Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Studies on Interactions of Milk Proteins with Flavour Compounds

A thesis presented in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand.

> Janina Kühn 2007

ABSTRACT

Milk proteins are known to bind volatile flavour compounds to varying extents, depending on the nature of the protein and flavour compound. Processing conditions, such as temperature and pH, are also known to have an influence on the interactions between milk proteins and flavour compounds. These interactions cause a great challenge for flavour scientists because they influence the perceived aroma profile of food products significantly, in particular in lowfat food products.

The objectives of this research were to develop a headspace solid-phase microextraction (SPME) method followed by gas chromatography with flame ionisation detection (GC-FID) for the investigation of protein-flavour interactions, and to determine binding parameters of the hydrophobic flavour compound, 2-nonanone, to individual milk proteins – namely, β -lactoglobulin (β -lg), α -lactalbumin (α -la), bovine serum albumin (BSA), α_{s1} -casein, and β -casein –, whey protein isolate (WPI), and sodium caseinate. Secondly, it was the aim to compare the binding of the structurally similar flavour compounds – 2-nonanone, 1-nonanal, and *trans*-2-nonenal – to WPI in aqueous solution, and to investigate the effect of heat and high pressure treatment, and pH on the extent of protein-flavour binding. The final objective was to investigate the *in vivo* release of the reversibly bound flavour compound, 2-nonanone, from WPI and sodium caseinate using proton-transfer-reaction mass spectrometry (PTR-MS), and to understand the effect of viscosity on flavour release *in vivo*.

The binding of the model flavour compound 2-nonanone to individual milk proteins, WPI, and sodium caseinate in aqueous solutions was investigated, using headspace SPME followed by GC-FID. The 2-nonanone binding capacities decreased in the order: BSA > β -lg > α -la > α_{s1} -casein > β -casein, and the binding to WPI was stronger than the binding to sodium caseinate. All proteins appeared to have one binding site for 2-nonanone, except for BSA which possessed two classes of binding sites.

The influence of heat treatment, high pressure processing and pH of the protein solutions on the binding of 2-nonanone, 1-nonanal, and *trans*-2-nonenal to WPI was determined. The binding of these compounds to WPI decreased in the order: *trans*-2-nonenal > 1-nonanal > 2-nonanone. The binding of 2-nonanone appears to involve hydrophobic interactions only, whereas the aldehydes, in particular *trans*-2-nonenal, also react through covalent binding. Upon both heat and high pressure denaturation, the binding of 2-nonanone to WPI decreased, the binding of 1-nonanal remained unchanged, while the binding of *trans*-2-nonenal increased. The binding affinity of the flavour compounds and WPI increased with increasing pH, which is likely to result from pH dependent conformational changes of whey proteins.

The *in vivo* flavour (2-nonanone) release from solutions of WPI and sodium caseinate was investigated using proton-transfer-reaction mass spectrometry. During consumption, 2-nonanone was partly released from WPI, whereas there was no significant release from sodium caseinate. Even after swallowing of the samples, a substantial amount of flavour was detected in the breath, suggesting that the milk proteins interact with the mucosa in the mouth and throat, resulting in a further release of flavour from mucosa-bound proteins. An increase in viscosity of the protein solutions by the addition of carboxymethylcellulose enhanced the release of 2-nonanone from WPI, and resulted in 2-nonanone release from sodium caseinate. This may be due to a thicker coating of the mucosa with the sample solution after swallowing due to the higher viscosity, resulting in additional release of protein-bound flavour.

These findings contribute to the knowledge of the interactions that occur between flavour compounds and proteins, which is required to improve food flavouring and to make protein based foods, e.g., low-fat dairy products, sensorily more acceptable to the consumer. The results also emphasize a careful choice of food processing conditions, such as temperature, high pressure or pH to obtain a desirable flavour profile.

ACKNOWLEDGEMENTS

Firstly, I wish to thank my supervisors, Professor Harjinder Singh and Dr Thérèse Considine. This thesis would not appear in its present form without their expert assistance, support, ideas, and criticism.

l would also like to thank Massey University for the award of the Doctoral Scholarship during three years of my research, and the Riddet Centre for additional funding and several travel grants.

A big thank you to Dr Conor Delahunty for very helpful advice and discussions towards and during my flavour release study at the University of Otago. I would also like to thank the Sensory Science Department at the University of Otago for the great working atmosphere. Special thanks to Sam Heenan for his expertise in PTR-MS.

