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Abstract 

We propose an improved technique to calculate the linear response of a single 

and multiple plates models due to ocean waves. The single plate model is the basis 

for the multiple plates model which we take to be a periodic array of identical 

plates. For the single plate model we solve the plate displacement by the Finite 

Element Method (FEM) and the water potential by the Boundary Element Method 

(BEM). The displacement is expanded in terms of the basis functions of the FEM. 

The boundary integral equation representing the potential is approximated by these 

basis functions. The resulting integral operator involving the free-surface Green's 

function is solved using an elementary integration scheme. Results are presented 

for the single plate model. We then use the same technique to solve for the periodic 

array of plates problem because the single and the periodic array plates model differ 

only in the expression of the Green's function. For the periodic array plate model 

the boundary integral equation for the potential involves a periodic Green's function 

which can be obtained by taking an infinite sum of the free-surface Green's function 

for the single plate model. The solution for the periodic array plate is derived in the 

same way as the single plate model. From this solution we then calculate the waves 

scattered by this periodic array. 
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Chapter 1 

Introduction 

The thin elas tic plate model is us ed to depict a thin and flat s tructure floating on 

the water s urface. The s tructure's thickness is far s maller than its length and width. T he 

s tructure is flexible and rocks in res pons e  to the water motion; we neglect its s ubmerged 

part. This is known as the s hallow-draft model .  

The thin elas tic plate model aris es from the need to unders tand the hydroelas tic be

haviour of realis tic structures , s uch as a Very Large Floating Structure (VLFS) and ice 

floes in the Marginal Ice Z one (MIZ ), when expos ed to the ocean waves . A VLFS (e.g. the 

megafloat and floating runway) is us ually rectangular while ice floes have ir regular s hapes 

and us ually come in packs . 

The VLFS is aimed to provide space for additional airpor ts , s torage, etc. Experimen

tal obs ervations have been made by building s mall-s cale models both offs hore and in the 

wavetanks . On the theoretical s ide numerous methods of calculating the res pons e  of the 

VLFS have been developed. Reviews on both experimental and theoretical works are given 

by Kas hiwagi (2000) and Watanabe et al. (2004). We s hall dis cuss s elective examples of 

the s olution methods .  G enerally the methods s eparately s olve the water at the interface 

with the plate and the w ave-induced res pons e  of the plate. The water part can be s olved by 

either calculating the press ure (refer red to as the press ure-distribution method) or the veloc

ity potential . The plate part can be s olved by either calculating the vibration modes of the 

plate's deflection (referred to as the modes -expans ion method) or s olving the dis placement 

directly. 

In the water part the s olution s ought can be in terms of the press ure or the velocity 

potential. If the pressu re is calculated (referred to as the press ure-dis tribution ) then the 

potential is eliminated f rom the Bernoulli-Euler equation and the press ure across the in

terface is repres ented by an integral equation involving a zero-draft G reen's function. I f  

the velocity potential of the water is calculated then the press ure is eliminated from the 
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Bemoulli-Euler's equation by s ubs tituting it with the l inearized Bemoulli 's law. In  either 

approaches the s olution invo lves the dis placement of the plate . 

The press ure-dis tribution method may yield s olutions at either the interface between 

the water and the plate (kno w n  as the wet modes )  or the interface between the plate and the 

atmosphere (known as the dry modes ). An early s olution for the dry modes was pres ented 

by Maeda ( 1 995) us ing I-D free-free modes of the beam in the x and y direction. Takaki & 

G u, 1 996 s olved for the dry modes us ing the eigenfunctions of the Bemoulli-Euler's equa

tion with cons tant press ure. Later Lin and Takaki ( 1 998) s howed that B-s pline functions 

could be us ed as the modes. In fact the dry modes can be repres ented b y  various functions .  

The wet modes can be calculated from the dry modes by adding the mass and damping 

factors (Hamamoto, 1 997). 

The numerical solutio n for the press ure-dis tribution us ing the modes -expans ion method 

is done by dis cretizing the plate into panels and representing the press ure b y  a s et of ar

b itrary functions .  Then the plate dis placement is s olved by way of one of thes e two ap

proaches: the thin plate vib ration mode (referred to as the mode-expans ion method) or the 

direct method. T he follow ing are examples of the functions us ed to repres ent the press ure 

in the panels . Maeda et al. ( 1 995) and Takaki and G u  ( 1 996) ass umed that the unknown 

press ure was cons tant on each panel. Another method by Yas uzawa et al. ( 1 996) us ed the 

press ure as a l inear function. Hamamoto et al . ( 1 997) us ed an 8-point quadratic function 

for the press ure on each panels . The drawback of thes e methods is the lengthy computation 

time for s hort wavelengths .  For this purpos e, Kas hiwagi ( 1 996) propos ed an efficient com

putation s cheme us ing the bi-cubic B-s pline functions to repres ent the unknown press ure 

on each panel. 

In the mode-expans ion method the unus ed vibration modes are included to calculate 

the deflection of the flexib le plate. The calculation of thes e unus ed modes was cos tly and 

hence this method was u ndes irable. This is becaus e  the primary s olution s ought is the to

t al dis placement and not the vib ration modes . Therefore the direct method was developed 

to bypass thes e unus ed modes . Yago and Endo ( 1 996) us ed a s tandard third degree poly

nomial of the finite element method (FEM) and the press ure-dis tribution method to couple 
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the water and the plate. The panels were dis crete and only moved vertically. The panel dis 

placement was then s ubstituted into the press ure forcing equation. The results found were 

pres ented in the form of the diffracted potential, the dry and the wet modes of the plate, and 

a comparis on of the computed res ult with experimental data. Yas uzawa et al . ( 1 996) als o  

us ed the s tandard third degree polynomial; however their panels were connected rigidly 

or by pins .  Als o the Boundary Element Method (BEM) was us ed for the water potential. 

This was s olved us ing Bi-linear boundary elements and numerical integration with 1 6  Gauss 

points .  Their res ults were presented as calculation of the wet modes (i.e. the potential at 

the interface between the plate and the water). Hamamoto ( 1 997) us ed the standard s econd 

degree polynomial on connected panels (modules )  that were anchored to the s eabed. L ike 

Yas uzawa, Hamamoto us ed the BEM for the potential. This was done by dis cretizing the 

boundary into 4-node linear elements .  The potential was expanded in terms of the FEM's 

polynomial. Both Yas uzawa and Hamamoto us ed the l inearized Bemoulli's equation for 

the press ure to couple the plate and the water. 

Recently Kas hiwagi ( 1 998) developed an effective computational s cheme for the 

s hort wavelength cas e. The method involved a s et of bi-cubic B-s pline functions repre

s enting the unknown press ure and converting the integral equation for the press ure into 

a linear s ys tem of equations by a Galerkin Scheme (referred to as the bi-cubic B-s pl ine 

Galerkin s cheme). The linear sys tem was s olved to give the cons tants of the bi-cubic B

s pline functions .  This method is of higher order due to the us e of the Galerkin s cheme but 

it is difficult to extend to s olve plates that are not rectangular. This res tricts its us e on other 

s hapes .  

Rather than a rectangular shape (on which the VLFS is bas ed on generally) a circular 

plate model was developed by Meylan and Squire ( 1 996). The model was us ed to repres ent 

a s ingle ice floe in the Marginal Ice Z one (MIZ ). The water potential was related to the mo

tion of the circular floe by a boundary integral equation involving an infinite-depth Green's 

function. This integral equation was s olved by expanding the motion in terms of the eigen

values of circular thin plates . An altern ative s olution was found us ing a different Green's 
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function involving the eigenvalues of a circular ice floe. The res ults were calculated for 

long cres ted ocean waves . 

Models bas ed on plates of arbitrary geometry were in fact developed to inves tigate the 

behaviour of ice floes in the MIZ. There are many interpretations on the meaning of MIZ. 

Wadhams ( 1 986) des cribes the MIZ as the ice-covered part of the polar region that is clos e  

enough to the open ocean boundary to be affected by its pres ence. S ince the MIZ is greatly 

affected by ocean s well it is compos ed of many ice floes which differ in s hape and s ize. 

Various experiments have been conducted around the region and numerous models have 

been developed to depict the floes and the ocean waves . In  modelling the MIZ, s everal of its 

features are inves tigated including the break-up of ice sheets into ice floes , the arrangement 

of floes into patterns by ocean waves , and the dis pers ion and the attenuation of ocean waves 

by the ice floes . A detailed s ummary on the mathematical s tudy of the waves and the MIZ 

is given by Squire et al . ( 1 995). 

A generalized model of a thin elas tic plate of arbitrary geometry was developed by 

Hermans (2000) and Meylan (2002) . Hermans performed extens ive calculations of the 

diffraction of waves by such a platfo rm us ing the boundary element method. Current

induced and non-current-induced free-s urface Green's functions were pres ented and both 

kinds were s olved numerically. The integro-differential equation obtained via the boundary 

element method was solved by two approaches . The firs t approach us ed a s et of orthogonal 

functions that are the eigenfunctions corres ponding to the eigenmodes of the deflection of 

the plate. However it was difficult to extend this method to s olve the two-dimens ional plat

form problem. Therefore Hermans gave an alternative approach us ing the finite difference 

method with grids of equal length. The application of this technique to the two-dimens ional 

platform was s hown but computations were given only for the one dimens ional platform in 

long cres ted-waves . 

A s imilar model bas ed on a plate of arbitrary geometry was developed by Meylan 

(2002) to model an ice floe. He us ed a hybrid finite element-boundary element method 

to calculate the res ponse  of the ice floe. The FEM was us ed to determine the modes of 

vibration of an elas tic plate. The BEM was us ed to convert the laplacian and the boundary 



1 Introduction 5 

conditions ofthe water potential into an integral equation involving the free-s urface Green's 

function. The integration was then solved us ing the cons tant panel method, a method of 

lower order. 

Since the MIZ is compos ed of many ice floes this leads to the development of multiple 

floe models from the s ingle floe ones . An early model bas ed on a s ingle floe model was 

propos ed by Mass on and LeBlond ( 1 989). They us ed a model where the floe was circular 

and rigid. Hence its movement was res tricted by its mass and rigidity. Bas ed on s ingle floe 

s cattering they developed a multiple s cattering theory us ing the energy balance equation of 

the wave s pectra where it included the wind-generated energy, the diss ipated energy, and 

the non-linear interaction between the spectrum. An improved model was later developed 

by Mey lan et al. ( 1 997). Mey lan et al. us ed a circular, flexible plate to repres ent the 

s olitary ice floe. Furthermore the wind-generated energy and the non-linear interaction 

terms were dropped fr om the energy balance equation. Apart from thes e two works there 

are many other works on the modelling the behaviour of ice floes in the MIZ; for example 

Marchenko and Voliak ( 1 996) who also worked on the s cattering model and Moritz and 

Ukita (2000) who worked on the deformation of the ice pack. 

Here we are interes ted in s tudying the s cattering of waves by plates of arbitrary geom

etry. We bas e  the multiple plate model on the s ingle plate model. For the multiple plates 

models we us e a periodic array of plates . For the s ingle plate model we pres ent a s olution 

method analogous to Meylan (2002) but of higher order. This thes is is s eparated into two 

parts bas ed on the s ingle and the multiple model .  

In the firs t  part of this thes is we pres ent the full solution to the s ingle plate model 

us ing the direct method. We s hall als o compare our methodology with the one us ed by 

Meylan. In the firs t  chapter we des cribe the s ingle plate model phys ically and mathemat

ically. In the phys ical description of the model we portray the plate of arbitrary geometry 

and the water domain and then we s how the mathematical formulation of the problem. In 

s econd chapter the s olution of the plate displacement is dis cuss ed. This involves dis cretiz

ing the plate into a finite number of rectangular (later s quare) panels and express ing the 

equation of motion for the plate in terms of its variational equation. The variational equa-
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tion is then s olved directly us ing the FEM bas is functions . In the third chapter we s olve the 

boundary integral equation for the water potential and then couple the water and the plate 

together. There are two approaches to solve the integral equation; one is to us e the cons tant 

panel method (as us ed by Meylan) and the other is to combine the FEM bas is functions 

with an elementary numerical integration s cheme. Both methods will be s hown. Since the 

free-s urface G reen's function involved in the integral equation is s ingular we als o s how 

ways to avoid the s ingularity. In the fourth chapter we implement the higher order method. 

We omit the implementation of Meylan's method as this has already been done and res ults 

have been pres ented. The res ult for the higher order method is derived in  terms of the dis 

placement of the plate and/or the velocity potential of the water. Thes e are then compared 

to Meylan's res ults and later are s hown to perform better. The effect of dis cretization on 

various shapes is als o shown us ing Kochin's function. F inally the res pons e of a plate of 

various shapes is plotted in terms of its dis placement. 

For the s econd part of this thes is the s olution of the s ingle plate us ing a higher order 

method is extended to s olve an infinite line-array of periodically-arranged identical plates . 

We note that s imilar problem have been s olved by Fernyhough and Evans ( 1 995) and Potter 

and Evans ( 1 998). Fernyhough and Evans s olved the s cattering by a periodic array of 

rectangular vertical barriers that extended throughout the water depth. Porter and Evans 

cons idered the problem of trapped modes which are Rayleigh-Bloch s urface waves in a 

periodic array of circular cylinder that als o extended throughout the water depth. The 

difference between the two and our periodic array of plates is that the rectangular barrier 

and the circular cylinder are stiff and unmoved whereas our plates are elas tic and movable. 

However our integral equation for the water potential is s imilar to theirs . 

In the fifth chapter we des cribe the periodic array of plates . Here we pos e the prob

lem that we aim to solve. Such arrangement of plates res embles the s urface diffraction 

grating of Optics . Therefore the diffraction theory will be applied to the coupled plate

water motion. The application of the diffraction theory then gives ris e to a new type of 

integral operator analogous to the s ingle plate 's one. We then introduce its kernel, the 

free-s urface periodic Green's function. However the periodic Green's function is s low-
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convergent, and so we propose a new approach to accelerate the convergence of this func

tion. In the sixth chapter the derivation of the scattered waves using the modal approach is 

presented. The modes are found using the Fourier Transform of the asymptotic form of the 

periodic G reen's function. We also classify the diffracted, the refl ected, and the transmitted 

waves and this leads to the calculation of energy balance within the periodic array. Finally 

we present the results for this periodic array of plates problem in the seventh chapter. 



Chapter 2 

The Three-dimensional Single Floating Elastic 

Plate Model 

We begin with the phys ical and mathematical model for the probl em of the linear 

wave forcing of a s ingle plate floating on the s urface of, either, finitely or infinitely deep 

water. 

2.1  The Pictorial Description of the Model 

In this s ection we por tray the fluid domain and the plate model for the problem and explain 

the notation. Figure 2. 1 . 1 .  depicts the phys ical domain of the res pons e  problem where a 

thin elas tic plate is floating on the s urface of water that may be finite or infinite in  depth. 

We denote the entire water domain by n and the pl ate covered area is denoted by �. The 

s urface is at z = 0 and the s eafloor (the bottom of the water domain) is z = - H .  For 

infinitely deep water we take the limit as H ---t 00. We neglect the s ubmerged part of the 

plate (i.e. the s urface of the plate is also  at z = 0) The axis are s hown in the figure. An 

incident wave of ampl itude A In propagates at direction s pecified by waveangle e. 

2.2 The M athematical Description of the Model 

We now pres ent the mathematical model ass ociated with the problem of a s ingl e  pl ate 

floating in the previous section. This theory comes from Stoker [Stoker, 1 957] ,  Meylan 

[Meyl an, 2002] , and Kashiwagi [Kas hiwagi, 1 998a], amongs t  others . 
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Figure 2 . 1 . 1 .  The depiction of the domain for the single plate model .  
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2.2.1 The Equation of Motion for the Water 

We use the linear wave diffraction theory. Assuming that the water flow is irrotational, the 

velocity potential of the water must satisfy Laplace 's equation 

\72<p (x, y, z; t) = 0, (x, y ,  z) E D, 0 :S: t < 00, (2.2. 1 )  

where <p (x , y, z; t ) is the velocity potential of the water. At the water surface the kinematic 

boundary condition applies 

a a 
az 

<p (x , y , 0; t) = 
at W (x, y ; t) . (2 .2 .2) 

At the interface between the water and the plate the dynamical boundary condition is given 

by the linearized Bemoulli's Law 

-p (! <p (x, y, 0; t) + gW (x, y; t)) = p (t) (2 .2 .3)  

where W (x, y; t) is the surface displacement, p i s  the density of the water, and g is the 

gravitational acceleration. At the free surface (the interface between the water and the 

atmosphere) the pressure is constant. Thus if we take the time derivative of equation (2 .2 .3) 

then �� = 0 and the substitution of (2.2.2) gives rise to condition 

a2<p a<p 
f)t2 + g az = 

O. 

At a fixed surface of the water domain (such as the seafloor) the boundary condition is �: = 0, where n denotes the direction normal to the surface. For water with finite depth 

the bottom boundary condition is 

a 
az <p (x, y, -H; t) = 0, (2 .2 .4) 

where H denotes the depth of the water. For infinitely deep water the boundary condition 

at the bottom becomes 

lim grad <p = O.  (2 .2 .5)  
z--+-oo 
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2.2.2 The Equation of Motion for the Plate 

The equation of motion for the plate is given by the Bernoulli-Euler equation. For an 

isotropic plate this is 

fj2 DV'4W + p'h 8t2 
W = P (t) , 

together with the free edge boundary conditions 

82W 82W 
8n2 + v 8s2 - 0, 

83W 83W 
8n3 + (2 

- v) 8s3 - 0, 

(2.2 .6) 

(2.2.7) 

(2.2.8) 

where W (x, y, t) is the plate displacement, p' is the plate density, h is the plate thickness, 

p is the pressure, and D is the modulus of rigidity of the plate (D = Eh3/12 ( 1 - v2) , 

where E is the Young's modulus and v is the Poisson's ratio) .  n and s are, respectively, the 

normal and the tangential directions to the plate edge. 

Under the surface of the water covered by the plate we couple equations (2.2.3) and 

(2.2.6) and obtain the following relation 

4 I 82W 81> DV' W + P h 8t2 
= -Pat - pgW, (2.2.9) 

which is the coupled pressure equation. Equation (2.2 .9) describes the surface displacement 

of the plate on the wetted interface. 

2.2.3 Non-Dimensionalizing the Variables 

We non-dimensionalize the spatial variables using 

x =  L x, y = L y, z = L z , W = L W , 

and the time variables using 

(i-t = V gt, 

where L is a length parameter which may be chosen arbitrarily. Substituting the dimen-

sionless variables into (2.2.9) gives us the displacement equation for the plate on the water 
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interface 
2 - -

4 - 0 W o<I> -f3V W + , - = - --= - W oP ot ' 
where the new constant terms f3 and , are 

f3 D 
pL4g 
p'h 

, - -

pL 

(2 .2 . 1 0) 

(2 .2 . 1 1  ) 

We will cal l f3 the stiffness constant and , the mass constant. Subsequently we shall omit 

the overbar from all variables. 

