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Abstract

Ephestia kuehniellas a pest of stored grain products. It also iseljicdused to rear
parasitoids and predators. Prior to this studitelinformation was available on its
reproductive behaviour. The fitness Bf kuehnielladecreases with the increase of
rearing density; a density of 100 larvae/50g foeddecommended to produce high
quality insects. Females emerge earlier than mele®rgence peaks at dusk; calling,
courtship and mating peak in the late part of thiestotophase following emergence,;
oviposition peaks in the early part of the 2nd gpbase following emergence. Newly
emerged virgin females carry <5 mature eggs, aae gy load increase 240 three
days after emergence and remains unchanged tlesrebfale accessory gland
secretions stimulate egg maturation; mated fen@ieduce~300 mature eggs. Males
produce two types of sperm, eupyrene (nucleate ppgrene (anucleate) sperm. After
mating, it takes 11 h for most eupyrene and apyspeem to reach the spermatheca.
The presence of eupyrene sperm in the spermatletiae imain factor that elicits
oviposition. The highest fecundity can be achiewden both sexes are 1-d-old at
mating compared to older insects; delaying matong/fd reduces female fecundity by
60%. There is no significant effect of parental ageoffspring fitness. Virgin females
live longer than mated ones because the formercatoless resource for egg
production. Larger females have higher fecundity &arger males produce larger
spermatophores. Larger parents have larger sonslarghters. Females prefer large
and mid-aged males for mating. Males prefer laggeing and virgin females for
mating. Males strategically adjust ejaculate sizeoeding to the degree of sperm
competition risks. Both sexes mate multiply wheedes can copulate up to 9 times and
females up to 4 times in their lifetime. Larger rminger females are more likely to
remate. Multiple mating does not increase femateiridity, fertility and longevity.
Females discriminate against previous mates aatégtcally adjust oviposition to gain
genetic benefit via increasing offspring genetigedsity. Using a chemosterilant,
thiotepa, | determined that the last male to mait & female sires most of her
offspring. The last male sperm precedence may beasperm displacement at both
sperm ejaculation and storage sites, where then#add physically displaces the 1st
male’s spermatophore with his own in the bursa taipy and triggers the female to
dump~50% resident sperm in the spermatheca. Spermatt@uahctions appear to be
the mechanism for sperm ejection. The outcome @frsmlisplacement is the result of

malexfemale interactions.
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General Introduction

CHAPTER 1
GENERAL INTRODUCTION

1.1 Introduction

Annual losses of grain in storage due to insedsiation have been estimated
as about 10%~(90 million tons) worldwide (Munro 1966; Hill 2002Approximately
70 species of moths, primarily in the families Rigi@e, Tineidae, Oecophoridae, and
Gelechiidae, are associated with infestations arfest products (Cox & Bell 1991).
However, only a few species such as the Mediteaantour moth Ephestia
kuehniella Pyralidae), tobacco motle( elutellg Pyralidae), almond mothCgadra
cautellg Pyralidae), raisin mothC( figulilella, Pyralidae), Indian meal motRlpdia
interpunctella Pyralidae), and Angoumois grain motlsitptroga cerealella
Gelechiidae) are considered widely distributed imwagor pests of stored foods (Cox &
Bell 1991; Sedlacek et al. 1996).

The Mediterranean flour moth. kuehniellaZell is a serious pest of stored
products, particularly flour (Cox & Bell 1991; Sadkek et al. 1996; Hill 2002; Rees
2003). This pest is likely to be found in any naH warehouse where flour or other
powdered cereal products are stored (Sedlacek E226). The larvae prefer powdered
foods but also attack whole grains, bran, etc @l et al. 1996). In heated milts
kuehniellamay breed five generations a year (Scott 1984\ deaspin silken threads
wherever they go and bind with webbing particlesoafd on which they have been
feeding. As a result, they spoil more than theyscome in stored grain products (Cox &
Bell 1991; Sedlacek et al. 1996). For example, webmay block conveyers or spouts
and other parts of the milling machinery, encourggother insects and mites
(Hebanowska et al. 1990; Hill 2002; Rees 2003)vaarlive inside the webbing and
pupate in cocoons, which protect them against fantg contact insecticides, natural
enemies, and loss of water (Hebanowska et al. 1080;& Bell 1991; Sedlacek et al.
1996). Eggs hatch between°@and 33C without any apparent influence of ambient
humidity on duration of development or viabilitya¢bb & Cox 1977)E. kuehniella
has thus proved to be a severe and tough to cqresblof stored grain products.
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E. kuehniellas also widely utilised to laboratory rear paraisis and predators
for biological control of a number of key pestgy(de Clercq et al. 2005; Kim & Ried|
2005; Hamasaki & Matsui 2006; Paust et al. 2008) esearch into behaviour,
biochemistry and molecular biology (e.g. Corbet3;Hahman et al. 2004; Rahman et
al. 2007; Jamoussi et al. 2009). Adult moths of #pecieslo not need to feed before
they lay their eggs (Norris 1932). The selectiveaadage of this feature has probably
contributed to the success of the moth as a pdkeidry environment of warehouses
and provender mills (Calvert & Corbet 1973). Tlisan easily-bred species as larvae
can develop on simple food resources (e.g. whemtaize flour) under a wide range of
temperature (10 ~ 3C) without any apparent influence of ambient hukgidn
developmental duration or survival (Moeiaety 1958¢ob & Cox 1977; Hebanowska
et al. 1990). Under 25 ~ 30, a colony of this species can continually proadielt
moths for use without diapause, with a generagstirg for 50 days (Gonzalez Nicolas
1966). These features make this insect of gre&npiat to serve as valuable material

for laboratory research and commercial use.

1.2 Importance and Relevance of This Study

The study of the reproductive behaviour of an ihke{ps us understand its life
history, behavioural ecology, sexual selection rma@dms and evolutionary ecology of
senescence (Hughes & Reynolds 2005; Bonduriansély 2008). It can also provide
information useful for the design and implementataf innovative monitoring or
control tactics, and for better use of this insastresearch materials or hosts of

parasitoids.

1.2.1 Sexual Selection

In addition to natural selection (Darwin 1859), War (1871) proposed a
second type of selection, sexual selection, ab#ses of his theory of evolution and
speciation. Darwin (1871) correctly realized thetusal selection could be mediated by
intrasexual competitiorior mates (usually by male—male combat) orittgrsexual
choiceof mates (usually by female choice of attractivales). Today, the theory of
sexual selection through male competition has beeely accepted. However, his idea
of female preference for male ornaments is stititcaversial although it has received
new support in bird and fish (Majerus 1986), andgéenetic models (reviewed in
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Andersson & Simmons 2006).

Darwin (1871) based his theory of sexual selectanpre-copulatory mate
competition and choice. However, Parker (1970) feoirout that sexual selection may
continue after copulation via sperm competitionwssn males for fertilization, or
female post-copulatory manipulation of sperm ukss lenown as cryptic female choice
(e.g. Birkhead & Mgller 1993; Eberhard 1996; Sims@®01). Studies have often
suggested the importance of post-copulatory seselgiction in evolution but much

less is known about its mechanisms.

In many polyandrous species, including lepidoptersects, the last male to
mate with a female often sires most of her offgprim phenomenon called last male
sperm precedence (reviewed in Silberglied et @418immons 2001; Friedlander et al.
2005). This phenomenon has been explained as st i male’s and/or female’s
influence on sperm use pattern for maximum reproddeicsuccess (reviewed in
Danielsson 1998; Simmons 2001; Snook & Hosken 28ddbok 2005). A number of
mechanisms for last male precedence have beenstadgend tested (reviewed in Xu
& Wang 2010a). However, in all studied speciessitsiill not clear whether these
mechanisms work together, and to what extent eatdhamism contributes to last male

precedence.

The underlying mechanisms of sexual selection &endlifficult to resolve
(Andersson 1994; Simmons 2001). It has been ndt&iddifficulties in resolving the
mechanisms of sexual selection are particularlgeai in insect species (Thornhill &
Alcock 1983; Andersson 1994; Simmons 2001). In Heptera, and several other
groups of animals, males produce two types of speupyrene (nucleate) and apyrene
(anucleate) spermatozoa (Meves 1903). Although baffyrene and apyrene sperm
reach the spermathecae of the inseminated fenmlgsgupyrene sperm can fertilize
eggs (Friedlander & Gitay 1972). The function ofr@me spermatozoa is still not clear
although they have been argued to play a role amnspcompetition, perhaps aiding
transport of eupyrene sperm, or acting as chebg o deceive females about their
sperm load (e.g. Cook & Wedell 1999; Simmons 2001).

Lepidopteran species have often been used as mdaelsesolving the
mechanisms of pre- and post-copulatory sexual sete@reviewed in Simmons 2001;
Cordero 2005; Koshio et al. 2007; Oliver et al. 200n E. kuehniellafemales emerge
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earlier than males (Xu et al. 2008); individuale &ighly variable in phenotypical
features (Cerutti et al. 1992); both sexes matdiphylith males mating more times
than females (Xu & Wang 2009b). These biologicareabteristics suggest that the
quality of individual moths is highly variable awgerational sex ratio is temporally
and spatially dynamic i&. kuehniellaallowing both pre- and post-copulatory sexual
selection to take place. Moreover, male reprodeaiystems and spermatogenesis.of
kuehniella have been studied in detail (e.g. Riemann & Thord878; Wolf &
Bastmeyer 1991). Therefoie, kuehniellasshould be a good model for the investigation

of sexual selection mechanisms.

1.2.2 Evolution of Ageing and Life Span

Classic evolutionary models interpret ageing, oneseence, as a cost of
reproduction (Medawar 1952; Rose 1991; Hughes &Rlels 2005) but evolutionary
research has largely neglected the associationeleetihe evolution of ageing and
sexual selection (Bonduriansky et al. 2008). Onetraé question in evolutionary
ecology of senescence is how individuals optim&murce allocation to their survival
and reproduction. However, the physiological medras by which this trade-off is
controlled remain poorly understood at all biol@jievels (Zera & Harshman 2001;
Harshman & Zera 2006). Most lepidopteran speciesaldeed on a protein source as
adults; even in those nectar-feeding species, argynall amount of protein may be
obtained by adults (Baker & Baker 1973). As a cqnsace, most materials for
reproduction and survival must be obtained durihg tarval stage. Therefore,
Lepidoptera should have evolved mechanisms fon@tiesource allocation between

survival and reproduction.

Females are believed to invest more in reprodud¢han males. Antagonistic
coevolution between the sexes is thus driven whate radaptations to intrasexual
competition and intersexual selection have detrialegifects on their mates (Parker
2006; Bonduriansky et al. 2008). Such male effeatsincrease ageing rate and shorten
lifespan of females by physical damage (e.g. Cngign & Siva-Jothy 2000; R6nn et
al. 2007) or toxic male ejaculates (e.g. Chapmaat. di995; Green & Tregenza 2009).
While sexual conflict makes copulation costly imfdes, mating may also increase
female fecundity and/or longevity by water and mumts contained in ejaculates
(Arngvist & Nilsson 2000; Maklakov et al. 2005). drefore, the trade-off between the
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costs and benefits of matings, as well as betwariival and reproduction in females

can be more complex and is worth examining.

Females of many species often prefer to mate aldkr males (reviewed in
Brooks & Kemp 2001) but why females do so is dtighly controversial. The
traditional “good genes” models assume that nmtimith older males should be
beneficial for females because old age is a dematist of a male’s high genetic
quality that enables him to survive (reviewed imé&ks & Kemp 2001). Nevertheless,
the quality of gametes may decrease with male age td the accumulation of
deleterious mutations that may reduce their offgpfitness substantially (Hansen &
Price 1995; Brooks & Kemp 2001). Therefore, theodd genes” models may be

subject to re-examination.

1.2.3 Insect Manipulation

Pheromone-based mating disruption and sterile ins®bhnique (SIT) have
been successfully used in pest control world wedg.(Suckling et al. 1990; Caprio &
Suckling 1995; Lo et al. 2000). However, whethernot these control tactics are
successful in the control of an insect pest largelyends on our understanding of the
reproductive behaviour of the pest (Cardé & Mink93; Michereff et al. 2004). For
example, the relationship between age and reprimsiugs vital information for
pheromone-based mating disruption that achievetraldoy preventing or delaying
mating (Michereff et al. 2004; Wenninger & Avei2006). Knowledge of mate choice
in relation to morphological traits and age mayused to improve SIT based control
effectiveness that relies heavily on a constantplyupf insects with desirable
characteristics such as optimal body size and &gelly et al. 2007). Moreover, the
understanding of female multiple mating and spesmpatterns also is essential for the
successful application of SIT (Kraaijeveld et &03). The female sex pheromone has
been identified forE. kuehniellaand has been suggested for control applications
(Trematerra 1994; Sieminska et al. 2009). Ayvaal 2007) have developed a sterile
insect technique for the control of this pest. Hogre mating behaviour of this insect
has not been thoroughly investigated, making ifialift for optimal design and

implementation of monitoring or control tactics tars pest.

The economical, constant and reliable supply gdarumbers of high qualify.
kuehniellais a pre-requisite for the use of this specieba@ss of biological control

5
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agents and research materials. Mass rearing is ofted to produce high quantities of
insects at the lowest cost and individual reariry @so be applied to obtain insects of
high quality when necessary. In mass rearing syst@owever, low performance and
high mortality of the insects often occur due todshortage (Cerutti et al. 1992; Sato
et al. 2004), fecal and microbial contamination aadnibalism (Singh 1977; Stone &
Sims 1992). Therefore, knowledge of the influenéeremring systems and larval
density on adults’ performance is essential for diegelopment of reliable rearing
programmes. Information of parental effects (eige,sage at mating) on offspring
performance also is important for the improvemehtrearing programmes. For
example, empirical studies have showed that pdterpa has negative effects on
progeny fitness in different species (reviewedriokiép et al. 2007). Moreover, a good
understanding of the reproductive behaviour andhrhg is needed for better use of

this insect.

1.3 Aim and Objectives of This Study

The aim of this research is to provide accuratermétion on the reproductive

behaviour oE. kuehniellawith three objectives:
1) To investigate aspects of the basic biologyomllation growth oE. kuehniella

2) To investigate the biotic and abiotic factdrattaffect the reproductive fithess of

E. kuehniella

3) To investigate pre- and post-copulatory sexueécdtion, and reproductive

senescence &. kuehniella
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

This chapter reviews the current knowledge on rpctive behaviour relevant

to my PhD studies oBphestia kuehniellZeller.

2.2 Classification ofEphestia kuehniella

In 1879 Zeller first described this species fromresect collected in Auckland,
New Zealand. The classification for the species is:
Order: Lepidoptera
Superfamily: Pyraloidea
Family: Pyralidae
Subfamily: Phycitinae
GenuBphestia
Speciesehniella

2.3 General Biology

E. kuehniellais found worldwide but not abundant in the tropgion (Hill
2002). The life cycle oE. kuehniellancludes four stages: egg, larva, pupa and adult
(Fig. 2.1). The complete life-cycle of this spectekes about 50 days (Gonzalez
Nicolas 1966).

2.3.1 Eggs

Pyralid eggs are usually flat and oval (Naumannl1)l9%he surface of the
newly laid eggs ofE. kuehniellais white in colour, and shining iridescent when
observed by reflected light (Kamel 1969). Just keefoatching the egg turns light
yellow in color due to the development of the enobwhich can be seen through the
shell of the egg at this time (Brindley 1930). Tégg is 500-55@m long by 290-325
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um wide forE. kuehnielldMoreno et al. 1994) (Fig. 2.1b). The mean wedgjl# single
egg is 0.023 mg (Brindley 1930). The eggs hatc®bimours at 3T and 73% relative
humidity (Brindley 1930).

(c)

Fig. 2.1Life cycle ofE. kuehniella(a) adult moths in mating; (b) eggs; (c) mati@té (
instar) larva and (d) mature (dark) and immatureyin) pupae. (Bars = 2 mm).

2.3.2 Larvae

Pyralid larvae usually do not have secondary sgaethorax has 2 L setae;
crochets are usually bi- or triordinal in a circlemesal penellipse, and rarely uni- or
biordinal in 2 transverse bands (Naumann 19B1kuehniellalarvae are 0.866 mm
long and 0.199 mm wide on average immediately dfééching and at this time they
weigh 0.018 mg (Brindley 1930).

The newly hatched larvae are cream coloured andalyacovered with long
hairs. In general appearance they remain the shroaghout their developmert.

kuehniellalarvae have six instars (Brindley 1930).
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E. kuehniellalarvae mainly feed on wheat flour but are recorftech a wide
range of commodities and from dead insects (H0Z2®Rees 2003). When reared on
flour, E. kuehniellaakes 41 + 2.4 days (mean + SD) to complete dewedmt through
six instars at 3U and 73% relative humidity (Brindley 1930). Thetara (6th instar)
E. kuehielldarva (Fig. 2.1c) is 12.6 £ 0.78 mm long and 27W@in weight on average,
and has a head capsule width of 1.110 + 0.032 mind®y 1930). The head capsule

width has been used as a criterion to identifyairss{Athanassiou 2006).

The incidence of diapause i kuehniellais influenced by both photoperiod
and temperature. At 26, up to 50% of larvae enter diapause when reareshort
photoperiods or continuous darkness while no disgp&idetected at LD 14:10. At LD
14:10 no diapause occurs at 25 antiZ3but 12% of larvae enter diapause &QCox
et al. 1981).

2.3.3 Pupae

Pyralids pupate in silken cocoons or in larval sl pupae have pilifers,
maxillary palps and antennae are long (Naumann)1984tureE. kuehniellalarvae
crawl to the surface of the material on which tiheye fed, and spin silk cocoons
intermingled with particles of meal and flour fargation. Pupae are pale green at the
early stage and then turn to reddish brown on thrsal side of the thorax (Fig. 2.1d).
On the last day of development, pupae become dartolor (mature pupae) and
emergence will occur within 24 hours. The averape af pupae is 9 mm long and 2.21

mm wide at thorax (Brindley 1930).

2.3.4 Adults

E. kuehniellas the largest member of the genus; 10-14 mm \eimgn at rest,
with wingspan being 20-25 mm; forewings are blueygwith transverse dark wavy
bars and a row of dark spots at the tip; hindwirggdarty white with fuscous veins (Fig.
2.1a). This species is sometimes distinct and mr@zagle without study of the genitalia
(Hill 2002).

E. kuehniellafemales are nearly ready to mate and lay eggs wienemerge
(Norris 1932; Calvert & Corbet 1973). The next day period of rapid maturation,

when pheromone is synthesized, chorionation ofetigs proceeds, and some of the

9
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chorionated eggs move from the ovarioles into Widwrts (Calvert & Corbet 1973).
By the second dawn after emergence the concentratipheromone is high, and most
of the moths have ovulated; it is then that callamgl mating begin for most females
(Calvert & Corbet 1973).

E. kuehniellaadults do not need to feed before they lay thggséNorris 1932).
The selective advantage of this feature has prghabitributed to the success of the
flour moth as a pest in the dry environment of warteses and provender mills (Calvert
& Corbet 1973).

2.4 Reproductive Biology of Pyralidae
2.4.1 Reproductive System

In the female Pyralidae the bursa copulatrix ogerike exterior on the ventral
surface of the eighth abdominal segment so thatdpalatory and oviducal apertures
are situated on the eighth and ninth segmentsecésply (Fig. 2.2). A pair of ovaries,
each usually consisting of four ovarioles, opew itte paired oviducts which join to
form the common oviduct (Norris 1932). The commaidoct opens to the exterior on
the ovipositor, which is believed to be formed lod fused ninth and tenth abdominal
segments (Norris 1932). Entering into the dors@¢ sif a slightly inflated part of the
common oviduct, is the vestibulum in which fer@ton of the eggs takes place. A
spirally coiled duct (spermathecal duct) initiatesn the vestibulum leading to a small
sac, the receptaculum seminis (spermatheca), vdpenen are stored (Norris 1932).
There are two pathways in the spermathecal dechme is the main canal in which the
sperm move from the vestibulum to the spermathaed,the other is the fertilization
canal in which the sperm move from the spermathetize vestibulum for fertilization
(Lum et al. 1981; Suzuki et al. 1996). Atubulacessory gland, the spermathecal gland,
opens into the spermatheca at its apex. Entergngehtibulum in the neighbourhood of
the spermathecal duct is a second duct, the dsetmnalis, leading into the bursa

copulatrix, into which the spermatophore is recgigecopulation (Norris 1932).

