Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.



The Linear Wave Response
of a Single and a Periodic Line-Array of

Floating Elastic Plates

A thesis presented in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Mathematics

at Massey University, Albany, New Zealand

Cynthia Dewi Wang

2004



Abstract

We propose an improved technique to calculate the linear response of a single
and multiple plates models due to ocean waves. The single plate model is the basis
for the multiple plates model which we take to be a periodic array of identical
plates. For the single plate model we solve the plate displacement by the Finite
Element Method (FEM) and the water potential by the Boundary Element Method
(BEM). The displacement is expanded in terms of the basis functions of the FEM.
The boundary integral equation representing the potential is approximated by these
basis functions. The resulting integral operator involving the free-surface Green’s
function is solved using an elementary integration scheme. Results are presented
for the single plate model. We then use the same technique to solve for the periodic
array of plates problem because the single and the periodic array plates model differ
only in the expression of the Green’s function. For the periodic array plate model
the boundary integral equation for the potential involves a periodic Green’s function
which can be obtained by taking an infinite sum of the free-surface Green'’s function
for the single plate model. The solution for the periodic array plate is derived in the
same way as the single plate model. From this solution we then calculate the waves

scattered by this periodic array.
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Chapter 1

Introduction

The thin elastic plate model is used to depict a thin and flat structure floating on
the water surface. The structure’s thickness is far smaller than its length and width. The
structure is flexible and rocks in response to the water motion; we neglect its submerged
part. This is known as the shallow-draft model.

The thin elastic plate model arises from the need to understand the hydroelastic be-
haviour of realistic structures, such as a Very Large Floating Structure (VLFS) and ice
floes in the Marginal Ice Zone (MIZ), when exposed to the ocean waves. A VLFS (e.g. the
megafloat and floating runway) is usually rectangular while ice floes have irregular shapes
and usually come in packs.

The VLFS is aimed to provide space for additional airports, storage, etc. Experimen-
tal observations have been made by building small-scale models both offshore and in the
wavetanks. On the theoretical side numerous methods of calculating the response of the
VLEFS have been developed. Reviews on both experimental and theoretical works are given
by Kashiwagi (2000) and Watanabe et al. (2004). We shall discuss selective examples of
the solution methods. Generally the methods separately solve the water at the interface
with the plate and the wave-induced response of the plate. The water part can be solved by
either calculating the pressure (referred to as the pressure-distribution method) or the veloc-
ity potential. The plate part can be solved by either calculating the vibration modes of the
plate’s deflection (referred to as the modes-expansion method) or solving the displacement
directly.

In the water part the solution sought can be in terms of the pressure or the velocity
potential. If the pressure is calculated (referred to as the pressure-distribution ) then the
potential is eliminated from the Bernoulli-Euler equation and the pressure across the in-
terface is represented by an integral equation involving a zero-draft Green’s function. If

the velocity potential of the water is calculated then the pressure is eliminated from the
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Bemoulli-Euler’s equation by substituting it with the linearized Bernoulli’s law. In either

approaches the solution involves the displacement of the plate .

The pressure-distribution method may yield solutions at either the interface between
the water and the plate (known as the wet modes) or the interface between the plate and the
atmosphere (known as the dry modes). An early solution for the dry modes was presented
by Maeda (1995) using 1-D free-free modes of the beam in the z and y direction. Takaki &
Gu, 1996 solved for the dry modes using the eigenfunctions of the Bernoulli-Euler’s equa-
tion with constant pressure. Later Lin and Takaki (1998) showed that B-spline functions
could be used as the modes. In fact the dry modes can be represented by various functions.
The wet modes can be calculated from the dry modes by adding the mass and damping
factors (Hamamoto, 1997).

The numerical solution for the pressure-distribution using the modes-expansion method
is done by discretizing the plate into panels and representing the pressure by a set of ar-
bitrary functions. Then the plate displacement is solved by way of one of these two ap-
proaches: the thin plate vibration mode (referred to as the mode-expansion method) or the
direct method. The following are examples of the functions used to represent the pressure
in the panels. Maeda et al. (1995) and Takaki and Gu (1996) assumed that the unknown
pressure was constant on each panel. Another method by Yasuzawa et al. (1996) used the
pressure as a linear function. Hamamoto et al. (1997) used an 8-point quadratic function
for the pressure on each panels. The drawback of these methods is the lengthy computation
time for short wavelengths. For this purpose, Kashiwagi (1996) proposed an efficient com-
putation scheme using the bi-cubic B-spline functions to represent the unknown pressure
on each panel.

In the mode-expansion method the unused vibration modes are included to calculate
the deflection of the flexible plate. The calculation of these unused modes was costly and
hence this method was undesirable. This is because the primary solution sought is the to-
tal displacement and not the vibration modes. Therefore the direct method was developed
to bypass these unused modes. Yago and Endo (1996) used a standard third degree poly-

nomial of the finite element method (FEM) and the pressure-distribution method to couple
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the water and the plate. The panels were discrete and only moved vertically. The panel dis-
placement was then substituted into the pressure forcing equation. The results found were
presented in the form of the diffracted potential, the dry and the wet modes of the plate, and
a comparison of the computed result with experimental data. Yasuzawa et al. (1996) also
used the standard third degree polynomial; however their panels were connected rigidly
or by pins. Also the Boundary Element Method (BEM) was used for the water potential.
This was solved using Bi-linear boundary elements and numerical integration with16 Gauss
points. Their results were presented as calculation of the wet modes (i.e. the potential at
the interface between the plate and the water). Hamamoto (1997) used the standard second
degree polynomial on connected panels (modules) that were anchored to the seabed. Like
Yasuzawa, Hamamoto used the BEM for the potential. This was done by discretizing the
boundary into 4-node linear elements. The potential was expanded in terms of the FEM’s
polynomial. Both Yasuzawa and Hamamoto used the linearized Bernoulli’s equation for
the pressure to couple the plate and the water.

Recently Kashiwagi (1998) developed an effective computational scheme for the
short wavelength case. The method involved a set of bi-cubic B-spline functions repre-
senting the unknown pressure and converting the integral equation for the pressure into
a linear system of equations by a Galerkin Scheme (referred to as the bi-cubic B-spline
Galerkin scheme). The linear system was solved to give the constants of the bi-cubic B-
spline functions. This method is of higher order due to the use of the Galerkin scheme but
it is difficult to extend to solve plates that are not rectangular. This restricts its use on other
shapes.

Rather than a rectangular shape (on which the VLFS is based on generally) a circular
plate model was developed by Meylan and Squire (1996). The model was used to represent
a single ice floe in the Marginal Ice Zone (MIZ). The water potential was related to the mo-
tion of the circular floe by a boundary integral equation involving an infinite-depth Green’s
function. This integral equation was solved by expanding the motion in terms of the eigen-

values of circular thin plates. An alternative solution was found using a different Green’s
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function involving the eigenvalues of a circular ice floe. The results were calculated for
long crested ocean waves.

Models based on plates of arbitrary geometry were in fact developed to investigate the
behaviour of ice floes in the MIZ. There are many interpretations on the meaning of MIZ.
Wadhams (1986) describes the MIZ as the ice-covered part of the polar region that is close
enough to the open ocean boundary to be affected by its presence. Since the MIZ is greatly
affected by ocean swell it is composed of many ice floes which differ in shape and size.
Various experiments have been conducted around the region and numerous models have
been developed to depict the floes and the ocean waves. In modelling the MIZ, several of its
features are investigated including the break-up of ice sheets into ice floes, the arrangement
of floes into patterns by ocean waves, and the dispersion and the attenuation of ocean waves
by the ice floes. A detailed summary on the mathematical study of the waves and the MIZ
is given by Squire et al. (1995).

A generalized model of a thin elastic plate of arbitrary geometry was developed by
Hermans (2000) and Meylan (2002). Hermans performed extensive calculations of the
diffraction of waves by such a platform using the boundary element method. Current-
induced and non-current-induced free-surface Green’s functions were presented and both
kinds were solved numerically. The integro-differential equation obtained via the boundary
element method was solved by two approaches. The first approach used a set of orthogonal
functions that are the eigenfunctions corresponding to the eigenmodes of the deflection of
the plate. However it was difficult to extend this method to solve the two-dimensional plat-
form problem. Therefore Hermans gave an alternative approach using the finite difference
method with grids of equal length. The application of this technique to the two-dimensional
platform was shown but computations were given only for the one dimensional platform in
long crested-waves.

A similar model based on a plate of arbitrary geometry was developed by Meylan
(2002) to model an ice floe. He used a hybrid finite element-boundary element method
to calculate the response of the ice floe. The FEM was used to determine the modes of

vibration of an elastic plate. The BEM was used to convert the laplacian and the boundary
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conditions of the water potential into an integral equation involving the free-surface Green’s
function. The integration was then solved using the constant panel method, a method of
lower order.

Since the MIZ is composed of many ice floes this leads to the development of multiple
floe models from the single floe ones. An early model based on a single floe model was
proposed by Masson and LeBlond (1989). They used a model where the floe was circular
and rigid. Hence its movement was restricted by its mass and rigidity. Based on single floe
scattering they developed a multiple scattering theory using the energy balance equation of
the wave spectra where it included the wind-generated energy, the dissipated energy, and
the non-linear interaction between the spectrum. An improved model was later developed
by Meylan et al. (1997). Meylan et al. used a circular, flexible plate to represent the
solitary ice floe. Furthermore the wind-generated energy and the non-linear interaction
terms were dropped from the energy balance equation. Apart from these two works there
are many other works on the modelling the behaviour of ice floes in the MIZ; for example
Marchenko and Voliak (1996) who also worked on the scattering model and Moritz and
Ukita (2000) who worked on the deformation of the ice pack.

Here we are interested in studying the scattering of waves by plates of arbitrary geom-
etry. We base the multiple plate model on the single plate model. For the multiple plates
models we use a periodic array of plates. For the single plate model we present a solution
method analogous to Meylan (2002) but of higher order. This thesis is separated into two
parts based on the single and the multiple model.

In the first part of this thesis we present the full solution to the single plate model
using the direct method. We shall also compare our methodology with the one used by
Meylan. In the first chapter we describe the single plate model physically and mathemat-
ically. In the physical description of the model we portray the plate of arbitrary geometry
and the water domain and then we show the mathematical formulation of the problem. In
second chapter the solution of the plate displacement is discussed. This involves discretiz-
ing the plate into a finite number of rectangular (later square) panels and expressing the

equation of motion for the plate in terms of its variational equation. The variational equa-
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tion is then solved directly using the FEM basis functions. In the third chapter we solve the
boundary integral equation for the water potential and then couple the water and the plate
together. There are two approaches to solve the integral equation; one is to use the constant
panel method (as used by Meylan) and the other is to combine the FEM basis functions
with an elementary numerical integration scheme. Both methods will be shown. Since the
free-surface Green’s function involved in the integral equation is singular we also show
ways to avoid the singularity. In the fourth chapter we implement the higher order method.
We omit the implementation of Meylan’s method as this has already been done and results
have been presented. The result for the higher order method is derived in terms of the dis-
placement of the plate and/or the velocity potential of the water. These are then compared
to Meylan’s results and later are shown to perform better. The effect of discretization on
various shapes is also shown using Kochin’s function. Finally the response of a plate of
various shapes is plotted in terms of its displacement.

For the second part of this thesis the solution of the single plate using a higher order
method is extended to solve an infinite line-array of periodically-arranged identical plates.
We note that similar problem have been solved by Fernyhough and Evans (1995) and Potter
and Evans (1998). Fernyhough and Evans solved the scattering by a periodic array of
rectangular vertical barriers that extended throughout the water depth. Porter and Evans
considered the problem of trapped modes which are Rayleigh-Bloch surface waves in a
periodic array of circular cylinder that also extended throughout the water depth. The
difference between the two and our periodic array of plates is that the rectangular barrier
and the circular cylinder are stiff and unmoved whereas our plates are elastic and movable.
However our integral equation for the water potential is similar to theirs.

In the fifth chapter we describe the periodic array of plates. Here we pose the prob-
lem that we aim to solve. Such arrangement of plates resembles the surface diffraction
grating of Optics. Therefore the diffraction theory will be applied to the coupled plate-
water motion. The application of the diffraction theory then gives rise to a new type of
integral operator analogous to the single plate’s one. We then introduce its kernel, the

free-surface periodic Green’s function. However the periodic Green’s function is slow-
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convergent, and so we propose a new approach to accelerate the convergence of this func-
tion. In the sixth chapter the derivation of the scattered waves using the modal approach is
presented. The modes are found using the Fourier Transform of the asymptotic form of the
periodic Green’s function. We also classify the diffracted, the reflected, and the transmitted
waves and this leads to the calculation of energy balance within the periodic array. Finally

we present the results for this periodic array of plates problem in the seventh chapter.



Chapter 2
The Three-dimensional Single Floating Elastic

Plate Model

We begin with the physical and mathematical model for the problem of the linear
wave forcing of a single plate floating on the surface of, either, finitely or infinitely deep

water.

2.1 The Pictorial Description of the Model

In this section we portray the fluid domain and the plate model for the problem and explain
the notation. Figure 2.1.1. depicts the physical domain of the response problem where a
thin elastic plate is floating on the surface of water that may be finite or infinite in depth.
We denote the entire water domain by €2 and the plate covered area is denoted by A. The
surface is at z = 0 and the seafloor (the bottom of the water domain) is z = —H. For
infinitely deep water we take the limit as H — oo. We neglect the submerged part of the
plate (i.e. the surface of the plate is also at z = 0) The axis are shown in the figure. An

incident wave of amplitude A’™ propagates at direction specified by waveangle 6.

2.2 The Mathematical Description of the Model

We now present the mathematical model associated with the problem of a single plate
floating in the previous section. This theory comes from Stoker [Stoker, 1957], Meylan

[Meylan, 2002], and Kashiwagi [Kashiwagi, 1998a], amongst others.



Sea floor

Figure 2.1.1. The depiction of the domain for the single plate model.
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2.2.1 The Equation of Motion for the Water

We use the linear wave diffraction theory. Assuming that the water flow is irrotational, the

velocity potential of the water must satisfy Laplace’s equation
V2 (z,y, zt) =0, (z,y,2) €Q, 0 <t < oo, (2.2.1)

where @ (z,y, z;t) is the velocity potential of the water. At the water surface the kinematic

boundary condition applies

0 0

At the interface between the water and the plate the dynamical boundary condition is given

by the linearized Bernoulli’s Law

_ (%cb (g 05 8) g W g t)) () (2.2.3)

where W (z,y;t) is the surface displacement, p is the density of the water, and ¢ is the
gravitational acceleration. At the free surface (the interface between the water and the

atmosphere) the pressure is constant. Thus if we take the time derivative of equation (2.2.3)

then %? = 0 and the substitution of (2.2.2) gives rise to condition

0%® 0o

— = 0.
ot? +g@z

At a fixed surface of the water domain (such as the seafloor) the boundary condition is
od

on

the bottom boundary condition is

= 0, where n denotes the direction normal to the surface. For water with finite depth

0
Eé (z,y,—H;t) =0, (2.2.4)

where H denotes the depth of the water. For infinitely deep water the boundary condition

at the bottom becomes

lim grad ® = 0. (2.2.5)

Z2—»—00
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2.2.2 The Equation of Motion for the Plate

The equation of motion for the plate is given by the Bernoulli-Euler equation. For an

isotropic plate this is

2
DV*W + p’hgt—QW =p(t), (2.2.6)
together with the free edge boundary conditions
O*W o*wW
£_M. B = 227
on? v 0s? 0 ( )
PW PwW
2 — =0 228
on3 2@~ 0s3 ’ ( )

where W (z,y, t) is the plate displacement, p’ is the plate density, & is the plate thickness,
p is the pressure, and D is the modulus of rigidity of the plate (D = Eh3/12 (1 — v?),
where F is the Young’s modulus and v is the Poisson’s ratio). n and s are, respectively, the
normal and the tangential directions to the plate edge.

Under the surface of the water covered by the plate we couple equations (2.2.3) and

(2.2.6) and obtain the following relation

o*w od
2~ P T pgWw, (2.2.9)

DV*W + p'h

which is the coupled pressure equation. Equation (2.2.9) describes the surface displacement

of the plate on the wetted interface.

2.2.3 Non-Dimensionalizing the Variables

We non-dimensionalize the spatial variables using

and the time variables using

L. _
t = \/:%. & = L\/Lg®,
g

where L is a length parameter which may be chosen arbitrarily. Substituting the dimen-

sionless variables into (2.2.9) gives us the displacement equation for the plate on the water
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interface
- W ov -
viw — =—-—— W,
VW 4755 T

where the new constant terms 3 and ~y are

D

ﬂ - 4
pLig

_ o

’7 = pL'

12

(2.2.10)

(2.2.11)

We will call 3 the stiffness constant and v the mass constant. Subsequently we shall omit

the overbar from all variables.

2.2.4  The Single Frequency Problem

Assuming the problem is single frequency we may write the displacement of the plate and

the velocity potential of the water as

W (z,y,t) = Re[w(z,y)e™],
@(:r,y,z,t) = Re [¢(‘T7 y,Z) e—iwt] ’

where w is the angular frequency of the wave.