2.2.4 The Single Freq uency Problem 
Assuming the problem is single frequency we may write the displacement of the plate and 

the velocity potential of the water as 

W (x, y , t) 
<I> (x, y, z , t) 

Re [w (x, y) e -iwt] 
, 

Re [<jJ (x, y, z) e-iwt] , 

where w i s  the angular frequency of the wave. 

Then the single frequency equation of motion for the water becomes 

V2<jJ 0, (x, y, z) E n , 
o<jJ w2 

0, (x y) tJ: � ,  z = 0, - - -<jJ oz 9 o<jJ (x, y) E � ,  z = 0, oz - �w w ,  

For finite depth H the condition that �! = ° 
at a fixed surface gives 

and for infinitely deep water 

o<jJ = ° 
oz ' z =  - H, 

. I o<jJ I hm � = 0. 
z---+ - oo  uZ 

(2.2 . 1 2) 

(2.2. 1 3 )  

(2 .2. 1 4) 

(2 .2 . 1 5 ) 

(2.2 . 1 6) 
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The boundary condition at infinity is given by the Sommerfeld radiation condition. 

This imposes the scattered wave must progresses outward [Wehausen & Laitone, 1 960] 

lim M (aal 1 - ik) (q; - q;In) = 0, 
Ixl-+oo x 

(2.2 . 1 7) 

where k is the wavenumber (related to the wavelength >. by k = 27T / >.) and q;In is an 

incident plane wave. Condition (2.2 . 1 7) ensures uniqueness of the solution of the boundary 

value problem given in (2.2. 1 )  to (2.2 . 1 5) for water of finite depth or (2.2 . 1 6) for water of 

infinite depth. The derivation of incident wave q;In is given in Appendix A. We obtain 

cjJln (x) = A1n eik(x cos O+y cos 0) , (2 .2 . 1 8) 

where () is incident angle. Expression (2.2. 1 8) will be used through out this thesis as the 

incident wave. 

Finally equation (2.2. 1 0) becomes the dimensionless and single frequency displace

ment equation for the plate 

(J \74w (x) - cry w (x) = ifoq; (x) - w (x ) , (2.2 . 1 9) 

where 

(2 .2 .20) 

is the dimensionless frequency. Equation (2.2. 1 9) is one of two simultaneous equations 

that govern the coupled motion of the water and the plate. 

2.3 The Application of the Boundary E lement Method to the 

Water Potential 

In this section we derive another equation for the water that wil l  be solved simultaneously 

together with (2.2 . 1 9) for the potential of the water and the displacement of the plate. This 

will produce a boundary integral equation for the potential that involves the Free-Surface 

Green's function. 
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2.3.1 Transforming the Boundary Value Problem for the Potential 

into a Boundary Integral Equation 

The potential cp can be separated into the incident part and the scattered part 

cp (x, ( ) = cpln (x, () + cps (x, () , (2.3 . 1 )  

where cpln is the incident wave (2.2 . 1 8) and cps is the scattered potential. 

Clearly cpln and cps satisfy the boundary value problem given by Laplace's equation 

(2.2 . 1 2), surface boundary conditions (2.2. 1 3), bottom boundary condition (2.2. 1 5), and 

the radiation condition (2.2. 1 7). Then we apply Green's second theorem to cps 

r (cps '\72G _ G '\72 cpS) dV. = r (cpS oG _ G ocpS) dB , in €,( ion oz oz € 
where an is the boundary surrounding domain n ( [John, 1 950], [Sarpkaya & Isaacson, 1 98 1  D. 

Upon applying the Lapacian (2.2. 1 2) and (2.3 .4) to the left hand side and (2.3 . 1 )  to the right 

hand side the equation above becomes 

We explain in Appendix B that the calculation of the integral over the boundary is reduced 

to the calculation of its integrand over the plate-covered area. Using this result we obtain 

cpS = L (aGCP - G��) dB, 

Ocpln 
since aGcpln - G 8z = 0 at z = 0 by (2.2. 1 3) satisfied by cpln everywhere on the surface. 

Furthermore we can apply the boundary condition (2.2 . 1 4) 

cpS (x, z) = L [aG (x, z ; E. , O) CP (E. , O) + ijaG (x, z; E. , O) w (E. , O)] dB€ , 

where G (x, z ; E., 0) is given by (2.3 . 1 1 )  or (2 .3 . 1 3 ). 

(2.3 .2) 

We substitute (2 .3 .2) into (2.3 . 1 )  to obtain the total potential and assume that the field 

points (x, z) are taken only at the wetted surface of the plate and thus z = 0 

cp (x) = cpln (x) + L G (x; E.) {acp (E.) + ijaw (E.) } dE" (2 .3 .3)  
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where we have dropped term z, ( = 0 from the equation and the area integration now 

depends on � and "1. We refer to equation (2.3 .3) as the potential equation for the plate. We 

now have a complete system of equations to be solved for w (x) and cp (x) . Both equations 

(2.2 . 1 9) and (2.3 .3) will be solved numerically. For (2.3 .3) we need the free-surface Green's 

function and this will be explained in the next subsection. 

2.3.2 The Free-su rface Green's function for water of fi n ite and infinite 

depth 

The standard method to solve the boundary value problem described by Laplace equation 

(2.2. 1 2), surface boundary condition (2.2. 1 3), bottom boundary condition (2.2 . 1 5), and 

radiation condition [Sarpkaya & Isaacson, 1 98 1 ]  is to use a Green's function. Therefore 

the Green's function satisfies 

\72C (X, Z; �, ()  = 8 (x - �) 8 (z - () , (x, z) , (�, ()  E S1 BC g� = aC, z = 0, 

B( 
= 0, z = -H, 

limlxl-->oo M ( of x l - ik) C = 0, 

(2.3 .4) 

where x = (x ,  y) is the field point and � = (�, "1) is the source point. We call such Green's 

function afree-surface Green 's function (for water of either finite or infinite depth) . 

For water of finite depth various solutions to (2.3 .4) are given by various authors Sarp

kaya and Isaacson [Sarpkaya & Isaacson, 1 98 1 ] ,  Mei [Mei, 1 989], and Linton [Linton, 1 999] . 

Mei and Sarpkaya and Isaacson gave the following expression for the free-surface Green's 

function for water of finite depth 

C (x, z; � , () 
1 { I  1 - 47f Jlx - � 1 2 + (z _ ( ) 2 

+ Jlx _ � 1 2 + (z  + 2H + ()2 
{oo (k + a) e-kH Ja (k  Ix - � I ) } +2 la k sinh (kH ) _ a cosh (kH) 

cosh k (z + H) cosh k (( + H ) dk , 

(2.3 .5)  
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where k is the wavenumber. 

a = k tanh (kH) , (2.3 .6) 

a is the frequency square given in (2.2 .20), and 10 is the first kind Bessel function of order 

zero ([Sarpkaya & Isaacson, 1 98 1 ]  and [Mei, 1 989]). Linton gave a series representation 

of (2.3 .5)  

L
oo Ko (kj Ix - � I ) 

G (x, z ; � , () = - c cos kj (z + H) cos kj (( + H) ,  
27r . j=O J 

(2 .3 .7) 

where ao is the second kind modified Bessel function of order 0 and kj are the positive real 

roots of the dispersion equation 

j ? O . (2.3.8) 

The zeroth root ko is related to the wavenumber k by 

The constant Cj is 

ko = - ik . 

C . = 
H (1 sin 2kjH )

. J 2 + 
2k H J 

(2.3.9) 

(2 .3 . 1 0) 

[Linton, 1 999]. Following (2.3.3), where the boundary integral equation is taken over the 

surface, we set z = 0 and ( = 0 in (2.3 .7) to get 

G (x; �)  = - � Ko (kj I� - � I ) cos2 kj (H) . � 27r · j=1 J 
(2.3. 1 1 ) 

For infinitely deep water the solution of (2.3 .4) is given by Wehaussen and Laitone 

[Wehausen & Laitone, 1 960] .  Such Green's function has the form 

G (x, z ; � , () = _ � { 1 
+ 

1 
_ (a ea(z+0 7r) x 41f Vlx  - � 1 2 + (z _ ()2 Vlx _ � 12 + (z  + () 2 

[Ho (a Ix - � I ) + Yo (a Ix _ � I ) _ 2 r-a(z+O eS ds 

] lo ! a2 1x _ � 1 2 + S2 

+27ria 10 (a Ix  - � I ) } , (2.3 . 1 2) 

where Ho is the Struve function of order zero, Yo is the second kind Bessel function of 

order zero, and 10 is the first kind Bessel function of order zero. As in the case when the 
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water depth was finite we also substitute z = ( = 0 in (2.3 . 1 2) to obtain an expression that 

will be used by (2.3 .3) 

G (x; �) = 4� ex � � I - 7ra [Ho (a Ix - � I )  + Yo (a I x - � I )  - 2i 10 (a Ix - � I )l) . 
(2.3 . 1 3) 

In the next two chapters we will present two numerical schemes to solve (2.2. 1 9) 

and (2.3 .3) .  Based on this mathematical model in the next two chapters we will present 

a numerical scheme based on the Finite Element and the Boundary Element Methods to 

solve the displacement of the plate and the potential of the water. 



Chapter 3 

Solving the Motion of the Plate and the Water 

In  this chapter we present the method for solving the coupled motion of water and 

plate. First we solve the displacement of the plate. In  the first section we show the dis

cretization of the plate by square plates. In the second section we expand the displacement 

in terms of the FEM basis functions. In the third section we apply this expansion on the 

variational equation of the coupled Bemoulli-Euler's equation for a thin plate and the dy

namic boundary condition on the interface with water. We refer to this as the direct method. 

Next we solve the boundary integral equation for the potential where a free-surface 

Green's function is involved. There are two approaches to solve the integral equation; the 

first one is to use the constant panel method which is used by Meylan and the second one is 

to use the combination of the FEM basis functions and an elementary numerical integration 

scheme. In the fourth section we show the constant panel method used by Meylan. This 

yields a matrix containing the Green's function taken at the centre of the panels. Finally 

Meylan's method to couple the water and the plate is shown. In the fifth section we present 

a higher order method to solve the plate-water motion directly [Wang & Meylan, 2004] . 

This simply uses the basis functions of the FEM. This yields a new matrix containing the 

Green's integral operator acting on the basis functions which cannot be solve analytically. 

The solution of this integral operations is presented in the fourth section using Gaussian 

quadrature. 

3.1  Discretization of  the Plate 

In this section we discretize the plate of arbitrary geometry using a finite number of rectan

gular panels. For now we regard the panel as rectangular and later in next chapter we shall 

use square panels instead of a rectangular ones. 

1 8  
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The discretization process is depicted in Figure 3 . 1 . 1 .  The plate of arbitrary geometry 

/). is discretized by rectangular panels. We note that this discretization only approximates 

/). in general. However if the plate is rectangular the discretization by rectangular panels 

cover it exactly. In any plate the discretization yields p total number of rectangular panels 

and q total number of nodes (corners of each panel). 

Each panel is of area 4ab and is denoted by /).d (1 < d < p). We number the panels 

in the following way. We start from the bottom most left one, traverse upwards until the 

last panel in the column, and then we move to the column on the right. We do this until we 

meet the top right most panel in the plate. The corners of each panel are numbered locally 

by qCd) qCd) qCd) and qCd) 1 , 2 , 3 '  4 ' 

3.2 The Expansion of the P late's displacement 

In this section we present the solution of the plate displacement using the Finite Element 

Method. We solve the displacement w (x , y) locally over a panel e where (x , y) E /).e ' We 

do this by expanding it as the sum of FEM basis functions taken at its nodes. Having done 

this we obtain an equation describing the displacement for a panel 

(3 . 2 . 1 )  

where Nd i s  the vector of the basis functions of the Finite Element Method (subsequently 

we shall refer this vector as basis vector). It is defined as following 

Nd (x) = [ Nl l  N12 N13 N21 N22 N23 N31 N32 N33 N41 N42 N43 ] 

(3 . 2 .2) 

where Njl (x , Y) ,  Nj2 (x, y) , and Nj3 (x, y) (j = 1 , 2 , 3 , 4) are given by 

Njl (x, y) = � ( 1  + Xj x) ( 1  + Yj y) (2 + Xj x + Yj Y - X2 _ y2 ) , } 
Nj2 (x, y) = Ib6 ( 1  + Xj x) ([;j + y) ([;2 - 1) , 
Nj3 (x, y) = -:6 (Xj + x) (x2 - 1 )  ( 1  + Yj y) . 

(3 .2 .3) 

(x, y) is  (x/a, y/b) in /).d.  The basis vector Nd is  of dimension 1 x 12 . We only consider 

square panels by letting b = a. Vector W d is an array of unknown constants of the form 
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Figure 3 . 1 . 1 .  The discretisation of a plate of arbitrary geometry by rectangular panels. (a) 
The plate is covered by p total number of panels where each panel is denoted by f:).d and 
numbering of d = 1 ,  . . . , P is directed by the arrows. (b) Each rectangular panel is  of area 

4ab and its corners are numbered locally by q;d) (j = 1 , 2 , 3 , 4). In total a plate has q nodes 
which are the corners of the rectangular panels. 
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with the elements given by 

aW " d ), 
ax 

aW " d ), 
ay 

Wl,d 
aWl d , 
ax 

aWl ,d 
ay 
W2,d 
aW2,d 
ax 

aW2,d 
ay 
W3,d 
aW3,d 
ax 

aW3,d 
ay 

W4,d 
aW4 d , 
ax 

aW4,d 
ay 

2 1  

(3.2.4) 

where x;d) is the (x, y) coordinate of node q;d) and the constant vector W d has dimension 

12 x 1. 
For any arbitrary D.d the displacement vector Wd of the panel is related to the un

known displacement vector W for the plate by the nodal equation 

(3.2.5) 
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where the vector W of has length 3q (in accordance to  the number of  nodes in the plate). 

Matrix [old is 

3ql -2--->3ql 
� 

0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

3q2-2--->3q2 
� 

1 0 0 
0 1 0 

[ol d  = 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 
0 
0 

0 0 
0 0 
0 0 

3q3 -2�3q3 
� 

1 0 0  
0 1 0 
0 0 1 

3q4 -2�3q4 
� 

1 0 0  
0 1 0 
0 0 1 

(3 .2.6) 

We call matrix [ol d  the assembler matrix. The assembler matrix has dimension 1 2  x 3q 

where q is the number of nodes. We note that [old [ol� = TI12 is the identity matrix of 1 2  x 1 2  

while 2:j=l [ol� [oL is a diagonal matrix whose entries are the number of connected panels 

for all the nodes. The unknown displacement of the plate w can be obtained from W d by 

placing Wd at the right location on the plate using [ol� Wd. 
We can retrieve the displacement w (x) where x is enclosed by panel �d by substi

tuting (3 .2 .5) into (3.2. 1 )  

w (x) Nd (x) Wd, 

Nd (x) [old W. 

3.3 Solving for the Displacement of the Plate 

(3 .2 .7) 
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3 .3  Solving for the Displacement of  the Plate 

The variational  form of the displacement equation 

23 

In order to obtain the equivalent linear matrix-vector equation to the coupled equation we 

need to transform the coupled pressure equation (2.2. 1 9) into its variational form by multi

plying it with bw and integrating it by parts [Hildebrand, 1 965] to obtain [Meylan, 200 1 ]  

r { l [ ( 82W ) 2 82w 82w ( 82w ) 2 (82W) 2] 
b ) 6 2(3 8x2 + 2v 8x2 8y2 + 2 ( 1 - v) 8x8y + 8y2 
+ ( 1 - a,) w2 } dx 
i.jQb i cpw dx. 

(3 .3 . 1 )  

Equation (3 .3 . 1 )  has to be minimized so that we can obtain the necessary matrices and the 

vectors. In the next subsection the variational equation (3 .3 . 1 )  is discretized from the plate 

6. into panels 6.d. The discretized version is then minimized over the basis in (3 .2 . 1 ). 

3.3.2 Minimization of the Discretized Variational Equation 

Following the discretization of the plate 6. into panels 6.d we write the area integral term 

in the the variational equation (3.3 . 1 )  into the sum of integrals over the panels 

P r { I [ ( 82W) 2 82w 82w ( 82W ) 2 (82W ) 2] b � ) 6d 2(3 8x2 + 2v 8x2 8y2 + 2 ( 1 - v) 8x8y + 8y2 
+ ( 1  - et!) w2 } dx P 
i.jQb � id cp w dx, 
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and into this we substitute in (3.2.7) 

24 

" [t L { [�(3 (a2�;2(x) [old VI ) 2 + 2v (a2�;2(x) [old VI ) (a2�2(x) [ol d VI ) 
(82Nd (x) A ) 2 (82Nd (x) A ) 2] +2 ( 1 - 1/) 8x8y [ol d W + 8y2 [ol d W 

+ ( 1 - 0:,) (Nd (x) [old w)2 } dx] 
i..j(i" [t L rP (x) Nd (x) [old VI dX] . (3.3.2) 

Notice that [ol d w is independent of x and y, and only Nd depends on x and y. Therefore 

the derivative operator only applies to Nd• We then minimize it with respect to W. This is 

done by differentiating (3 .3 .2) with respect to W. 
To differentiate (3.3 .2) with respect to vector W, we first denote the product Nd [old = 

u where the dimension of u is 1 x 3q. Then (3.2 .7) becomes 

w uw, 

where Ui and Wi are the elements of, respectively, u and W. As we recall from (3.2.5), the 

dimension of w is 3q x 1 .  Then we find that any differentiation with respect to vector w 

leads to a differential operator [ d�i ] which simply is a vector of dimension equal to the 

dimension of w. Therefore differentiating scalar w with respect to vector w means that we 

apply the differential operator [ d�i 1 to w 
[:;J , [uil , 

where the resulting vector [uil has dimension equal to the dimension of the differential 

operator, that is 3q x 1. Since vector u has dimension 1 x 3q then clearly dw dw [ dW ] = T d A U , Wi (3 .3 .3) 
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By applying the method for (3 . 3 .3 )  to (3.3 .2) we obtain 

25  

(3 � [of {1 [ (82Nr 82Nd ) + v (82Nr 82Nd + 82Nr 82Nd ) � d 8x2 8x2 8x2 8y2 8y2 8x2 d=l 6.d 

(82Nr 82Nd ) (82Nr 82Nd ) ] + ( 1  - v) 8x8y 8x8y + 8y2 8y2 dx 

+ ( 1 - a')') id Nr Nd dX} [ol d w 

i.;c;t, [oJr L Nr q, (x) dx. (3 . 3 .4) 

In the notation of the FEM the first integral (within the summation over the panels) on the 

left hand side of the equation is called the stiffness matrix of the panel 

[kl d = 1 (82Nr 82Nd ) + v (82Nr 82Nd 
+ 

82Nr 82Nd) 
6.d 8x2 8x2 8x2 8y2 8y2 8x2 

(82Nr 82Nd ) (82Nr 82Nd ) +2 ( 1  - v ) 8x8y 8x8y + 8y2 8y2 dx, (3 .3 . 5 )  

and the second term on the left hand side of the equation is called the mass matrix of the 

panel 

[mld = 1 Nr Nd dx. (3.3 .6) 
6.d 

We may express (3 .3 .4) as a l inear matrix-vector equation describing the displacement of 

the plate as a sum over all panels { P P } P (3 � [ol� [kl d [old + ( 1  - a')') � [ol� [mld [ol d W = iva � [ol �  id Nr rP (x) dx . 
(3 .3 .7) 

Furthermore we can write (3 . 3 .7) simply as 

{(3 lK +  ( 1 - a,),) M } w = F, (3.3 . 8 )  

where matrix lK P 
lK= L [olI [kl d [Ol d ' (3 .3 .9) 

d=l 
is the stiffness matrix of the plate, matrix M 

p 

M= L [ol� [mld [Ol d ' (3 .3 . 1 0) 
d=l 
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is the mass matrix of the plate, and vector F 

p 
F = iVQ � [ol �  id NI cP (x) dx, (3 .3 . 1 1 ) 

is the forcing vector of the plate due to the water. From equation (3 .3 .9) [k ld is the stiffness 

matrix of the panel that we can write as 

with 

82Nd 
8x2 

82Nd 
8y2 
82N 

2 __ d 8x8y 

(3 .3 . 1 2) 

We notice that in equation (3 .3 . 1 0) [mld is the mass matrix of the panel that is defined in 

(3.3 .6). 

