
Copyright is owned by the Author of the thesis. Pennission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only. The thesis may not be reproduced elsewhere without 
the pennission of the Author. 



NUMERICAL AND APPROXIMATE SOLUTIONS 
TO PROBLEMS IN 

SPONTANEOUS IGNITION 

A thesis presented in partial fulfilment of 
the requirements for the degree of 

Master of Philosophy 

Catherine Margaret Rivers 

1994 

in Mathematics at 
Massey University 



ABSTRACT 

This thesis considers the subject of time-independent spontaneous ignition of materials of 

arbitrary shape. 

Chapter One reviews the major advances up to the work ofD.A.Frank-Kamenetskii. 

Chapter Two discusses the modem, Gray Wake, formulation of the problem. 

In Chapter Three, ignition in the class A shapes is approximated by a numerical finite 

differences method. The same method is applied to some non-class A geometries. 

Solutions to the Gray Wake formulation for ignition in the infinite slab geometry are 

sought in Chapter Four by approximating the internal energy gradient by the maximum 

internal energy and by the average internal energy. 

Chapter Five considers an industrial application of the spontaneous ignition of moist 

powder. 
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1 INTRODUCTION 

1.1 Background 

In 1993, at 3 :00 am on Good Friday, an explosion occurred in the milk powder factory 

at Te Rapa, New Zealand (see Figure 1.1). The fire, whose cause is unexplained, 

resulted in an explosion of milk powder. Extensive damage was caused. The plant, 

believed to be the largest in the southern hemisphere, was closed for some months at 

great cost to the parent company. 

When materials which contain a heat source are stored in ambient temperatures at or 

below their internal temperatures, the generated heat builds up to levels where ignition 

can occur. Powdery masses, like the milk at Te Rapa, can burst into flame, or can 

explode. The phenomenon is known as spontaneous ignition. 

The behaviour and the control of spontaneous ignition is of interest. How hot can 

materials be assembled? To what temperature should materials be cooled before being 

stored? Given assembly and storage conditions, what mass of material can be 

accumulated safely? Can spontaneous ignition be used as a positive factor in 

manufacturing processes? 

Rules of thumb have been developed in many trades, industries and occupations to 

diminish the risk of spontaneous ignition in the assembly and storage of materials. 

Techniques are required to describe the ignition behaviour of materials and to predict 

safe working limits within which materials can be handled. Modern researchers have 

endeavoured to disclose the underlying model for spontaneous ignition. This study is a 

part of that process. 
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FIGURE 1.1 The aftermath of a dust expolsion. 
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1.2 Thermodynamic Basis for Ignition 

For the elementary reaction A<=> B, the activation energy is the energy required to allow 

the reaction to occur. The greater the activation energy, the fewer are the collisions 

involving sufficient energy to cause reaction at a given temperature, and the slower is the 

reaction. As the temperature is increased, more collisions comprise energy equal to or 

greater than the activation energy, and the reaction rate becomes greater. 

For small changes in temperature, the dependence of rate constant on temperature can be 

represented by the Arrhenius equation, 

k = Aexp(-E I RT) (1.1) 

where A is the pre-exponential factor, E is the activation energy, R is the Universal Gas 

Constant and Tis the temperature. 

Thermal ignition is an exothermic reaction. Neglecting reactant consumption, the heat 

balance equation is 

aT 
V. ( KVT) + oQA exp(-E I RT) = Cat (1.2) 

where K is the thermal conductivity, T the temperature, cr is the density, Q is the 

exothermicity, C is the heat capacity and t represents time. 

The Biot number is the ratio of surface heat transfer to thermal conductivity. If Bi➔O, 

the temperature becomes uniform throughout the region and there is an abrupt 

temperature drop at the interface with the surroundings down to the ambient 

temperature. If Bi➔ oo, the temperature at the boundary becomes equal to the ambient 

temperature; that is, the boundary condition is 

T= T;, (1.3) 

and a temperature gradient exists within the reaction zone. The zero Biot number 

scenario was developed by Semenov and others; the infinite Biot number by Frank­

Kamenetskii and others. 
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1.3 Frank-Kamenetskii Conditions 

In the steady-state equation, JT I dt = 0. For the class A geometries of infinite slab, 

infinite cylinder and sphere, the steady-state formulation has been investigated by Frank:­

Kamenetskii as 

V
2 8 + 8 exp(-

0
-) = 0 

1+£8 

8=0 

with the dimensionless energy parameter, 

RI;, 
£=--, 

E 

in the region with 

on the boundary 

and the dimensionless Frank-Kamenetskii eigenvalue parameter, 

0 
_ cf2a; EA exp(-EI RTJ 
- 1d?.T2 , 

a 

for which clo is some characteristic half-width of the region containing the reaction. 

(1.4) 

(1.5) 

(1.6) 

The variable 8 represents the dimensionless temperature rise above ambient temperature, 

8=}__T-I;, 
e I;, 

E 
=-2 (T-7;,). 

RT,, 

(1.7) 

The effect on the solution 8 of varying D while keeping s fixed is shown in Figure 1.3. Of 

interest is Der, the value of D at which the first bifurcation point occurs on the minimal 

branch. If D < Der, the material will warm and will reach a steady temperature 

distribution; if D > Der, the material will eventually heat to the point of ignition, that is, 

thermal runaway may occur; if D = Der, a metastable state exists. 
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e 

0 

FIGURE 1.2 Bifurcation diagram. 

When g << 1, the instantaneous heat balance equation can be written as 

d2e J de ) -+--+8exp(e =0 
dp2 pdp 

~p=I - 0 (1.8) 

de =O 
dp p=O 

where the dimensionless shape factor, j, has value 0 for slab, 1 for cylinder and 2 for 

sphere. The variable p is a function of distance, r, from the centre of the body; 

In general, the boundary condition is 

r 
p=-. 

ao 

r de . h 
h ~ 

+- when j = 0, 1. e. w en p = ± 1 
a0 dp 

-es= de 
,c l- dp when)= 1,2, i.e. when p = 1,2 

=Bie s 

(1.9) 

(1.10) 

where h is the surface heat transfer coefficient and es is the dimensionless temperature 

excess at the surface. 



By symmetry, 

d0 =O 
dp 
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when p=O. (1.11) 

Equation (1.4) cannot be solved explicitly when c is non-zero. Solution of (1.8) yields 

the values in Table 1. 1. 

Shape Ocr 

infinite slab 0.88 ( analytical) 

infinite cylinder 2.00 ( analytical) 

sphere 3.32 (no exact solution) 

TABLE 1.1 

The variation of ocr with Bi is shown in Figure J:3. Under Semenov conditions (Bi➔O), 

Bi and ocr are related by 

Der = (j + 1) Bi (1.12) 
e 

shown in Figure 1.3 by the dashed line. When Bi is small, Der is proportional to Bi. As Bi 

becomes larger, ocr tends asymptotically to a maximum value, the Frank-Kamenetsk:ii 

limit. 
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/ Semenov conditions 

er 

0 Bi 

FIGURE 1.3 Variation of Ocr with Biot number, Bi. 
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2 MODERN FORMULATION 

In practice, Ocr and Bi are not as useful as critical ambient temperature, critical initial 

temperature and critical size in determining the conditions for spontaneous ignition. The 

latter are easier to determine in situ and are of more practical interest than Ocr or Bi in the 

causal determination and prevention of fires. 

When 
RT 

U=-
E 

U = RT,, 
E 

(2.1) 

the steady state formulation for combustion in the slab geometry, Equation (1.4), can be 

written as 

in the region n (2.2) 

with 

:+Bi(u-U)=O on the boundary 80 

where 
,....,,ARa2 

l= v~. o 

KE (2.3) 

and cJu I Jn is the outward normal derivative at the boundary. 

The ambient temperature, Ta, becomes the natural control parameter since it is easily 

monitored in a practical situation and appears only in U, in contrast to the Frank­

Kamenetskii formulation in which Ta appears in 0, o ands. The distinguished parameter is 

U. Thus, the critical ambient temperature can be read directly from a graph of u v. U via 

(2.1). 

Another benefit of the modem formulation is that the Frank-Kamenetskii length variable, 

ao, appears only in the expression for A. The dimensionless variables and parameters, u1, 

ua and A, are known as the Gray Wake variables and parameters. The transformation is 
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(2.4) 

The bifurcation diagram for fixed value of').,, is shown in Figure 2.1. Stable and unstable 

branches are indicated by labels s and u respectively. 

The point of ignition corresponds to the first fold bifurcation point, occurring at Ucr, the 

critical value of U. For values of U slightly greater than Ucr, the system migrates to the 

upper stable branch involving much greater internal energy, u; ignition thus occurs. 