Then the single frequency equation of motion for the water becomes

Vi =0, (z,9,2)€Q,

0p W2
———¢ =0 A =)
az g ¢ bl (l‘7y) ¢ ? <z bl
Z_f = —iww, (z,y) € A, z=0,
: . 0o .
For finite depth H the condition that o 0 at a fixed surface gives
9¢
_— = 0 =] —H,
0z ’ ‘
and for infinitely deep water
0¢
I; —| =0.
e 0z

(2.2.12)
(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)
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The boundary condition at infinity is given by the Sommerfeld radiation condition.

This imposes the scattered wave must progresses outward [ Wehausen & Laitone, 1960]

lim /]x] (5%(-' —~ zk) (¢ —¢'") =0, (2.2.17)

|x| =00
where k is the wavenumber (related to the wavelength A by k£ = 27/)\) and &' is an
incident plane wave. Condition (2.2.17) ensures uniqueness of the solution of the boundary
value problem given in (2.2.1) to (2.2.15) for water of finite depth or (2.2.16) for water of

infinite depth. The derivation of incident wave ¢'" is given in Appendix A. We obtain
Cbln (X) — Aln eik(zcos@+yc050)’ (2218)

where 6 is incident angle. Expression (2.2.18) will be used through out this thesis as the
incident wave.
Finally equation (2.2.10) becomes the dimensionless and single frequency displace-

ment equation for the plate

BV (x) — ayw (x) = ivag (x) — w(x), (2.2.19)

where
o= w?, (2.2.20)
is the dimensionless frequency. Equation (2.2.19) is one of two simultaneous equations

that govern the coupled motion of the water and the plate.

2.3 The Application of the Boundary Element Method to the
Water Potential

In this section we derive another equation for the water that will be solved simultaneously
together with (2.2.19) for the potential of the water and the displacement of the plate. This
will produce a boundary integral equation for the potential that involves the Free-Surface

Green’s function.
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2.3.1 Transforming the Boundary Value Problem for the Potential

into a Boundary Integral Equation

The potential ¢ can be separated into the incident part and the scattered part

¢ (x,¢) = ¢™ (x,¢) + ¢° (x,(), (2.3.1)

where ¢'™ is the incident wave (2.2.18) and ¢° is the scattered potential.
Clearly ¢'™ and ¢° satisfy the boundary value problem given by Laplace’s equation
(2.2.12), surface boundary conditions (2.2.13), bottom boundary condition (2.2.15), and

the radiation condition (2.2.17). Then we apply Green’s second theorem to ¢°

- 0 S
/Q (¢° V3G = G V%¢°) dVe( = fm< ¢ ) dSe,

0z 0z
where 0f2 is the boundary surrounding domain €2 ([John, 1950], [Sarpkaya & Isaacson, 1981]).
Upon applying the Lapacian (2.2.12) and (2.3.4) to the left hand side and (2.3.1) to the right

hand side the equation above becomes

] 8(3 n 8"]” -
¢’ :/ﬁﬂ [((‘:GC) 8() - (CEG(D] -G gf )] dSe.

We explain in Appendix B that the calculation of the integral over the boundary is reduced

to the calculation of its integrand over the plate-covered area. Using this result we obtain

. 8¢
¢ ‘/A< G G@c) a5

a In
99 = 0at z = 0 by (2.2.13) satisfied by ¢'™ everywhere on the surface.

0z
Furthermore we can apply the boundary condition (2.2.14)

since aG¢'™ — G

¢° (x, 2) =/A [aG (x,2;€,0) ¢ (€,0) +ivVaG (x,2;£,0) w (£,O)] dSe, (2.3.2)

where G (x, z; €, 0) is given by (2.3.11) or (2.3.13).
We substitute (2.3.2) into (2.3.1) to obtain the total potential and assume that the field

points (x, z) are taken only at the wetted surface of the plate and thus z = 0

6 (x) = 6™ (x) + /A G (x;€) {ag (&) +iv/aw (€)} de, (2.3.3)
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where we have dropped term 2z, ( = 0 from the equation and the area integration now
depends on £ and 7. We refer to equation (2.3.3) as the potential equation for the plate. We
now have a complete system of equations to be solved for w (x) and ¢ (x). Both equations
(2.2.19) and (2.3.3) will be solved numerically. For (2.3.3) we need the free-surface Green’s

function and this will be explained in the next subsection.

2.3.2 The Free-surface Green’s function for water of finite and infinite

depth

The standard method to solve the boundary value problem described by Laplace equation
(2.2.12), surface boundary condition (2.2.13), bottom boundary condition (2.2.15), and
radiation condition [Sarpkaya & Isaacson, 1981] is to use a Green’s function. Therefore

the Green’s function satisfies

VQG(X,z;&C)—é(X §) 6(2—(), (x,2), (£¢) €Q )
—aG' Z =10,

aé \ (2.3.4)

¢
iMoo \/\_x_ (r)|x| ) =0, p

where x = (z, y) is the field point and & = (£, 7)) is the source point. We call such Green’s

function a free-surface Green’s function (for water of either finite or infinite depth).

For water of finite depth various solutions to (2.3.4) are given by various authors Sarp-
kaya and Isaacson [Sarpkaya & Isaacson, 1981], Mei [Mei, 1989], and Linton [Linton, 1999].
Mei and Sarpkaya and [saacson gave the following expression for the free-surface Green’s

function for water of finite depth

1

_e2 _ 2Jr 2 3
V=P + e~ \Jlx— &P+ (2 + 20 +¢)

o ["ral ikl g)
o ksinh (kH) — acosh (kH)

G(x’z~£7C) =

coshk (z+ H) coshk (( + H) dk} ;
(2.3.5)
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where & is the wavenumber.
a = ktanh(kH), (2.3.6)
« is the frequency square given in (2.2.20), and Jj is the first kind Bessel function of order

zero ([Sarpkaya & Isaacson, 1981] and [Mei, 1989]). Linton gave a series representation

of (2.3.5)

G (x,2;§,¢) = — Z Ko (];]w\é— £) cosk;(z+ H) cosk; ((+ H), (2.3.7)
=0 ’

where ay is the second kind modified Bessel function of order 0 and k; are the positive real

roots of the dispersion equation
—kjtank;H = « j>0. (2.3.8)

The zeroth root &y is related to the wavenumber k by

ko = —ik. (2.3.9)
The constant C; is
H sin 2k; H
@ = = M = | 3.
iT 5 < + ok, H > (2.3.10)

[Linton, 1999]. Following (2.3.3), where the boundary integral equation is taken over the

surface, we set z = 0 and { = 0 in (2.3.7) to get

G(x:€) = — Z Ko (’;;:C{‘— €l)
. 'J

Jj=1

cos’k; (H). (2.3.11)

For infinitely deep water the solution of (2.3.4) is given by Wehaussen and Laitone

[Wehausen & Laitone, 1960]. Such Green’s function has the form

+ ! — (a et 1) x

1 1
G(X,Z;&,C) = ey
Tlk-eP -0 lx—eP e+ 0

—ce(z4()

Ho<a\x—e|>+yo<a\x—s|)—2/ £ &
Jo \/;2|x— |2-|-32

+omia Jo (a]x — €]}, (2.3.12)

where Hj is the Struve function of order zero, Yj is the second kind Bessel function of

order zero, and Jy is the first kind Bessel function of order zero. As in the case when the
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water depth was finite we also substitute z = ( = 0 in (2.3.12) to obtain an expression that

will be used by (2.3.3)

1 2 :
G(x:8)=—(m—F5 —m[Ho(a|x—§|) + Yo (alx—£]) —2iJo(a|x—&])] ).
a7 \ |x — €|
(2.3.13)
In the next two chapters we will present two numerical schemes to solve (2.2.19)
and (2.3.3). Based on this mathematical model in the next two chapters we will present
a numerical scheme based on the Finite Element and the Boundary Element Methods to

solve the displacement of the plate and the potential of the water.



Chapter 3

Solving the Motion of the Plate and the Water

In this chapter we present the method for solving the coupled motion of water and
plate. First we solve the displacement of the plate. In the first section we show the dis-
cretization of the plate by square plates. In the second section we expand the displacement
in terms of the FEM basis functions. In the third section we apply this expansion on the
variational equation of the coupled Bernoulli-Euler’s equation for a thin plate and the dy-
namic boundary condition on the interface with water. We refer to this as the direct method.

Next we solve the boundary integral equation for the potential where a free-surface
Green’s function is involved. There are two approaches to solve the integral equation; the
first one is to use the constant panel method which is used by Meylan and the second one is
to use the combination of the FEM basis functions and an elementary numerical integration
scheme. In the fourth section we show the constant panel method used by Meylan. This
yields a matrix containing the Green’s function taken at the centre of the panels. Finally
Meylan’s method to couple the water and the plate is shown. In the fifth section we present
a higher order method to solve the plate-water motion directly [Wang & Meylan, 2004].
This simply uses the basis functions of the FEM. This yields a new matrix containing the
Green’s integral operator acting on the basis functions which cannot be solve analytically.
The solution of this integral operations is presented in the fourth section using Gaussian

quadrature.

3.1 Discretization of the Plate

In this section we discretize the plate of arbitrary geometry using a finite number of rectan-
gular panels. For now we regard the panel as rectangular and later in next chapter we shall

use square panels instead of a rectangular ones.

18
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The discretization process is depicted in Figure 3.1.1. The plate of arbitrary geometry
A is discretized by rectangular panels. We note that this discretization only approximates
A in general. However if the plate is rectangular the discretization by rectangular panels
cover it exactly. In any plate the discretization yields p total number of rectangular panels
and q total number of nodes (corers of each panel).

Each panel is of area 4ab and is denoted by A, (1 < d < p). We number the panels
in the following way. We start from the bottom most left one, traverse upwards until the
last panel in the column, and then we move to the column on the right. We do this until we
meet the top right most panel in the plate. The corners of each panel are numbered locally

d d d d
by ¢, ¢{?, ¢{¥, and ¢{*.

3.2 The Expansion of the Plate’s displacement

In this section we present the solution of the plate displacement using the Finite Element
Method. We solve the displacement w (z, y) locally over a panel e where (z,y) € A.. We
do this by expanding it as the sum of FEM basis functions taken at its nodes. Having done

this we obtain an equation describing the displacement for a panel
w(z,y) = Ng(z,y) Wa, (3.2.1)

where Ny is the vector of the basis functions of the Finite Element Method (subsequently

we shall refer this vector as basis vector). It is defined as following

Ng(x)=[ N1 Ny Nz Ny Npp Nog Nag Nsy Ngg Nag Nap Nz |
(3.2.2)
where Nj; (Z,9), Nj2(2,79),and N;3(2,9) (j = 1,2,3,4) are given by
Nj (£,9) =g(L+2;2) (1 +§;9) (2 +3;8 +§; 5 — 2 - §7),
Npa(&,3) = & (1+3;8) (3 +9) (7 - 1), (3.23)
Njs(£,9) = —{(&; + 2) (- 1) (1 +§;9).
(Z,9) is (z/a,y/b) in A4. The basis vector N4 is of dimension 1 x 12. We only consider

square panels by letting b = a. Vector wy is an array of unknown constants of the form
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Figure 3.1.1. The discretisation of a plate of arbitrary geometry by rectangular panels. (a)
The plate is covered by p total number of panels where each panel is denoted by A, and
numbering of d = 1, ..., p is directed by the arrows. (b) Each rectangular panel is of area
4ab and its corners are numbered locally by qu) (y =1,2,3,4). In total a plate has ¢ nodes
which are the corners of the rectangular panels.
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W,d
awl'd

ox

3w1,d

Wa,d
Owad

3w2,d
dy
w3 d

ngyd

oz

611)3’(1

5:
Il

(3.2.4)

Wy,d
Owy g4

8w4,d

with the elements given by

d
Wjqg = w (xj }) :

wia _ 0 (x(-d))
1

ox oz
ow; 4 . d (d)

where xgd) is the (z,y) coordinate of node q](-d) and the constant vector w, has dimension
12 x 1.
For any arbitrary A4 the displacement vector w, of the panel is related to the un-

known displacement vector w for the plate by the nodal equation

Wy = [0], W, (3.2.5)
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where the vector w of has length 3¢ (in accordance to the number of nodes in the plate).

Matrix [o0], is

I~ 3q1—2—3q1
—
000 1 00
0 00 010
0 0 O 0 01
3q2—2—3q2
—_—
1 00 0 0O
010 0 00
0 0 1 0 0 O
[O]d = 3g3—2—3q3
——
0 00 1 00
0 00 010
0 00 0 0 1
39a—2—3q4
—
1 00
010
I 00 1
(3.2.6)

We call matrix [o], the assembler matrix. The assembler matrix has dimension 12 x 3¢
where g is the number of nodes. We note that [0], [0]5 = I} isthe identity matrix of 12 x 12
while >F_, [o]g [0], is a diagonal matrix whose entries are the number of connected panels
for all the nodes. The unknown displacement of the plate w can be obtained from w, by
placing W, at the right location on the plate using [o]g W4

We can retrieve the displacement w (x) where z is enclosed by panel A4 by substi-

tuting (3.2.5) into (3.2.1)

w(x) = Ng(x) Wg,

= Ny (x) [0, W. (3.2.7)

3.3 Solving for the Displacement of the Plate




3.3 Solving for the Displacement of the Plate 23

3.3.1 The variational form of the displacement equation

In order to obtain the equivalent linear matrix-vector equation to the coupled equation we
need to transform the coupled pressure equation (2.2.19) into its variational form by multi-

plying it with 6w and integrating it by parts [Hildebrand, 1965] to obtain [Meylan, 2001]

o[ (w2 |(5) B a0 (35) + (38)]
+ (1 - ay)w?} dx
- i\/aé/qbwdx.
- (3.3.1)

Equation (3.3.1) has to be minimized so that we can obtain the necessary matrices and the
vectors. In the next subsection the variational equation (3.3.1) is discretized from the plate

A into panels A4. The discretized version is then minimized over the basis in (3.2.1).

3.3.2 Minimization of the Discretized Variational Equation

Following the discretization of the plate A into panels A4 we write the area integral term

in the the variational equation (3.3.1) into the sum of integrals over the panels
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and into this we substitute in (3.2.7)

o501 (T2 )" (PN 0) (Pl

r2(1-1 (GTNGQ W)Z (Ze0,9) |

+(1 - a) (Ny(x) [o]y %)*} dx]
NG {Z A ¢ (x) Ny (x) [o]dwx] . (3.3.2)

Notice that [0],, W is independent of z and y, and only N, depends on z and y. Therefore
the derivative operator only applies to N;. We then minimize it with respect to w. This is
done by differentiating (3.3.2) with respect to w.

To differentiate (3.3.2) with respect to vector w, we first denote the product N [0], =

u where the dimension of uis 1 x 3q. Then (3.2.7) becomes

w = uw,
= Z 'tL,;T_EJ,;.
1
where u; and w; are the elements of, respectively, u and w. As we recall from (3.2.5), the

dimension of W is 3¢ x 1. Then we find that any differentiation with respect to vector w

leads to a differential operator which simply is a vector of dimension equal to the

w;
dimension of w. Therefore differentiating scalar w with respect to vector w means that we
. . d
apply the differential operator [ - } to w
W
d dw
—_ i = ,

[ui] )

where the resulting vector [u;] has dimension equal to the dimension of the differential

operator, that is 3g x 1. Since vector u has dimension 1 x 3q then clearly

dw _ {d’j’} _ &7 (3.3.3)

dw d w;

and furthermore u’ = (N, [O]d)T
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By applying the method for (3.3.3) to (3.3.2) we obtain

2 NT 52N *NT ?N;  0°NT 9°N
T d d d d d
b dzz;["]d { /A [( 022 022 >+ ( 52 0 | 02 oz )

oNT A2 oanT A2
+(1—y) (N2 ONa) | (ONg ONa)
0z0y 0zdy 0y? 0y?

+(1 - ay) NgNddx} [0], W
JAg

_ Z\/_Z Nchb (x) i (3.3.4)

In the notation of the FEM the first integral (within the summation over the panels) on the

left hand side of the equation is called the stiffness matrix of the panel
/ O*NT 02Ny 0°NT 9°Ny N 0°NT 02N,
0x? Ox? 0z? 0Oy? oun " e
0°NT 92N, 9°N7T 6°Ny
2(1 - 4 d d
(=) <3m0y amay) +< Oy* Oy ) b

and the second term on the left hand side of the equation is called the mass matrix of the

[Ka

(3.3.5)

panel
m),= [ NINgdx. (3.3.6)
Ag
We may express (3.3.4) as a linear matrix-vector equation describing the displacement of

the plate as a sum over all panels

{5 Z [O]g (K] [o]g + (1 — ) Z [O]T [m]4 [O]d} = z\/_Z [O]d N3 ¢ (x) dx

d=1 d=1 d=1 v Bq
(3.3.7)
Furthermore we can write (3.3.7) simply as
{BK+(1—ay) M}W =F, (3.3.8)
where matrix K
p
K=Y [olg [kl4 [ola (3.3.9)

is the stiffness matrix of the plate, matrix M

M= " [o]j [m], [0, (3.3.10)
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is the mass matrix of the plate, and vector F

p
F:i\/aZ[o]dT/ N7 ¢ (x) dx, (3.3.11)
Ay

d=1

is the forcing vector of the plate due to the water. From equation (3.3.9) [k], is the stiffness

matrix of the panel that we can write as

. T 1 v o
k], = / IN"]3 1 0 |[N"],dx, (3.3.12)
JAa sym

-1

2
with
- 9N,
0x?
0*Ny
O0y?
0°Ny,
| 0z0y |

We notice that in equation (3.3.10) [m], is the mass matrix of the panel that is defined in
(3.3.6).
Equation (3.3.8) is to be solved for the displacement of the plate w. Notice that both

[j\‘]rff]d =

the stiffness and the mass matrices of the panel have dimension 12 x 12. Note that we
purposely write the term involving the potential of the water using F because we will solve
this by two different ways, one was done by Meylan using the constant panel method and
the other uses the basis functions of the FEM. Each of these methods will be shown in the

next section.

