Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Substrate Analogues As Mechanistic Probes For 3-Deoxy-D-*Arabino*-Heptulosonate 7-Phosphate Synthase And 3-Deoxy-D-*Manno*-Octulosonate 8-Phosphate Synthase

A dissertation presented in partial fulfillment of the requirements for the degree

of

Doctor of Philosophy in

Biochemistry

at Massey University, Palmerston North, New Zealand

> Meekyung Ahn 2007

For Cem

ABSTRACT

Substrate analogues as mechanistic probes for 3-deoxy-Darabino-heptulosonate 7-phosphate synthase and 3-deoxy-Dmanno-octulosonate 8-phosphate synthase

3-Deoxy-D-*arabino*-heptulosonate 7-phosphate synthase (DAH7P synthase) catalyses the condensation reaction between phosphoenolpyruvate (PEP) and the four-carbon monosaccharide D-erythrose 4-phosphate (D-E4P). 3-Deoxy-D-*manno*-octulosonate 8phosphate synthase (KDO8P synthase) catalyses a closely related reaction of PEP with the five-carbon monosaccharide D-arabinose 5-phosphate (D-A5P). These enzymes are two functionally unrelated enzymes that share many mechanistic and structural features.

D-Threose 4-phosphate (D-T4P), L-threose 4-phosphate (L-T4P), D-arabinose 5phosphate (D-A5P), D-lyxose 5-phosphate (D-L5P), and L-xylose 5-phosphate (L-X5P) have been prepared synthetically or enzymatically to provide insights into aspects of metal requirement and substrate specificity. These compounds were different stereoisomers of natural substrates D-E4P and D-A5P. The results presented in this thesis show that D-T4P and L-T4P (C2 and C3 stereoisomers of D-E4P) are substrates for the DAH7P synthases from *E. coli* and *P. furiosus*. For *N. meningitidis* KDO8P synthase, natural substrate D-A5P and L-X5P (the C4 epimer of D-A5P) were substrates, whereas D-L5P, the C3 epimer of D-A5P, was not. These observations show that the configuration of the C2 and C3 hydroxyl groups is not important for DAH7P synthase reaction, but having the correct configuration at these positions is critical for KDO8P synthase.

The analysis of the interaction of D-T4P and L-T4P with DAH7P synthase, and D-A5P, D-R5P, and L-X5P reveals previously unrecognised mechanistic differences between the DAH7P synthase-catalysed reaction and that catalysed by the closely related enzyme, KDO8P synthase.

ACKNOWLEDGEMENTS

First of all, I would like to great thank to my supervisor, Associate Professor Emily Parker, for giving me the opportunity to study this project at Massey University. I am also grateful to her for lots of support in the synthetic chemistry lab and the molecular biology lab, and for endless encouragement during the course of this study.

I appreciate co-supervisor Professor Geoffrey Jameson's support during my study. I especially thank him for proof reading parts of this thesis in his busy time. I am particularly grateful to Dr Gillian Norris for her kindness in giving me the opportunity of working in the molecular biology lab. I also thank to Dr Gillian Norris and people in the molecular biology lab for helping me to come back to the lab during my difficult time.

I wish to thank to all members of Emily Parker's group (Shikimate Group) past and present. Dr Rachel Williamson, for her kindness when I just started the course at Massey University. Dr Charlie Matthews and Dr Mattihas Rost for sharing their knowledge and skills in the biology lab and the synthetic chemistry lab. I specially thank Dr Linley Schofield for spending her time for listening to my complaints and sharing her yummy food during my study. I am particularly grateful to Dr Linley Schofield, Dr Fiona Cochrane, and Scott Walker for proof reading parts of this thesis. Thank to Jenness Guthrie, Ben Mulchin, Amy Pietersma, and Celia Webby for such a joyful companionship.

I also would like to thank IFS for use of all equipment and facilities that have been provided during my project. I also thank to Massey University for the opportunity of a Vice Chancellor's Doctoral Scholarship during the study.