When a fire already exists, the internal energy is high and the system corresponds to a 

point on the upper stable branch. As the internal energy is reduced, the system reaches the 

second fold bifurcation point. A slight decrease in energy causes the system to fall to the 

lower stable branch involving much lower internal energy, u; extinction thus occurs. 

u 
s 

/ ignition 

extinction 

u 

FIGURE 2.1 Bifurcation diagram for the infinite slab. 

Gray and Wake [14] have shown that non-trivial solutions to the heat balance equation 

exist when U=O for large A. That is, an upper stable branch exists, even when the 

bifurcation curve is discontinuous. 
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The unifonn reaction has equation 

u-U = Aexp(- ~) (2.5) 

The bifurcation diagram is shown in Figure 2.2. 

There is always a unique solution for small A. As A increases, the curve adopts more of an 

s-shape until multiplicity first occurs at A = Atr· For values of A greater than Atr, the 

minimal branch becomes discontinuous at A = Acr· Multiplicity first occurs for the absolute 

zero case (U=0) at A= A'. Burnell et al (8] have shown that, for the slab geometry, 

Atr = 4.618. 

u 

0 U 

FIGURE 2.2 Bifurcation diagram for various A in 

the uniform case, (2.5). 

In practical situations, A has value much greater than A' and the variable u has values high 

enough to suggest that the upper branch is significant. The earlier Frank-Kamenetskii 

formulation does not allow an upper branch to exist under these circumstances because it 

does not allow multiple solutions to exist for U = 0: From (2.1 ), when Uhas value zero, 

Ta must have zero value; non-trivial solutions, u, are transformed to 0 = oo. Thus, the 

disjoint nature of the bifurcation curve, and hence the upper branch, never appears in the 

classical F rank-Kamenetskii formulation. 



The bifurcation diagram (8] for the sphere is shown in Figure 2.3. 

u 

.,. 

'· 

u., (>.') 

'· 

,' 
.,• 
' 

.... \ .. 

FIGURE 2.3 Bifurcation diagram for the sphere. 
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u 

Later results in this thesis will show that solutions with multiplicity greater than three exist 

only for').,,>').,,'. 

The energy distribution profile for combustion in a region, n, is shown in Figure 2.4. The 

lowest and uppermost curves are stable; the middle curve represents an unstable state. 

Each curve corresponds to one branch of the bifurcation diagram. For some geometries 

under certain conditions, there may be more than three curves on the energy distribution 

profile. Generally, the uppermost curve is at much greater values of u than the other 

curves. 



u 

...--r---.. s 

FIGURE 2.4 Energy distribution profile. 

Use of the Gray Wake formulation, (2.1) - (2.3), is not only easier to apply than the 

Frank-Kamenetskii formulation, (1 .4), but it more closely approximates the physical 

characteristics of thermal ignition and thermal extinction. 

12 
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3 TAXONOMY OF CLASS A GEOMETRIES 

3.1 Introduction 

Using the Gray Wake formulation, the steady state heat balance equation for a material 

of arbitrary shape undergoing exothermic reaction with negligible reactant consumption 

is 

d
2
u du ( l) 

dx2 + x dx + ;\, exl\ - u = 0, 0 < x < l, 
(3.1) 

u(l) = U, u'(0) = 0 

where u represents the energy across region x (0 < x< l) , '}., is the Gray Wake parameter 

and j is the shape factor. 

The shape factor j is defined by Boddington et al [ 4] as 

j=( ~i)-1, 
3V 

where ro is the root mean square radius, rs= S' Vis the volume of the body and Sis 

the surface area of the body. 

The aim of this study is to solve (3 .1) for various values of'}., and j by numerical 

computation. An implementation of (3 .1) is developed using approximations to remove 

problems of overflow in the second term near x = 0. Since the energy distribution profile, 

shown in Figure 3.1, is reasonably flat at x = 0, 

I du d 2u 
--➔- atx=0. 
X dx dx2 

So (3 .1) can also be expressed near x = 0 as 

u'(0) = 0. (3.2) 



The profile is symmetrical about x = 0, so 

u(i = -1) = u(i = 1). 

Using a three-point approximation to u"(x), with step-size h, 

2(J+ I)(u, -u,)+ M' exp(-:J = 0 

So 

. J..,h
2 

( 1 ) u(1 = 1) = u1 = u0 - ( . ) exp -- = 0. 
2 J + 1 u0 

Using a two-point symmetric approximation to the first order derivative and a three­

point symmetric approximation to the second order derivative, the problem, (3 .1 ), 

becomes 

J..,h
2 

( I ) u1 = u0 - ( • ) exp - -
2 J + I u0 

2i - 2 ( ( j ) 2 
( 1 )J u; = . . 2uH + -. --I ui-2 -Ah exp -- , 

21 + j - 2 21 - 2 lli-1 
i = 2,3,4, ... ,n 

u(i = n) = U. 

14 

(3.3) 



3.2 j=O Infinite slab 

Equation (3 .1) becomes 

u(l) = U, u'(O) = 0 

with solution via 

u(i = 1) = u1 = u0 - Ah
2 exp(--1 

) = 0 
2 U0 

u; = 2u;_1 -u;_2 -Ah2 exp(--1-), i = 2,3,4, ... ,n 
U;-1 

u(i =n) = U. 

Critical values for the slab are shown in Table 3 .1. The data are included in Figure 3 .10. 

15 



/1, Ucr Uo.cr 

100 000 0.0578812 0.0625 

10 000 0.0683588 0.0748 

1 000 0.0840888 0.0944 

100 0.111170 0.13065 

50 0.123979 0.1494 

45 0.126247 0.1528 

40 0.128905 0.1565 

35 0.132089 0.1616 

30 0.136017 0.1678 

25 0.141059 0.1760 

20 0.147919 0.1874 

15 0.158171 0.2052 

10 0.176478 0.2404 

9 0.182292 0.2528 

8 0.189514 0.2688 

7 0.1.98870 0.2910 

6 0.211865 0.32724 

5 0.232496 0.40535 

4.61836 0.245781 0.5412 - 0.5423 

TABLE 3.1 Critical values for the infinite 
slab. 

The Jvt:r value of 4.61836 with Dtr value of 0.245781 and A1 value of 6.956 agree with 

those ofBalakrishnan [1] and Burnell [8]. 

Typical curves are shown in Figure 3. 1. 
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Uo 1 

(c) 
tb) 

(o.) 

0.5 

0 

----~~ -----

----------0 0.1 0.2 0.3 0.4 
u 

FIGURE 3. 1 Bifurcation curves for the infinite slab geometry with 

(a) A= 3, (b) A= 4.61836, (c) A= 6.956, and (d) A= 20. 

0.5 

The bifurcation curves for the infinite slab, shown in Figure 3 .1, are of the fonn expected 

in Figure 2.2. As A increases from a Au- value of 4.61836, multiple solutions exist and 

ignition becomes possible at U = Ucr· 

3.3 j=1 Infinite cylinder 

Equation (3 .1) becomes 

d
2
u 1 du ~ 1) -+--+Aex -- = 0 

dx 2 
X dx U ' 

u(l) = U, u'(O) = 0 

0 < x < l, 



with solution via 

2i - 2 ( ( 1 ) 2 
( 1 )) u. =-- 2u_ + ---1 u._ -Ah exp --' 2· 1 l I 2· 2 l 2 ' 1- 1- uH 

i = 2,3,4, ... ,n 

u(i=n)=U. 

Critical values for the cylinder are shown in Table 3 .2 and included in Figure 3 .10. 

A, Ucr Uo.cr 

100 000 0.0624 0.061 

10 000 0.0820 0.073 

1 000 0.091944 0.107 

100 0.126933 0.159 

50 0.145194 0.190 

45 0. 148583 0.1962 

40 0.152624 0.204 

35 0.157572 0.213 

30 0.163855 0.226 

25 0.172249 0.244 

20 0.184403 0.272 

15 0.204814 0.328 

14 0.210965 0.350 

13 0.218415 0.380 

12 0.227872 0.424 

11 0.241361 0.552 

10.99 0.241545 0.556 

TABLE3.2 Critical values for the 
cylinder. 

The "'tr value of 10.99, with Utr value of 0.2415, and "A,' value of 16.84 agree with the 

results of other researchers, [1 J, [8]. 

18 
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Typical curves are shown in Figure 3 .2. 

2 

( 
1.5 

(c.) (lo) 

c~) 

0.5 

0 
0 0.3 0.4 

u 

FIGURE 3. 2 Bifurcation cunres for the cylinder (Ii= 0.01) for 

(a) 1v = 10.99, (b) 1v = 15, (c) 1v = 16.84, (d) 1v = 20. 