3.4 Solving the Plate-Water Motion by the Constant Panel
Method

In this section we describe Meylan’s strategy for solving the boundary integral equation
for the potential and to incorporate it into the displacement equation through the forcing

vector. First we show the constant panel method that is used to solve the forcing vector
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due to the water. Then we show the coupling of the water and the plate. Note that this

procedure appeared in [Meylan, 1997].

3.4.1 Solving the Potential

The integral equation for the potential can be written as

o (x) = @™ (x)+G{a¢(x)+i\/&w(x)}, (3.4.1)
where the integral G f (x) is

Gf (x) = /A G (x;€) f(€) de, (3.4.2)

and f (&) is anarbitrary function. This integral equation has kernel the free-surface Green’s
function (2.3.11) or (2.3.13) evaluated at the surface. Equation (3.4.1) can be solved for

potential ¢ (x) by relation

¢(x) =(1-aG) ' {¢" (x) +ivaGuw(x)}, (3.4.3)

where 1 is the identity operator of the same dimension as G [Meylan, 2001].

Meylan used the constant panel method (also called first order basis function or piece-
wise constant basis function method) to integrate the area integral in the equations for the
potential (2.3.3). The method approximates a function f (&) by its value at the centre of the
panel (of the FEM) and is assumed to be constant elsewhere in the panel. Using this notion

he approximate integral operator G f by expanding it as a finite sum

Gf (xd) = Z/A G (xa;&,) d€ fo, d=1,..,p, (3.4.4)
e=] ¥ 7e

where point x4 = (g4, Y4) is the centre of panel Ay, fo = f(€,), and &, = (&,,7,) is the
centre of panel A.. Then Meylan approximated the area integral of G over panel A, by
taking G to be the value at the centre and constant across the panels. So G is constant as

well as ¢ over the panels

/ ' G (x4:€,) d€é = 4a* G (x4:€,) , (3.4.5)
T
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where 4a? is the area of the square panel. Thus any integral equation of the form G f (x4)

can be written as
p
Gf (xa) = Y 40> G (xz;&.) fe.
e=1
For all Ay, d = 1, ...,p we have a matrix and vector multiplication Gf where matrix G is

defined as ~ ;
G (x1;&1) G(x1;8&,) - GEXUE;@
G (x2;€1) G (x2; €,

G = 4a® ' ' . (3.4.6)

| G (xp3€1) G (xp;&p) |
By the definition of the finite and the infinite depth Green’s functions (2.3.7) and (2.3.13)

singularity occurs whenever d = e (diagonal terms in (3.4.6))However this obstacle can be
avoided by integrating the special functions in G exactly.

Then integral equation (3.4.3) becomes
¢=(1-aG)" {¢""+ivVaGPW}, (3.4.7)

where

¢ = [0 (x4)],
[ is the identity matrix of the same size as matrix G, and P is the matrix that maps W,

from the corners of the panels to the centres of the panels
1 p
A —_
P= = 1 dE_l L2 [o],, (3.4.8)

where [0], is the assembler matrix (3.2.6). Matrix P2 is needed because the displacements
w are taken at the corners of the panels but ¢, ¢'", and G are taken at the centre of the

panels.

3.4.2  Coupling the Water and the Plate

Before we proceed we note that Meylan did not use the term N, in his forcing vector.
Instead he used another mapping matrix to combine the potential into the forcing vector.

Hence we say that Meylan’s forcing vector is equivalent to (but not the same as) ours.
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The application of the potential (3.4.7) to the forcing vector (equivalent to (3.3.11))

gives rise to the following equation for F
F=iy/aP? (I-aG) ™" {¢"" +ivVaGP*W}, (3.4.9)

where P! is the matrix that maps the value of ¢ (the bracketed terms) from the centres to
the corners of the panels. This is because F is defined at all nodes of the panels but the
potential ¢ is defined at the centres of the panels. Likewise P2 matrix P is expressed in

terms of the assembler matrix (3.2.6)

p
PP =44 " [o]; L. (3.4.10)
d=1

Substituting F (3.4.9) into (3.3.8)
{BK + (1 — ay) M} W = iv/aP? (I-aG) ' {¢™ +ivVaGP W} . (3.4.11)
By collecting w on one side of (3.4.11) Meylan obtained the linear equation
{BR + (1 -ay)M+aP?(I-aG) ' GP*} W = iv/aP? (I - aG)™' ¢, (34.12)

that is to be solved for constant the unknown displacement Ww.
Meylan ([Meylan, 1997], [Meylan, 2001], [Meylan, 2002]) has written an extensive
library of codes to solve (3.4.12). Hence we will omit the discussion of his implementation

method.

3.5 A Higher Order method to solve the Plate-water motion.

In this section we present an alternative way to solve the plate-water motion using Meylan’s
piecewise constants area FEM basis functions. The strategy combines the basis vector with
any elementary numerical integration scheme. The proposed method estimates the integral
better than the constant panel method used by Meylan. This is because, instead of taking
the value of the Green’s function at the centre of the panel and assuming it constant across
the element, the Green’s function is calculated at the specified quadrature points in the

panel and, hence, the value varies across the panel. Also the number of unknowns used to
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discretize the potential ¢ is the same as that used to discretize the plate. Coupling these
solutions yields a new matrix representation of the free-surface Green’s function for the

water that is equivalent to the mass and the stiffness matrix for the plate.

3.5.1 Solving for the Potential

Our aim now is to solve the boundary integral equation using the basis function N, (3.2.2).
First we expand ¢ (x) over a panel Az where x € Ay and 0 < d < p. The potential at ¢ (x)

is expressed as a product of the basis vector and a constant vector similar to (3.2.4).
o(x)=Nyd;, x€Ag (3.5.1)

where Ny is given in (3.2.2) and (})d is the vector of constants defined in a similar manner

to (3.2.4)

by = dag | (3.5.2)
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and
09,4 9 [ (@
oxr ﬁd’ (xj )
dy gy~ \ 7
The point xg-d) 1s the coordinate of node qﬁd). Similarly ¢'™ (x) can be approximated by

~In
o™ (x) =Ny, , (3.5.3)
where &Sgn is defined in the same way as (3.5.2) and ¢'™ is the incident wave of the form
(A.13). Similar to displacement vector wy to w, the potential vector for the panel (i)d is

: 2 o : 1 In .
related its plate counterpart ¢ and the incident potential vector d)dn is related to the vector

~ln

¢ by
bs = [0, @, (3.5.4)
b = (b (3.5.5)

Both ¢ and ci)ln have length 3¢. For an arbitrary x € A, we can calculate the potential

¢ (x) using
¢ (x) = Ny (x) [0], ©, (3.5.6)
and approximate the incident potential ¢'™ (x) using

In

o™ (x) ~ Ny (x)[0], & - (3.5.7)

Then we recall the following equation for the potential (2.3.3)

o(x) =9 (x)+ G {a¢(x)+ivaw(x)}, (3.5.8)

where the integral equation of the form G f is given by (3.4.2)

Gf (x) = /A G (x:8) f (&) de.
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Furthermore we substitute the area integral over the plate in (3.4.2) by the sum of all area

integrals over the panels A, 1 < e < p.

P
= G.f(x), (3.5.9)
e=1

where the integral operator G, acting on function f is
- [ ete s0 ae
and £ € A..

For x € A4y we may expand (2.3.3) as
Nydy=Nudy +aG o (x)+ivaGw(x). (3.5.10)

Using (3.5.9) equation (3.5.10) becomes

p p
Nyby=Nad) +2 > Gd(x) +iva Y Gew(x)
e=1

e=1
We further expand the term G, ¢ (x) and G, w (x) by writing ¢ (£) = N, ¢, (using equa-
tion (3.5.1)) and w (€) = N, W, (using equation (3.5.3)), where £ € A, and N, is the basis
vector (3.2.2). We obtain
p p
- ~In 5 . ~

Nidg=Nad, +o > (GaNc) @, +iva Y (GaN) W, (3.5.11)

e=1

e=1
where the integral equation G4 N, is defined as

G4N f G (x; €) N, (&) dt,, (3.5.12)

with x € Az and § € A.. We call A4 the field panel and A, the source panel.
Next we introduce the notion of inner product that will be used to solve (3.5.11). We

define an inner product between vector functions f (x) and g (x) , where x € Ay, to be

(F,8), = ,f 3 () () oy
J Ay

where T denotes the transpose. Thus if we take the inner product of (3.5.11) with N, (x)

we obtain

(Ng,Ng)y by = (Ng,Na), &4 +&Z N, (Gae No))y detiva Z Ny, (Gae Ne))y W
e=1
(3.5.13)
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We notice that

(Ng,Ng), = N7 (x) Ng(x) dxq
A

= [m]d‘

Following this we present a similar matrix for (Ng, (Gg Ne)) . We call this matrix the

Green's matrix and it is defined in the following way.
[g]df‘ = (Nds (Gde Ne))d (3514)

where Gye is either (2.3.7) or (2.3.13). Substituting (3.3.6) and (3.5.14) into (3.5.13) gives
us the matrix representation of the boundary integral equation for the potential over a

panel
p p
]y g = [m], ¢4 +a D [9lae B +iva ) [glye We (3.5.15)
e=1 e=1

Finally we assemble the Green’s matrix for a panel (g], into the Green’s matrix for
the entire plate by substituting into (3.5.14) W,, ¢,, and (};n (these relationships are defined
in (3.5.5), (3.5.4), and (3.2.5)).

], o)y & = [ml; o], ™ + 2> [g),e [0l @+ iva Y (gl [o]. W

Multiplying both sides by [o]dT then taking the sum over all d (1 < d < p) gives us

Slh [yl d = S lof mly [y @ +ad ) Y gl lo]. &
d=1 d=1 d=1 e=1
+iva Y (o] > gl o], W. (3.5.16)

The terms involving [m], are recognized to be the mass matrix of the plate. We give similar

definitions for all the terms involving [g],. and write (3.5.16) as
Md=Mo +aGae+i/aGw, (3.5.17)

where

G=> [z > (9l [l (3.5.18)

is the Green’s matrix for the plate.
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3.5.2 Coupling the Plate and the Water

Assuming that x is enclosed by panel A; we can substitute equation (3.5.1) into the forcing

vector (3.3.7) (this is right hand side of (3.3.8)) to give us

-

P
F = 2\/52 [0]3 [m], [0, &,
d=1
= Mé.
We substitute F into the displacement equation (3.3.8)
{BK+ (1 —ay) M} W =i/aMé. (3.5.19)

Together with the plate displacement equation (3.5.19) we have two equations which we
solve simultaneously for either the displacement W or the potential ¢. To solve for W we
write (3.5.17) as

é = (M - aG)™ {M ¢ +ivaG w} . (3.5.20)
so that we can substitute this into (3.3.8). This gives us the linear equation

{BK+ (1-ay)M+oM (M- aG) ' G} % =iyaM (M —aG) ‘M ", (3.521)

whichis solvable for w. To obtainthe potential @ we only need to substitute W into (3.5.20).

Note that equation (3.5.21) is equivalent to Meylan’s equation (3.4.12)
{AK+ (1 — ay) M+ aP? (I - aG) 'GP} W = iv/aP? (I - aG) ™' ¢™.
Similarly to solve for @ we write (3.3.8) as
W =iva (BK+ (1-ay) M)"'M¢. (3.5.22)
We then substitute (3.5.22) into (3.5.17) to obtain the following linear equation

(M- 0G+aG (BK + (1—ay) M)"'M) =Mo" (3.5.23)

3.5.3 Numerical Scheme to Solve the Green’s Integral Equation

The integral equation (3.5.12) and the inner product (3.5.14) will be solved numerically

using Gaussian quadrature to approximate integrals.
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We approximate the integral in (3.5.12) using the sum in the following form

GuN. (x) = / G (x;€) N (€) dé

P
> v;G (x%:€;) Ny, (3.5.24)
j=1

where N ; = N (&;), sets {&;} and {v;} are, respectively, the sets of @ integration
points over A, and their corresponding weights. Similarly the inner product (3.5.14) is
calculated using

[9)ee = Na (x) (Gge Ne) dSx

Jay
Q

= ) uiNg; Gae Ne (%)) (3.5.25)

=1
where Ny, = Ng(x;), {x;} and {u;} are sets of P integration points over A, and their

corresponding weights. Substituting (3.5.24) into (3.5.25) gives us
Q P
[g]de = Z u; Ng; Z vnGg Ng s (3.5.26)
i=1 j=1

where G; = G (x,€;) ,xi € Ag,and §; € A,.

For the case where |x — &| = 0 we have to solve equation (3.5.26) using sets of
distinct integration points {x;} and {£,} and, hence, distinct {u;} and {v;} . This is done
to avoid the singularity that occurs whenever x; coincides with §;. For the case where d # e
we employ the same set of integration points and their corresponding weights for (3.5.26).

We summarize the cases of (3.5.26) in vector notation

- N]G]Ng. ifd:e,
where G; is a () x P rectangular matrix of the form
J G Giz = « = Gip
Ga1 G
G, = (3.5.28)

GQI GQP .
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and G is a @) x () square matrix of the form

- G
G2

Gor

Gr2
G22

The matrix N isa 12 x ) matrix of the form

T 3
Ny =[wNg; upNg,

and the matrix Nj is a P x 12 matrix of the form

N, =

where vector N are defined in (3.2.2).

[ (%1 Ne,l i
(%)) Neyg

| U3 Ne,P _

Gig T

(3.5.29)
Goq
uvNZ, ], (3.5.30)
, (3.5.31)

Upon solving the Green’s matrix for the panel (3.5.27) we can obtain the Green’s

matrix for the plate by substituting it into (3.5.18). Unlike Meylan’s method we apply

the Green’s matrix G directly to the potential equation (3.5.17) without the help of any

transformation matrix.



Chapter 4
Numerical Implementation and Results of the

Higher Order Method

In this chapter we implement the methodology and the matrices of the higher order
method. We omit the implementation of Meylan’s method because this has been done and
results have been presented in [Meylan, 2002]. The first section of this chapter is a recap of
the standard FEM matrices that we use. The second section contains an extensive explana-
tion on how we implement the Green’s matrix. The third section contains the comparisons

with Meylan’s results, convergence tests, and results for the displacement.

4.1 Implementing the Mass and the Stiffness Matrices

In this section we implement the matrices of the FEM given in Chapter 2. We build the
plate’s mass matrix M and stiffness matrix K from the local mass and stiffness matrices
(3.3.6) and (3.3.5) that represent the mass and the stiffness of a panel. Both matrices are
constants and can be found in Petyt [Petyt, 1990]. However, due to the difference in the
numbering of the nodes, we define a slightly different set of matrices.

The mass matrix for panel Ay, [m], is

myy M2 Mz My
IFN-LEZ i may :TH.22 I.Hg;; Moy
6300 | ma1 M3z M3z M3

Mgy Ty M4z TNy

4.1.1)

37
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where the diagonal submatrices are

[ 3454 Sym
o2, 3,
mip; = 2 4
922 252a 320a2
_—a _—— —
2 4 4
[ 3454 Sym ]|
02, 320,
m33 — 2 4 5
922 252a 3200,2
—a — —
2 4

and the symbol sym indicates that the matrix is symmetric about the diagonal term. The

sub-diagonal submatrices are

[ 948

1226 —b
2
548, 240 ,
mp = | T2 Tg°
398 168
——a ———ab
2 4
i 232
394 —b
2
232, 120,
ma = | T3 Tg?
232 112
—a —ab
2 4

398
e
2

My =

mg; =

928

==y

2
922

—a

2

320,
4

252
—ab
4

320
R V4
4

252
B,

4

398
—b
2

160,
4

@ab
4

Sym

320

2

—a

4

Sym

2
20,

4

548

a
2
168

4

240 ,

——a

4




m32

may3
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394 -2 -
120 7.2

26 -0 -

2—32a —%ab -
[ 548
—b
1226 >
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The super-diagonal terms of (3.3.6) are the transpose of the sub-diagonal ones

T . wT
miy = ma, Mmy3 = M3y, Mg = My,
T i
Mo = mgza Ma4 = My, M3q = Myg.
Likewise the stiffness matrix for panel Ay [£], is
kii ka1t kst ka
], = 1 ko ko koz ko
— e )
47 4(1—v2)ab | ka1 ks2 kg ks
ky ka2 kaz kaa
where the diagonal submatrices are

T (b2 a® 2

| _[22—22+%(1+41/)]a

I, ky Iz,
I3 kyy I3,
]I4 kll ]Lh

a? 1 4 q?
[2§+5(1+41/):lb |i§b—2+

4

T (1-— l/)] b?