Finally, I would like to thank to my family for their endless love, support, and encouragement from Korea for the many years needed to complete this study. I also would like to be grateful to Ingeborg and Cem. I cannot find words how much I appreciate their love and support. It would not be possible to complete this thesis without the love and encouragement from my family and my friends.

SUBSTRATE ANALOGUES AS MECHANISTIC PROBES FOR 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE AND 3-DEOXY-D-MANNO-OCTULOSONATE 8-PHOSPHATE SYNTHASE

Chapter One:	INTRODUCTION	1
Chapter Two:	PREPARATION OF AND PRELIMINARY STUDIES WITH D-ERYTHROSE 4-PHOSPHATE AND ITS ANALOGUES	44
Chapter Three:	PREPARATION OF D-ARABINOSE 5-PHOSPHATE AND ITS ANALOGUES	75
Chapter Four:	INVESTIGATION INTO THE ENZYME-SPECIFIC REACTION WITH 3-DEOXY-D-ARABINO- HEPTULOSONATE 7-PHOSPHATE SYNTHASE USING PHOSPHORYLATED MONOSACCHARIDE ANALOGUES	85
Chapter Five:	PROBING THE ROLE OF HYDROXYL GROUPS IN 3-DEOXY-D- <i>MANNO</i> -OCTULOSONATE 8-PHOSPHATE SYNTHASE	108
Chapter Six:	MECHANISTIC IMSIGHT INTO 3-DEOXY-D- <i>ARABINO</i> - HEPTULOSONATE 7-PHOSPHATE SYNTHASE AND 3-DEOXY-D- <i>MANNO</i> -OCTULOSONATE 8-PHOSPHATE SYNTHASE	121
Chapter Seven:	EXPERIMENTAL	142

Table of Contents

Abstract	i
Acknowledgement	ü
Table of Contents	iv
List of Figures	x
List of Tables	xiv
Abbreviations	xvi
Publication	xix

Chapter One: INTRODUCTION

1.1. The Shikimate Pathway	1
The history of the shikimate pathway	2
Exploration of the shikimate pathway for the drug design	. 3
1.2. DAH7P Synthase	4
1.2.1. Feedback regulation of DAH7P synthase	. 5
1.2.2. Metal dependence of DAH7P synthase	. 6
1.2.3. Mechanistic studies on DAH7P synthase	7
1.2.4. Active site studies of DAH7P synthase	11
1.2.5. Phylogenetic analysis of DAH7P synthase and KDO8P synthase	
	12
1.2.6. Structural studies of DAH7P synthase	16
1.2.7. Substrates and analogues for DAH7P synthase	22
Analogues of PEP	22
Analogues of D-E4P	23
1.3. KDO8P Synthase	24
1.3.1. Mechanistic studies of KDO8P synthase	28
1.3.2. Substrate ambiguity of KDO8P synthase	34
1.3.3. Structural studies of KDO8P synthase	34
1.3.4. The relationship between DAH7P synthase and KDO8P synthase	9
	38

1.4. Aim of th	e project	41
Chapter Two:	PREPARATION OF AND PRELEMINARY STUDIE D-ERYTHROSE 4-PHOSPHATE AND ITS ANALO	ES WITH IGUES
2.1. Preparat	ion, Properties, and Determination of D-E4P	
2.1.1.	Studies with analogues of D-E4P	45
2.1.2.	Properties and previous preparations of D-E4P	47
2.1.3.	Preliminary investigations into the preparation of D-E4P	50
2.2. Preparat	ion and Determination of D-T4P	
2.2.1.	Preliminary investigations into the preparation of D-T4P	
	from D- Gal6P	
2.2.2	. Determination of the presence of D-T4P using trans	saldolase
	assay	56
2.2.3.	Thiobarbituric acid assay	60
2.2.4.	Coupled enzyme assay using DHQS and DHQase	60
2.3. Synthetic	Strategies for the Preparation of D-T4P	61
2.3.1.	Synthesis of D-Gal6P	62
2.3.2.	Synthesis of D-T4P from D-X5P	
2.3.3.	Synthesis of D-T4P using 2,3-O-isopropylidene-D-threitol	
2.3.4.	Preparation of D-threitol 4 phosphate	69
2.3.5.	Synthesis of D-T4P from D-diethyl tartrate	69
2.4. Conclusi	on	