I am very grateful to Fonterra Co-operative Group Ltd. for temporarily providing a GC-FID to carry out my research, and to Dr Owen Mills and Andrew Broome for their advice and assistance on GC analysis.

l also wish to thank Dr Xiang-Qian (Peter) Zhu for his assistance during the initial stages of my research and for several valuable discussions, Dr Skelte Anema (Fonterra) for the high pressure treatments, and for encouraging me to do a PhD in the first place, Dr John Flanagan for help with the purification of caseins, and Michelle Tamehana and Steve Glasgow for being great lab managers. Amino acid analyses were carried out by Leiza Turnbull.

Thank you also to the following people who have been supportive as friends, colleagues, or otherwise: Linda and Brian, Nigel, Sarah, Janiene, Thanuja, Jiahong, Thurid, Tamara, Mischa, and Ngaio.

Finally, and most importantly, my love and thanks to my partner, Leyton, who went with me through the successful but also discouraging times, and always helped me to keep thinking positive, my parents, Carl-Ludwig and Irmgard, and my brother, Alexander, who have been encouraging, supportive and loving not only during my academic studies. To them I dedicate this thesis.

TABLE OF CONTENTS

ABSTRACT	
ACKNOWL	EDGEMENTS III
TABLE OF	CONTENTSIV
LIST OF FIG	GURESX
LIST OF TA	BLESXVI
LIST OF AE	BREVIATIONSXIX
CHAPTER	ONE: INTRODUCTION 1
CHAPTER ⁻	TWO: LITERATURE REVIEW
2.1	Types of Interactions
2.2	Flavour Binding by Proteins4
2.2.1 A	Analysis of Flavour Binding by Proteins4
2.2.1.1	Static (Equilibrium) Methods4
2.2.1.2	Dynamic Methods7
2.2.1.3	Spectroscopic Methods
2.2.1.4	Sensory Methods
2.2.1.5	Determination of Binding Parameters9
2.2.1.	5.1 Scatchard Plot
2.2.1.	5.2 Klotz Plot
2.2.1.	5.3 Hill Plot
2.2.2 H	Flavour Compounds
2.2.2.1	
	Aldehydes
2.2.2.2	Aldehydes 12 Ketones and Methyl Ketones 12
2.2.2.2 2.2.2.3	Aldehydes 12 Ketones and Methyl Ketones 12 Esters 13
2.2.2.2 2.2.2.3 2.2.3 H	Aldehydes 12 Ketones and Methyl Ketones 12 Esters 13 Flavour Binding by Milk and Other Proteins 13

2.2.3.2	2 α-L	actalbumin (α-la)	18
2.2.3.3	B Boy	vine Serum Albumin (BSA)	
2.2.3.4	4 Wh	ey Protein Products	20
2.2.3.5	5 Cas	seins	
2.2.3.6	6 Cor	mparison of Flavour Binding Capacities of Milk Proteins	
2.2.3.7	7 Oth	ner Food Proteins	24
2.2.	3.7.1	Soy Protein	24
2.2.	3.7.2	Fababean Protein	25
2.2.	3.7.3	Pea Protein	25
2.2.	3.7.4	Egg Protein	25
2.2.	3.7.5	Fish Actomyosin	26
2.2.	3.7.6	Muscle, Bone and Skin Proteins	
• •	Faat	ons Influencing Ductoin Flavour Dinding	76
2.3	Protei	in Concentration	
2.3.1	Heat	Treatment	
2.3.2	1 Rol	low the Denaturation Temperature	
2.3.2.1	$2 \Delta b$	ove the Denaturation Temperature	
2.3.2.2	2 Au	Pressure Treatment	
2.3.3	nH of	the Medium	
2.3.4	Ionic	Strength of the Medium	
2.3.3	TOTIC		
2.4	Impl	lications in the Development of Protein Foods	
2.5	Flave	our Release from Proteins	
2.5.1	Flavo	ur Release and Perception	
2.5.2	Analy	sis of Flavour Release from Proteins	
2.5.2.1	l MS	Breath Methods	
2.5.	2.1.1	Atmospheric pressure chemical ionisation mass spectrometr	y (APCI-MS)
2.5.	2.1.2	Proton-transfer-reaction mass spectrometry (PTR-MS)	
2.5.2.2	2 Mo	outh Simulators	40
2.5.2.3	3 Sen	nsory Methods	41
2.5.3	Flavo	ur Release from Liquid, Protein-Containing Systems	
2.5.4	Flavo	ur Release from Viscous, Protein-Containing Systems	43

