Nacke et. al. (2011) 

[329]). Also, Li et. al. (2019) [330] reported that the most abundant Cd-resistant bacteria 

determined by 16s rDNA sequencing were the members of Proteobacteria, Bacteroidetes and 

Actinobacteria phyla and the genera Chryseobacterium, Cupriavidus, Curtobacterium, and 

Sphingomonas.   

The presence of elevated levels of HMs in soil can change many phenotypic characteristics of 

bacterial reproduction in soil, for example, introduction of extracellular compounds involved in 

biofilm production, introduction of tolerance features in the soil bacteria to the added HM or 

other HMs, and metabolism of bacterial cells. 

In the present study, 16s rDNA sequencing analysis showed that bacterial community structures 

in the selected 6WM soil samples had changed due to presence of elevated HMs concentrations 

in soil. ANOVA showed that there were significant differences between the relative abundance 

of the most abundant phyla in 6WCdM (spiked with 100 mM Cd), 6WZnM (spiked with 200 mM 

Zn) and 6WHgM (spiked with 50 mM Hg). The most prevalent bacterial phyla in BRP soil samples 

were Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria and Chloroflexi, as well as a 
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large number of other less numerous bacterial phyla. The detected major phyla as well as the 

unknown groups for microcosms and BRP soils were in concordance with previous reports [35, 

327-330]. 

In conclusion, the results of this investigation showed that structure of bacterial communities in 

soil is changed under selective pressure due to the presence of HMs. The bacterial communities 

with less developed HM resistance strategies (e.g. bacteria in background soil), sustain greater 

structural changes when exposed to HMs, compared to those bacterial communities that have 

already sustained a long term of exposure to HMs (e.g. bacteria in pastoral soil).    
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Chapter 7, Results Part 4 

7.1. Study 4, Investigation of Mobility of Heavy Metal and Antibiotic Resistance Genes. 

7.1.1. Introduction 

Horizontal Gene Transfer (HGT) in bacteria is an important mechanism for gene transfer in the 

environment. This phenomenon demonstrates gene transfer without vertical transmission 

through generations and has an important role in the evolution and the spread of resistance to 

antimicrobial compounds. The most common mechanisms of HGT in prokaryotes are 

conjugation, transformation and transduction [119]. Physical contact of the donor and recipient 

cells is important for HGT by conjugation. The focus of this chapter was to investigate HGT of Cd 

resistance genes, czcA and cadA, in bacterial isolates carrying these genes to the recipient 

bacterial strain, Pseudomonas aeruginosa ICMP 6286. The taxonomy of bacteria carrying the 

mobilizable Cd resistant genes were identified by 16s rDNA sequencing.  

7.1.2. Methodology 

The methodology used for this chapter is described in Sections 3.12.5, 3.12.6 and 3.13. In short, 

PCR reactions using specific primers to amplify Cd resistance genes in individual bacterial 

isolates, Replica Plate Mating (RPM), and identification of bacterial isolates using 16s rDNA 

Sequencing were employed. In this part of the study some of the archived individual CdR 

bacterial isolates in the HM BM experiments (Sections 3.11) were used. The bacterial isolates 

used for this investigation were chosen as representatives of Cd resistant isolates selected from 

WR, BRP and microcosms soil samples. Figure 7.1 illustrates different steps and experiments 

used in this study. 

 
Fig. 7. 1. Flow chart illustrating different steps and experiments used in Chapter 7. 
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7.1.3. PCR Reaction Amplifying Cd-Resistance genes Using Specific Primers 

Following DNA extraction from fresh overnight culture of a total number of 906 individual 

purified bacterial isolates by the boiling method, PCR reactions using specific primers, amplifying 

the czcA (252 bp) and cadA (1052 bp) Cd resistance genes, was performed. A total number of 

378 bacterial isolates (42 %) carried czcA and 22 isolates (2.3 %) carried cadA (Figures 7.2 and 

7.3). Table 7.1 lists the number of Cd resistant bacterial isolates from WR, BRP and microcosms 

soil samples and the abundance of isolates carrying czcA and cadA genes.  

 
Fig. 7. 2. Amplified 1052 bp cadA gene on agarose gel. 
(NTC: No Template Control). 

 

 
Fig. 7. 3. Amplified 252 bp czcA gene on agarose gel. 
(NT control: No Template Control). 
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Table 7. 1. Number of Cd resistant bacterial isolates from WR, BRP and microcosms 
soil samples and the number of isolates carrying czcA and cadA genes.  

Soil samples Number of Cd 
resistant isolates 

Cd resistance genes 

  cadA czcA 

WRSS1 pasture 15 1 (6.6%) 4 (28.5%) 
WRSS2 pasture 15 0 3 (20%) 
WRSS3 pasture 15 0 3 (20%) 
WRSS1 arable 15 0 3 (20%) 
WRSS2 arable 15 0 2 (13.3%) 
WRSS3 arable 15 0 2 (13.3%) 
WRSS1 background 15 1 (6.6%) 1 (6.6%) 
WRSS2 background 15 0 0 
WRSS3 background 15 0 1 (6.6%) 
BRP B17 40 1 (2.5%) 37 (92.5%) 
BRP B16 40 2 (5%) 35 (87.5%) 
BRP B15 40 1 (2.5%) 34 (85%) 
BRP B14 40 0 25 (62.5%) 
BRP b13 40 0 17 (42.5%) 
BRP B12 40 0 11 (27.5%) 
BRP B11 40 0 8 (20%) 
BRP B10 40 1 (2.5%) 8 (20%) 
6WCdM 40 2 (5%) 28 (70%) 
6WZnM 40 1 (2.5%) 23 (57.5%) 
6WHgM 40 0 5 (12.5%) 
6WM, control 30 0 2 (6.6%) 
B6MCdM 40 2 (5%) 24 (60%) 
B6MZnM 40 2 (5%) 23 (57.5%) 
B6MHgM 40 0 5 (12.5%) 
B6MM, control 30 0 2 (6.6%) 
P6MCdM 40 4 (10%) 31 (77.5%) 
P6MZnM 40 2 (5%) 29 (72.5%) 
P6MHgM 40 2 (5%) 5 (12.5%) 
P6MM, control 30 0 7 (23.3%) 

 

7.1.4. Horizontal Gene Transfer (HGT) by Replica Plate Mating (RPM) 

HGT by conjugation using an SmR derivative of P. aeruginosa ICMP 2686 as recipient cells, and 

the bacterial isolates carrying cadA or czcA Cd resistance genes as donor cells on Brain Heart 

infusion plates (containing 100 µg mL-1 of streptomycin and 1 mM of CdCl2) was investigated 

using the RPM method. A total of 400 bacterial isolates were tested for their ability to transfer 

CdR to the recipient, including 378 isolates carrying czcA and 22 isolates carrying the cadA gene. 

A total number of 104 isolates out of these CdR 400 isolates, were found to transfer these genes 

to the recipient cells (Figure 7.4). Table 7.2 lists the number of bacterial isolates carrying Cd 
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resistance genes from WR, BRP and microcosms soil samples and the number of isolates able to 

transfer their Cd resistance genes to the recipient while conjugated.  

  

  

  
Fig. 7. 4. HGT of cadA (A, B and C images) and czcA (D, E and F images) Cd resistant genes from 
donor cells to the transconjugant SmR P. aeruginosa ICMP 2686 strain. Donor isolates are on 2% 
Nutrient Agar (left plates) and 2% Brain Heart Agar containing 100 µg mL-1 streptomycin and 1 
mM of CdCl2. NC: Negative Control. 
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Table 7. 2. Number of bacterial isolates carrying cadA and czcA Cd 
resistance genes transferring these genes to the transconjugants 
(SmR P. aeruginosa ICMP 2686) from WR, BRP and microcosms soil 
samples. 

Soil samples Number of isolates carrying Cd 
resistance genes 

 cadA czcA 

WRSS1 pasture 1 2 
WRSS2 pasture 0 1 
WRSS3 pasture 0 2 
WRSS1 arable 0 2 
WRSS2 arable 0 1 
WRSS3 arable 0 0 
WRSS1 background 1 0 
WRSS2 background 0 0 
WRSS3 background 0 0 
BRP B17 0 10 
BRP B16 0 11 
BRP B15 1 8 
BRP B14 0 7 
BRP b13 0 6 
BRP B12 0 3 
BRP B11 0 2 
BRP B10 1 3 
6WCdM 0 7 
6WZnM 1 5 
6WHgM 0 1 
6WM, control 0 0 
B6MCdM 1 7 
B6MZnM 0 5 
B6MHgM 0 0 
B6MM, control 0 0 
P6MCdM 1 7 
P6MZnM 1 5 
P6MHgM 0 0 
P6MM, control 0 1 

      

7.1.5. Examination of cadA and czcA Genes in Recipient Cells by PCR 

The total number of 104 transconjugants that received cadA and czcA genes were subjected to 

PCR investigations. The result showed that cadA gene was amplified from all of the recipients 

that putatively received the cadA gene (total number of 8 isolates), and czcA gene was amplified 

from all of the recipients that received the czcA gene (n=96 isolates) (Figures 7.5 and 7.6).  
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Fig. 7. 5. Amplified cadA (1052 
bp) gene from transconjugants 
after conjugation with donor 
isolates carrying cadA gene. 

 

 
Fig. 7. 6. Amplified czcA (252 bp) gene from 
transconjugants after conjugation with donor 
isolates carrying czcA gene. 

 

7.1.6. Heavy Metal and Antibiotic Resistance Examination of the Recipient Strains 

To investigate the HMR and AbR phenotypes of transconjugants isolated in Section 7.1.4, the 

isolates were cultured on Nutrient Agar plates containing HMs concentrations including 1 and 

0.1 mM of Cd, 5 and 1 mM of Zn and 0.1 and 0.01 mM of Hg. BM analysis was performed to 

examine the resistance of these isolates to Abs. 

This showed 100% of transconjugants that had received czcA or cadA genes, were resistant to 

0.1 and 1 mM Cd. In addition, 100% of bacterial czcA+ transconjugants showed resistance to 1 

and 5 mM Zn. For the transconjugants which received cadA gene, there was 100% resistance to 

1 mM and 97% to 5 mM of Zn. The result for Hg resistance showed 78% of transconjugants 
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carrying czcA gene could grow on 0.1 mM Hg, while 96% of them grew on 0.01 mM of Hg. 

Further, 31% of cadA+ transconjugants were resistant to 0.1 mM Hg, and 73% of them grew on 

0.01 mM of Hg (Figure 7.7).  

 
Fig. 7. 7. Percentage of HMR for czcA+ and cadA+ tranconjugants P. 
aeruginosa ICMP 2686. 