Chapter Three: PREPARATION OF D-ARABINOSE 5-PHOSPHATE AND ITS ANALOGUES

3.1. Preparation and Studies of Substrate Analogues of Five-Carbon Sugars	75
3.1.1. Previous studies with substrate analogues of D-A5P	75
3.1.2. Previous preparation of D-A5P	77
3.1.3. Preparation of D-A5P	
3.1.4. Preparation of D-L5P	80
3.1.5. Preparation of D-X5P and L-X5P	82
3.2. Summary	84

Chapter Four: INVESTIGATION INTO THE ENZYME-SPECIFIC REACTION WITH 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE USING PHOSPHORYLATED MONOSACCHARIDE ANALOGUES

s with <i>E. coli</i> DAH7P(Phe)	4.1. Stereospecific Reaction of Four-Carbon Suga
	Synthase and <i>P. furiosus</i> DAH7P Synthase
P with E. coli DAH7P(Phe)	4.1.1. Enzymatic reaction of D-T4P and L-T
	synthase
neters of D-T4P and L-T4P	4.1.1.1. Determination of kinetic para
ase 87	with <i>E. coli</i> DAH7P(Phe) syn
P with <i>P. furiosus</i> DAH7P	4.1.2. Enzymatic reaction of D-T4P and L-T
	synthase
neters of D-T4P and L-T4P	4.1.2.1. Determination of kinetic para
se	with P. furiosus DAH7P synth
92	4.2. Enzymatic Synthesis of DAH7P and Its Analogu
	4.2.1. Large-scale syntheses and purification
	4.3. Summary

Chapter Five: PROBING THE ROLE OF HYDROXYL GROUPS IN 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSOPHATE SYNTHASE

5.1. Stereospecific Reaction of Substrate Analogues with KDO8P Synthase	108
5.2. Enzymatic Reaction of Five-carbon Sugars with N. meningitidis KI	208P
Synthase	110
5.3. Determination of Kinetic Parameters of Substrate Analogues w	ith N.
meningitidis KDO8P Synthase	111
5.4. Enzymatic Synthesis of KDO8P and Its Analogues	113
5.4.1. Large-scale syntheses and purification	114
5.5. Summary	120

Chapter Six: MECHANISTIC INSIGHT INTO 3-DEOXY D-ARABINO HEPTULOSONATE 7-PHOSPHATE SYNTHASE AND 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSPHATE SYNTHASE

6.1. Introduction	121
6.2. Substrate Specificity of DAH7P Synthase	123
6.3. Substrate Specificity of KDO8P Synthase	125
6.4. Modelling Studies of DAH7P Synthase	127
6.5. Comparison of The Active Site of DAH7P and KDO8P Synthases	130
6.6. Summary	139
6.7. Future Studies	140

Chapter Seven: EXPERIMENTAL

7.1. General Procedure14	2
Solvents14	12
Reagents14	2
Chromatography14	3
Reactions and Work-up14	3
NMR spectroscopy14	3
Mass Spectrometry14	4
UV-Visible Spectrophotometer14	4
7.2. General Biochemical Method14	4
Buffers14	4
Enzymes14	5
Determination of protein concentration14	5
Enzyme assays – general conditions14	5
Standard enzyme assay for <i>E. coli</i> DAH7P(Phe) synthase, <i>P. furiosu</i>	ıs
DAH7P synthase, and <i>N. meningitidis</i> KDO8P synthase14	6
Thiobarbituric acid assay14	7
7.3. Experimental for Chapter Two14	8
Titration of lead tetraacetate14	8
Preparation of D-E4P14	9
Preparation of D-T4P14	9
Synthesis of 1,2:3,4-bis-O-(1-methylethylidene)-′ -D-galactopyranose15	0
Synthesis of 1,2:3,4-bis-O-(1-methylethylidene)-6-(diphenylphosphate)-'	-
D-galactopyranose	51