2.5.5	Factors Influencing Flavour Release In-Mouth	
2.6	Concluding Remarks	
CHAP	TER THREE: BINDING OF 2-NONANONE AND MILK PROTEINS	48
3.1	Abstract	48
3.2	Introduction	
3.3	Materials and Methods	50
3.3.	2-Nonanone	50
3.3.2	2 Milk Proteins	
3.3.3	Composition of WPI	51
3.	3.3.1 Determination of Individual Whey Proteins by HPLC	51
3.	3.3.2 Moisture Content	51
3.3.4	Preparation of Caseins	52
3.	3.4.1 Preparation of Sodium Caseinate	
3.	3.4.2 Separation of Caseins by Ion Exchange Chromatography (IEC)	53
3.	3.4.3 Polyacrylamide Gel Electrophoresis (PAGE)	56
3.3.5	5 UV Spectroscopy	59
3.3.6	Preparation of Protein-Flavour Solutions	60
3.3.7	Development of a Headspace SPME Method	60
3.	3.7.1 SPME Equipment	61
3.	3.7.2 Fibre Selection and Determination of Extraction Time (t_{ex})	61
3.	3.7.3 Determination of the Thermal Equilibration Time (t_{eq})	65
3.	3.7.4 Solvent Selection	65
3.	3.7.5 Sample Agitation during SPME Extraction	66
3.3.8	Gas Chromatography	66
3.3.9	Determination of Binding Parameters	67
3.3.1	0 Statistical Analysis	67
3.4	Results and Discussion	68
3.4.1	Optimisation of the SPME Method	68
3.	4.1.1 Fibre Selection and Determination of Extraction Time (t_{ex})	68
3.	4.1.2 Fibre-Headspace Partition Coefficient (<i>K</i> _{fh})	72
3.	4.1.3 Thermal Equilibration Time (t_{eq})	75

3.4.1.	4 Sol	vent Selection	
3.4.1.	5 Sar	nple Agitation during SPME Extraction	77
3.4.1.	6 Fin	al SPME Method for Measuring Flavour Binding on Proteins	
3.4.2	Bindi	ng of 2-Nonanone and Milk Proteins	80
3.4.2.	1 β-L	actoglobulin (β-lg)	
3.4.2.	2 α-L	actalbumin (α-la)	
3.4.2.	3 Boy	vine serum albumin (BSA)	
3.4.2.	4 Cas	seins	
3.4	.2.4.1	Purity of prepared sodium caseinate	
3.4	.2.4.2	Separation of caseins by ion-exchange chromatography (IEC)	
3.4	.2.4.3	Purity of prepared caseins	
3.4	.2.4.4	Binding of caseins and 2-nonanone	90
3.4.2.	5 Mil	lk Protein Products	
3.4	.2.5.1	WPI	
3.4	.2.5.2	Sodium caseinate	
3.5 CHAPTE	Cono R FOU	R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE	99 DING101
3.5 CHAPTE 4.1	Cono R FOU Abst	clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BING ract	99 DING101 101
3.5 CHAPTE 4.1 4.2	Cond R FOU Abst Intro	clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BING ract	99 DING101 101
3.5 CHAPTE 4.1 4.2 4.3	Cond R FOU Abst Intro Mate	elusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINI ract oduction erials and Methods	
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 	Cond R FOU Abst Intro Mate Flavo	elusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract oduction erials and Methods ur Compounds	
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 	Cond R FOU Abst Intro Mate Flavo Buffe	elusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract oduction	99 DING101
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 	Cond R FOU Abst Intro Mate Flavo Buffe Protei	elusions	99 DING101 101 101 102 103 103 104 105
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other	elusions	99 DING101 101 101 102 103 103 104 105 106
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin	R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract	99 DING101 101 101 102 103 103 104 105 106 106
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin Heat	R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract	99 DING101 101 101 102 103 103 104 105 106 106 106
 3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin Heat	Clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract oduction erials and Methods ur Compounds r Preparation n Preparation Solutions o Acid Analysis Treatment Pressure Treatment	99 DING101 101 101 102 103 103 104 105 106 106 106 108
3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin Heat High	Clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract oduction erials and Methods ur Compounds r Preparation n Preparation Solutions o Acid Analysis Treatment Pressure Treatment vertion with Sodium Dodecyl Sulphate (SDS)	99 DING101
3.5 CHAPTE 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin Heat High	Clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINE ract oduction erials and Methods ur Compounds r Preparation n Preparation Solutions o Acid Analysis Treatment Pressure Treatment vertition with Sodium Dodecyl Sulphate (SDS)	99 DING101 101 101 102 103 103 103 104 105 106 106 106 108 110
3.5 CHAPTER 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10	Cond R FOU Abst Intro Mate Flavo Buffe Protei Other Amin Heat High Comp Effect Identi	Clusions R: FACTORS INFLUENCING PROTEIN- FLAVOUR BINI ract oduction erials and Methods ur Compounds r Preparation n Preparation Solutions o Acid Analysis Treatment Pressure Treatment etition with Sodium Dodecyl Sulphate (SDS) c of pH fication of Unknown Compound using SPME and GC-Mass	99 DING101