Equation (3 . 3 .8) is to be solved for the displacement of the plate w. Notice that both 

the stiffness and the mass matrices of the panel have dimension 12 x 12 .  Note that we 

purposely write the term involving the potential of the water using F because we will solve 

this by two different ways, one was done by Meylan using the constant panel method and 

the other uses the basis functions of the FEM. Each of these methods will be shown in the 

next section. 

3.4 Solving the Plate-Water Motion by the Constant Panel 

M ethod 

In this section we describe Meylan's strategy for solving the boundary integral equation 

for the potential and to incorporate it into the displacement equation through the forcing 

vector. First we show the constant panel method that is used to solve the forcing vector 
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due to the water. Then we show the coupling of the water and the plate. Note that this 

procedure appeared in [Mey lan, 1 997]. 

3.4.1 Solving the Potential 

The integral equation for the potential can be written as 

cjJ (x) = cjJln (x) + G {acjJ (x) + ivaw (x) } , (3 .4. 1 )  

where the integral Gf (x) is 

Gf (x) = 1 G (x; �) f (�) df., (3.4.2) 

and f (�) is an arbitrary function. This integral equation has kernel the free-surface Green's 

function (2 .3 . 1 1 ) or (2.3 . 1 3 ) evaluated at the surface. Equation (3 .4. 1 )  can be solved for 

potential cp (x) by relation 

cp (x) = ( 1 - aG)- l  {cpln (x) + iva G w (x) } , (3 .4.3 )  

where 1 is the identity operator of  the same dimension as G [Meylan, 200 1 ] . 

Meylan used the constant panel method (also called first order basis function or piece

wise constant basis function method) to integrate the area integral in the equations for the 

potential (2 .3 .3) .  The method approximates a function f (�) by its value at the centre of the 

panel (of the FEM) and is assumed to be constant elsewhere in the panel. Using this notion 

he approximate integral operator G f by expanding it as a finite sum 

d = l ,  . . .  , p, (3 .4.4) 

where point Xd = (Xd , Yd) is the centre of panel !::.d, fe = f (�e ) , and �e = (�e , 'rJe ) is the 

centre of panel !::.e . Then Meylan approximated the area integral of G over panel !::.e by 

taking G to be the value at the centre and constant across the panels. So G is constant as 

well as cp over the panels 

(3 .4.5 )  
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where 4a2 is the area of the square panel. Thus any integral equation of the form Cf (Xd) 
can be written as p 

Cf (Xd) = L 4a2 G (Xd; �e ) fe . 
e=l 

For all !:l.d, d = 1 ,  . . .  ,p  we have a matrix and vector multiplication Gf where matrix G i s  

defined as 
G (Xl ; �l ) G (Xl ; �2 ) . . .  
G (X2 ;  �l ) 

G (xp; �l ) G (xp; �p) 

(3.4.6) 

By the definition of the finite and the infinite depth Green's functions (2.3 .7) and (2.3 . 1 3 )  

singularity occurs whenever d = e (diagonal terms i n  (3 .4.6))However this obstacle can be 

avoided by integrating the special functions in G exactly. 

Then integral equation (3.4.3) becomes 

q; = (IT - aG)-l {q;In + ivaG JID� w}  , (3 .4.7) 

where 

IT is the identity matrix of the same size as matrix G, and JID� is the matrix that maps Wj 

from the corners of the panels to the centres of the panels 

1 
p 

]pJ� = 4 L IT12 [old ' (3 .4.8) 
d=l 

where [old is the assembler matrix (3 .2 .6). Matrix p� i s  needed because the displacements 

w are taken at the corners of the panels but q;, q;ln, and G are taken at the centre of the 

panels. 

3.4.2 Coupling the Water and the Plate 

Before we proceed we note that Meylan did not use the term Nd in his forcing vector. 

Instead he used another mapping matrix to combine the potential into the forcing vector. 

Hence we say that Meylan's forcing vector is equivalent to (but not the same as) ours. 
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The application of the potential (3 .4.7) to the forcing vector (equivalent to (3 .3 . 1 1 )) 

gives rise to the following equation for F 

(3 .4.9) 

where JP1 is the matrix that maps the value of 4J (the bracketed terms) from the centres to 

the corners of the panels. This is because F is defined at all nodes of the panels but the 

potential 4J is defined at the centres of the panels. Likewise p.6. matrix pO is expressed in 

terms of the assembler matrix (3 .2.6) 

p 

pn = 4a2 L [ol� II12 ·  (3 .4. 1 0) 
d= l 

Substituting F (3 .4.9) into (3 .3 .8) 

(3 .4. 1 1 ) 

By collecting w on one side of (3.4. 1 1 )  Meylan obtained the linear equation 

that is to be solved for constant the unknown displacement w. 

Meylan ( [Meylan, 1 997] , [Meylan, 200 1 ] , [Meylan, 2002] ) has written an extensive 

library of codes to solve (3 .4. 1 2). Hence we will omit the discussion of his implementation 

method. 

3.5 A Higher Order method to solve the Plate-water motion. 

In this section we present an alternative way to solve the plate-water motion using Meylan's 

piecewise constants area FEM basis functions. The strategy combines the basis vector with 

any elementary numerical integration scheme. The proposed method estimates the integral 

better than the constant panel method used by Meylan. This is because, instead of taking 

the value of the Green's function at the centre of the panel and assuming it constant across 

the element, the Green's function is calculated at the specified quadrature points in the 

panel and, hence, the value varies across the panel. Also the number of unknowns used to 
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discretize the potential cp is the same as that used to discretize the plate. Coupling these 

solutions yields a new matrix representation of the free-surface Green's function for the 

water that is equivalent to the mass and the stiffness matrix for the plate. 

3.5.1 Solving for the Potential 

Our aim now is to solve the boundary integral equation using the basis function Nd (3 .2 .2). 

First we expand cp (x) over a panel f:j.d where x E f:j.d and 0 ::; d ::; p. The potential at cp (x) 
is expressed as a product of the basis vector and a constant vector similar to (3 .2.4). 

(3 .5 . 1 )  

where Nd is given in (3 .2.2) and 4>d is the vector of constants defined in a similar manner 

to (3.2.4) 

cpl ,d 
Ocpl ,d 
ox 

Ocpl ,d 
oy 
cp2,d 
Ocp2,d 
ox 

Ocp2,d 

4>d = oy 
(3 . 5 .2) cp3,d 

OCP3,d 
ox 

Ocp3 d 
, 

oy 
cp4,d 
Ocp4,d 
ox 

Ocp4 d  
, 

oy 
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and 

The point X)d) is the coordinate of node q;d) . Similarly cpIn (x) can be approximated by 

(3 .5 .3 )  

where 4>�n is defined in the same way as (3 .5 .2) and cpIn is the incident wave of the form 

(A. 1 3 ) .  Similar to displacement vector Wd to W, the potential vector for the panel 4>d is 

related its plate counterpart 4> and the incident potential vector ;p�n is related to the vector 
� In <p by 

<Pd 
� In <Pd 

[ol d 4>, 

[ol d 4>
In . 

(3 .5 .4) 

(3 .5 .5) 

� � In Both <p and <p have length 3q. For an arbitrary x E 6.d we can calculate the potential 

cp (x) using 

(3 .5 .6) 

and approximate the incident potential cpIn (x) using 

(3 . 5 . 7) 

Then we recall the following equation for the potential (2.3 .3) 

cp (x) = cpIn (x) + G {a cp (x) + i va w (x) } , (3 . 5 . 8) 

where the integral equation of the form Gf is given by (3.4.2) 
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Furthermore we substitute the area integral over the plate in (3.4.2) by the sum of al l  area 

integrals over the panels �e) 1 � e � p. 
p GI (x) = L Gel (x) ) e=l 

where the integral operator Ge acting on function I i s  

and � E �e . 
Gel (x) = r G (x; � ) I (�) d� ) }c:,.e 

For x E �d we may expand (2.3.3) as 

Using (3 .5 .9) equation (3.5 . 1 0) becomes 

p P Nd 4>d = Nd 4>�n + a L Ge <P (x) + iy'Q L Ge w (x) . e= l e=l 

(3 .5 .9) 

(3 . 5 . 1 0) 

We further expand the term Ge <P (x) and Ge W (x) by writing <P (�) = Ne 4>e (using equa

tion (3.5 . 1 )) and W (�) = Ne We (using equation (3 .5 .3)), where � E �e and Ne is the basis 

vector (3 .2 .2) . We obtain 

p P 
Nd 4>d = Nd 4>�n + a L (Gde Ne) 4>e + iy'Q L (Gde Ne ) We ) e=l e=l 

where the integral equation Gde Ne is defined as 

GdeNe (x) = r G (x; �) Ne (�) d�e ) }c:,.e 
with x E �d and � E �e . We call �d the fie Id panel and �e the source panel. 

(3 . 5 . 1 1 ) 

(3 . 5 . 1 2) 

Next we introduce the notion of inner product that will be used to solve (3.5 . 1 1 ) . We 

define an inner product between vector functions f (x) and g (x) ) where x E �d) to be 

(f ) g)d = r fT (x) g (x) dXd) }c:,.d 
where T denotes the transpose. Thus if we take the inner product of (3 .5 . 1 1 )  with Nd (x) 
we obtain 

p P 
(Nd ) Nd)d 4>d = (Nd) Nd)d 4>�n +a L (Nd) (Gde Ne) )d 4>e+iy'Q L (Nd) (Gde Ne) ) d We · e=l e=l 

(3 .5 . 1 3 )  
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We notice that 

(Nd ) Nd)d - r NI (x) Nd (x) dXd J 6.d 

[mld · 

Following this we present a similar matrix for (Nd ) (Gde Ne) ) . We call this matrix the 

Green 's matrix and it is defined in the following way. 

(3 . 5. 1 4) 

where Gde is either (2.3 .7) or (2.3 . 1 3) .  Substituting (3.3 .6) and (3 . 5 . 1 4) into (3 .5 . 1 3) gives 

us the matrix representation of the boundary integral equation for the potential over a 

panel 
p p 

[ml d (Pd = [mld (p�n + Cl: � [glde (Pe + iva � [glde We · 
e=l e=l 

(3. 5 . 1 5) 

Finally we assemble the Green's matrix for a panel [gl de into the Green's matrix for 
A A In the entire plate by substituting into (3 . 5 . 1 4) We, 4>e, and 4>d (these relationships are defined 

in (3 .5 .5) , (3 .5 .4), and (3.2.5)) .  

p p 

[mld [ol d (p = [mld [Old (pIn + Cl: � [glde [ale (P + iva � [gl de [ale w .  
e=l e= l 

Multiplying both sides by [ol� then taking the sum over all d ( 1  ::; d ::; p) gives us 

p p p p 

� [ol� [mld [old (p � [ol� [mld  [Old (pIn + Cl: � [ol� � [glde [al e (p 
d=l d=l 

p p 

+iva � [ol� � [glde [ale w. 
d=l e=l 

e=l 

(3.5 . 1 6) 

The terms involving [mld are recognized to be the mass matrix of the plate. We give similar 

definitions for all the terms involving [glde and write (3.5 . 1 6) as 

where 
p p 

((; = � [ol� � [gLe [al e ) 

is the Green's matrix for the plate. 
d= l  e=l 

(3 .5 . 1 7) 

(3 .5 . 1 8) 
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3.5.2 Coupling the Plate and the Water 

Assuming that x is enclosed by panel �d we can substitute equation (3 .5 . 1 )  into the forcing 

vector (3 .3 .7) (this is right hand side of (3.3 .8» to give us 

p 
F iva L [ol� [mld [old ;p, 

d:=l 

We substitute F into the displacement equation (3 .3 .8) 

(3 . 5 . 1 9) 

Together with the plate displacement equation (3 .5 . 1 9) we have two equations which we 

solve simultaneously for either the displacement w or the potential ;Po To solve for w we 

write (3 .5 . 1 7) as 

4> = (M - aG)- M 4> + ivaGw . 
A 1 { A In } 

so that we can substitute this into (3 .3 . 8) .  This gives us the l inear equation 

(3 .5 .20) 

which is solvable for w. To obtain the potential 4> we only need to substitute w into (3 .5 .20). 

Note that equation (3.5 .2 1 )  is equivalent to Meylan's equation (3 .4. 1 2) 

Similarly to solve for ;p we write (3 .3 .8) as 

We then substitute (3 .5 .22) into (3 .5 . 1 7) to obtain the following linear equation 

3.5.3 Numerical Scheme to Solve the Green's Integral Equation 

(3 .5 .22) 

(3 .5 .23) 

The integral equation (3.5 . 1 2) and the inner product (3 .5 . 1 4) will be solved numerically 

using Gaussian quadrature to approximate integrals. 
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We approximate the integral in (3 .5 . 1 2) using the sum in the following form 

GdeNe (x) = le G (x; �) Ne (� ) d� 
p 

L Vj G (x; �j) Ne,j ,  
j=l 

35 

(3.5 . 24) 

where Ne,j = Ne (�j) ' sets {�j } and {Vj } are, respectively, the sets of Q integration 

points over �e and their corresponding weights. Similarly the inner product (3 .5 . 1 4) is 

calculated using 

[glde r Nd (x) (Gde Ne) dSx 
} D.d 
Q 

L Ui Nd,i Gde Ne (Xi ) , 

i=l 
(3 .5 .25) 

where Nd,i = Nd (Xi ) , {Xi } and {Ui } are sets of P integration points over �d and their 

corresponding weights. Substituting (3 .5 .24) into (3 .5 .25) gives us 

Q P 

[gl de = L Ui Nd,i L Vj Gij Ne,j ,  
i=l j=l 

where Gij = G (Xi ,  �j ) , Xi E �d, and �j E �e· 

(3 .5 .26) 

For the case where Ix - � I  = 0 we have to solve equation (3 .5 .26) using sets of 

distinct integration points {Xi } and {�j } and, hence, distinct {Ui } and {Vj } . This is done 

to avoid the singularity that occurs whenever Xi coincides with �j . For the case where d i= e 

we employ the same set of integration points and their corresponding weights for (3 .5 .26). 

We summarize the cases of (3 .5 .26) in vector notation 

where G1 is a Q x P rectangular matrix of the form 

Gll G12 
G21 G22 

if d = e , 
if d # e , 

(3.5 .27) 

(3 .5 .28) 
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and G2 is a Q x Q square matrix of the form 

Gn GI2 
G2I G22 

GQI 
The matrix NI  is a 12 x Q matrix of the form 

and the matrix N2 is a P x 12 matrix of the form 

VI Ne I , 

V2 Ne,2 

where vector Nd are defined in (3 .2 .2) .  

36 

(3 .5 .29) 

(3 .5 .30) 

(3 . 5 .3 1 )  

Upon solving the Green's matrix for the panel (3 .5 .27) we can obtain the Green's 

matrix for the plate by substituting it into (3 .5 . 1 8). Unlike Meylan's method we apply 

the Green's matrix G directly to the potential equation (3 .5 . 1 7) without the help of any 

transformation matrix. 



Ch apter 4 

Numerical Implementation and Results of the 

Higher Order Method 

In this chapter we implement the methodology and the matrices of the higher order 

method. We omit the implementation of Meylan's method because this has been done and 

results have been presented in [Meylan, 2002] . The first section ofthis chapter is a recap of 

the standard FEM matrices that we use. The second section contains an extensive explana

tion on how we implement the Green's matrix. The third section contains the comparisons 

with Meylan 's results, convergence tests, and results for the displacement. 

4. 1 Implementing the Mass a nd the Stiffness Matrices 

In this section we implement the matrices of the FEM given in Chapter 2. We build the 

plate's mass matrix M and stiffness matrix lK from the local mass and stiffness matrices 

(3 .3 .6) and (3 .3 .5)  that represent the mass and the stiffness of a panel. Both matrices are 

constants and can be found in Petyt [Petyt, 1 990] . However, due to the difference in the 

numbering of the nodes, we define a slightly different set of matrices. 