Synthesis of 1,2:3,4-bis-O-(1-methylethylidene)-6-(dihydrogenphosphate)-
′-D-phospho galactopyranose152
Synthesis of D-Gal6P152
Synthesis of 2,3-O-isopropylidene-diphenylphospho-4-hydroxyl-Dthreitol
Synthesis of 2,3-O-isopropylidene-diphenylphospho-4-oxo-D-threitol154
Synthesis of D-threitol 4-phosphate154
Synthesis of diethyl (2 <i>R</i> ,3 <i>R</i>)-bis(benzyloxy)tartrate155
Synthesis of (2S,3S)-2,3-bis(benzyloxy)-1,4-butanediol
Synthesis of phosphoric acid, (2 <i>S</i> ,3 <i>S</i>)-2,3-bis(benzyloxy)-4-hydroxy-
butyl diphenyl ester
Synthesis of phosphoric acid, (2 <i>R</i> ,3 <i>S</i>)-2,3-bis(benzyloxy)-4-oxo-butyl
diphenyl ester157
Synthesis of phosphoric acid, (2 <i>R</i> ,3 <i>S</i>)-2,3-bis(benzyloxy)-4,4-
dimethoxy-butyl diphenyl ester158
Synthesis of D-T4P159
Synthesis of L-T4P
Alternative enzymic assay reaction using transaldolase, triose
phosphate isomerase, and G3P dehydrogenase
Coupled assay system using DHQase and DHQS
7.4. Experimental for Chapter Three
Preparation of D-A5P162
Preparation of D-L5P163
Bial's reagent assay
Synthesis of (-)-1,2;3,4-di-O-isopropylidene-' -D-xylofuranose165
Synthesis of (-)-1,2-O-isopropylidene-' -D-xylofuranose
Synthesis of (-)-1,2-O-isopropylidene-′ -D-5-diphenylphospho-xylofuranose
Synthesis of (-)-1,2-O-isopropylidene-' -D-5-phospho-xylofuranose167
Synthesis of D-X5P168
Synthesis of L-X5P168
7.5. Experimental for Chapter Four
Kinetic assays for D-T4P and L-T4P with <i>E. coli</i> DAH7P(Phe) synthase
and <i>P. furiosus</i> DAH7P synthase169
Large-scale syntheses of DAH7P, D-DLH7P, and L-DXH7P170

Large-scale synthesis of KDO8P	172
7.6. Experimental for Chapter Five	173
Kinetic Assays for D-A5P, L-X5P with <i>N. meningitidis</i> I	KDO8P synthase
	173
Large-scale syntheses of D-DAO8P and L-DGO8P	174
REFERENCES	176
APPENDIX 1 Molecular Nomenclature	
APPENDIX 2 Table of Amino Acids	201
APPENDIX 3 NMR Spectra of DAH7P, D-DLH7P, L-DXH7P, KDO	8P, D-DAO8P, and
L-DGO8P	