—vab

(4.1.2)
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and the submatrices corresponding to the first 3 columns are

T b a? 2 a* 1 o1 |
a® 1 2a°
— — = {144} b s ()| ¥
ko = {bQ Gt ")} {31)2 5 1 ”)J 0
¥ o1 20 1 5
b? a? 2 a? 1 b? 1
a? 1 2 a? 4
= o -2 21— b2
kg = [b? HE +4”)} ’ [3 AT ”)] !
b? 2 )
- {2012 +5(1—l/):|a 0 |:3§ E(l—l/)J(l
P b2 a? 9 a? 1 b? 1
a? 1 1a? 1 9
b? 1 1 b2 1
[E—g(l_l/)}a 0 [3a—2 ﬁ(l—l/):l a2
with transformation matrices
1 1 -1
HQZ 1 y H3: —1 s H4= l
-1 1 1

The submatrices of [k|, corresponding to the remaining columns on the sub-diagonal side
are
ksp = Ip kqy I, ka2 = I3 k3 I3, ka3 = Iz ko L.

To assemble both matrices [m], and [k], to form K and M we use equation (3.3.9)
and (3.3.10). However we bypass the process of creating the assembler matrix [0], given in
(3.2.6). The procedure to assemble is as follow. We take the elements of the panel matrix
in a block of 6 x 6. Each of these blocks relate two adjacent nodes with plate numbering

q§d) and q,(cd) in A4. We then add this block to the plate matrix at row and column positions
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given by 3q§-d) —2to 3q§-d) and 3q,(cd) —2to 3q,(cd). This assembling procedure is described
in Figure 4.1.1.

4.2 Implementing the Green’s Matrix

In this section we implement the Green’s matrix given in subsection 3.5.3. As for the mass
and the stiffness matrices we cut short the process of building the Green’s matrix in (3.5.18)
by excluding the assembler matrix [0], and using the diagram described by Figure 4.1.1.
Then we are left to find (g],, using (3.5.27) and hence G, and G, given by (3.5.28) and
(3.5.29).

We generate matrix (G, once only and use it for the entire plate. This is because
all panels are identical and discretized in the same way. On the other hand G, must be
generated individually for each combination of distinct A; and A.. Therefore the process
of generating [g],, for distinct panels is very costly because we need to compose a new G,
for different Ay and A.. In total we generate G, p? times. In order to cut down the number
of times we compose G2 we use the following method. For a G, that acts upon field panel

A4 and source panel A, we call this G 4.. Then we notice that
G‘z‘("d = G“Iz‘d?g'

Therefore for any combination of field panel A; and source panel A, we may skip the
reverse case (the field panel A, and the source panel A;). This enables us to cut the number
of computing G, . 4 from p? to % (p + 1) p (obtained from the arithmetic sum of p).

In the implemented code we generate a composite matrix that contains all the Gg 4,

with field panel A, and source panel A, d+ 1< e < p.
Goa = [ Goga+1 Gogare - Goap |- 4.2.1)

We do this because the computer calculates the Green’s function described in (2.3.11) and
(2.3.13) more efficiently if the variables supplied are stored in array-form rather than as

individual numbers. The column dimension of the composite matrix (4.2.1) shrinks as we
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Figure 4.1.1. The distribution diagram of a panel matrix into the matrix for the plate.
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traverse each Ay from d = 1 until d = p. The maximum column dimension is p X @
(d = 1) and the minimum is @) (d = p). However the row dimension is fixed at ) (the

number of integration points over Ay).

4.3 Results

In this section we test and present the results of our method. First we compare the solution
by Meylan’s method (low order) to our results (higher order). Then we present the con-
vergence tests for the method based on the number of integration points and the number
of panels. Finally we show the displacement the single floe model computed by the higher

order method.

4.3.1 The Comparison Between Meylan’s Method and the Higher
Order Method

First we test the convergence of Meylan’s method and the higher order method using dif-
ferent discretization schemes. Separately we also test the convergence of our method using
different discretization schemes. To show that the two methods agree and that our method is
of higher order than Meylan’s method we compare their errors for different discretization.
For all these tests this is done by comparing the error in the displacement using different
number of panels. The error between the plate with n panels and one with m panels is

given by the following error measurement

Enm = / |wy, — -w,,,,|2 dSy. (4.3.1)
Ja

We use a square plate of area 16 with stiffness 8 = 0.01 and mass v = 0. The
wavelength is A = 2 and the direction of propagation is § = 7 /6. The incident amplitude
is A'™ = 1. The water depth is infinite. Table 4.3.1. shows the error function E,,, for

Meylan’s method using 100 to 1600 panels compared to 2500 panels.
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n m Erm

100 | 2500 | 171505 1§~
400 | 2500 | 7.3985 x 1074
900 | 2500 | 6.5394 x 1073
1600 | 2500 | 5.1326 x 1073

Table 4.3.1. The error E,,, in the results by Meylan’s method using different number of
panels. Column n represents the varying number of panels and column m is the reference
0f2500 panels. The plate used is a square with area 16, stiffness 3 = 0.01, and mass y = 0.
The wave parameters are A = 2 and § = 7 /6. The table shows that the result converges as
we increase the number of panels used to discretized the plate.

n m Eom

100 | 900 | 6.0633 x 1014
225 | 900 | 1.3738 x 10~*
400 | 900 | 3.0189 x 10>
625 | 900 | 4.2500 x 106

Table 4.3.2. The error F,,, in the results produced by the higher order method using dif-
ferent number of panels. Column n represents the varying number of panels and column m
is the reference of 900 panels. The plate used is a square with area 16, stiffness 5 = 0.01,
and mass y = 0. The wave parameters are A = 2 and § = 7/6. The table shows that the
result converges as we increase the number of panels used to discretized the plate.

m n /.

100 [ 900 | 1.3930 x 102
400 | 900 | 1.0291 x 10~3
900 | 900 | 3.6510 x 10~*
1600 | 900 | 2.2061 x 10~*
2500 | 900 | 1.5050 x 10~*

Table 4.3.3. The error E,,, in the results by Meylan’s low order method versus the results
by the higher order method. Column n represents Meylan’s method that uses various num-
ber of panels and column n is the reference that is the higher order method with 900 panels.
The plate used is a square with area 16, stiffness 4 = 0.01, and mass 7y = 0. The wave
parameters are A = 2 and § = 7 /6. The table shows that the accuracy using 2500 pan-
els in Meylan’s method is equivalent to the accuracy using 900 panels in the higher order
method.
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We investigate the accuracy of our method compared to Meylan’s method. Table
4.3.3. shows the comparison between the results computed using Meylan’s method with
100 to 2500 panels and the higher order method with 900 panels. This is done by taking the
absolute error between Meylan’s result with the result from the higher order methods with
900 panels. From Table 4.3.3. we see that the higher order method only needs approxi-
mately half the number of panels used in Meylan’s method to achieve the same accuracy.

Finally we show the plate displacement produced using Meylan’s method and the
higher order one. Figure 4.3.1. is the comparison in the displacement w/A of a square plate
with area 16 (L = 4) computed using the two methods. The stiffness and the mass of the
plate are, respectively, 5 = 0.01 and v = 0. For Meylan’s method the plate is discretized
using 900 panels. For the higher order method the plate is discretized using 100 panels
and the numerical integration in each panel is done using Gauss-Legendre quadrature with
@ = 16 and P = 16, with exception that if d = e then P = 64. The parameters for the
incident wave are length A\ = 2 (k = ) and direction of propagation § = w /6. The water
is infinitely deep. From the Table 4.3.3. and Figure 4.3.1. we see that our method agrees
with Meylan’s method.

4.3.2  The Convergence of the Higher Order Method

Next we show the effect of the quadrature points and the panels on the accuracy of the
solution by the higher order method. We first use different number of quadrature points in
the Gauss-Legendre numerical integration scheme. Then we use the Kochin’s function to
show the effect of panel size on the solution.

The first test for the convergence of the higher order method is done by varying the
number of quadrature points used to integrate the area of the panel. We use the error Egp
(4.3.1) where wg and wp are the displacement calculated using various number of panels
with @ and P number of quadrature points. For this test the square plate areais 16 (L = 4),
its stiffness is 4 = 0.01, and its mass is v = 0. The wavelength is A = 2 (kK = =) and the

waveangle is § = 7/6. The incident amplitude is A™™ = 1. Table 4.3.4. shows the error
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Figure 4.3.1. The comparison of the plate’s displacement generated by Meylan’s method
with 900 panels (right hand side) and the higher order method with 100 panels (left hand
side). The plate is of stiffness 3 = 0.01 and mass v = 0. The incident wave has length
A = 2 and propagates at waveangle § = 7/6. The water is infinitely deep.
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Egp versus the number of panels. From this table we see that increasing the number of
Gaussian quadrature points does not significantly increase the accuracy of the solution.

The second convergence test is performed using five different shapes. Figure 4.3.2.
shows the geometries of the plate used for this test and for later results. We notice that
except for the square plate the discretization by square panels only approximates the plates.
For shapes that are not square the size of the panels affects the shapes greatly. An example
is shown in Figure 4.3.3. where an isosceles triangle is discretized using panels of different
sizes. We can clearly see that the composition of panels in Figure 4.3.3. (a) and (b) produce
different shapes though both approximate the same triangle.

We intend to investigate the effect of discretization of the shapes by square panels
since we can only approximate a shape, such as a triangle, by square panels. We use the

Kochin’s function defined as
H(r)= / {ka) (x) + iVkw (x)} exp (tk (x cos T + ysinT)) dSy, (4.3.2)
Ja

[Wehausen & Laitone, 1960]. The scattered energy is found by multiplying the absolute
value squared of the Kochin’s function H (7) with a constant. We show |H (7)| for a square,
a triangular, a circular, a parallelogram, and a trapezoidal plate using different number of
panels. Four different stiffness parameters are used to show the effect of 3 = 0.0025,
0.005, 0.01, and 0.02. For this test all plates have uniform area of 16 and mass v = 0. The
incident wave of amplitude A’™ = 1 propagates at direction § = 7/6 and the wavelength
ISA =2

Figure 4.3.4., Figure 4.3.5., Figure 4.3.6., Figure 4.3.7., and Figure 4.3.8. contain
the plots of the absolute value of Kochin’s function for, respectively, a square, a triangle,
a circle, a parallelogram, and a trapezoid shape plate with stiffness specified by 3. We
see that as we increase the number of panels we achieve convergence. Moreover we find
that for shapes other than the squares the discretization using 32 panels is insufficient to
produce accurate result. This is shown in Figure 4.3.5. to Figure 4.3.8. and the last shows

the clearest.
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number of panels Egp
@, P =16 Q,P=2 Q, P =36 Q. P=49 QP =064
100 6.0633 x 10~% | 5.7995 x 10~* | 4.3308 x 10~* | 3.4487 x 10~4 3.2671 x 10~
400 3.0189 x 10~° | 3.0101 x 10~° | 2.1483 x 10~° | 1.7296 x 10~° 1.6292 x 109
900 2.8856 x 1078 | 9.7444 x 1078 | 1.5016 x 108 | 4.3800 x 1071° | 0

Table 4.3.4. The error Egp showing the convergence of the higher order method using
various number of panels versus number of quadrature points. The referencing result uses
900 panels and 64 quadrature points. The area of the square plate is 16, its stiffness is
B = 0.01, and its mass is v = 0. The wavelength is A = 2 and the waveangle is 7 = 0.
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Figure 4.3.2. The diagram showing the five geometries of the plate shapes that will be used
to to illustrate the subsequent examples using the higher order method. The direction of the
incident wave is shown in Figure 2.1.1.
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@ + (b)

Figure 4.3.3. An illustration of the effect of panel size on approximating an isosceles trian-
gle. The size of the panels in (b) are double from the ones in (a).
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Figure 4.3.4. The absolute value of the Kochin’s function H (7) as a function of the angle
7 for a square plate of area 16, mass v = 0, and given stiffness. The number of panels used
are 32 (dotted line), 64 (broken line), 128 (chained line), and 256 (solid line). The incident
wave of unit amplitude has wavelength A = 2 and waveangle = 7/6. The figures show
the energy scattering around the square plate for given stiffness constants (.
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Figure 4.3.5. The absolute value of the Kochin’s function H (7) as a function of the angle
7 for a triangular plate of area 16, mass v = 0, and given stiffness. The number of panels
used are approximately 32 (dotted line), 64 (broken line), 128 (chained line), and 256
(solid line). The incident wave of unit amplitude has wavelength A = 2 and waveangle
6 = m/6. The figures show the energy scattering around the triangular plate for given
stiffness constants 3.
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Figure 4.3.6. The absolute value of the Kochin’s function H (7) as a function of the angle
7 for a circular plate of area 16, mass v = 0, and given stiffness. The number of panels
used are approximately 32 (dotted line), 64 (broken line), 128 (chained line), and 256 (solid
line). The incident wave of unit amplitude has wavelength A = 2 and waveangle § = /6.
The figures show the energy scattering around the circle plate for given stiffness constants
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Figure 4.3.7. The absolute value of the Kochin’s function H () as a function of the angle
T for a parallelogram plate of area 16, mass v = 0, and given stiffness. The number of
panels used are approximately 32 (dotted line), 64 (broken line), 128 (chained line), and
256 (solid line). The incident wave of unit amplitude has wavelength A = 2 and waveangle
6 = 7 /6. The figures show the energy scattering around the parallelogram plate for given
stiffness constants £.
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Figure 4.3.8. The absolute value of the Kochin’s function H (7) as a function of the angle
7 for a trapezoidal plate of area 16, mass v = 0, and given stiffness. The number of
panels used are approximately 32 (dotted line), 64 (broken line), 128 (chained line), and
256 (solid line). The incident wave of unit amplitude has wavelength A = 2 and waveangle
6 = /6. The figures show the energy scattering around the trapezoidal plate for given

stiffness constants 3.
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4.3.3 The Displacement of the Plate

Finally we present the results from applying the higher order method to calculate the re-
sponse of the plate due to the water wave forcing. The results are based on five plate shapes
floating on water of depth H = 1/64, H = 1/16, H = 1/4, and H — oc. Uniformly all
plates have area 16 (L = 4), stiffness 3 = 0.01, and mass v = 0. Each is discretized with
approximately 100 panels. The integration over a panel is done using 16 Gauss-Legendre
quadrature points. The incident wave has fixed amplitude A’™ = 1, wavelength A = 2 (i.e.
the depth of water does not affect the wavelength), and waveangle is § = 7 /6. We do these
so that we can clearly see the affect of varying the water depth.

We choose to plot the result in terms of the plate displacement because the interaction
between the water and the plate can be observed easily this way. Clearly the potential can be
obtained in the same way as the displacement. Figure 4.3.9., Figure 4.3.10., Figure 4.3.11.,
Figure 4.3.12., and Figure 4.3.13. show the real part of the displacement of, respectively,
a square, a triangle, a circle, a parallelogram, and a trapezoid. All are calculated using the
specified water depth.

We see from Figure 4.3.9., 4.3.10., 4.3.11., 4.3.12., and 4.3.13 that the depth of the
water influences the wave frequency and also the wavelength. We find that the deeper the
water the higher the frequency of the wave and therefore the shorter the wavelength. Notice
that waves with short wavelength ‘notice’ the plate and hence, as shown in the figures, the

displacements of the plates vary significantly for deep water.
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Figure 4.3.9. The displacement of a square plate with area 16, stiffness 3 = 0.01, and
mass v = 0 floating on water of given depth. The plate is discretized using 100 panels.
The area integral over the panel uses 16 quadrature points. The incident wave of unit
amplitude and length A = 2 propagates at angle § = 7/6. The figures show that waves
with higher frequency (deeper water) affect the plate’s displacement more than waves with
lower frequency (shallower water).
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Figure 4.3.10. The displacement of a triangular plate with area 16, stiffness 3 = 0.01, and
mass v = 0 floating on water of given depth. The plate is discretized using 105 panels.
The area integral over the panel uses 16 quadrature points. The incident wave of unit
amplitude and length A = 2 propagates at angle § = 7 /6. The figures show that waves
with higher frequency (deeper water) affect the plate’s displacement more than waves with
lower frequency (shallower water).
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Figure 4.3.11. The displacement of a circular plate with area 16, stiffness 3 = 0.01, and
mass v = 0 floating on water of given depth. The plate is discretized using 93 panels.
The area integral over the panel uses 16 quadrature points. The incident wave of unit
amplitude and length A = 2 propagates at angle § = 7/6. The figures show that waves
with higher frequency (deeper water) affect the plate’s displacement more than waves with
lower frequency (shallower water).
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Figure 4.3.12. The displacement of a parallelogram plate with area 16, stiffness 3 = 0.01,
and mass v = 0 floating on water of given depth. The plate is discretized using 110 panels.
The area integral over the panel uses 16 quadrature points. The incident wave of unit
amplitude and length A = 2 propagates at angle § = 7/6. The figures show that waves

with higher frequency (deeper water) affect the plate’s displacement more than waves with
lower frequency (shallower water).