 

The results of BM analysis to determine MIC values (according to EUCAST ECOFF 

recommendations [218]) for the genetically modified P. aeruginosa ICMP 2686 obtained czcA 

and cadA genes with Tc, Cm, Ery, Cb and Amp showed 75% of isolates which obtained czcA and 

59% of isolates with cadA gene were resistant to Tc. In addition, 74% of czcA-obtained isolates 

and 61% of those carrying cadA gene were resistant to Cm. Result showed 82% of czcA gene-

obtained isolates and 85% of those carrying cadA gene were resistant to Ery. Resistance to Cb 

was determined for 88% of isolates with czcA gene and 83% of those with cadA gene. Finally, 

88% of isolates with czcA gene and 86% of those carrying cadA gene showed resistance to Amp 

(Figure 7.8).  
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Fig. 7. 8. Percentage of tranconjugant P. aeruginosa ICMP 2686 
carrying czcA and cadA genes resistant to Abs in BM analysis. 

 

7.1.7. Bacterial Isolates Identification Using 16s rDNA Sequencing 

DNA was extracted from n=60 individual bacterial isolates used as donors in HGT investigation 

followed by PCR amplification of 16s rDNA amplimers using the unlabelled primers 63F and 

1087R (Section 3.12.3). The samples were subjected to 16S rDNA sequencing with an ABI3730 

DNA Analyzer. The sequencing data were compared to NCBI (National Centre for Biotechnology 

Information) BLAST using blastn suite to find the identity from the sequences. Table 7.3 lists the 

identifies of these isolates, including their soil sample origins, description from NCBI and the 

percentage of identity to the candidates on the NCBI database. Most of the identified bacteria 

which had successfully transferred CdR genes to new recipients were from the genera 

Pseudomonas, Achromobacter, Stenotrophomonas (Proteobacteria phylum) and 

Chryseobacterium (Bacteroidetes phylum) (Figure 7.9 and Table 7.3).  
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Fig. 7. 9. Abundance (%) of genera (left) and phyla (right) of isolates identified by 16s rDNA 
sequencing. These isolates were able to transfer their cadA and czcA Cd resistance genes to new 
recipients via conjugation.  
  
 
Table 7. 3. Individual bacterial isolates involved in HGT test as donor cells identified by 16s rDNA 
sequencing.  

 Bacterial 
isolate ID 

Carrying Cd 
resistant gene 

Description Accession 
number 

Percent 
identity 

No. 4, WRSS1, 
Pasture soil 

cadA Rhodococcus erythropolis 
partial 16S rRNA gene, strain 
SBUG 107. 

FR745420.1 99.10% 

No. 31, WRSS1, 
Pasture soil 

czcA Pseudomonas azotoformans 
strain P45A chromosome, 
complete genome. 

CP041236.1 99.80% 

No. 180, 
WRSS1, 
Pasture soil 

czcA Chryseobacterium 
rhizosphaerae strain WTB5 
16S ribosomal RNA gene, 
partial sequence. 

MK240433.1 98.90% 

No. 184, 
WRSS2, 
Pasture soil 

czcA Stenotrophomonas 
maltophilia strain Tj 16S 
ribosomal RNA gene, partial 
sequence. 

MF280131.1 99.40% 

No. 204, 
WRSS3, 
Pasture soil 

czcA Bacterium strain BS1294 16S 
ribosomal RNA gene, partial 
sequence. 

MK824482.1 97.73% 

No. 212, 
WRSS1, arable 
soil 

czcA Chryseobacterium lactis 
partial 16S rRNA gene, strain 
R-52618. 

LN995695.1 99.20% 
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No. 217, 
WRSS1, arable 
soil 

czcA Bacterium strain BS1294 16S 
ribosomal RNA gene, partial 
sequence. 

MK824482.1 99.32% 

No. 239, BRP, 
B17 

czcA Cupriavidus sp. strain JS3054 
16S ribosomal RNA gene, 
partial sequence. 

MH588163.1 99.40% 

No. 244, BRP, 
B17 

czcA Achromobacter xylosoxidans 
strain E2 16S ribosomal RNA 
gene, partial sequence. 

MK849863.1 99.20% 

No. 252, BRP, 
B17 

czcA Alcaligenes sp. 242 16S 
ribosomal RNA gene, partial 
sequence. 

KT461862.1 99.10% 

No. 257, BRP, 
B17 

czcA Stenotrophomonas sp. strain 
D1 16S ribosomal RNA gene, 
partial sequence. 

MH814356.1 99.12% 

No. 260, BRP, 
B17 

czcA Pseudomonas protegens 
strain Exi5-13 16S ribosomal 
RNA gene, partial sequence. 

MK235212.1 99.10% 

No. 268, BRP, 
B17 

czcA Xanthomonas sp. PG15 16S 
ribosomal RNA gene, partial 
sequence. 

KU350604.1 90.22% 

No. 269, BRP, 
B17 

czcA Stenotrophomonas 
maltophilia partial 16S rRNA 
gene, isolate R5_A9_IIIA. 

LR215089.1 98.52% 

No. 290, BRP, 
B17 

czcA Pseudomonas sp. strain 
ICMP 22295 16S ribosomal 
RNA gene, partial sequence. 

MH392636.1 99.50% 

No. 306, BRP, 
B17 

czcA Serratia proteamaculans 
strain P4_BA1R 16S 
ribosomal RNA gene, partial 
sequence. 

MK883049.1 99.22% 

No. 307, BRP, 
B16 

czcA Chryseobacterium 
nakagawai strain 
NCTC13529 genome 
assembly, chromosome: 1. 

LR1234386.1 82.50% 

No. 345, BRP, 
B16 

czcA Stenotrophomonas 
maltophilia strain DGN5 16S 
ribosomal RNA gene, partial 
sequence. 

MK764970.1 91.53% 

No. 348, BRP, 
B16 

czcA Pseudomonas geniculata 
strain IARI-HHS1-19 16S 
ribosomal RNA gene, partial 
sequence. 

KF054771.1 95.33% 

No. 349, BRP, 
B16 

czcA Achromobacter pestifer 
strain LMG 3431 16S 
ribosomal RNA, partial 
sequence. 

NR_152016.1 99.21% 

No. 350, BRP, 
B16 

czcA Rhodococcus sp. strain 
OB0511_247-1 16S 
ribosomal RNA gene, partial 
sequence. 

KY020332.1 99.90% 



229 
 

No. 355, BRP, 
B16 

czcA Achromobacter sp. JW31.5a 
partial 16S rRNA gene, strain 
JW31.5a. 

FN556572.1 99.11% 

No. 356, BRP, 
B15 

czcA Pseudomonas palleroniana 
strain IHB B 7133 16S 
ribosomal RNA gene, partial 
sequence. 

KJ767328.1 99.80% 

No. 358, BRP, 
B15 

czcA Serratia sp. SP19E 16S 
ribosomal RNA gene, partial 
sequence. 

KP126635.1 99.61% 

No. 365, BRP, 
B15 

czcA Achromobacter sp. strain 
FW305-C-28 16S ribosomal 
RNA gene, partial sequence. 

MK402967.2 99.12% 

No. 367, BRP, 
B15 

czcA Serratia sp. A2 16S 
ribosomal RNA gene, partial 
sequence. 

EU287454.1 99.71% 

No. 376, BRP, 
B14 

czcA Stenotrophomonas 
maltophilia clone B2.18.23 
16S ribosomal RNA gene, 
partial sequence. 

AY837730.1 99.80% 

No. 377, BRP, 
B14 

czcA Bacterium strain YCR3A-3 
16S ribosomal RNA gene, 
partial sequence. 

MF143454.1 99.80% 

No. 379, BRP, 
B14 

czcA Bacterium strain BS1294 16S 
ribosomal RNA gene, partial 
sequence. 

MK824482.1 99.51% 

No. 388, BRP, 
B14 

czcA Chryseobacterium sp. strain 
DEM Bc1 16S ribosomal RNA 
gene, partial sequence. 

MG893574.1 99.40% 

No. 390, BRP, 
B13 

czcA Pseudomonas fluorescens 
strain B16-231 16S 
ribosomal RNA gene, partial 
sequence. 

MK072682.1 99.70% 

No. 391, BRP, 
B13 

czcA Pseudomonas palleroniana 
strain IHB B 7133 16S 
ribosomal RNA gene, partial 
sequence. 

KJ767328.1 99.80% 

No. 393, BRP, 
B13 

czcA Pseudomonas palleroniana 
strain APC14 16S ribosomal 
RNA gene, partial sequence. 

KX528176.1 97.97% 

No. 394, BRP, 
B12 

czcA Chryseobacterium sp. strain 
E2-18 16S ribosomal RNA 
gene, partial sequence. 

KY476499.1 99.70% 

No. 395, BRP, 
B12 

czcA Variovorax boronicumulans 
strain E2B5 16S ribosomal 
RNA gene, partial sequence. 

KX881472.1 93.09% 

No. 396, BRP, 
B11 

czcA Achromobacter sp. strain 
HBUM200336 16S ribosomal 
RNA gene, partial sequence. 

KY945518.1 99.28% 

No. 401, BRP, 
B10 

cadA Microbacterium sp. strain 
PHIL_400ppmZn_ML16 16S 

MK652511.1 99.59% 
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ribosomal RNA gene, partial 
sequence. 

No. 402, 
6WCdM 

czcA Stenotrophomonas sp. 
PA81Nov 16S ribosomal RNA 
gene, partial sequence. 

KJ482787.1 88.73% 

No. 407, 
6WCdM 

czcA Microbacterium sp. PMS04 
16S ribosomal RNA gene, 
partial sequence. 

KF648897.1 95.63% 

No. 411, 
6WCdM 

czcA Achromobacter xylosoxidans 
strain Y5 16S ribosomal RNA 
gene, partial sequence. 

FJ596145.1 98.91% 

No. 418, 
6WCdM 

czcA Collimonas pratensis strain 
EN14AR2 16S ribosomal RNA 
gene, partial sequence. 

KY486811.1 98.81% 

No. 419, 
6WZnM 

czcA Microbacterium 
azadirachtae strain EIP4 16S 
ribosomal RNA gene, partial 
sequence. 

MH489019.1 99.70% 

No. 423, 
6WZnM 

czcA Pseudomonas sp. 2 RIFA 366 
16S ribosomal RNA gene, 
partial sequence. 

KF624750.1 98.42% 

No. 425, 
6WZnM 

czcA Chryseobacterium sp. strain 
DEM Bc1 16S ribosomal RNA 
gene, partial sequence. 

MG893574.1 99.60% 

No. 429, 
6WZnM 

czcA Chryseobacterium sp. strain 
N15122 16S ribosomal RNA 
gene, partial sequence. 

MK389289.1 99.29% 

No. 430, 
B6MCdM 

czcA Pseudomonas sp. strain A3 
16S ribosomal RNA gene, 
partial sequence. 

KX859144.1 100% 

No. 431, 
B6MCdM 

czcA Achromobacter sp. strain 
FW305-C-28 16S ribosomal 
RNA gene, partial sequence. 

MK402967.2 99.31% 

No. 434, 
B6MCdM 

czcA Pseudomonas simiae strain 
LMTK36 16S ribosomal RNA 
gene, partial sequence. 

KY614184.1 100% 

No. 436, 
B6MZnM 

czcA Chryseobacterium 
rhizosphaerae strain WTB5 
16S ribosomal RNA gene, 
partial sequence. 

MK240433.1 95% 

No. 440, 
B6MZnM 

czcA Rahnella aquatilis strain 
DGE5 16S ribosomal RNA 
gene, partial sequence. 