Male Pyralidae have an unpaired testis composeigbt follicles surrounded
by a common “scrotum” (Norris 1932). Arising frohetbase of the testis are the paired
vasa deferentia which are never fused (Fig. 2.8thEvas deferens is more or less

dilated near the middle of its course to form aiaidar seminalis in which sperm are

10
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stored. The vasa deferentia open into the middjiens of the paired glands (i.e. ductus
ejaculatorius duplex). The paired glands join Hgs#&b form the long ductus
ejaculatorium simplex (i.e. unpaired gland). Themieal part of the ductus
ejaculatorius simplex lies coiled up inside thetiobus aedeagus, forming, together
with it, the penis (Norris 1932).

Fig. 2.2A dorsal view of female reproductive organgokuehniellgddrawed based on
Norris 1932). bc. Bursa copulatrix; ds. Ductus se&is; |d. Lamina dentata; nbc.
Neck of bursa copulatrix; ov. Ovary; ovp. Oviposjtact. Rectum; sc.
Spermatheca; sd. Spermathecal duct; sg. Spermhthlacal; viv. Vulva; vs.
Vestibulum.

2.4.2 Mating Behaviour

The readiness of a pyralid female for mating isidattd by the “calling”
position, which may be assumed as soon as an lfiiureanergence (Norris 1932).
Dickins (1936) showed th&. kuehniellafemales produce a sex pheromone attractive
to males (Dickins 1936), and she described thdificdlattitude, in which the abdomen

protrudes between the wings with the tip evertegpsing the glands from which the
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pheromone is releaseB. kuehniellamales in a wind tunnel respond to the female
pheromone by flying upwind and making frequent svaad casts (Traynier & Wright
1972). In a more confined situation, male mothsosegd to the pheromone raise and
lower their antennae alternately, become active la@gin to vibrate their wings,
orientate to the source of pheromone and may atteanmate with it. Males of this
species possess hairpencils (scent structureggtboa the eighth abdominal segment
(Corbet & Laifook 1977) but whether it produces sdreromones reported in other
species (Nishida et al. 1982; Mori et al. 1993;|T&a0Oostendorp 1995) is still

unknown.

Fig. 2.3A dorsal view of male reproductive organdokuehniellgfrom Norris 1932).
ae. Aedeagus; ag. Accessory gland; h. Horns ofdtieus ejaculatorius; pg.
Paired gland; t. Testis; ug. Unpaired gland; vds \teferens; vs. Vesicula
seminalis.

Phelan & Baker (1990) have studied 12 pyralid nsgtécies and revealed two
major behavioural patterns of courtship: (1) intéikee and (2) simple. The former is
characterized by a complex sequence in which, &8fjgica male approaches a
pheromone-emitting female, engages in a head-td-peature with the female, and
then bring his abdomen over his head and strikegaimale on the head and thorax.

This action brings male abdominal scent structuntesclose proximity with the female
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antennae. The male then attempts to copulate frmrhead-to-head position by a
dorsolateral thrust of the abdomen toward the fergehitalia. Males of these species
possessed scent structures located either onghiih@bdominal segment, or in a costal
fold of the forewing, or both (e.g. Corbet & Laitod977). Courtship in the second
group is much more prosaic. After locating the feamhy response to her sex
pheromone, the male simply attempts to copulatateyal abdominal thrusts under the
female wing, without behavioural embellishments.lddaexhibiting simple courtship
have either no scent structures or structuresagaear vestigial. The courtship Bf
kuehniellais similar to the simple courtship @&myelois transitellaand Laetilia
coccidivorg however, it also contains some behavioral elemdound in the
interactive-type courtship (Phelan & Baker 1990)aléé approach females with
fanning wings; 79% of approaches are from the fidagy position themselves parallel
to females, facing in the same direction (PhelaB&ker 1990). Upon contacting
females, males elevate their abdomens over thanshand extend their claspers and
attempt dorsolateral copulation without the abda@hirheadthump. Although
abdominal hairpencils are present, they appearigi@stoecause they are never
observed to be exposed during courtship (PhelarakeB1990). During this process,
females remain stationary with their abdomens praxmately the same position as

when calling occurs but with the pheromone glanchoted (Phelan & Baker 1990).

2.4.3 Insemination and Fertilization

During copulation the valves of the male claspl#teral walls of the seventh
abdominal segment of the female while the uncubgmisnder the overhanging part of
this segment and presses down very tightly uporettjieth tergite. The ovipositor is
completely retracted within the eighth segment. aéeéeagus is thrust a short distance
up the neck of the bursa and the evaginated vesicatrates into the bursa copulatrix
where the spermatophore is deposited. The traoktere spermatophore per mating is
the rule (Norris 1932). Both eupyrene and apyreperms migrate from the
spermatophore to the ductus seminalis and therlttavough the vestibulum and
thence to the spermatheca (Friedlander et al. 2040%3 not certain whether this
migration relies only on either sperm motility oontractions of the female
reproductive duct or on both (Friedlander et aD30In order to fertilise eggs, sperm
must travel from the spermatheca downwards via ghermathecal duct to the
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vestibulum where fertilization takes place (Friedlar et al. 2005). I@ydia pomonella
sperm need between 3-6 hours to exit the spermatepfiHowell 1991). In most

Lepidoptera oviposition begins < 24 h after mating.

2.5 Factors Affecting Reproductive Fitness

A growing number of empirical studies have demaistt that insect
reproductive performance is affected by biotic abbtic factors. Most papers focus
on the female reproductive output but neglect thlemnfluence on the female
reproductive fitness (Ellis & Steele 1982; Vahe®8:3Bergstrom et al. 2002; Tregenza
& Wedell 2002). Some other studies have demonstrhiE male mating history may
influence female reproductive fitness (Linley & ld811974; Gage & Cook 1994;
Wedell 1996).

2.5.1 Effect of Age at Mating on Reproductive Fitess

Reproductive biology studies in Lepidoptera indécétiat mating delay may
negatively affect both female (Torres-Vila et @02; Jimenez-Perez & Wang 2003;
Michereff et al. 2004; Fitzpatrick 2006) and malBafrer 1976; Huang &
Subramanyam 2003; Jimenez-Perez & Wang 2003; liad. €006) reproductive
fitness. Some empirical studies have suggestedhbatenescence process influences
females more than males (Foley 1985; Jimenez-Rerézang 2003). The delayed
mating in females generally shortens the ovipasifieriod and reduces fecundity and
fertility (Huang & Subramanyam 2003; Jimenez-P&ea#/ang 2003; Michereff et al.
2004; Fitzpatrick 2006; Xu & Wang 2009a). The delhymating in males may
influence male reproductive fitness due to decfinsperm quality and quantity
(Unnithan & Paye 1991; Rogers & Marti. 1994; Vickd997).

More importantly, the study of age—reproductive f@enance relationship

helps clarify the evolutionary ecology of seneseefsee review in Section 2.8.6).

2.5.2 Effect of Body Weight on Reproductive Fitnes

Body size is a key determinant of an organism’daggoal and physiological
properties (Thornhill & Alcock 1983; Wickman & Kadon 1989; Honek 1993). It is

generally recognized that selection for higher fetity favors larger females (Honek
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1993). Larger females often have more eggs availédnl laying and are able to
regenerate eggs faster when required than smaties ¢Cloutier et al. 2000;
Garcia-Barros 2000). A growing list of empiricaludies in Lepidoptera has
demonstrated a positive correlation between ferpajel weight and fecundity (e.qg.
Marks 1976; Jones et al. 1982; Tammaru et al. 18986&nez-Perez & Wang 2004a; Xu
& Wang 2009a).

The reproductive advantages of being a large nrel@at as clear as those of
large females. This may be because measuremethts ifproductive success of males
over their entire lifespan are extremely uncommamgared with females (reviewed in
Simmons 1988; McElligott & Hayden 2000). Nevertlssldarge size has been used as
an indication of “good quality” in males, such awvimg better genes and more ejaculate
supply over smaller ones (Phelan & Barker 1986s@mmdath & Wiklund 1996). In
some species of insects, larger males have a hglebability of obtaining mates
(Mathis 1991; Savalli & Fox 1998; Sokolovska et2000) and probably mate more
often (Brockmann & Grafen 1989; Oneill et al. 1988;0ck 1990).

2.5.3 Female Multiple Mating

Bateman’s principle, a well-established paradigmewolutionary biology,
suggested that while a male’s reproductive sucebssild be limited only by the
number of females he can inseminate, a femaletsdeigtive success should be largely
independent of the number of matings she obtaiase(Ban 1948). Contrary to these
predictions, however, the majority of female insegtate multiply, most often with
different males (polyandry) but also with the sanade (repeated matings) (Arngvist &
Nilsson 2000). Mating is costly, such as the en@agts of sexual behaviour and the
risks of predation, disease transmission, and ynjaflicted by males (Daly 1978;
Arngvist & Nilsson 2000; Blanckenhorn et al. 2002herefore, the benefits of
multiple matings in females must outweigh the cdstsmake the evolution of

polyandry possible.

In many insect species a female obtains enougmsfsrem a single mating to
fertilize her full egg-load (Thornhill & Alcock 18 but in many others the female
needs to mate more than once to fully fertilize égys (Arnqvist & Nilsson 2000). In

an extensive review, Ridley (1988) suggests thatgbéneral pattern for females to
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remate is in order to obtain sperm supplies foyaadirous species. Nevertheless, there
is relatively little information on the relationghbetween sperm numbers and female
fertility. Linley & Hinds (1974) show that irCulicoidesmelleusfemale fertility is
reduced when mating with males whose ejaculatefailzebelow a threshold (50% of
that of a virgin male) due to successive matingswéler, inCadra cautella males
produce decreased numbers of sperm on successiveggiaut no obvious decrease in
female fecundity and fertilisation success occurth vincreased number of male

copulations (McNamara et al. 2007).

During copulation, males of many insect speciesamy transfer sperm but
also supply water and/or nourishment for femalethenform of glandular secretions
(Wilson et al. 1999; Arngvist & Nilsson 2000; Maktv et al. 2005). Studies in several
insect species have found that nutrients from flegmsatophore delivered from males
to females at mating are incorporated into the santh eggs of females (Boggs &
Gilbert 1979; Boggs 1981; Boggs & Watt 1981; Gredddf1982). Polyandry thus has
been viewed as an adaptation whereby females damdbese male-derived nutrients
to increase egg production and somatic mainten@dmd&er & Simmons 1989; Boggs
1990). Indeed, several studies have found a pesithationship between the number of
matings and female fecundity (Pardo et al. 1995dal andolt 1995; Sakurai 1996;
LaMunyon 1997; Wilson et al. 1999; Arnqvist & Nitss2000; Maklakov et al. 2005)
and longevity (Wiklund et al. 1993). However, soatkeer studies have found no such
relationship (Kraan & Straten 1988; Svard & Wiklud®88; Ono et al. 1995;
Rodriguez 1998; Kawagoe et al. 2001; Xu & Wang 2)08Vhether or not a female
relies on male-derived nutrients may depend oralatiet, adult diet and the number of

yolked eggs at eclosion (Boggs 1990).

The recent literature shows that females may ganetic benefits from
copulating with multiple mates, and a number ofdtileses have been proposed to
explain the evolution of polyandry in this lightif@nons 2005). For example, the
genetic incompatibility hypothesis suggests thdygudry enables females to bias
paternity towards males with genes that confer drigfitness or that are more
compatible with the females’ genome; as a resudir bffspring viability increases (e.g.
Zeh & Zeh 1996, 1997; Tregenza & Wedell 1998; Komipal. 2001; Pai & Yan 2002).
Recent studies propose that polyandry can beresfiafes by enhancing the genetic

diversity of their offspring (reviewed in Jennio&sPetrie 2000; Cornell & Tregenza
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2007), which may reduce sib competition (e.g. Ridl®93) and inbreeding costs
(Cornell & Tregenza 2007), and enhance diseasstaese (e.g. Tooby 1982).

2.5.4 Male Multiple Mating

In a landmark paper, Dewsbury (1982) shows thatab&t of producing
ejaculate, often considered to be very low, is naial. Males may also invest nutrients
in reproduction besides sperm. In some insect epeniales provide females with a
nuptial gift during courtship or copulation (Thorthh& Alcock 1983). Nutrients
contained in the spermatophore have been fountiedreggs and soma of females
(Boggs 1981; Wiklund et al. 1993). However, most+pollen feeding Lepidoptera do
not feed on a protein source as adults, insteagiester most of the protein needed for
egg production and basal maintenance during taeial feeding stage (Gilbert 1972).
Even in those nectar-feeding Lepidoptera, only braalounts of protein may be
obtained in some nectars (Baker & Baker 1973). Mapidoptera therefore have a
limited protein supply and are likely to incur stébdial costs such as sperm depletion

or reduced survival through mating (Wedell et 802).

Male investment of gametes and seminal products ltave important
consequences for female fitness (Torres-Vila & Jmmn 2005). Therefore, male
copulation experience may have a profound impadeorale reproductive success if
male reproductive investment declines over consexwtopulations. Some studies
show that females that mate with non virgin malagehlower lifetime reproductive
success than those that mate with virgin malesembiher studies do not find this
relationship (see review of Torres-Vila & Jenni@@05). This inconclusive scenario
may occur because male mating experience is affégta number of factors. The size,
qguality and number of spermatophores delivered lajesmnhave been shown to be
highly sensitive to such factors as male body saxgs at mating, larval and adult
feeding regime, mating order and the duration betweonsecutive matings
(Torres-Vila et al. 1995).

2.6 Sexual Selection
2.6.1 Introduction

Charles Darwin (1859) bases his theory of evolutrom natural selection on
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the central theme of ‘the struggle for existentée survival of the fittest” and ‘the
preservation of favoured races’. In addition tounalt selection, he proposes a second
type of selection, sexual selection. “This depemds$,on astruggle for existence, but
on a struggle between males for possession okthales; the result is not death to the

unsuccessful competitor, but few or no offsprinQafwin 1871).

With many fascinating research programmes, sexalaton has now become
one of the most active areas in the field of evohéry biology (reviewed in Andersson
1994; Andersson & Iwasa 1996; Simmons 2001; AndergsSimmons 2006; Jones &
Ratterman 2009). Sexual selection is so vast asufijat it is impossible to cover all
(or even most) of its aspects in detail in thiseev Thus, in this chapter | review the

current knowledge on sexual selection relevantystudy.

2.6.2 Mechanisms and Models of Sexual Selection

Darwin (1871) hypothesizes two forms of sexual c@a: (1) intrasexual
competitiorfor mates, usually by males, in which males battleer for direct access to
females or for possession of some critical reso(iike food or breeding sites) that
females need, and (R)tersexual choicef mates, usually by females, in which females
choose males directly, basing their choice on iiddial preference for male ornaments.
The theory of sexual selection through male contipatihas been widely accepted.
Darwin clearly understood that female preferencest eout he has never compellingly
explained why and how such preferences would ev@welersson & Simmons 2006;
Jones & Ratterman 2009).

Now—150 years after Darwin’s foundation, the theofysexual selection
through female choice for male ornaments is stiitooversial, although this theory has
received new support from two directions. FirstJemanaments favoured by female
choice have been showed in bird and fish (MajeRB6). Second, the reasons why
females prefer ornamented males is clarified bytemodels (reviewed in Andersson
& Simmons 2006).

Showing how mating preferences evolve geneticalharder than showing that
they exist. To demonstrate experimentally the cotioe between a morphological
trait in males and mating preferences in females, male trait is often physically

manipulated. This becomes difficult to manipuldte is a behavioural trait. Although
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molecular genetic and genomic tools enable thealddteharacterization of genes and
their effects on behaviour (reviewed in Fitzpatrtial. 2005), evidence for genetics of
mating preferences still is scarce (Andersson &rsams 2006; Jones & Ratterman
2009). Nevertheless, the sensory bias model ofaeselection posits that female
mating preferences are by-products of the undeglyhysiology of their sensory

systems, which have been molded by natural seteditd that males evolve traits that

match those sensory system characteristics (redi€wber et al. 2005).

Fisher’s (1958) genetic model explains why femaleger ornamented males:
a female choosing a male with an attractive trditivave sons and daughters that can
both carry alleles for the attractive trait. Thiea has been formulated in major gene
and quantitative genetic models (reviewed in Ansl@ns& Simmons 2006). Moreover,
Zahavi (1975) suggests that females use the ele®seaual displays of males to assess
their quality because such displays are costlytlaackfore cannot be easily faked. Only
males of high quality can afford to support sut¢taadicap to survival (e.g. a peacock’s
elaborate trait). Hamilton & Zuk (1982) suggest tleanales prefer to mate with males
with showy sexual displays because they are th#hest and the most resistant to

parasites.

Competition and mate choice, as directed by DarfdBi’1l), are two most
important mechanisms of sexual selection and htx&cted most interest. There are,
however, also other important mechanisms of sese#@dction that have received
attention, particularly sperm competition (see eavin Simmons 2001). Since 1970
when Parker pointed out its importance, sperm caitigge has been found in many
animals, and corresponding processes have beed toumccur in plants (Harvey &
Bradbury 1991; Andersson & lwasa 1996; Simmons 20Rbtably, several authors
have suggested the importance of cryptic femalécehathough much less is known
about its mechanisms than sperm competition (Bakh& Mgller 1993; Eberhard
1996; Simmons 2001)

2.6.3 Pre-copulation Sexual Selection
2.6.3.1 Mate Choice in Relation to Body Size, Agad Virginity

Selection on characters may vary greatly in difiereating systems. It is often

assumed that larger individuals of a species hafitness advantage over smaller
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individuals, especially among insects (Wickman &rlKson 1989). The rationale
behind this assumption is that larger individualsynbe better competitors for food
(Wilson 1975) or mates (Alcock 1998), or have geeaurvivorship or longevity (e.qg.
Sokolovska et al. 2000). Also, large individuale able to produce more gametes,
provide a larger nuptial gift, a larger territory lwetter oviposition sites in addition to
their genetic quality (Cloutier et al. 2000; GarBiarros 2000). Furthermore, selection
for higher fecundity favours larger females (Hon#893) but the reproductive
advantages of being a large male are not as dliedes and females are often subject to
different selection pressures, which can resusiexual size dimorphism (Fairbairn &
Preziosi 1994). While natural selection favourgdafemales that produce more eggs,
sexual selection in the form of male—-male compmetior female choice can result in

larger body size in males (e.g. Fairbairn 1997).

However, there are conflicting selection pressuesrating on body size of
both males and females (Schluter et al. 1991).rfBatecosts of large body size in
animals include higher mortality rates due to langevenile development times,
increased energy demands, increased conspicuousnessdators or parasites, and
increased heat stress (Blanckenhorn 2000). Furthrerrarger individuals of a species
may have a mating disadvantage if attaining large $s associated with late
reproduction, or increased energy requirementseiCtade-offs may cause selection
against large size in males. For example, large rsize may increase the burden for
females of species that carry males during londcppsilatory periods, resulting in
female-biased sexual size dimorphism (Taylor el @88). Furthermore, if flight is a
requirement for successful mating (as in mayfliesjje size associated with decreased
agility could reduce male fithess as has been shownther insects (Marden 1987;
McLachlan & Allen 1987; Neems et al. 1990). Therefoconflicting selection
pressures especially on male size may result iapparent large male advantage, or
stabilizing selection for some optimal intermedisitee with maximum lifetime fitness
(Schluter et al. 1991; Neems et al. 1998; Pre&dsairbairn 2000; Stoks 2000).