List of Figures

Chapter One: INTRODUCTION

Figure 1.1	The shikimate pathway1
Figure 1.2	The aromatic compounds derived from the shikimate pathway 2
Figure 1.3	Enzymatic reactions catalysed by DAH7P and KDO8P synthases
Figure 1.4	DAH7P synthase-catalysed reaction
Figure 1.5	Proposed mechanism for DAH7P synthase
Figure 1.6	Phylogenetic tree of homology type I proteins consisting of
	subfamilies I' and I'14
Figure 1.7	The structure of the <i>E. coli</i> DAH7P(Phe) synthase
Figure 1.8	The monomer structure of <i>E. coli</i> DAH7P(Phe) synthase, <i>S</i> .
	<i>cerevisiae</i> DAH7P(Tyr) synthase, <i>T. maritima</i> DAH7P synthase,
	P. furiosus DAH7P synthase, E. coli KDO8P synthase, and A.
	aeolicus KDO8P synthase
Figure 1.9	Analogues of PEP
Figure 1.10	Analogues of D-E4P
Figure 1.11	Schematic molecular model of the inner and outer membranes of
	E. coli K-12
Figure 1.12	Structure of KDO ₂ -Lipid A in <i>E. coli</i> K-12
Figure 1.13	KDO8P synthase catalysed-reaction
Figure 1.14	Proposed mechanism of KDO8P synthase
Figure 1.15	Analogues of D-A5P
Figure 1.16	2-Deoxy cyclic analogues and an isosteric phosphonate analogue
	of KDO8P
Figure 1.17	Acyclic bisubstrate inhibitor of KDO8P synthase
Figure 1.18	Two proposed elementary steps for the formation of a linear
	intermediate of KDO8P synthase
Figure 1.19	Target compounds for DAH7P synthase and KDO8P synthase:
	isomers of D-E4P and D-A5P 42

Chapter Two: PREPARATION OF AND PRELIMINARY STUDIES WITH D-ERYTHROSE 4-PHOSPHATE AND ITS ANALOGUES

Figure 2.1	Analogues of D-E4P 45
Figure 2.2	5-DeoxyDAH7P generated from the reaction of PEP with $(3S)$ -2-
	deoxyE4P
Figure 2.3	Equilibration of D-E4P48
Figure 2.4	Enzymatic synthesis of D-E4P using transketolase
Figure 2.5	Reported scheme of the preparation of D-E4P
Figure 2.6	Synthesis of D-E4P using lead tetraacetate
Figure 2.7	A coupled assay system using transaldolase, triose phosphate
	isomerase, and G3P dehydrogenase
Figure 2.8	Preparation of DAH7P from D-E4P and PEP by the DAH7P
	synthase-catalysed reaction
Figure 2.9	Formation of $^\prime$ -formylpyruvate for the thiobarbituric acid assay . 52
Figure 2.10	Proposed mechanism of DHQS53
Figure 2.11	Phosphorylated aldoses 55
Figure 2.12	Proposed preparation of D-T4P using lead tetraacetate
Figure 2.13	Structure of ′ -D-Glu6P and ′ -D-Gal6P leading D-E4P and D-T4P
Figure 2.14	Seven-carbon monosaccharide produced by the DAH7P synthase
	with D-T4P and PEP
Figure 2.15	Oxidation of D-DLH7P in the first step of the DHQS mechanism. 61
Figure 2.16	Synthetic scheme for D-Gal6P 62
Figure 2.17	Preparation of D-E4P from D-R5P and D-T4P from D-X5P by
	oxidative cleavage
Figure 2.18	Overall scheme of the synthesis of D-T4P and D-threitol 4-
	phosphate from 2,3-isopropylidene D-theritol
Figure 2.19	Phosphorylation of 2,3-isopropylidene D-threitol
Figure 2.20	Oxidation of primary alcohol to aldehyde using Dess-Martin
	periodinane
Figure 2.21	Protection of aldehyde
Figure 2.22	Preparation of D-threitol 4-phosphate
Figure 2.23	New synthetic scheme for D-T4P starting with D-diethyl tartrate 70
Figure 2.24	Benzylation of D-diethyl tartrate
Figure 2.25	Reduction of dibenzyl D-diethyl tartrate using LAH
Figure 2.26	Monophosphorylation and oxidation of primary alcohol