4.3.11	Automated Headspace SPME Method	111
4.3.12	Gas Chromatography	112
4.3.13	Circular Dichroism (CD)	112
4.3.14	Statistical Analysis	113
4.4	Results and Discussion	113
4.4.1	Comparison of the Binding of 2-Nonanone, 1-Nonanal, or trans-2-Nonena	al to
	WPI	113
4.4.2	Effect of Heat Treatment on Flavour Binding to WPI	116
4.4.2.	1 Effect of Heating Temperature on the Binding of 2-Nonanone to WPI	116
4.4.2.	2 Effect of Heating Time on the Binding of Flavour Compounds to WPI.	117
4.4	.2.2.1 2-Nonanone	117
4.4	.2.2.2 1-Nonanal	118
4.4	.2.2.3 Trans-2-nonenal	120
4.4.2.	3 Near-UV CD	125
4.4.2.	4 Far-UV CD	126
4.4.3	Effect of pH on Flavour Binding to WPI	127
4.4.4	Effect of High Pressure Treatment on Flavour Binding to WPI	130
4.4.5	Competition with SDS	132
4.4.5.	1 2-Nonanone	132
4.4.5.	2 1-Nonanal and <i>trans</i> -2-Nonenal	133
4.5	Conclusions	134
ne		
CHAPTE	R FIVE: IN-MOUTH FLAVOUR RELEASE FROM PROTEIN CONT	INING
SYSTEM	S	137
5.1	Abstract	137
5.2	Introduction	137
5.3	Materials and Methods	138
5.3.1	Materials	138
5.3.2	In Vitro Flavour Release	139
5.3.3	Determination of Flavour Binding by SPME-GC-FID	139
5.3.3.	1 SPME	139
5.3.3.	2 Gas Chromatography	139

5.3.4	In Vivo Flavour Release by PTR-MS
5.3.4.1	Preparation of Solutions140
5.3.4.2	Sample Consumption Protocol141
5.3.4.3	Measurement of Flavour Release by PTR-MS141
5.3.4.4	Calculation of the Flavour Concentration in the Breath 142
5.3.4.5	Data Analysis of the PTR-MS Release Profiles 143
5.3.5	Statistical Analysis
5.4	Results and Discussion144
5.4.1	In Vitro Release of 2-Nonanone from Milk Proteins by SPME-GC-FID 144
5.4.2	In Vivo Release of 2-Nonanone from Milk Proteins by PTR-MS 145
5.4.2.1	Binding of 2-Nonanone in Solutions of WPI, Sodium Caseinate, and CMC 145
5.4.2.2	Selection of Molecular Ions for MS Detection146
5.4.2.3	Choice of Consumption Technique 147
5.4.2.4	Choice of Protein Concentration
5.4.2.5	2-Nonanone Release from Milk Proteins with In-Mouth Movements 150
5.4.2	.5.1 2-Nonanone Release from WPI
5.4.2	.5.2 2-Nonanone Release from Sodium Caseinate 153
5.4.2.6	The Effect of Viscosity on 2-Nonanone Release
5.5	Conclusions 158
CHAPTER	SIX: OVERALL CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE W	/ORK
BIBLIOGR	APHY166
APPENDIX	
Means and	d Standard Deviations
Publicatio	ns