Generally, young and virgin mates are preferrechate choice because they
ensure higher reproductive potential (Halliday 198Bdersson 1994). For example,
young females have a better reproductive outputali{es & Buda 1995; Vickers 1997;
Xu & Wang 2009a) and virgin males can produce laspermatophore (Howell et al.
1978; Kaitala & Wiklund 1995; Bissoondath & Wikluri®96). Some authors have
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documented mating advantages associated with \ikgwis & lannini 1995; Arnaud
& Haubruge 1999) and young individuals (Yasui 19963 & Wang 2009a).
Nevertheless, there is evidence that for some apdbie classical sexual selection
theory does not apply. For example, in the todri€Choristoneurrosaceana old
females obtain more matings than young femalesigleell995). In the butterfly

Drosophila hydemales prefer to mate with recently mated femalearkdw 1985).

In addition, mate choice in relation to age is aiethe key evolutionary
processes shaping life span (see review in Se2tkh6 for detail).

2.6.3.2 Mate Choice by Females between Novel angeous Mates

A number of studies show that multiple copiolass may allow females to
replenish sperm supply and/or obtain nutritionabreces from males (e.g. Arnqvist &
Nilsson 2000; Simmons 2001; Jimenez-Perez et &3;20Wang & Davis 2006). In
many species, females may seek multiple mates fatenal benefits because of

potential resource depletion from previous mateg (eemaitre et al. 2009).

The genetic incompatibility model requireatteperm from multiple males are
present at the site of fertilization (Simmons 20G&)d the genetic diversity model
necessitates that the offspring are fathered byipteimales (Jennions & Petrie 2000).
Therefore, to gain genetic benefits from polyandeynales must have developed
strategies to discriminate against previous matesibsequent copulations (Zeh et al.
1998). However, so far only seven studies havei@ipltested whether females have
any preference for new versus previous mates iir thgbsequent copulations.
Discrimination against previous mates by females leen reported in four
invertebrate (Bateman 1998; Zeh et al. 1998; Aré&nhElgar 1999; Ivy et al. 2005) and
two vertebrate (Eakley & Houde 2004; LaDage & Ferld007) species. In a
cannibalistic spider, however, females appear teehao discrimination against
previous mates (Fromhage & Schneider 2005). Ar&Helgar (1999) suggest that hide
beetleDermestes maculatéesmales choose new mates for subsequent copuldtons
gain the benefit of genetic diversity. In a follays- study of Zeh et al.’s (1998)
observations, Newcomer et al. (1999) obtain evidetat in the pseudoscorpion
Cordylochernes scorpioidegemales discriminate against previous mates fghdni

offspring viability.
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2.6.4 In-copulation Sexual Selection

Sperm are produced in astronomical numbers in casgrawith eggs, and
there is good evidence that sperm competitionasfdince behind the evolution of so
many tiny sperm (Parker 1982; Smith 1984; Simmd&l2 However, males cannot
produce unlimited numbers of sperm as spermatogenesvitably incurs costs
(Dewsbury 1982). As first argued by Dewsbury (198#)gle sperm may be cheap, but
as males transfer huge numbers of sperm, theiulejgccan inevitably be limited
(Pitnick & Markow 1994; Cook & Gage 1995; Savallix 1999). Therefore, views
such as "the male is generally eager to pair withfamale" (Darwin 1871), and "mate
guality would seldom be as important to a maldas mate number" (Williams 1975),

need to be re-examined in the light of the costgjadulates.

In studies of mate choice, most authors (e.g. Tmtrb983; Blanckenhorn et al.
2000; Fedina & Lewis 2007) concentrate on how femahoose their mates with the
belief that females invest more in reproductiomthzales. However, females usually
vary in reproductive potential, and thus if sperup@y is limited, males should be
expected to choose among available females (Wetlel. 2002). Simmons (2001)
suggests that males may employ two strategies ttertake mate choice: (1)
pre-copulation mate choice, where males choose dugtity females and reject low
quality ones for copulation, and (2) in-copulatimate choice, where males allocate
different amount of ejaculates to their mates ddpgnon mate quality. The first
strategy has been experimentally confirmed in nsgcies (e.g. Goshima et al. 1996;
Pizzari et al. 2003; Sato & Goshima 2007). Theedghtial allocation of sperm by
males is suggested as cryptic male choice (Patletr 2996; Simmons 2001; Engqvist
& Sauer 2003; Ronn et al. 2008) similar in prineipb the differential acceptance
and/or use of sperm envisaged as cryptic femalieetidhornhill 1983; Eberhard 1996;
Dixson 2002; Fedina 2007). Recent empirical studée® suggested that males can use
both strategies to choose their mates in the @allus gallus(Pizzari et al. 2003), and

in the stone crablapalogaster dentatéSato & Goshima 2007).

Galvani and Johnstone (1998) have examined thealigtihow ejaculation
strategies should vary with female reproductive liguaTheir optimality model
predicts that males should invest an increasinguatnaf their ejaculates as the female
reproductive quality increases, irrespective ofahmunt of remaining sperm they have.

Body size and age are generally considered cuesnaie reproductive potential, with
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large and young females tending to offer greatproductive returns to males than
small and aged ones (Arak 1988; Bonduriansky & 8t&005). It has been reported
that males of several species prefer larger or geunmates (see review in
Bonduriansky 2001), and there is good evidencertiaés provide larger ejaculates to
larger females (see review in Wedell et al. 206@)\wever, these high quality females
may pose a greater risk of future sperm competttian aged and smaller females (e.qg.
Gage 1998; Wedell & Cook 1999). Therefore, usingali@rnative sigmoid function
Galvani and Johnstone (1998) predict that if spesmpetition risk is high males will
allocate smaller ejaculates to females of highiddut when the risk is moderate they
should allocate larger ejaculate to high qualitpédes. Simmons (2001) suggests that
sperm competition risk should be moderate if feshaln mate no more than twice in
their life time, but high if females can mate mtran four times.

Operational sex ratio is the ratio of sexually cetimy males to females that are
ready to mate in a population (Emlen & Oring 197A).the natural environment,
operational sex ratio is temporally and spatiallgaimic (Krupa & Sih 1993; Casula &
Nichols 2003; Forsgren et al. 2004; Wang & Chen5}0@vhich may provide
information about the probability and intensity sgferm competition in polygamous
mating systems (Wedell et al. 2002). Theoretic@lMedell et al. 2002), males should
produce a smaller ejaculate and conserve sperfatige matings in the female biased
sex ratio where male mating opportunities and gatkereproductive rates increase (e.g.
Pitnick 1993). On the contrary, males may incregaeulate size in the male biased sex
ratio where the presence of rival males providderimation about the increasing
probability of sperm competition in polyandrous mgtsystems (e.g. Nicholls et al.
2001).

Theoretical (Parker 1990, 1998), comparative (Rarke al. 1997) and
experimental (Martin et al. 1974; Gage & Morrow 3DP@tudies have suggested that
the paternity is determined by the relative numdferompeting sperm in females from
different males. In this scenario, males shouldgfer larger ejaculates strategically to
females when having to compete with rival spermiéwed in Simmons 2001). For
example, Cook & Gage (1995) demonstrate that tHe pyaialid mothP. interpunctella
increases his ejaculate size in the presence affah spermatophore. However,
Hodgson & Hosken (2006) proposed an untested sScemdrere the second male

should reduce his ejaculate size because the ajaduy the previous male has buffered
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the hostile female tract.

2.6.5 Post-copulation Sexual Selection

Sperm competition and post-copulatory female chace considered as
important parts of sexual selection (Parker 197@ales have evolved various
strategies for sperm competition, including stinin mating when females are not
sperm limited, allocating more sperm to femalesdmpete with rival sperm, and
displacing sperm from previous males (reviewed amilsson 1998; Simmons 2001).
In the process of sperm reception, storage andse)demales also have opportunities
to bias sperm fate to favor the sperm of a pasdicoiale over those of others, a process
known as cryptic female choice (Thornhill 1983; EHized 1996; Dixson 2002; Fedina
2007). Therefore, the outcome of sperm competisibould be the result of male x
female interactions (reviewed in Danielsson 1998irfons 2001).

In the Lepidoptera and many other animals, thentedé to mate often achieves
a higher fertilization rate (reviewed in Silbergliet al. 1984; Friedlander et al. 2005;
Xu & Wang 2009b; Xu & Wang 2010b). In these speciggerm packed in a
spermatophore are ejaculated to the bursa copu(#te ejaculation site) from which
they migrate to the spermatheca (the storagels#oye they can fertilize ova (Smith
1984; Birkhead 2000; Friedlander et al. 2005). Bpemigration from the
spermatophore to the spermatheca lasts < 0.5 h 10 h depending on species
(reviewed in Friedlander et al. 2005). Therefolne, $perm competition battle between
males that copulate with the same female shoudtithke place in the bursa copulatrix,
and the duration of intermating intervals in fensahould be correlated with the
outcome of sperm competition (reviewed in Daniats4898; Simmons 2001). For
example, the shorter the intermating duration i& bmale is, the more likely the
second male can displace the spermatophore oirgtenfale in the bursa copulatrix
before most sperm of the first male emigrate frowm spermatophore, resulting in a
higher B (the proportion of eggs fertilized by the secofidhe@ two males to mate)
(Retnakaran 1974; Drnevich et al. 2000; Takami 200hese authors consider the
spermatophore displacement in the bursa copulasixthe mechanism, and the
intermating duration as the function, of the secorade sperm precedence. However, in
all studied species it is still not clear how mulis mechanism contributes to the last
male precedence and what factors determine thematang duration.
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After sperm migrate from the spermatophore, therspsmpetition process
between males that copulate with the same femaieaoatinue in the spermatheca
(Silberglied et al. 1984; Simmons 2001; Friedlaneteal. 2005). Hypotheses over the
sperm precedence mechanisms at the sperm storegeesierally fall into two
categories: (1) sperm displacement, where residpatm from the first male are
flushed out from the storage by the incoming ejaieubf the last male (Pair et al. 1977;
Silberglied et al. 1984) or ejected from the sterag the female to accept the sperm
from the last male (Villavaso 1975; Hellriegel & rBasconi 2000), and (2) sperm
incapacitation, where incoming seminal fluids ifees with fertilization capability of
resident sperm (Price et al. 1999) or femalesthél resident sperm using spermicide
after subsequent matings (Hosken et al. 2001).eRait. (1977) report that the female
tobacco budworrkleliothis virescensnated to a sterile male after an initial mating to
fertile male shows a 90% reduction in the storedrrsp Therefore, these authors
assume that the incoming ejaculate of the last fhadbes the resident sperm from the
spermatheca. In the Oriental leafworm m8podoptera liturahowever, the reduction
in the stored sperm appears to have occurred foritve arrival of the sperm from the
second copulation (Etman & Hooper 1979), castingotlon the validity of the flushing
hypothesis. Although not observed directly, manyhars (e.g. Villavaso 1975;
Hellriegel & Bernasconi 2000) suggest that thedesi sperm may be physically
displaced from storage by females. In the boll WleAnthonomus grandidemales
whose spermathecal muscles are severed have 2&Méntesperm displaced after a
second mating compared to 66% displacement for alofemales, suggesting that
sperm displacement is subject to spermathecal rarscontrol (Villavaso 1975).
However, how the sperm displacement occurs inpkensatheca still remains unclear.

So far, there is still no direct evidence suppartime sperm incapacitation hypothesis.

In addition, Parker (1970) proposes the sperm ifstation hypothesis to
explain the nonrandom use of sperm from differeakes by females and the last male
sperm precedence&his hypothesis suggests that the spermatheca is asdmdo that
the last sperm to enter the sac would be the ndartee exit and more likely to fertilize
eggs first and to fertilize more eggs. The nonramdose of sperm has been
experimentally tested by several authors (e.g. E&ndutkiewicz 1998; Takami 2007),
who report that twice-copulated females have highar eggs laid earlier and loweg P

in those laid later. However, there is still noedirevidence to support the explanation

25



Literature Review

of the last male sperm precedence by the strédidicdnypothesis. Furthermore, many
studies do not support this hypothesis (e.g. Retcal. 1999; Rafinski & Osikowski
2002; Carbone & Rivera 2003).

2.6.6 Sexual Selection and Evolution of Ageing andfe Span

Ageing, or senescence, is defined as a correspgrtdioline in reproductive
performance and an age-specific increase in miyrtalie (Medawar 1952; Rose 1991;
Hughes & Reynolds 2005). The cost of reproducti®rwidespread in organisms:
elevated reproductive rate is associated with redidife span and, in some cases,
accelerated ageing (see review in Bonduriansky. 2088). However, evolutionary
research has largely neglected the associationeleatihe evolution of ageing and a
key mode of selection on male and female reprodeictirategies — sexual selection
and sexual conflict (Bonduriansky et al. 2008).

One central question in evolutionary ecology ofessence is to understand
how individuals optimize resource allocation toitlseairvival and reproduction and the
trade-off between gametes and soma, yet the plogsoall mechanisms by which this
trade-off is controlled remain poorly understood adit biological levels (Zera &
Harshman 2001; Harshman & Zera 2006). One supposetianism in female insects
is nutrient recycling through oosorption, the r@sion of nutrients from unfertilised
oocytes, which is predicted to occur in responsntoronmental stress, such as lack of
food and mates (Kotaki 2003; Wang & Horng 2004 ) pbsitive correlations between
oocyte degradation and female longevity under tiotlly poor or mating delayed
conditions suggest that longer female lifesparnésresult of recoup resources from
eggs through oosorption (Ohgushi 1996; Wang & HZD@4).

Females are believed to be the limiting sex, producelatively few but large
(expensive) gametes, whereas males usually prodsttenomical numbers of tiny
(cheap) sperm. This dichotomy in reproductive itwvent between sexes has been
generally recognized as the force behind the enwmludf female’s choiceness (Darwin
1859; Trivers 1972) and male’s competition (Pad&82; Smith 1984; Simmons 2001)
for fertilizations. Antagonistic coevolution betweéhe sexes was thus driven when
male adaptations to intrasexual competition anergeixual selection have detrimental
effects on their mates (Parker 2006; Bondurianslal.€2008). Such male detrimental
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effects can increase ageing rate and shortengde sf females by direct effect, via
physical damage from ‘traumatic insemination’ (€€gudgington & Siva-Jothy 2000;
Ronn et al. 2007), or by indirect effect, from rmale ejaculates (e.g. Das et al. 1980;
Chapman et al. 1995; Green & Tregenza 2009). Famele, females of many insect
species suffer fitness costs (reduced longevityraptbductive success) as a result of
actions of male derived Acps (accessory gland preéreviewed in Jin & Gong 2001,
Lung et al. 2002; Gillott 2003). Acps mediate aiefyr of effects that benefit males,
including stimulation of female egg production, wetion of female receptivity and
promotion of male success in sperm competitioni€¢veed in Jin & Gong 2001; Lung
et al. 2002; Gillott 2003). The female survival ttsat arises from Acp transfer by
males may be a side effect of Acp function (Chapmtaal. 1995; Lung et al. 2002).
This Acp-mediated mating cost is potentially la@ed is incurred in addition to
reproduction costs, such as those that result @ggproduction (Patridge et al. 1987,
Sgro & Partridge 1999). The side effect of Acpsesyp to be dose-dependent, i.e., a
higher dose has greater effect than a lower dobag@an et al. 1995; Lung et al.
2002).

Male reproductive strategies are typically reldtedlevated mortality risks and
stronger selection for short life span relativefémales, resulting in ‘live fast, die
young’ male life histories (Vinogradov 1998; Caman& Pérez-Barberia 2007).
Generally, the opportunity for and intensity of sakselection are greater in males
because males invest less to each offspring thalés do. This frees up resources that
males can use to compete for additional matings thnd males can benefit by
sacrificing longevity for the possibility of enhatmating success (Bonduriansky et al.
2008). Moreover, male-biased mortality rates alaed to polygynous mating systems
characterized by intense male sexual competititumi@-Brock & Isvaran 2007). The
theory predicts stronger selection for short lifennales than in females, which is
supported by higher mortality rates in males witlainbroad range of taxa (e.g.
Promislow 1992; Vieira et al. 2000). However, engail studies suggest that sexual
selection need not always promote ‘live fast, dieung strategies in males
(Bonduriansky et al. 2008). First, selection on enabndition and performance may
favour genes with positive pleiotropic effects amdevity and somatic maintenance
(Williams & Day 2003; Bronikowski & Promislow 20055econd, in species with

age-dependent expression of secondary sexual saxsal selection may favour males

27



Literature Review

that can survive and maintain their soma long ehdagattain a large body size, large
weapons or signals, or high social rank (Clintohe&Boeuf 1993; Kokko et al. 1999).
In numerous species, mating success is correlatbdage and many empirical studies
have suggested that females often prefer to makeolMder males (reviewed in Brooks
& Kemp 2001). Therefore, the traditional view dexdvfrom “good genes” models of
sexual selection assumes that mating with oldeesnsthould be beneficial for females
because old age is a demonstration of a male’sdegketic quality that enables him to
survive (reviewed in Brooks & Kemp 2001). Howewghat actually functions for the
fitness of a female’s offspring is not the qualdly her partner but of his gametes.
Gametes may actually decrease with male age dieetaccumulation of deleterious
mutations that may reduce their offspring fitnesisssantially (Hansen & Price 1995;
Brooks & Kemp 2001). A number of empirical studies/e showed that paternal age
has negative effects on offspring fitness in ddfdrspecies (reviewed in Prokop et al.

2007). Therefore, the “good genes” models mayubleject to re-examination.

While sexual conflict makes copulation costly inmedes, mating may also
increase female fecundity and/or longevity by wad@d nutrients contained in
ejaculates (Arngvist & Nilsson 2000; Maklakov et 2005). Therefore, the trade-off
between the costs and benefits of matings, asasdetween lifespan and matings in
females can be more complex. Our understandingeoétvolution of female remating
rate is limited (Arnqgvist & Nilsson 2000; Jenniods Petrie 2000) although the
evolutionary causes and consequences of femaldirgmate are at the heart of sexual
selection (Maklakov et al. 2006).

Therefore, phenotypes are likely to vary in lif@spnd ageing rate, and this
variation may reflect secondary sexual trait exgicesand can therefore modulate the
magnitude or even the sign of sexual selection @ndlict, and likewise, sexual
selection and conflict may also react upon liferspad ageing (Bonduriansky et al.
2008).
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CHAPTER 3
REPRODUCTIVE BIOLOGY OF EPHESTIA KUEHNIELLA

3.1 General Introduction

Reports on biological control @phestia kuehnielland use of this species as
insect food or research materials are piling upvelcer, the basic reproductive biology
of this species has not been thoroughly investijateowledge of which is important
for the control of this pest using pheromones erilst insect technique (SIT) and
improvement of natural enemy production using plast as food. This chapter reports
growth, circadian rhythms and general reprodugtaeameters dE. kuehniella.

3.2 General Methodology

The materials, procedures, environmeaaditions and definitions detailed in

this section were used throughout the thesis.

3.2.1 Materials

Test cylindersTransparent plastic cylinders (8 cm diameter xciDheight,
LabServ, Auckland) were used for rearing and expenits on reproductive behaviour.
The ame cylinders internally lined with porous fitasheets (aperture diameter = 0.15
mm) were used for oviposition. Cylinders were cedewith two layers of nylon mesh
(aperture diameter = 0.2 mm).

Glass tubesGlass tubes (2 cm diameter x 7.5 cm height) caverigh one
layer of nylon mesh (aperture diameter = 0.2 mmewssed for temporary rearing of

individual adults between experiments.

Dissecting microscop&n Olympus SZ Il (Japan) dissecting microscoptwi
transmitted light fitted with a micrometer eyepiegeas used for dissecting,

measurement and egg counting.

Phasecontrast microscopeAn Olympus BX51 (Japan) phasecontrast
microscope with a micrometer eyepiece was used dperm counting and

measurement.
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Electronic scaleA METTLER TOLEDO AG135 (Switzerland) balance wah

readability of 0.00001 g accuracy was used for hieig pupae and male ejaculates.

3.2.2 Procedures

Egg incubationiEggs were collected daily and incubated in plad2étri dishes
(8.5x 1.5 cm).

Fertility assessmentThree-d-old eggs were observed under the disggectin
microscope to determine egg fertility. Eggs wittadid dots (larval heads) were
recorded as fertile (Xu et al. 2007).