MK764976.1 99.80% 

No. 441, 
B6MZnM 

czcA Stenotrophomonas sp. strain 
D1 16S ribosomal RNA gene, 
partial sequence. 

MH814356.1 99.32% 

No. 451, 
P6MCdM 

czcA Achromobacter sp. strain 
B3t90 16S ribosomal RNA 
gene, partial sequence. 

MK737302.1 98.11% 
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No. 453, 
P6MCdM 

czcA Bacterium E4R16print 16S 
ribosomal RNA gene, partial 
sequence. 

HQ425942.1 98.17% 

No. 456, 
P6MCdM 

czcA Stenotrophomonas sp. strain 
SB544 16S ribosomal RNA 
gene, partial sequence. 

MG491568.1 98.82% 

No. 473, 
P6MCdM 

czcA Pseudomonas sp. PNP-B 16S 
ribosomal RNA gene, partial 
sequence. 

FJ556901.1 85.42% 

No. 481, 
P6MCdM 

czcA Chryseobacterium sp. HWJ 
16S ribosomal RNA gene, 
partial sequence. 

KJ959612.1 99.81% 

No. 491, 
P6MZnM 

czcA Bacterium strain BS1294 16S 
ribosomal RNA gene, partial 
sequence. 

MK824482.1 99.31% 

No. 492, 
P6MZnM 

czcA Chryseobacterium 
rhizosphaerae strain WTB5 
16S ribosomal RNA gene, 
partial sequence. 

MK240433.1 98.59% 

No. 493, 
P6MZnM 

cadA Bacillus sp. (in: Bacteria) 
strain M4 16S ribosomal 
RNA gene, partial sequence. 

MK007417.1 99.13% 

No. 494, 
P6MZnM 

czcA Stenotrophomonas 
maltophilia strain QAZ26 16S 
ribosomal RNA gene, partial 
sequence. 

MN099392.1 98.16% 

 

7.1.8. Discussion 

In study 4, the occurrence of Cd resistant genes in individual HMR bacterial isolates was 

interrogated. The cadA gene is harboured either on a plasmid [331-333] or chromosome [334, 

335] and encodes Cd2+-ATPase protein transporter [237, 238], although it can confer resistant 

to Zn in bacteria too [19, 336]. Oger et. al. (2001) [238] reported that there was a significant 

increase in the occurrence of the cadA gene in bacterial communities in soils with elevated levels 

of HMs concentrations [238]. Several groups reported that the cadA gene was not detected in 

Gram negative bacteria [237, 240, 241, 337, 338]. These reports are in concordance with the 

finding in the current study which amplified cadA only in Gram positive bacteria including 

Bacillus and Rhodococcus species and also members of the Gram-variable [339] Micobacterium 

genus. However, Alonso et. al. (2000) reported the presence of cadA in the chromosome of 

Gram negative Stenotrophomonas maltophilia [340] 
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The czcA gene encodes a transmembrane helicale domain (TMH IV) of efflux-RND proteins 

engaged in Zn2+, Co2+, and Cd2+ efflux [23]. There are several reports outlining the most 

abundant bacterial phyla carrying czcA as Proteobacteria (including representatives of the α, β, 

γ, and δ subgroups) (especially the genera Burkholderia, Pseudomonas, Ralstonia, Cupriavidus, 

and Shewanella), Actinobacteria, Verrucomicrobia, and Bacteroidetes (mainly 

Chryseobacterium) [330, 341-343]. These reports are in accordance with the finding in the 

present study. It has been suggested that the occurrence of czcA in soil bacteria can be selected 

by HM contamination pressure [237, 342]. 

Horizontal gene transfer through mobile genetic elements among bacteria is the most important 

pathway leading to HMR and AbR gene spread [344, 345].  

According to previously published reports [237, 238, 346] about the location of cadA and czcA, 

on plasmids and transposons it is suggested that these genes are probably spread among 

bacterial species by horizontal transfer [343]. The presence of cadA is reported in four different 

staphylococcal isolates, which could transfer this gene to a Bacillus sp. isolate. This observation 

provided evidences of HGT among these bacteria [346]. 

HMR and AbR profiles of the czcA+ and cadA+ transconjugants obtained was examined by plate 

culturing for HMR and BM analysis for AbR with the resistance status of the isolates to 

antimicrobials allocated according to the defined Ab resistance breakpoint concentration (20 µg 

mL-1) [220, 221]. HGT of cadA into new bacterial isolates induces resistance to methicillin and 

tetracycline [347, 348]. 

Proteobacteria made up 63.3% of the isolates identified using 16s rDNA sequencing (especially 

genera Pseudomonas, Achromobacter and Stenotrophomonas). Other phyla consisting these 

isolates were Actinobacteria (Rhodococcus and Michobacterium) (8.3% of the isolates), 

Bacteroidetes (Chryseobacterium) (16.6% of isolates) and Firmicutes (Bacillus) (1.6% of isolates). 

About 10% of the isolates were not assigned to any known bacterial phyla. According to previous 
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reports [35, 327, 328, 349] outlining the most common bacterial phyla in soil, the result of the 

present study shows accordance with these reports.  

In conclusion, the results of the present study indicate that Cd resistance genes, cadA and czcA, 

in Cd resistant bacterial isolates, introduce co-resistance to a range of antibiotics in bacterial 

isolates. According to the literature [331, 332], outlining the location of these resistance genes 

on mobile genetic elements, and the observations of the current study, these CdR genes can be 

trasnferred horizontally to new bacterial recipients, which results in induced Cd and Ab 

resistance in these transconjugants. The results of this chapter support the hypothesis that the 

presence of HMR genes in soil bacteria results in HM resistance as well as Ab resistance in these 

bacteria, and these resistance features can be introduced into transconjugants by HGT.   

 

 

 

 

 

 

 

 

 

 

 

 

 



234 
 

Chapter 8, Overall Discussion 

There is a growing problem of HMR in soil bacteria in New Zealand due to using high levels of 

metal-contained superphosphate fertilizers and also different remedies to manage animal 

diseases [5, 6, 28-30]. Bacterial AbR is another growing problem in New Zealand [350] which 

may be due to the co-selection for HM resistance or the direct usage of antibiotics in either 

human and animal health [351] or agriculture [352]. For example, using kasugamycin to control 

Pseudomonas syringae PV. actinidiae on kiwi fruit and streptomycin to control bacterial diseases 

on pip fruit and stone fruits [353].  It is only in recent years that research in antibiotic resistance 

has focused on the environment from which the antibiotics were initially extracted. A lot of 

research focusses on defining the natural antibiotic resistome and understanding the ecology 

and evolution of antibiotic resistance in the non-clinical environment [217].  

Physicochemical properties of the soil samples used in the current project (including the soil 

samples from WR and BRP) showed that there were higher levels of HMs (Cd and Zn) in pastoral 

and arable soils compared to background soil from WR, and also in the B17 and B16 soil samples 

compared to the soil samples from greater distances from the start of the airstrip (e.g. B11 and 

B10). These results were in accordance with the results of the resistance bacterial counts 

determined via plate culturing experiments. These experiments investigated the abundance of 

HM and Ab-resistant bacterial isolates in WR, BRP and microcosms soil samples. It means when 

there are higher levels of HMs in soil, the bacterial isolates present in these soil samples sustain 

higher pressure of HMR selection, therefore show resistance to elevated levels of HMs, and 

subsequently to Abs [53, 61, 354]. There were higher levels of bacterial resistance to HMs (Cd, 

Zn and Hg) and Abs (Tc, Cm, Ery, Cb and Amp) in soils with the higher levels of HMs. These 

observations suggest induced HMR in soil bacteria in the presence of elevated HM levels and 

the subsequent co-selection for Ab resistance. It is interpreted that the HMR bacterial isolates 

present in soils with high levels of HM, can reproduce and produce their new generations with 
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less difficulty compared to the HM sensitive bacteria present in these soils, therefore the 

population of these resistant bacteria are higher in soil containing higher levels of HMs 

compared to soil with no or lower levels of HMs [16, 88]. These observations are in concordance 

with several reports corroborating the hypothesis of co-selection of bacterial HMR and AbR 

while exposing to elevated levels of HMs [86, 102, 355-363]. The resistance bacterial counts 

using plate culturing for isolates from 6WM and 6MM soil samples showed significantly higher 

ratios of HMR and AbR/total bacterial CFUs in the microcosms spiked with HMs compared to the 

controls. The highest ratios of HMR and AbR/total bacterial CFUs were determined in 

microcosms soils spiked with the Cd 50 mM, Zn 200 mM and Hg 1 mM compared to the 

microcosms spiked with lower and higher concentrations of HMs. There are reports suggesting 

the presence of high levels of HMs in soil for a short period of time can lead to induced resistance 

in bacterial communities, although adaptation to stresses caused by HMs can also happen over 

longer periods of time, especially with HM levels much higher than the bacterial tolerance 

threshold as exists in the microcosms used here [191, 264, 270, 296, 364, 365]. It means, the 

bacterial isolates exposed to very high levels of HMs in microcosms spiked with, for example, Cd 

concentrations higher than 50 mM resulted in the killing of the bacteria (comprising HM 

resistant and HM sensitive bacteria) in soil samples, as these levels of Cd are much higher than 

the tolerance threshold of the bacteria. However, the bacterial isolates which could tolerate the 

higher levels of Cd, Zn and Hg in microcosms with higher concentrations of HMs than Cd 50 mM, 

Zn 200 mM and Hg 1 mM, were more resistant to these HMs and Abs, according to PICT analysis 

which is discussed in the following. Levels of Cd, below 50 mM, were not strong enough to 

induce CdR in the bacterial isolates, at least in this period of microcosms incubation. The same 

interpretation is made for stratification of Zn at 200 mM and Hg treatment at 1 mM.  

The result of BM and PICT analyses on CdR, ZnR and HgR isolates from WR and BRP sub-sites 

soils samples revealed there were significantly higher values of the HMs and Abs’ MIC and EC50 

determined for the bacteria from the soil samples with the higher levels of HMs compared to 
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those from background soil. Results of BM and PICT analyses of the HMR bacterial isolates from 

6WM and 6MM showed higher values of MIC and EC50 for the HMs and Abs for the soil bacteria 

from the microcosms spiked with the higher levels of HMs compared to those from control 

microcosms. There are several studies indicating the effects of initial HM levels in different 

environments to induce HM resistance and subsequent Ab resistance into bacterial isolates 

[210, 282, 366-372]. It means, the initial presence of elevated levels of HMs in soil will result in 

HM resistance in the soil bacteria, and Ab co-resistance occurs following the HMR in bacterial 

isolates. Therefore, higher values of MIC and EC50 were determined for these HMR and AbR 

bacterial isolates. In addition, the bacterial isolates resistant to higher levels of HMs and Abs, 

will show higher resistance while determining their MIC and EC50 values [373, 374].  