Figure 2.27	Protection of aldehyde	72
Figure 2.28	Hydrogenolysis and deprotection for the formation of D-T4P	72

Chapter Three: PREPARATION OF D-ARABINOSE 5-PHOSPHATE AND ITS ANALOGUES

Figure 3.1	Phosphorylated pentoses	76
Figure 3.2	Synthetic method for the preparation of D-A5P	77
Figure 3.3	Enzymatic synthesis of D-A5P	78
Figure 3.4	Enzymatic formation of D-A5P followed by $^{\rm 31}{\rm P}$ NMR	79
Figure 3.5	Enzymatic formation of D-L5P followed by ³¹ P NMR	81
Figure 3.6	Synthesis of D-X5P	84

Chapter Four: INVESTIGATION INTO THE ENZYME-SPECIFIC REACTION WITH 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE USING PHOSPHORYLATED MONOSACCHARIDE ANALOGUES

Figure 4.1	Michaelis-Menten plots for the determination of K_{M} and k_{cat} for D-
	T4P and L-T4P with <i>E. coli</i> DAH7P(Phe) synthase
Figure 4.2	Michaelis-Menten plots for the determination of K_{M} and k_{cat} for D-
	T4P and L-T4P with <i>P. furiosus</i> DAH7P synthase
Figure 4.3	Generation of DAH7P and its analogues from four-carbon
	alternative substrates and PEP using E. coli DAH7P(Phe)
	synthase, and of KDO8P from D-A5P using <i>N. meningitidis</i> KDO8P
	synthase
Figure 4.4	¹ H NMR spectra of purified DAH7P and KDO8P
Figure 4.4	Continued ¹ H NMR spectra of purified L-DXH7P and D-DLH7P . 96
Figure 4.5	COSY spectra of D-DAH7P and KDO8P showing geminal and
	vicinal couplings
Figure 4.5	Continued COSY spectra of L-DXH7P and D-DLH7P showing
	geminal and vicinal couplings
Figure 4.6	Assignment of H3 protons of ′ -pyranose and ′ -pyranose forms
	of DAH7P100
Figure 4.7	Assignment of H3 protons from ′ -pyranose and ′ -pyranose
	forms, and ′ -furanose and ′ -furanose forms of KDO8P102
Figure 4.8	Assignment of lactone form of D-DLH7P and the calculated
	spectrum from NMR prediction software103

Figure 4.9	Assigned ¹ H NMR peaks for H3 protons of DAH7P and KDC)8P
	between 1.5 and 2.8 ppm	104
Figure 4.9	Continued assigned ¹ H NMR peaks for H3 protons of D-DLH	17P
	and L-DXH7P between 1.5 and 2.8 ppm	105

Chapter Five: PROBING THE ROLE OF HYDROXYL GROUPS IN 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSOPHATE SYNTHASE

Figure 5.1	D-A5P, the natural substrate of KDO8P synthase and its
	diastereomers109
Figure 5.2	Michaelis-Menten plots for the determination of K_{M} and k_{cat} for D-
	A5P and L-X5P with <i>N. meningitidis</i> KDO8P synthase112
Figure 5.3	Generation of KDO8P and its analogues from alternative
	substrates of E. coli DAH7P(Phe) synthase and N. meningitidis
	KDO8P synthase113
Figure 5.4	¹ H NMR spectra of isolated D-DAO8P and L-DGO8P116
Figure 5.5	COSY spectra of D-DAO8P, and L-DGO8P showing germinal
	and vicinal couplings117
Figure 5.6	Assigned ¹ H NMR peaks for H3 protons of D-DAO8P and L-
	DGO8P between 1.4 and 2.5 ppm118

Chapter Six: MECHANISTIC INSIGHT INTO 3-DEOXY D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE AND 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSPHATE SYNTHASE

Figure 6.1.	Enzymatic reaction of DAH7P synthase and KDO8P synthase12						
Figure 6.2	Deoxy analogues of D-A5P127						
Figure 6.3	Modelled D-E4P in the active site of the S. cerevisiae						

DAH7P(Tyr), *T. maritima* DAH7P synthase, and *P. furiosus* DAH7P synthase, and catalytic mechanism of DAH7P synthase...