0.5 

The bifurcation curves for the infinite cylinder are similar to those for the infinite slab. As 

A increases from a A.tr value of 10.99, multiple solutions exist and ignition becomes 

possible at U Ucr· 
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3.4 j=2 Sphere 

Equation (3 .1) becomes 

d
2
u 2 du ~ l) -+--+Aex -- =0 

dx. 2 x dx u ' 
0 < x < l, 

u(l) = U, u'(0) = 0 

with solution via 

u1 = uo - Ahz exp (- _!_) 
6 U0 

2i - 2 ( ( 2 ) 2 
( 1 )) u. =-- 2u. + ---1 u. -Ah exp --' 2. ,-l 2. 2 ,-Z , 

l Z- ~~ 
i = 2,3,4, ... ,n 

u(i = n) = U. 

Critical values for the sphere are shown in Table 3 .3 and included in Figure 3 .10. 
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A, Ver Yo.er 

100 000 0.0634971 0.0712 

10 000 0.0766095 0.0880 

1 000 0.097704 0.1185 

100 0.139885 0.1880 

50 0.164111 0.2384 

45 0.168859 0.2498 

40 0.174653 0.264 

35 0.181969 0.282 

30 0.191692 0.312 

25 0.205702 0.360 

20 0.229851 0.490 

18.934 0.238791 0.644 - 0.654 

TABLE 3. 3 Critical values for the 
sphere. 

The Afr value of 10.99, with Utr value of 0.2415, and A1 value of 16.84 agree with the 

results ofBalak:rishnan [I] and Burnell [8]. 

Typical curves are shown in Figure 3.3. 
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2.4 

1.8 

(c) 
(b) 

(o) 

0.6 

0 --------0 0.1 0.2 0.3 0.4 0.5 

u 
FIGURE 3. 3 Bifurcation curves for tl}.e sphere for 

(a) 1v = 15, (b) 1v = 18.934, and (c) 1v = 29.564. 

The bifurcation curves for the sphere at low values of 11, are similar to those for the 

infinite slab. As 11, increases from a A.tr value of 10.99, multiple solutions exist and 

ignition becomes possible at U = Der· At higher values of A, greater than 11, = 100 000, 

the bifurcation curve changes form to increase the number of limit points. This is shown 

in Figure 3.4. 
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0.187 

C (~) 

u 0 0 .125 

B 

0.062 
------------------i ( b) 

.......... ·································· ~-i:~-----
------------------

A 

0 
0 0.012 0.024 0.036 0.048 0.06 

u 

FIGURE 3. 4 Bifurcation curves for the sphere for 

(a) A= 1x106, (b) A= lxl09
, and (c) A= lx1012

• 

The limit point positions are shown in Table 3.4. In each case, limit points A and E 

occur at the same Ucr as do limit points B and D. 

').,, = 1 000 000 ').,, = 1 000 000 000 ').,, = 1 000 000 000 000 

Ucr 110.cr Ucr 110.cr Ucr 110.cr 

A 0.0544334 0.0599 0.0384699 0.0766 0.0299281 0.03148 

B 0.0496205 0.0996 0.0368009 0.0525 0.0290448 0.03734 

C 0.0507882 0.1519 0.0368009 0.0737 0.0293377 0.04369 

D 0.0496205 0.1933 0.037392 0.066 0.0290449 0.04703 

E 0.0544333 0.2133 0.0384719 0.0411 0.0299280 0.04827 

TABLE 3. 4 Limit point positions for bifurcation curves for the sphere (h= 0.01). 
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3.5 Other geometries 

The effect of increasing} beyond j = 2 is shown in Figure 3.5. The abrupt cessation of 

bifurcation curves is discussed below ( see "Errors") and is caused by a combination of A, 

h, and u0. As with the class A geometries, each curve has 

du0 -=1 
dU ' 

The position oflimit points is given in Table 3.5. In each case, the Ucr value is greater 

than any other U value for a limit point. 

j=2 j=3 j=4 j=5 j=6 

Ucr Uo,cr Ucr Uo,cr Ucr Uo,cr Ucr llo,cr Ucr Uo,cr 

0.0544 0.0599 0.0557 0.0624 0.0568 0.0649 0.0577 0.0677 0.0585 0.0709 

0.0496 0.0996 0.0544 0.0839 0.0563 0.0846 0.0575 0.0879 0.0584 0.0935 

0.0508 0.1519 0.0549 0.1348 0.0564 0.1297 0.0575 0.1516 0.0584 0.1726 

0.0496 0.1933 0.0548 0.1488 0.0563 0.2021 0.0577 0.2230 0.0584 0.2156 

0.0544 0.2133 0.0551 0.2020 0.0564 0.2202 0.0483 0.2436 0.0585 0.2265 

0.0543 0.2469 0.0563 0.2369 0.0577 0.2679 

0.0556 0.2575 0.0564 0.2619 0.0575 0.2916 

0.0577 0.3011 

TABLE 3. 5 Limit points for geometries withj ~ 2 for A= lxl06 (h = 0.01). 
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FIGURE 3. 5 Bifurcation curves for the geometries corresponding to 

j = 2, 3, 4, 5 and 6 for A= lxl06 (h = 0.01). 
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0.06 

At j = l, there is only one limit point for bifurcation curves corresponding to A > ').._'; at 

j = 2, there are at least five such limit points. Between j = I and j = 2, the number of limit 

points increases from one to three to five. This can be seen in Figure 3.6. 
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0.18 

Uo O .12 
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0.024 0.036 0.048 
u 

FIGURE 3. 6 Bifurcation curves for the geometries corresponding to 

j = 1, 1.3, 1.5, 1.8 and 2 for A= lx106 (h = 0.01 ). 
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3.6 Upper branch 

When 11, > 11,', U = 0 occurs for at least two values of u0, one of which is always u0 = 0. 

Another value of u0, for which Uhas value 0, occurs at values which are dependent on 

geometry and on A. This point represents one end of the upper stable branch of the 

bifurcation curve, and can be termed the "re-emergence" point. Typical values of re­

emergence points are given in Table 3.6. 

The re-emergence uo value 

From (3.3), 

So, 

u,(U = 0) ➔ ( ). ) ~ M'. 
2 J+ 1 

as u; ➔ U = 0, M 2 ex ( - -
1
-) ➔ Ah2 

I\. 11;-1 

-1 ➔ -1. 
2i-2 

2u;-1 = u;-2 + ).h2. 

j = 0 (infinite slab) j = I (infinite j = 2 (sphere) 

cilinder} 

30 13.58 5.68 2.22 

50 23.60 10.78 6.26 

100 48.61 23.34 14.76 

1 000 498 248.38 164.84 

10 000 4998 2498.50 1665.00 

100 000 49999 24998.40 16664.90 

TABLE 3. 6 Re-emergence points. 

The trend is evident in Figure 3. 7. 
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FIGURE 3. 7 Re-emergence value of uo as a function of A. 

3.7 Errors 

3.7.1 Computation precision 

All computations above have been made using computer programs written in Borland 

C++ version 3 .1. Such calculations were conducted using long doubles with 19-digit 

precision. Each stage was exercised within a range of 3 .4E-4932 and l .1E4932. The 

value oO .. is stored as a double precision IS-digit variable with range 1.7E-308 to 

1. 7E308, and is promoted to long double precision during computation. 

At each step, truncation and rounding errors may occur. 

3. 7 .2 Rounding 

28 

j=o 

J=I 

1= 2. 

The most likely region for rounding errors to occur is in the exponential term 

ex{-/, J. Such errors can be avoided by introduction of a scaling factor, F, as in 

11 



29 

2i - 2 ( ( j ) ( 1 )\ 
11; = . . l2uH + -. - - 1 u;_2 - }J-z2 exp(-F) exp F - - ! I, 

21 + j - 2 21 - 2 ll;_1 ) 
i = 2,3,4, ... ,n 

Application of such a scaling factor results in no change in limit points or in the shape of 

curve. Thus, rounding errors do not play a significant role in the calculation of U. 

3. 7.3 Truncation 

The most likely sector for truncation errors to occur is the casting from one data type to 

another. No such errors occur in this study because all casts are either from float or 

double precision reals into long doubles, where no truncation occurs, or from integer 

into long double (real) precision, where there can be no loss of precision. 

3. 7.4 Swamping 

The term Ah2 exp(--
1
-) in (3.3) is made smaller by reducing the step-size and made 

ui-1 

larger by increasing A. As the term gets larger, it "swamps" the rest of the expression for 

U, resulting in a negative U value. This occurs when 

)Jz2 ex ( __ l_)>> 2u;_
1 
+(-!---1)u;_

2
• I\ u;_1 2z-2 

So, for any combination of j, ui-1 and ui-2, there is an upper limit to A and to h for 

which meaningful values of U can be obtained. 