Adult weight assessmeritdult weight was significantly positively corrééal
with pupal weight in both sexes (Fig. 3.6, Sect®s). Therefore, pupal weight was
considered adult body weight in this thesis. Meapgb weight (mean + SD) was 22.8
1.9 mg and 25.1 £+ 2.3 mg for male and female, aesypely (Section 3.5). |
categorized pupal weight as average, light (< 1fieB the mean), or heavy (> 1 SD
from the mean). To reduce the random error deriked the variance of body weight,
insects of average pupal weight are used for dtbviing experiments unless stated

otherwise.

3.2.3 Environmental Conditions

Standard Condition25 + 1°C and 70 + 10% RH, with a photoperiod aflDh
light:dark (lights on from 10:00 to 24:00 and afbrin 24:00 to 10:00).

Reversed Photoperiod ConditionEhe same temperature, RH and photoperiod
as above but lights on from 22:00 to 12:00 androfh 12:00 to 22:00.

3.2.4 Definitions

Fecunditydefined as the total number of eggs laid.
Fertility defined as the total number of fertilized eggd.lai

Fertility rate is the ratio of fertility vs fecundity.
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3.2.5 Statistical Analysis and Reported Values

All analyses were made using SAS 9.1 (SAS InstitQey, NC, U.S.A.) (SAS
2006). Rejection level was setaak 0.05. Unless stated otherwise all reported values

are means = SE.
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3.3 Growth and Reproduction of Ephestia kuehniella under Different Larval

Densities

3.3.1 Introduction

The economical production of a large number of lgghlity E. kuehniellas a

pre-requisite for the use of this species as ineect or research materials.

Previous studies show that crowding may affectdgimal fithess of insects
(Peters & Barbosa 1977). h kuehniellalarval crowding has impacts upon mortality
(Bell 1976; Cerutti et al. 1992), adult size (Ullye& Merwe 1947; Cerutti et al. 1992)
and fecundity (Ullyet & Merwe 1947; Cerultti et 8092). However, the comparison of
biological parameters of the New Zealand straifeokuehniellareared in different
densities has not been reported, making it diffitaldetermine the optimal rearing
density for research and mass production of bickdgtontrol agents. In this study,
experiments were carried out to determine the deegformance of this insect in four

larval densities.

3.3.2 Materials and Methods

3.3.2.1 Insects

Laboratory colonies were maintained in plasticruydirs, each filled with 100 g
of a standard diet (43.5% wholemeal wheat flours4@maize meal, 3.0% yeast and
10% glycerine), in the Entomology and IPM Laborgt@f Massey University
(Palmerston North, New Zealand). Adults were neéegifood or water as they do not
feed (Norris 1934). To start the colonies, threespaf moths were introduced into each
cylinder to lay eggs, which were then deposite@ ¢imé¢ standard diet (Karalius & Buda
1995). Two crumpled paper towels (25 x 25 cm) waezed in each cylinder for

pupation. Ten cylinders were used.

3.3.2.2 Rearing Densities

Eggs were collected from 20 pairs of moths in atptacontainer (20x16x10 cm)
lined with two porous plastic sheets (20x5 cm) asoaiposition surface. To make
densities of 100, 500, and 1000 neonate larvagrdduced 116, 578 and 1157 newly
laid eggs (< 24 h old) on to 50 g of the standaedl id a plastic cylinder, respectively
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because egg-hatching rate is 86.4 £ 0.7% (Xu &0&l7). Each cylinder was provided
with two crumpled paper towels (25%25 cm) for pumatand considered to be a
replicate. The cylinders were covered with two tayef nylon mesh. Ten replicates
were performed for densities of 100 and 1000 laarakeight replicates for that of 500

larvae.

For the density of 1 neonate larva (individuallgined), a newly laid egg (< 24 h
old) was inoculated on to 2 g standard diet in edd&@B0 glass vials (2 cm diameter x
7.5 cm height). A crumpled paper towel (6x6 cm) piased in each vial for pupation,
and the vial was covered with a layer of nylon médhese vials were divided into

groups of 116 vials, giving 5 replicates.

The final larvae densities of the 4 treatments viel@va per 2 g food per vial;
or 100, 500 or 1000 larvae per 50 g food per cgind

3.3.2.3 Survival Rate and Reproductive Output

The emerged moths were collected and sexed dadytla@ pupation rate
(number of pupae/number of neonate larvae), emeegeste (number of emerged
moths/number of pupae) and survival rate (humbeeroérged moths/number of

neonate larvae) were recorded.

To determine the effect of larval density on fedtyndnd fertility, 51, 43, 43
and 47 pairs of newly emerged moths (< 12 h oldjewandomly collected from
densities of 1, 100, 500 and 1000 larvae, respagtizach pair was caged for life in a
plastic cylinder, internally lined with porous pli@ssheets for oviposition, and covered
with two layers of nylon mesh. Eggs were colledeady and incubated in Petri dishes
(8.5¢1.5 cm). Total eggs were counted for each pair,thage with black dots (larval
heads) after 3 days (egg development period otti@ny was 4-5 days) of incubation

were recorded as fertile.

3.3.2.4 Statistics

A goodness-of-fit test was used to test the distidim of data before analysis.
The fertility data were not normally distributedeevafter transformation and thus were
analysed using the nonparametric Kruskal-Walli$ teowed by Dunn’s procedure
for multiple comparisons (Zar 1999). Other data evewormally distributed and
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analysed using ANOVA followed by a Tukey's studesdi range test. The percentage

data were arcsine transformed prior to analysis.

3.3.3 Results

With the increased larval densityln kuehniellahe emergencdf = 3, 28;F
= 38.72;P < 0.0001) and pupatiorDE = 3, 28;F = 149.29;P < 0.0001) rates
significantly decreased (Fig. 3.1). The survivaksawere also significantly different
between density treatmenBK = 3, 28;F = 113.26;P < 0.0001), with 73% of neonate
larvae surviving to adults in the density of 10@mpared to 91% in individually reared
larvae (Fig. 3.1). When the larval density incre®e500 and 1000, only 50% and 10%

larvae, respectively, became adults.

The fecundity and fertility of resultant adults Bf kuehniellasignificantly
decreased with the increasing larval dendiiff € 3, 165;F = 34.82;P < 0.0001 for
fecundity andDF = 3; y* = 63.9;P < 0.0001 for fertility) (Fig. 3.2). However, these
parameters were not significantly different betwtdendensity of 1 and 100 larvdeX
0.05) (Fig. 3.2), indicating that the insects relaneder the density of 100 larvae can
still produce adults of the highest fecundity aedility. To obtain 100 adults, the
calculated time consumption of individual rearingsax 2 h while that of the 100 larval

density was < 10 min.
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Fig. 3.1 Mean emergence, pupation and survival rates atloual densities irE.
kuehniella For each parameter, columns with different lsttare significantly
different P < 0.05).
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Fig. 3.2Mean number of eggs and fertile eggs laid pertaddibur larval densities iB.
kuehniella For each parameter, columns with different lsttare significantly
different P < 0.05).

3.3.4 Discussion

Crowding generally reduces insect survival andodpctive fitness (Peters &
Barbosa 1977). The low survival rate at high ladextsity may be due to food shortage
(Cerutti et al. 1992; Sato et al. 2004), fecal andtrobial contamination and
cannibalism (Singh 1977; Stone & Sims 1992). Theeloreproductive output of adult
from high density may be the result of less resesitbey obtained during the larval
stage due to food shortage (Peters & Barbosa 18afrtti et al. 1992; Sato et al. 2004).

This study suggests that although the overall perdmce ofE. kuehniella
decreased with the increase of larval densityadng density of 100 neonate larvae per
50 g food per cylinder is highly recommended todpie a satisfactory quantity and
quality ofE. kuehniellaparticularly when the cost of labour is takemiobnsideration.

This rearing density was thus used for the follgnexperiments throughout the thesis.
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3.4 Emergence, Sexual Maturation and ReproductivdRhythms of Ephestia
kuehniella

3.4.1 Introduction

Circadian rhythms influence many aspects of inbsalibgy, fine-tuning life
functions to the temperature and light cycles aased with the solar day
(Giebultowicz 2000). Moreover, variations in ciréad rhythmicity can reduce direct
competition between species that share the sameroes, and synchronise mating
activities to ensure genetic isolation of siblipgsies (Saunders 1982).

Only a few papers have briefly described the emmerge(Bremer 1926;
Moeiaety 1959) and reproductive behaviour (Cal@gttorbet 1973) of this pest. In the
present study, the details of emergence and suese@ualult reproductive activity
patterns ok. kuehniellavere investigated. This information will enhance ability to
better manipulate the population Bf kuehniellaand provide vital information for
further investigations on reproductive behaviowartigularly sexual selection and

sperm competition in this species.

3.4.2 Materials and Methods
3.4.2.1 Adult Emergence

To determine daily adult emergence rates and amonaeimergence rhythm of
this insectE. kuehnielldarvae were reared under the density of 100 nedaatae per
50 g food per cylinder as outlined in Section 33BiA separate rearing rooms set with:
(1) normal photoperiod — lights on from 10:00 to0®and off from 24:00 to 10:00 and
(2) reversed photoperiod room — lights on from R2® 12:00 and off from 12:00 to
22:00. For each room, 10 cylinders of 116 eggs wetelp and the number of emerged

adults was recorded daily.

To detect the circadian emergence on an hourlyspts number of emerged
adults was recorded hourly during the photophasleamormal photoperiod room and
the scotophase in the reversed photoperiod room fhe 8th to the 11th day after the
first emergence. Data were pooled and presenteglnimber of adults that emerged
from the normal photoperiod room was recorded datil$¥0:00 to determine the daily

emergence pattern.
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3.4.2.2 Adult Activity Patterns

Late pupae (when they turned dark) were collectedh fthe crumpled paper
towels and kept individually in glass vials (2 cndiameter x 7.5 cm in height) until
adult emergence to ensure virginity. The emergethsnaere sexed and kept in the

same glass vials before being used for experiments.

To observe adult activity patterns on a 24 h b&ismales and 20 females
adults (< 12 h old, virgin) randomly selected freach of the above-mentioned two
rooms were individually paired in above-mentiongtinders and maintained in their
original rearing room for their lifespan. Each piasylinder with a pair of moths was
lined with a multipore plastic film as an ovipositisubstrate and was covered with the
same plastic film secured with a rubber band. Beh&vobservations were made
during the photophase in the normal photoperiodnraod scotophase in the reversed
photoperiod room, and illumination during the sgpdtase was provided by a 30W red
light tube. Activity of both sexes was observedrgvE) min by quickly scanning all
pairs and recording the following: courtship — thale jumping and fanning his wings
over or around the female or if the male exposadgenitalia trying to engage the
female’s genitalia; calling — the female protrudirey abdomen between the wings with
the tip everted (Dickins 1936); mating — the twsdats engaged by the tip of the
abdomen; oviposition — the female protruding hepaositor to find oviposition site or
to lay eggs. The total number of times each agtiveis recorded in a particular hour in
the first four days after emergence is presentedstNE. kuehniellamating and
oviposition occur during the first 4 days after egemce (Section 4.4).

3.4.2.3 Statistics

The number of adults emerged during the photoplaase scotophase was
compared using the paired-sampléest (Zar 1999). A Mann-Whitney two-sample
two-tailed rank test (Zar 1999) was used to deteemathether daily emergence differed

between sexes.

3.4.3 Results

3.4.3.1 Emergence

The Mann-Whitney rank test indicates that adultdlss emerged significantly
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earlier than maleOF = 1;Uo=45.04;P <0.001) (Fig. 3.3). About 60% of females had
emerged during the first 8 days of emergence vdrilg 44% of males emerged during
this period. Adult emergence occurred throughoet 24 h cycle in both sexes and
peaked 3 hours before lights off (Fig. 3.4). Thenber of adults that emerged during
the scotophase (25.1 + 1.0%) was significantly lothan that during the photophase
(74.9 + 1.0%) DF =1, 5;t = 14.59;P < 0.001).
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Fig. 3.3Daily emergence of female and m&lekuehniellaadults.
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Fig. 3.4Circadian adult emergence rhythmd&okuehniellglights on at 10:00 and off
at 24:00).
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Fig. 3.5Circadian reproductive rhythms Bf kuehniella(lights on at 10:00 and off at
24:00). (a) female calling; (b) male courtship; if@ating; (d) oviposition.

3.4.3.2 Activity patterns

Circadian rhythms of adult activities during thesfi4 days after emergence are
shown in Fig. 3.5. Adult activity took place mostlyring the scotophase, and calling,
courtship and mating continued to the early hofith® photophase (Fig. 3.5a-c). Two
days after emergence, both calling and courtshipvedd an obvious peak in the last
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hour of the scotophase. All paired insects perfarthe first mating within the first day
after emergence and peaked at midnight but rempg&aged at dawn on the subsequent
3 days (Fig. 3.5c). Females started to lay eggayladter the first mating, during the
night, and oviposition activity peaked during tivstffew hours of the scotophase and

declined sharply afterwards (Fig. 3.5d).

3.4.4 Discussion

These results suggest that kuehniellais a protogynous species because
females emerged significantly earlier than maled alh paired females and males
mated on the emergence day. Protogyny may be aamisoh that has evolved to
reduce inbreeding (Rhainds et al. 1999) becausg eaerged females are less likely
to mate with their brothers. Norris (1934) foundttsome mature eggs were already
present at the time of adult emergenc&irkuehniellaand Calvert & Corbet (1973)
showed that the male and female reproductive syst#nthis insect became mature
soon after emergence. Therefore, pairihgkuehniellaon the emergence day may

result in highest fecundity and fertility.

Calling and courtship peaks were always followed thg mating peak,
suggesting that female calling and male courtstgpasential for successful matings in
this species. Therefore, using sex pheromone foinmeisruption or mass trapping in

E. kuehniellaappears to be control tactics worth investigating.

Oviposition did not occur until the second nighteafemergence. This may be
becauseE. kuehniellafemales have a long ductus seminalis (the duchexting
between the bursa copulatrix and spermatheca) ifNd832) and sperm migration

from the spermatophore to the spermatheca neettsajtew hours (Section 3.6.3).

On the circadian basis, both emergence and reptigduactivities of E.
kuehniellawere highly rhythmic. It is suggested that the ehghotophase (emergence
peak) and the start of scotophase (oviposition paek optimal time to collect fresh

moths and eggs, respectively, for research or aladmemy rearing.

This study has provided the foundation for thedydtandling oE. kuehniella
and future studies of its reproductive behavioartipularly sexual selection and sperm

competition.
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3.5 Influence of Mating on Egg Maturation, Oviposition and FemaleLongevity

3.5.1 Introduction

Behavioural changes after mating are widespreadgrhena in insects. In
many species of insects, mating stimulates eggnatatn and oviposition, and reduces

female life span (see review in Jin & Gong 2001e&#r & Tregenza 2009).

In this section, | report how mating and male eljaias affected egg production,

egg laying and female longevity ih kuehniella

3.5.2 Materials and Methods
3.5.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per
cylinder (Section 3.3.2.2).

3.5.2.2 Relationship between Pupal and Adult Weigh

Mature pupae (when they turned dark) were colletrtad the crumpled paper
towels and weighed using an electronic balance. Weeghed pupae were kept
individually in glass tubes until adult emergenceensure virginity and age. To
minimize weight changes over time, only those itsétat emerged within 12 h after
pupal weighing were used for experiments. The eatenmgoths were sexed and
weighed as above.

3.5.2.3 Influence of Mating on Female Egg Produan and Longevity

To determine whether and how mating influenced fenhangevity and egg
production, | set up five treatments: (1) virgimi@es (treatment vf, n = 30), (2) virgin
females mated once to virgin males (vfxvm, n = 28) virgin females mated once to
males that had copulated once in the same scotegliscm, n = 21), (4) virgin
females injected with spermatophore extract (spm, 20), and (5) virgin females
injected with saline (PBS) (sal, n = 20). Matingigection was conducted in the first
scotophase after emergence. Females were rearedduadly in the cylinders after

treatments and their fecundity (no. of eggs lai) éongevity were recorded. Dead
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females were dissected to count ovarian mature eggs

My preliminary observations showed that males «f #pecies could copulate
twice within the 10 h scotophase but their secqgadutates in the same scotophase are
smaller than the first ones (1/3 of the first eJates in weight) and are unfertile (can
not fertilize any eggs). Dissection showed thathe second mating the male only
transfers some secretions and a morphologicallyonnpiete or abnormal
spermatohpore with no sperm. To obtain femaledréatment (3), | allowed 1-d-old
virgin females to copulate with 1-d-old males thad copulated once previously within

the same scotophase.

Spermatophore extract preparation and injectidoviedd the methods outlined
in Karube & Kobayashi (1999) with minor modificat® Briefly, 20 spermatophores
were removed from females immediately after magind 20ul of PBS was added and
homogenized. After centrifugation (10,000 rpm fanih at 4°C), the supernatant was
moved into a new tube (0.5 ml) and stored on icérdin female was injected with 1.0
ul (equivalent to 1.0 spermatophore) supernatantréatment (4) and with 140 PBS
for treatment (5). The solution was injected irfte female abdominal cavity through

the intersegmental membrane (Jin & Gong 2001).

To count the number of ovarian mature eggs in femafter death, | dissected
them in a drop of 1% saline solution on a glas$eslinder the dissecting microscope.
The ovaries were separated out and immersed incB¥%@armine for 10 s to stain the
eggs before being transferred to clean saline isoluThe chorion of mature eggs
prevents the stain but immature eggs absorb the @adwards 1954). Stained eggs
were classified as immature and unstained eggsaagerand presumed to be available

for oviposition.

Longevity of virgin males was also recorded (n 3 30

3.5.2.4 Influence of the Presence of Sperm in Speaithecae on Oviposition

Above mating and injection experiments suggest #éhédrtile ejaculate (can
fertilize eggs) rather than male accessory glaraesiens is the main trigger of
oviposition (see Fig. 3.7 in Results). In the présexperiment, | tested whether the
presence of sperm in spermathecae covaried withagggy (e.g. Thibout 1979) and

whether apyrene and eupyrene sperm differentiaflyenced egg laying.
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The chemosterilant, thiotepa ¢di,N3OP), has been used to sterilize male
insects (Nabi & Harrison 1984a, b; Thakur & Kum&BI; Xu & Wang 2010b). The
sterilized males still produce sperm that fertilitee eggs but those fertilized by
sterilized males can not hatch (Section 5.4). Hpat can negatively affect
spermatogenesis and sperm motility at a relatitaedi dose (Thakur & Kumar 1987;
Nejad et al. 2008). Ift. kuehniella about 10 percent of males treated with 2.5%
thiotepa aqueous solution (by dipping their headshe solution for 10 s) can not
transfer fertile ejaculate (no eupyrene sperm regmrmathecae) to females (this
study). In the present study, 130 1-d-old virgimédes were mated once to 2.5%
thiotepa-treated males and reared individually e tcylinders after mating.
Oviposition started in the subsequent scotophaséer(ras the first oviposition
scotophase) after mating with about 50% of eggkifaihe first oviposition scotophase
(Fig. 3.8 in Results of this study). The numberegfys laid in the first oviposition
scotophase was recorded. Females were dissectedraftend of the first oviposition
scotophase to check the presence of sperm in grengfhecae. Thirty virgin females

were used as control.

3.5.2.5 Process of Egg Maturation in Virgin and Meed Females

To determine the process of egg maturation inwiegid mated females, | set up
2 treatments: (1) virgin females without mating@@tment vf), (2) virgin females mated
once to males that had copulated once in the saotephase (vfxcm). Mating was
conducted at the first scotophase after emergenabae. Females were individually
reared after treatment and eggs laid were recardgiddissection to count mature eggs
in ovaries. Females from treatment (1) were sulddiviinto four groups that were
dissected at 1, 3, 7, and 11 days after treatmesypectively (mean longevity for virgin
females is 11 d). Females from treatment (2) webelivided to three groups that were
dissected at 1, 3, and 7 days after treatmentectisply (mean longevity for mated

females is 7 d). Thirteen females were dissecteddoh group.