LIST OF FIGURES

Figure 2.1-1:	Common interactions of proteins and flavour compounds; (a) hydrophobic
	interaction between a protein and an aliphatic aldehyde or ketone flavour;
	(b) Schiff base formation between 1-nonanal and a lysine residue of a
	protein; (c) addition reaction of <i>trans</i> -2-nonenal and a lysine residue of a
	protein; (d) addition reaction of <i>trans</i> -2-nonenal and a histidine residue of
	a protein
Figure 2.2-1:	Illustration of the partition process in headspace SPME for investigating
	interactions of proteins (P) and flavour compounds (•) (not to scale); K_{fh}
	fibre-headspace partition coefficient, K_{hw} headspace-water partition
	coefficient, <i>K</i> binding constant
Figure 222	A general view of R lectoglobulin with polynitic sold in the central
Figure 2.2-2.	by drophobia pook at (filled storms) and on the surface binding site (open
	stome) (from <i>Wu</i> and others (1000))
	atoms) (from <i>wu und others (1999)</i>)
Figure 2.2-3:	Vanillin flavour intensity relative to the reference in the presence of
	sodium caseinate (CAS) and whey protein concentrate (WPC). The
	reference vanillin concentration was 3.38×10^{-6} mM in a 2.5 % sucrose
	solution. For each protein type, bars with dissimilar letter codes indicate
	significant differences between means (Hansen and Heinis, 1991)23
Figure 2.5-1:	The PTR-MS instrument (Ionicon Analytik GmbH, Innsbruck, Austria),
	and a subject connected to the instrument while consuming a sample
Figure 2 5-2.	Schematic of the PTR-MS system (Source: Ionicon Analytik GmbH
1 iguie 2.5 2.	Innsbruck Austria)
	inisor dex, rustria,
Figure 3.3-1:	Simplified scheme of the isolation of the casein proteins from bovine
	milk
Figure 3.3-2:	Set-up of the system for the casein separation using ion-exchange
	chromatography
Figure 3.4-1:	Extraction time profiles of different SPME fibre coatings for 2-nonanone
-	(0.6 mM)

Figure 3.4-2:	Thermal equilibration of a sample containing 2-nonanone (0.8 mM) and WPI (0.5 %) at 25 °C
Figure 3.4-3:	Standard curves of 2-nonanone using both ethanol (50 %) and propylene glycol (pure) as flavour solvents
Figure 3.4-4:	Binding of 2-nonanone (0.2 mM) to WPI (0.5 %) and to sodium caseinate (1.0 %) in the presence of ethanol (1 %) and propylene glycol (2 %)
Figure 3.4-5:	Dependence of FID response on stirring speed and SPME extraction time 78
Figure 3.4-6:	Typical gas chromatograms of 2-nonanone in the absence and presence of WPI (0.5 %)
Figure 3.4-7:	Binding isotherm of 2-nonanone in aqueous solution of β -lg (0.5 %; 0.24 mM) at 25 °C (each data point is the mean of triplicates); v number of moles of ligand bound per mole of protein. 81
Figure 3.4-8:	Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to β -lg (0.5 %; 0.24 mM) at 25 °C (each data point is the mean of triplicates)81
Figure 3.4-9:	Binding isotherm for the binding of 2-nonanone (0.1-0.8 mM) and α -la (0.5 %; 0.3 mM) at 25 °C (each data point is the mean of triplicates)
Figure 3.4-10): Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to α -la (0.5 %; 0.3 mM) at 25 °C (each data point is the mean of triplicates)
Figure 3.4-11	: Binding isotherm of 2-nonanone (0.1-0.8 mM) in aqueous solution of BSA (0.5 %; 0.065 mM) at 25 °C (each data point is the mean of triplicates)
Figure 3.4-12	2: Scatchard plot for the binding of 2-nonanone (0.1-0.8 mM) to BSA (0.5 %; 0.065 mM) at 25 °C (each data point is the mean of triplicates)
Figure 3.4-13	: Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to BSA (0.5 %; 0.065 mM) at 25 °C, divided into low (0.1-0.2 mM) and high (0.2- 0.8 mM) 2-nonanone concentrations (each data point is the mean of triplicates)

Figure 3.4-14: Hill plot for the binding of BSA (0.5 %; 0.065 mM) to 2-nonanone
(0.1-0.8 mM), divided into two classes of binding sites; Y saturation of
binding sites (assuming $n_1 = 2.4$ and $n_2 = 10$); [L] concentration of free
2-nonanone (M)
Figure 3.4-15: Comparison of prepared and commercial sodium caseinate using SEC
and (a) UV detection, and (b) RI detection
Figure 3.4-16: Elution of the caseins from the ion-exchange column, measured by UV
absorbance at $\lambda = 280$ nm; vertical errors indicate tubes selected for urea PAGE
Figure 3.4-17: Urea PAGE gels of casein standards (three lanes on the left) and selected fractions (see Figure 3.4-16)
Figure 3.4-18: Urea PAGE gel of casein standards (three lanes on the left) and pooled casein fractions
Figure 3.4-19: Binding of 2-nonanone to prepared α_{el} -casein (2.0 %: 0.73 mM) and
β-casein (2.0 %; 0.86 mM)
Figure 3.4-20: Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to the prepared
α_{sl} -casein (2.0 %, 0.73 mM) and β -casein (2.0 %, 0.86 mM) (each data
point is the mean of duplicates)92
Figure 3.4-21: Influence of WPL (0.5%) and sodium caseinate (1.0%) on the headspace
concentration of 2-nonanone
Figure 3.4-22: Scatchard plot for the binding of 2-nonanone (0.1-0.8 mM) and WPI
(0.5 %)
Figure 3.4-23: Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to WPI (0.5 %) at
25 °C (each data point is the mean of five replicates)
Figure 3.4-24: Klotz plot for the binding of 2-nonanone (0.1-0.8 mM) to sodium
caseinate (1.0 %) at 25 °C (each data point is the mean of four replicates)97