3.7.5 Variation of h 

The variable u1 in (3.3) is made negative when 

).h

2 

~ l J ex -- >u 
2(J + 1) Zlo o 
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which, for}= 3, h = 0.005 and A= Ix 106
, occurs at u0 = 0.61563. Thus, the bifurcation 

curve for the above combination of variables stops abruptly at u0 = 0.61563. When h has 

value 0.01, u1 < 0 at u0 = 0.258. Although each curve stops at different values of ua, 

they have the same U0 , value. 

When the step-size, h, in the finite differences approximation is diminished, more steps 

are required from x = 0 to x = 1. Errors incurred in each step can accumulate resulting in 

a greater inherent error in U at smaller h. The effect of this can be seen in Figure 3.5. For 

A= 500 000, ash is diminished below 0.01, the number oflimit points is reduced. For all 

values of h, the Ucr value is unchanged at 0.05686. For h = 0.01 and h = 0.02, the upper 

limit point also corresponds to U = 0.0586. 

0.3 

. -·- --··--~-

h::o,O\ 

0.225 

Uo 0 .15 

0.075 

0 
0 0.012 0.024 0.036 0.048 0.061 

u 

FIGURE 3. 8 The effect of changing h on the bifurcation curve for A = 500 000. 

As noted above, varying h changes the relationship between the terms in the expression 

for U. This has greater effect at higher values of A. In Figure 3.8, with A= 500 000, 

diminishing h induces errors; in Figure 3.9, with A= Ix 103
, diminishing h results in lesser 

changes in the bifurcation curve. 
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0.08 0.1 

FIGURE 3. 9 The effect of changing hon the bifurcation curve for A= 1000. 

3.8 Summary 

The Gray Wake formulation of the steady state heat balance equation for exothermic 

reaction with negligible reactant consumption can be described via finite differences 

approximations of both first- and second-order derivatives as 

2i-2 ( ( j )u ~ I )1 u =--- 2u + ---I . -M2 ex --
; 2i + j- 2 l i-l 2i - 2 i-Z ui-1 ~, 

i = 2,3,4, ... ,n 

u(i = n) = U 

with step-size h. 



As the shape factor,}, is increased above}= 1, the number oflimit points increases to 

five for A ;?: 1 x 106 
. 

For all geometries and all values of A, 

du 
_o =l 
dU ' 

The lower limit point is always at the maximum value of U. 
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For A> A', the upper stable branch of the bifurcation curve appears to include the point 

( ;t ' 
(U, uo) = l 0, 2(J + 1) - Ah2) 

At high values of A, errors become significant. In general, the bifurcation curves have the 

form described by other researchers. 

025 

J... sphere 

0.20 

♦ infinite cylinder 

0.15 
Ill infinite slab 

0.10 

0.05 
JO JOO 1000 10000 100000 1000000 

FIGURE 3. 10 Ucr values for the infinite slab, infinite cylinder and sphere. 
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4 Use of Approximations 

4.1 Introduction 

Using the Gray Wake formulation for combustion in an infinite slab, the energy balance 

equation is 

d
2

u ( I) . -+1exp -- =0 mn 
dx2 u 

( 4.1) 

with boundary condition 

u=ua on an, 

where u is the dimensionless temperature of an exothermically reacting material in 

bounded domain D. in Rn with smooth boundary a D. and A is the dimensionless 

parameter, 

A= ci)ARa; 
kE ' 

where s is the density of material, Q the exothermicity, A the Arrhenius frequency factor, 

R the universal gas constant, ao some measure of length, k the thermal conductivity, and 

E the activation energy. 

The heat balance equation for combustion in the slab geometry can be written as 

(4.2) 

with boundary condition U=Ua, x=±l 

where u = RT/E. 

This heat balance equation cannot be solved analytically. Approximation is possible via 

the exponential term by replacing the u by an average value across the region, uav , or by 

a maximum value in the region, llmax . 
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4.2 Approximation by average u 

When the average value of u, uav, is used to approximate the u in the exponential term 

of ( 4.2), the equation becomes 

Rearranging, 

Integrating, 

d
2

u ( I ) -+.:lexp -- =0 
dx2 

ll av 

U = Zia, X = ±1 

u"(x) = -J.exp(- u~) 
=-C constant C. 

C 
u(x) = --x2 +Ax+ B. 

2 

By symmetry, A= 0. From the boundary condition, u(l) = U, so 

u =- C +B 
a 2 

⇒ 

⇒ 

B= C +u 
2 a 

u(x)= C(I-x2 )+ua. 
2 
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4.2.1 Construction of the curve 

The curve of U versus Umax = u(O) is created by calculating values for each of U and u(O) 

from values of llav and plotting these against each other as follows: 

(4.3) 

Also, 

u(x) = A (1-x2 )exp(--
1 )+ua 

2 uav 

u(O) = u0 

U0 = A, exp(--
1 )+ua 

2 uav 

u0 = uav - A exp(--
1 )+ A exp(--

1 
) 

3 uav 2 uav 

= uav + A exp(--
1 

)· 
6 llav 

(4.4) 

Thus, for any given value of uav, 

u, = "~ - ~ exp(-
11
~) (4.3) 

u0 = uav + A exp(--
1
-) 

6 llav 
(4.4) 



4.2.2 Calculation of critical values 

The value of duc/du0 is calculated as follows: 

So 

where 

dua = I-2y 
du0 I+ y 

y = _?v_ex_p~(-_u_~~J 

6u2 
av 
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(4.5) 

(4.6) 

Of interest is the point on the curve at which duc/du0 = 0. The value of U at which this 

occurs is termed Ucr· The fold bifurcation occurs at this point. 

4.2.3 Results 

Typical results are shown in Figures 4.2 - 4.7. The curves are consistent with earlier 

results in which a characteristic value of A, A-tr, can be identified as the lowest value of A 

at which duafduo calculated above has value zero. For "A greater than A-tr, a fold 

bifurcation point occurs at U = Ucr· When "A is greater than "Atr, there are multiple 

solutions and the system is able to migrate to the upper branch from the stable lower 

branch, resulting in thermal ignition; no such multiple solutions exist for "A less than "Atr· 

The variation of Ucr with "A is shown in Figure 4.8. Values of Ucr are shown in Table 

4.1. The maximum value of Ucr is 0.249967 which occurs for A-tr= 5.542517. 
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FIGURE 4.2 The u0 versus U curve for 'A = 5, using the approximation of u by 
u av, the average value of u. The u av values range from O to O. 77. 
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FIGURE 4.3 The uo versus U curve for 'A= 5.542517, using the approximation 
of u by uav, the average value of u. The uav values range from Oto 0.77. At 
U=O. 24 996 7, the curve is vertical, indicating that ½r = 5. 54 2517. A vertical 
section occurs only when 'A = ½r. 
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FIGURE 4.4 The uo versus U curve for 'A = 6, using the approximation of u by uav, the 

average value of u. The U::iv values range from O to O. 77. In this case, Ucr = o ?.% 
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FIGURE 4.5 The uo versus U curve for 'A= 7, using the approximation of u by 
uav, the average value of u. The uav values range from Oto 0. 77. In this case, 
Ucr=0.2174. 
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FIGURE 4.6 The u0 versus U curve for A = 8, using the approximation of u by 

u av, the average value of u. The u av values range from O to O. 77. In this case, 

Ucr is 0.205. 
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FIGURE 4. 7 The u0 versus U curve for A = 9, using the approximation of u by 

uav, the average value of u. The llav values range from 0 to 0.66. The value of 

Ur.r is 0.196. 
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II, lL Uo.cr 

5.542517 0.249967 0.500 
5.55 0.249645 0.485 

6 0.236073 0.453 
7 0.217480 0.370 
8 0.205205 0.329 
9 0.196116 0.302 
10 0.188979 0.284 
15 0.167289 0.234 
20 0.155528 0.211 
25 0.147784 0.196 
30 0.142142 0.185 
35 0.137782 0.179 
40 0.134253 0.171 
45 0.131330 0.167 
50 0.128832 0.162 
55 0.126678 0.159 
60 0.124796 0.157 
65 0.123104 0.153 
70 0.121597 0.151 
75 0.120228 0.148 
80 0.118993 0.148 
85 0.117847 0.145 
90 0.116798 0.144 
95 0.115811 0.142 
100 0.114909 0.141 

TABLE 4.1 Varia~;: ~ :~ ~ :~r:~ A~: < x <I 

u(x)=ua, x=±l 
where Ucr is the largest value of U at which multiple solutions occur, uo,cr is 
the corresponding u0 value, and uav is the average value of u(x). The number of 
significant figures reported represents the precision with which individual 
measurements were able to be made. 
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The curves in Figures 4.2 - 4.7 appear similar at low values of both u0 and U. This is to 

be expected from (4.3) and (4.4) since small values of u0 and U arise from small values of 

uav. In ( 4.6), when uav is small, 
A exp( o) 

y.::::: 
- 6112 

av 

<<1 
so, substituting into (4.5), 

dua _ I-2y 

du0 1+ y 

~1 

regardless of A. For this reason, all the curves have slope close to 1, initially. 
There appears to be a limiting value of Ucr of 0.25. 
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FIGURE 4.8 Variati;~
11

of Ucr with().,, fo;) 

dx2 + A exp - uav = o, -l<x<l 

u(x)=ua, x=±l 
where Ucr is the largest value of U at which multiple solutions occur, and uav is the 
average value of u(x). Data for this curve are contained in Table 4.1. Values of Ucr 
appear to approach a limit of 0.25; the minimum value of"' is 5.542517. 