Mature or immature eggs were determined by 1% aeettine staining as
above. Oosorption increases permeability of eggistlans mature eggs that are being
resorpted may also be stained like immature egdwdEds 1954). However, mature

eggs are obviously larger than immature ones (Edisva®54).

43



Reproductive Biology

3.5.2.6 Statistics

The relationship between pupal and adult weight arzysed using a linear
regression. Data on weight, number of eggs laid) toature eggs (no. of eggs laid +
ovarian mature eggs) and longevity were analysedguan analysis of variance
(ANOVA) followed by Tukey's studentized range td3ata on oviposition in response
to sperm presence in spermathecae were not norndidtyibuted even after
transformation and thus were analyzed using thepa@metric Kruskal-Wallis test

followed by Dunn’s procedure for multiple compansqZar 1999).

3.5.3 Results
3.5.3.1 Relationship between Pupal and Adult Weigh

Female pupae are significantly heavier than mads@F =1, 123F =41.1;P
< 0.0001). Mean pupal weight (mean = SD) was 24.8 tng and 25.1 + 2.3 mg for
male and female, respectively. Female adults wiepesgnificantly heavier than males
(DF =1, 123;F = 197.2;P < 0.0001). Mean adult weight (mean + SD) was #5233

mg and 21.6 = 2.7 mg for male and female, respelgtiv

Adult weight was significantly positively correlatavith pupal weight in both
sexes DF = 1, 60;F = 192.0;P < 0.0001 for males andF = 1, 60;F = 634.0;P <
0.0001 for females) (Fig. 3.6).

30 1 y=06205x+ 1.9443
25T R =0.7588

(a)

v =0.8039x + 1.363
30 ¢ R*=0.9122
20 MM (b)

0 !
10 15 20 25 30 35 40

Moth weight (mg)

Pupal weight (mg)

Fig. 3.6Relationship between pupal and adult weight inaméh) and females (b) Bf
kuehniella
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3.5.3.2 Influence of Mating on Female Egg Produain and Longevity

The longevity of virgin males and females was 1.6.4 and 11.2 + 0.3 d,
respectively. No significant difference in longgwtas found between sexd3H = 1,
57;F =0.88;P = 0.35).

O Eggs laid

M Total mature eggs (eggs laid + eggs in ovaries ahyleat

B Longevity
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Fig. 3.7 Influence of male ejaculates on female longevityg amiposition and total
mature eggs ik&. kuehniellaTreatment ‘vf’ refers to virgin females; ‘vfxvrnand
‘vixcm’ to virgin females mated once to virgin mgland to males that had
copulated once in the same scotophase, respegtigaly and ‘spm’ to virgin
females injected with saline and spermatophoreaeitrespectively. For each
parameter, bars with different letters are sigaiiity different P < 0.05).

Un-injected and saline-injected virgin females Isignificantly longer than
mated females and virgin females injected with sp@ophore extracOF = 4, 112;F
= 26.85;P < 0.0001) (Fig. 3.7). Tukey's studentized rangé d&l not find significant
difference in longevity among females that mateith wirgin and recently mated males

and virgin females injected with spermatophoreastt > 0.05) (Fig. 3.7).

Females that mated with virgin males laid signifitg more eggs in their
lifetime than virgin females, females that matethwecently mated males, and virgin

females injected with saline or spermatophore ek{f@aF = 4, 112;F = 68.68;P <
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0.0001) (Fig. 3.7). No significant difference wasuid among unmated females,
females mated with recently mated males and vifgmales injected with saline or
spermatophore extrad® & 0.05) (Fig. 3.7).

Mated females and virgin females injected with sppphore extract
produced significantly more mature eggs (eggs-+taiarian mature eggs at death) in
their lifetime than virgin females and virgin feraalinjected with salinbF = 4, 112;

F =9.82;P <0.0001) (Fig. 3.7). No significant differencerionmbers of mature eggs
produced was found among mated females and virgmales injected with
spermatophore extrad® & 0.05) (Fig. 3.7).

Virgin females laid a few eggs daily during thefe Ispan while females that
mated with virgin males laid > 90% of their eggadoin the first five days after
emergence (Fig. 3.8).

3.5.3.3 Influence of the Presence of Sperm in Speathecae on Oviposition

In the 130 females that mated with thiotepa-treatedes, dissection after the
first oviposition scotophase shows that 114 hadh laptyrene and eupyrene sperm in
their spermathecae, 12 had apyrene but no eupgpaEte in spermathecae, and in the
remaining 4 females there was no sperm in spermcathé&emales that had both types
of sperm in their spermathecae laid significantlgreneggs in the first oviposition
scotophase than those that had no sperm or only dpgdene sperm in their
spermatheca®f = 3; = 93.09:P < 0.0001) (Fig. 3.9). No significant differencesva
found between females that had no sperm and tlasendd apyrene sperm in their

spermathecad”(> 0.05).

3.5.3.4 Process of Egg Maturation and Resorption

Newly emerged virgin females (< 10 min old) carrmady 2.3 + 0.5 mature

eggs but this number increased to 200.1 + 6.1 &4ein emergence.

Mated females had significantly more total matggssthan virgin female
= 6, 83;F = 11.91;P < 0.0001) (Fig. 3.10). In virgin and mated femalée total
number of mature eggs peaked 3 d after emergenicearained unchanged thereafter.

No oosorption was found in all dissections.
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Fig. 3.8 Oviposition pattern of virgin females (a) and féesahat mated once with
virgin males (b) irE. kuehniella
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Fig. 3.9 Influence of the presence of sperm in spermathecaeviposition inE.
kuehniella Treatments A+E+, A+E- and A-E- refer to femaleatthad both
apyrene and eupyrene sperm, only had apyrene spedrhad no sperm in
spermathecae after mated with thiotepa-treated shaéspectively. Treatment
vf-1 refers to virgin females. Bars with differdatters are significantly different
(P < 0.05).
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Fig. 3.10Egg maturation process in mated and virgin femial& kuehniellaBars
with different letters are significantly differe(® < 0.05).

3.5.4 Discussion

Three kinds of stimuli could affect egg productiand egg laying in female
insects: (1) mechanical stimulation by males dummgting (e.g. Obara et al. 1975;
Sugawara 1981), (2) male accessory gland secrdgogsYi & Gillott 1999), and (3)
presence of the fertile eupyrene spermatozoa irspleematheca (e.g. Thibout 1979).
My study clearly indicates (Fig. 3.7 & 3.9) thaepence of the fertile eupyrene sperm
in the spermatheca, rather than mechanical stiroalaly males during mating or male
accessory gland secretion, is the main factor ¢haits oviposition inE. kuehniella
Positive covariation between the eupyrene spergp@mmathecae and egg laying was
also found in the leek-moth (Giebultowicz et al.91p and the gypsy moth
(Giebultowicz et al. 1991¥urthermore, in the silkmotiBombys morithe eupyrene
sperm were not effective unless they reached tsébwdum (Karube & Kobayashi
1999).

The present study suggests that male accessorg géametions stimulate egg
maturation inE. kuehniellaand this process is independent of the presenspesm
because females injected with spermatophore exiraduced significantly more eggs
than controls (Fig. 3.7). A number of proteins &etd from male accessory gland
secretions have been showed to stimulate egg niaturge.g. Yi & Gillott 1999;

Heifetz et al. 2001). These male accessory glaotéims (Acps) have target receptors
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within the female reproductive tract and haemolyr{@ttiger et al. 2000; Yapici et al.
2008).

My study shows that virgin females lived signifilgrionger than mated ones.
The nutrient recycling hypothesis suggests thatafenmsects may conduct nutrient
recycling through oosorption to enhance longewityich is supported by the positive
correlations between oosorption and female longd@hgushi 1996; Wang & Horng
2004; Kotaki 2005). However, the present study rid find such correlations IR.
kuehniellafemales. Lum (1983) also reported that other pgrédimale mothsP.
interpunctella and Cadra cautella do not carry out nutrient recycling through
oosorption to enhance their longevity. Thereforating may reduce female longevity

in E. kuehniella

Sexual conflict theory predicts that three matimgivced effects may shorten
female longevity: (1) physical injuries incurredbrin ‘traumatic insemination’ (e.g.
Crudgington & Siva-Jothy 2000; Rénn et al. 2002),toxic male ejaculates (e.g. Das
et al. 1980; Chapman et al. 1995; Green & Treg@088), and (3) resource relocation
(Jiao et al. 2006; Wenninger & Averill 2006). Feesabf a wide range of invertebrates
suffer from physical injuries incurred from spikyala genitalia (Crudgington &
Siva-Jothy 2000; Ronn et al. 2007) or other forraumatic insemination (Stutt &
Siva-Jothy 2001; Tatarnic et al. 2006; Kamimura 7200n insects, however, such
physical injuries are most prevalent in the Heteggn infraorder Cimicomorpha (see
review in Tatarnic et al. 2006) but not reportedraths. My dissection in this study
shows that. kuehniellamales do not have such spiky genitalia and masathles
have no obvious injuries in their genital tractsefiefore, the longevity reduction i
kuehniellafemales may not be the result of physical injunesirred from mating.

The side effect of male derived Acps may reducgdeity and reproductive
success of females in many insect species (seaweniJin & Gong 2001; Lung et al.
2002) and the side effect is dose-dependentthe higher the dose is, the stronger the
effect may be (Chapman et al. 1995; Lung et al220@/hether or noE. kuehniella
females also suffer from such toxic male ejaculaasmknown. However, the current
study shows that females that received a full éggeyfrom mating with a virgin male)
had similar egg production and longevity to thdss teceived a reduced ejaculate (1/3
of a full ejaculate in weight, from mating with acently mated male). Moreover,

females that mated more than once also had siexjgrproduction and longevity to
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those that mated only once (Section 4.4). Thesdtsesuggest that the effect of male
derived factors on female egg production and loitgéy not dose-dependent and that

male ejaculates in this species may not be toxiertwles.

Fig. 3.7 indicates that mated or spermatophoreaeixtmjected females
produced more eggs and lived shorter than un-iegect saline injected virgin ones in
E. kuehniella According to the disposable soma model (KirkwddRose 1991;
Kirkwood & Austad 2000), ageing occurs becauseuess allocated to reproduction
are unavailable for investment in somatic repaakimg individuals or populations that
invest more in reproduction likely incur faster ageand shorter life span. Therefore,
the longevity reduction in mated and spermatoplexteact injectede. kuehniella
females is likely caused by the stimuli derivedhirmale accessory factors that induce
resources to be allocated to ova after mating paciion. Section 4.2 shows that
females with delayed mating had fewer eggs prodbegdived longer than normally
mated females, suggesting that females use mooerces for survival (to wait for
mating) and allocate fewer resources for egg pribalucThis result thus supports the
disposable soma model ih kuehniella
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3.6 Ejaculation, Sperm Movement and Sperm Storage

3.6.1 Introduction

After insermination sperm usually need to migratethte sperm storage site
before they can fertilize ova; the structure ofrepatorage site varies dramatically
across taxa, particularly in insects (Smith 1984klead 2000). In Lepidoptera, sperm
packaged in a spermatophore are transferred touttsa copulatrix during copulation;
sperm then migrate from the spermatophore to teerstheca before they can fertilize
eggs (Friedlander et al. 2005). Knowledge of ejatooh, sperm migration in female
reproductive duct and dynamics of sperm storageshet understand the mechanisms

of sperm use patterns (Birkhead 2000).

3.6.2 Materials and Methods
3.6.2.1 Insects

Insects used in this experiment were reared urigedénsity of 100 neonate
larvae per 50 g food per cylinder (Section 3.3.2I2sects were weighed and

categorized as in Section 3.5.

The procedure used for counting sperm is desciibel@tail by Koudelova &
Cook (2001) and Watanabe & Hachisuka (2005).

3.6.2.2 Effect of Male Age and Bodyweight on Ejadation

These experiments were designed to explore whatigeto what extend male
age and bodyweight affected ejaculate size, infdomaof which is essential for
experimental designs in the following studies afrep allocation and competition. In
the first experiment, | set up three treatmentd-@ld male x 1-d-old female, 4-d-old
male x 1-d-old female, and 7-d-old male x 1-d-aohéle) with 15 replicates for each
treatment. Virgin insects of average weight weredufor this experiment. For each
replicate, a male and a female were allowed to imadeplastic cylinder. Females were
dissected under a stereo microscope immediatedy @pulation to count sperm in the

spermatophore.

In the second experiment, | performed three treatsn@ight male x average
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female, average male x average female, and healg/ *average female) with 15
replicates for each treatment. One-day-old virgsects were used for this experiment.

Mating and sperm count were as in the first expenim

3.6.2.3 Spermatophore Formation and Sperm Transfeduring Copulation

This experiment was designed to determine the psocd spermatophore
formation and sperm transfer during copulationgMirfemales were allowed to mate
with virgin males at the scotophase. Mated femalese caged individually after
mating. Females were dissected at 0, 15, 30, 459@0and 120 min from the
commencement of copulation to record the spermataptormation and count sperm
in the spermatophore with 8 females used at eawhgbint. One-day-old virgin insects

with average weight were used.

The spermatophore deposition position in the baogaulatrix in above once
mated females was examined. Because females @fbcses can mate more than once
(Section 3.4), | also examined deposition positiriwo spermatophores in females

that mated twice successfully with two males in socatophase.

3.6.2.4 Sperm Migration and Dynamics of Sperm Staige

To record the migration of sperm from the spermiatop (in the bursa
copulatrix, Fig. 3.11b) to the spermatheca (Fig.18) and the dynamic of sperm
storage in the spermatheca, | allowed virgin aretagye weight females to mate once
with virgin and average weight males at the begigmif the scotophase (referred as the
1st scotophase and the following photophase a&ghphotophase) and caged mated
females individually after mating. Females werenttessected at 0, 1, 2, 3, 4, 5, 8, 11,
14 and 21 h, and 2, 3, 4 and 5 d after mating tmtcsperm in the spermatophore and
the spermatheca with 8 females used at each timé po

My preliminary experiments show that ovipositionsadelayed for 2 or 3 days
if mated females were transferred to 24:0 h (ldgutk) cycle inE. kuehniellaTo test
whether the reduction of the number of sperm insiermatheca was associated with
oviposition, | reared once-mated females in th® P4light:dark) for sperm counts at 2,
3, 4 and 5 d after mating as above (n = 8 for ekg).
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3.6.2.5 Statistics

Data on the effect of male age and bodyweight ennrspmumber were analyzed
using an analysis of variance (ANOVA) followed byKey's studentized range test.
Data on dynamics of sperm storage in spermathesteebn females under 24:0 and
14:10 h photoperiods were analyzed using a Mixedguture (SAS 2006).

3.6.3 Results
3.6.3.1 Effect of Male Age and Bodyweight on Ejadate Size

The mating duration d&. kuehniellavas 115 + 3.3 min (from 1-d-old average

male x1-d-old average female).

Males ejaculated significantly more sperm with itiherease of age at their first
mating OF = 2, 41;F = 10.95;P = 0.0002 for apyrene aaF = 2, 41;F = 90.16,P <
0.0001 for eupyrene sperm) (Fig. 3.12).

Larger males ejaculated significantly more eupyrgperm DF = 2, 41;F =
3.49;P = 0.039) than smaller ones at their first matimgyvever, male weight had no
effect on the number of apyrene sperm ejaculdd&d«2, 41;F = 0.27;P = 0.76) (Fig.
3.13).

3.6.3.2 Spermatophore Formation and Sperm Transfeduring Mating

The process of spermatophore formation and spemnsfer is summarized in
Table 3.1 and Figs 3.11 & 3.14.

The spermatophore weighed 0.434 + 0.031 mg and filed with male
accessory gland secretions and apyrene and euppera. Apyrene sperm were fully
pre-dissociated while eupyrene sperm were stillindles (Fig. 3.11e) at the time when
they were transferred to femalesgnkuehniellaAfter mating, it took up to 2 h for the
bundles to reach a full dissociation. Eupyrene raperere longer and thicker than

apyrene sperm (Fig. 3.11f).

Dissection shows that after copulation the sperptaice opening (on the end
of the spermatophore neck) was attached to theimgpesf the ductus seminalis
(through the wall of bursa copulatrix) that leadshe spermatheca (Fig. 3.11b). After
the second copulation, the spermatophore openittigeofirst male was pushed away
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from the ductus seminalis opening and the sperrhatepopening of the second male
took the position (Fig. 3.11c).

{¢)

Fig. 3.11 (a): spermatophore in formation; (b): bursa copidawith one
spermatophore; (c): bursa copulatrix with two spaophores; (d): spermatheca
and spermathecal gland; (e): eupyrene sperm bumaiésdissociated apyrene
sperm; (f): apyrene (shorter) and eupyrene (longperm. ae. Aedeagus; apy.
Apyrene sperm. bc. Bursa copulatrix; ds. Ductusisains; dso. Opening of
ductus seminalis; eupy. Eupyrene sperm bundle. brndd of the ductus
ejaculatorius; hs. Horns of the spermatophorel é&nina dentata; nbc. Neck of
bursa copulatrix; 01. Opening of spermatophore ftioenlst male; 02. Opening of
spermatophore from the 2nd male; pn. Penis; slofStwe spermatophore from
the 1st male; s2. Sac of spermatophore from then2ameé; sc. Spermatheca; sg.
Spermathecal gland; ug. Unpaired gland. Bars s
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3.6.3.3 Sperm Migration and Storage

Sperm in the spermatophore declined quickly afgutation, and about 90%
sperm moved out of the spermatophore 4 h afterlabpn (Fig. 3.15).

Both types of sperm reached spermathecae simulialyeb h after copulation
(Fig. 3.16). The number of apyrene sperm in thensptheca increased fast and peaked
8 h after copulation (Fig. 3.16a) while eupyrenersppeaked 11 h after copulation
(Fig. 3.16b). Under the photoperiod of 24:0 h (lighrk), the number of both apyrene
and eupyrene sperm declined significantly more lalaan under 14:10 h (light:dark)
from 21 h to 5 d after copulatioDF = 4, 50;F = 12.09;P = 0.0012 for apyrene amF
=4, 50;F = 5.74;P = 0.021 for eupyrene sperm) (Fig. 3.16).

A small number of sperm were found in the spernahaccessory gland
(apyrene plus eupyrene sperm < 100 on average)3Higa). Similar pattern is shown
under 24:0 h (light:dark) (Fig. 3.17b).
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Fig. 3.12Apyrene (a) and eupyrene (b) sperm ejaculatedddgsrof different age. For
each parameter, bars with different letters areisogintly different P < 0.05).
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Fig. 3.13 The number of sperm ejaculated in the sermatopimrelation to male
bodyweight in his first mating. For each paramebars with different letters are
significantly different P < 0.05).

Table 3.1Process of spermatophore formation (n = 8 at aawhpoint)

Time from
the start of Spermatophore formation

copulation (min)

0 No spermatophore
15 Male transferred gelatinous mass to the burgalatiix; no sign of spermatophore
30 Spermatophore started to form in male interaal s

Spermatophore neck was partially in male interaaland partially in female bursa
45 copulatrix (Fig. 3.11a); sac (1/4 as big as theete one) was in female tract and
sperm started to be transferred

Spermatophore neck was partially in male interaaland partially in female bursa

70 copulatrix; sac was 1/2 as big as the completeapdesperm transfer was still ongoing
90 Complete spermatophore was properly lodgederthisa cuplatrix (Fig. 3.11b)
120 Mating pairs separated
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3.15Changes in the number of apyrene (a) and eupybgrepérm in the
spermatophore after the end of copulation.
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Fig. 3.17Changes in the number of apyrene and eupyrene speh®a spermathecal
accessory gland after copulation. (a). 14:10 (ldgrk); (b). 24:0 (light:dark).
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3.6.4 Discussion

The process of spermatophore formationEinkuehniellais similar to that
reported for other Lepidoptera (e.g. Holt & Nor®v7D; Ferro & Akre 1975; Seth et al.
2002).