Figure 4.3-1:	Flowchart showing the sample preparation to investigate binding of flavour compounds to WPI for both flavour addition before and after heat treatment
Figure 4.3-2:	Flowchart showing the sample preparation to investigate binding of flavour compounds to WPI for both flavour addition before and after high pressure treatment
Figure 4.3-3	Temporal profiles of temperature and pressure during high pressure treatment at (a) 250 MPa, and (b) 600 MPa
Figure 4.4-1:	GC chromatogram of 2-nonanone, 1-nonanal, and <i>trans</i> -2-nonenal 113
Figure 4.4-2	2: Standard curves of <i>trans</i> -2-nonenal, 1-nonanal, and 2-nonanone (0.2-1.0 ppm)
Figure 4.4-3:	Binding of C9 flavour compounds (1.0 ppm) to WPI (0.5 %). Different letters indicate significant (P < 0.05) differences between samples (n = 3) 114
Figure 4.4-4:	Comparison of amino acids in WPI (0.025 %) in the absence and presence of <i>trans</i> -2-nonenal (25 ppm)
Figure 4.4-5:	Binding of 2-nonanone (0.1 mM) to WPI (0.5 %) upon heat treatment for 12 min at temperatures between 30 and 90 °C ($n = 3$)
Figure 4.4-6:	Binding of 2-nonanone (1.0 ppm) to WPI (0.5 %) with increasing heating time (80 °C) (n = 3) 117
Figure 4.4-7:	Binding of 1-nonanal (1.0 ppm) to WPI (0.5 %) with increasing heating time (80 °C) (n = 3) 119
Figure 4.4-8:	Binding of <i>trans</i> -2-nonenal (1.0 ppm) to WPI (0.5 %) with increasing heating time (80 °C) (n = 3)
Figure 4.4-9	(a) Chromatogram of volatiles after heating WPI (0.5%) and <i>trans</i> - 2-nonenal (1.0 ppm) at 80 °C for 10 and 80 min, respectively; (b) mass spectrum of the heptanal peak (m/z 20-120)

Figure 4.4-10:	Chromatogram of volatiles after heating <i>trans</i> -2-nonenal (1.0 ppm) in bhosphate buffer (0.1 M, pH 7.2) at 80 °C for 80 min
Figure 4.4-11: ((tl (c b	Effect of different levels of (a) ascorbic acid (0-0.1 %) and (b) gallic acid (0-0.07 %) on the FID peak areas of heptanal and <i>trans</i> -2-nonenal after the latter (1.0 ppm) was heated (60 min, 80 °C) in the presence of WPI (0.5 %) in phosphate buffer (26 mM, pH 7.2). For each individual flavour compound, different letters indicate significant (P < 0.05) differences between samples (n = 2).
Figure 4.4-12: c a	Effect of nitrogen in the headspace of heated (80 °C, 60 min) samples, containing WPI (0.5 %) and <i>trans</i> -2-nonenal (1.0 ppm), on the FID peak areas of heptanal and <i>trans</i> -2-nonenal ($n = 3$)
Figure 4.4-13: a (Chromatograms of volatiles after <i>trans</i> -2-nonenal (1.0 ppm) was heated at 80 °C for 10 and 80 min, respectively, in the presence of (a) β -lg (0.5 %), and (b) BSA (0.5 %)
Figure 4.4-14: 8 c	Chromatogram of volatiles after <i>trans</i> -2-nonenal (1.0 ppm) was heated at 80 °C for 10 and 80 min, respectively, in the presence of sodium caseinate (2.0 %)
Figure 4.4-15: a a	Near-UV CD spectra of WPI solutions between 250 and 350 nm in the absence and presence of propylene glycol (1 %), 2-nonanone (14 ppm), and <i>trans</i> -2-nonenal (1 ppm) at room temperature
Figure 4.4-16: s	Near-UV CD spectra of native and heat-treated (80 °C, 20 min) WPI solutions between 250 and 350 nm in the absence and presence of 2-nonanone (14 ppm)
Figure 4.4-17: a (Far-UV CD spectra of WPI solutions between 190 and 250 nm in the absence and presence of 2-nonanone (14 ppm) and <i>trans</i> -2-nonenal (1 ppm) at room temperature
Figure 4.4-18: s	Far-UV CD spectra of native and heat-treated (80 °C, 20 min) WPI solutions between 190 and 250 nm in the absence and presence of 2-nonanone (14 ppm)