The mass matrix for panel !:1d, [mld is 

(4. 1 . 1 )  

37  
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where the diagonal submatrices are 

3454 Sym 3454 Sym 

922 b 
320b2 _ 922 b 

320b2 
mu 2 4 m22 = 2 4 

922 _ 252 ab 
320 2 922 252 320 2 - -a -a - - a - ab -a 2 4 4 2 4 4 

3454 Sym 3454 Sym 

m33 

922 b 
2 

320b2 
4 m44 = 

_ 922 b 
2 

320b2 
4 

922 252 ab 
320 2 922 

_ 
252 ab 

320 2 - a -a -a - a 2 4 4 2 4 4 

and the symbol sym indicates that the matrix is symmetric about the diagonal term. The 

sub-diagonal submatrices are 

1226 

m21 
_ 

548 b 
2 

398 - - a 2 

394 

m41 
_ 

232 b 
2 

232 -a 2 

548b 
2 

_ 
240 b2 
4 

_ 168 ab 4 

232 b 
2 

_ 
120 b2 
4 

1 12 ab 4 

398 --a 2 
168 ab 4 
160 2 - a  4 

232 - - a 2 
1 12 ab 4 
120 2 --a 4 

m3l = 

1226 

398 b 
2 

548 -a 2 

398 b 
2 

160 b2 
4 

168 ab 4 

548 --a 2 
_ 

168 ab 
4 

240 2 --a 4 
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394 _ 232 b 2 
232 b 2 _ 12O b2 4 
232 a 2 _ 1 l2 ab 4 

1226 548b 
2 

_ 232 a 2 
_ 1 l2 ab 4 
_ 120 a2 4 

398 -a 2 

_ 548 b _ 240b2 _ 
168 ab 

2 
398 -a 2 

4 
168 ab 
4 

4 
160 2 -a 4 

1226 

m42 = 
_ 398 b 

2 
548 -a 2 

_ 398 b 2 
160 b2 
4 

_ 168 ab 
4 

_ 548a 2 
1 68 ab 
4 
240 2 --a 4 

The super-diagonal terms of (3.3 .6) are the transpose of the sub-diagonal ones 

Likewise the stiffness matrix for panel l::ld [kld is 

where the diagonal submatrices are 

kll 

( b2 a2 ) 2 
4 - + - + - (7 - 2//) a2 b2 5 [ a2 1 1 2 b2 + "5 ( 1  + 4//) b 

[ b2 1 ] - 2- + - ( 1  + 4//) a 
a2 5 

k21 k31 
k22 k23 
k32 k33 
k42 k43 

- - + - ( 1  - //) b2 
[4 a2 4 1 3 b2 15 

-//ab 

(4. 1 .2) 

Sym 

- - + - ( 1  - //) a2 
[4 b2 4 1 3 a2 15 



4 Numerical Implementation and Results of the Higher Order Method 40 

and the submatrices corresponding to the first 3 columns are 

[ b2 1 1 - 2- + - ( 1 - v) a a2 5 
[ ( b2 a2 ) 2 ] 2 a2 - 2 b2 - 5 (7 - 2v) 

[a2 1 ] 
b2 - 5 ( 1 + 4v) b 

[ b2 1 ] - 2- + - ( 1 - v) a a2 5 
- [2 (�: + �:) - � (7 - 2V)] 

[ a2 1 1 
- b2 + 5 ( 1 - v) b 

[ b2 1 ] - - - ( 1 - v) a 
a2 5 

with transformation matrices 

-- - - (1 - v) b2 [2 a2 4 ] 
3 b2 15 

o 

[ a2 1 ] - 2 b2 + 5 ( 1 - v) b 

-- - - (1 - v) b2 [2 a2 4 ] 
3 b2 1 5 

0 

[a2 1 ] 
b2 - 5 ( 1 - v) b 

- - + - ( 1 - v) b2 [ 1 a2 1 1 
3 b2 15 

0 

o 

-- - - ( 1 - v) a2 [2 b2 1 ] 
3 a2 15 
[ b2 1 ] - - - - ( 1 + 4v) a a2 5 

0 

-- - - ( 1 - v) a2 [2 b2 1 ] 
3 a2 1 5 
[ b2 1 ] - - - - ( 1 - v) a a2 5 

0 

- - + - ( 1 - v) a2 [ 1 b2 1 ] 
3 a2 15 

I, = [
1 1 

_ 1 ] , I3 = [ 1 -1 1 ] '  14 = [ - 1 1 1 ] 
The submatrices of [kld corresponding to the remaining columns on the sub-diagonal side 

are 

To assemble both matrices [mld and [kld to form IK and M we use equation (3 .3 .9) 

and (3.3 . 1 0) .  However we bypass the process of creating the assembler matrix [Ol d  given in 

(3.2.6) . The procedure to assemble is as follow. We take the elements of the panel matrix 

in a block of 6 x 6. Each of these blocks relate two adjacent nodes with plate numbering 

q;d) and qid) in 6.d. We then add this block to the plate matrix at row and column positions 
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given by 3q�d) - 2 to 3q�d) and 3qid) - 2 to 3qid) .  This assembling procedure i s  described 

in Figure 4. 1 . 1 .  

4.2 Implementing the Green's Matrix 

In this section we implement the Green's matrix given in subsection 3 .5 .3 .  As for the mass 

and the stiffness matrices we cut short the process of building the Green's matrix in (3 . 5. 1 8) 

by excluding the assembler matrix [ol d and using the diagram described by Figure 4. 1 . 1 .  

Then we are left to find [glde using (3.5 .27) and hence ((;1 and ((;2 given by (3 .5 .28) and 

(3 .5 .29). 

We generate matrix ((;1 once only and use it for the entire plate. This is because 

all panels are identical and discretized in the same way. On the other hand «;2 must be 

generated individually for each combination of distinct �d and �e. Therefore the process 

of generating [gl de for distinct panels  is very costly because we need to compose a new «;2 
for different �d and D.e . In total we generate «;2 p2 times. In order to cut down the number 

of times we compose ([;2 we use the fol lowing method. For a «;2 that acts upon field panel 

D.d and source panel D.e we call this «;2,d,e .  Then we notice that 

Therefore for any combination of field panel D.d and source panel D.e we may skip the 

reverse case (the field panel �e and the source panel D.d). This enables us to cut the number 

of computing ((;2,e,d from p2 to � (p + 1 )  p (obtained from the arithmetic sum of p). 

In the implemented code we generate a composite matrix that contains all the ([;2,d,e 
with field panel D.d and source pane l D.e ) d + 1 � e � p. 

(4. 2. 1 )  

We do this because the computer calculates the Green's function described in (2.3 . 1 1 ) and 

(2.3 . 1 3) more efficiently if the variables supplied are stored in array-form rather than as 

individual numbers. The column dimension of the composite matrix (4 .2. 1 )  shrinks as we 



The general format 
of a panel matrix 

The general format 
of a plate matrix 

I -
:: 

N 

4.2 Implementing the Green's Matrix 

rtdl rldl rtdl rldl I rldl rldl rldl rldl 2 '1.1 2 '1.2 '1.2 '1.3 '1.2 '1.4 

cLdlctdl 
ctdlctdl 

cLdlrLdl 
qdlrtdl 

4 2 

cLdlcLdl cLdlctdl I 
ctdl cLdl ctdl ctdl 

, 

I . . .  I I 

I ctdlctdl qdlrtdl 
1 2 I cLdl cLdl I rt'r( I 

rLdlctdl cf,dlr(1 rLdlcLdl rLdlctdl l 
-

I 

cLdlctdl cLdlrLdl cLdlcLdl cLdlctdl 
" 

1 ctdlctdl ctdlrLdl ctdlcLdl ctdlctdl 

I 

, 
! 

Figure 4. 1 . 1 .  The distribution diagram of a panel matrix into the matrix for the plate. 
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traverse each �d from d = 1 until d = p. The maximum column dimension is p x Q 

(d = 1 )  and the minimum is Q (d = p). However the row dimension is fixed at Q (the 

number of integration points over �d). 

4.3 Results 

In this section we test and present the results of our method. First we compare the solution 

by Meylan's method (low order) to our results (higher order). Then we present the con

vergence tests for the method based on the number of integration points and the number 

of panels. Finally we show the displacement the single floe model computed by the higher 

order method. 

4.3.1  The Comparison Between Meylan's Method and the Higher 

Order Method 

First we test the convergence of Meylan's method and the higher order method using dif

ferent discretization schemes. Separately we also test the convergence of our method using 

different discretization schemes. To show that the two methods agree and that our method is 

of higher order than Meylan's method we compare their errors for different discretization. 

For all these tests this is done by comparing the error in the displacement using different 

number of panels. The error between the plate with n panels and one with m panels is 

given by the following error measurement 

(4.3 . 1 )  

We use a square plate of area 1 6  with stiffness f3 = 0 .01  and mass , = O .  The 

wavelength is A = 2 and the direction of propagation is e = 7r /6. The incident amplitude 

is A1n = 1 .  The water depth is infinite. Table 4.3 . 1 .  shows the error function Emn for 

Meylan's method using 100 to 1600 panels compared to 2500 panels. 
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I n I m I Enm 
100 2500 1 . 7150 x 10 -� 
400 2500 7.3985 x 10-4 

900 2500 6. 5394 x 10-5 

1600 2500 5 . 1 326 x 10-5 
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Table 4 .3 . 1 .  The error Emn in the results by Meylan's method using different number of 
panels. Column n represents the varying number of panels and column m is the reference 
of2500 panels. The plate used is a square with area 1 6, stiffness (3 = 0.01 ,  and mass , =  O. 
The wave parameters are ). = 2 and e = 7r /6. The table shows that the result converges as 
we increase the number of panels used to discretized the plate. 

I n I m I Enm 
100 900 6.0633 x 10 -4 
225 900 1 .3738 x 10-4 

400 900 3.0 189 X 10-5 

625 900 4.2500 x 10-6 

Table 4.3 .2 .  The error Emn in the results produced by the higher order method using dif
ferent number of panels. Column n represents the varying number of panels and column m 
is the reference of 900 panels. The plate used is a square with area 1 6, stiffness (3 = 0.01 ,  
and mass I = O. The wave parameters are ). = 2 and e = 7r /6. The table shows that the 
result converges as we increase the number of panels used to discretized the plate. 

I m I n I Enm 
100 900 1 . 3930 x 10 -� 
400 900 1 .0291 X 10-3 

900 900 3.6510 X 10-4 

1600 900 2.2061 x 10-4 

2500 900 1 . 5050 x 10-4 

Table 4 .3 .3 .  The error Emn in the results by Meylan's low order method versus the results 
by the higher order method. Column n represents Meylan's method that uses various num
ber of panels and column n is the reference that is the higher order method with 900 panels. 
The plate used is a square with area 1 6, stiffness {3 = 0.01, and mass I = O. The wave 
parameters are A = 2 and e = 7r /6. The table shows that the accuracy using 2500 pan
els in Meylan's method is equivalent to the accuracy using 900 panels in the higher order 
method. 
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We investigate the accuracy of our method compared to Meylan's method. Table 

4 .3 .3 .  shows the comparison between the results computed using Meylan's method with 

1 00 to 2500 panels and the higher order method with 900 panels. This is done by taking the 

absolute error between Meylan's result with the result from the higher order methods with 

900 panels. From Table 4.3 .3 .  we see that the higher order method only needs approxi

mately half the number of panels used in Meylan's method to achieve the same accuracy. 

Finally we show the plate displacement produced using Meylan's method and the 

higher order one. Figure 4.3 . 1 .  is the comparison in the displacement w / A of a square plate 

with area 16 (L = 4) computed using the two methods. The stiffness and the mass of the 

plate are, respectively, {3 = 0.01 and , = O. For Meylan's method the plate is discretized 

using 900 panels. For the higher order method the plate is discretized using 100 panels 

and the numerical integration in each panel is done using Gauss-Legendre quadrature with 

Q = 16 and P = 16 , with exception that if d = e then P = 64. The parameters for the 

incident wave are length A = 2 (k = 'IT) and direction of propagation e = 'IT / 6. The water 

is infinitely deep. From the Table 4.3 .3 .  and Figure 4.3. 1 .  we see that our method agrees 

with Meylan's method. 

4.3.2 The Convergence of the Higher Order Method 

Next we show the effect of the quadrature points and the panels on the accuracy of the 

solution by the higher order method. We first use different number of quadrature points in 

the Gauss-Legendre numerical integration scheme. Then we use the Kochin's function to 

show the effect of panel size on the solution. 

The first test for the convergence of the higher order method is done by varying the 

number of quadrature points used to integrate the area of the panel .  We use the error EQP 

(4.3 . 1 )  where wQ and Wp are the displacement calculated using various number of panels 

with Q and P number of quadrature points. For this test the square plate area is 16 (L = 4), 
its stiffness is {3 = 0.01, and its mass is , = O. The wavelength is A = 2 (k = 'IT) and the 

waveangle is () = 'IT /6. The incident amplitude is A1n = 1 .  Table 4.3.4. shows the error 
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Figure 4.3 . 1 .  The comparison of the plate's displacement generated by Meylan's method 
with 900 panels (right hand side) and the higher order method with 100 panels (left hand 
side). The plate is of stiffness f3 = 0.01 and mass , = O. The incident wave has length 
A = 2 and propagates at waveangle e = 'IT /6. The water is infinitely deep. 
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EQp versus the number of panels. From this table we see that increasing the number of 

Gaussian quadrature points does not significantly increase the accuracy of the solution. 

The second convergence test is performed using five different shapes. Figure 4 .3 .2. 

shows the geometries of the plate used for this test and for later results. We notice that 

except for the square plate the discretization by square panels only approximates the plates. 

For shapes that are not square the size of the panels affects the shapes greatly. An example 

is shown in Figure 4 .3 .3 .  where an isosceles triangle is discretized using panels of different 

sizes. We can clearly see that the composition of panels in Figure 4 .3 .3 .  (a) and (b) produce 

different shapes though both approximate the same triangle. 

We intend to investigate the effect of discretization of the shapes by square panels 

since we can only approximate a shape, such as a triangle, by square panels. We use the 

Kochin's function defined as 

(4.3 .2) 

[Wehausen & Laitone, 1 960] .  The scattered energy is found by multiplying the absolute 

value squared of the Kochin's function H (7) with a constant. We show I H (7) 1 for a square, 

a triangular, a circular, a parallelogram, and a trapezoidal plate using different number of 

panels. Four different stiffness parameters are used to show the effect of (3 = 0 .0025, 

0 .005, 0 . 0 1 ,  and 0.02. For this test all plates have uniform area of 16 and mass , = O. The 

incident wave of amplitude A1n = 1 propagates at direction () = 7r /6 and the wavelength 

is A = 2. 

Figure 4.3 .4., Figure 4.3 .5 . ,  Figure 4.3 .6., Figure 4.3 .7., and Figure 4 .3 .8 .  contain 

the plots of the absolute value of Kochin's function for, respectively, a square, a triangle, 

a circle, a parallelogram, and a trapezoid shape plate with stiffness specified by (3. We 

see that as we increase the number of panels we achieve convergence. Moreover we find 

that for shapes other than the squares the discretization using 32  panels is insufficient to 

produce accurate result. This is shown in Figure 4.3 . 5 .  to Figure 4 .3 .8 .  and the last shows 

the clearest. 
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number of panels EQp 
Q, P - 16 Q, P = 25 Q, P - 36 Q, P = 49 Q, P = 64 

100 6.0633 x 10 -4 5.7995 x 10 -4 4. 3308 x 10 -4 3.4487 x 10 -4 3 . 2671 x 10 -4 
400 3. 0189 X 10-5 3.0101 X 10-5 2 . 1483 X 10-5 1 . 7296 X 10-5 1 .6292 X 10-5 

900 2 .8856 X 10-8 9.7444 X 10-8 1 . 5016 X 10-8 4. 3800 X 10-10 0 

Table 4.3 .4. The error EQP showing the convergence of the higher order method using 
various number of panels versus number of quadrature points. The referencing result uses 
900 panels and 64 quadrature points. The area of the square plate is 1 6, its stiffness is 
f3 = 0.01 ,  and its mass is 'Y = o. The wavelength is A = 2 and the waveangle is 'Y = o.  
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Figure 4.3 .2. The diagram showing the five geometries of the plate shapes that wil l  be used 
to to illustrate the subsequent examples using the higher order method. The direction of the 
incident wave is shown in Figure 2. 1 . 1 .  
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Figure 4.3 .3 .  An illustration of the effect of panel size on approximating an isosceles trian
gle. The size of the panels in (b) are double from the ones in (a). 
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Figure 4.3 .4 .  The absolute value of the Kochin's function H (7) as a function of the angle 
7 for a square plate of area 16, mass 'Y = 0, and given stiffness. The number of panels used 
are 32 (dotted line), 64 (broken l ine), 1 28 (chained line), and 256 (solid line). The incident 
wave of unit amplitude has wavelength A = 2 and waveangle () = 7r /6. The figures show 
the energy scattering around the square plate for given stiffness constants (3. 
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Figure 4.3 .5 .  The absolute value of the Kochin's function H (T) as a function of the angle 
T for a triangular plate of area 16, mass I = 0, and given stiffness. The number of panels 
used are approximately 32 (dotted l ine), 64 (broken line), 1 28 (chained line), and 256 
(solid line). The incident wave of unit amplitude has wavelength A = 2 and waveangle 
e = 7r /6. The figures show the energy scattering around the triangular plate for given 
stiffness constants (3. 
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Figure 4.3 .6. The absolute value of the Kochin's function H (T) as a function of the angle 
T for a circular plate of area 1 6, mass I = 0, and given stiffness. The number of panels 
used are approximately 32 (dotted line), 64 (broken line), 1 28 (chained l ine), and 256 (solid 
line) .  The incident wave of unit amplitude has wavelength A = 2 and waveangle () = 11"/6. 
The figures show the energy scattering around the circle plate for given stiffness constants 
(3. 
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Figure 4 .3 .7 .  The absolute value of the Kochin's function H (7) as a function of the angle 
7 for a parallelogram plate of area 16, mass I = 0, and given stiffness. The number of 
panels used are approximately 32 (dotted line), 64 (broken line), 1 28 (chained l ine), and 
256 (solid line) .  The incident wave of unit amplitude has wavelength A = 2 and waveangle 
() = 7r /6. The figures show the energy scattering around the paral lelogram plate for given 
stiffness constants j3. 
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Figure 4 .3 .8 .  The absolute value of the Kochin's function H (7) as a function of the angle 
7 for a trapezoidal plate of area 16, mass , = 0, and given stiffness. The number of 
panels used are approximately 32 (dotted line), 64 (broken line), 1 28 (chained line), and 
256 (solid line). The incident wave of unit amplitude has wavelength A = 2 and waveangle 
() = 7r /6. The figures show the energy scattering around the trapezoidal plate for given 
stiffness constants (3. 
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4.3.3 The Displacement of the Plate 

Finally we present the results from applying the higher order method to calculate the re

sponse of the plate due to the water wave forcing. The results are based on five plate shapes 

floating on water of depth H = 1/64, H = 1/ 16, H = 1/4, and H ----+ 00. Uniformly all 

plates have area 16 (L = 4), stiffness f3 = 0 .01 ,  and mass I = O.  Each is discretized with 

approximately 1 00 panels. The integration over a panel is done using 16 Gauss-Legendre 

quadrature points. The incident wave has fixed amplitude A1n = 1 ,  wavelength A = 2 (i .e .  

the depth of water does not affect the wavelength), and waveangle is () = 7r /6. We do these 

so that we can clearly see the affect of varying the water depth. 

We choose to plot the result in terms of the plate displacement because the interaction 

between the water and the plate can be observed easily this way. Clearly the potential can be 

obtained in the same way as the displacement. Figure 4.3 .9. ,  Figure 4.3 . 1 0. ,  Figure 4.3 . 1 1 ., 

F igure 4.3 . 1 2 . ,  and Figure 4.3 . 1 3 . show the real part of the displacement of, respectively, 

a square, a triangle, a circle, a parallelogram, and a trapezoid. All are calculated using the 

specified water depth. 