TRFLP (a DNA fingerprinting technique) analysis of DNA samples for WR and BRP showed the 

bacterial community structure was significantly different for bacteria from the soil samples with 

higher levels of HMs (pastoral soil for WR and, B17 and B16 for BRP) compared to background 

soil for WR soil samples, and B10 and B11 for BRP soil samples. The bacteria which developed 

resistance strategies against the presence of high levels of HMs in these soils, reproduced more 

HMR bacteria which has led to different bacterial structure profiles compared to those from soil 

samples with lower levels of HMs [61, 375, 376]. It was determined that bacterial isolates in 

microcosms with pastoral soil experienced lower community structural changes compared to 

the microcosms with background soils in response to HM exposure. There was >60% similarity 

between the T-RFs abundance of bacterial communities from control microcosms and HM-

spiked microcosms after the period of incubation. The bacterial isolates from 6PMM soil samples 

were initially subjected to community structure changes due to the initial presence of HMs in 

pastoral soil. Therefore, lower bacterial community structure changes occurred with the 

addition of high levels of HMs to the microcosms with pastoral soil [377, 378]. The result of the 

Next Generation 16s rDNA sequencing of selected samples from BRP and 6WM revealed relative 

abundance of each bacterial phylum were significantly different in bacterial isolates from B10 
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and B14 soils compared to those from B17 soil, and also in bacterial isolates from 6WM control 

soil compared to those from Cd 100 mM, Zn 200 mM and Hg 50 mM-spiked microcosms. The 

higher levels of HMs in these soils have resulted in greater bacterial community changes 

compared to the soils with lower levels of HMs.  

The current study investigated the horizontal transfer of CdR genes (cadA and czcA) by 

conjugation. cadA and czcA were able to be transferred to recipients. The bacterial isolates 

carrying these genes as donor cells in this experiment were resistant to Cd and a range of Abs. 

Transconjugants received these genes, showed Cd, Zn and Hg, and also Ab resistance features 

too. The observation of this investigation supports the hypothesis that co-selection for Ab 

resistance occurs parallel to HM resistance features development [36, 379]. 
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Conclusion 

To conclude, accumulation of HMs in soil and the development of HMR and AbR, as a growing 

problem must not be overlooked, which introduces a major risk to human and animal health 

and financial losses. This project elucidated the bacterial resistance to HMs and Abs in selected 

soil samples from two regions in New Zealand, and in soil bacteria from microcosms spiked with 

different concentrations of HMs. Resistance plate counts (investigating HMR and AbR/total CFU 

ratios) for WR, BRP and microcosms soil samples, and also BM and PICT analysis, suggests the 

presence of elevated levels of HMs in soil leads to the development of HM resistance in bacterial 

isolates. Subsequent Ab co-resistance occurred due to co-selection in parallel with HMR in 

bacterial isolates. Bacterial isolates from soil samples with higher levels of HMs showed greater 

resistance to these HMs as well as a range of Abs. Bacterial community structure changes in soil 

samples was investigated using TRFLP fingerprinting and 16s rDNA Next Generation Sequencing. 

As another part of this project, I investigated the presence of Cd resistant genes, cadA and czcA, 

in selected CdR strains. The result showed that horizontal transfer of these CdR genes to other 

bacteria is probable, especially if they are located on mobile genetic elements, e.g. plasmids; the 

entry of these HM resistance genes to new recipients will introduce HM and possibly Ab 

resistance features into new hosts. These results emphasize that elevated HMs concentrations 

in soil leads to bacterial resistance to these metals and subsequent resistance to different classes 

and types of Abs as a major risk for humans and animals. Together, the results in this thesis 

contributed to the comprehensive understanding of HM and Ab resistance in soil bacteria under 

the selection pressure of HMs presence in soils with different history of usage.  

Future Research 

More investigations on other soil samples from other regions of New Zealand to complete a 

broad insight into resistance to heavy metals and antibiotics by soil bacteria in New Zealand is 

recommended for future research projects. Investigation on soil samples from different areas 
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with different history of usage and farms producing different crops will increase the knowledge 

on the levels of HMR and AbR in bacterial isolates in different soil samples. Comprehensive 

investigations on the mechanisms of resistance to HMs and Abs in different bacterial isolates 

from areas with various HMs levels will produce important information on the major mechanism 

bacteria from different soils apply against HMs and Abs. Further researches on products with 

lower concentrations of HMs, e.g. superphosphate fertilisers, is suggested. The products with 

lower HMs-concentrations could help to conduct researches on the safer levels of HMs 

accumulated in soil samples.  
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Appendices 

Appendix 1 

Table A1. 1. Methods used by Hill Laboratories Ltd. to determine the physicochemical features 
of WR and BRP soil samples. 

Test Method Description 

Soil Preparation  Air dried at 35-40 °C overnight (residual moisture 
typically 4%). 

pH 1:2 (v/v) soil:water slurry followed by 
potentiometric determination of pH. 

Olsen Phosphorous  Olsen extraction followed by Molybdenum Blue 
colorimetry. 

Metals extensive suite, trace level (33 
metals) 

Dried sample, <2 mm fraction. Nitric/Hydrochloric 
acid digestion, ICP-MS, trace level. 

Total Recoverable digestion Nitric/hydrochloric acid digestion. US EPA 200.2. 

Total Fluoride in solids alkaline fusion Alkaline fusion of sample. Methods of Soil Analysis 
2nd Edition, Pt2, 26-4.3.3. 

Total Fluoride in Solids Ion selective electrode. Methods of Soil Analysis 
2nd Edition, Pt2, 26-4.3.3. 

Total Organic Carbon Acid pretreatment to remove carbonates present 
followed by Catalytic Combustion (900 °C, O2), 
separation, Thermal Conductivity Detector 
[Elementar Analyser]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



260 
 

Appendix 2 

The Appendix 2 is supporting the chapter 1 of Results and is presenting the excess data not 

shown in that chapter. 

A2.1. Physicochemical Properties of the Soil Sampling Sites.  

As was discussed in Section 4.1 of the chapter 1 of result, physicochemical properties of the soil 

samples collected from WR and BRP were assessed and continue of the result are listed in Table 

A2.1 for WR and A2.2 for BRP soil samples.  

Table A2.1. Continue of physicochemical properties of WR’s soil samples 

Site No. 73 85 86 69 135 

Anaerobically Mineralised N (mg kg-1) 165 31.2 24.9 222 176 
Total porosity (%, v/v) 64.3 60.6 62.2 58.4 60.0 
Bulk density t/m3 0.76 1.03 1.11 0.84 0.86 
F *  136 340 460 340 530 
Al *  36000 47000 68000 38000 59000 
Sb *  0.07 0.06 0.05 0.07 0.08 
As *  6.20 9.40 10.80 7.00 8.90 
Ba *  240 138 114 128 166 
Bi *  0.36 0.35 0.28 0.19 0.33 
B *  5.00 3.00 2.00 4.00 4.00 
Cs *  6.30 3.60 3.50 3.80 5.30 
Ca *  2200 4600 2900 5800 5100 
Cr *  13.2 18.1 23.0 56.0 19.7 
Co *  10.9 3.40 4.30 10.4 12.7 
Cu *  10.8 16.3 20.0 23.0 22.0 
La *  5.60 7.40 8.20 12.4 9.20 
Pb *  28.0 25.0 24.0 21.0 32.0 
Li *  8.50 10.7 16.0 9.50 15.8 
Mg *  890 470 680 1120 590 
Mn *  2400 600 1080 2300 3700 
Mo *  1.09 1.17 1.46 1.13 1.55 
Ni *  5.20 7.10 6.00 17.70 6.70 
K *  530 770 720 1380 730 
Rb *  13.4 9.10 7.00 15.1 14.2 
Se *  < 2.00 3.00 3.00 2.00 3.00 
Ag *  0.10 0.08 0.12 0.19 0.12 
Na *  250 91.0 83.0 146 120 
Sr *  36.0 21.0 22.0 32.0 23.0 
Ti *  0.72 0.15 0.34 0.39 0.65 
Sn *  2.20 2.70 2.80 2.40 2.50 
U *  1.52 2.50 2.60 2.30 2.70 
V *  71.0 101 151 113 106 
Hot Water C (mg Kg-1) 3359 1018 688 5010 4184 
Hot Water N (mg Kg-1) 291 130 250 611 528 
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Hot Water C/Hot Water N 12.0 8.00 3.00 8.00 8.00 
P-retension 44.0 43.0 48.0 45.0 48.0 
15N 1.46 7.11 6.37 6.28 6.29 

*mg kg-1 of dry soil 

 

Table A1.2. Continue of physicochemical properties of BRP soil samples. 

Site No. B10 B11 B12 B13 B14 B15 B16 B17 

Dry Matter 
(g/100g) 

70.0 74.0 73.0 73.0 73.0 73.0 73.0 73.0 

F *  540 570 880 1040 1260 1580 2500 4500 
Al *  21000 13500 22000 18600 19700 19300 23000 21000 
Sb *  0.06 0.06 0.09 0.08 0.09 0.10 0.19 0.40 
As *  3.30 3.10 3.70 3.40 3.60 3.40 3.90 4.30 
Ba *  33.0 33.0 35.0 36.0 38.0 39.0 55.0 75.0 
Bi *  0.16 0.15 0.15 0.14 0.15 0.16 0.17 0.13 
B *  4.00 4.00 4.00 4.00 5.00 4.00 5.00 6.00 
Cs *  2.00 1.82 2.20 1.97 2.00 1.96 1.98 2.10 
Ca *  6900 10600 10000 35000 35000 20000 18900 65000 
Cr *  15.9 16.2 18.8 18.6 20.0 22.0 27.0 37.0 
Co *  5.00 5.20 6.10 6.70 8.00 8.20 7.30 13.5 
Cu *  10.4 9.90 15.4 18.9 22.0 27.0 13.6 18.8 
La *  9.80 10.0 10.9 11.5 11.8 11.6 14.8 25.0 
Pb *  17.0 14.9 16.4 15.5 16.3 16.0 18.5 16.4 
Li *  23.0 15.3 24.0 21.0 23.0 21.0 24.0 18.4 
Mg *  2500 2100 3100 3100 3400 2800 2600 3200 
Mn *  320 200 330 340 370 350 290 370 
Mo *  0.72 0.56 0.77 0.75 1.00 1.04 1.43 1.71 
Ni *  8.00 8.80 9.20 10.2 10.2 10.5 9.20 11.8 
K *  880 560 950 960 940 1100 1230 1810 
Rb *  13.8 12.0 13.9 12.7 13.7 13.5 15.8 16.0 
Se *  <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 
Ag *  0.10 0.08 0.10 0.10 0.11 0.11 0.15 0.21 
Na *  197 146 230 310 310 340 390 510 
Sr *  37.0 55.0 55.0 123 131 103 118 280 
Ti *  0.14 0.13 0.14 0.13 0.14 0.14 0.16 0.15 
Sn *  1.29 1.21 1.28 1.22 1.19 1.24 1.33 1.06 
U *  2.20 2.10 3.60 4.00 4.90 5.60 9.90 17.0 
V *  38.0 35.0 38.0 34.0 39.0 37.0 43.0 43.0 

*mg kg-1 of dry soil 
 

A2.2. Bacterial Total Counts of Waikato Region Soil Samples  

As discussed in Section 4.1.4, the number of viable bacterial cells in pastoral and arable cropping 

soils was higher compared to the soil from the control (native bush) site (P < 0.05) for each WR 

region soil sample sets (WRSS2, the second sampling date of August 2014; WRSS3, the third 

sampling date of June 2015) (Figure A2.1). There were higher number of bacteria in pasture soils 

compared to arable soils for each of these soil sample sets (Table A2.1). 
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Fig. A2.1. Total number of CFU (per gram of dry soil) from WRSS2 and WRSS3 
pastoral, arable and native bush soil samples, and selected on R2A agar. *p < 
0.05 compared to background soil bacteria total CFU; †p < 0.05 compared to 
arable soil bacteria total CFU.  