The time needed for sperm to migrate from the sptophore to the
spermatheca varies considerably among lepidoptgpacies (from < 0.5 h to > 10 h)
and is associated with the length of the reproslaatuct and dissociation rate of sperm
bundles (Friedlander et al. 200%). kuehniellafemales have a long ductus seminalis
(the duct connecting between the bursa copulatitk spermatheca) (Norris 1932),
which may be the reason why the sperm need at4dastfter copulation to reach the
spermatheca (Fig. 3.16) although at this time aB0&b of sperm have moved out of
the spermatophore (Fig. 3.15). This study shows #myrene sperm were fully
pre-dissociated while eupyrene sperm were stiundles (Fig. 3.11b) at the time they
were transferred to females. It took up to 2 htfex eupyrene bundles to be fully
dissociated, which may explain why eupyrene speeach the plateau in the
spermatheca 3 h after apyrene sperm. A long dus#usnalis may be evolved to
promote sperm competition by favoring the ‘vigorosigerm that could reach the
spermatheca and fertilize eggs (Keller & Reeve 1995

In many insect species, male age and bodyweigkttatie ejaculate size (e.qg.
Bissoondath & Wiklund 1996; Ferkau & Fischer 200éhmann & Lehmann 2009).
The positive relationship between male body mass gaculate size found k.
kuehniellaand other species (Bissoondath & Wiklund 1996;mahn & Lehmann
2009) supports sexual selection models where sexaitd are predicted to link to
genetic factors and be expressed in proportionht dondition of their bearer
(Andersson 1994; Johnstone 1995). Empirical studigggest that when reserves
collected by larvae limit reproduction, the propamtl increase of reserves with body
size should be paralleled by an increase in remtd effort, possibly resulting in
increased ejaculate production by larger males ¢Bd®81; Wiklund & Kaitala 1995).
The increase in ejaculate size with male age isistent with that reported for other
species (e.g. Lehmann & Lehmann 2000; Wedell & H&tc2004; Lehmann &
Lehmann 2009). The age-related differences in &géesize reflect adaptive plasticity
in male effort spent in a current mating and resesiteft for future matings (Simmons

1995). Such an adjustment is commonly seen aggitahvestment in insects (Wedell
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& Cook 1999; Engqvist & Sauer 2001, 2002).

My present study demonstrates that the second malkes the first male’s
spermatophore away when producing his own and ipositthe opening of his
spermatophore against the opening of the ductugaés(Fig. 3.11c). Spermatophore
displacement is also found in other species (rextkim Danielsson 1998; Simmons
2001) and some authors suggest that it may funatisperm competition (Retnakaran
1974; Drnevich et al. 2000; Takami 2007). Whethad &ow this mechanism
contributes to sperm competitionkn kuehniellavas explored in Section 5.5.
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CHAPTER 4
FACTORS AFFECTING REPRODUCTIVE FITNESS IN
EPHESTIA KUEHNIELLA

4.1 General Introduction

Insect reproductive performance is affected by ibieind abiotic factors.
Understanding the factors affecting reproductiveefss is important not only in terms
of behavioural ecology of the species, but alsmfem applied perspective (Cloutier et
al. 2000).

Most previous studies focus on the female reprodeicutput but neglect the
male influence on the female reproductive fithndslig & Steele 1982; Vahed 1998;
Bergstrom et al. 2002; Tregenza & Wedell 2002). Hosvr, some other studies have
demonstrated that males may influence female rejtoa fithess (Linley & Hinds
1974; Gage & Cook 1994; Wedell 1996).

This chapter reports the impact of age, bodyweaglat multiple mating of both
sexes on the reproductive fithnessokuehniella

4.2 Effect of Age at Mating on Reproductive Fitnesin E. kuehniella

4.2.1 Introduction

Mating and oviposition in insects must occur withirimited period because
the physiology of both sexes changes over timetéfbee, the age of insects at mating
influences their reproductive performance and pafuh growth. In the natural
environment, the population density and operatioset ratio is temporally and
spatially dynamic (Krupa & Sih 1993; Casula & Nith@003; Forsgren et al. 2004,
Wang & Chen 2005). Mating delay is predicted tourdo response to environmental
stress, such as lack of mates (Kotaki 2003; Warktp&ng 2004).

Previous studies show that mating delay generallytens oviposition period
and reduces fecundity and fertility. This reductiomeproduction may be the results of

oviposition of unfertilized eggs by virgin femalk@sg. Foster et al. 1995), the reduction
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of mating success due to the lack of attractiveivestd females (e.g. Proshold 1996),
oocyte degradation (Ohgushi 1996; Wang & Horng 200¢dthe reception of sperm of
low quality and quantity from old males (UnnitharP&ye 1991; Rogers & Marti. 1994,
Vickers 1997).

It is important to understand the mating procdss,factors controlling it, and
its effect on reproductive potential, if the masarmg programs of insects are needed
to provide insects of high quality or quantity (Glier et al. 2000). Knowledge of the
relationship between age and reproduction thusalldw us to better understand the
population dynamics of a species and to maximgeniass rearing in the laboratory
(Michereff et al. 2004). A number of empirical sieglhave showed that paternal age
has negative effects on progeny fithess in vargpecies (reviewed in Prokop et al.
2007). For example, Price & Hansen (1998) repat platernal age negatively affects
egg-hatching rate and larval survivalbmosophila melanogastemhether and how
paternal age affects progeny fithes<inkuehniellais still unknown, information of

which is useful in mass rearing programs.

Pheromone-based mating disruption has proven suteessful in a number of
pests of commercial crops (e.g. Cardé & Minks 1¥94kins 1998; Spohn et al. 2003;
Jung et al. 2006; Leskey et al. 2009). This con&chnique can prevent mating in some
females and delay it in others (Ellis & Steele 1,982kers 1997). However, whether or
not the disruption tactic is successful in the oardf an insect pest largely depends on
our understanding of the reproductive behaviour tleé pest, particularly the
relationship between age and reproduction (Cartiir&ks 1995; Michereff et al. 2004;
Wenninger & Averill 2006). The female sex pheromdras been identified foE.
kuehniellaand has been suggested for control applicatiossdoan mating disruption
(Trematerra 1994; Sieminska et al. 2009).

The aim of the present section was to determing/Ether and to what extent
age at mating affected the reproduction and lortg@viE. kuehniellaand (2) whether
parental age at mating affected offspring’s fitnesthis species.

4.2.2 Materials and Methods

4.2.2.1 Insects

Insects were obtained form the colony reared utitedensity of 100 neonate
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larvae per 50 g food per cylinder (Section 3.3.282)ults of average bodyweight were
used in this study. The longevity of virgin mothdo kuehniellavas about 11 d in both
sexes (Section 3.5). Therefore, 1-d-old insectevdefined as young and 4-d-old as

mid-aged and 7-d-old as old in this study.

4.2.2.2 Influence of Age at Mating on Female Repductive Performance and

Offspring’s Fitness

The effect of age on fecundity and fertility wasidsed by confining 238
individual breeding pairs of moths of nine age cormabons (Table 4.1) for the duration
of their lifespan in plastic cylinders. Virgin feitea may lay a few eggs daily before
mating (Section 3.5). Daily fecundity of femalesfdse pairing was recorded by
cageing females individually in cylinders until pad with males. Daily fecundity and
fertility after pairing were recorded as describedSection 3.3. | also counted the
number of spermatophores in their bursa copulaten they died. The number of
spermatophores found in the bursa copulatrix ofraale represents the number of

copulations a female has achieved in this spe&estion 4.4).

Table 4.1Age combinations of pairs and sample size usegddess the effect of age on
reproductive fitness i&. kuehniella

Age (d) combinations of pairs

Males Females No. of pairs
1 1 26
1 4 25
1 7 27
4 1 25
4 4 23
4 7 28
7 1 28
7 4 28
7 7 28

Results of Section 3.5 suggest that the longeVifgroaleE. kuehniellanay be
associated with resource allocation between som@waam The disposable soma model
(Kirkwood & Austad 2000) assumes that mating defey make females have to use
more resources for survival and thus allocate fessgg production. To test this

hypothesis, | also recorded and compared the egduption (eggs laid + ovarian
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mature eggs at death) between two age combinafidnd,d and 1dx7d (malexfemale)
(only females that received at least one spermatepivere used). Mature eggs were

counted as described in Section 3.5.

To test whether and how age at mating affectedooffg’s fitness, newly
hatched larvae (< 24 h old) from three parental agebinations, 1dx1d, 4dx4d and
7dx7d (malexfemale), were randomly selected andedean plastic cylinders,
respectively. For each cylinder or a replicate]d0ae were introduced onto the 50 g
standard diet contained, and reared under the sanwtions as described in Section
3.3. Ten cylinders were set up for each of theetlm@rental age combinations. Mature
pupae were collected and weighed as describecciin8e.5. The weighed pupae were
kept individually in above-mentioned glass tubesladult emergence to determine
sex. Survival rate (no. of adult moths/no. of |&watroduced) was recorded.

4.2.2.3 Statistics

| used a central composite design (CCD), i.e. nespaurface (Box & Draper
1987), to determine whether mating delay affecesmimdity (no. of eggs laid after
pairing), fertility, fertility rate (fertility/fecundity), egg-hatching rate of fertilized eggs
(hatched eggs/fertility), longevity and the numbgcopulations. The CCD assumes a
functional relationship between independent vaesl{ages) and response variables
(e.g., fecundity, fertility). The estimated valuetioe response variable is given by the
polynomial equationy = o + f1X + foXm+ faXs + frXt + f2Xm + B12 X Xm), Wherefo, 1,
B2, B3, 1, f22andfiare model parameterg,andxy are female and male age, agds
the number of copulations (this term is used towd®ther remating increased female
fecundity and fertility, only those mated at leaiste were usediespectively. The term
Xs (the number of copulations) was removed from tneagon when the equation was
used to determine the effect of mate age (independzriable) on the number of
copulations (response). Only significant termsraftinning the full regression models,
were kept in the final models. A log likelihooditatest (McCullagh & Nelder 1989)
was applied to determine whether age of sexes iffedetht effect on the reproductive
fitness. A generalized linear model using SAS’ PREENMOD Procedure (SAS 2006)
with normal distribution and log link function (Me@agh & Nelder 1989) was used

for above analysis.
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Eggs laid before and after pairing, ovarian matggs in dead females and
total mature eggs (eggs laid + ovarian mature agdsath) between 1dx1d and 1dx7d
(malexfemale) age combinations, and offspring’svisat rate and pupal weight
between parental age combinations were analysad AN OVA followed by Tukey's

studentized range test.

4.2.3 Results

4.2.3.1 Effect of Age at Mating on Reproductive Eness

Mating delay significantly reduced the number oérspatophores produced
(the number of copulations) B kuehnielldDF = 2, 234F = 9.62794P < 0.001;R* =
0.17062; Fig. 4.1a). The likelihood ratio test skdivat male ageing had significantly
more effect on the number of spermatophores pratitizn female ageind€ = 2;°
= 58.74:P < 0.001; Fig. 4.1b).

Thenumber of copulation§fsxs) had no significant effect on any reproductive

parameters recorded and thus was not reported here.

Mating delay significantly reduced the fecundityeofkuehniella DF = 4, 232;
F = 6.8048;P < 0.001;R*= 0.1274; Fig. 4.2a). According to the likelihoatio test,
male ageing had significantly more effect on fedtynthan female ageindF = 2;° =
47.24;P < 0.001; Fig. 4.2b).

Mating delay significantly reduced the fertility &f kuehnielladDF = 3, 233;F
= 7.6585;P < 0.001;R? = 0.14063; Fig. 4.3a). The likelihood ratio tesbwsis that
ageing affected females significantly more sevettedyn males in terms of fertilityDfF
= 2:4* = 81.70;P < 0.001; Fig. 4.3b).

Only mating delay in females significantly redudbé fertility rate DF = 1,
186; F = 20.96;P < 0.001;R*= 0.18235; Fig. 4.4) ift. kuehniellaAge at mating of
sexes had no effect on egg-hatching rate of feetilieggsF = 1, 186;F = 1.07;P >
0.05), with the mean hatch rate being 93.0 = 0.6%.

4.2.3.2 Effect of Mating Delay on Female Egg Prodtion

Females of treatment 1dx1d (malexfemale) laid Saamtly fewer eggs before
pairing OF = 2, 45;F = 7.62;P = 0.008) but more eggs after pairii@fH= 2, 45;F =
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26.32;P < 0.0001) than those of 1dx7d (malexfemale) (Ei§). Females of 1dx1d
(malexfemale) had fewer ovarian mature eggs athd@dt = 2, 45;F = 12.36,P =

0.009) but more total mature eggs (eggs laid +iamanature eggs at deati)R = 2,
45;F = 7.39;P = 0.002) than females of 1dx7d (malexfemale) (#i§).

y = exp(0.8902+ (-0.0618; + (-0.1258%)
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Fig. 4.1 Effect of mating delay on the number of copulatiéemales achieved iB.
kuehniella (a) Mean number of spermatophores found in fesnalepairs of

different age combinations, and (b) predicted sekage effect on the number of
spermatophores found in females.
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Fig. 4.2Effect of mating delay on fecundity: (a) Mean numbgeggs laid by females

in pairs of different age combinations, and (b)dted sex and age effect on the
number of eggs laid.
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Fig. 4.5Influence of mating delay on female egg productleor each parameter, bars
with different letters are significantly differe(® < 0.05).

4.2.3.3 Effect of Age at Mating on Male and Femaleongevity

Female longevity significantly increased with therease of their age at mating
(DF =1, 232;F = 68.23;P < 0.001;R?= 0.36637) (Fig. 4.6) but male age at mating or
female—male age interaction had no effect on fenhahgevity @ > 0.5). Male
longevity significantly increased with the increast female age at mating but
decreased with female—-male age interactdR € 2, 231;F = 4.05;P < 0.05;R* =
0.03344) (Fig. 4.7). The number of copulations ha@ffect on longevity of both sexes
(P > 0.05).
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y = exp(2.375 + 0.0246+ (-0.0028% Xv)

N
>

)

=y
o

Male longevity (days
[o+]

T

4
3)
5 o @3‘1

Yy T W %

Fig. 4.7 Influence of mating delay on male longevity.

4.2.3.4 Effect of Parental Age on Performance off@pring

Parental age at mating had no effect on the sumat@ OF = 2, 27;F =0.12;P
=0.8841,; Fig. 4.8) and pupal weightk = 2, 81;F = 0.35;P = 0.7037 for male anQF
=2, 62;F =1.41;P = 0.2527 for female; Fig. 4.9) of their offspringk. kuehniella
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Fig. 4.8Effect of parental age on offspring survival rat&i kuehniella.

B Male pupal weight
O Female pupal weight

35
30 -
251
20
15+
10

Offspring pupal weight (mq

1dx1d 4dx4d 7dx7d

Parental age combinations (malexfemale)

Fig. 4.9Effect of parental age on offspring pupae weigHt.ikkuehniella.

4.2.4 Discussion

Similar to previous reports in many species (érgedez-Perez & Wang 2003;
Michereff et al. 2004; Fitzpatrick 2006), my stuidgicates that mating delay in both

sexes significantly reduced reproductive fithesB.ikuehniellgFigs 4.1-4.4)

The current study demonstrates that (1) femalelssame eggs before mating
(Fig. 4.5, also see Fig. 3.8 in Section 3.5), @ns old females did not mate after
pairing (Fig. 4.1), and (3) female ageing reducedility rate. These factors may
contribute to the reduction of reproductive fitneéssfemales with delayed mating.
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Moreover, when mating is delayed, females may @awse more resource for survival
and allocate less for egg production (see reviewema & Harshman 2001), e.g.
females with delayed mating produced fewer totaluneaeggs (eggs laid + ovarian
mature eggs at death) (Fig. 4.5) (also see Se&idrfor further discussion). The
negative effect of female ageing on fertilizatioaynbe attributed to egg degradation
due to reduced resource allocation (reviewed inaZ&r Harshman 2001) and
senescence also may diminish female ability tospart or store sperm (Proshold
1996). My study indicates that female longevityreased linearly with the increase of
their age at mating (Fig. 4.6), which may also be t resource relocation between ova
and soma (see review in Zera & Harshman 2001).yedlanating has been shown to
increase adult longevity in many moth species,andated females especially tend to
live longer than mated ones (reviewed in Wenningekverill 2006). These results
confirm that the disposable soma model (KirkwooRé&se 1991; Kirkwood & Austad
2000) also applies ta. kuehniellasee Section 3.5 for detail)

My study also shows that male ageing significaddgreased female fecundity
and fertility, particularly when old males were nea with young females (Figs 4.2 &
4.3). However, this study also shows that maleragéiad no significant effect on
fertility rate. Furthermore, males of this spe@as mate up to nine times in their life
time and generally can fertilize all female eggsesch mating (see section 4.5).
Therefore, the reduction on female fecundity antlity due to male ageing may be
because young females are reluctant to mate wdtmales (Fig. 4.1) (also see Section
5.2) rather than ageing reduced sperm fertilizadioitity (e.g. Unnithan & Paye 1991;
Rogers & Marti. 1994; Vickers 1997). As a resudfeimg is more likely to reduce male
attractiveness and thus reduce their potentialaterselection (also see Section 5.2 for
further discussion) iie. kuehniella This study showed male longevity significantly
increased with the increase of female age at mdting 4.7), which may be also
because males are reluctant to mate with old fesr(&lig. 4.1) (also see Section 5.2)
and thus cost less in reproduction (e.g. spermategh courtship), probably due the

reduction of sex pheromone releasing in aged fesr(@alvert & Corbet 1973).

Central to the existing senescence theory is teenagtion that the effects of
ageing are confined to a single generation, i.ereths no persistent senescent
phenotypic effect transferred to offsprirfBriest et al. 2002). However, numerous

studies in human beings and other mammals have eshdhat old parents have
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negative effects on offspring fitness (reviewedarsons 1964; Prokop et al. 2007). In
insect, studies oDrosophilaspecies demonstrate that age of both maternat(id&
Hoffmann 2000; Kern et al. 2001) and paternal @8cHansen 1998) is negatively
correlated with hatch rate of eggs and larval-toHadability, suggestinghat parental
effects could play a fundamental part in the evolubf ageing. However, in some
species other thaBrosophila studies have demonstrated thiagre is no effect of
maternal age on offspring fitness (Mcintyre & Gaaylil998; Mohaghegh et al. 1998;
Moore & Harris 2003). In my study, | have not détecany significant effect of
parental age on offspring fithess by comparingilfigrtrate, egg-hatching rate of
fertilized eggs, offspring survival and pupal wdighherefore, further exploration in
the context of the evolution of senescence in tesfngarental age effects is needed

from organisms with diverse life histories and ogfrctive biology.

This study showed that the best reproductive perdmice can be achieved
when both sexes were 1-d-old compared to olderciasé mating disruption delays
female mating until she is 4 d old (assuming thatmates with a male of the same age),
her fertility would decrease from 276.5 £+ 12.5iferéggs to 233.9 £ 21.9 fertile eggs, a
reduction of 15.4%; and if mating delays until ske7 d old, her fertility would
decreased to 107.2 + 17.8 fertile eggs, a 61.2%ctexh. It is thus suggested that it is

necessary to delay female mating for 7 d to acheesignificant control.
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4.3 Effect of Body Weight on Reproductive Fitnesm E. kuehniella

4.3.1 Introduction

Body size is a key determinant of an organism’daggoal and physiological
properties (reviewed in Wickman & Karlsson 1989ndk 1993). It is widely accepted
that selection for higher fecundity is a major exanary force that selects for larger
body size (directional selection) in most organigAusdersson 1994; Klingenberg &
Spence 1997; Blanckenhorn 2000). Neverthelessnmga do not increase in size
continuously (Roff 1981; Blanckenhorn 2000; Thompsb Fincke 2002) because
selection for large body size is eventually couraéanced by opposing selective forces,
such as higher mortality rates due to longer jueetévelopmental times, resulting in
stabilized selection for optimal intermediate sméh maximum lifetime fitness (e.g.
Peckarsky et al. 2002). However, counterbalanashertion favoring smaller body size
is often masked by the good condition of the larggranism and is therefore less
obvious, particularly when the evidence for setettfavoring larger body size is

overwhelming (Blanckenhorn 2000).