We see from Figure 4 .3 .9 . , 4 .3 . 1 0., 4.3 . 1 1 . , 4.3 . 1 2. ,  and 4.3 . 1 3  that the depth of the 

water influences the wave frequency and also the wavelength. We find that the deeper the 

water the higher the frequency of the wave and therefore the shorter the wavelength. Notice 

that waves with short wavelength ' notice' the plate and hence, as shown in the figures, the 

displacements of the plates vary significantly for deep water. 
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Figure 4.3.9. The displacement of a square plate with area 1 6, stiffness (3 = 0.01 ,  and 
mass , = 0 floating on water of given depth. The plate is discretized using 1 00 panels. 
The area integral over the panel uses 1 6  quadrature points. The incident wave of unit 
amplitude and length A = 2 propagates at angle e = 7r /6. The figures show that waves 
with higher frequency (deeper water) affect the plate's displacement more than waves with 
lower frequency (shallower water). 
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Figure 4.3 . 1 0. The displacement of a triangular plate with area 1 6, stiffness f3 = 0.01 ,  and 
mass , = 0 floating on water of given depth. The plate is discretized using 1 05 panels.  
The area integral over the panel uses 1 6  quadrature points. The incident wave of unit 
amplitude and length A = 2 propagates at angle e = 7r /6. The figures show that waves 
with higher frequency (deeper water) affect the plate's displacement more than waves with 
lower frequency (shallower water). 
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Figure 4.3 . 1 1 .  The displacement of a circular plate with area 1 6, stiffness f3 = 0.01,  and 
mass , = 0 floating on water of given depth. The plate is discretized using 93 panels. 
The area integral over the panel uses 1 6  quadrature points. The incident wave of unit 
amplitude and length A = 2 propagates at angle e = IT/5. The figures show that waves 
with higher frequency (deeper water) affect the plate's displacement more than waves with 
lower frequency (shallower water) . 
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Figure 4.3 . 1 2. The displacement of a parallelogram plate with area 1 6, stiffness (3 = 0.01 , 
and mass , =  0 floating on water of given depth. The plate is discretized using 1 10 panels. 
The area integral over the panel uses 16 quadrature points. The incident wave of unit 
amplitude and length A = 2 propagates at angle e = 7r /6. The figures show that waves 
with higher frequency (deeper water) affect the plate's displacement more than waves with 
lower frequency (shallower water). 
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Figure 4.3 . 1 3 . The displacement of a trapezoidal plate with area 1 6, stiffness f3 = 0.0 1 , 
and mass '"'( = 0 that floats on water of given depth. The plate is discretized using 1 1 6 
panels. The area integral over the panel uses 1 6  quadrature points. The incident wave of 
unit amplitude and length ), = 2 propagates at angle () = 7r /6. The figures show that waves 
with higher frequency (deeper water) affect the plate's displacement more than waves with 
lower frequency (shallower water). 



Chapter 5 

An Infinite Line-Array of 

Periodically-Arranged Identical Plates 

I n  this chapter we explain the method to calculate the hydroelastic response of an 

infinite line-array of periodically-arranged identical plates on infinitely deep water. We are 

motivated by the scattering of waves by ice floes. The description of the line-array and its 

resemblance to the diffraction grating from optics are given in the first section. The second 

section contains the application of diffraction theory (Floquet's theorem) to the coupled 

line-array of plates and water motion. This yields a new free-surface Green's function, 

which later we will call the periodic Green's function. The third section contains the far

field representation of the periodic Green's function. We give two representations, one in 

the spatial domain and one in the spectral domain. The last section provides the recipe to 

accelerate the convergence of this Green's function. 

5. 1 The Application of Diffraction Grating 

. In this section we explain the physical meaning of an infinite line-array of periodically

arranged identical plates. We will relate this line-array to the diffraction gratings in optics. 

We introduce an infinite line-array of identical plates that spans across the y-axis 

from - 00 to 00. This  composition of plates is depicted by Figure 5 . 1 . 1 .  The plates are 

separated at a uniform distance. We choose arbitrarily a plate �o and confining it between 

a pair of artificial partitions at y = -l/2 and y = l/2. We repeat this for each plate. Thus 

for plates with centres located respectively at (0 , y + (m - 1 )  l) and (0 , y + ml) they are 

separated by partition at y = (2m - 1 )  l/2, m = . . . - 2 ,  - 1 ,  0, 1 ,  2 ,  . . . . We call the region 

62 
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between a pair of partitions a channel and the empty region unoccupied by the plates a gap 

(denoted by b). 

We refer to the plates other than �o as the images of �o. Each of them is labelled 

by �m. We have an infinite number of images. Note that such arrangement of plates 

is analogous to the diffraction grating in optics, in particular a two-dimensional periodic 

(surface) grating. However since the grating is only periodic along the y-axis from - 00 to 

00 and is not periodic in the x direction this simplifies our problem to a one dimensional 

periodic grating. Moreover each of the plates are confined within a channel of width l .  

5.2 The Application of the Floquet's Theorem to the Periodic 

Grating 

In this section we apply the theory from the diffraction gratings to the infinite line-array 

of periodic plates. We use the Floquet's theorem to describe the scattering by the periodic 

grating. F loquet's theorem states that: for a given incident wave whose direction is inclined 

at angle () from the x-axis the waves scattered by such grating are periodic with periodicity 

equal to the width of the channel l [Scott, 1 998] .  Thus the potential and the displacement 

from one plate to another differ only by a phase factor. 

We suppose the potential under an arbitrary plate �o is given by cp (xo) ,  Xo E �o. 

Using the Floquet's theorem the plate �l in the channel next to the one that confined �o 

has potential 

and displacement 

a = k sin () ,  (5.2 . 1 )  

and () is the angle of incidence. Clearly the phase difference is al = kl sin () .  The phase 

difference reaches the minimum when () = -1T /2 (i.e. sin () = - 1) and it reaches the 
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Figure 5 . 1 . 1 .  The depiction of the periodic surface grating that represents the array of iden
tical floes. 
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maximum when e = 1f /2 (i.e. sin e = 1) . This implies the phase difference must be 

-kZ < (JZ < kZ , 
and thus [Linton, 1 998] 

-k < (J < k. 
Hence, regardless of the direction, the potential for Xm E �m i s  

(5 .2 .2) 

and similarly the displacement is 

(5 .2 .3) 

where Xo E �o and Xm E �m. We aim to solve the periodic functions <f; (Xj ) and W (Xj ) 1 

Xj E �j . We apply the same BEM scheme to solve for <f; (Xj ) . This is done by writing it 

into a boundary integral equation similar to (2.3 .3) .  

<f; (Xj ) = <f;ln (Xj ) + f= 1 G (Xj ; �m) [kcP (�m ) + iv'kW (�m )] d�m m=-oo 6.rn 
(5 .2 .4) 

where G (Xj ; �m) is the free-surface Green's function (2 . 3 . 1 3) with the source point �m = 

(�o , 'TIo + ml) and (�O l 'TIo) E �o· Using (5 .2 .2) and (5 .2 .3) the following is true r G (Xj ; �m) f (�m) d�m = r G (Xj ;  �m) f (�o) d�m eimal . J6.m J6.m 
Thus by writing <f; (Xj ) = <f; (xo) ei jal (5 .2.4) becomes 

m=-
where 

Gf (Xj ) = r G (Xj ; �m) f (�O) �m eimal . J6.m 

(5 .2 .5) 

Note that (5 .2 .5) is a Fourier series that represents the spectrum of the scattered waves. 

Moreover the subscript m (or j) indicates the order of the diffraction. For the time being 

our periodic line-array has an infinite diffraction order. Later we will show that we can 

truncate the order into a finite one in order to find the diffracted waves. The diffraction 

orders are crucial to determine these waves. 
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We are interested in the terms corresponding to .6.0 because the scattering due to this 

order dominates the scattered wave spectrum (5.2.5) [Scott, 1 998] . We let j = 0 and drop 

the subscript 0 altogether to give us the boundary integral equation for the potential of the 

water under the periodic line-array of plates 

q; (x) = q;In (x) + kGpq; (x) + iVkGpw (x) , 

where the integral operator Gp acting on function f (x) is 

with kernel 
00 

Gp (x; �) = 2: G (x; �m) eim(Jl , m=-oo 

(5 .2 .6) 

(5 .2 .7) 

(5 .2 .8) 

where G (x; �m) is  the free-surface green's function. We call (5.2 .7) the periodic Green's 

integral equation with the kernel (5 .2 .8) the near-field periodic Green 's junction. 

5.3 The Far-field Approximation of the Periodic Green 's 

function 

Unlike the single plate problem where the response of the plate is the interest, for the 

periodic line-array problem we are interested in calculating the scattering by the line-array. 

Hence in this section we present the approximation of the Green's function at the far field. 

This is particularly useful to calculate the scattered waves. 

At large distance from the infinite line-array of plates, the field point can only ' vary' 

in the x-direction (this is because the y-direction has been covered by the infinitely long 

string-like array of plates). When Ix - el ---+ 00 we may use the asymptotic approximation 

of the Green's function 

(5 .3 . 1 )  

( [  Abramowitz & Stegun, 1 964], [Linton, 1 998], [Jorgenson & Mittra, 1 990]). The details 

of (5.3 . 1 )  is given in Appendix D. 
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Substituting (5.3. 1 )  into (5.2.8) gives us thefar-fieldperiodic Green 'sf unction 

where 

Gp (x; e )  = -
i; f Ho (k [X2 + Y�J � ) eiTlWl ,  

m=-oo 

x - x - e, 

Ym - Y - mZ = (y - ry) - mZ . 

(5 .3 .2) 

Both expressions (5.2.8) and (5 .3 .2) are also known as the spatial representation of the 

periodic Green 's function. 

We transform the periodic function (5 .3 .2) in the spatial domain into its equivalent 

function in the spectral domain using the Fourier transform plus the Poisson transforma

tion ( [Linton, 1 998], [Jorgenson & Mittra, 1 990] , [Singh et al., 1 990]) .  The procedure is 

described in Appendix D .  The result is the spectral representation of the periodic Green 's 

function 

where 

and 

27rm 
(Jm = (J + -Z- , 

(5 .3 .3) 

(5 .3 .4) 

(5 .3 .5) 

We call (Jm the propagation constant in the y-direction and iUm the propagation constant 

in the x-direction. Expression (5.3 .3) is also known as the Fourier Transform of (5.3 .2). 

5.4 Accelerating the periodic Green 's function 

In this section we present a method to accelerate the convergence of the periodic Green's 

function. We recap the discussion of the periodic Green's function by recalling the three 
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crucial representations of the Green's function. The first one is equation (5 .2 .8), the spatial 

representation of the periodic Green's function in the near field. For IX I -t 00 we have the 

second spatial representation for the periodic Green's function (5 .3 . 1 )  which now is  in the 

far field. Finally (5 .3 .3) is the spectral representation of the periodic Green's function. 

The near-field periodic Green's function (5 .2 .8) converges very slowly for any com

bination of source and field points [Jorgenson & Mittra, 1 990] . The spatial representation 

of the far-field periodic Green's function (5 .3 . 1 )  converges slightly better than the near

field one for IX I -t 00 but becomes slow-convergent like (5.2.8) as it approaches IX I  = 0 

[Linton, 1 998]. On the other hand the spectral representation of the periodic Green's func

tion (5.3 .3) is rapidly converging as we increase m provided that IX I #- O. However the 

spectral form becomes slow-convergent as it approaches IX I = 0 and, in some cases, it fai ls 

to converge [Jorgenson & Mittra, 1 990] . Not that, for IX I -O, the far-field periodic Green's 

function is not a valid approximation. Nevertheless this does not imply the invalidity ofthe 

accelerated Green's function. 

The reason why the two domain representations of the periodic Green's function 

behave in such a way is because the convergence of the spatial domain representation 

depends on the convergence of its asymptotic form while the spectral domain represen

tation depends on its singularity in the spatial domain. We notice that the asymptotic 

form of the spatial domain representation of Gp is our far-field periodic Green's function 

(5.3 . 1 ). Therefore, to achieve faster convergence, we must remove this asymptotic behav-

iour [Jorgenson & Mittra, 1 990] . This is done by the Kummer's transformation[Singh et aI . ,  1 990] . 

We also observe that the spectral representation of the periodic Green's function 

(5 .3 .3) is singUlar for Um = o. Yet this is inevitable in the spatial representation of the 

far-field periodic Green's function (5 .3 . 1 ), where this spectral form originated. This is 

why the far-field Gp (5 .3 . 1 )  is slow-convergent everywhere in the spatial domain. Con

versely the far-field Gp is singular at IX I = 0 (with the understanding that IY + Tril l - 00 

since the line-array is infinite). This implies that its spectral representation (5 .3 .3) is slow

convergent at this point. However this slow-convergent problem can be avoided by slightly 

moving the field points. This will be shown as we work through the accelerating process. 
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We now apply the Kummer's transfonnation [Singh et aI., 1 990] to accelerate the 

periodic Green's function. The transfonnation is performed in the following way. Symbol

ically we represent the slowly convergent near-field periodic Green's function (5.2 .8) by a 

function that depends on the number of terms in the summation m 
00 

Gp (x; �) = 2:= 8 (m ) . (5 .4. 1 )  
m=-oo 

Then we remove its asymptotic behaviour by subtracting it from the summation and add it 

back as a different summation. An asymptotically equivalent function for 8 (m ) is denoted 

by s (m ) . The result of extracting and adding back the asymptotic part is 
00 00 

Gp (x; �) = 2:= [8 (m) - S (m ) ]  + 2:= s (n) . 

m=-oo n=-oo 
The first summation now converges faster everywhere in the spatial domain since we have 

removed the asymptotic behaviour. The second summation is accelerated by replacing the 

function s (n) with its spectral representation which is highly convergent 
00 00 

Gp (x; �) = 2:= [8 (m) - S (m ) ]  + 2:= S (n ) , 
m=-oo n=-oo 

(5 .4.2) 

where S (n) is the Fourier transfonn of s (n) ( [Singh et aI . ,  1 990], [Jorgenson & Mittra, 1 990]). 

As we mentioned above, the problem that arises from (5 .4.2) is the fact that the 

second summation converges very slowly when IX I = O. In order for S (n ) to converge 

rapidly we must avoid IX I = O. This is done by moving the field point by a small distance, 

say cl. This implies that we must also move the field point in the corresponding asymptotic 

form s (m ) by distance cl . The application of this step yields 
00 00 

Gp (x; �) = 2:= [8 (m) - 5 (m ) ]  + 2:= § (n) , 
m=-oo n=-oo 

where 5 (m ) is function s (m ) with argument I X + cl l and § (n) is likewise to S (n) . 
We now replace the symbolical notations 8 , 5, and § with our periodic Green's func

tion. The asymptotic fonn of G (x; �) is given by the Hankel function representation in the 

summation of the far-field Gp ( 5 .3 . 1 ) . Using argument the X + cl we have 

5 (m ) = -

i; Ho (k [(X + cl) 2 + y�] � ) eimal . (5 .4.3) 
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Then the spectral representation of the far-field Gp gives rise to 

_ k e-UTnIX+dl eiCTm Y 
S (m) = - - -----

l Urn 
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(5 .4.4) 

Finally we substitute (5.4. 1 ), (5.4.3), and (5 .4.4) into (5.4.2) to obtain the explicit 

formula of the accelerated periodic Green's function 

where G (X, Yrn) is given in (2.3. 1 3). Notice that (5.4.5) is a combination of the spatial 

and the spectral representation of the periodic Green's function in the near and far-fields. 

The factor cl is the constant that 'weighs' each domain. It determines how far off we move 

a field point from the source (in this case the plate covered area). The free parameter c is 

sometimes called the smoothing factor ([Singh et aI ., 1 990], [Jorgenson & Mittra, 1 990]). 

This is because, apart from moving the field point, it also removes the singularity from the 

far-field Gp and causes it to become a smooth function. 

Note that some special combinations of wavelength A, angle of incidence (), and 

length of channel l may cause the periodic Green's function to diverge ( [Jorgenson & Mittra, 1 990], 

[Scott, 1 998]). An example of this case is the use of A = l when the direction of propaga-

tion () = O. The reason for this will be explained in the next chapter when we discuss the 

scattered waves. 



Chapter 6 

The Scattering of Waves by the Periodic 

Line-Array of Plates 

In this chapter we observe the scattering of waves by the periodic l ine-array of plates. 

In the first section we explain the modes of scattered waves and the way to extract the 

travelling waves out of these modes. We then classify the scattered waves in the second 

section. In the third section the energy balance is calculated. 

6. 1 The M odes of the Scattered Waves 

In this section we give the modes of the scattered wave as IX I - 00 .  We are interested in 

the problem as IX I - 00 therefore we extract the exponential terms from (5 .3 .3)  

and consider only exp (i (iUm) IX I ) . We purposely write the term corresponding to Um in 

this way so that i t  matches the term exp (iO"mY) . From equation (5 .3 .5)  if Urn is a real 

number then this term decays as IX I - 00 (we shall refer this as the evanescent modes). 

Otherwise for purely imaginary Urn the term exp (Urn IX I ) yields the propagating modes. 

To determine the propagating modes for (5 .3 .3) we rewrite equation (5 .3 .5) as 

and notice that 

[ 2] 1/2 
Urn = -ik 1 _ (0";) , 

Uo = -ik cos 8, 

7 1  

(6. 1 . 1 )  
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since 0"0 = k sin O. The term exp (i (iUo) IX I )  clearly represents a traveling wave in the 

x-direction. This implies that at large IX I  there is at least one propagating mode corre

sponding to the propagation constant 0"0 = 0". 

Our objective in this section is to seek other propagation modes apart from the one 

corresponding to order O . To do this we need to obtain iUm that are real numbers, i .e . Um 

must be purely imaginary numbers. We seek for the non-negative integers (orders) M and 

N such that U_M and UN are purely imaginary numbers (corresponding to the propagating 

modes) and U-M-1 and UN+1 are real numbers (corresponding to the evanescent modes) . 

This way we may truncate the spectral domain representation of the periodic Green's func

tion (5 .3 .3)  to a finite sum 

where 

N 

Gp (x; �) = -I L 
m=-M 

�m = [1 - (";) 'r 
Notice that we can relate the propagation constant in the x-direction iUm to f-lm by 

and f-lm > O. 

(6. 1 .2)  

(6. 1 .3 )  

(6. 1 .4) 

Such integers M and N are found to be ones that satisfy the following inequalities 

O"-M-l < -k < O"-M, } 
O"N < k < O"N+l · 

An algebraic simplification of (6. 1 .5 )  gives the lower limit M to be in the range 

_I (0" + k _ 27r) < M < _I (0" + k) , 27r I 27r 

and the upper limit N to be in the range 

_I (k _ 0") > N > _I (k _ 0" _ 27r) , 
27r 27r I 

(6. 1 .5 )  

(6. 1 .6) 

(6. 1 .  7) 

[Linton, 1 998]. We call the limits M the lower diffraction order and N the upper dif.frac-

tion order because of the location where the waves are 'generated' (with respect to �o). 

Note that the total number of the scattered waves is equal to the diffracted waves plus one 
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propagating wave corresponding to mode 0. Therefore we have reduced the order of dif

fraction from an infinite order to a finite one. 