 

A2.2.1. Resistant Bacterial Counts of Waikato Region’s Soil Samples on Plates with HM 

additives 

Plate culturing of WRSS2 and WRSS3 on a range of Cd, Zn and Hg showed there were higher 

HMR/total bacterial CFU ratios of pastoral soil bacteria compared to those from background soil 

(p < 0.05). These results were similar to the results determined for those bacteria from WRSS1 

(Figures A2.2-A2.4).  

 
Fig. A2.2. Mean ratios of CdR/total bacterial CFU, selected on a range of Cd concentrations, 
for WRSS2 and WRSS3. *p < 0.05 compared to background soil CdR/total bacterial CFU ratio 
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selected on the same Cd concentration; †p < 0.05 compared to arable CdR/total bacterial 
CFU ratio selected on the same Cd concentration. 
 

 
Fig. A2.3. Mean ratios of ZnR/total bacterial CFUs, selected on a range of Zn 

concentrations, for the WRSS2 and WRSS3. *p < 0.05 compared to background 

ZnR/total bacterial CFU ratio selected on the same HM concentration; †p < 0.05 

compared to arable ZnR/total bacteria CFU ratio selected on the same HM 

concentration. 

 
Fig. A2.4. Mean ratios of HgR/total bacterial CFUs, selected on a range of Hg 

concentrations, for the WRSS2 and WRSS3. *p < 0.05 compared to background 

soil HgR/total bacterial CFU ratio selected on the same HM concentration; †p < 

0.05 compared to arable soil HgR/total bacterial CFU ratio selected on the same 

HM concentration. 
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A2.2.2. Resistant Bacterial Counts of Waikato Region’s Soil Samples on Plates with Ab 

additives 

Similar to what discussed in Section 4.1.3.2 for WRSS1, the pastoral and arable soils of WRSS2 

and WRSS3 had significantly higher AbR/total bacterial CFUs compared to background, and the 

pastoral soils had higher AbR/total bacterial CFUs compared to arable soils. 

In addition, similar to the HM plates, the lower concentrations of Abs have significantly higher 

ratios of AbR/total bacterial CFUs compared to the higher concentrations (Figure A2.5). 
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Fig A2.5. Mean ratios of AbR/total bacterial CFUs, selected on a range of Abs 
concentrations, for the WRSS2 and WRSS3. The Ab concentrations are per µg mL-1. *p 
< 0.05 compared to background soil AbR/total bacterial CFU ratio selected on the same 
Ab concentration; †p < 0.05 compared to arable soil AbR/total bacterial CFU ratio 
selected on the same Ab concentration. 
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A2.3. PICT Analysis for WR Bacterial Isolates 

According to Section 4.1.5, it was revealed that there were significant differences between HMs 

MIC/EC50 values of PICT test for bacterial communities from WRSS2 and WRSS3 pastoral soils 

compared to those from control soil. In addition, the result showed there were greater ABs 

MIC/EC50 values of PICT test for bacterial communities from WRSS2 and WRSS3 pastoral and 

arable cropping soils compared to those from control soil (Figures A2.38-A2.45).  
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Fig. A2.6 Mean MIC values of PICT assay with Cd, Zn and Hg for 

bacteria from WRSS2. Ȣp < 0.05 compared to HM MIC values for 

bacteria from background soil. 
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Fig. A2.7. Mean EC50 values of PICT assay with Cd, Zn and Hg for 

bacteria from WRSS2. Ȣp < 0.05 compared to HM MIC values for 

bacteria from background soil. 
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 Bacteria isolated from WRSS2 

Fig. A2.8. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and 

Amp for bacteria from WRSS2. Ȣp < 0.05 compared to Abs MIC 

values for bacteria from control soil. The dash line defines AbR level 

in soil bacteria. 
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 Bacteria isolated from WRSS2 
Fig. A2.9. Mean EC50 values of PICT assay with Tc, Cm, Ery, Cb 

and Amp for bacteria from WRSS2. Ȣp < 0.05 compared to Abs 

MIC values for bacteria from control soil. 
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 Bacteria isolated from WRSS3 

Fig. A2.10. Mean MIC values of PICT assay with Cd, Zn and Hg for 

bacteria from WRSS2. Ȣp < 0.05 compared to HM MIC values for 

bacteria from control soil. 
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 Bacteria isolated from WRSS3 

Fig. A2.11. Mean EC50 values of PICT assay with Cd, Zn and Hg 

for bacteria from WRSS2. Ȣp < 0.05 compared to HM MIC values 

for bacteria from control soil. 
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 Bacteria isolated from WRSS3 

Fig. A2.12. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and 

Amp for bacteria from WRSS3. Ȣp < 0.05 compared to Abs MIC 

values for bacteria from control soil. The dash line defines AbR 

level of soil bacteria. 
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 Bacteria isolated from WRSS3 
Fig. A2.13. Mean EC50 values of PICT assay with Tc, Cm, Ery, Cb and 

Amp for bacteria from WRSS3. Ȣp < 0.05 compared to Abs MIC values 

for bacteria from control soil. 
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A2.4. Pollution Induced Community Tolerance test for Belmont Regional Park soils 

According to Section 4.1.5.2, there were higher HM’s MIC/EC50 values of PICT test for bacteria 

from B16-B15 soils compared to those from B10 soil. There were some exceptions, including for 

Hg MIC value for bacteria from B15 soil, as well as the significant differences determined 

between EC50 values for bacteria B16 compared to those from B10. There were greater Ab’s 

MIC/EC50 values of bacteria from B16-B15 soils compared to those from B10 soil, as well as Tc 

and Cm MIC values of bacteria from B13-B12 soils compared to those from B10 soil (Figures 

A2.14-A2.17). 
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 Bacteria isolated from BRP sub-sites soil samples 

Fig. A2.14. Mean MIC values of PICT assay with Cd, Zn and Hg for bacteria from 

BRP B16, B15, B13, B12 and B11 soils. Ȣp < 0.05 compared to HM MIC values 

for bacteria from B10 soil. 
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 Bacteria isolated from BRP sub-sites soil samples 
Fig. A2.15. Mean EC50 values of PICT assay with Cd, Zn and Hg for bacteria 

from BRP B16, B15, B13, B12 and B11 soils. Ȣp < 0.05 compared to HM MIC 

values for bacteria from B10 soil. The dash line defines AbR level of soil 

bacteria. 
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 Bacteria isolated from BRP sub-sites soil samples 

Fig. A2.16. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and 

Amp for bacteria from BRP B16, B15, B13, B12 and B11 soils. Ȣp < 

0.05 compared to Abs MIC values for bacteria from B10 soil. 
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 Bacteria isolated from BRP sub-sites soil samples 

Fig. A2.17. Mean MIC values of PICT assay with Tc, Cm, Ery, Cb and Amp 

for bacteria from BRP B16, B15, B13, B12 and B11 soils. Ȣp < 0.05 

compared to Abs MIC values for bacteria from B10 soil. 

 

0

20

40

60

80
EC50 TcȢ

Ȣ

0

20

40

60

80

100
EC50 CmȢ

Ȣ

0

20

40

60

80

100
EC50 EryȢ Ȣ

0

20

40

60

80

100 EC50 CbȢ Ȣ

0

20

40

60

80

100

120

B16 (10 m) B15 (20 m) B13 (40 m) B12 (50 m) B11 (60 m)

EC50 Amp
Ȣ

Ȣ



278 
 

A2.5. Broth Microdilution Analysis for Waikato Region Soil Samples. 

According to WRSS1 BM test (Section 4.1.6), there were lower HM and Ab’s MIC and EC50 values 

for bacteria from WRSS2 and WRSS3, especially for those from control and arable cropping soils 

selected on plates containing Cd 0.1mM, Zn 1mM and Hg 0.01mM compared to those selected 

on plates with a higher concentration of each HM (Figures A2.18-A2.21). 
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 Bacterial isolates from WRSS1 and selected on shown concentrations of HM (mM) 

Fig. A2.18. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from 
WRSS1 and selected on plates with two concentrations of HMs. *p < 0.05 compared to 
the same HM’s MIC value for the isolates from the same soil and selected on the higher 
concentration of each HM.   
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 Bacterial isolates from WRSS1 and selected on shown concentrations of HM (mM) 

Fig. A2.19. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from 

WRSS1 and selected on plates with two concentrations of HMs. *p < 0.05 compared 

to the same HM’s EC50 value for the isolates from the same soil and selected on the 

higher concentration of each HM.   
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 Bacterial isolates from WRSS1 and selected grown on shown concentrations of HM (mM) 

Fig. A2.20. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS1 and selected on plates with two concentrations of HMs. *p < 

0.05 compared to the same Ab’s MIC value for the isolates from the same soil and 

selected on the higher concentration of each HM. The dash line defines AbR level of 

soil bacteria.  
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 Bacterial isolates from WRSS1 and selected on shown concentrations of HM (mM) 

Fig. A2.21. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS1 and selected on plates with two concentrations of HMs. *p < 0.05 

compared to the same Ab’s EC50 value for the isolates from the same soil and selected 

on the higher concentration of each HM.   
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same set’s control soil. In addition, there were greater HM MIC and EC50 values for HMR isolates 

from WRSS2 and WRSS3 soils compared to the HM-sensitive bacteria from the same soil. 

There were lower HM MIC and EC50 values for bacteria from WRSS2 and WRSS3 control and 

arable cropping soils which were selected on plates containing Cd 0.1mM, Zn 1mM and Hg 

0.01mM compared to those selected on plates with the higher concentration of each HM. 

There were greater Ab MIC and EC50 values for HMR isolates from WRSS2 and WRSS3 pastoral 

and arable cropping soils compared to those from the same soil set’s control soil. In addition, 

there were higher Ab MIC and EC50 values for HMR isolates from WRSS2 and WRSS3 pastoral 

and arable cropping soils compared to the HM-sensitive isolates from the same soil (Figures 

A2.22-A2.25 and A2.30-A2.33). 