110 
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4.3 Approximation by maximum u 

When the maximum value of u, Umax, is used to approximate the u in the exponential 

term of (4.2), the heat balance equation for combustion in the slab geometry becomes 

d
2

~ +Aexp(--
1
-) = 0 

dx umax 

u(x)=ua x=±l 

where Umax is the maximum value of u(x) for -1 < x <l. 

4.3.1 Construction of the curve 

From the curve in Figure 4.1, it can be seen that by symmetry, the maximum value of 

u(x), umax, occurs at x = 0. Thus the equation can be re-written as 

u" = -A exp(- -
1
-). 

umax 

Integrating, 

u(x) = u" + ~ ( exp(- u: )}-x') 
Substituting, 

I 
A u 

U =U --e 0 
a O 

2 
(4.7) 

4.3.2 Calculation of critical values 

From (4.7), the value of duc/du0 can be calculated as 

(4.8) 

This has value zero at u = Ucr, the fold bifurcation point. 
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4.3.3 Results 

Typical curves are shown in Figures 4.9-4.14. As 11, decreases, the critical value, Ucr 

approaches a minimum of 0.249648. The corresponding value of 11, at this point is 3.7. 

This is the Atr value. For 11, greater than 3.7, there exist multiple solutions to the heat 

balance equation; the system is able to jump to the higher less stable solution, resulting in 

thermal ignition. The variation of Ucr with 11, is shown in Table 4.2 and in Figure 4.15. 

The closeup views of the critical region (Figures 4.10 - 4.12) show the marked changes 
as 11, moves from Atr - s to Atr + s, smalls. For 11, < Atr, multiple solutions do not exist. 
The maximum value of Ucr is 0.25000 which occurs for Atr = 3.69451. 
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FIGURE 4.9 The u0 versus U curve for "A,= 3.694, using the approximation of u 
by umax, the maximum value of u. 
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FIGURE 4.10 A view of the critical region in the u0 versus U curve for 
"A,= 3.694, using the approximation of u by umax, the maximum value of u. 
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FIGURE 4.12 A view of the critical region in the u0 versus U curve for 
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FIGURE 4.13 The u0 versus U curve for A = 5, using the approximation of u by 
umax, the maximum value ofu. The value of Ucr is 0.2108235. 
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FIGURE 4.14 The u0 versus U curve for'),= 9, using the approximation of u by 
umax, the maximum value of u. The value of Ucr is 0.172238. 
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A, Ucr Uo_cr A, Ucr 11o_cr 

3.69451 0.250000 0.500 25 0.135934 0.162 
3.70 0.249648 0.481 30 0.131317 0.1555 
3.71 0.249040 0.469 35 0.127731 0.150 
3.72 0.248459 0.461 40 0.124797 0.146 
3.73 0.247898 0.454 45 0.122340 0.143 
3.74 0.247352 0.4485 50 0.120238 0.140 
3.75 0.246821 0.4435 55 0.118410 0.137 

4 0.236074 0.3820 60 0.116798 0.135 
5 0.210824 0.3025 65 0.115360 0.133 
6 0.196117 0.268 70 0.114065 0.131 
7 0.185935 0.247 75 0.112889 0.130 
8 0.178283 0.2325 80 0.111816 0.128 
9 0.172238 0.221 85 0.110829 0.127 
10 0.167289 0.2125 90 0.109916 0.126 
15 0.151315 0.186 95 0.109070 0.125 
20 0.142146 0.172 100 0.108280 0.124 

TABLE 4.2 Vari;:; of U er an(d of ;o,c)r with A for 

-
2 

+iexp -- =0, -l<x<l 
dx um~ 

u(x)=ua, x=±l 
where U er is the largest value of U at which multiple solutions occur, uo er is 
the corresponding Uo value, and umax is the maximum value of u(x). The 
number of significant figures reported represents the precision with which 
individual measurements were able to be made. 
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The maximum value of u(x) occurs at x = 0. From (7), when u0 is small 

so, substituting into (4.8), 

dua ~1 
du 0 

48 

regardless of A. For this reason, each curve has slope close to 1, for small values of U 
and u0. Ucr appears to have a limiting value of 0.25, corresponding to a limiting u0 er of 
0.50. ' 
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FIGURE4.8 Varia~~o::cre:r:::)= O, -I <x <I, 

u(x)=U, x=±I 
where U er is the largest value of U at which multiple solutions occur, and uav is the 
average value of u(x). Data for this curve are contained in Table 4.1. Values of Ucr 
appear to approach a limit of0.25; the minimum value of1c is 5.542517. 
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4.4 Approximation by relaxation 

4.4.1 Relaxation method 

The relaxation process attempts to solve equations of the form 

Af=b 

by iteratively examining the residuals which are the components of the vector 

rCk) = b - AfCk) 

49 

for the current solution f(k). Successive changes are made in the components of :f(k) so 

that the components of the residual vector are reduced to negligible amounts. 

4.4.2 Calculation of critical values 

Rearranging (4.2), 

u"(x)=-Aex~-:J u'(0) = 0, u(l) = U. 

Also, 
u(xn -h)-2u(xn)+u(x +h) 

u"(x ) = n 
n h2 

where his the step size and the index n = 1,2, ... , 1/h. 

So 

where Um = u(xm). 

Since u'(0) = 0, 

Then 

u -2u +u = -lh2 exp(-_!_) n-1 n n+I · 
Un 



So 

un-3 -2un-2 +un-1 = -J.,h
2 exp(--1-J 

un-2 

un-2 -2un-l +un = -Ah
2 exp(--1-J 

Un-1 

and Un= U. 

In matrix form and rearranging, 

-2 

1 

2 

-2 

1 

0 

1 

-2 1 

0 

1 -2 

1 

which is of the form F(y_) = Q. 

Then 

where the Jacobean 

( ex~- u~] l 
I 

u l / { 1 J ol o ex -- I 
U1 uo I 0 

u:' I+ .l.h' ex{-:J + ~ I ~ 0 

11u,:_2J {~-1 J l~J 
-2 u ex U 

n-1 U n-2 

ex{-u:J 

(k+I) J-1( (k))F( (k)) u =u- u u - - - --

J = A+ }.,h
2 

diag[-~ exp(- -
1 

), ... , -+ exp(- -
1
-)) 

llo Uo lln-1 Un-1 

and A is the tridiagonal matrix. 
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The values of u(k) are progressively used to improve the value of u(k+ 1) until there is 

negligible difference between successive values of u(k) and u(k+ 1). At that point, the 

value of Un can then be accepted as a valid U for the given values of u0 and 'A,_ 

4.4.3 Results 

Typical curves of u0 versus U are shown in Figures 4. 16 - 4 .21. Because the U values are 

calculated from the u0 values, there is an artificial jump discontinuity which appears at 

Ucr· The value of Ucr is thus easily determined by identifying the jump in values of u0 

for very small changes in U. For values of 'A, less than the Atr value of 4. 618, the 

expected curve is visible and has the same form as the curves derived by the earlier 

approximation methods. Table 4.4 contains critical values of U and u0 for specific values 

of 'A,_ This data is plotted in Figure 4.22. The Atr value of 4.61836 occurred for 

Uc r= 0.245781 and u0 c r= 0.541. 
' 
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FIGURE 4.16 The u0 versus U curve for A= 4.6, calculated by numerical 
computation using the method of relaxation. 
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FIGURE 4.17 The u0 versus U curve for A= 4.618, calculated by numerical 
computation using the method of relaxation. 
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FIGURE 4.18 The u0 versus U curve for')..,= 5, calculated by numerical 
computation using the method of relaxation. 
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FIGURE 4.19 The u0 versus U curve for')..,= 6, calculated by numerical 
computation using the method of relaxation. 
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FIGURE 4.20 The u0 versus U curve for "A= 9, calculated by numerical 
computation using the method of relaxation. 