- Figure 5.3-1: Example for concentrations of 2-nonanone in controls 1 and 2......141

Figure 5.4-5: Release of 2-nonanone from WPI, sodium caseinate, and the	
corresponding controls after the samples were swallowed straight after	
sample intake without any in-mouth movements.	148
Figure 5.4-6: Release profiles of 2-nonanone from (a) 0.5 % and (b) 2 % WPI solutions	
in comparison to the controls 1. Samples were consumed by subject 3	
with swirling in-mouth	149
Figure 5.4-7: Comparison of the release of 2-nonanone from sodium caseinate and WPI	
(2 %) (n = 5).	151
Figure 5.4-8: Release of 2-nonanone from a WPI solution (2%) as compared to the	
controls.	152
Figure 5.4-9: Release of 2-nonanone from a sodium caseinate solution (2 %) as	
compared to the controls.	153
Figure 5.4-10: Effect of CMC (0.5%) on the release of 2-nonanone from control 2	
(1 ppm 2-nonanone)	154
Figure 5.4-11: Effect of CMC (0.5 %) on the release of 2-nonanone from WPI and	
sodium caseinate solutions (2 %)	155
Figure 5.4-12: Release of 2-nonanone from WPI and sodium caseinate (2 %) in	
thickened systems (0.5 % CMC) as compared to the corresponding	
thickened controls.	157

LIST OF TABLES

Table 2.2-1: Levels of 2-nonanone in foods	13
Table 2.2-2: Major proteins in bovine milk; adapted from Rosenthal (1991)	14
Table 2.2-3: Binding data for the interactions between 2-nonanone and milk proteins (25 °C): <i>n</i> , number of binding sites per monomer; <i>K</i> , intrinsic binding constant	72
Table 2.3-1: Influence of heat denaturation on the binding between milk proteins and	20
flavour compounds; \uparrow binding increases, \downarrow binding decreases	29
Table 2.5-1: Proton affinities of selected constituents of air and selected organic volatile compounds (Lindinger et al., 1998)	39
Table 3.3-1: Physicochemical properties of 2-nonanone.	50
Table 3.3-2: Spectroscopic data of aqueous solutions of the main whey proteins and caseins (1 %)	59
Table 3.4-1: Amount of 2-nonanone extracted by PDMS fibres	71
Table 3.4-2: Partition coefficients for flavour compounds between the PDMS fibre coating and the headspace above the flavour solution (Roberts et al., 2000; Jung and Ebeler, 2003a) calculated by LTPRI (Pawliszyn, 1997)	74
Table 3.4-3: FID responses (× 10^{-3}) after headspace extraction by syringe (300 µl) and by SPME of a 2-nonanone solution (1.0 mM)	74
Table 3.4-4: Influence of stirring speed on the amount of 2-nonanone extracted from the headspace as determined by FID peak area	78
Table 3.4-5: Optimum SPME parameters for the measurement of protein-flavour interactions.	79
Table 3.4-6: Fractions and yields of prepared caseins.	89
Table 3.4-7: Percent binding of 2-nonanone to α_{s1} - and β -case in (0.5 %)	91
Table 3.4-8: Protein composition of WPI as determined by HPLC.	96