4.3 Results 61

24 H=1/64 21 H=1/16
B 2 o
: 2"

2 ]
3

2 H=1/4 24
3z z
1 04 750
o (04

24 2

3 -] 3

Figure 4.3.13. The displacement of a trapezoidal plate with area 16, stiffness 5 = 0.01,
and mass v = 0 that floats on water of given depth. The plate is discretized using 116
panels. The area integral over the panel uses 16 quadrature points. The incident wave of
unit amplitude and length A = 2 propagates at angle § = /6. The figures show that waves

with higher frequency (deeper water) affect the plate’s displacement more than waves with
lower frequency (shallower water).



Chapter 5
An Infinite Line-Array of

Periodically-Arranged Identical Plates

In this chapter we explain the method to calculate the hydroelastic response of an
infinite line-array of periodically-arranged identical plates on infinitely deep water. We are
motivated by the scattering of waves by ice floes. The description of the line-array and its
resemblance to the diffraction grating from optics are given in the first section. The second
section contains the application of diffraction theory (Floquet’s theorem) to the coupled
line-array of plates and water motion. This yields a new free-surface Green’s function,
which later we will call the periodic Green’s function. The third section contains the far-
field representation of the periodic Green’s function. We give two representations, one in
the spatial domain and one in the spectral domain. The last section provides the recipe to

accelerate the convergence of this Green’s function.

5.1 The Application of Diffraction Grating

In this section we explain the physical meaning of an infinite line-array of periodically-
arranged identical plates. We will relate this line-array to the diffraction gratings in optics.

We introduce an infinite line-array of identical plates that spans across the y-axis
from —oo to oo. This composition of plates is depicted by Figure 5.1.1. The plates are
separated at a uniform distance. We choose arbitrarily a plate Ag and confining it between
a pair of artificial partitions at y = —{/2 and y = [/2. We repeat this for each plate. Thus
for plates with centres located respectively at (0,y + (m — 1)) and (0,y + ml) they are
separated by partitionaty = (2m —1)1/2,m=...—2, —1, 0, 1, 2, .... We call the region

62
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between a pair of partitions a channel and the empty region unoccupied by the plates a gap

(denoted by b).

We refer to the plates other than A as the images of Ag. Each of them is labelled
by A,,. We have an infinite number of images. Note that such arrangement of plates
is analogous to the diffraction grating in optics, in particular a two-dimensional periodic
(surface) grating. However since the grating is only periodic along the y-axis from —oo to
oo and is not periodic in the z direction this simplifies our problem to a one dimensional

periodic grating. Moreover each of the plates are confined within a channel of width {.

5.2 The Application of the Floquet’s Theorem to the Periodic
Grating

In this section we apply the theory from the diffraction gratings to the infinite line-array
of periodic plates. We use the Floquet’s theorem to describe the scattering by the periodic
grating. Floquet’s theorem states that: for a given incident wave whose direction is inclined
at angle 6 from the z-axis the waves scattered by such grating are periodic with periodicity
equal to the width of the channel [ [Scott, 1998]. Thus the potential and the displacement
from one plate to another differ only by a phase factor.

We suppose the potential under an arbitrary plate Ag is given by ¢ (Xg), Xg € Ao.
Using the Floquet’s theorem the plate A, in the channel next to the one that confined Ay
has potential

¢ (x1) = ¢ (xo) €
and displacement
w (x1) = w (xg) €
where x; € A,
o = ksinb, (5.2.1)
and 6 is the angle of incidence. Clearly the phase difference is 0/ = klsinf. The phase

difference reaches the minimum when § = —x/2 (i.e. sinf = —1) and it reaches the
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Figure 5.1.1. The depiction of the periodic surface grating that represents the array of iden-
tical floes.
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maximum when 6 = 7/2 (i.e. sin @ = 1). This implies the phase difference must be
—kl < ol < kI,

and thus [Linton, 1998]
—-k<o<k.

Hence, regardless of the direction, the potential for x,,, € A, is
¢ (%m) = ¢ (xo) €™, (5.2.2)
and similarly the displacement is
w (Xm) = w (Xxo) et (5.2.3)

where xo € Ag and x,, € Ap,,. We aim to solve the periodic functions ¢ (x;) and w (x;),
xj € Aj. We apply the same BEM scheme to solve for ¢ (x;). This is done by writing it
into a boundary integral equation similar to (2.3.3).
¢ (x;) = ¢'™ (x;) Z / G (x5:€,) ko (£,) +iVEw (€,,)| d€n (5.2.4)
m=—0o0
where G (x;; €,,,) is the free-surface Green’s function (2.3.13) with the source point §,,, =

(€o,m9 + ml) and (&y,n) € Ap. Using (5.2.2) and (5.2.3) the following is true

[ G x], (&m) dﬁm :A G(xj;gm) f (50) dgm eimol'

Thus by writing ¢ (x;) = ¢ (xo) €7 (5.2.4) becomes

G')(Xn) eliol — !n 1ja'|'+ Z G [AO + 1\/—11‘.} :[ mm!! (5.2.5)

m=-—oo

where

Gl (x)= [ Glxsikn) fl6o) deme™.
Note that (5.2.5) is a Fourier seriesA that represents the spectrum of the scattered waves.
Moreover the subscript m (or 7) indicates the order of the diffraction. For the time being
our periodic line-array has an infinite diffraction order. Later we will show that we can
truncate the order into a finite one in order to find the diffracted waves. The diffraction

orders are crucial to determine these waves.
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We are interested in the terms corresponding to A because the scattering due to this
order dominates the scattered wave spectrum (5.2.5) [Scott, 1998]. We let j = 0 and drop
the subscript 0 altogether to give us the boundary integral equation for the potential of the

water under the periodic line-array of plates
¢ (x) = ¢'" (x) + kGp¢ (x) + iVEGpw (x), (5.2.6)

where the integral operator Gp acting on function f (x) is

Grf (x) = fA Ge (x;€) f (&) dt, (5.2.7)
with kernel
Gp(x:€)= > G(x¢,) ™, (5.2.8)

where G (x; €,,) is the free-surface green’s function. We call (5.2.7) the periodic Green’s

integral equation with the kernel (5.2.8) the near-field periodic Green's function.

5.3 The Far-field Approximation of the Periodic Green’s
function

Unlike the single plate problem where the response of the plate is the interest, for the
periodic line-array problem we are interested in calculating the scattering by the line-array.
Hence in this section we present the approximation of the Green’s function at the far field.
This is particularly useful to calculate the scattered waves.

At large distance from the infinite line-array of plates, the field point can only ‘vary’
in the x—direction (this is because the y—direction has been covered by the infinitely long
string-like array of plates). When |z — &| — oo we may use the asymptotic approximation

of'the Green’s function
ik
G (x;€) = —= Ho (k|x — &), (5.3.1)
([Abramowitz & Stegun, 1964], |Linton, 1998], [Jorgenson & Mittra, 1990]). The details
of (5.3.1) is given in Appendix D.
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Substituting (5.3.1) into (5.2.8) gives us the far-field periodic Green'’s function

G (oiE) = -2 Ho (k (X2 + Y,ﬁ]%) gimal (5.32)
where
X = z— 65
Y,, = Y—ml=(y—n)—ml

Both expressions (5.2.8) and (5.3.2) are also known as the spatial representation of the
periodic Green's function.

We transform the periodic function (5.3.2) in the spatial domain into its equivalent
function in the spectral domain using the Fourier transform plus the Poisson transforma-
tion ([Linton, 1998], [Jorgenson & Mittra, 1990], [Singh et al., 1990]). The procedure is

described in Appendix D. The result is the spectral representation of the periodic Green’s

function
Gp (x;€) = —% i f———~—3_[!m!;r|:wnly~ (5.3.3)
where T
Om =0+ 21;”. (5.3.4)
and |

b=

Um = [(Tg. = ’I'z]
= —i[k -2, (5.3.5)

We call 7, the propagation constant in the y-direction and iU, the propagation constant

in the z-direction. Expression (5.3.3) is also known as the Fourier Transform of (5.3.2).

5.4 Accelerating the periodic Green’s function

In this section we present a method to accelerate the convergence of the periodic Green’s

function. We recap the discussion of the periodic Green’s function by recalling the three
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crucial representations of the Green’s function. The first one is equation (5.2.8), the spatial
representation of the periodic Green’s function in the near field. For | X| — oo we have the
second spatial representation for the periodic Green’s function (5.3.1) which now is in the
far field. Finally (5.3.3) is the spectral representation of the periodic Green’s function.

The near-field periodic Green’s function (5.2.8) converges very slowly for any com-
bination of source and field points [Jorgenson & Mittra, 1990]. The spatial representation
of the far-field periodic Green’s function (5.3.1) converges slightly better than the near-
field one for | X| — oo but becomes slow-convergent like (5.2.8) as it approaches | X| = 0
[Linton, 1998]. On the other hand the spectral representation of the periodic Green’s func-
tion (5.3.3) is rapidly converging as we increase m provided that | X| # 0. However the
spectral form becomes slow-convergent as it approaches | X'| = 0 and, in some cases, it fails
to converge [Jorgenson & Mittra, 1990]. Not that, for | X| ~0, the far-field periodic Green’s
function is not a valid approximation. Nevertheless this does not imply the invalidity of the
accelerated Green’s function.

The reason why the two domain representations of the periodic Green’s function
behave in such a way is because the convergence of the spatial domain representation
depends on the convergence of its asymptotic form while the spectral domain represen-
tation depends on its singularity in the spatial domain. We notice that the asymptotic
form of the spatial domain representation of G'p is our far-field periodic Green’s function
(5.3.1). Therefore, to achieve faster convergence, we must remove this asymptotic behav-
iour [Jorgenson & Mittra, 1990]. This is done by the Kummer’s transformation[Singh et al., 1990].

We also observe that the spectral representation of the periodic Green’s function
(5.3.3) is singular for U,, = 0. Yet this is inevitable in the spatial representation of the
far-field periodic Green’s function (5.3.1), where this spectral form originated. This is
why the far-field G, (5.3.1) is slow-convergent everywhere in the spatial domain. Con-
versely the far-field G,, is singular at | X'| = 0 (with the understanding that |Y" + ml| — oo
since the line-array is infinite). This implies that its spectral representation (5.3.3) is slow-
convergent at this point. However this slow-convergent problem can be avoided by slightly

moving the field points. This will be shown as we work through the accelerating process.
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We now apply the Kummer’s transformation [Singh et al., 1990] to accelerate the
periodic Green’s function. The transformation is performed in the following way. Symbol-
ically we represent the slowly convergent near-field periodic Green’s function (5.2.8) by a

function that depends on the number of terms in the summation m

oo

Gp (x;€) = Z s(m). (5.4.1)

m=—00

Then we remove its asymptotic behaviour by subtracting it from the summation and add it
back as a different summation. An asymptotically equivalent function for s (m) is denoted

by § (m). The result of extracting and adding back the asymptotic part is

oo oo

Ge(x;6)= ) [s(m)—3(m)]+ Y §(n).

m=—00 n=—00

The first summation now converges faster everywhere in the spatial domain since we have
removed the asymptotic behaviour. The second summation is accelerated by replacing the
function § (n) with its spectral representation which is highly convergent
Ge(x;€)= ) [s(m)—s(m)]+ Y S(n), (54.2)
where S (n) is the Fourier transform of § (n) ([Singh et al., 1990], [Jorgenson & Mittra, 1990]).
As we mentioned above, the problem that arises from (5.4.2) is the fact that the
second summation converges very slowly when |X| = 0. In order for S (n) to converge
rapidly we must avoid | X'| = 0. This is done by moving the field point by a small distance,
say cl. This implies that we must also move the field point in the corresponding asymptotic

form § (m) by distance cl. The application of this step yields

oo

Gp(x;8)= > [s(m)—3(m)]+ > S(n),

m=—00 n=—00

where 5 (m) is function § (m) with argument | X + cl| and S (n) is likewise to S (n).
We now replace the symbolical notations s, §, and S with our periodic Green’s func-
tion. The asymptotic form of G (x; &) is given by the Hankel function representation in the

summation of the far-field Gp (5.3.1). Using argument the X + ¢/ we have

i(m) = —?HO (k [(X + cl)? + V2] %) eimal, (5.4.3)
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Then the spectral representation of the far-field G, gives rise to
k e—UmlX+dl| giomY

8 (m) = = 7 (5.4.4)

Finally we substitute (5.4.1), (5.4.3), and (5.4.4) into (5.4.2) to obtain the explicit

formula of the accelerated periodic Green’s function

. ik , ol
Gp (x:€) = Z {G (X,Ym) + %Hn (X +c),Yn) gmol
k 00 e—{..’"|X+cI| C-z'o,,)’
1 U (5.4.5)

where G (X, Y;,) is given in (2.3.13). Notice that (5.4.5) is a combination of the spatial
and the spectral representation of the periodic Green’s function in the near and far-fields.
The factor cl is the constant that ‘weighs’ each domain. It determines how far off we move
a field point from the source (in this case the plate covered area). The free parameter c is
sometimes called the smoothing factor ([Singh et al., 1990], [Jorgenson & Mittra, 1990]).
This is because, apart from moving the field point, it also removes the singularity from the
far-field Gp and causes it to become a smooth function.

Note that some special combinations of wavelength A, angle of incidence 6, and
length of channel [ may cause the periodic Green’s function to diverge ([Jorgenson & Mittra, 1990],
[Scott, 1998]). An example of this case is the use of A = [ when the direction of propaga-
tion # = 0. The reason for this will be explained in the next chapter when we discuss the

scattered waves.




Chapter 6
The Scattering of Waves by the Periodic

Line-Array of Plates

In this chapter we observe the scattering of waves by the periodic line-array of plates.
In the first section we explain the modes of scattered waves and the way to extract the
travelling waves out of these modes. We then classify the scattered waves in the second

section. In the third section the energy balance is calculated.

6.1 The Modes of the Scattered Waves

In this section we give the modes of the scattered wave as | X| — oo. We are interested in

the problem as | X| — oo therefore we extract the exponential terms from (5.3.3)

(.,_{"rn L‘(l E:TUIFI Y .

and consider only exp (i (¢Uy,) | X|). We purposely write the term corresponding to Uy, in
this way so that it matches the term exp (i0,,,Y’). From equation (5.3.5) if Uy, is a real
number then this term decays as | X| — oo (we shall refer this as the evanescent modes).
Otherwise for purely imaginary U, the term exp (Uy, | X|) yields the propagating modes.

To determine the propagating modes for (5.3.3) we rewrite equation (5.3.5) as

and notice that

Uy = —ik cos ¥, (6.1.1)

71
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since 09 = ksinf. The term exp (i (iUp) | X|) clearly represents a traveling wave in the
z-direction. This implies that at large |X| there is at least one propagating mode corre-

sponding to the propagation constant oy = 0.

Our objective in this section is to seek other propagation modes apart from the one
corresponding to order 0. To do this we need to obtain iU, that are real numbers, i.e. Uy,
must be purely imaginary numbers. We seek for the non-negative integers (orders) M and
N such that U_ s and Uy are purely imaginary numbers (corresponding to the propagating
modes) and U_s—; and Uy, are real numbers (corresponding to the evanescent modes).
This way we may truncate the spectral domain representation of the periodic Green’s func-
tion (5.3.3) to a finite sum

i L etknmlX] giomY

GElbme)=— . — (6.12)
m=—DM Hm
where
o \2]1/2
= {1 - (T””) ] . (6.1.3)

Notice that we can relate the propagation constant in the z-direction :Up, to p,, by
WU = klu'mv (6]4)

and p,, > 0.

Such integers M and N are found to be ones that satisfy the following inequalities

O_M-1 < _k < T-M, (6 1 5)
0'N<}C<(TN+1. o

An algebraic simplification of (6.1.5) gives the lower limit M to be in the range

l 2 l
o+ k-ZY <M< (04 k), (6.1.6)
2m l 2T
and the upper limit NV to be in the range
l l 2T

[Linton, 1998). We call the limits M the lower diffraction order and N the upper diffrac-
tion order because of the location where the waves are ‘generated’ (with respect to Ag).

Note that the total number of the scattered waves is equal to the diffracted waves plus one
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propagating wave corresponding to mode 0. Therefore we have reduced the order of dif-
fraction from an infinite order to a finite one.

Moreover we can now explain the phenomenon in the periodic Green’s function that
diverges for [ = A and § = 0. From (6.1.2) we notice that the periodic Green’s function
becomes singular whenever p,, = 0, m € Z. For m = 0, the periodic Green’s function
becomes convergent if the combination of A, I, and @ satisfies either one or both of the

following equalities

A=1(1+sin#), (6.1.8)
and

A=1[(l—sinb). (6.1.9)

For m # 0 the combination of /, A, 8, and m that satisfies either of these equations
mA = —{ (1 +sinéf), (6.1.10)

and
ml =1 (1 —sinb),

cause (6.1.2) to diverge. Clearly we see that for § = 0 and / = X both equalities (6.1.8) and
(6.1.9) are satisfied and this explains why the periodic Green’s function fails to converge.
In general the Green’s function is divergent if any of equation (6.1.8), (6.1.9), (6.1.10), and

(??) is satisfied.

6.2 The Diffracted, Reflected, and Transmitted Waves

In this section we derive the diffracted waves that arise from the application of the finite

diffraction order to the potential of the periodic line-array with infinite plates.
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6.2.1 The Diffracted Waves

We substitute the spectral representation of the periodic Green’s function with finite dif-

fraction order (6.1.2) into the boundary integral equation for the potential (5.2.6)

. N
6 =07 [ 3

otktm|X| gigmY
—_— ko (&) +iVhw (§)] &, (62.1)
where

¢ln (X) — Aln eik(zcos 9+ysin6),
is the incident wave with amplitude A’™. To simplify the problem we set A’™ to be unity.