- Figure 6.5. Proposed mechanism for DAH7P synthase by Lewis acid catalysis and for KDO8P synthase by protic acid catalysis138

List of Tables

Chapter One: INTRODUCTION

Table 1.1.	Kinetic parameters of wild-type and mutant of KDO8P synthases
	from <i>E. coli</i>
Table 1.2.	Kinetic parameters of analogues of PEP as substrates and inhibitors
	of <i>E. coli</i> DAH7P(Phe) synthase
Table 1.3.	Equivalent residues in the active site of DAH7P and KDO8P
	synthases based on 3-dimensional structure analysis

Chapter Two: PREPARATION AND STUDIES OF D-ERYTHROSE 4-PHOSPHATE AND ITS ANALOGUES

Table 2.1.	Kinetic results	from analogues	of D-E4P with	DAH7P synthases.	46
------------	-----------------	----------------	---------------	------------------	----

 Table 2.2.
 The yield of D-T4P from synthesised D-Gal6P using various equivalents of lead tetraacetate

 63

Chapter Four: INVESTIGATION INTO THE ENZYME-SPECIFIC REACTION WITH 3-DEOXY-D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE USING PHOSPHORYLATED MONOSACCHARIDE ANALOGUES

Table 4.1.	Kinetic parameters of D-T4P and L-T4P with E. coli DAH7P(Phe)
	synthase
Table 4.2.	Kinetic parameters of D-T4P and L-T4P with <i>P. furiosus</i> DAH7P
	synthase
Table 4.3.	The assigned C3 protons of the $^\prime$ - and $^\prime$ -isomers of KDO8P from 1H
	NMR chemical shifts with coupling constants101
Table 4.4.	¹ H NMR chemical shifts and coupling constants for H3 protons of
	DAH7P, KDO8P, L-DXH7P, and D-DLH7P106

Chapter Five: PROBING THE ROLE OF HYDROXYL GROUPS IN 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSOPHATE SYNTHASE

Table 5.1	Kinetic parameters	of D-A5P	and L-X5P	with N.	meningitidis	KDO8P
	synthase					112

Table	5.2.	1 H	NMR	chemical	shifts	and	coupling	constants	for	H3	protons	of
		and	omers	of D-DAO	8P and	d L-D	GO8P				1	19

Chapter Six: MECHANISTIC INSIGHT INTO 3-DEOXY D-ARABINO-HEPTULOSONATE 7-PHOSPHATE SYNTHASE AND 3-DEOXY D-MANNO-OCTULOSONATE 8-PHOSPHATE SYNTHASE

Table 6.1.	Kinetic parameters of E. coli DAH7P(Phe) synthase and P. furiosus
	DAH7P synthase with different monosaccharides124
Table 6.2.	Kinetic parameters of five-carbon sugars with N. meningitidis
	KDO8P synthase
Table 6.3.	Specific activity of the wild-type mutant KDO8P synthase from E.
	coli, A. pyrophilus, and A. aeolicus133
Table 6.4.	Kinetic parameters of the wild-type mutant KDO8P synthase from E.
	coli and A. pyrophilus
Table 6.5.	Steady-state kinetics parameters for A. pyrophilus, E. coli KDO8P
	synthases and E. coli DAH7P synthase