Result showed there were greater Ab MIC and EC50 values for HMR isolates from WRSS2 and 

WRSS3 pastoral, arable cropping and control soils and selected on plates with Cd 0.1mM, Zn 

1mM and Hg 0.01mM compared to the HM-sensitive isolates from the same soil sample (Figures 

A2.26-A2.29 and A2.34-A2.37).  
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 Bacterial isolates from WRSS2 and selected on shown concentration of HM (mM) 

Fig A2.22. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from 
WRSS2. *p < 0.05 compared to HM MIC value for HM-sensitive isolates from the same 
soil; Ȣp < 0.05 compared to HM MIC value for HMR isolates from control soil. 
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 Bacterial isolates from WRSS2 and selected on shown concentration of HM (mM) 

Fig. A2.23. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from 
WRSS2. *p < 0.05 compared to HM EC50 value for HMR isolates from the same soil; 
Ȣp < 0.05 compared to HM EC50 value for HMR isolates from background soil. 
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 Bacterial isolates from WRSS2 and selected on shown concentrations of HM (mM) 

Fig. A2.24. Mean MIC values of BM test with Cd, Zn and Hg for HMR isolates from 

WRSS2. *p < 0.05 compared to the same HM’s MIC value for the isolates from the same 

soil and selected on the higher concentration of each HM. 
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 Bacterial isolates from WRSS2 and selected on shown concentrations of HM (mM) 

Fig. A2.25. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from 

WRSS2. *p < 0.05 compared to the same HM’s EC50 value for the isolates from the 

same soil and selected on the higher concentration of each HM.   
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 Bacterial isolates from WRSS2 and selected on shown concentration of HM (mM) 

Fig. 2.26. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS2. *p < 0.05 compared to Ab MIC value for HM-sensitive isolates 

from the same soil; Ȣp < 0.05 compared to Ab MIC value for isolates from control soil 

and selected on the same HM concentration. The dash line defines AbR level of soil 

bacteria. 
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 Bacterial isolates from WRSS2 and selected on shown concentration of HM (mM) 

Fig. 2.27. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates 

from WRSS2. *p < 0.05 compared to Ab EC50 value for HMR isolates from the same 

soil; Ȣp < 0.05 compared to Ab EC50 value for isolates from background soil and 

selected on the same HM concentration. 
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 Bacteria isolated from WRSS2 and grown on a concentration of HM (mM) 

Fig. 2.28. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS2 and selected on plates with two concentrations of HMs. *p < 

0.05 compared to the same Ab’s MIC value for the isolates from the same soil and 

selected on the higher concentration of each HM. The dash line defines AbR level of 

soil bacteria. 
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 Bacteria isolated from WRSS2 and grown on a concentration of HM (mM) 

Fig. 2.29. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates 

from WRSS2 and selected on plates with two concentrations of HMs. *p < 0.05 

compared to the same Ab’s EC50 value for the isolates from the same soil and selected 

on the higher concentration of each HM.   
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.30. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from 

WRSS3. *p < 0.05 compared to HM MIC value for HM-sensitive isolates from the same 

soil; Ȣp < 0.05 compared to HM MIC value for HMR isolates from control soil. 
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.31. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from 

WRSS3. *p < 0.05 compared to HM EC50 value for HM-sensitive isolates from the same 

soil; Ȣp < 0.05 compared to HM EC50 value for HMR isolates from control soil. 
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig A2.32. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from 

WRSS3. *p < 0.05 compared to the same HM’s MIC value for the isolates from the same 

soil and selected on the higher concentration of each HM. 
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.33. Mean EC50 values of BM test with Cd, Zn and Hg for HMR isolates from 

WRSS3. *p < 0.05 compared to the same HM’s EC50 value for the isolates from the same 

soil and selected on the higher concentration of each HM.   
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.34. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS3. *p < 0.05 compared to Ab MIC value for HM-sensitive isolates 

from the same soil; Ȣp < 0.05 compared to Ab MIC value for isolates from control soil 

and selected on the same HM concentration. The dash line defines AbR level of soil 

bacteria. 
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.35. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS3. *p < 0.05 compared to Ab EC50 value for HM-sensitive isolates 

from the same soil; Ȣp < 0.05 compared to Ab EC50 value for isolates from control soil 

and selected on the same HM concentration. 
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.36. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS3 and selected on plates with two concentrations of HMs. *p < 

0.05 compared to the same Ab’s MIC value for the isolates from the same soil and 

selected on the higher concentration of each HM. The dash line defines AbR level of 

soil bacteria.  
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 Bacteria isolated from WRSS3 and grown on a concentration of HM (mM) 

Fig. A2.37. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR 

isolates from WRSS3 and selected on plates with two concentrations of HMs. *p < 0.05 

compared to the same Ab’s EC50 value for the isolates from the same soil and selected 

on the higher concentration of each HM.   
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A2.6. Broth Microdilution Analysis for Belmont Regional Park Soil Samples. 

According to the result of HMs and ABs BM test’s MIC and EC50 determination (Section 4.3.2), 

there were no significant differences between bacteria from B17, B14 and B10 soils and selected 

on plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM compared those from the same soils and 

selected on plates with the higher concentrations of the HMs (Figures A2.38-A2.41). 
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 Bacteria isolated from BRP sub-sites soil samples and plates with a concentration of HM (mM) 

Fig. A2.38. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from BRP.   
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 Bacteria isolated from BRP sub-sites soil samples and plates with a concentration of HM (mM) 

Fig. A2.39. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from BRP. 
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 Bacteria isolated from BRP sub-sites soil samples and grown on a concentration of HM (mM) 

Fig. A2.40. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates 

from BRP. The dash line defines AbR level of soil bacteria. 
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 Bacteria isolated from BRP sub-sites soil samples and grown on a concentration of HM (mM) 

Fig. A2.41. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates from 

BRP. 
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According to the result of HMs MIC and EC50 determination for the BM test of BRP (Section 

4.1.6.2), there were greater HMs MIC and EC50 values for HMR isolates from B16 soil compared 

to those from B10. Also, there were higher HMs MIC and EC50 values for HMR isolates from B15 

and B13 soils compared to those from B10 soil. The result showed there were higher HMR 

isolates’ HMs MIC and EC50 values from B16, B15, B13 and B12 soils compared to the HM-

sensitive isolates from the same soil samples. No significant differences between HMs MIC and 

EC50 values were determined for HMR bacteria from B16, B15, B13 and B12 soils compared to 

those from the same soil samples. The result of MIC and EC50 determination of the ABs BM test 

for BRP B16, B15, B13, B12 and B11 soil samples showed there were higher levels of these values 

for HMR isolates from these soils compared to the HM-sensitive isolates from each soil sample 

(Figures A2.42-A2.45). In addition, there were greater Abs MIC and EC50 values for HMR isolates 

from B16, B15, B13 and B12 soils compared to those from B10 soil sample; although, there were 

some exception for Cb and Amp MIC values for HMR bacteria from B13 soil. Additionally, there 

were no significant differences between ABs MIC/EC50 values for isolates from B16, B15, B13 

and B12 soils and selected on plates with Cd 0.1mM, Zn 1mM and Hg 0.01mM compared to 

those from the same soil samples and selected on plates with the higher concentrations of the 

HMs (Figures A2.46-A2.49). 
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 Bacterial isolates from BRP sub-sites soil samples and selected on plates with shown concentration of HM (mM) 

Fig. A2.42. Mean MIC values of BM assay with Cd, Zn and Hg for the HMR isolates from BRP. *p < 0.05 compared to HM MIC value for HM-sensitive bacteria 

from the same soil; Ȣp < 0.05 compared to HM MIC value for the bacteria from B10 soil and selected on the same HM. 
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 Bacterial isolated from BRP sub-sites soil samples and selected on plates with shown concentrations of HM (mM) 

Fig. A2.43. Mean MIC values of BM assay with Cd, Zn and Hg for HMR isolates from BRP.   
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 Bacteria isolates from BRP sub-sites soil samples and selected on plates with shown concentration of HM (mM) 

Fig. A2.44. Mean EC50 values of BM assay with Cd, Zn and Hg for the HMR isolates from BRP. *p < 0.05 compared to HM EC50 value for HM-sensitive bacteria 

from the same soil; Ȣp < 0.05 compared to HM EC50 value for the bacteria from B10 soil and selected on the same HM. 
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 Bacterial isolates from BRP sub-sites soil samples and selected on plates with shown concentrations of HM (mM) 

Fig. A2.45. Mean EC50 values of BM assay with Cd, Zn and Hg for HMR isolates from BRP.   
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Fig. A2.46. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for the HMR isolates from BRP. *p < 0.05 compared to Ab MIC value for HM-sensitive 

isolates from the same soil; Ȣp < 0.05 compared to Ab MIC value for the bacteria from B10 soil and selected on the same HM concentration. The dash line 

defines AbR level of soil bacteria.  
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Fig. A2.47. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates from BRP. The dash line defines AbR level of soil bacteria. 
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Fig. A2.48. Mean EC50 values of BM assay with Tc, Cm, Ery, Cb and Amp for the HMR isolates from BRP. *p < 0.05 compared to Ab MIC value for HM-sensitive 

bacteria from the same soil; Ȣp < 0.05 compared to Ab MIC value for the bacteria from B10 soil and selected on the same HM concentration. 
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Fig. A2.49. Mean MIC values of BM assay with Tc, Cm, Ery, Cb and Amp for HMR isolates from BRP. 
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Appendix 3 

Appendix 3 supplements Chapter 5 and presents the excess data not shown in that chapter. 

A3.1. Physicochemical Properties of the Soil Sampling Sites. 

Physicochemical properties of the soil samples collected from EW-13 and EW-24 sites were 

assessed and additional data over and above Table 5.1 is listed in Table A2.1.  

Table A3.1. Continue of physicochemical properties of EW-

13 and EW-24 soil samples. 

