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Abstract

Agrichemical spray drift is an issue of concern for the orcharding industry. Shelterbelts sur-
rounding orchard blocks can significantly reduce spray drift by intercepting droplets from the
airflow. At present, there is little information available with which to predict drift deposits
downwind, particularly in the case of a fully-sheltered orchard block.

In this thesis, we develop a simple mathematical model for the transport of airborne drifting
spray droplets, including the effects of droplet evaporation and interception by a shelterbelt.
The object is for the model to capture the major features of the droplet transport, yet be simple
enough to determine an analytic solution, so that the deposit on the ground may be easily
calculated and the effect of parameter variations observed.

We model the droplet transport using an advection-dispersion equation, with a trapping term
added to represent the shelterbelt. In order to proceed analytically, we discretise the shelterbelt
by dividing it into a three-dimensional array of blocks, with the trapping in each block concen-
trated to the point at its centre. First, we consider the more straightforward case where the
droplets do not evaporate; solutions are presented in one, two and three dimensions, along with
explicit expressions for the total amount trapped and the deposit on the ground. With evapo-
ration, the model is more difficult to solve analytically, and the solutions obtained are nestled
in integral equations which are evaluated numerically. In both cases, examples are presented to
show the deposition profile on the ground downwind of the shelterbelt, and the corresponding
reduction in deposit from the same scenario without the shelterbelt.
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Notation

Upper Case

N®D DO

5

Dsat

SISO

Droplet number concentration [# m™3

Alongwind (longitudinal) dispersion coefficient [m? s~!]
Crosswind (transverse) dispersion coefficient [m? s7!]

Vertical dispersion coefficient [m? s7!]

Diffusivity of water vapour in air [m? s=!]

Release height [m]

Dominant alongwind (longitudinal) turbulence length scale [m]
Dominant crosswind (transverse) turbulence length scale [m]
Dominant vertical turbulence length scale [m]

Latent heat of vaporisation [J kg™!]

Molecular mass of water [kg mol™!]

Mass release [kg]

Dimensionless function non-zero only within a region of trapping [-]
Universal gas constant [J mol~t K—!]

Droplet settling speed [m s™!]

Absolute temperature [K]

release x coordinate [m]

release y coordinate [m]

Case

Droplet radius [m]

Droplet mass concentration [kg m ™3]
Specific heat of water [J kg=! K]
Droplet diameter [m]

Ventilation coefficient for heat [-]
Ventilation coefficient for water vapour [-|
Gravitational acceleration [m s~ 2]

Thermal conductivity of moist air [W m~—! K]
Background trapping rate [s~!]

Effective trapping rate [m3 s=1]

Droplet mass [kg]

Laplace transform variable [s71]

Saturation pressure [Pa]

Time [s]

Mean wind speed (positive x direction) [m s7!]

Cartesian coordinate system [m)]



Bold

D Dispersion tensor [m? s

i Unit vector in the positive x direction [-]

j  Unit vector in the positive y direction [-]

k  Unit vector in the positive z direction [-]

u  Mean wind velocity [m s™1]

v Droplet velocity relative to the origin [m s™!]
Greek

1, Dynamic viscosity of air [kg m~! s71]
p, Air density kg m3]
Droplet density (water) [kg m~3]

P
¢  Relative humidity (expressed as a fraction) [-]
¢ Spatial Fourier transform variable [m~!]

w

Spatial Fourier transform variable [m~1]