Abbreviations

D-A5P	D-arabinose 5-phosphate
AHBA	3-amino 5-hydroxybenzoate
ATP	adenosine triphosphate
BSA	bovine serum albumin
BTE	boron trifluoride etherate
BTP	1,3-bis(tris(hydroxymethyl)-methylamino)propane
DAH7P	3-deoxy-D-arabino-heptulosonate 7-phosphate
D-DAO8P	3-deoxy-D-altro-octulosonate 8-phosphate
3-deoxyA5P	3-deoxy arabinose 5-phosphate
4-deoxyA5P	4-deoxy arabinose 5-phosphate
2-deoxyE4P	2-deoxy erythrose 4-phosphate
3-deoxyE4P	3-deoxy erythrose 4-phosphate
2-deoxyR5P	2-deoxy ribose 5-phosphate
l-DGO8P	3-deoxy-L-gulo-octulosonate 8-phosphate
D-DLH7P	3-deoxy-D-lyxo-heptulosonate 7-phosphate
L-DXH7P	3-deoxy-L-xylo-heptulosonate 7-phosphate
DHQ	3-dehydroquinate
DHS	3-dehydroshikimate
DPA	dipicolinic acid
DTNB	5,5'-dithio-bis(2-nitrobenzoate)
EDTA	ethylenediaminetetra acetic acid
EPSP	5-enolpyruvyl shikimate 3-phosphate
D-E4P	D-erythrose 4-phosphate
ESI	negative ion electrospray mass spectrometry
ESI-TOF MS	time-resolved electrospray ionisation mass spectrometry
EtOH	ethanol

D-F6P	D-fructose 6-phosphate
d-Gal6P	D-galactose 6-phosphate
G3P	D-glycerol 3-phosphate
G ⁻ bacteria	Gram negative bacteria
G ⁺ bacteria	Gram positive bacteria
d- Glu6P	D-glucose 6-phosphate
glyphosate	N-(phosphonomethyl)glycine isopropylamine salt
GMH	L-glycero- D-manno-heptose
homophosphonate	4,5-dideoxy-5-phosphono-D-erythro-pentose
iminoE4P	imino erythrose 4-phosphate
KDO	3-deoxy- D-manno-octulosonate acid
KDO8P	3-deoxy-D-manno-octulosonate 8-phosphate
K _M	Michaelis constant
K _i	inhibition constant
LAH	lithium aluminum hydride
LPS	lipopolysaccharide
NAD^{+}	nicotinamide adenine dinucleotide
NADH	nicotinamide adenine dinucleotide reduced form
D-L5P	D-lyxose 5-phosphate
PABA	para-aminobenzoate
PEP	phosphoenolpyruvate
phosphonate	4-deoxy-4-phosphono-D-erythro-tetrose
\mathbf{P}_i	inorganic phosphate
D- R5 P	D-ribose 5-phosphate
D-T4P	D-threose 4-phosphate
L-T4P	L-threose 4-phosphate
S7P	sedoheptulose 7-phosphate
tlc	thin layer chromatography
UV	ultra-violet
THF	tetrahydrofuran
D-X5P	D-xylose 5-phosphate
L-X5P	L-xylose 5-phosphate

DAH7P synthase	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
DHQase	dehydroquinase
DHQS	3-dehydroquinate synthase
EPSP synthase	5-enolpyruvyl shikimate 3-phosphate synthase
G3P dehydrogenase	D-glycerol 3-phosphate dehydrogenase
KDO8P synthase	3-deoxy-D-manno-octulosonate 8-phosphate

A. aeolicus	Aquifex aeolicus
A. pyrophilus	Aquifex pyrophilus
B. subtilis	Bacillus subtilis
E. coli	Escherichia coli
H. pylori	Helicobacter pylori
M. tuberculosis	Mycobacterium tuberculosis
P. furiosus	Pyrococcus furiosus
S. cerevisiae	Saccharomyces cerevisiae
T. maritima	Thermotoga maritima
N. meningitidis	Neisseria meningitidis

Publication

Parts of chapters two, four, and six in this thesis have been published.

Ahn, M., Pietersma, A. L., Schofield, L. R., and Parker, E. J. Mechanistic divergence of two closely related enzyme-catalysed reaction *Organic and Biomolecular Chemistry* **2005**, 3, 4046-4049.