Moreover we can now explain the phenomenon in the periodic Green's function that 

diverges for I = A and e = O.  From (6. 1 .2) we notice that the periodic Green's function 

becomes singular whenever f-tm = 0, m E Z. For m = 0, the periodic Green's function 

becomes convergent if the combination of A, I, and e satisfies either one or both of the 

following equalities 

A = I ( 1 + sin e) , (6. 1 . 8) 

and 

A = I ( 1  - sin e) . (6. 1 .9) 

For m =1= 0 the combination of I, A, e, and m that satisfies either of these equations 

mA = -I ( 1 + sin e )  , (6. 1 . 1 0) 

and 

ml = I ( 1 - sin e) , 

cause (6. 1 .2) to diverge. Clearly we see that for () = 0 and I = A both equalities (6. 1 . 8) and 

(6. 1 .9) are satisfied and this explains why the periodic Green's function fails to converge. 

In general the Green's function is divergent if any of equation (6. 1 . 8), (6. 1 .9), (6. 1 . 1 0), and 

(??) is satisfied. 

6.2 The Diffracted, Reflected, a nd Transmitted Waves 

In this section we derive the diffracted waves that arise from the application of the finite 

diffraction order to the potential of the periodic line-array with infinite plates. 
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6.2.1  The Diffracted Waves 

74 

We substitute the spectral representation of the periodic Green's function with finite dif

fraction order (6. 1 .2) into the boundary integral equation for the potential (5 .2 .6) 

where 

i r N eikJ.Lm lX I eiO"mY [ ] <p (x) = <pIn (X) - l J /:;. mr;M f-Lm k<p (�) + iVkw (�) d� , 

<pIn (x) = AIn eik(X cos l'I+y sin 1'1) ) 

(6.2. 1 )  

is the incident wave with amplitude AIn. To simplify the problem we set AIn to be unity. 

We subtract the incident wave so that we can observe the scattered wave only. The scattered 

wave IS 

(6.2.2) 

Equation (6.2.2) represents the scattered wave that remains propagating at the far-field. The 

scattered wave is composed of a finite spectrum of plane waves that are the results of the 

diffraction of finite order (with infinite number of images). Moreover the scattered waves 

travel in the direction opposite as well as along the direction of the incident wave. Thus we 

may write the scattered wave (6.2.2) in terms of its spectrum 

where 

N <ps (x) = L �: (x; �) , (6.2.3) 
m=-M 

�: (x; �) = -f- r eikJ.Lm lX I eiO"mY [kCP (�) + iVkw (�)] d�) (6.2.4) f-Lm J /:;. 
represents the diffracted waves and the =f sign indicates the direction of the scattered waves. 

For diffracted waves that travel in the direction of x --t -00 (x « �) where IX I  = 
I x - � I = � - x these are 

�: (x; �) = __ 'l_" r eikJ.Lm� e-iO"mTJ [k<P (�) + iVkw (�)] d� e-ikJ.LmXeiO"mY . If-Lm } b. 
(6.2 .5) 

For diffracted waves that travel in the direction of x --t +00 (x » 0 where IX I  = 
I x - � I = x - � these are 

�: (x; �) = __ 'l_" r e-ikJ.Lm� e-iO"mTJ [k<P (�) + iVkw (�)] d� eikJ.Lmx eiO"mY " (6.2.6) If-Lm J b. 
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We can generalize the diffracted wave to be 

where the diffraction coefficient (the diffracted amplitude) A%, is 

A! = -�� ( e±ikJLm� e-il1mT/ [kq; (�) + iVkw (e) ] d�. l J-Lm ) /:; 
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(6.2.7) 

The diffracted waves propagate at various angles with respect to the normal direction 

of the l ine-array. The angle of diffraction depends on the ratio of the y-directed propagation 

constant (Im and the x-directed propagation constant iUm 

'l/J! = tan-1 ( :m ) , 
=f J-Lm 

(6.2 . 8) 

where 'l/J! is the angle of diffraction and relation (6. l .4) has been used. Notice that for 

m = 0 we have 

'l/Jri = =fe, (6.2 .9) 

where e is the incident angle. 

Figure 6.2. 1 .  depicts the diffracted waves and their angles. The diffracted waves are 

generated in either the positive or the negative y region. The y regions are indicated by m. 
For m < 0 we say that they are generated in the in the negative y region (y < 0) and for 

m > 0 they are generated in the positive y region (y > 0). Hence the lower diffraction 

order M may be regarded as the number of diffracted waves generated in the negative y 

region and the upper diffraction order N the number of diffracted waves generated in the 

positive y region. Each diffracted wave is directed to either to the negative x (x < 0) or 

positive x (x > 0) direction. We say q;� is in the positive x direction and q;::n is in the 

negative x direction. 

6.2.2 The Reflected and the Transmitted Waves 

From Section 6. 1 we know that there is at least one set of propagating waves corresponding 

to order O . This is because it is guaranteed that there exists at least one purely imaginary 

y-propagation constant Uo and its corresponding x-propagation constant (Io. We use the 

diffraction order 0 to deduce the reflected and the transmitted waves. This is done by 
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Figure 6.2. 1 .  The diagram showing the diffracted waves and the angles of diffraction. 
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taking m = 0 in (6.2 .4) 

where the zero order diffraction coefficient is 

Ad = -�� r e±ikJ.LO� e-iaoT/ [kcp (€,) + iv'kw (€,)] d€" l 110 J 6-
and the corresponding propagation constants are 

ao k sin 0, 

110 cos O. 

The diffraction coefficient may be further separated into 

A- = 
_�_1_ r eik� cos 9 e-ikT/ sin 9 [kef; (€,) + iv'kw (€,)] d€. , o l cos 0 J 6-

77 

(6.2. 1 0) 

(6.2. 1 1 ) 

which is the diffraction coefficient for the wave travelling in the negative x direction (x < 0) 

and 

A+ 
= 

-�-1- 1 e-ik� cos 9 e-ikT/ sin 9 [kef; (€,) + iv'kw (€.)] d€" o l cos () D. 
which is the diffraction coefficient for the wave travelling in the positive x direction (x � 

0). 
The reflected wave is the diffracted wave that travels in the opposite direction to the 

incident wave and thus it can be written as 

ef;R (x) = R e-ikx cos 9  eiky sin 9 , (6.2 . 1 2) 

where R is the reflection coefficient and given in terms of the diffraction coefficient which 

is negative x-directed 

R Ao 

_ 
-�� r eik(� cos 9-1)sin 9) [kef; (€,) + iv'kw (€.)] d€. . l 110 J b. 

(6.2. 1 3) 

The transmitted wave is composed of the diffracted wave that travels in the same 

direction as the incident wave plus the incident wave itself 

T eik(x cos 9+y sin 9) (6.2 . 1 4) 
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where T is the transmission coefficient and it i s  given in terms of the diffraction coefficient 

which is positive x-directed 

T l + At 
1 - ��  r e-ik(� cos O+77 sin O) [kCP (�) + ivkw (�)] d�. l /-La } b. 

6.3 The Energy Balance 

(6.2 . 1 5) 

In this section we derive the energy balance yield by the diffracted, the reflected, and the 

transmitted waves. The diffraction, the reflection, and the transmission coefficients must 

satisfy the energy flux equation which simply says that the energy of the incoming wave 

must equal to the energy of the outgoing waves. 

To derive the energy balance equation first we 'project' all waves in Figure 6.2 . 1 . onto 

the x-axis. This gives us the projected incident coefficient cos 8 (where the amplitude of the 

incident wave is 1 ), the reflection coefficient IRI 2  cos ( -8) , and the transmission coefficient 

IT I 2  cos 8. Moreover the diffraction coefficients are I A; ; i  cos (-'lj;m) and IA;t;l cos 'lj;m' 
The total energy is taken as the sum of the coefficients of the reflected, the transmitted, and 

the diffracted waves generated in both y regions 

- 1  N 
E = ( IR I 2  + ITI 2) cos 8+ L ( IA;;l  + IA; t-l) cos 'lj;m+ L ( I A; ; l + IA� 1 2) cos 'lj;m 

m=-M m=l 
(6.3 . 1 )  

The total energy must be equal to the incoming energy due to the incident wave of unit 

amplitude that is incident at angle 8 

E = cos 8 .  (6.3 .2) 

Energy balance equation (6.3 .2) is  used to check any error that can occur in the computation 

of the amplitudes. In the next chapter, using this idea, we will perform this check to verify 

the diffraction theory that we derived in this chapter. 



Chapter 7 

Results for the Multiple Plates Model 

In this chapter we present the results from the infinite line-array of periodic plates. 

First we test the accuracy of the results using different representation of the periodic Green's 

function. We do this to show that the accelerated periodic Green's function is the way to 

compute the subsequent results. This also enables us to choose the appropriate value of 

the smoothing parameter and the number of terms in the spectral and the spatial terms of 

the accelerated periodic Green's function. Next we test the validity of our method using 

a periodic l ine-array of joined, stiff, and unmovable plate and compare it with the two

dimensional beam whose results are known to be true. We also test the convergence of 

the results using different fineness of discretization in the plates. Moreover we investi

gate the effect of the line-array on the angular spread of the scattered waves by varying the 

waveangle and attenuating the wave. Then we use elastic and discrete plates to study the 

relationship between the wavelength, the width of the channel, and the waveangle on the 

diffracted waves. Finally we present plots of the plates' displacement. 

7. 1 The Convergence of the Periodic Green 's Function 

In  this section we investigate the effect of the number of images used to represent the 

infinite sum in the periodic Green's function. The slow-convergent near-field, the far-field, 

and the accelerated periodic Green's functions are observed while we omit the test for the 

spectral representations of the periodic Green's function. This is because both are derived 

from the near-field one. The convergence of the far-field and the spectral representations 

are given in [Linton & Evans, 1 992] . 

The first test is performed on the slow-convergent near- and far-field periodic Green's 

functions (5 .2 .8) and 5 .3 .2 .  We set the field point (x ,  y) = (0, 0) and the source point 

79 
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(�, T/) = (0, 0 . 1 ) .  The length of the channel is l = 1 and the wavelength is .\ = 2 with angle 

of propagation () = 7r / 4. The relative errors are given by 

G(l ) _ G(2) G(l ) _ G(3) A p p A p P E12 = ( 1 ) and E13 = ( 1 ) Gp Gp 

where G�) is the referencing result, G�) is its approximation using the near-field Green's 

function (5 .2.8), and G�) is the approximation using the far-field periodic Green's function 

5 .3 .2 .  Both G�) and G�) are taken at various number of images while the referencing result 

G�) is the near-field Gp with 106 images. We choose the number of images 106 as a point 

of reference following a series of calculations in (5 .2 .8) that shows the value approaches 

the result using this number. Figure 7. 1 . 1 .  is the loglog plot of the relative errors for both 

the near- and the far-field periodic Green's function. The near straight l ines that represent 

the error for both functions indicate that the error decays exponentially as we increase the 

number of terms in either summation. We notice that to achieve such accuracy we need 

to use over 104 terms in the summation and this is ineffective in practice. Moreover the 

far-field periodic Green's function is actually an approximation to the near-field one and 

the error increases as we increase the number of terms in the summation. 

Next we test the convergence of the accelerated periodic Green's function given by 

(5.4.5) . The same parameters and the referencing results are used to calculate the relative 

error 
G(l ) _ G(4) 

A p p E14 = (1 ) Gp 
where G�) is the accelerated periodic Green's function. We choose the smoothing factor 

c = 0.05. Later we show that this choice of c is sufficient to produce accurate answers. 

F igure 7. 1 .2 .  is the log log plot of the relative errors versus the number of summation terms 

for the accelerated Gp. Note that we set the number of summation terms used to calculate 

the spatial and the spectral part to be equal. We see that error l ine is sloping steeply prior 

to 1 0  terms (in each part of (5 .4.5)). The error line then remains fiat below 10-4 as we 

increase the number ofterms. This is caused by the accumulation of round-off error. 

Finally we study the effect of the smoothing parameter c on the number of terms in 

the surnmations needed for convergence in both, the spatial and the spectral part of the 
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Figure 7. 1 . 1 .  The loglog plot of the relative errors E12 (solid l ine) and E13 (chained line) 

between the near-field periodic Green's function with 106 terms G�) and, respectively, the 

near-field G�) and the far-field G�) with the given number of terms. The parameters used 
are X = 0, Y = 0.01 , channel width l = 1, wavelength A = 2, and waveangle e = 7r / 4. 



7 Results for the Multiple Plates Model 

1 01 
Number of terms in the summation 

82 

Figure 7 . 1 .2 .  The loglog plot of the relative error E14 between the slow convergent 
near-field periodic Green's function with 106 terms G�) and the fast convergent G

r
(4) cal

culated using the given number of terms. The number of spatial terms (m) is equa to the 
number of the spectral terms (n) in the summation. The smoothing factor is c = 0.05. 
Other parameters used are X = 0, Y = 0 .01 ,  channel width l = 1, wavelength A = 2, and 
waveangle e = 7r / 4. 
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accelerated periodic Green's function (5 .4.5). To do this we take the referencing result to 

be the slow-convergent periodic Green's function (5.2.8) with 1 06 terms. We use the same 

parameters as from the previous two tests. Figure 7. 1 .3 .  shows the number of terms needed 

by the two summations involved in the accelerated Gp (5 .4.5) versus parameter c. We set 

the relative error maximum at 10-5 compared to the referencing result. We also set the 

absolute error between results from different combinations of parameters (c, m, and n) to 

be of maximum 1 0-4. 

As shown in the plot we can obtain an accurate approximation to the infinite sum in 

the slow-convergent near-field Gp using a significantly smaller number of terms in the ac

celerated Gp . We also see that for a small c parameter the spectral part of the accelerated 

Gp requires more summation terms than the spatial part (i .e. the spectral domain is 'heav

ier' than the spatial domain). Conversely for large c parameter Gp requires more terms 

in the spatial part than the spectral part as the field point becomes further away from the 

source point and resembles a point at a far. 

Note that the accelerated Gp is not as accurate as the slow-convergent one. The func

tion is highly accurate for small c (c < 0 .01) .  However, since it is 'heavier' on the spatial 

domain, this causes it to become slow-convergent. For large c the function is 'heavier' on 

its spectral part and hence it converges rapidly. Yet this gives relatively inaccurate results 

because, as we know, the spectral representation of the periodic Green's function is only an 

approximation to the desired (5 .2 .8). 

Therefore we need to choose a c parameter where the spatial and the spectral domains 

weigh relatively equal. We notice that when c is approximately 0 .05 then both the spatial 

and the spectral parts have the same 'weight' . To be precise, there are 44 terms in the 

spatial part and 46 terms in the spectral part of the accelerated Gp (5 .4.5) for c = 0 .05. 

This combination of c, m, and n will be used subsequently. 
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Figure 7 . 1 . 3 .  The plot of the number of terms used in the summation representing the spa
tial and the spectral parts in the accelerated periodic Green's function versus the smoothing 
parameter c. The result from each combination is compared with the one from slow con
vergent Gp with 106 terms. The relative error is set to be of maximum 1 0-5 . The absolute 
error between results from different combination of parameters is set to be 10-4 . The para
meters used are X = 0, Y = 0.0 1 ,  channel width l = 1 ,  wavelength A = 2,and waveangle 
e = 11"/4. 
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This section contains the testing of the periodic line-array solution. First we compare the 

result of a periodic line-array of joined, stiff, and unmovable plates with the result of a stiff 

and unmovable beam. Next we test the convergence of the solution for the energy equation 

(6.3 . 1 ) . Finally we show the angular spread of the diffracted waves. 

7.2 . 1  The Case of Joined Square Plates 

In this subsection we aim to validate our results for the periodic l ine-array of plates. We first 

compare the reflection and transmission coefficients arising from the scattering problem by 

a line-array of stiff, unmovable, and joined (i .e. we allow no gap between) plates in three

dimensional domain to the ones yield from the problem of a stiff and unmovable beam 

in two-dimensional domain. The joined plates are taken to be squares of uniform area 1 

(L = 1 )  and this implies that the length of the channel must be l = 1 and b = o. Such 

arrangement of plates resembles a beam in two-dimensional domain whose length is 1 .  

This problem was solved by Meylan ( [Meylan & Squire, 1 994] ,  [Meylan, 1 994]). Hence 

we may compare the scattered (the reflection and the transmission) coefficients due to the 

line-array with the ones due to a beam with length 1 .  We need to set the waveangle e = 0 in 

the three-dimensional domain so that it resembles the incident wave in the two-dimensional 

domain because the two-dimensional code does not solve for waves incident at an angle. 

Figure.7 .2 . 1 .  contains overlapping plots of the reflection and transmission coefficients from 

the two sets of problems. As we expect the results from both agree to the scale of the plate. 

7.2.2 The Case of Periodical Sq uare Plates with Gaps 

We now test for the convergence of the diffracted, reflected, and transmitted waves. In 

the case where the length of the channel is greater than the wavelength diffraction occurs. 

Therefore we can calculate the diffracted waves as well as the reflected and the transmitted 

ones. For the following test we aim to calculate the diffraction, the reflection, and the 
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Figure 7.2. 1 .  The comparison plot of various wavelengths versus the scattered coefficients 
due to a periodic array of stiff, unmovable, and joined plates in three dimensional domain 
and a stiff and unmovable beam in two dimensional . In the three dimensional domain the 
plates are squares of area 1 (side length of 1), the length of the channel is l = 1 (b = 0), 
and the waveangle is e = O. In the two dimensional the length of the beam is 1 .  This figure 
shows the agreement in the results for the stiff, unmovable, and joined three-dimensional 
plates with the two-dimensional beam. 
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transmission coefficients. The waveangle is set to be e = 0 so that we have symmetric 

diffracted waves (M = N). The wavelength is set to be smaller than the width of the 

channel but not equal (to avoid the singularity that occurs at the Green's function) and 

greater than half l .  This is done because we want to limit the number of diffracted waves 

on each hemisphere to be 1 pair only (or 2 by symmetry) . Hence we set the ratio of the 

wavelength and the width of the channel to be � � .The square plates have area 16 

(L = 4), the width of the channel l = � x 2L = 12 , the length of the gap b = �L = 0.5, 

and the wavelength A = 2L = 8 . The smoothing parameter c = 0 .05 with 44 terms in the 

spatial part and 46 terms in the spectral part of Gp . Table 7.2. 1 .  shows the convergence of 

the total energy E. As stated in equation (6.3 .2) the total energy must equal to cos e which 

in this case is 1 .  We can see from Table 7.2. 1 .  that indeed the total energy converges to 1 as 

we increase the number of panels. 