0.22 

10 .----------------------------------, 

-

8 -

6 ~ 

2 

0 
0.09 0.10 0.11 0.12 LJ 0.13 0.14 0.15 

FIGURE 4.21 The u0 versus U curve for "A= 20, calculated by numerical 
computation using the method of relaxation. 
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A, Ucr Uo.cr A, Ucr llo.cr 

4.61836 0.245781 0.541 30 0.136017 0.168 
4.62 0.245699 0.531 35 0.132089 0.162 
4.65 0.244329 0.496 40 0.128904 0.157 
4.70 0.242277 0.471 45 0.126246 0.153 
4.80 0.238643 0.441 50 0.123977 0.149 
4.90 0.235421 0.421 55 0.122008 0.146 
5 0.232495 0.405 60 0.120276 0.144 
6 0.211865 0.327 65 0.118731 0.142 
7 0.198878 0.291 70 0.117343 0.139 
8 0.189514 0.269 75 0.116087 0.138 
9 0.182292 0.253 80 0.114941 0.136 
10 0.176478 0.240 85 0.113884 0.135 
15 0.158171 0.205 90 0.112913 0.133 
20 0.147918 0.187 95 0.112011 0.132 
25 0.141059 0.176 100 0.111168 0.131 

TABLE 4.3 Variation of Ucr and u0 er with 1c when (4.2) is approximated by a numerical computation 
based on the method of relaxation. 

10 20 30 40 so ;,. 60 10 so 90 100 110 

FIGURE4.22 Variation of Ucr with A. The data are contained in Table 4.3. 
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4.5 Comparison of results 

Table 4.1 shows the Ucr values for various '.A. values. These are shown in Figure 4.23. 

At low U values, the curves are identical or at least very similar, with duaf du0 typically of 

value 1. 

Ucr values for approximation by 

"' average max:1mum relaxation 

3.7 0.249648 
4.618 0.2458 

5.542517 0.249967 
6 0.236073 0. 196117 0.211865 
7 0.217480 0.185935 0.198878 
8 0.205205 0.178283 0.189514 
9 0.196116 0.172238 0. 182292 
IO 0. 188979 0.167289 0.176478 
15 0.167289 0.151315 0.158171 
20 0.155528 0.142146 0.147918 
25 0.147784 0.135934 0.141059 
30 0.142142 0.131334 0.136017 
35 0.137782 0.127731 0.132089 
40 0.134253 0.124797 0.128904 
45 0.131330 0.122340 0.126246 
50 0.128832 0.120238 0.123977 
55 0.126678 0.118410 0.122008 
60 0.124796 0.116798 0.120276 
65 0.123104 0.115360 0.118731 
70 0.121597 0.114065 0.117343 
75 0.120228 0.112889 0.116087 
80 0.118993 0.111816 0.114941 
85 0.117847 0.110829 0.113884 
90 0.116798 0.109916 0.112913 
95 0.115811 0.109070 0.112011 
100 0.114909 0.108280 0.111168 

TABLE4.4 Comparison of methods. 
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FIGURE 4.23 Comparison of methods. 
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The curve shown in Figure 4.23 can be extended to 'A= lx1051 . Such a curve has the 

same shape as that in the figure. The approximation by average yields consistently higher 

values for Ucr than either other method; the approximation by maximum consistently 

yields lower values for Ucr than either other method. A plot of uo,cr has the same form 

as that in Figure 4.23. 

&-~· 
relaxation 

maximum 

FIGURE4.24 

The approximations by average and by maximum yield Utr values of 0.249967 and 

0.250000, respectively. The approximation by relaxation yields a Utr value of 0.245781, 

which compares well with the published value of 0.2459 [14]. 

More recently published values of Ucr [8] fall within the envelope created by the average 

and the maximum approximations, as shown in Figure 4.25. The Afr value of 4.618 is the 

same as that from the approximation by relaxation. 
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FIGURE 4.25 Comparison of results obtained by the method of rela'Xation in this study 
and the method used by Burnell [8J. 
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Because all the curves have value (U, u0) = (0,0) and have slope= 1 for small values of 

both U and u0, the initial part of the lower branch is almost identical regardless of 

method of approximation. This can be seen in Figure 4.26. 
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.,,,...__ __ ..,. __ ./ by umax 
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..... ✓ 

......-:-=,..,.. ... 
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.... -a .... 
'u 
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/\ 
~/,,,,,,... Relaxation 

,.,.,,.,.✓ 
0111<'=--------'--------'--------...J._ _____ __, 

0 0.05 0.10 u 0.15 

FIGURE 4.26 Superposition of curves created for 'A = 20 using 
approximation by relaxation and approximation by umax· The early part of 
each curve has slope = 1. At low U values, the curves are identical. 

0.20 
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4.6 The upper branch 

Once the lower branch impacts with U = 0, increasing values of u0 result in negative 

values of U. Since these correspond to negative values of the absolute temperature, they 

are meaningless in a physical sense but interesting mathematically because eventually the 

values become less negative and ultimately the curve "re-emerges" into positive values 

for U. The aim of this section is to find a relationship between ').,, and the u0 value at 

which this re-emergence takes place. 

The methods of approximation by average u and by maximum u are unable to be used 

here because they would require the value of u0 to be calculated at U = 0. The numerical 

computation method of relaxation, on the other hand, calculates only those values 

required by the step size, h. The step size can, therefore, be adjusted so that U = O is 

"stepped over" and not actually calculated. 

Clearly, the sensitivity of the procedure is reduced by taking larger steps. Increased 

sensitivity is attained by keeping the step size small and only increasing it to avoid the 

value U = 0. The increase in step size should then be as small as necessary and should 

last just long enough for the purpose. 

The curve for').,,= 8 is shown in Figure 4.27. The value of u0 er is 0.26861 and Ucr is 
' 

0.18951. The curve first strikes the u0 axis at u0 = 0.7459 and re-emerges at 

u0 = 2.2260. The minimum U recorded was U = -0.13817 at u0 = 1.43144. 
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FIGURE 4.27 Bifurcation diagram for A = 8. 
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For large values of A., such as A. = lxJ012, the upper arm is more difficult to find by 

computer because it involves very large numbers. A bisection method speeds up the 

search for the re-emergence point: 

the first intersection with the u0 axis is stored as a lower bound; 

the value u0 = A. is an initial upper bound; 

bisection progressively replaces the upper or lower bound until U = 0; 

the corresponding u0 is the point of re-emergence of the curve. 

Results are shown in Table 4.5. The upper branch appears to start at about A./2. In each 

case, the upper branch had slope = 1, for small values of U This is to be expected for the 

same reasons as those which give the lower branch a slope of 1 for small values of U 

8 
2.4x106 
6x106 
Ix1012 

U=0 
lower branch 

0.7459 
1199998.6 
2999998.5 

4999999987367.6 

U=0 
upper branch 

1.43144 
0.06615 
0.06232 
0.03550 

TABLE 4.5 Identification of the upper branch. 

U=0 
upper branch 
( 6 sig. fig.) 

2.2260 
l .20000xl 06 
3. 00000x 106 

5.00000xIOl 1 
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4.7 Summary 

The heat balance equation for combustion in the slab geometry, (4.2), can be 

approximated via the exponential term by replacing u by the average value of u and by 

the maximum value of u. In each case, the transition value, Utr occurs at u0 tr= 0.25 and , 
Utr = 0.5. 

Equation (4.2) can also be approximated by a numerical computation method based on 

relaxation. This yields curves within an envelope bounded by the average approximation 

and by the maximum approximation. 

All curves have slope = 1 for small values of U, regardless of 'A,, for the lower branch and 

for the upper branch. 

The upper branch tends to include the point (U, u0) = (0, 'A,/2) as 'A, becomes large. 
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5 Spontaneous Ignition of Moist Milk Powder 

5.1 Introduction 

Fire in spray dryers for milk powder production can lead to dangerous situations for the 

operators, and may cause serious damage to plants and buildings. Dust explosion is 

usually the worst consequence of a fire [16]. 

It is known [2] [3] that spontaneous ignition of milk powder layers deposited on drying 

equipment is one of the causes of fire in dairy factories. See Figures 5 .1 - 5 .3. The 

situations that produce such a fire hazard must be defined quantitatively in order to set 

standards for effective preventative measures. 