We subtract the incident wave so that we can observe the scattered wave only. The scattered

wave 18

ez'k,um|)(| ez’a,,,}’
Ll i i [ka‘n (&) + ivEw (5)] de. (6.2.2)
i A l"""m.
Equation (6.2.2) represents the scattered wave that remains propagating at the far-field. The
scattered wave is composed of a finite spectrum of plane waves that are the results of the
diffraction of finite order (with infinite number of images). Moreover the scattered waves

travel in the direction opposite as well as along the direction of the incident wave. Thus we

may write the scattered wave (6.2.2) in terms of its spectrum
S e
$ X =D 6,8, (6.2.3)

where

o (x;€) = _l/L etunlXl gion |k (£) + ik (g)} de, (6.2.4)
lm Ja
represents the diffracted waves and the F sign indicates the direction of the scattered waves.

For diffracted waves that travel in the direction of z — —oo (z < &) where | X| =

|z — &| = € — z these are

o, (x;€) =_£— Ae“v#mﬁ e~iamn [kd) (&) + iVkw (5)] d€ e hEmTeTmY  (62.5)

For diffracted waves that travel in the direction of z — 400 (z > &) where |X| =
|z — &| = « — £ these are
i

— [ et i [k (€) + ivhw (§) | dE eMhnT Y. (62.6)
l/Lm.A

o (x; €) =
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We can generalize the diffracted wave to be
- ) |
Pm (X;E) = Ai eFikbm® gy

where the diffraction coefficient (the diffracted amplitude) A} is
AF = _%L f ekl —iom [k¢ (&) + ivEkw (€)] de. (6.2.7)
Hm JA

The diffracted waves propagate at various angles with respect to the normal direction
of the line-array. The angle of diffraction depends on the ratio of the y-directed propagation

constant o, and the z-directed propagation constant :U,,

¥F = tan~! (-””‘ ) , (6.2.8)
Fhitm

where 9 is the angle of diffraction and relation (6.1.4) has been used. Notice that for

m = 0 we have
o= ¥ (6.2.9)
where 6 is the incident angle.

Figure 6.2.1. depicts the diffracted waves and their angles. The diffracted waves are
generated in either the positive or the negative y region. The y regions are indicated by m.
For m < 0 we say that they are generated in the in the negative y region (y < 0) and for
m > 0 they are generated in the positive y region (y > 0). Hence the lower diffraction
order M may be regarded as the number of diffracted waves generated in the negative y
region and the upper diffraction order IV the number of diffracted waves generated in the
positive y region. Each diffracted wave is directed to either to the negative = (x < 0) or
positive z (z > 0) direction. We say ¢ is in the positive = direction and ¢,, is in the

negative z direction.

6.2.2 The Reflected and the Transmitted Waves

From Section 6.1 we know that there is at least one set of propagating waves corresponding
to order 0. This is because it is guaranteed that there exists at least one purely imaginary
y-propagation constant U, and its corresponding z-propagation constant go. We use the

diffraction order 0 to deduce the reflected and the transmitted waves. This is done by
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Figure 6.2.1. The diagram showing the diffracted waves and the angles of diffraction.
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taking m = 0in (6.2.4)

o (x;€) = AT eFiknor giov, (6.2.10)
where the zero order diffraction coefficient is
AT = _%i / gtikHol g=ioon [kqb (&) + iVkw (5)] de, (6.2.11)
Ko Ja

and the corresponding propagation constants are

g9 = ksind,

uy = eosd.

The diffraction coefficient may be further separated into
i1 ) o
Aa — _i [ ezkiCosee—-sz)smB l:kd) (g) + z\fkw (€):| d£,
lcosf JN
which is the diffraction coefficient for the wave travelling in the negative z direction (z < 0)

and

_;ColsgfAe—ikzcosoe—iknsinO [m (&) + ivkw (6)} dg,

which is the diffraction coefficient for the wave travelling in the positive z direction (z >

0).

Af =

The reflected wave is the diffracted wave that travels in the opposite direction to the

incident wave and thus it can be written as
¢R (X) - Re—ikmcos() eikysin()’ (6212)

where R is the reflection coefficient and given in terms of the diffraction coefficient which
is negative z—directed
R = A;
1 : .
= 1= [ eteembonsing) [k¢> (€) + iVEw (5)} de. (6.2.13)
Fo Ja

The transmitted wave is composed of the diffracted wave that travels in the same

direction as the incident wave plus the incident wave itself

o' (x) = ¢™(x)+dp (x;€)

= T eik(x cos 0+y sin 0) (62 1 4)
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where T is the transmission coefficient and it is given in terms of the diffraction coefficient

which is positive z—directed

T = 1+ A}
11 e
_ 1ot [ cik(ecosornsing [k¢> (€) + ivEw (5)] de. (6.2.15)
Lpo Ja

6.3 The Energy Balance

In this section we derive the energy balance yield by the diffracted, the reflected, and the
transmitted waves. The diffraction, the reflection, and the transmission coefficients must
satisfy the energy flux equation which simply says that the energy of the incoming wave
must equal to the energy of the outgoing waves.

Toderive the energy balance equation first we ‘project’ all waves in Figure 6.2.1. onto
the z-axis. This gives us the projected incident coefficient cos 8 (where the amplitude of the
incident wave is 1), the reflection coefficient |R|2 cos (—0) , and the transmission coefficient
IT|? cos 6. Moreover the diffraction coefficients are |A_|* cos (—,,) and |AZ|? cos ¢n.
The total energy is taken as the sum of the coefficients of the reflected, the transmitted, and

the diffracted waves generated in both y regions

—1 N
E = (|R* +|T*) cos 6+ Z <|A,*n|2 + |4, |2) cos¢m+z <|A,_n‘2 + |A;|2> cos v,
m=—M m=1
(6.3.1)
The total energy must be equal to the incoming energy due to the incident wave of unit
amplitude that is incident at angle 6

E = cosé. (6.3.2)

Energy balance equation (6.3.2) is used to check any error that can occur in the computation
of the amplitudes. In the next chapter, using this idea, we will perform this check to verify

the diffraction theory that we derived in this chapter.

e



Chapter 7

Results for the Multiple Plates Model

In this chapter we present the results from the infinite line-array of periodic plates.
First we test the accuracy of the results using different representation of the periodic Green’s
function. We do this to show that the accelerated periodic Green’s function is the way to
compute the subsequent results. This also enables us to choose the appropriate value of
the smoothing parameter and the number of terms in the spectral and the spatial terms of
the accelerated periodic Green’s function. Next we test the validity of our method using
a periodic line-array of joined, stiff, and unmovable plate and compare it with the two-
dimensional beam whose results are known to be true. We also test the convergence of
the results using different fineness of discretization in the plates. Moreover we investi-
gate the effect of the line-array on the angular spread of the scattered waves by varying the
waveangle and attenuating the wave. Then we use elastic and discrete plates to study the
relationship between the wavelength, the width of the channel, and the waveangle on the

diffracted waves. Finally we present plots of the plates’ displacement.

7.1 The Convergence of the Periodic Green’s Function

In this section we investigate the effect of the number of images used to represent the
infinite sum in the periodic Green’s function. The slow-convergent near-field, the far-field,
and the accelerated periodic Green’s functions are observed while we omit the test for the
spectral representations of the periodic Green’s function. This is because both are derived
from the near-field one. The convergence of the far-field and the spectral representations
are given in [Linton & Evans, 1992].

The first test is performed on the slow-convergent near- and far-field periodic Green’s

functions (5.2.8) and 5.3.2. We set the field point (z,y) = (0,0) and the source point

79
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(€,m) = (0,0.1). The lengthofthe channel is [ = 1 and the wavelength is A = 2 with angle

of propagation # = m/4. Therelative errors are given by
Gy — G G —G¥

and E13 =
G0 G0

Ey=

where G;,l ) is the referencing result, Gg )is its approximation using the near-field Green’s
function (5.2.8), and Gg) is the approximation using the far-field periodic Green’s function
5.3.2. Both Gg ) and Gg’ ) are taken at various number of images while the referencing result
G S) is the near-field Gp with 10° images. We choose the number of images 108 as a point
of reference following a series of calculations in (5.2.8) that shows the value approaches
the result using this number. Figure 7.1.1. is the loglog plot of the relative errors for both
the near- and the far-field periodic Green’s function. The near straight lines that represent
the error for both functions indicate that the error decays exponentially as we increase the
number of terms in either summation. We notice that to achieve such accuracy we need
to use over 10* terms in the summation and this is ineffective in practice. Moreover the
far-field periodic Green’s function is actually an approximation to the near-field one and
the error increases as we increase the number of terms in the summation.

Next we test the convergence of the accelerated periodic Green’s function given by
(5.4.5). The same parameters and the referencing results are used to calculate the relative

error
GS) . Gg)
GY

where Gg) is the accelerated periodic Green’s function. We choose the smoothing factor

A

E14:

¢ = 0.05. Later we show that this choice of c is sufficient to produce accurate answers.
Figure 7.1.2. is the loglog plot of the relative errors versus the number of summation terms
for the accelerated Gp. Note that we set the number of summation terms used to calculate
the spatial and the spectral part to be equal. We see that error line is sloping steeply prior
to 10 terms (in each part of (5.4.5)). The error line then remains flat below 10~ as we
increase the number of terms. This is caused by the accumulation of round-off error.
Finally we study the effect of the smoothing parameter ¢ on the number of terms in

the summations needed for convergence in both, the spatial and the spectral part of the
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Figure 7.1.1. The loglog plot of the relative errors E5 (solid line) and E,3 (chained line)
between the near-field periodic Green’s function with 106 terms G’g) and, respectively, the

near-field Gg ) and the far-field Gg’) with the given number of terms. The parameters used
are X = 0, Y = 0.01, channel width [ = 1, wavelength A = 2, and waveangle § = 7 /4.
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Figure 7.1.2. The loglog plot of the relative error E14 between the slow convergent

near-field periodic Green’s function with 10° terms Gg) and the fast convergent Ggf ) cal-
culated using the given number of terms. The number of spatial terms (m) is equal to the
number of the spectral terms (n) in the summation. The smoothing factor is ¢ = 0.05.
Other parameters used are X = 0, Y = 0.01, channel width [ = 1, wavelength A = 2, and
waveangle § = /4.
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accelerated periodic Green’s function (5.4.5). To do this we take the referencing result to
be the slow-convergent periodic Green’s function (5.2.8) with 10° terms. We use the same
parameters as from the previous two tests. Figure 7.1.3. shows the number of terms needed
by the two summations involved in the accelerated G, (5.4.5) versus parameter c. We set
the relative error maximum at 10~° compared to the referencing result. We also set the
absolute error between results from different combinations of parameters (¢, m, and n) to
be of maximum 10~*.

As shown in the plot we can obtain an accurate approximation to the infinite sum in
the slow-convergent near-field G'p using a significantly smaller number of terms in the ac-
celerated Gp. We also see that for a small ¢ parameter the spectral part of the accelerated
Gp requires more summation terms than the spatial part (i.e. the spectral domain is ‘heav-
ier’ than the spatial domain). Conversely for large ¢ parameter Gp requires more terms
in the spatial part than the spectral part as the field point becomes further away from the
source point and resembles a point at a far.

Note that the accelerated Gp is not as accurate as the slow-convergent one. The func-
tion is highly accurate for small ¢ (¢ < 0.01). However, since it is ‘heavier’ on the spatial
domain, this causes it to become slow-convergent. For large c the function is ‘heavier’ on
its spectral part and hence it converges rapidly. Yet this gives relatively inaccurate results
because, as we know, the spectral representation of the periodic Green’s function is only an
approximation to the desired (5.2.8).

Therefore we need to choose a ¢ parameter where the spatial and the spectral domains
weigh relatively equal. We notice that when c is approximately 0.05 then both the spatial
and the spectral parts have the same ‘weight’. To be precise, there are 44 terms in the
spatial part and 46 terms in the spectral part of the accelerated Gp (5.4.5) for ¢ = 0.05.

This combination of ¢, m, and n will be used subsequently.
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Figure 7.1.3. The plot of the number of terms used in the summation representing the spa-
tial and the spectral parts in the accelerated periodic Green’s function versus the smoothing
parameter c. The result from each combination is compared with the one from slow con-
vergent Gp with 10 terms. The relative error is set to be of maximum 10~°. The absolute
error between results from different combination of parameters is set to be 10~*. The para-

meters used are X = 0, Y = 0.01, channel width { = 1, wavelength A = 2,and waveangle
=7/4.
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7.2 A Periodic Line-Array of Stiff and Unmovable Plates

This section contains the testing of the periodic line-array solution. First we compare the
result of a periodic line-array of joined, stiff, and unmovable plates with the result of a stiff
and unmovable beam. Next we test the convergence of the solution for the energy equation

(6.3.1). Finally we show the angular spread of the diffracted waves.

7.2.1  The Case of Joined Square Plates

In this subsection we aim to validate our results for the periodic line-array of plates. We first
compare the reflection and transmission coefficients arising from the scattering problem by
a line-array of stiff, unmovable, and joined (i.e. we allow no gap between) plates in three-
dimensional domain to the ones yield from the problem of a stiff and unmovable beam
in two-dimensional domain. The joined plates are taken to be squares of uniform area 1
(L = 1) and this implies that the length of the channel must be [ = 1 and b = 0. Such
arrangement of plates resembles a beam in two-dimensional domain whose length is 1.
This problem was solved by Meylan ([Meylan & Squire, 1994], [Meylan, 1994]). Hence
we may compare the scattered (the reflection and the transmission) coefficients due to the
line-array with the ones duc to a beam with length 1. We need to set the waveangle § = 0 in
the three-dimensional domain so that it resembles the incident wave in the two-dimensional
domain because the two-dimensional code does not solve for waves incident at an angle.
Figure.7.2.1. contains overlapping plots of the reflection and transmission coefficients from

the two sets of problems. As we expect the results from both agree to the scale of the plate.

7.2.2  The Case of Periodical Square Plates with Gaps

We now test for the convergence of the diffracted, reflected, and transmitted waves. In
the case where the length of the channel is greater than the wavelength diffraction occurs.
Therefore we can calculate the diffracted waves as well as the reflected and the transmitted

ones. For the following test we aim to calculate the diffraction, the reflection, and the
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Figure 7.2.1. The comparison plot of various wavelengths versus the scattered coefficients
due to a periodic array of stiff, unmovable, and joined plates in three dimensional domain
and a stiff and unmovable beam in two dimensional. In the three dimensional domain the
plates are squares of area 1 (side length of 1), the length of the channel is ! = 1 (b = 0),
and the waveangle is § = (. In the two dimensional the length of the beam is 1. This figure
shows the agreement in the results for the stiff, unmovable, and joined three-dimensional

plates with the two-dimensional beam.
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transmission coefficients. The waveangle is set to be § = 0 so that we have symmetric
diffracted waves (M = N). The wavelength is set to be smaller than the width of the
channel but not equal (to avoid the singularity that occurs at the Green’s function) and
greater than half /. This is done because we want to limit the number of diffracted waves
on each hemisphere to be 1 pair only (or 2 by symmetry). Hence we set the ratio of the
wavelength and the width of the channel to be % = E.The square plates have area 16
(L = 4), the width of the channel | = % x 2L = 12, the length of the gap b = éL —s )
and the wavelength A\ = 2L = 8. The smoothing parameter ¢ = 0.05 with 44 terms in the
spatial part and 46 terms in the spectral part of Gp. Table 7.2.1. shows the convergence of
the total energy F. As stated in equation (6.3.2) the total energy must equal to cos § which

in this case is 1. We can see from Table 7.2.1. that indeed the total energy converges to 1 as

we increase the number of panels.

7.2.3  The Case of Oblique Incident Wave

Next we show the spreading of the reflected, the transmitted, and the diffracted waves for a
stiff square plate using various angles. We use the same plate as the previous test. The ratio
of the wavelength and the width of the channel is kept at ? = % However we now shorten
the wavelength to be A = L = 4 and the width to be I = 6. This is because we want to
show the effect of the plates on the angular scattering. We vary the angle using § = —7/3,
—7/6, 0, and /4. In all cases the total diffracted waves are two pairs plus the pair of the
transmitted-reflected ones. We use ¢ = 0.05 with corresponding 44 terms in the spatial part
and 46 terms in the spectral part of G'p. Figure 7.2.2 to 7.2.5 shows the angular spread of
the diffracted waves while the amplitudes are explained in Table 7.2.2. to Table 7.2.5. As
we expected the diffracted waves (including the reflected and the transmitted ones) come in
pairs and each pair is reflected about the y-axis. We notice that the diffracted waves do not
neccessarily travel in the same region as where they were generated. For example, in the
case of angle § = —m /3 we have a diffracted wave that travels toward the negative y region

despite the fact that all the waves are generated on the positive y region. The opposite
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| number of panels per plate | £ |

25 0.977553722824
100 0.994179825283
225 0.997487917349
400 0.999058250825

Table 7.2.1. The convergence of the total energy for identical plates with area 16. Each
plate is discretized using the specified number of panels. The width of the channel is
[ = 12. The parameters for the incident wave are A = 8 and 8 = 0. The incoming energy
is 1.
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occurs for § = 7/3. Moreover the amplitude of each of the pair differs except for the
case of normal incidence. Though in these examples all incident angles produce an equal
numbers of diffracted waves, in general these vary with 4. This because the diffraction
order is governed by equations (6.1.6) and (6.1.7) and hence it depends on A, [, and 6. We

will show the variation of the number of diffracted waves in the next section.

