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Frontispiece. Aerial view downstream overlooking the Tangiwai rail (foreground) and road
(backgound) bridges during the Crater Lake-breakout lahar from Mt. Ruapehu, New Zealand,
on 18th March 2007. The inundated memorial to the 151 people who died in the 1953 Tangiwai
Disaster, caused by a similar style lahar, is located between the two bridges. (Photograph
courtesy of H.J.R. Keys.)



Abstract

Lahars and other mass flows are highly hazardous phenomena that can pose great risk

to areas in their path. Due to their often unpredictable onsets, scientific observations

are limited. In addition, the erosive capabilities of a lahar mean that the most com-

monly used monitoring and sampling methods, such as load cells and bedload traps, are

often damaged early in the flow. The cost of repair and maintenance of these instru-

mentation prohibits comprehensive coverage of each channel that might be at risk from

lahars. The development of seismic sensors as an alternative monitoring method could

prove effective as they do not require contact with a flow and are therefore less at risk

from damage. The complex behaviour of a lahar can be witnessed in the geophysical

record of its passage which, in combination with more traditional monitoring methods,

can be used to record the detailed evolution of a flow. The three-dimensional analysis

of seismometer recordings can provide an approximation of the frontal velocity that

may differ from maximum velocity estimates made using super-elevation calculations.

Comparisons of the seismic records of different mass flow types illustrate that it is pos-

sible to differentiate between them. Frequency analysis allows for the distinction of the

flow mechanisms, particle interactions, and dominant rheology of a lahar. Low frequen-

cies are more indicative of bedload frictional motion, while higher frequencies reflect

the collisional impacts of particles, either between themselves or with the substrate.

Detailed records of a flow at a single site provide a comprehensive understanding of

the temporal variations that occur within the duration of a lahar, while comparative

analyses of numerous sites along a channel highlight its downstream evolution. While

initial onset signals can be recorded at local-to-source sites, they are attenuated too

quickly to be observed further downstream. The records at proximal sites can, how-

ever, reflect the stages, or packets, involved during the main bulk of lahar initiation.

At more distal sites, observations show that a lahar transitions to a [minimal] 4-phase

behaviour. This consists of a frontal bow wave of ambient streamwater that increases
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in volume with distance from source, and immediately precedes the lahar proper. The

following phases are defined by variations in sediment concentration, velocity, stage,

and, in the case of Crater Lake-originating lahars, water chemistry. The understanding

of the variable behaviour possible during a lahar, as well as the identification of the

specific flow type recorded, is fundamental to modelling approximations of flow vol-

umes, sediment concentrations, likely inundation areas, and probable damage by the

flow. It is essential for the development of future warning systems that the variations

that can occur within a single lahar are better understood, as lahars represent a serious

threat to the slopes of many volcanoes worldwide.
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In Indonesia: Prof. Shane Cronin, Ms. Céline Dumaisnil, Dr. Vern Manville, Dr.

Jon Procter, Prof. Jean-Claude Thouret, Mrs. Lilianne Thouret, and also Bruno and

the villagers by the Semeru site who helped install and look after our equipment.

At Ruapehu: the rest of the Crater Lake lahar research team: Mr. Ian Chapman,

Prof. Shane Cronin, Dr. Kat Holt, Mr. Matthew Irwin, Mr. Phil Kellman, Dr. Jerome

Lecointre, Dr. Gert Lube, Dr. Vern Manville, Ms. Kim Martelli, Dr. Hilary McMillan,
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