Several researchers, eg Beever [2], Duane [10] [11] and O'Mahoney [18], have studied in 

Europe the ignition characteristics of spray-dried milk powders of very low moisture 

contents, typically of 3%. 

Extrapolation of the experimental conditions (usually at temperatures of greater than 

120°C) to a practical situation involves an assumption that there is uniform heating at 

both sides of the slab in a layer geometry. In an industrial situation, however, often one 

side of the slab is hot whilst the other is not. For example, the wall temperature and the 

chamber temperature of a spray dryer are different once a layer of milk powder has built 

up. This has been taken into account in the current study. 

Another aspect of the problem, which has not been explored so far, is the effect of drying 

on the powder ignition characteristics. The milk powder deposited on the drying chamber 

may include a considerable amount of moisture. After deposition has occurred the 

powder may undergo drying of its residual moisture, thus dissipating the heat generated 

by oxidation or other exothermic reactions, eg Maillard reactions. The hazard potential 

may thus be reduced. The critical level of moisture content beyond which the ignition 

hazard is minimised has been determined in the current study. 
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FIGURE 5.1 The result of a fire in a milk powder factory. 

Te Rapa, NZ, 1993. 
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FIGURE 5.2 Another view of the damaged milk powder plant. The heavy metal 

doors were lifted from their rollers and flung outside by the explosive blast. The 

door on the right is clearly at least two metres from the building. 



66 

_::: : ·1· ·?·~~: 
-. ' 

~ J' ..... ~t~ 
., .. ' 

_. :v:':.' 'f ·- • • -,. .,.. ' - -- . 

; ~, 
t ,. 

I -I 
t 
I 

FIGURE 5.3 Close-up view of the damaged milk powder plant. The roof has been 

destroyed, partly by the explosion, partly by the fire. 
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5.2 Mathematical model 

5.2.1 The spontaneous ignition of dry powder 

The spontaneous ignition of dry milk powder in the slab geometry has been predicted 

[12] by means of the steady-state non-linear heat conduction equation, which can be 

written in terms of 

as 

where 

U = RT and U = RT;,,, O 1 , i = , E ' E 

d
2

u +Aexp(-!)=o, O<x<l 
dx2 

U 

u = U0 atx = 0 

u=U1 atx= 1 

A= "2AR£~, 
kE 

Here T is the absolute temperature, cr is the density, Q is the exothermicity, A is the 

frequency factor, R is the universal gas constant, k is the thermal conductivity, E the 

activation energy, and t0 is the thickness of the layer. 

For this type of problem, the critical thickness, t = tcr , is the parameter of interest for 

given values of all other constants and U0 and U1• 

The bifurcation diagram [14] is shown in Figure 5.4. There is always a unique solution 

for small t. For large values of U, the solution is unique for any t. If tis sufficiently large 

then multiple solutions exist for small values of U. 

The value of tat which the lower branch is discontinuous in 11, is tcr· Fort > tcr the 

system is able to migrate to the upper branch, resulting in thermal ignition. Identification 

of this fold bifurcation point thus identifies the onset of thermal ignition. 
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FIGURE 5.4. Bifurcation diagram for the ignition of dry powder. The thickness of 

powder, e, has a critical value, tcr, at which thermal ignition will occur. At this 

value, the system migrates to the higher energy branch. 

5.2.2 The spontaneous ignition of moist powder 

In order to react, molecules must reach a certain critical energy, E, known as the 

activation energy. The rate constant for such a reaction is 

k* = Aexp(- :T) 

where A is the frequency factor. The fraction of molecules with the energy necessary to 

react is exp(-EIRT) which can be written as exp(-1/u), where 
RT 

u=-. 
E 

Then 
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During the vaporisation of water, 
H2 O<t) ➔ H2O<g), 

heat which is added to the system is absorbed as the latent heat of vaporisation, ~Hy. 

This absorbed energy does not raise the temperature of the water; instead, it converts the 

water from the liquid state to the higher energy gaseous state. 

Assuming that the reaction is not reversible and that no equilibrium is reached, the 

change in entropy 
Mi 

Mv = Su) - S<g) = __ v 
¾ 

is equal to the ratio of latent heat of vaporisation to that of boiling point of water. 

Over the temperature range of this study, 90°C to 190°C, the latent heat of vaporisation 

of water varies by about 13%. 

Moisture in a wet powder may be trapped in interstitial spaces or it may be bound to the 

solid. Drying is the process of removing both the trapped moisture and the bound 

moisture. Thus, the heat of drying is the sum of the latent heat of vaporisation of water 

plus the work required to drive off the bound moisture. 

In this study, the heat of drying varies with temperature and with water content, as given 

by [12] 

Heat of drying = Latent heat of vaporisation + Work to drive off bound moisture 
I RT(~)- o.1s1 

= (2502371.493-2498.841629(T-273.15)) + 
0
·
047 

J kg-1 

0.018 

For simplicity and without loss of generality, the value T can be taken as the average of 

the wall temperature and chamber temperature, each measured as the absolute 

temperature. 
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During combustion of moist milk powder, heat is generated by the dry reaction and 

removed by the heat of drying. 

Neglecting any chemical reaction between water and milk powder and assuming no 

condensation of water vapour, the spontaneous ignition of moist milk powder in the slab 

geometry and in the steady-state formulation can be written as 

where 

~~ +A(exp(- ~)-/Jexp( <))= 0, O<x < I 

u(O) = u0 

u(l) = U 

tJl a=--v 
E 

/3 = tJ!vAI 
QA 

A= pR£
2
QA 

kwE 

RT 
U=-

£ 

(5.1) 

and the parameter a, represents the ratio of latent heat to that of activation energy. The 

dimensionless parameter ~ is proportional to water content which is expressed as a 

percentage, W p· 

, thickness 2 x exothermicity of the dry reaction AOC _________ __c__ ___ c.__ ___ _ 

thermal conductivity 

The frequency factor for the vaporisation of water is A J; Q is the exothermicity; t is the 

height of milk powder. 

The exothermicity, Q, is a measure of the difference between the energy of the reactant 

molecules and the energy of the product molecules in a reaction. In an exothermic 

reaction, energy is released. 

The thermal conductivity of moist powder, kw, is calculated [22] from 

-
1 

=0.75( 
1 

)+0.25(
1

-<p +_p_) 
kw (I-<p)As+<pAa As Aa 



where the proportion of the packing density due to water is 

_ 
1 

_ density of milk powder 
<p- k. d . pac mg ens1ty 

with empirical relationships 

).,s = 0.132(1+0.0052(T-273.15)) 

)., = l005µa 
a Pr 

1.097 X 10-6 ✓T 
µa= l.453-0.0243✓T 
Pr= 0. 71-0.000lS(T-273.15) 

and typical values shown in Table 5.1. 

T (°C) As ( x 10-l) Aa ( x 10-2) µa ( X 10-5) 

90 1.93776 3.0471 2.1118 
100 2.00640 3.1154 2.1544 
110 2.07504 3.1839 2.1971 
120 2.14368 3.2527 2.2397 
130 2.21232 3.3218 2.2823 
140 2.28096 3.3912 2.3249 
150 2.34960 3.4609 2.3676 
160 2.41824 3.5310 2.4102 
170 2.48688 3.6014 2.4529 
180 2.55552 3.6722 2.4956 
190 2.62416 3.7434 2.5384 

TABLES.I Empirical values. 
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Pr ( x 10-l) 

6.9650 
6.9500 
6.9350 
6.9200 
6.9050 
6.8900 
6.8750 
6.8600 
6.8450 
6.8300 
6.8150 



The overall density is 

where the density of water is 

P dry + W pp water p =----
pw l+w 

p 

Pwater = lOOOexp(-[ 0.0182 +0.0018(T-273.15)J2) 

and Pdry is the density of the dry powder. 
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Heat generated by the dry reaction is represented by ";.,, exp (-1/u); heat removed by 

drying is represented by";.,,~ exp (-a/u). The bifurcation diagram is shown in Figure 5.5. 

u 

t 

FIGURE 5.5 The bifurcation diagram for the combustion of moist milk powder. As 

the water content, wp, increases, the fold bifurcation point occurs at higher values 

of thickness, e. 
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5.3 Software Implementation 

The software package AUTO [9], which performs bifurcation analysis on dynamical 

systems, was applied to the combustion of moist milk powder. The two point boundary 

value problem ( 5. I) is reduced to a system of differential equations. 

Since the exponential terms are too small for effective computation, a scaling factor, F, is 

included. The system becomes 

A 
F=ln­

X" 

where T, and T1 represent the chamber and wall temperatures respectively. 

Since AUTO requires an initial starting solution, A.=0 is chosen without complication. 