The aim of this section was to determine whethedrraow conflicting selection
pressures act on body sizeEnkuehniellaby testing two hypothesis (1) selection for
higher reproductive success favors larger indivislgelonek 1993) and (2) selection
for higher survival favors smaller individuals (Racsky et al. 2002). To test these
hypotheses, | carried out a series of experimerttsa laboratory to determine whether
larger individuals of sexes have higher fecundayger parents have larger progeny,

and larger progeny suffer higher mortality rategrdyjuvenile stage.

4.3.2 Materials and Methods
4.3.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per

cylinder (Section 3.3.2.2). Insects were weighed @ategorized as in Section 3.5.

4.3.2.2 Effect of Body Weight of Both Sexes on Fate Reproductive Output and
Offspring Fitness

The effect of pupal weight on female fecundity dadility was studied by
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confining 255 breeding pairs of 1-d-old moths indually for the duration of their

lifespan in plastic cylinders. A complete factorl@bck design was used for this
experiment, where each sex (factor) had threerdiitepupal weights: light, average
and heavy. Thus, this experimental design prodaaasltreatments (3 female weights
x 3 male weights) of breeding pairs (Table 4.2kupelity and fertility were recorded as

described in section 3.3.

Table 4.2 Number of E. kuehniella breeding pairs in different bodyweight
combinations

Male class Female class n

Light Light 29
Light Average 30
Light Heavy 29
Average Light 29
Average Average 30
Average Heavy 28
Heavy Light 25
Heavy Average 25
Heavy Heavy 30

To test whether parental bodyweight affected offgpmweight and survival,
newly hatched larvae (< 24 h old) from three siz@mbinations, lightxlight,
averagexaverage and heavyxheavy (malexfemale),raedemly selected and reared
in plastic cylinders, respectively. For each cyinebr a replicate, 50 larvae were
introduced onto the 50 g standard diet are condasred reared under the same
conditions as described in Section 3.3. Ten cylisdeere set up for each of the three
weight combinations. Mature pupae were collected \@aighed as Section 3.5. The
weighed pupae were kept individually in glass tubesl adult emergence to ensure

sex. Survival rate (no. of adult moth/no. of larvisiroduced) was recorded.

4.3.2.3 Statistics

Data on the effect of body weight on female fectindind fertility were

analyzed using a two-way analysis of variance (ARPVollowed by Tukey's
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studentized range test. Offspring survival rate mplal weight were analysed using a
one-way analysis of variance (ANOVA) followed byKay's studentized range test.

Data on survival rate were arcsine transformed po@nalysis.

4.3.3 Results

My results show that neither male weight nor femalale weight interaction
had any effect on female lifetime fecundiBH = 2, 252;F = 0.3;P = 0.7375 for male
weight, andDF = 4, 250;F = 1.71;P = 0.1474 for female-male interaction) and fertility
(DF = 2, 252;F = 0.43;P = 0.652 for male weight, andF = 4, 250;F = 1.46;P =
0.2147 for female-male interaction). However, heBamales had significantly higher
fecundity and fertility than light and average féesa(Table 4.3).

Table 4.3Reproductive output d&. kuehniellafemales of different weights*

Female weight
Output

Heavy Average Light F P

Fecundity 333.6+13.6A 278.6+12.4B 271.6+9.6B 5.56 < 0.0001

Fertility 324.6+14.0a 268.8+13.0b  256.1+10.4b 5.61 <0.0001

* numbers with different letters in rows are sigrahtly different P < 0.05).

35 - B Males

30 L H Females b

a B
25+ A
20 |-
15 |-

10

Offspring weight (m¢

|

LightxLight AveragexAverage HeavyxHeavy

Parental weight combinations (malexfemale)

Fig. 4.10Effect of parental body weight on offspring weigh€. kuehniellaFor each
parameter, bars with different letters are sigaifiity different P < 0.05)
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Fig. 4.11Effect of parental body weight on offspring surlivate inE. kuehniellaFor
each parameter, bars with different letters areisogintly different P < 0.05)

Heavier parents have significantly heavier offsgtinan lighter oneF = 2,
143;F = 56.07;P < 0.001 for male offspring ardF = 2, 117;F = 41.43;P < 0.001 for
female offspring; Fig. 4.10). However, offspring ledavy parents had lower survival
rate than those of average and light pardbks< 2, 27;F =5.48;P = 0.01; Fig. 4.11) in
E. kuehniella

4.3.4 Discussion

Similar to many empirical studies in other insegédes (e.g. Marks 1976;
Jones et al. 1982; Tammaru et al. 1996; JimenezzP&rWang 2004a), my study
demonstrates that female fecundity and fertiligngicantly increased with her body
weight. Consistent to Jimenez-Perez & Wang’s (2D@4ak onCnephasia jactatana
the present study shows that male pupal weighermafe—male weight interaction had
no effect on female reproductive outputBn kuehniella These results support the
notion that natural selection for higher fecundgya major evolutionary force that
selects for larger body size in females (Anderskea®; Klingenberg & Spence 1997;
Blanckenhorn 2000).

Further study on mate choice in relation to bodglvein E. kuehniellashows
that sexual selection also selects for larger ey in male and femate. kuehniella
(see Section 5.2 for detail).

The exact nature and even existence of the balaateeeen natural and sexual
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selection are still controversial (Kirkpatrick 198As Schluter et al. (1991) have
suggested, there are conflicting selection pressyperating on body size of both sexes
in many organisms. The present experiments onmafigperformance show that heavy
individuals have lower survival rate than average Bght ones irE. kuehniellalt is
suggested that natural selection for higher sutvimeght reduce body size ik&.
kuehniella It is often assumed that organisms have to gmwdnger time or grow
faster to achieve a larger size. Longer prerepriberigeriod increases cumulative
mortality due to predation, parasitism and staorgtgiving nonzero mortality rates at
all times (Roff 1980; Steams & Koella 1986). Fagimwth also is likely to increase
mortality rate because of higher metabolic demandder resource limitation
(Gotthard et al. 1994; Blanckenhorn 199@pbreover,E. kuehniellais a protogynous
species—females emerge earlier than males (Se8t#n As a consequence, larger
males of this species may have a mating disadvarttag to late reproduction because

of possible longer juvenile development stage (Btanhorn 2000).

In conclusion E. kuehniellgprovides an example of an insect species in which
conflicting selection pressures operates on barhyisi both sexes. While selection for
higher fecundity favors large size, selection fighler survival favors small size. Such
counterbalancing selection may lead to the seledfmptimal intermediate size with

maximum lifetime fitness, or no increase in sizatowously.

78



Factors Affecting Reproductive Fitness

4.4 Female Multiple Mating inE. kuehniella

4.4.1 Introduction

Elucidating the factors controlling polyandry isportant not only in terms of
evolutionary behaviour and ecology of the spediasalso from an applied perspective.
For example, because the effectiveness of thdestesect technique is negatively
correlated with female multiple mating rate (femedenating increases her chance of
mating with a wild male), knowledge of polyandry ynhelp us determine the
overflooding rate (the ratio of sterile males tdddemales) (Kraaijeveld et al. 2005).

Permanent pairs &. kuehniellacan mate more than once (Section 3.4). In this
section, | tested whether (1) females mated muliyth different males, (2) females
mated multiply to replenish sperm supply for highertility, (3) females mated
multiply to obtain nutritional resources for highfecundity and/or greater longevity,

and (4) females mated multiply to gain genetic fiene

4.4.2 Materials and Methods
4.4.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per

cylinder (Section 3.3.2.2). Average weight inseetse used in this study.

4.4.2.2 Influence of Recopulation on Female Lifetie Reproductive Output and

Daily Oviposition Patterns

To determine whether recopulation with the saméifierent males affected
lifetime female reproductive output and daily owspmn patterns, | set up six
treatments: (1) a female copulated once with airvigale (M-1), (2) a female
copulated twice with the same male (SM-2), (3)radke copulated twice with different
males, first with a virgin male and then with aretbnce-copulated male (DM-2), (4) a
female copulated twice with different virgin ma(@&MV-2), (5) a female was provided
with a virgin male in each scotophase until de@MY-P), and (6) a female was
permanently paired with the same male until de&M-P). The once-copulated
females and males were obtained by allowing virgmths to copulate in the plastic

cylinders (one pair per cylinder) in the first smatase following emergence. The
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second copulation was allowed in the second scasmby pairing the females and
males from the beginning to the end of the scotepha& recorded the number of

copulations that females achieved in treatmentard)(6).

Following copulation, | removed the male and akolthe female to oviposit
in the cylinder. | then recorded fecundity, fetyiland the number of hatched eggs. |
also recorded longevity and oviposition period loé female. Dead females were

dissected to determine the number of spermatoplotéeir bursa copulatrix.

4.4.2.3 Remating Preference Between Novel and Prews Mates

Results of above experiments (Section 4.4.2.2) sthaivoviposition patterns
differed significantly between treatments during finst three oviposition scotophases,
depending on whether females encountered malesvhether they encountered new
or previous males at the beginning of the firspogition scotophase (Fig. 4.13). These
differences could be due to sexual conflict if tlaeg controlled by males, or to female
strategy for genetic benefits if they are governgfemales. To clarify these questions,
| set up two experiments to test whether individudleach sex discriminated between
new and previous mates, and what the remating nerefe of each sex between new
and previous mates: (1) mate choice by femaleshinh once-copulated females were
allowed to choose between new and previous matesgpt simultaneously) for a
second mating, and (2) mate choice by males, irthwbnce-copulated males were
allowed to choose between new and previous matesgpt simultaneously) for a

second mating.

The once-copulated females and males weeeraat by allowing virgin moths
to copulate in the plastic cylinders (one pair pglinder) in the first scotophase
following emergence. Copulated pairs were separabtedindividually maintained in
the cylinders for 14 h before their use in thedwaiing experiments at the beginning of
the second scotophase: (1) in mate choice by fanalence-mated female was caged
with her previous mate and a new mate (which hadg#me mating history and similar
body weight (x 1mg) to the previous mate) in argér simultaneously, and (2) in mate
choice by males, a once-mated male was caged wifhrévious mate and a new mate
(which had the same mating history and similar bagyght (= 1mg) to the previous
mate) in a cylinder simultaneously. The previousl amew mates were randomly

marked with different trace color powder (Magru@edor Company, USA). The mark
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did not influence mate choice (Binominal td3t; 0.05). Mating events were observed

during the whole scotophase until copulation ocsirr

4.4.2.4 Influence of Female Recopulation Treatmesion Offspring Fitness

| collected eggs laid in the first 4 days aftestfitopulation (> 90% of eggs were
laid in the first four days after the first copudet, Section 3.5) from treatments M-1,
SM-2, DM-2 and DMV-2 and incubated them in Petshdis for 5 days to allow
hatching to occur. | randomly selected 50 neonatgak from each of the four
treatments and reared them on 50 g of a standatdrda plastic cylinder. For each

treatment, 10 cylinders of insects were set up.

| collected and weighed mature pupae and kept gighed pupae individually
in glass tubes until adult emergence. | recordedivwal rate (number of adults
emerged/number of larvae introduced).

4.4.2.5 Statistics

Females that copulated twice in treatments SM-2; Dahd DMV-2 and those
that copulated in treatments M-1, SM-P and DMV-Remased for analysis. Data on
lifetime fecundity, fertility, number of hatchedgsy fertility rate (no. of fertilized eggs
laid/no. of eggs laid), hatch rate (no. of hatcleggs/no. of eggs laid), oviposition
period and female longevity were analysed usinguétivariate analysis of variance
(MANOVA). MANOVA is superior to analysis of variarc(ANOVA) for these data
because the above seven fithess measures of fefmalkiple dependent variables) are
expected to be correlated, and MANOVA allows efech both overall dependent
variables and each dependent variable to be t€Stéetiner 2001). Prior to MANOVA,
| square transformed the data for lifetime fecupdertility and number of hatched
eggs (Zar 1999), square-root transformed the dataviposition period and longevity,

and arcsine transformed the data for fertility e hatch rate.

Data on offspring survival rate (no. of adults egeei/no. of neonate larvae
introduced) and pupal weight were analysed usin@XA. Prior to ANOVA, | arcsine
transformed the data on offspring survival rate.

Data on daily fecundity and fertility patterns (deesults, Fig. 4.7) were not

normally distributed even after transformation atitus analysed using the
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nonparametric Kruskal-Wallis test followed by Dunprocedure for multiple

comparisons (Zar 1999).

A Fisher’s exact test was used to analyse matemmte between novel and

previous mates.

4.4.3 Results
4.4.3.1 Female Remating Patterns

Females that were permanently paired with the saales (treatment SM-P)
copulated up to four times (mean = SE = 1.92 + Gifr®s) and 62.5% of them
copulated at least twice (n = 24; Fig. 4.12a). Hemthat had access to a new virgin
male daily for their life span (treatment DMV-P)pedated up to four times (mean + SE
= 1.96 + 0.17 times) and 77.8% of them copulateléamt twice (n = 27; Fig. 4.12b).
Dissections reveal that the number of copulatiessnmded was equal to the number of

spermatophores found in female bursa copulatiboth SM-P and DMV-P treatments.

4.4.3.2 Influence of Recopulation on Female Lifetie Reproductive Output and

Offspring Fitness

There was no significant difference in fedtydertility, number of hatched
eggs, fertility rate, hatch rate, oviposition pdrior longevity regardless of whether
females copulated once, twice with the same mald#gferent males, or were provided
with new males daily, or permanently paired wite §ame males (MANOVADF = 35,
561;F = 1.01;P = 0.46; Table 4.4). In addition, | found no sigeaint difference in
offspring survival or pupal weight for the diffetecategories of females (Table 4.4).
Therefore, neither multiple copulation nor polyandignificantly affected lifetime

reproductive output and offspring performancé&irkuehniellafemales.

4.4.3.3 Influence of Recopulation on Daily Oviposon Patterns

Daily fecundity and fertility from different treants in the first four
oviposition scotophases are shown in Fig. 4.13thifirst oviposition scotophase,
females that copulated twice with different malkesatments DM-2 and DMV-2) laid

significantly fewer eggs than females that copuatece (M-1) or females that
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copulated twice with the same males (SM-2) (fectyn@iF = 3;,° = 14.66:P < 0.0001;
fertility: DF = 3; 4°> = 12.76;P < 0.0001). In the second oviposition scotophase,
however, DM-2 and DMV-2 females laid significanthore eggs than M-1 and SM-2
females (fecundityDF = 3; y°= 17.50;P < 0.0001; fertility:DF = 3; * = 16; P <
0.0001).

More than 80% of eggs were laid in the first twapoegition scotophases in all
treatments (Fig. 4.13). In the third ovipositiom®phase, once-copulated females laid
significantly fewer eggs than twice-copulated feesaffecundityDF = 3; % = 4.72;P
= 0.0039; fertility:DF = 3;* = 4.43;P = 0.0057). In the fourth oviposition scotophase,
there was no significant difference in fecundiBF(= 3; y* = 1.88;P = 0.138) or
fertility (DF = 3;,° = 1.41;P = 0.2449) between treatments.

4.4.3.4 Female Remating Preference Between NovaldaPrevious Partners

In the experiment of mate choice by females, 29alescopulated a second
time and they also significantly preferred new tevious mates for mating (Fisher’s
exact testP < 0.0001; Fig. 4.14). In the experiment of mateich by males, however,
males (n = 31) significantly preferred previousitav mates for mating (Fisher’s exact
test:P < 0.0001; Fig. 4.14).

100 ~ M 1 st copulation

(a) B 2nd copulation
3rd copulation

60 [J 4th copulation

Percentage of copulated females

- -

1 2 3 4 5 6

Days after emergence

Fig. 4.12Copulation states in female kuehniellaover time: (a) permanently paired
(SM-P) and (b) exposed to a virgin male each dayyEepP).
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Table 4.4Influence of recopulation on female lifetime repuotive output, longevity and offspring performamecé&. kuehniella

Mean = SE
Parameter F P
M-1 SM-2 DM-2 DMV-2 DMV-P  SM-P
Fecundity (no of eggs laid) 318+21 348+15 349+2011836 314+12 329+13 F5 153=1.28 0.28
Fertility (no of fertilized eggs laid)  307+24 33931 327+22 300+£19 300+13 315+14F; ;53=1.07 0.38
Hatched eggs 301+23 332+16 319+18 293+15 291413 #&D5 Fs5 153=1.12 0.35

Fertility rate (%)
Hatch rate (%)
Oviposition period (d)
Female longevity (d)

Offspring survival rate (%)

92.0+2.4 94.6+2.2 91.8+2.2 96.2+2.7 95.0+2.4 94.5+2.5
90.3+3.092.6+2.9 89.5+2.4 93.6+1.6 92.0+1.6 91.6+2.3
3.8+0.2 3.9+0.1 4.0+0.1 3J&x 4.1+0.1 4.1+0.2
7.5+0.2 7.5#0.2 7.9%0.2 7.20.7.7+0.2 7.5+0.2
88.0+2.7/90.8+1.6 87.4+2.0 88.6+2.2

Female offspring pupal weight (mgp4.3+0.5 24.3+0.4 24.7+0.4 24.5+0.4

Male offspring pupal weight (mg)

28.0+0.27.6+0.5 27.0+0.4 28.3+0.5

Fs, 155= 0.93 0.46
Fs 155= 1.29 0.27
Fs, 142= 0.80 0.55
Fs, 142= 0.87 0.50
Fs36=0.47 0.71
Fs 7= 1.26 0.29
Fs 117=0.18 0.91
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Fig. 4.13 Daily (a) fecundity and (b) fertility patterns irelation to copulation
treatments inE. kuehniella Within the same oviposition scotophase, different
letters above bars denote significant differenads/een treatment$ (< 0.05).
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Fig. 4.14Recopulation preference ih kuehniellaln each experiment, different letters
above bars denote significant difference betwesatitnentsi® < 0.05).

4.4.4 Discussion

Polyandry is increasingly recognized as a pervdsiatire of many species, but
its adaptive significance is still being debate@i{Z& Zeh 2001). The hypotheses
proposed to explain the evolution of polyandry gathe fall into two categories: (1) to
gain material benefits and (2) to obtain genetitdies (Zeh & Zeh 2001). In addition,
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Parker (1984) proposed the convenience hypothegzdlain multiple copulations in
females (i.e. females may copulate multiply simpgcause the costs of persistent

harassment from males outweigh the costs of additicopulations).

It has been widely reported that females gain tineaterial benefits from
multiple copulations either with the same or difetr mates, with repeat-mating
females gaining from sperm replenishment (e.g. eluat al. 1993; Wang & Davis
2006) or from receiving more nutritional resourtsegg production (e.g. Wilson et al.
1999; Jimenez-Perez et al. 2003). In the presadystemales that copulated once and
those that copulated more than once with the samdifferent males laid similar
numbers of fertilized eggs, suggesting thakuehnielldemales recopulate for reasons
other than sperm replenishment. Furthermore, tbietfi@at the number of copulations
did not significantly affect the fecundity or longey of E. kuehnielldfemales does not
support the direct material benefit hypotheses. ¢él@r the diet that | fed the
experimental insects might be of much higher qudhan is typical of what moths
encounter in nature. ThereforeEf kuehnielldfemales are nutritionally stressed in the
wild, as are females in the mosquitedes aegyptKlowden & Chambers 1991), then

the nutritional hypothesis cannot be completelgdudut.

| have found no evidence for the conveniemgaothesis (Parker 1984) .
kuehniella,which isconsistent with results of other experiments ofdheent study.
First, no forced copulations have been observéfl kuehniellgSection 3.4). Second,
femaleE. kuehniellachoose between mates for the first and subseqaogntiations
(Section 5.2). Finally, even when feméekuehniellaare provided with a virgin male

each day for 6 days, they only copulate about twitaverage (Fig. 4.12b).