7.2.3 The Case of Oblique Incident Wave 

Next we show the spreading ofthe reflected, the transmitted, and the diffracted waves for a 

stiff square plate using various angles. We use the same plate as the previous test. The ratio 

of the wavelength and the width of the channel is kept at � = � .  However we now shorten 

the wavelength to be A = L = 4 and the width to be l = 6. This is because we want to 

show the effect of the plates on the angular scattering. We vary the angle using e = - 7r  /3, 

-7r / 6, 0, and 7r / 4. In all cases the total diffracted waves are two pairs plus the pair of the 

transmitted-reflected ones. We use c = 0 .05 with corresponding 44 terms in the spatial part 

and 46 terms in the spectral part of Gp. Figure 7.2.2 to 7.2.5 shows the angular spread of 

the diffracted waves while the amplitudes are explained in Table 7.2.2. to Table 7 .2 .5 .  As 

we expected the diffracted waves (including the reflected and the transmitted ones) come in 

pairs and each pair is reflected about the y-axis. We notice that the diffracted waves do not 

neccessarily travel in the same region as where they were generated. For example, in the 

case of angle e = -7r /3 we have a diffracted wave that travels toward the negative y region 

despite the fact that all the waves are generated on the positive y region. The opposite 
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I number of panels per plate I E 
25 0 .977553722824 
100 0.994179825283 
225 0 .997487917349 
400 0.999058250825 
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Table 7.2 . 1 .  The convergence of the total energy for identical plates with area 1 6. Each 
plate is discretized using the specified number of panels. The width of the channel is 
l = 12.  The parameters for the incident wave are A = 8 and e = O. The incoming energy 
is 1 .  
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occurs for e = 7r /3. Moreover the amplitude of each of the pair differs except for the 

case of normal incidence. Though in these examples all incident angles produce an equal 

numbers of diffracted waves, in general these vary with e. This because the diffraction 

order is governed by equations (6. 1 .6) and (6. 1 . 7) and hence it depends on A, l, and e. We 

will show the variation of the number of diffracted waves in the next section. 

7.3 A Periodic Line-Array of Elastic and Separated Plates 

In this section we present the results for a periodic line-array of elastic plates of five differ

ent shapes that are depicted by Figure 4.3.2. First we want to understand the relationship 

between the number of diffracted waves to the wavelength, the channel width, and the in

cident angle. Therefore we tabulate them for combinations of the three entities. Then we 

demonstrate the reflected, the transmitted, and the diffracted waves for various incident an

gles. Next we calculate the scattering of waves for different wavelength. Finally we show 

the displacement of the plates. 

7.3 . 1  The Dependency of the Scattered Waves to the Wavelength, the 

Channel Width, and the Incident Angle 

In this part we show the number of diffracted waves generated by several combinations of 

wavelength A, channel width l ,  and incident angle e. We choose to calculate A, l as the 

multiples of the length parameter where L = 4. Table 7.3 . 1 .  and Table 7 .3 .2 .  show the 

number of diffracted waves using varying A and l while the incident angle is kept constant 

at e = o. Table 7 .3 .3 .  and Table 7.3 .4. show the number of diffracted waves for A = 8 and 

varying A and e (e is in radians). The number of diffracted waves generated in the positive 

y region is shown in Table 7.3. 1 .  for different l and A and Table 7.3 . 3 .  for different l and e. 
Similarly the number of the diffracted waves generated in the negative y region is shown 

in Table 7 .3 .2 .  for different l and A and Table 7.3 .4. for different l and e. We note that 

for constant A and l the number of diffracted waves varies with the magnitude of the angle. 
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Figure 7.2.2.  The scattering of waves by a periodic array of stiff and unmovable square 
plates where each has area 16 and is confined by channel of length I = 6. The incident 
wave of length A = 4 is oblique at angle e = -7r /3. There are 3 pairs of diffracted waves 
of order from 0 to 4 (all are generated in the positive y region). The amplitude I A� I  of the 
scattered wave is shown in Table 7.2.2. 

m IAm l  IA� I  
0 0. 878693530707 0.9529 190396 18 

1 0 . 1 76389747108 0 . 1 50918440525 

2 0 .123902822 1 2 1  0 . 1 3 1 1 91 72 1 1 74 

Table 7.2.2. Table of the scattered amplitude A;;;, and A;;;' (0 <= m <= 2) depicted by F ig
ure 7.2.2. due to a periodic array of plates of area 1 6. The incident wave is oblique at angle 
e = -7r /3. The scattered amplitudes of diffraction order m = 0 represents the reflected 
amplitude R = Aa and the transmitted amplitude T = 1 - At . 
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Figure 7.2.3 . The scattering of  waves by a periodic array of  stiff and unmovable square 
plates where each has area 16 and is confined by channel of length l = 6. The incident 
wave of length ,\ = 4 is oblique at angle () = -n-j6. There are 3 pairs of diffracted 
waves of order from M = - 1  (one originated from the negative y region) to N = 3 (three 
originated from the positive y region) .The amplitude I A� I  of the scattered wave is shown 
in Table 7.2 . 3 .  

m I Am l  IA� I 
0 0.66661 5883407 0.71931 1829359 
1 0.376673463690 0.400750422341 
2 0 .217505554638 0.229435392631 

Table 7.2 .3 .  Table of the scattered amplitude A;;;, and At, (- 1  < =  m < =  2) depicted by 
Figure 7.2 .3 .  due to a periodic array of plates of area 1 6. The incident wave is oblique 
at angle () = - 7r /6. The scattered amplitudes of diffraction order m = 0 represents the 
reflected amplitude R = Aa and the transmitted amplitude T = 1 - At . 
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Figure 7.2.4. The scattering of waves by a periodic array of stiff and unmovable square 
plates where each has area 16 and is confined by channel of length l = 6. The incident 
wave of length ), = 4 is oblique at angle e = O. There are 3 pairs of diffracted waves of 
order from M = - 2 to N = 2 (both positive and negative y regions generate two). The 
amplitude IA�I  of the scattered wave is shown in Table 7.2.4. 

m IAm l IA;t 1  
- 1  0.387712757032 0. 386427632616 

0 0.397528969357 1 .025953455086 

1 0. 38605 1701291 0.386055708686 

Table 7.2.4. Table of the scattered amplitude A;;;, and A;t;. (-1  <= m <= 1) depicted by 
Figure 7.2 .4. due to a periodic array of plates of area 1 6 . The incident wave is oblique at 
angle e = O. The scattered amplitudes of diffraction order m = 0 represents the reflected 
amplitude R = Aa and the transmitted amplitude T = 1 - At . 
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Figure 7.2.5. The scattering of waves by a periodic array of stiff and unmovable square 
plates where each has area 16 and is confined by channel of length l = 6. The incident 
wave of length ), = 4 is oblique at angle () = 7r / 4. There are 3 pairs of diffracted waves of 
order from M = -3 to N = 0 (all generated in the negative y region). The amplitude I A� I  
o f  the scattered wave is shown i n  Table 7.2.5 .  

m I A7n 1  I A� I  
-2 0. 181416554036 0. 182976607757 
- 1  0 .267160755486 0 .262408935043 
0 0 .798561389792 0.809815961605 

Table 7 .2 .5 .  Table of the scattered amplitude A� and A� (-2 <= m <= 0) depicted by 
Figure 7.2 .5 .  due to a periodic array of plates of area 1 6 . The incident wave is oblique at 
angle () = 7r / 4. The scattered amplitudes of diffraction order m = 0 represents the reflected 
amplitude R = Aa and the transmitted amplitude T = 1 - At . 
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Notice from Tables 7 .3 . 1 . , 7.3 .2. , 7 .3 .3 . ,  and 7.3 .4 .  that the number of diffracted waves 

generated in the positive y region is not always the ones generated in the negative y region. 

7.3.2 The Scattering of Wave with Various Incident Angles 

We calculate the scattered waves due to the line-array when the incident angle e varies 

from -7f /3 to 7f /3. The range of angle is chosen such that we are sufficiently far from the 

singularities at e = -7f/2 and e = 7f/2. Figures 7.3 . 1 . , 7 .3 .2 . ,  7 .3 .3 . ,  7.3.4. ,  and 7 .3 .5 .  

show the reflected (a), the transmitted (b), and the diffracted ((c) and (d)) amplitudes for 

periodic line-arrays of the shape, respectively, square, triangle, circle, parallelogram, and 

trapezoid. All the plates have area 16 (L = 4), stiffness f3 = 0. 1 ,  and mass I = O. Each 

plate is discretized using approximately 1 00 panels with an exception on the square plate. 

The wavelength is ). = 4 and the width of the channel is l = 6 (their ratio is � = �) .  
l 3 

We use uniform c = 0.005 with corresponding 44 terms in the spatial and 46 terms in the 

spectral part of Gp. 

First we notice there are 3 pairs of diffracted waves (including the reflected-transmitted 

pair) for any angle and any shapes. The number of diffracted waves generated in both y re

gions are unsymmetric except for -� :::; e :::; � where M = N = 1 .  Then for shapes 

that are symmetrical about the y-axis (such as the square, the circle, and the trapezoid) the 

diffracted waves travelling to the negative x are equal in magnitude to the ones travelling 

to the positive x. We can see this by comparing the solid line (directed towards positive x, 

from the negative y region) to the chained line (directed towards negative x ,  from the neg

ative y region) and the dotted (directed towards positive x, from the positive y region) to 

the dashed (directed towards negative x, from the positive y region) in part (c) and (d) of 

Figure 7.3 . 1 . , 7 .3 . 3 ., and 7 .3 .5 .  However this is not true for the triangle (Figure 7.3 .2 .) and 

the parallelogram (Figure 7.3.4.). The reason for this is because the triangle plates and the 

parallelogram plates are not symmetric about e = 0 while the square, circle, and trapezoid 

plates are symmetric. 
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I l  11 4 1 8 1 �6 1 32 1 64 I 4 0 0 0 0 0 6 1 0 0 0 0 8 1 0 0 0 0 10 2 1 0 0 0 20 4 2 1 0 0 40 9 4 2 1 0 
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Table 7.3 . 1 .  The number of diffracted waves M generated in the negative y region for var
ious >. and l while e = o. 

I l  11 4 1 8 1 �6 1 32 1 64 1 4 0 0 0 0 0 6 1 0 0 0 0 8 1 0 0 0 0 10 2 1 0 0 0 20 4 2 1 0 0 40 9 4 2 1 0 
Table 7.3 .2. The number of diffracted waves N generated in the positive y region for var
ious >. and l while e = O. Adding the value of this table to its counter part in Table 7 .3 . 1 .  
gives the total number of diffracted waves for the specified >. and l .  Both this table and Ta
ble 7.3. 1 .  show that the variability of the diffraction waves number depends greatly on >. 
and l .  

I l  11 -60 1 -48 1 -36 1 -24 1 �12 1 0 1 12 1 24 1 36 1 48 1 60 I 4 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 1 1 1 1 8 0 0 0 0 0 0 1 1 1 1 1 10 0 0 0 0 0 1 1 1 1 2 2 20 0 0 1 1 1 2 3 3 3 4 4 40 0 1 2 2 3 4 6 7 7 8 9 

Table 7 .3 .3 .  The number of diffracted waves generated in the negative y region for varying 
e and l while >. = 8 is constant. 



7.3 A Periodic L ine-Array of Elastic and Separated Plates 

I l 11 -60 1 -48 1 -36 1 -24 1 � 12 1 0 1 1 2  1 24 1 36 1 48 1 60 I 
4 0 0 0 0 0 0 0 0 0 0 0 
6 1 1 1 1 0 0 0 0 0 0 0 
8 1 1 1 1 1 0 0 0 0 0 0 
10  2 2 1 1 1 1 0 0 0 0 0 
20 4 4 3 3 3 2 1 1 1 0 0 
40 9 8 7 7 6 4 3 2 2 1 0 
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Table 7.3 .4. The number of diffracted waves generated in the positive y region for varying 
e and l while A = 8 is constant. Adding the values in this table to its counterpart in Table 
7.3.3 . gives the total number of diffracted waves for the specified e and l. This table and 
Table 7.3 .3. show that the varying angle causes the number of diffracted waves to vary as 
well . Nevertheless the number of the diffracted waves in the opposite y regions 'moves' 
with the angle as it traverses about e = o. 
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Figure 7 . 3 . 1 .  The scattering of waves of wavelength ), = 4 by a periodic array of square 
plates of area 1 6, stiffness f3 = 0. 1 ,  and mass r = O. Each plate is confined by a channel 
of width l = 6. (a) The reflection amplitude IR I  versus the incident angle  e. (b) The 
transmission amplitude IT I  versus the incident angle B. (c) The overlapping plot of the 
diffracted wave of of order 1 .  (d) The overlapping plot of the diffracted wave of order 2.  
The waves are directed towards positive x (solid line) and negative x (chained line) in the 
negative y region and directed towards positive x (dotted line) and negative x (dashed line) 
in the positive y region. The figures show symmetry about angle e = 0 in all the scattered 
waves and this is due to the symmetry of the shape of the plates and the periodic gratings. 
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Figure 7.3 .2.  The scattering of waves of wavelength A = 4 by a periodic array of triangular 
plates of area 1 6, stiffness j3 = 0 . 1 ,  and mass I = O. Each plate is confined by a channel 
of width l = 6. (a) The reflection amplitude IR I  versus the incident angle e. (b) The 
transmission amplitude ITI versus the incident angle e. (c) The overlapping plot of the 
diffracted wave of of order 1 .  (d) The overlapping plot of the diffracted wave of order 2 .  
The waves are directed towards positive x (solid line) and negative x (chained line) in  the 
negative y region and directed towards positive x (dotted line) and negative x (dashed line) 
in the positive y region. The scattered waves are not symmetric about e = 0 because the 
shape of the plates are not symmetric. 
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Figure 7.3 .3 .  The scattering of waves of wavelength A = 4 by a periodic array of circle 
plates of area 1 6, stiffness f3 = 0. 1 ,  and mass I = O. Each plate is confined by a channel 
of width l = 6. (a) The reflection amplitude IR I  versus the incident angle e. (b) The 
transmission amplitude ITI versus the incident angle e. (c) The overlapping plot of the 
diffracted wave of of order 1 .  (d) The overlapping plot of the diffracted wave of order 2 .  
The waves are directed towards positive x (solid line) and negative .7: (chained line) in the 
negative y region and directed towards positive x (dotted line) and negative x (dashed line) 
in the positive y region. The figures show symmetry about angle e = 0 in all the scattered 
waves and this is due to the symmetry of the shape of the plates and the periodic gratings. 
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Figure 7 . 3 .4. The scattering of waves of wavelength A = 4 by a periodic array of paral lel
ogram plates of area 1 6, stiffness (3 = 0 . 1 ,  and mass I = O. Each plate is confined by a 
channel of width l = 6 .  (a) The reflection amplitude IR I  versus the incident angle e. (b) 
The transmission amplitude IT I  versus the incident angle e. (c) The overlapping plot of the 
diffracted wave of of order 1 .  (d) The overlapping plot of the diffracted wave of order 2. 
The waves are directed towards positive x (solid line) and negative x (chained line) in the 
negative y region and directed towards positive x (dotted line) and negative x (dashed line) 
in the positive y region. The scattered waves are not symmetric about e = 0 because the 
shape ofthe plates are not symmetric. 
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Figure 7 .3 .5 .  The scattering of waves of wavelength A = 4 by a periodic array of trape
zoidal plates of area 1 6, stiffness f3 = 0 . 1 ,  and mass 'Y = o. Each plate is confined by a 
channel of width l = 6. (a) The reflection amplitude I R I  versus the incident angle B . (b) 
The transmission amplitude IT I  versus the incident angle B. (c) The overlapping plot of the 
diffracted wave of of order 1 .  (d) The overlapping plot of the diffracted wave of order 2. 
The waves are directed towards positive x (solid line) and negative x (chained line) in the 
negative y region and directed towards positive x (dotted line) and negative x (dashed line) 
in the positive y region. The figures show symmetry about angle B = 0 in all the scattered 
waves and this is due to the symmetry of the shape of the plates and the periodic gratings. 



7.3.3 

7.3 A Periodic Line-Array of Elastic and Separated Plates 

The Displacement of the Plates 

1 02 

We now show the displacement of the plates of various shapes that are part of the periodic 

line-array. We only use five plates (.6.j , j = -2, - 1 , 0 , 1 , 2) to represent the line-array 

in the plot, where each has area 16 (L = 4), stiffness f3 = 0 .1 ,  and I = O.  The width 

of the channel is l = 6. We expose the line-array to an incident wave that is oblique at 

angle e = 7f/6. Figures 7.3 .6. to 7.3 . 1 0 . show the displacement of, respectively, squares, 

triangles, circles, parallelograms, and trapezoids. F irst we use wavelength A = 4 (a) and 

then we double it to A = 8 (b). For A = 4 we have, uniformly for all shapes, 3 diffracted 

waves generated in the negative y region (M = -3) and 1 generated in the positive y 
region (N = 1) .  For A = 8 we have uniformly 1 diffracted waves from the negative y 
region ( M  = -1 )  and none from the positive y region (N = 0). 
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Figure 7 .3 .6 .  The displacement plot of five square plates as part of the periodic array. Each 
plate has area 1 6, stiffness f3 = 0 . 1 ,  mass , = 0, and is confined by a channel of width 
l = 6. The array is subjected to incident wave of wavelength (a) ). = 4 and (b) ). = 8. The 
incident angle is e = 7r /6. 
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Figure 7 .3 .7. The displacement plot of five triangular plates as part of the periodic array. 
Each plate has area 1 6, stiffness f3 = 0 . 1 ,  mass I = 0, and is confined by a channel of width 
l = 6. The array is subjected to incident wave of wavelength (a) ). = 4 and (b) ). = 8. The 
incident angle is () = 7r /6. 
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Figure 7.3 . 8 .  The displacement plot of five circular plates as part of the periodic array. Each 
plate has area 1 6, stiffness (3 = 0. 1 ,  mass , = 0, and is confined by a channel of width 
l = 6. The array is subjected to incident wave of wavelength (a) ). = 4 and (b) ). = 8. The 
incident angle is () = 7r /6. 
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Figure 7.3.9.  The displacement plot of five parallelogram plates as part of the periodic ar
ray. Each plate has area 1 6, stiffness (3 = 0 . 1 , mass I = 0, and is  confined by a channel 
of width l = 6. The array is subjected to incident wave of wavelength (a) ,\ = 4 and (b) 
). = 8. The incident angle is () = 7r /6. 
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Figure 7 .3 . 1 0. The displacement plot of five trapezoidal plates as part of the periodic array. 
Each plate has area 1 6, stiffness f3 = 0. 1 ,  mass , = 0, and is confined by a channel of width 
l = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b) A = 8 .  The 
incident angle is e = 7f /6. 



Chapter 8 

Summary and Conclusion 

In the first part of this thesis we presented a method for calculating the linear wave 

response of a single plate. The method was based on Meylan's model for a plate of ar

bitrary geometry though our method would be of higher order than Meylan's method. A 

physical depiction and a mathematical model were presented in the second chapter. I n  the 

third chapter we discretized the plate into square panels and expanded the displacement of 

each panel in terms of the FEM basis functions. This was then used directly to minimize 

the variational equation for the coupled pressure equation. This yielded a matrix-vector 

equation that involved a forcing vector due to the potential of the water. 