Site No. EW-13 EW-24 

Anaerobically Mineralised N (mg kg-1) 118 281 
Total porosity (%, v/v) 70.8 65.23 
Bulk density t/m3 0.68 0.85 
F* 490 175 
Al* 10800 32000 
Sb* 0.06 0.05 
As* 1.30 2.90 
Ba* 46.0 38.0 
Bi* 0.08 0.09 
B* <2 3.00 
Cs* 0.81 0.96 
Ca* 4600 1280 
Cr* 2.40 28.0 
Co* 0.98 2.00 
Cu* 10.4 13.8 
La* 4.10 1.81 
Pb* 3.20 11.3 
Li* 0.60 2.30 
Mg* 430 560 
Mn* 390 300 
Mo* 0.33 0.68 
Ni* 1.80 3.70 
K* 350 250 
Rb* 5.30 1.85 
Se* <2 <2 
Ag* 0.04 0.04 
Na* 200 76 
Sr* 21.0 9.80 
Ti* 0.08 0.09 
Sn* 0.45 1.02 
U* 0.58 1.03 
V* <10 138 

*mg kg-1 of dry soil 
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A3.2. Resistance Bacterial Counts 

A3.2.1. Microcosms Incubated for 6-weeks Microcosms (6WM) 

Plates with Abs Additive 

The ratio of AbR/total number of bacteria from 6WZnM at Time 0 increased from control 

microcosm to Zn 200 mM-spiked microcosm and then decreased in Zn 300 mM-spiked 

microcosms. There were significantly smaller AbR/total bacterial ratios for control microcosms 

compared to those from Zn-spiked microcosms (p < 0.05). The ratios of AbR/total bacteria in Zn-

spiked microcosms at Time 0 were significantly less than those from the same microcosms after 

6 weeks (Figure A3.1). The same trend was determined for AbR bacterial isolates from 6WHgM, 

although bacterial AbR/total ratio increased form control microcosm to 1 mM Hg-spiked one 

and then decreased in 5, 10 and 50 mM Hg-spiked microcosm (Figure A3.2). 
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Fig. A3.1. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 

µg mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of 

Amp) for 6WZnM. *p<0.05 compared to the AbR/total bacterial CFU 

ratios in 6WZnM; †p<0.05 compared to the AbR/total bacterial CFU 

ratios in the same 6WZnM at the 6-week interval.  
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Fig. A3.2. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 µg 

mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of Amp) 

for 6WHgM. *p<0.05 compared to the AbR/total bacterial CFU ratios in 

6WHgM; †p<0.05 compared to the AbR/total bacterial CFU ratios in the 

same 6WHgM at the 6-week interval.  
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A3.2.2. Background and Pasture soil-contained 6-month microcosms (B6MM/P6MM) 

Plates with Abs Additive 

As discussed in Section 5.1.4, the ratio of AbR/total bacterial CFU ratios from B6MZnM and 

P6MZnM at Time 0 increased from control microcosms to Zn 200 mM-spiked microcosms and 

then decreased in Zn 300 mM-spiked microcosms. There were significantly smaller AbR/total 

bacterial ratios for control microcosms compared to those from Zn-spiked microcosms (p < 

0.05). The ratios of AbR/total bacteria in Zn-spiked microcosms at Time 0 were significantly less 

than those from the same microcosms after 6 months (Figure A3.3). The same trend was 

determined for AbR bacterial isolates from B6MHgM and P6MHgM, although the bacterial 

AbR/total ratio increased form control microcosm to 1 mM Hg-spiked one and then decreased 

in the 5, 10 and 50 mM Hg-spiked microcosms (Figures A3.3-A3.6).   
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Fig. A3.3. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 µg 

mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of Amp) 

for B6MZnM. *p<0.05 compared to the AbR/total bacterial CFU ratios in 

B6MZnM; †p<0.05 compared to the AbR/total bacterial CFU ratios in the 

same B6MZnM at the 2-month interval. 
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Fig. A3.4. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 

µg mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of 

Amp) for P6MZnM. *p<0.05 compared to the AbR/total bacterial CFU 

ratios in P6MZnM; †p<0.05 compared to the AbR/total bacterial CFU 

ratios in the same P6MZnM at the 2-month interval. 
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Fig. A3.5. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 

µg mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of 

Amp) for B6MHgM. *p<0.05 compared to the AbR/total bacterial CFU 

ratios in B6MHgM; †p<0.05 compared to the AbR/total bacterial CFU 

ratios in the same B6MHgM at the 2-month interval. 
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Fig. A3.6. Mean ratios of AbR/total bacterial CFU, selected on Abs (20 µg 

mL-1 of Cm, 100 µg mL-1 of Ery, 100 µg mL-1 of Cb and 200 µg mL-1 of Amp) 

for P6MHgM. *p<0.05 compared to the AbR/total bacterial CFU ratios in 

P6MHgM; †p<0.05 compared to the AbR/total bacterial CFU ratios in the 

same P6MHgM at the 2-month interval. 
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A3.3. Pollution Induced Community Tolerance (PICT) analysis 

A3.3.1. 6-weeks microcosms (6WM) 

Analysis Using HMs 

There were higher HMs MIC and EC50 values for bacteria isolated from 6WZnM and 6WHgM 

compared to those from control microcosm. In addition, there were lower HMs MIC and EC50 

values for bacteria from 6WZnM and 6WHgM at Time 0 compared to those from the same 

microcosms at 2, 4 and 6 weeks intervals (Figures A3.20-A3.25, and Tables A3.23-A3.28). 
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Fig. A3.7. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from 6WZnM. *p < 

0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked 

microcosms at 4 and 6 week. 
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 Bacteria from 6WZnM 

Fig. A3.8. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from 6WZnM. *p < 

0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked 

microcosms at 4 and 6 week. 
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 Bacteria from 6WZnM 

Fig. A3.9. Mean MIC and EC50 values of PICT analysis with Hg for bacteria from 6WZnM. *p < 

0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked 

microcosms at 4 and 6 week. 
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 Bacteria from 6WHgM 

Fig. A3.10. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from 6WHgM. *p 

< 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked 

microcosms at 4 and 6 week. 
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 Bacteria from 6WHgM 

Fig. A3.11. MIC and EC50 values of PICT analysis with Zn for bacteria from 6WHgM. *p < 0.05 

compared to Zn MIC and EC50 values for bacteria from Hg-spiked microcosms at the same 

timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Hg-spiked 

microcosms at 4 and 6 week. 
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Fig. A3.12 Mean MIC and EC50 values of PICT analysis with Hg for bacteria from 6WHgM. *p 
< 0.05 compared to Hg MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 4 and 6 week. 
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 Bacteria from 6WCdM 

Fig. A3.13. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from 6WCdM. *p 
< 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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Fig. A3.14. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from 6WCdM. *p 
< 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WCdM 

Fig. A3.15. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from 6WCdM. *p 
< 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WCdM 

Fig. A3.16. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 6WCdM. 
*p < 0.05 compared to Amp MIC and EC50 values for bacteria from Cd-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 

0

20

40

60

80 MIC

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

50

100

150

Control Cd 5 mM Cd 10 mM Cd 50 mM Cd 100 mM Cd 200 mM S. aureus
NCTC 12973

EC50

Time 0 2 weeks 4 weeks 6 weeks

* * * Ȣ Ȣ Ȣ Ȣ Ȣ

0

20

40

60

80 MIC

* * * Ȣ Ȣ Ȣ Ȣ Ȣ

0

50

100

150

Control Cd 5ppm Cd 10ppm Cd 50ppm Cd 100ppm Cd 200ppm S. aureus
NCTC 12973

EC50

Time 0 2 weeks 4 weeks 6 weeks

* * * Ȣ Ȣ Ȣ Ȣ Ȣ



327 
 

C
m

 c
o

n
ce

n
tr

at
io

n
 (
µ

g/
m

L)
 

 

 
 Bacteria from 6WZnM 

Fig. A3.17. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from 6WZnM. *p 
< 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 4 and 6 week. The dash line defines AbR level of soil bacteria.  
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 Bacteria from 6WZnM 

Fig. A3.18. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from 6WZnM. *p 

< 0.05 compared to Ery MIC and EC50 values for bacteria from Zn-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Zn-spiked 

microcosms at 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WZnM 

Fig. A3.19. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from 6WZnM. *p 
< 0.05 compared to Cb MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WZnM 

Fig. A3.20. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 6WZnM. 
*p < 0.05 compared to Amp MIC and EC50 values for bacteria from Zn-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for bacteria from Zn-
spiked microcosms at 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WHgM 

Fig. A3.21. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from 6WHgM. *p 
< 0.05 compared to Cm MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WHgM 

Fig. A3.22. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from 6WHgM. *p 

< 0.05 compared to Ery MIC and EC50 values for bacteria from Hg-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Hg-spiked 

microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WHgM 

Fig. A3.23. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from 6WHgM. *p 
< 0.05 compared to Cb MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 
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 Bacteria from 6WHgM 

Fig. A3.24. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 6WHgM. 
*p < 0.05 compared to Amp MIC and EC50 values for bacteria from Hg-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for bacteria from Hg-
spiked microcosms at 2, 4 and 6 week. The dash line defines AbR level of soil bacteria. 

0

20

40

60

80 MIC

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

50

100

150

Control Hg 0.5 mM Hg 1 mM Hg 5 mM Hg 10 mM Hg 50 mM S. aureus
NCTC 12973

EC50

Time 0 2 weeks 4 weeks 6 weeks

* * * Ȣ Ȣ Ȣ Ȣ Ȣ

0

20

40

60

80 MIC

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

50

100

150

Control Hg 0.5 mM Hg 1 mM Hg 5 mM Hg 10 mM Hg 50 mM S. aureus
NCTC 12973

EC50

Time 0 2 weeks 4 weeks 6 weeks

* * * Ȣ Ȣ Ȣ Ȣ Ȣ



331 
 

A3.3.2. Background and Pasture soil-contained 6-month microcosms (B6MM and P6MM) 

Analysis Using HMs 

There were significantly greater HMs MIC and EC50 values for bacterial communities from Zn or 

Hg-spiked microcosms compared to those for bacteria from control microcosms (p < 0.05). In 

addition, there were lower HMs MIC and EC50 values for bacteria from Zn or Hg-spiked 

microcosms at Time 0 compared to those for bacteria from the same microcosms at 2, 4 and 6 

months intervals (Figures A3.25-A3.36). 
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 Bacteria from B6MZnM  

Fig. A3.25. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from B6MZnM. *p 

< 0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked microcosms at the 

same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked 

microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MZnM 

Fig. A3.26. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from B6MZnM. *p 
< 0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MZnM 

Fig. A3.27. Mean MIC and EC50 values of PICT analysis with Hg for bacteria from B6MZnM. *p 
< 0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 month. 
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Fig. A3.28. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from P6MZnM. *p 
< 0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MZnM 

Fig. A3.29. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from P6MZnM. *p 
< 0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MZnM 

Fig. A3.30. Mean MIC and EC50 values of PICT analysis with Hg for bacteria from P6MZnM. *p 
< 0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Zn-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MHgM 

Fig. A3.31. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from B6MHgM. *p 
< 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 month. 
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Fig. A3.32. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from B6MHgM. *p 
< 0.05 compared to Zn MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MHgM 

Fig. A3.33. Mean MIC and EC50 values of PICT analysis with Hg for bacteria B6MHgM. *p < 
0.05 compared to Hg MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 month. 
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Fig. A3.34. Mean MIC and EC50 values of PICT analysis with Cd for bacteria from P6MHgM. *p 
< 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Cd MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 month. 
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 Bacteria from P6MHgM 

Fig. A3.35. Mean MIC and EC50 values of PICT analysis with Zn for bacteria from P6MHgM. *p 
< 0.05 compared to Zn MIC and EC50 values for bacteria from Hg-spiked microcosms at the 
same timepoint; Ȣp < 0.05 compared to Zn MIC and EC50 values for bacteria from Hg-spiked 
microcosms at 2, 4 and 6 month. 
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Fig. A3.36. Mean MIC and EC50 values of PICT analysis with Hg for bacteria from P6MHgM. 
*p < 0.05 compared to Hg MIC and EC50 values for bacteria from Hg-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Hg MIC and EC50 values for bacteria from Hg-
spiked microcosms at 2, 4 and 6 month. 
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 Bacteria from B6MCdM 

Fig. A3.37. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from B6MCdM. 
*p < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MCdM 

Fig. A3.38. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from B6MCdM. 
*p < 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MCdM 

Fig. A3.39. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from B6MCdM. 
*p < 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-spiked microcosmsat 
the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MCdM 