Table 3.4-9: Binding parameters of 2-nonanone with the individual milk proteins and
the milk protein products WPI and sodium caseinate at 25 °C; <i>n</i> number
of binding sites per monomer, K intrinsic binding constant, nK global
binding constant
Table 4.3-1: Characteristics of the C9 flavour compounds
Table 4.3-2: Sample preparation scheme for the SDS competition experiment. 110
Table 4.3-3: Parameters of the automated headspace SPME method. 111
Table 4.3-4: Sample preparation scheme for the CD experiment. 112
Table 5.3-1: Preparation of protein solutions for the <i>in vitro</i> flavour release experiment 139
Table 5.3-2: Added volumes of 2-nonanone stock solution (50 ppm), and total and free
2-nonanone concentrations in the protein containing samples and in the
controls
Table 5.3-3: PTR-MS operating conditions. 142
Table 5.4-1: Binding of 2-nonanone (1.0 ppm) to WPI and sodium caseinate (2 %) in
thickened (0.5 % CMC) and non-thickened systems (mean \pm standard
deviation; n = 3)146
Table 5.4-2: Areas under the curve (AUCs), t_{max} , and I_{max} of all samples (mean ±
standard deviation; $n = 5$)

LIST OF ABBREVIATIONS

∞	At equilibrium
α-la	α-Lactalbumin
β-lg	β-Lactoglobulin
3	Extinction coefficient (l·mol ⁻¹ ·cm ⁻¹)
λ	Wavelength (nm)
θ	Temperature (°C)
А	Absorptivity
APCI	Atmospheric pressure chemical ionisation
APS	Ammonium persulphate
AUC	Area under the curve
BSA	Bovine serum albumin
BTEX	Benzene, toluene, ethylbenzene, and xylenes
c	Concentration (M)
С	Cross-linker as percentage of total monomer concentration (%)
CAR	Carboxen
CD	Circular dichroism
СМС	Carboxymethylcellulose
conc.	concentrated
cps	Counts per second
CV	Coefficient of variation (%)
Da	Dalton $(g \cdot mol^{-1})$
DCCLC	Dynamic coupled column liquid chromatography
DEAE	Diethylaminoethyl
DSC	Differential scanning calorimetry
DVB	Divinylbenzene

E	Electric field
[F]	Concentration of flavour (M)
FID	Flame ionisation detector
GC	Gas chromatograph(y)
GC-O	GC-olfactometry
h	Hour(s) or Hill coefficient or headspace
ННР	High hydrostatic pressure
HPLC	High performance liquid chromatography
НРМС	Hydroxypropyl methyl cellulose
IEC	Ion-exchange chromatography
I _{max}	Maximum intensity of flavour perception
IR	Infrared
К	Binding constant (M ⁻¹)
K _d	Dissociation constant
K _{fh}	Partition coefficient between SPME fibre coating and headspace
K _{fw}	Partition coefficient between SPME fibre coating and water
K _{hw}	Partition coefficient between headspace and water
[L]	Concentration of free ligand (M)
[L] _{tot}	Total ligand concentration (M)
Log P	Logarithm of the partition coefficient between water and n-octanol
LTPRI	Linear temperature programmed retention index
М	Mol·1 ⁻¹
min	Minute(s)
MPC	Milk protein concentrate
MS	Mass spectrometry / spectrometer
MW	Molecular weight

m/z	Mass to charge ratio
n	Number of binding sites per mole of protein
nK	Global binding constant (M ⁻¹)
NMR	Nuclear magnetic resonance
NOE	Nuclear Overhauser effect
[P]	Protein concentration
PAGE	Polyacrylamide gel electrophoresis
РАН	Polycyclic aromatic hydrocarbons
PDMS	Polydimethylsiloxane
PFG	Pulsed field gradient
PG	Propylene glycol (1,2-propanediol)
ppbV	Parts per billion by volume
ppm	Parts per million
PTFE	Polytetrafluoroethylene
PTR	Proton transfer reaction
RAS	Retronasal aroma simulator
RI	Refractive index
rpm	Revs per minute
sccm	standard centimeter cube per minute; 1 cm^3 of gas per minute at 0 °C and at atmospheric pressure.
SD	Standard deviation
SE	Standard error
SEM	Secondary electron multiplier
SDS	Sodiumdodecylsulphate
S	Second(s)
SEC	Size exclusion chromatography

SPME	Solid-phase microextraction
t	Time
Т	Total monomer concentration (%)
ТСА	Trichloroacetic acid
TEMED	N, N, N', N'-Tetramethylethylenediamine
t _{eq}	Equilibration time
t _{ex}	Extraction time
TI	Time-intensity
t _{max}	Time at which maximum flavour intensity is perceived
Tris	Tris(hydroxymethyl)methylamine
UV	Ultraviolet
V	Volume (1) or Volts
v	Number of moles of flavour bound per mol of protein
var	Variance
WPC	Whey protein concentrate
WPI	Whey protein isolate
Y	Fractional saturation of binding sites on the protein