The forcing by the water was solved in the fourth chapter and this was later coupled 

with the displacement. Here we showed the difference in the order of our scheme from 

Meylan's. I n  Meylan's method the boundary integral equation of the potential was solved 

using the constant panel method. This was done by taking the value of the Green's function 

at the centre of the panels (which are of the FEM) and then assuming it as constant across 

the panels. A pair of mapping matrices was then used to include the Green's integral oper

ator in the forcing vector and later in the full solution. This was done by taking the value 

of the Green's function at the centre of each panel. On the other hand the higher order 

method simply solved the boundary integral equation for the potential using the FEM basis 

function. This was achieved by taking an inner product of the forcing vector with the basis 

functions. The Green's integral equation (now over the basis functions) was solved numer

ically using the Gauss quadrature with Legendre polynomial. S ince Meylan's method has 

been well-established we only presented the implementation and the results of the higher 

order method in the fifth chapter. Here we showed that the higher order method agreed with 

Meylan's method and indeed performed better than Meylan's. This was because the pan

els were elastic due to the use of the FEM basis functions, unlike Meylan's panels which 

were assumed constants. Hence the higher order method gives results which are closer to 

1 08 
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reality. The drawback of the higher order method was the fact that the computation time 

of the Green's matrix was relatively large. However the use of a large number of panels is 

unnecessary because a small number of panels are sufficient to produce relatively accurate 

results (see Section 4.3). 

In the second part of the thesis we extended the higher order method to calculate 

the response of a periodic line-array of elastic plates on infinitely deep water. In chapter 

six we explained the groundwork for the periodic line-array of elastic plates model . The 

model used ideas from the diffraction gratings in optics. We applied the F loquet's theorem 

to calculate the displacement and the potential. Upon applying this we obtained the same 

displacement equation and a sl ightly different boundary integral equation for the potential. 

We say this was slightly different because the kernel of the integral equation was now the 

periodic Green's function. The periodic Green's function was represented in the near-field 

form, far-field form, and the spectral domain form. It was known to be slow-convergent 

and hence we used the ideas from the surface grating in optics to accelerate this. The 

accelerated periodic Green's function was composed of all the three representations of the 

periodic Green's function. In the seventh chapter we derived the scattered waves due to 

the periodic line-array of elastic plates. F irst we separate the evanescent and the travelling 

waves by determining their modes. Then only modes that determined the travelling waves 

were used to calculate the diffracted waves. We further extracted the reflected and the 

transmitted waves from the zeroth mode. F inally the calculation of energy balance between 

the incoming and the diffracted, the reflected, and the transmitted waves were presented.  

Chapter eight contains the convergence study on the Green's function, the tests on the 

periodic line-array model, and the results. 

We may improve and extend both the single plate and the multiple plates model by 

adding and/or modifying the methods used. In the single plate model accuracy can be im

proved by using triangular elements instead of square elements. This will lead to the use of 

slightly different mass and stiffness matrices. The single plate model can also be extended 

to a time-dependent model by replacing the free-surface Green's function with a time-
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dependent free-surface Green's function (this is given in [Wehausen & Laitone, 1 960]) .  A 

numerical time-integration scheme is needed for this extension. 

The model for the periodic line-array on water of infinite depth can be easily ex

tended to water of finite depth. A minor modification on the fast-convergent periodic 

Green's function is needed and this can be done using the same acceleration method ex

plained in Section 5 .4. Other than a periodical line-array of elastic plates that are used to 

model the MIZ, the same scheme may be used to solve a periodical line-array of barriers 

that extend through the depth of the water which was considered authors by Linton and 

Evans [Linton & Evans, 1 992] ,  Fernyhough and Evans [Fernyhough & Evans, 1 995], and 

[Porter & Evans, 1 998] . Moreover to obtain a depiction closer to the real-life MIZ we can 

extend the periodic line-array model from one dimensional to two-dimensional periodic 

gratings. 



Appendix A 

The Derivation of the Incident Plane Wave 

We will derive the expression of the incident wave in water of finite depth and later 

generalize it for both finite and infinite depth. 

The incident wave cpIn 
(x, z) must satisfy 

\72cpIn = 0 } 
ocpIn 

= ",,,,,In d f:j. 0 
OZ 

u.'f' , x "F- , Z  = , 

At the bottom boundary we will use the boundary condition for water of finite depth 

ocpIn 
& = 0, z = - H. 

Given a fixed angle e we may define a unit vector [ COS e ] 
r = sin e ' 

(A. l )  

(A.2) 

that describe the direction of propagation of cjJIn . Then we can reduce the number of vari

ables that cpIn 
depends on from three (x, y, and z) to two by introducing a new variable 

8 = X ·  r , 

and write cpln 
(x, z) = cjJIn (8 ,  z) . The Laplacian then simplifies into 

o2cjJIn o2cjJln 
fii2 + 7!fi2 = o.  

We solve (A.4) using the separation of variables by writing cpIn into 

cpln (8 , z) = S (8 ) Z (Z ) , 

and substitute this into (A. 1 ) and (A.2) 

S" (8 ) 
S (8) 
Z' (0) 

Z' (-H) 

where k is the wavenumber. 

-Z" ( Z) 2 
Z (z) = -k , 

a:Z (0) , 

0 , 

1 1 1  

(A.3 )  

(A.4) 

(A.5 )  

(A.6) 

(A. 7)  
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We can solve for Z (z) using the first order ODE from (A.S) and boundary condition 

(A. 7) 

Z (z ) = cosh [k (z + H)] . 
Further application of (A. 7) gives us the equation for finding the travelling modes 

ex = k tanh (kH) . 
Similarly we can easily obtain the solution for S (8 ) 

S (8 ) = 
A eiks + B e-iks . 

Multiplying (A.8) and (A. I 0) together gives us 

<pIn (8, z) = (A eiks + B e-iks ) cosh [k (z + H)] .  
We now substitute in (A.3) 

<pIn (X ,  z) = (A eik(x .r) + B e-ik(x.r) )  cosh [k (z + H)] .  

(A.8) 

(A.9) 

(A. 1 0) 

(A. 1 1 ) 

We impose the condition that the incident wave travels from left to right in the xy-plane 

and therefore we must have B = O. The final form of <pIn is 

<pIn (X ,  z ) = A eikx.r cosh [k (z + H)] . 
At the surface z = 0 (A. 1 2) simplifies into 

<pIn (X ) = A eikx.r cosh (kH) . 

(A. 1 2) 

Without loss of generality we incorporate the term cosh (kH) into A and write the product 

as AIn. Therefore 

(A. 1 3) 

is the equation for the incident wave that we use for both infinite and finite depth problems. 



Appendix B 

The Derivation of the Integral Equation for 

the Potential 

The following procedure reduces the integral over the boundary of domain n to 

an integral over the plate-covered area only. This method was first performed by Stoker 

( [Stoker, 1 957]) .  

We apply Green's second theorem to c/J 

where an denotes the boundary of domain n. The boundary an consists of four parts: an! 

is the perimeter of the imaginary bowl with radius a, an2 is the free-surface , an3 is the 

plate-covered area , and an4 is the sea-floor. The left hand side of (B. l )  can be reduced 

using (2.2 . 1 2) and (2.3 .4) to 

(B.2) 

Next we derive the expression for each j for the expression on the right hand side of 

(B.2). On boundary an! the integrand c/J �� - G�� like 1 /a2 for a -----+ 00 since c/J and �� 
are uniformly bounded at oo [Stoker, 1 957] .  Thus, as a -----+ 00 the surface integral over anI 

becomes zero. On boundary an2 we have 

10
02 

[<p (� , 0) :
(

G (x, z; �, o) - G (x, z; � , O) :
(

c/J (� , o)l dS� 

10
02 

[aG (x, z; � , o) c/J (� , O) - G (x, z; � , O) :
(

c/J (�, O)l dS� ,  

since �� = aG every where on the surface, 

10
02 

[c/J (� , O) :
(

G (x, z; � , O) - G (x, z ; � , O) :
(

c/J (� , O)l dS� 

r [aC (x, z ; �, 0) c/J (�, 0) - aG (x, z ; � ,  0) c/J (�, 0) ] dS� ,  
Ja02 

1 1 3  
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acp 
as 

a( = acp on the free-surface, 

lan2 [cp (�, o) :
(
G (x, z ; �, O) - G (x, z; � , O) :

(
cp (� , O)] dSf, = O. (B.3) 

On boundary an4 the integrand is clearly zero since �� = ° and �� = ° and, hence, there 

is no contribution from this either. On boundary an3 (an3 is equivalent to .6.) the surface 

integral becomes 

lan3 [cp (e, o) :
(

G (x, z; e , o) - G (x, z; � , O) :
(
cp (e , o)] dSf, 

lan3 [aG (x, z; � , O) cp (e, O) - G (x, z; � , O) :
(

cp (� , O)] dSe · (B.4) 

Finally we back substitute the results from taking the surface integral around anI ,  (B .3), 

and (B.4) into the equation. This gives us the integral equation for the scattered potential 

cp (x , z) = L [aG (x, z; e, o) cp (� , O) + ivaG (x, z; � , O) :
(

cp (e , o)] dSe · (B.5) 

Clearly this procedure is applicable for the incident wave cpln and the same result can 

be derived. 



Appendix C 

Computing the Matrices, the Vectors and the 

Operators 

The coding of all the matrices in the Section 3 are done with both MATLAB and 

C++. The MATLAB equivalent codes for the matrices and the operations in (3 .5 .2 1 )  and 

(3 .5 .20) codes are built in a straight forward manner. However codes and operations in C++ 

are somewhat different. In this section we will explain the implementation in C++. 

The matrices and the vectors are built using the Template Numerical Toolkit (TNT) 

[Pozo, 2000] . The TNT provides C++ classes for both the FORTRAN-type C-type arrays 

(matrices and vectors). We will give brief definitions on the FORTRAN-type array and the 

C-type array. A FORTRAN-type array is column oriented, i.e. the elements are arranged 

and read per column, and its index begins with 1 .  Whereas a C-type array is row-oriented 

(elements are arranged and read per row) and its index begins with O. 

We intend to build the matrices and the vectors to be as close as possible to the ones 

in MATLAB. Therefore we use the TNT classes for the FORTRAN-type array. Matrices 

M and IK. are double precision and matrix <G is a complex double precision FORTRAN ma

trices (defined in frnat.h). Vectors ;pIn, ;p, and w are complex double precision FORTRAN 

vectors. Furthermore vector N and matrix N are both double precision FORTRAN arrays. 

The coding for submatrices in (4. 1 . 1 )  and (4. 1 .2) is straight forward; and likewise are 

(3 .5 .30) and (3 .5 .3 1 ) .  The coding of (3 .5 .28) and (3 .5 .29) requires the calculation of the 

Green's function (2.3 . 1 1 )  or (2.3 . 1 3) as well as the Gauss quadrature-Legendre polynomial 

scheme. We analyze (2.3 . 1 1 )  and (2.3 . 1 3) separately starting with (2.3 . 1 1 ) . 

For the case of finite depth (2.3 . 1 1 )  we truncate the infinite sum into 

N 

G (x; e) = - '" Ko (kj I� - e l ) cos2 kj (H) . L 271" . 
j=l J 

(C. 1 )  

Equation (C. 1 )  requires the roots of the dispersion equation (2.3 .8). We choose the roots in 

a way such that the first root ko is a negative purely imaginary number and the remaining 

kj (j = 1 ,  . . .  , N) are positive real numbers with ascending magnitude. 

1 1 5 
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The computation of the second kind modified Bessel function of order zero Ko (x) 

is provided by the GNU Scientific Library (GSL) function [Galas si et aI. ,  2002a] . However, 

to use such function in the library, x is required to be a positive real number [Galassi et aI . , 2002b] . 

Hence the corresponding Ko for the first root cannot be calculated using the GSL Ko func-

tion. To overcome this restriction we use the relation 

where Ho is the Hankel function of order zero. Using relation Ho (x) = 10 (x) + iYo (x) 

we obtain 
�7r 

Ko (-ik Ix - � I ) = 2 {10 (k Ix - � I ) + iYo (k Ix - � I ) } · (C.2) 

[Abramowitz & Stegun, 1 964] . Expression (C.2) is now solvable by GSL functions since, 

for both 10 and Yo argument k Ix - �I is a positive real number. 

For the case of infinite depth we are required to individually calculate Ho, Yo, and 

10 in (2.3 . 1 3) .  Since this is time-consuming we accelerate the calculation by replacing the 

sum of the three special functions with one table. The table contains a finite range of t and 

its corresponding f (t) = Ho (t) + Yo (t) - 2i10 (t ) .  Then for each ax we look up the 

table to find its corresponding f (ax) . This is done using the linear interpolation provided 

by GNU Scientific Library (GSL) [Galassi et aI . ,  2002b] .  

To determine the integration points and their corresponding weight for the Gauss 

quadrature we use the Legendre polynomial. We recall from Section 3 .5 .3 the definition of 

[gl de (3 .5 . 1 4) 

[gl de = r N (Xd) r G (Xd; �e ) N (�e ) dSe dSx .  
} 6..d } 6..e 

Since !:J.d and !:J.e are physically identical one numerical integration scheme is sufficient for 

both integrals in [gl de . 
For all area integration over !:J.d we first write it in full 

1/ (x) dS. = t-,l:-. 1 (x, y) dx dy. 

We approximate the integral (C.3) with respect to x using Gaussian quadrature 

l
a 

n 
x=-a f (x, y) dx = � Wn,j f (Xj , y) , 

(C.3) 

(CA) 
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where y is kept constant. The integration points (or also known as abscissae) and their 

corresponding weights are calculated from the roots of a set of orthogonal polynomials. 

Here we use the Legendre functions as the orthogonal polynomials. 

The abscissae x/s are the roots of the Legendre polynomials. These are found using 

Newton-Raphson method repetitively on Legendre polynomials from order 1 to Q (the 

specified number of points). We use the recurrence relation of the Legendre polynomials 

1 5: j 5: Q (or P) 

1 
Pj (x) = -. - [(2j - 3) xPj-1  (x) - (j - 2) Pj-2 (x) ] , J - 1  

(C.5) 

and its derivative 

where 

Pj (x) = � [ (2j - 1 )  (Pj-1 (x) + XPj_l (x)) - (j - 1 )  Pj-2 (x) ] , (C.6) 
J 

Po = 1 ,  P� = 3x . 

For Gaussian quadrature (C .4) that requires a maximum of n abscissae the corresponding 

weights for x/s are calculated using 

(C.7) 

The same Gaussian quadrature-Legendre polynomials pair is applied to the integral with 

respect to y with maximum m abscissae to obtain a set of Yj 'S and their corresponding 

weights W m,j 's. 

Then the total number of abscissae Q = n x m (and likewise P) and the weights u/s 

and v/s of (3 .5 .26) are obtained by multiplying Wn 's and Wm's where each satisfies (C.7) .  

Since the panel is a square then we set m = n. 
Finally multiplication between a matrix and vector, such as M ;pIn, is done using the 

built-in operator in the TNT. Matrix multiplication, such as NI G1 N2, is done using the 

Basic Linear Algebra Subprograms (BLAS) [Dongarra et aI. ,  1 997] , in particular BLAS 

level 3 for general matrices. To invert the matrix (M - cxG) in (3 .5 .2 1 )  and (3 .5 .20) we use 

a function provided by the Linear Algebra Package (LAPACK) [Anderson et aI., 1 999] . 
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LAPACK also provides LU linear solver that solves (3 .5 .2 1 ). Substituting the solution of 

(3 .5 .2 1 )  to (3 .5 .20) completes the process of solving w and (p. 



Appendix D 
The Asymptotic Representation of the 

periodic Green's Function 

D. I The Spatial Representation of the Periodic Green's 

function 

We recall the free-surface Green's function for infinitely deep water 

G (x; �) = 4� Cx: �I - 7fa [Ho (a lx - � I ) + Yo (a lx - � I ) - 2i Jo (a lx - � l ) l) . 
We let Ix - � I  ---t . Therefore we may write the Struve function Ho in the asymptotic 

expansIOn 

As r ---t 00 

Ho (a Ix - � I ) rv Yo (a Ix - � I ) , 
substituting this into (2.3 . 1 3 ) 

a G (x; �) = 4" [2Yo (a I x - � I ) - 2ilo (a Ix - � I )l , 
2 

where Ix _ 
� I  ---t 0 as r ---t 

G (x; �) 

. Factoring out -2i gives 

za - - 2  [lo (a Ix - � I )  + iYo (a Ix - � I )l 
(D. 1 . 1  ) 

The new representation of the Green's function (D . I . l )  matches the one given by Linton 

[ [Linton, 1 998], (2.4), p.378] however with different multiplying constant. 

1 1 9 



Appendix D The Asymptotic Representation of the periodic Green's Function 1 20 

D.2 The Spectral Representation of the Periodic Green's 

function 

Linton [[Linton & Evans, 1 992], (2.26), p .  330] gave an alternative form of the Hankel 

function 

1 
where U = (u2 - 1 ) 2  . 

Substituting (D.2. 1 )  into (5.3 .2) yields 

Gp (x; �) � -;c (k) 
m
f;
�
l: U-le-kUIX l e-ikY_udu ei�' . 

��----------__ v------------� 

F(x;�'m) 

First we observe part F (x; �m) ' 

F (x; �m) = f 100 U-le-kUIX I e-ikYu+ikml eimal du 
m=-oo -00 

= 100 
U-le-kUIX I e-ikYu f eiml(ku+a) du -00 m=-oo 

then we replace 2::=-00 eiml (ku+a) with 

and this gives 

00 00 
L eiml(ku+a) = 27r L b (l (ku + 0") + 27rm) , m=-oo m=-oo 

F (x; �m) = 27r 100 U-le-kUIX I e-ikYu f b ( l  (ku + 0") + 27rm) duo -00 m=-oo 
We may rewrite (D.2.3) as 

where 

27r 100 
F (u) f b (l [ku + O"m] ) du -00 m=-oo 

2 00 100 ; L F (u) b (ku + O"m) du, 
m=-oo -00 

(D.2. 1 )  

(D.2.2) 

(D.2.3 )  

(D.2 .4) 

(D.2.5) 
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and 

Let u' = ku in (D.2.S) 

We recall that 

27fm (Jm = (J + -Z-

I: 0 (T - u) P (u) du = P ( T) . 

We apply (D.2.8) into (D.2.7) and find that T = -�m . 

A 27r � 1 - (-(Jm) 
F (x; �m) = -Z m�oo k F -k- ) 

and then we substitute -�m into (D.2 .S)  

1 

[ k12 (J� - k2)P 
k e-UTn I X I  eiam Y Um 

1 Um = [(J� - k2P . 

Back substitution of (D.2 . 1 0) into (D.2.9) gives us 

and further back-substitution of (D.2. 1 2) into (D.2.2) yields 

2i 00 e-Um lXI  eiamY 
Gp (x; �) = -Tc (k) L Um ) m=-oo 

(D.2.6) 

(D.2.7) 

(D.2.8) 

(D.2.9) 

(D.2 . l O) 

(D.2. 1 I )  

(D.2 . 1 2) 

(D.2 . 1 3) 

the spectral representation of the periodic Green's function for large distance. Expression 

(D.2. I 3) is also known as the Fourier transform of (D.2.2) [Jorgenson & Mittra, 1 990] . 
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