Fig. A3.40. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 
B6MCdM. *p < 0.05 compared to Amp MIC and EC50 values for bacteria from Cd-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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 Bacteria from B6MZnM 

Fig. A3.41. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from B6MZnM. 
*p < 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MZnM 

Fig. A3.42. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from B6MZnM. 
*p < 0.05 compared to Ery MIC and EC50 values for bacteria from Zn-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Zn-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MZnM 

Fig. A3.43. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from B6MZnM. 
*p < 0.05 compared to Cb MIC and EC50 values for bacteria from Zn-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Zn-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MZnM 

Fig. A3.44. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from B6MZnM. 
*p < 0.05 compared to Amp MIC and EC50 values for bacteria from Zn-spiked microcosms 
at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for bacteria from 
Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MHgM 

Fig. A3.45. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from B6MHgM. 
*p < 0.05 compared to Cm MIC and EC50 values for bacteria from Hg-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Hg-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MHgM 

Fig. A3.46. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from B6MHgM. 
*p < 0.05 compared to Ery MIC and EC50 values for bacteria from Hg-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Hg-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MHgM 

Fig. A3.47. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from B6MHgM. 
*p < 0.05 compared to Cb MIC and EC50 values for bacteria from Hg-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Hg-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from B6MHgM 

Fig. A3.48. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 
B6MHgM. *p < 0.05 compared to Amp MIC and EC50 values for bacteria from Hg-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for 
bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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 Bacteria from P6MCdM 

Fig. A3.49. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from P6MCdM. 
*p < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from P6MCdM 

Fig. A3.50. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from P6MCdM. 
*p < 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-spiked microcosms; 
Ȣp < 0.05 compared to Ery MIC and EC50 values for bacteria from Cd-spiked microcosms at 
2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from P6MCdM 

Fig. A3.51. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from P6MCdM. 
*p < 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for bacteria from Cd-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from P6MCdM 

Fig. A3.52. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 
P6MCdM. *p < 0.05 compared to Amp MIC and EC50 values for bacteria from Cd-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for 
bacteria from Cd-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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 Bacteria from P6MZnM 

Fig. A3.53. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from P6MZnM. 
*p < 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-spiked microcosms at 
the same timepoint; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Zn-
spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
 

Er
y 

co
n

ce
n

tr
at

io
n

 (
µ

g/
m

L)
 

 

 
 Bacteria from P6MZnM 

Fig. A3.54. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from 
P6MZnM. *p < 0.05 compared to Ery MIC and EC50 values for bacteria from Zn-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values for 
bacteria from Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 

0

20

40

60

80 MIC

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

20

40

60

80

100

120

Control Zn 20 mM Zn 50 mM Zn 100 mM Zn 200 mM Zn 300 mM S. aureus
NCTC 12973

EC50

Time 0 2 months 4 months 6 months

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

20

40

60

80 MIC

** *
Ȣ Ȣ Ȣ Ȣ Ȣ

0

20

40

60

80

100

120

Control Zn 20 mM Zn 50 mM Zn 100 mM Zn 200 mM Zn 300 mM S. aureus
NCTC 12973

EC50

Time 0 2 months 4 months 6 months

* * *
Ȣ Ȣ Ȣ Ȣ Ȣ



347 
 

C
b

 c
o

n
ce

n
tr

at
io

n
 (
µ

g/
m

L)
 

 

 
 Bacteria from P6MZnM 

Fig. A3.55. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from 
P6MZnM. *p < 0.05 compared to Cb MIC and EC50 values for bacteria from Zn-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for 
bacteria from Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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 Bacteria from P6MZnM 

Fig. A3.56. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 
P6MZnM. *p < 0.05 compared to Amp MIC and EC50 values for bacteria from Zn-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values 
for bacteria from Zn-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from P6MHgM 

Fig. A3.57. Mean MIC and EC50 values of PICT analysis with Cm for bacteria from 
P6MHgM. *p < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked 
microcosms; Ȣp < 0.05 compared to Cm MIC and EC50 values for bacteria from Cd-spiked 
microcosms at 2, 4 and 6 month. The dash line defines AbR level of soil bacteria. 
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 Bacteria from P6MHgM 

Fig. A3.58. Mean MIC and EC50 values of PICT analysis with Ery for bacteria from 
P6MHgM. *p < 0.05 compared to Ery MIC and EC50 values for bacteria from Hg-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Ery MIC and EC50 values 
for bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR 
level of soil bacteria. 
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 Bacteria from P6MHgM 

Fig. A3.59. Mean MIC and EC50 values of PICT analysis with Cb for bacteria from 
P6MHgM. *p < 0.05 compared to Cb MIC and EC50 values for bacteria from Hg-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Cb MIC and EC50 values for 
bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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 Bacteria from P6MHgM 

Fig. A3.60. Mean MIC and EC50 values of PICT analysis with Amp for bacteria from 
P6MHgM. *p < 0.05 compared to Amp MIC and EC50 values for bacteria from Hg-spiked 
microcosms at the same timepoint; Ȣp < 0.05 compared to Amp MIC and EC50 values for 
bacteria from Hg-spiked microcosms at 2, 4 and 6 month. The dash line defines AbR level 
of soil bacteria. 
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A3.4. Broth Microdilution (BM) 

A3.4.1. 6-weeks microcosms (6WM) 

Analysis with Abs 

As discussed in Section 5.1.6 for Tc MIC and EC50 for bacterial isolates from HMs-spiked 6WM, 

there were lower Abs MIC and EC50 values for Cm, Ery, Cb and Amp for the HM-sensitive 

bacterial isolates from HMs-spiked microcosms 6WM compared to those HMR isolates from the 

same microcosms. In addition, there were significantly higher Abs MIC and EC50 values for the 

HMR bacterial isolates from the HMs-spiked 6WM compared to those for the HMR bacterial 

isolates from the control microcosm (p < 0.05). Lower Abs MIC and EC50 values were determined 

for the HMR bacterial isolates from HMs-spiked 6WM at Time 0 compared to those for the 

bacteria from the same microcosms and after 6 weeks of incubation (Figures A3.61-A3.64). 

A3.4.2. Background/Pasture soil-contained 6-month microcosms (B6MM/P6MM) 

BM Analysis with HMs  

As explained in Section 5.1.6 for Cd MIC and EC50 for bacterial isolates from HMs-spiked B6MM 

and P6MM, there were significantly lower MIC and EC50 of Zn and Hg for HM-sensitive bacterial 

isolates from HMs-spiked microcosms compared to those for the HMR isolates from the same 

microcosms (p < 0.05). There were lower MIC and EC50 values of Zn and Hg for the HMR isolates 

from control microcosms compared to those for HMR isolates from HMs-spiked microcosms. 

Result showed there were lower MIC and EC50 values of Zn and Hg for the HMR bacteria from 

HMs-spiked microcosms at Time 0 compared to those for the bacteria from the same 

microcosms and after 6 months of incubation (Figures A3.65-A3.68).   

BM Analysis with Abs 

Similar to Tc MIC and EC50 (Section 5.1.6), result showed there were significantly lower MIC and 

EC50 values of Cm, Ery, Cb and Amp for the HM-sensitive bacterial isolates from HMs-spiked 



351 
 

B6MM/P6MM compared to those for the HMR isolates from the same microcosms (p < 0.05). 

There were lower Abs MIC and EC50 values for HMR bacteria from control microcosms 

compared to those for the HMR bacteria from HMs-spiked microcosms. Lower Abs MIC and EC50 

values for HMR bacteria from HM-spiked B6MM/P6MM at Time 0 compared to those for the 

HMR isolates from the same microcosms after 6 months of incubation were determined (Figures 

A3.69-A3.76). 
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 Isolates from 6WM and selected on plates with shown concentration of HM 

Fig. A3.61. Mean MIC and EC50 values of BM analysis with Cm for HMR isolates from 6WM. *p < 0.05 compared to Cm MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Cm MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Cm 

MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from 6WM and selected on plates with shown concentration of HM 

Fig. A3.62. Mean MIC and EC50 values of BM analysis with Ery for HMR isolates from 6WM. *p < 0.05 compared to Ery MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Ery MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Ery 

MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from 6WM and selected on plates with shown concentration of HM 

Fig. A3.63. Mean MIC and EC50 values of BM analysis with Cb for HMR isolates from 6WM. *p < 0.05 compared to Cb MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Cb MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Cb 

MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from 6WM and selected on plates with shown concentration of HM 

Fig. A3.64. Mean MIC and EC50 values of BM analysis with Amp for HMR isolates from 6WM. *p < 0.05 compared to Amp MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Amp MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Amp MIC and EC50 value for HMR isolates from the same microcosm after 6 weeks of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.65. Mean MIC and EC50 values of BM analysis with Zn for HMR isolates from B6MM. *p < 0.05 compared to Zn MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Zn MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Zn 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.66. Mean MIC and EC50 values of BM analysis with Hg for HMR isolates from B6MM. *p < 0.05 compared to Hg MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Hg MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Hg 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.67. Mean MIC and EC50 values of BM analysis with Zn for HMR isolates from P6MM. *p < 0.05 compared to Zn MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Zn MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Zn 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.68. Mean MIC and EC50 values of BM analysis with Hg for HMR isolates from P6MM. *p < 0.05 compared to Hg MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Hg MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Hg 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.69. Mean MIC and EC50 values of BM analysis with Cm for HMR isolates from B6MM. *p < 0.05 compared to Cm MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Cm MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Cm MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.70. Mean MIC and EC50 values of BM analysis with Ery for HMR isolates from B6MM. *p < 0.05 compared to Ery MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Ery MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Ery MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.71. Mean MIC and EC50 values of BM analysis with Cb for HMR isolates from B6MM. *p < 0.05 compared to Cb MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Cb MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Cb 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from B6MM and selected on plates with shown concentration of HM 

Fig. A3.72. Mean MIC and EC50 values of BM analysis with Amp for HMR isolates from B6MM. *p < 0.05 compared to Amp MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Amp MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Amp MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.73. Mean MIC and EC50 values of BM analysis with Cm for HMR isolates from P6MM. *p < 0.05 compared to Cm MIC and EC50 value for HMR 
isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Cm MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 
to Cm MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.74. Mean MIC and EC50 values of BM analysis with Ery for HMR isolates from P6MM. *p < 0.05 compared to Ery MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Ery MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Ery MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.75. Mean MIC and EC50 values of BM analysis with Cb for HMR isolates from P6MM. *p < 0.05 compared to Cb MIC and EC50 value for HMR isolates 

from the same microcosm’s soil; Ȣp < 0.05 compared to Cb MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared to Cb 

MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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 Isolates from P6MM and selected on plates with shown concentration of HM 

Fig. A3.76. Mean MIC and EC50 values of BM analysis with Amp for HMR isolates from P6MM. *p < 0.05 compared to Amp MIC and EC50 value for HMR 

isolates from the same microcosm’s soil; Ȣp < 0.05 compared to Amp MIC and EC50 value for HMR isolates from HMs-spiked microcosm; †p < 0.05 compared 

to Amp MIC and EC50 value for HMR isolates from the same microcosm after 6 months of incubation. The dash line defines AbR level of soil bacteria. 
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