7.3 A Periodic Line-Array of Elastic and Separated Plates

In this section we present the results for a periodic line-array of elastic plates of five differ-
ent shapes that are depicted by Figure 4.3.2. First we want to understand the relationship
between the number of diffracted waves to the wavelength, the channel width, and the in-
cident angle. Therefore we tabulate them for combinations of the three entities. Then we
demonstrate the reflected, the transmitted, and the diffracted waves for various incident an-
gles. Next we calculate the scattering of waves for different wavelength. Finally we show

the displacement of the plates.

7.3.1  The Dependency of the Scattered Waves to the Wavelength, the
Channel Width, and the Incident Angle

In this part we show the number of diffracted waves generated by several combinations of
wavelength A, channel width [, and incident angle §. We choose to calculate A, [ as the
multiples of the length parameter where L = 4. Table 7.3.1. and Table 7.3.2. show the
number of diffracted waves using varying A and [ while the incident angle is kept constant
at = 0. Table 7.3.3. and Table 7.3.4. show the number of diffracted waves for A = 8 and
varying A and 6 (6 is in radians). The number of diffracted waves generated in the positive
y region is shown in Table 7.3.1. for different [ and A and Table 7.3.3. for different [ and 6.
Similarly the number of the diffracted waves generated in the negative y region is shown
in Table 7.3.2. for different [ and A and Table 7.3.4. for different [ and §. We note that

for constant A and [ the number of diffracted waves varies with the magnitude of the angle.
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180

270

Figure 7.2.2. The scattering of waves by a periodic array of stiff and unmovable square
plates where each has area 16 and is confined by channel of length [ = 6. The incident

wave of length A = 4 is oblique at angle § = —= /3. There are 3 pairs of diffracted waves
of order from 0 to 4 (all are generated in the positive y region). The amplitude |AZ | of the

scattered wave is shown in Table 7.2.2.

| Al Azl

0.878693530707 | 0.952919039618
0.176389747108 | 0.150918440525
0.123902822121 | 0.131191721174

l\DP—'OS

Table 7.2.2. Table of the scattered amplitude A, and A} (0 <= m <= 2) depicted by Fig-
ure 7.2.2. due to a periodic array of plates of area 16. The incident wave is oblique at angle
6 = —m /3. The scattered amplitudes of diffraction order m = 0 represents the reflected

amplitude R = Ay and the transmitted amplitude T =1 — AJ".
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270

Figure 7.2.3. The scattering of waves by a periodic array of stiff and unmovable square
plates where each has area 16 and is confined by channel of length [ = 6. The incident
wave of length A = 4 is oblique at angle § = —x/6. There are 3 pairs of diffracted
waves of order from M = —1 (one originated from the negatlve y region) to N = 3 (three
originated from the positive y region) .The amplitude | AZ] of the scattered wave is shown

in Table 7.2.3.

fian ] | (e | |AY

0 | 0.666615883407 | 0.719311829359
1 | 0.376673463690 | 0.400750422341
2 0.217505554638 | 0.229435392631

Table 7.2.3. Table of the scattered amplitude A, and A}, (=1 <=m <= 2) depicted by
Figure 7.2.3. due to a periodic array of plates of area 16. The incident wave is oblique
at angle § = —7 /6. The scattered amplitudes of diffraction order m = 0 represents the

reflected amplitude R = A; and the transmitted amplitude T =1 — AJ.
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270

Figure 7.2.4. The scattering of waves by a periodic array of stiff and unmovable square
plates where each has area 16 and is confined by channel of length [ = 6. The incident
wave of length A = 4 is oblique at angle § = 0. There are 3 pairs of diffracted waves of
order from M = —2to N = 2 (both positive and negative y regions generate two). The
amplitude |AZ| of the scattered wave is shown in Table 7.2.4.

m

m_| Ayl Az

—1 | 0.387712757032 | 0.386427632616
0 0.397528969357 | 1.025953455086
1 0.386051701291 | 0.386055708686

Table 7.2.4. Table of the scattered amplitude A, and A (—1 <= m <= 1) depicted by
Figure 7.2.4. due to a periodic array of plates of area 16. The incident wave is oblique at
angle 8 = 0. The scattered amplitudes of diffraction order m = 0 represents the reflected

amplitude R = A; and the transmitted amplitude 7 =1 — Af.



7.3 A Periodic Line-Array of Elastic and Separated Plates 93

180

270

Figure 7.2.5. The scattering of waves by a periodic array of stiff and unmovable square
plates where each has area 16 and is confined by channel of length [ = 6. The incident
wave of length A = 4 is oblique at angle § = 7/4. There are 3 pairs of diffracted waves of
order from M = —3to N = 0 (all generated in the negative y region). The amplitude | AZ |
of the scattered wave is shown in Table 7.2.5.

m_| |Aq | A

—2 | 0.181416554036 | 0.182976607757
—1 | 0.267160755486 | 0.262408935043
0 | 0.798561389792 | 0.809815961605

Table 7.2.5. Table of the scattered amplitude A;, and A (—2 <= m <= 0) depicted by
Figure 7.2.5. due to a periodic array of plates of area 16. The incident wave is oblique at
angle § = /4. The scattered amplitudes of diffraction order m = 0 represents the reflected

amplitude R = A; and the transmitted amplitude T =1 — A.
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Notice from Tables 7.3.1., 7.3.2., 7.3.3., and 7.3.4. that the number of diffracted waves

generated in the positive y region is not always the ones generated in the negative y region.

7.3.2  The Scattering of Wave with Various Incident Angles

We calculate the scattered waves due to the line-array when the incident angle 6 varies
from —7/3 to /3. The range of angle is chosen such that we are sufficiently far from the
singularities at § = —7/2 and § = 7 /2. Figures 7.3.1., 7.3.2.,, 7.3.3,, 7.3.4., and 7.3.5.
show the reflected (a), the transmitted (b), and the diffracted ((c) and (d)) amplitudes for
periodic line-arrays of the shape, respectively, square, triangle, circle, parallelogram, and
trapezoid. All the plates have area 16 (L = 4), stiffness 3 = 0.1, and mass v = 0. Each
plate is discretized using approximately 100 panels with an exception on the square plate.

A2
The wavelength is A = 4 and the width of the channel is [ = 6 (their ratio is 7= ).

We use uniform ¢ = 0.005 with corresponding 44 terms in the spatial and 46 terms in ?he
spectral part of Gp.

First we notice there are 3 pairs of diffracted waves (including the reflected-transmitted
pair) for any angle and any shapes. The number of diffracted waves generated in both y re-
gions are unsymmetric except for —1—7; <6< 110 where M = N = 1. Then for shapes
that are symmetrical about the y—axis (such as the square, the circle, and the trapezoid) the
diffracted waves travelling to the negative x are equal in magnitude to the ones travelling
to the positive . We can see this by comparing the solid line (directed towards positive z,
from the negative y region) to the chained line (directed towards negative z, from the neg-
ative y region) and the dotted (directed towards positive z, from the positive y region) to
the dashed (directed towards negative z, from the positive y region) in part (c) and (d) of
Figure 7.3.1.,7.3.3.,and 7.3.5. However this is not true for the triangle (Figure 7.3.2.) and
the parallelogram (Figure 7.3.4.). The reason for this is because the triangle plates and the

parallelogram plates are not symmetric about § = 0 while the square, circle, and trapezoid

plates are symmetric.
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A
l 418|116 | 32 | 64
4 |0(0O|0 |O |O
6 17]0(0 (0 |O
8 111040 /0 10
10)211(0 |0 |O
214211 (0 |0
4019412 |1 |0

Table 7.3.1. The number of diffracted waves M generated in the negative y region for var-
ious A and ! while § = 0.

)
I [4]8]16]32]64
4 JoJofo [0 [O
6 (1[{0]0 |0 [O
8 (1(0]0 |0 [O
0f2|1{0 [0 |O
20421 [0 |0
0942 |1 |0

Table 7.3.2. The number of diffracted waves IV generated in the positive y region for var-
ious A and [ while § = 0. Adding the value of this table to its counter part in Table 7.3.1.
gives the total number of diffracted waves for the specified A and /. Both this table and Ta-
ble 7.3.1. show that the variability of the diffraction waves number depends greatly on A
and [.

9
I ]| 60] 48] 36] —24] —12]0]12]24]36] 48| 60
40 [0 [0 [0 Jo |0][O |0 ]O[O]oO
g fa o (o (o o pojoge (o j
g lo o |Jo |o |o fo|1r |1 |1 |1 |1
wile pa Je (o ta Fiija N l1 |2 e
2000 o |1 |1 |1 |2]|3 |3 |3 |4 |4
0fo [1 |2 |2 |3 |4]|6 |7 |7 |8 |9

Table 7.3.3. The number of diffracted waves generated in the negative y region for varying
# and [ while A = 8 is constant.
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Table 7.3.4. The number of diffracted waves generated in the positive y region for varying
# and [ while A = 8 is constant. Adding the values in this table to its counterpart in Table
7.3.3. gives the total number of diffracted waves for the specified 6 and [. This table and
Table 7.3.3. show that the varying angle causes the number of diffracted waves to vary as
well. Nevertheless the number of the diffracted waves in the opposite y regions *moves’
with the angle as it traverses about § = 0.



7.3 A Periodic Line-Array of Elastic and Separated Plates 97

04 v - 1
—— N
Vv b
| (a) (b)
[
€02 Fo08
|
|
, _)/'_ |
= v :
0o— — — ] 06— —8 —
-60 0 60 -60 0 60
g 0
04 04
(© (d |
Q ® |
el o |
2 7\ 3
302 7 202 |
€ % =
< ~ P |
|
% |
o e g | Ty _— B 1
(o)) s R < e £ ~ ) E=== S Sew) — - S =
-60 0 60 -60 0 60
0 0

Figure 7.3.1. The scattering of waves of wavelength A = 4 by a periodic array of square
plates of area 16, stiffness § = 0.1, and mass v = 0. Each plate is confined by a channel
of width | = 6. (a) The reflection amplitude |R| versus the incident angle 6. (b) The
transmission amplitude |T| versus the incident angle 6. (c) The overlapping plot of the
diffracted wave of of order 1. (d) The overlapping plot of the diffracted wave of order 2.
The waves are directed towards positive z (solid line) and negative z (chained line) in the
negative y region and directed towards positive = (dotted line) and negative = (dashed line)
in the positive y region. The figures show symmetry about angle § = 0 in all the scattered
waves and this is due to the symmetry of the shape of the plates and the periodic gratings.
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Figure 7.3.2. The scattering of waves of wavelength A = 4 by a periodic array of triangular
plates of area 16, stiffness § = 0.1, and mass v = 0. Each plate is confined by a channel
of width [ = 6. (a) The reflection amplitude |R| versus the incident angle 6. (b) The
transmission amplitude |T'| versus the incident angle 6. (c) The overlapping plot of the
diffracted wave of of order 1. (d) The overlapping plot of the diffracted wave of order 2.
The waves are directed towards positive  (solid line) and negative = (chained line) in the
negative y region and directed towards positive = (dotted line) and negative = (dashed line)
in the positive y region. The scattered waves are not symmetric about § = 0 because the
shape of the plates are not symmetric.
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Figure 7.3.3. The scattering of waves of wavelength A = 4 by a periodic array of circle
plates of area 16, stiftness 3 = 0.1, and mass v = 0. Each plate is confined by a channel
of width | = 6. (a) The reflection amplitude |R| versus the incident angle 6. (b) The
transmission amplitude |T'| versus the incident angle . (c) The overlapping plot of the
diffracted wave of of order 1. (d) The overlapping plot of the diffracted wave of order 2.
The waves are directed towards positive x (solid line) and negative z (chained line) in the
negative y region and directed towards positive z (dotted line) and negative = (dashed line)
in the positive y region. The figures show symmetry about angle # = 0 in all the scattered
waves and this is due to the symmetry of the shape of the plates and the periodic gratings.
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Figure 7.3.4. The scattering of waves of wavelength A = 4 by a periodic array of parallel-
ogram plates of area 16, stiffness 3 = 0.1, and mass v = 0. Each plate is confined by a
channel of width [ = 6. (a) The reflection amplitude | R| versus the incident angle 6. (b)
The transmission amplitude |T'| versus the incident angle 6. (c¢) The overlapping plot of the
diffracted wave of of order 1. (d) The overlapping plot of the diffracted wave of order 2.
The waves are directed towards positive z (solid line) and negative x (chained line) in the
negative y region and directed towards positive x (dotted line) and negative z (dashed line)
in the positive y region. The scattered waves are not symmetric about § = 0 because the
shape of the plates are not symmetric.
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Figure 7.3.5. The scattering of waves of wavelength A = 4 by a periodic array of trape-
zoidal plates of area 16, stiffness 5 = 0.1, and mass v = 0. Each plate is confined by a
channel of width [ = 6. (a) The reflection amplitude | R| versus the incident angle 6. (b)
The transmission amplitude |T'| versus the incident angle 6. (c) The overlapping plot of the
diffracted wave of of order 1. (d) The overlapping plot of the diffracted wave of order 2.
The waves are directed towards positive z (solid line) and negative x (chained line) in the
negative y region and directed towards positive x (dotted line) and negative z (dashed line)
in the positive y region. The figures show symmetry about angle § = 0 in all the scattered
waves and this is due to the symmetry of the shape of the plates and the periodic gratings.
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7.3.3  The Displacement of the Plates

We now show the displacement of the plates of various shapes that are part of the periodic
line-array. We only use five plates (4;, 7 = —2,—1,0,1,2) to represent the line-array
in the plot, where each has area 16 (L = 4), stiffness § = 0.1, and v = 0. The width
of the channel is [ = 6. We expose the line-array to an incident wave that is oblique at
angle # = 7 /6. Figures 7.3.6. to 7.3.10. show the displacement of, respectively, squares,
triangles, circles, parallelograms, and trapezoids. First we use wavelength A = 4 (a) and
then we double it to A = 8 (b). For A = 4 we have, uniformly for all shapes, 3 diffracted
waves generated in the negative y region (M = —3) and 1 generated in the positive y
region (N = 1). For A = 8 we have uniformly 1 diffracted waves from the negative y

region (M = —1) and none from the positive y region (/N = 0).
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Figure 7.3.6. The displacement plot of five square plates as part of the periodic array. Each
plate has area 16, stiffness # = 0.1, mass v = 0, and is confined by a channel of width

[ = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b) A = 8. The
incident angle is 8 = 7/6.
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(a)

Figure 7.3.7. The displacement plot of five triangular plates as part of the periodic array.
Each plate has area 16, stiffness 3 = 0.1, mass v = 0, and is confined by a channel of width
[ = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b) A = 8. The
incident angle is 8 = 7 /6.
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Figure 7.3.8. The displacement plot of five circular plates as part of the periodic array. Each
plate has area 16, stiffness 8 = 0.1, mass v = 0, and is confined by a channel of width

[ = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b) A = 8. The
incident angle is = /6.
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(a)

Re(w)

Re(w)

Figure 7.3.9. The displacement plot of five parallelogram plates as part of the periodic ar-
ray. Each plate has area 16, stiffness 3 = 0.1, mass y = 0, and is confined by a channel

of width [ = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b)
A = 8. The incident angle is 8 = m/6.
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(a)

(b)

Figure 7.3.10. The displacement plot of five trapezoidal plates as part of the periodic array.
Each plate has area 16, stiffness 8 = 0.1, mass y = 0, and is confined by a channel of width
[ = 6. The array is subjected to incident wave of wavelength (a) A = 4 and (b) A = 8. The
incident angle is § = 7/6.



Chapter 8

Summary and Conclusion

In the first part of this thesis we presented a method for calculating the linear wave
response of a single plate. The method was based on Meylan’s model for a plate of ar-
bitrary geometry though our method would be of higher order than Meylan’s method. A
physical depiction and a mathematical model were presented in the second chapter. In the
third chapter we discretized the plate into square panels and expanded the displacement of
each panel in terms of the FEM basis functions. This was then used directly to minimize
the variational equation for the coupled pressure equation. This yielded a matrix-vector
equation that involved a forcing vector due to the potential of the water.

The forcing by the water was solved in the fourth chapter and this was later coupled
with the displacement. Here we showed the difference in the order of our scheme from
Meylan’s. In Meylan’s method the boundary integral equation of the potential was solved
using the constant panel method. This was done by taking the value of the Green’s function
at the centre of the panels (which are of the FEM) and then assuming it as constant across
the panels. A pair of mapping matrices was then used to include the Green’s integral oper-
ator in the forcing vector and later in the full solution. This was done by taking the value
of the Green’s function at the centre of each panel. On the other hand the higher order
method simply solved the boundary integral equation for the potential using the FEM basis
function. This was achieved by taking an inner product of the forcing vector with the basis
functions. The Green’s integral equation (now over the basis functions) was solved numer-
ically using the Gauss quadrature with Legendre polynomial. Since Meylan’s method has
been well-established we only presented the implementation and the results of the higher
order method in the fifth chapter. Here we showed that the higher order method agreed with
Meylan’s method and indeed performed better than Meylan’s. This was because the pan-
els were elastic due to the use of the FEM basis functions, unlike Meylan’s panels which

were assumed constants. Hence the higher order method gives results which are closer to
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reality. The drawback of the higher order method was the fact that the computation time
of the Green’s matrix was relatively large. However the use of a large number of panels is
unnecessary because a small number of panels are sufficient to produce relatively accurate
results (see Section 4.3).