* AUTO returns the value').., · 

The required value t is then determined from 

X" exp(F)kwE 
f= pRQA 

The fold bifurcation point determines the critical size of the pile of moist powder. As the 

water content, WP , increases, the value of f3 increases and the fold bifurcation point 

disappears. 

5.4 Results 

Typical results, for moisture levels I%, 2%, 3% and 4%, are shown in Table 5.3. These 

results are shown graphically in Figures 5.6 to 5.9. 
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1% 90 100 110 120 130 140 150 160 170 180 190 
90 0.1586 
100 0.1270 0.1043 
110 0.1004 0.0844 0.0702 
120 0.0791 0.0680 0.0577 0.0483 
130 0.0620 0.0543 0.0469 0.0401 0.0339 
140 0.0485 0.0432 0.0380 0.0330 0.0284 0.0242 
150 0.0381 0.0343 0.0306 0.0271 0.0245 0.0210 0.0176 
160 0.0300 0.0273 0.0247 0.0221 0.0196 0.0172 0.0150 0.0130 
170 0.0238 0.0218 0.0199 0.0180 0.0162 0.0144 0.0128 0.0112 0.0097 
180 0.0189 0.0175 0.0161 0.0147 0.0134 0.0120 0.0108 0.0096 0.0084 0.0074 
190 0.0151 0.0141 0.0131 0.0120 0.0110 0.0100 0.0091 0.0082 0.0073 0.0065 0.0057 

2% 90 100 110 120 130 140 150 160 170 180 190 
90 -
100 - -
110 0.1723 0.1219 0.0936 
120 0.1075 0.0882 0.0731 0.0574 
130 0.0760 0.0651 0.0551 0.0459 0.0379 
140 0.0559 0.0492 0.0428 0.0367 0.0311 0.0262 
150 0.0422 0.0378 0.0335 0.0294 0.0255 0.0223 0.0186 
160 0.0323 0.0294 0.0264 0.0236 0.0208 0.0182 0.0157 0.0135 
170 0.0251 0.0230 0.0210 0.0189 0.0170 0.0151 0.0133 0.0116 0.0097 
180 0.0197 0.0182 0.0168 0.0153 0.0139 0.0125 0.0111 0.0099 0.0087 0.0076 
190 0.0156 0.0146 0.0135 0.0124 0.0114 0.0103 0.0093 0.0084 0.0074 0.0066 0.0058 

3% 90 100 110 120 130 140 150 160 170 180 190 
90 -
100 - -
110 - - -
120 - - - -
130 - - - - -
140 - - - - - -
150 - - - - 0.0461 0.0341 0.0246 
160 0.0508 0.0453 0.0394 0.0330 0.0282 0.0235 0.0194 0.0160 
170 0.0323 0.0295 0.0266 0.0237 0.0208 0.0180 0.0155 0.0133 0.0113 
180 0.0233 0.0215 0.0197 0.0179 0.0160 0.0143 0.0126 O.OllO 0.0095 0.0082 
190 0.0176 0.0164 0.0151 0.0139 0.0127 0.0114 0.0103 0.0091 0.0080 0.0071 0.0062 

4% 90 100 110 120 130 140 150 160 170 180 190 
90 -
10 - -
110 - - -
120 - - - -
130 - - - - -
140 - - - - - -
150 - - - - - - -
160 - - - - - - - -
170 - - - - - - - - 0.0156 
180 - - - - - 0.0241 0.0183 0.0146 0.0119 0.0097 
190 0.0231 0.0216 0.0200 0.0183 0.0164 0.0146 0.0127 0.0110 0.0094 0.0081 0.0069 

TABLE 5.2. Critical height in metres for combinations of wall and chamber 

temperatures at different moisture content levels. 
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FIGURE 5.6 Critical heights for various temperature combinations for whole milk 

powder containing 1 % moisture. 
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5.5 Comparison with Frank-Kamenetskii Variables 

Using the old Frank-Kamenetskii variables, (5.1) can be written as 

where 

d 20 
-d 2 +8exp0=O, O<x<l, 

X 

e(O)=80 , 0(1)=01 

0= R~2 (r-rJ 
To+ T; 

T=--
a 2 

8 
oc thickness2 x exotherrnicity 

thermal conductivity · 

Under this formulation, it has been shown [12] that the critical heights for dry milk 

powder are those given in Table 5.4, below. Using the same data but with the Gray Wake 

variables used elsewhere in this study, the critical heights for dry milk powder can be 

calculated as above. These heights are shown in Table 5.3. 

90 100 110 120 130 140 150 160 170 180 
90 0.1765 

100 0.1489 0.1258 
110 0.1233 0.1066 0.0914 
120 0.1018 0.0894 0.0778 0.0672 
130 0.0838 0.0746 0.0659 0.0577 0.0503 
140 0.0690 0.0622 0.0556 0.0493 0.0435 0.0387 
150 0.0569 0.0518 0.0468 0.0420 0.0375 0.0333 0.0293 
160 0.0470 0.0432 0.0394 0.0361 0.0322 0.0289 0.0258 0.0229 
170 0.0390 0.0361 0.0332 0.0304 0.0277 0.0251 0.0226 0.0202 0.0180 
180 0.0325 0.0303 0.0281 0.0259 0.0238 0.0217 0.0197 0.0178 0.0160 0.0144 

190 

190 0.0272 0.0255 0.0238 0.0221 0.0204 0.0188 0.0172 0.0157 0.0142 0.0129 0.0116 

TABLE 5.3 Critical height, in metres, for combinations of wall and chamber 

temperatures using the Gray Wake variables. 
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90 100 110 120 130 140 150 160 170 180 190 
90 0.1545 

100 0.1319 0.1139 
110 0.1116 0.0973 0.0839 
120 0.0934 0.0822 0.0717 0.0619 
130 0.0773 0.0687 0.0605 0.0527 0.0454 
140 0.0636 0.0570 0.0506 0.0446 0.0388 0.0334 
150 0.0519 0.0468 0.0420 0.0373 0.0328 0.0286 0.0247 
160 0.0418 0.0381 0.0344 0.0309 0.0274 0.0241 0.0210 0.0181 
170 0.0337 0.0308 0.0281 0.0254 0.0227 0.0202 0.0178 0.0154 0.0133 
180 0.0269 0.0248 0.0227 0.0207 0.0187 0.0167 0.0149 0.0131 0.0114 0.0098 
190 0.0214 0.0199 0.0183 0.0168 0.0152 0.0138 0.0123 0.0109 0.0096 0.0084 0.0072 

TABLE 5.4. Critical height, in metres, for combinations of wall and chamber 

temperatures using the Frank-Kamenetskii variables. 

90 100 110 120 130 140 150 160 170 180 190 
90 0.0220 

100 0.0170 0.0119 
110 0.0117 0.0093 0.0075 
120 0.0084 0.0072 0.0061 0.0053 
130 0.0065 0.0059 0.0054 0.0050 0.0049 
140 0.0054 0.0052 0.0050 0.0047 0.0047 0.0053 
150 0.0050 0.0050 0.0048 0.0047 0.0047 0.0047 0.0046 
160 0.0052 0.0051 0.0050 0.0052 0.0048 0.0048 0.0048 0.0048 
170 0.0053 0.0053 0.0051 0.0050 0.0050 0.0049 0.0048 0.0048 0.0047 
180 0.0056 0.0055 0.0054 0.0052 0.0051 0.0050 0.0048 0.0047 0.0046 0.0046 
190 0.0058 0.0056 0.0055 0.0053 0.0052 0.0050 0.0049 0.0048 0.0046 0.0045 0.0044 

TABLE 5.5 Actual differences between values in Tables 5.3 and 5.4. 

90 100 110 120 130 140 150 160 170 180 190 
90 12.5 

100 11.4 9.4 
110 9.5 8.8 8.2 
120 8.2 8.0 7.9 7.9 
130 7.8 7.9 8.2 8.7 9.7 
140 7.8 8.3 9.0 9.6 10.8 13.6 
150 8.8 9.6 10.3 11.3 12.6 14.2 15.8 
160 11.1 11.8 12.7 14.5 15.0 16.6 18.5 20.8 
170 13.6 14.7 15.4 16.5 18.0 19.4 21.1 23.8 26.3 
180 17.2 18.1 19.1 20.0 21.3 23.0 24.4 26.5 28.9 31.9 
190 21.3 21.8 23.0 23.9 25.5 26.5 28.5 30.5 32.5 34.7 37.9 

TABLE 5.6 Percentage differences between values in Tables 5.3 and 5.4. 
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FIGURE 5.10 Critical height, in metres, of dry milk powder, for combinations of 

wall and chamber temperatures using the Frank-Kamenetskii and Gray Wake 

variables. 
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