In the second part of the thesis we extended the higher order method to calculate
the response of a periodic line-array of elastic plates on infinitely deep water. In chapter
six we explained the groundwork for the periodic line-array of elastic plates model. The
model used ideas from the diffraction gratings in optics. We applied the Floquet’s theorem
to calculate the displacement and the potential. Upon applying this we obtained the same
displacement equation and a slightly different boundary integral equation for the potential.
We say this was slightly different because the kernel of the integral equation was now the
periodic Green’s function. The periodic Green’s function was represented in the near-field
form, far-field form, and the spectral domain form. It was known to be slow-convergent
and hence we used the ideas from the surface grating in optics to accelerate this. The
accelerated periodic Green’s function was composed of all the three representations of the
periodic Green’s function. In the seventh chapter we derived the scattered waves due to
the periodic line-array of elastic plates. First we separate the evanescent and the travelling
waves by determining their modes. Then only modes that determined the travelling waves
were used to calculate the diffracted waves. We further extracted the reflected and the
transmitted waves from the zeroth mode. Finally the calculation of energy balance between
the incoming and the diffracted, the reflected, and the transmitted waves were presented.
Chapter eight contains the convergence study on the Green’s function, the tests on the
periodic line-array model, and the results.

We may improve and extend both the single plate and the multiple plates model by
adding and/or modifying the methods used. In the single plate model accuracy can be im-
proved by using triangular elements instead of square elements. This will lead to the use of
slightly different mass and stiffness matrices. The single plate model can also be extended

to a time-dependent model by replacing the free-surface Green’s function with a time-
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dependent free-surface Green’s function (this is given in [Wehausen & Laitone, 1960]). A
numerical time-integration scheme is needed for this extension.

The model for the periodic line-array on water of infinite depth can be easily ex-
tended to water of finite depth. A minor modification on the fast-convergent periodic
Green’s function is needed and this can be done using the same acceleration method ex-
plained in Section 5.4. Other than a periodical line-array of elastic plates that are used to
model the MIZ, the same scheme may be used to solve a periodical line-array of barriers
that extend through the depth of the water which was considered authors by Linton and
Evans [Linton & Evans, 1992], Fernyhough and Evans [Fernyhough & Evans, 1995], and
[Porter & Evans, 1998]. Moreover to obtain a depiction closer to the real-life MIZ we can
extend the periodic line-array model from one dimensional to two-dimensional periodic

gratings.



Appendix A
The Derivation of the Incident Plane Wave

We will derive the expression of the incident wave in water of finite depth and later
generalize it for both finite and infinite depth.

The incident wave ¢'™ (x, z) must satisfy

[ic A.l
o = ag™, x¢A 2=0, )
0z
At the bottom boundary we will use the boundary condition for water of finite depth
In
99 =all; z=—-H. (A.2)
0z

Given a fixed angle § we may define a unit vector
r— | o8 0
© | sinf |’
that describe the direction of propagation of ¢'™. Then we can reduce the number of vari-

ables that ¢'™ depends on from three (z, y, and z) to two by introducing a new variable
§s=X-r, (A.3)

and write ¢'™ (x, 2) = ¢'" (s, 2). The Laplacian then simplifies into
62 In 82 In
o, PO _
0s? 0z?

We solve (A.4) using the separation of variables by writing ¢'™ into

0. (A.4)

¢'" (s,2) = S(s) Z (2),

and substitute this into (A.1) and (A.2)

SN(S) B —Z”(Z)__2
8  Zis v, (A-5)
Z'(0) = aZ|(0), (A.6)
Z'(-H) = 0, (A.7)

where k is the wavenumber.
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We can solve for Z (z) using the first order ODE from (A.5) and boundary condition
(A.7)
Z(z) =coshlk(z + H)]. (A.8)

Further application of (A.7) gives us the equation for finding the travelling modes
a = ktanh (kH). (A.9)
Similarly we can easily obtain the solution for S (s)
S(s) = Ae* + Be s, (A.10)
Multiplying (A.8) and (A.10) together gives us
¢'" (s,2) = (Ae™ + Be ™) cosh [k (2 + H)].
We now substitute in (A.3)
o' (x,2) = (A e*xr) 1L B e‘ik(x'r)) cosh [k (z + H)]. (A.11)

We impose the condition that the incident wave travels from left to right in the zy-plane

and therefore we must have B = 0. The final form of ¢'™ is
¢'™ (x,2) = AT cosh [k (z + H)]. (A.12)
At the surface z = 0 (A.12) simplifies into
™™ (x) = Ae*™T cosh (kH).

Without loss of generality we incorporate the term cosh (kH) into A and write the product
as A’™. Therefore
éln (X) = Afn eikx-r‘ (A13)

is the equation for the incident wave that we use for both infinite and finite depth problems.



Appendix B
The Derivation of the Integral Equation for
the Potential

The following procedure reduces the integral over the boundary of domain €2 to
an integral over the plate-covered area only. This method was first performed by Stoker
([Stoker, 1957)).

We apply Green’s second theorem to ¢

e _ 2 _ @_ ¢
./Q]:Q)VG GV(f)]dV(f,C)—K/(;Q[GJan Ga}dS(.‘EC) (B.1)

where 0f) denotes the boundary of domain 2. The boundary 052 consists of four parts: 02,
is the perimeter of the imaginary bow!l with radius a, 9€2; is the free-surface , 0€23 is the
plate-covered area , and 024 is the sea-floor. The left hand side of (B.1) can be reduced
using (2.2.12) and (2.3.4) to

Z fa . [ = an} dS (£,¢). (B.2)

Next we derive the expression for each j for the expression on the right hand side of

(B.2). On boundary 99, the integrand qﬁ%’ — G% like 1/a? for a — oo since ¢ and @
on on on

are uniformly bounded at oo[Stoker, 1957]. Thus, as a — oo the surface integral over 0

becomes zero. On boundary 02, we have
0
[ [o€0 gom=60 - 6xsne0 goeo)] s
092 a¢ C

= / {aG (x,2,€,0) ¢(£,0) = G (x,2;&, 0) ¢ (&, ”)] dS,
0022

since — = a G every where on the surface,

3
/ {¢(£,o> g—co(x.z;s,m— (6 56,0) b (€, o)] ase
51923 <

- /; a6 (x,56,0) 0(6.0) ~ aG (x, 5,0 5(6,0)] dSe,
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as @ = a¢ on the free-surface,

o¢
0 ad
$(£,0) =G (x,2:€,0) — G (x,2:£,0) —6(£,0)| dS¢ =0.  (B3)
. . . 0G 0¢
On boundary 0€24 the integrand is clearly zero since ra c = 0and 8_§ = 0 and, hence, there

is no contribution from this either. On boundary 023 (0€23 is equivalent to A) the surface

integral becomes

a 0
/893 [qﬁ (&,0) B_CG (x,2;€,0) — G (x,2;&,0) a—cw(E.U)] dSe

:/ [aG(x,z;{,O)¢(£,0)—G(x,z;£,0) aﬂa(g,o)] iSe.  (B.4)
Q3 C

Finally we back substitute the results from taking the surface integral around 02;, (B.3),

and (B.4) into the equation. This gives us the integral equation for the scattered potential
_ a
o(x,2) = / {aG (x,2;£,0) ¢ (&,0) + ivaG (x, 2; €, 0) a—C(ﬁ (&, (})] dSe.  (B.S)
A :

Clearly this procedure is applicable for the incident wave ¢'™ and the same result can

be derived.



Appendix C
Computing the Matrices, the Vectors and the
Operators

The coding of all the matrices in the Section 3 are done with both MATLAB and
C++. The MATLAB equivalent codes for the matrices and the operations in (3.5.21) and
(3.5.20) codes are built in a straight forward manner. However codes and operations in C++
are somewhat different. In this section we will explain the implementation in C++.

The matrices and the vectors are built using the Template Numerical Toolkit (TNT)
[Pozo, 2000]. The TNT provides C++ classes for both the FORTRAN-type C-type arrays
(matrices and vectors). We will give brief definitions on the FORTRAN-type array and the
C-type array. A FORTRAN-type array is column oriented, i.e. the elements are arranged
and read per column, and its index begins with 1. Whereas a C-type array is row-oriented
(elements are arranged and read per row) and its index begins with 0.

We intend to build the matrices and the vectors to be as close as possible to the ones
in MATLAB. Therefore we use the TNT classes for the FORTRAN-type array. Matrices
M and K are double precision and matrix G is a complex double precision FORTRAN ma-
trices (defined in fmat.h). Vectors &)m, ¢, and W are complex double precision FORTRAN
vectors. Furthermore vector N and matrix N are both double precision FORTRAN arrays.

The coding for submatrices in (4.1.1) and (4.1.2) is straight forward; and likewise are
(3.5.30) and (3.5.31). The coding of (3.5.28) and (3.5.29) requires the calculation of the
Green’s function (2.3.11) or (2.3.13) as well as the Gauss quadrature-Legendre polynomial
scheme. We analyze (2.3.11) and (2.3.13) separately starting with (2.3.11).

For the case of finite depth (2.3.11) we truncate the infinite sum into
N

G’(X;ﬁ)Z—ZA’O(ICQJJ;'—E‘)COSij(H). (C.1)

1=1
Equation (C.1) requires the roots of the dispersion equation (2.3.8). We choose the roots in
a way such that the first root k is a negative purely imaginary number and the remaining

k; (7 = 1,..., N) are positive real numbers with ascending magnitude.
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The computation of the second kind modified Bessel function of order zero K ()
is provided by the GNU Scientific Library (GSL) function [Galassi et al., 2002a]. However,
to use such function in the library, z is required to be a positive real number [Galassi et al., 2002b].
Hence the corresponding K for the first root cannot be calculated using the GSL K func-

tion. To overcome this restriction we use the relation
. . T
Ko (—ik|x —&|) = an (k|x—§&l),

where Hy is the Hankel function of order zero. Using relation Hg (z) = Jo (z) + 1Yo (z)
we obtain

Ko (=ik |x — &) = - {Jo (k x = €]) + i¥o (k|x — €])} . (C2)
[Abramowitz & Stegun, 1964]. Expression (C.2) is now solvable by GSL functions since,
for both Jy and Yp argument k |x — €| is a positive real number.

For the case of infinite depth we are required to individually calculate Hy, Yy, and
Jo in (2.3.13). Since this is time-consuming we accelerate the calculation by replacing the
sum of the three special functions with one table. The table contains a finite range of t and
its corresponding f (t) = Ho (t) + Yo (t) — 2¢.Jy (t). Then for each ax we look up the
table to find its corresponding f (ax). This is done using the linear interpolation provided
by GNU Scientific Library (GSL) [Galassi et al., 2002b].

To determine the integration points and their corresponding weight for the Gauss
quadrature we use the Legendre polynomial. We recall from Section 3.5.3 the definition of
(94 (3.5.14)

[9lee= [ N(xa) [ G(xq;€.) N(&,) dS¢ dS,.
Since Ay and A, are physic'aﬁ;/ identicaleene numerical integration scheme is sufficient for
both integrals in [g] ,..

For all area integration over Ay we first write it in full

b a
[ £69 a5, = / N / Ty dedy (C3)

We approximate the integral (C.3) with respect to = using Gaussian quadrature

[ i) da= Y Was £ (i), (C.4)

=—a j=1
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where y is kept constant. The integration points (or also known as abscissae) and their
corresponding weights are calculated from the roots of a set of orthogonal polynomials.
Here we use the Legendre functions as the orthogonal polynomials.

The abscissae x;’s are the roots of the Legendre polynomials. These are found using
Newton-Raphson method repetitively on Legendre polynomials from order 1 to @) (the
specified number of points). We use the recurrence relation of the Legendre polynomials

1<j<Q(orP)

Pj(z) = —=[(2j = 3) zPj—1 (z) — (j — 2) P2 (z)], (C.5)

where
P=1, P =z  P,=3
For Gaussian quadrature (C.4) that requires a maximum of n abscissae the corresponding
weights for z;’s are calculated using
2
(1-23) (P ()"

The same Gaussian quadrature-Legendre polynomials pair is applied to the integral with

H;n.j == (C.7)

respect to y with maximum m abscissae to obtain a set of y;’s and their corresponding
weights W, ;’s.

Then the total number of abscissae () = n x m (and likewise P) and the weights u;’s
and v;’s of (3.5.26) are obtained by multiplying W,,’s and W,,,’s where each satisfies (C.7).
Since the panel is a square then we set m = n.

Finally multiplication between a matrix and vector, such as M &)ln, is done using the
built-in operator in the TNT. Matrix multiplication, such as N; G; Ny, is done using the
Basic Linear Algebra Subprograms (BLAS) [Dongarra et al., 1997], in particular BLAS
level 3 for general matrices. To invert the matrix (M — aG) in (3.5.21) and (3.5.20) we use

a function provided by the Linear Algebra Package (LAPACK) [Anderson et al., 1999].
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LAPACK also provides LU linear solver that solves (3.5.21). Substituting the solution of
(3.5.21) to (3.5.20) completes the process of solving W and ¢.



Appendix D
The Asymptotic Representation of the
periodic Green’s Function

D.1 The Spatial Representation of the Periodic Green’s

function

We recall the free-surface Green’s function for infinitely deep water

1 2

G(x;&) = T (E_—gl — ma [Ho (e [x — &) + Yo (e |x — &]) — 2 Jo (x| x — ED]) :

We let |x — €| — oo. Therefore we may write the Struve function Hy in the asymptotic

expansion

Hy (a|x—€&|) ~ Yy (c |x—§|)+£( 1 - 1 N 1232 - )
i e mr\alx—§& (a|x—¢&|)° (a|x—§€)° T/

Asr — o0
Ho (@ |x — &]) ~ Yo (alx — &),

substituting this into (2.3.13)

G (x;€) = 5 2% (alx — £]) — 26 (alx — €]
where I?%E — Oas7 — oo. Factoring out —2i gives
GOc€) = — o (el — &) + ¥ (o b~ €]
= -2 Hy(akx—g). (D.1.1)

The new representation of the Green’s function (D.1.1) matches the one given by Linton

[[Linton, 1998], (2.4), p.-378] however with different multiplying constant.
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D.2 The Spectral Representation of the Periodic Green’s
function

Linton [[Linton & Evans, 1992], (2.26), p. 330] gave an alternative form of the Hankel

function

i, (L (%2 +Y,§]%) = —1/ U—leHVIX|g=ikYmugy, (D.2.1)

™

where U = (u? — 1)%
Substituting (D.2.1) into (5.3.2) yields

(X g o ——C Z / 1e—kU|X|e—ikYmudu eimal' (D22)

mf~oo
"

e

F(xi€,,)

First we observe part F' (x;&,,).

F (X; €m) — § / le—kUIX] e—lkYu—Hkml ezmal du

m=—00
2C
_ / U-! e~ kUIX| e~ tkYu Z ez‘ml(ku+a) B
e m=—oo
then we replace > o e™/(ku+o) with

Z eimilkuta) — on Z 6 (ku+ o)+ 27m),

and this gives
(x;€,) =27 / U~ le FUIX| g—tkYu Z §(l(ku+ o) +27m) du.  (D.2.3)

We may rewrite (D.2.3) as

F(x;¢,) = QW/_OOF(u) Z 8 (I [ku + 04)) du

Lo m=—00

2” Z / F (u) 6 (ku + o) du, (D.2.4)

m=—0o0

where

F () = lg il (D.2.5)
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and

2mm
Om =0+ ——

Let ' = ku in (D.2.5)

oo

F(x;em)=27“ 3 %/::F(%) 8 (' + o) du’

m=—0o0

We recall that

/_wé(r—u)ﬁ’(u) du=F (7).

o0

We apply (D.2.8) into (D.2.7) and find that 7 = =7=.

. I w= = [
Foagd =1 Y £7(50).

. —0
and then we substitute

™ into (D.2.5)

k

i ]
oM AN oy

p(‘ﬁm) f?_k[(__im)z_l]%|X|e—ik}"(-lm

[ (o2 — k)’
k e~UmlX| giom¥

Um

Up = [02 — k7]
Back substitution of (D.2.10) into (D.2.9) gives us

9 . e~UmlX| giomY

m=—00

and further back-substitution of (D.2.12) into (D.2.2) yields

Ge (x:8) = ~=e(h) 3

m=—00

e—Um|X| eiomY

(D.2.6)

(D.2.7)

(D.2.8)

(D.2.9)

(D.2.10)

(D.2.11)

(D2.12)

(D.2.13)

the spectral representation of the periodic Green’s function for large distance. Expression

(D.2.13) is also known as the Fourier transform of (D.2.2) [Jorgenson & Mittra, 1990].
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