Reports on polyandry for genetic benefits have beereasing in the recent
literature (e.g. Zeh & Zeh 1996; Newcomer et a@9;9regenza & Wedell 2002; Ivy &
Sakaluk 2005; Garcia-Gonzalez & Simmons 2007; Hagtteal. 2008; Dunn et al.
2009). The genetic benefits from polyandry basedyemetic incompatibility model
requires that sperm from multiple males are preatthie site of fertilization (Simmons
2005), and the genetic diversity model necessitdigisthe offspring are fathered by
multiple males (Jennions & Petrie 2000). It is possible for females to gain any
genetic benefits from polyandry if there is a coatglfirst-male sperm precedence (e.g.
Elgar 1998). Therefore, to gain genetic benefitenfrpolyandry, females must have

developed strategies to discriminate against ptsvinates and control sperm use or
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egg laying to promote sperm competition or offsguiversity (Zeh et al. 1998; Archer
& Elgar 1999).

My present study demonstrates that fentalkuehniellasignificantly prefer
new to previous mates for subsequent copulatioimsilé® mate preference patterns
have been reported in six other animal species(Ban 1998; Zeh et al. 1998; Archer
& Elgar 1999; Eakley & Houde 2004; Ivy et al. 20@aDage & Ferkin 2007). In their
study of the crickeGryllodes sigillatus)vy et al. (2005) suggested that females mark
males with their own unique chemical signaturesngucopulation, enabling females
to recognize previous mates in subsequent encauatet to avoid recopulation with
them. In the guppyoecilia reticulate Eakley & Houde (2004) found that females
discriminated against their previous mates usinguropatterns. Copulations @.
kuehniellatake place exclusively during the night (Xu et 2008), suggesting that
females in this species are unlikely to use visuak to recognize mates. In the mating
system of many pyralid species, mate location, tsbiyy and copulation are achieved
through the use of female (e.g. Gries et al. 1988&kamura & Arakaki 2004; Kawazu
et al. 2007) and male (e.g. McLaughlin 1982; R&y&fcNeil 1992; Burger et al. 1993;
Sasaerila et al. 2003) sex pheromones. A femal@kesomone was identified fé.
kuehniella(Kuwahara et al. 1971). Although the male sex pimeme has not been
reported for this species, a male sex pheromoneadeasfied IinE. elutella(Phelan et
al. 1986). Therefore, it is highly likely th&t kuehniellafemales use chemical cues to
recognize and discriminate against previous matiesvever, the exact underlying
mechanism for the olfactory mate recognition argtminination is still unknown for

this species and warrants further study.

In E. kuehniella,the first copulation occurs in the first scotophaater
emergence, and oviposition starts in the seconbghbase (Section 3.4). Here | refer to
the second scotophase after emergence as thewipasition scotophase. Results of
the present study show that oviposition patterr§eréid significantly between
treatments during the first three oviposition spbi@ses, particularly during the first
two oviposition scotophases, depending on whetberafes encountered males and
whether they encountered new or previous maleshat beginning of the first
oviposition scotophase (Fig. 4.13): (1) once-coalaemales that encountered no
male (treatment M-1) or a previous male (treatn8Mt2) at the beginning of the first

oviposition scotophase laid significantly more eggshis scotophase than those that
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encountered a new male (treatments DM-2 and DMWwt2he same period, and (2)
females in treatments DM-2 and DMV-2 laid signifidlg more eggs in the second
oviposition scotophase than those in treatments &d SM-2 in the same period.
These differences could be due to sexual confiohqvist & Rowe 2005) if they are

controlled by males, or to female strategy for gieneenefits if they are governed by
females. In the present study, | have found noendd that differences in oviposition
pattern were attributed to sexual conflict. Fiedt,experimental females received the
same treatment in the first scotophase (i.e. tlopulated once with virgin males).

Second, oviposition patterns differed only aftenédes were treated differently in the
second scotophase (i.e. no males, previous malesvommales). Oviposition usually

occurs in the first half of the scotophase, andtsbip and copulation take place in the
second half of the scotophase (Section 3.4). Thexethe differences had already
taken place before these females mated the seicoedninimizing the possibility that

male control or sexual conflict was responsibletifar differences. Third, there was no

significant difference in female life span parameteetween treatments (Table 4.4).

My studies show that polyandryBnkuehniellawas clearly controlled by the
female where females were able to distinguish drobse between new and previous
mates, suggesting that differences in ovipositiattgopns are also controlled by the
female and may be attributed to the female strateggain genetic benefits. For
maximal genetic benefitg. kuehnielldemales that encountered new males in the first
oviposition scotophase strategically saved eggd the next scotophase to allow
sperm from subsequent copulations with new matdertitize these eggs. Similarly,
females of the hide beetl®. maculatesdelay oviposition until they have copulated
several times to obtain sperm from different mé&tegienetic benefits (Archer & Elgar
1999). However, in the present study, once-copdldtamales that encountered
previous males or no males in the first oviposisontophase did not delay oviposition
to wait for new mates. The difference between e $pecies in this regard may be
attributed to their very different oviposition paus, i.e. the oviposition period fé&.
kuehniellais only about four days (scotophases) with > 8@%ggs having been laid in
the first two oviposition scotophases (Fig. 4.18jlevD. maculatesemales have > 40
days to lay their eggs (Archer & Elgar 1999). Tlere, it would be too risky foE.
kuehniellafemales to delay oviposition if they are unlikédyencounter new mates in

the near future.
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The genetic incompatibility hypothesis (Zelz&h 1996, 1997, 2001) assumes
that females benefit from polyandry for higher pfiag viability. In the present study,
however, the offspring produced Wy. kuehniellafemales mated to the same or
different males had similar viability in terms @gehatching success, offspring survival
rate and body weight, suggesting that polyandr s increase offspring viability in
this species. Similarly, in the fra@rinia georgiana(Byrne & Roberts 2000) and seed
bug Nysius huttoniWang & Davis 2006), females do not obtain anydi¢rfrom

polyandry in terms of offspring viability.

Recent studies suggest that polyandry can beregfitiies by enhancing the
genetic diversity of their offspring (reviewed ienhions & Petrie 2000; Cornell &
Tregenza 2007). Above discussion has demonstratedE kuehniellafemales
discriminate against previous mates and stratdgiedjust their oviposition patterns
depending on whether they encounter new or previtates after the first copulation.
Further study shows. kuehniellafemales allow multiple males to fertilize their sgg
(Section 5.4). These results suggest thatkuehniellafemales gain benefit from
polyandry through producing offspring fathered lifedent males and, thus, increase
the genetic diversity of their offspring. Accorditm Yasui (1998), offspring of a half
sib family are twice as diverse as offspring fronfulk sib family; greater genetic
diversity within a brood may raise offspring fitisdsy reducing full sib competition and
increasing half sib cooperation. Full sib compefitioccurs when full sibs compete
with each other more intensively than do half sliescause different genotypes can
better partition the limited resources and reduscepetition (e.g. Robinson 1992;
Ridley 1993). Half sib cooperation occurs when vitlials that vary genotypically
interact in a cooperative manner. For example, adisetransfer is reduced when
different genotypes have different susceptibilit@pathogens or parasites so that half
sib progeny are less likely to infect one anotleeg.(Tooby 1982). Using a new model,
Cornell & Tregenza (2007) suggested that geneterdity may be a means of
inbreeding avoidance when offspring live togethed aib copulations occur often.
Ephestia kuehniellés a stored-product pest with limited dispersalitgi{Rees 2003);
each female produces over 300 eggs, which aréoleadly within a brief period (> 80%
eggs are laid in the first two scotophases; thidygt suggesting that sib competition
and copulations may be very common in this spediagrefore, offspring genetic

diversity should be extremely important far kuehniella and polyandry probably
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benefitsE. kuehniellafemales by increasing genetic diversity of thdismring.

My study found that mal&. kuehniellasignificantly prefer previous to new
mates for subsequent copulations, which coincidgstive results found in neotropical
pseudoscorpiorCordylochernes scorpioidgZeh et al. 1998). It is still poorly know
why these males like to do so. One possible expitamenay be that males can increase
their reproductive success by minimizing the oppaty for postcopulatory sexual
selection (Zeh et al. 1998). Empirical studies hstvewed males may use prolonged
copulation (McLain 1989) or postcopulatory counsliKing & Fischer 2005) as
post-insemination guarding tactics.Hn kuehniellafemales like to mate multiply but
usually mate no more than twice (Fig. 4.12). Rengatihus should be the most
effective way for mate guarding. The differencewsn males and females in their
propensity to remate with the same mate may reflecinflict between the sexes, with
males seeking to minimize sperm competition andafemactively keeping open the
opportunity for sperm competition and female choidesperm by discriminating

against previous mates (Zeh et al. 1998).
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4.5 Male Multiple Mating in Ephestia kuehniella

45.1 Introduction

Sperm production is costly and limited (Dewsbur@29Pitnick & Markow
1994; Cook & Gage 1995; Savalli & Fox 1999). Mateay also invest nutrients in
reproduction besides sperm (Boggs & Watt 1981; Wikl et al. 1993). Lepidoptera
usually do not feed on a protein source as adulitgad sequester most of the protein
needed for egg production and basal maintenandagdtheir larval stage (Gilbert
1972; Baker & Baker 1973). Male Lepidoptera therefoave a limited protein supply
and are likely to incur substantial costs suchpesm depletion or reduced survival
through mating (Wedell et al. 2002). As a consegagemale copulation experience
may have a profound impact on female reproductivecess if male reproductive
investment declines over consecutive copulatiohserd are a lots of empirical studies
of effects of male mating experience on femalea@pction (see review of Torres-Vila
& Jennions 2005) but data on male life time repobigre investment and success, and

affect of male mating experience on ejaculate asieescarce.

There has been no report on how male mating histoflpences the
reproductive fitness oE. kuehniella In this section, | investigated the lifetime
reproductive investment and reproductive successaé E. kuehniellaand tested
whether and how male mating experience affectedukgte size and female
reproductive fitness.

4 5.2 Materials and Methods

45.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per
cylinder (Section 3.3.2.2). Average weight inseetse used in this study.

4.5.2.2 Impact of Male Mating Experience on Ejacute Size

This experiment was designed to test whether sgmply declined over

successive copulations by males.
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Section 3.5.2 showed that some males (40%) ofgphéxies could copulate
twice within the 10 h scotophase but their secojadutates < 10 h after the first
copulation were smaller (1/3 of the first ejaculateveight) and unfertile (could not
fertile any eggs). Therefore, males of this speceed at least 10 h after a copulation to
form another viable spermatophore. In the presepe@ment, a 1-d-old virgin male
was allowed to copulate with a 1-d-old virgin femand then offered a 1-d-old virgin
female every 24 h until he died. Fifteen males wexsted. Mating duration was
recorded. Females were dissected under a steremstope immediately after

copulation to count the sperm in spermatophores.

To test the relationship between the number ofrsparthe spermatheca and
male mating history, ten males were allowed to mate each day with virgin females
as above. After mating, females were individuadgred for 11 h (to allow sperm to
migrate from spermatophore to spermatheca, seéo8&6 for detail) before being

dissected to count the sperm in spermathecae.

4.5.2.3 Impact of Male Mating Experience on FemalReproductive Fitness

This experiment was designed to test whether nagelation history affected
female reproductive output. For each replicateakerwas allowed to mate once with a
virgin female each day until he died as descrilimxya (Section 4.5.2.2). Twenty males
were used. The copulated females were caged indilhdfor their lifespan in the
plastic cylinders. Female fecundity and fertilitere recorded as described in Section
3.3.

45.2.4 Statistics

The difference between treatments in female fedyrahd fertility, mating
duration, sperm number in spermatophores or sphaoat were analyzed using an

analysis of variance (ANOVA) followed by Tukey'sidéntized range test.

4 5.3 Results

Males that had access to a new virgin female dailtheir lifespan mated up to
9 times successfully (produced viable offspringjhwthe mean number of matings
being 8.31 (+ 0.21).
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Mating duration (Fig. 4.15) increased significantlith the increase of male
mating experienceDF = 1, 124;F = 451.94;P < 0.0001) while the number of apyrene
and eupyrene sperm ejaculated by males significasticreased over successive
copulationsDF =8, 110;F = 43.93;P < 0.0001 for apyrene amF =8, 111;F = 8.88;

P < 0.0001 for eupyrene sperm) (Fig. 4.16). The remdf sperm that reached
spermathecae also significantly decreased witlnitrease of male mating experience
(DF = 3, 35;F = 15.13;P < 0.0001 for apyrene ardF = 3, 34;F = 16.76;P < 0.0001
for eupyrene sperm) (Fig. 4.17).

On average, a male in his lifetime ejaculated 782 (1 59,472) apyrene and
69,364 (£ 9,794) eupyrene sperm (n = 15).

However, male copulation history had no significaiféct on female fecundity
(DF = 8, 161;F = 1.14;P = 0.3382) and fertilityF = 8, 161;F = 0.91;P = 0.5099)
(Fig. 4.18); females receiving an average of 153,8pyrene and 11,000 eupyrene
sperm produced the same number of offspring agtrex®iving an average of 29,000

apyrene and 3,400 eupyrene sperm.

On average, a male in his lifetime fertilized 2¢42.04) eggs (n = 20).

Mating duration (minutes

Ist 2nd 3rd 4th 5th 6th 7th 8th 9th

Order of copulations made by males

Fig. 4.15Mating duration under different insemination ssatfi malekE. kuehniella.
Bars with different letters are significantly diféat ¢ < 0.05).
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Ml No. of eggs laid
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Fig. 4.18Number of eggs and number of fertile eggs laiddmdleE. kuehniellaunder
different insemination status.

4.5.4 Discussion

A male’s reproductive success primarily dependshennumber of females he
can inseminate (Simmons 2005). Multiple matingscammon in lepidopteran males
but male remating rate varies between speciese¥ample,C. jactatanamales can
mate 6 times (Jimenez-Perez & Wang 2004b) w@ildia pomonellanales 18 times
(Howell et al. 1978).

E. kuehniellaadults are nocturnally active (Section 3.4). Thespnt study
shows that 40% of males can copulate twice withim $ame scotophase but these
second matings can not fertilize any eggs. Howektre second mating occurs in the
subsequent scotophase after the first matingnitfedilize eggs normally (Fig. 4.18).
Therefore, males of this species need a recovenpddor at least 24 h between
successive matings. Similar results have been fou@d jactatana(Jimenez-Perez &
Wang 2004b) andLobesia botrangTorresvila et al. 1995). Furthermore, like many
other studies in the Lepidoptera (Howell et al. &9Kaitala & Wiklund 1995;
Bissoondath & Wiklund 1996), the current study destmates that male mating
duration significantly increased with the increa$emale mating experiendaut the
ejaculate size significantly decreased over suogessopulations. These facts
generally support the hypothesis that sperm praglucs costly and limited (Dewsbury
1982; Pitnick & Markow 1994; Cook & Gage 1995; Sk Fox 1999) and follows a
circadian rhythm (Giebultowicz & Brooks 1998).
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Unlike many other moth species suchZagraphera canadensi&arroll 1994)
andC. jactatana(Jimenez-Perez & Wang 20041k, kuehniellamale mating history
had no significant effect on female fecundity arettility (Fig. 4.18). From a
meta-analysis Torres-Vila et al. (2004) shows thatreproductive fithness of females in
species with low female re-mating rates is lessatiegly impacted by smaller male
reproductive investments than that in highly poljfais species. Female reproductive
output is affected by sperm number, ovipositionation and male derived nutrition
(Unnithan & Paye 1991; Jimenez-Perez & Wang 20®Hnpok & Hosken 2004).
Ephestia kuehnielldemales do not obtain male nutritional investmiemtfecundity
(Section 4.4). They lay all their eggs within a ghmeriod after mating (about 4 days,
Section 4.4), reducing the chance of sperm losmgstorage due to sperm ageing or
female hostile condition (Snook & Hosken 2004). sTlmay explain why male
copulation history had no significant effect on tdenfecundity and fertility in this
species. In contrast, the reduction of female mpctve output due to male mating
history inC. jactatanamay be because females have a long ovipositiang€Ls d)
and male derived nutrition can enhance female fdityr{Jimenez-Perez & Wang
2004b).
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CHAPTER 5
SEXUAL SELECTION OF EPHESTIA KUEHNIELLA

5.1 General Introduction

Sexual selection (Darwin 1871) is one of the mas$iva areas in behavioural
and evolutionary ecology because it directly infloes the reproductive fithess of
animals. Individuals select their partners becapstential mates vary in quality,
quantity and availability. Sexual selection may wcthrough intrasexual selection
where males or females compete for mates or throniginsexual selection where
females or males choose their mates with certaamacteristics (Thornhill & Alcock
1983; Jennions & Petrie 1997). Sexual selection atayr pre- or post-copulation or

even during copulation (Parker 1970; Simmons 2001).

The understanding of mate preference and discawgryf traits selected by
males and females could provide information necgsia the implementation of
behaviour-based control tactics. Sterile insechrieqe (SIT) has been successfully
used in pest control world-wide including New Zewmlae.g. Suckling et al. 1990;
Caprio & Suckling 1995; Lo et al. 2000) and hasrbsgggested for the control Bf
kuehniella(Ayvaz et al. 2007). The SIT consists of massingaa pest species,
irradiating it to cause sterilization, and relegsmillions of sterilized insects to mate
with the pest in the wild either before an outbréskcomes significant or once an
outbreak is reduced with other methods (Knipling3)9 One SIT issue recognized
since the beginning (Knipling 1955) is whetheriitgsd males can successfully attract
and mate with wild females. Thus, whether or nat tBchnique is successful in the
control of an insect pest largely depends on odetstanding of the mating behaviour
of the pest (Knipling 1955; Cardé & Minks 1995).€eTdifficulties with SIT may be
reduced in some cases if the factors that con&itutnale mating success and female
preference in mate choice are better known. Fomele many empirical studies have
showed that male mating success is correlatedhnisthge at mating and body size (see
review in Brooks & Kemp 2001) and thus it is exekthat releasing sterilized males
of optimal body size and at their optimal age igenlkely to achieve higher control
efficacy. Indeed, Shelly et al. (2007) showed tleétasing mid-aged sterilized males
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had significant higher control efficacy than reiegs younger ones in the

Mediterranean fruit flyCeratitis capitata

This chapter reports pre- and in-copulatory mataaghin relation to age, size,
mating history and sex ratio, and post-copulatoayachoice in association with sperm

use pattern and sperm displacemerti.ikuehniella

5.2 Pre- and In-copulation Mate Choice oE. kuehniella
5.2.1 Introduction

One of the most obvious mechanisms through whigliaeselection acts is
mate choice (Andersson 1994; Andersson & Iwasa 1 @8&spite the costs individuals
incur from mate choice, discrimination among pdtgnpartners is advantageous
because it can lead to increased offspring produogctriability, or offspring mating
success (Parker 1970; Simmons 2001). The focuseadnt research has been to
determine the traits that individuals use whenréisioating among potential mates
and such decision-making processes are mostlyestuasing simultaneous choice
experiments, where a female or a male is presemitbdat least two different mates
(reviewed in Schafer & Uhl 2005). However, it haeb argued that there are at least
two ways in which individuals can successively d®wamong mates and mate with the
mate of higher quality: (1) they can assess andsdhonates with direct comparison
(simultaneous choice) and (2) they can compareessoe mates with one another
(sequential choice) (Schafer & Uhl 2005). A few amepl studies have demonstrated
that females are more likely to mate with attraetimales in sequential encounters

without direct comparison (see review in Gibsond&ben 1996; Schafer & Uhl 2005).

Traditionally, females are believed to be choofian males because females
invest more in reproduction (Darwin 1859, 1871 y&rs 1972). However, increasing
evidence shows that sperm production in malesmgriveal (Dewsbury 1982; Pitnick
& Markow 1994; Cook & Gage 1995; Savalli & Fox 1998nd females can be highly
variable in reproductive potential (Pizzari et2003; Jimenez-Perez & Wang 2004a,;
Sato & Goshima 2007), making males choosy alsoil&ino other studies in many
other species (e.g. Pitnick & Markow 1994; Cook &gé 1995; Savalli & Fox 1999),
sperm production is costly and limitedtn kuehniellamales (Section 4.5). To achieve
the maximal life time reproductive return, not oslyouldE. kuehniellamales choose
high quality females to mate, they also have tocalle different amounts of ejaculates
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to their mates depending on mate quality and ragksperm competition (Simmons
2001).

In E. kuehniella male and female reproductive fitness is affedigdage,
bodyweight and mating history (Chapter 4). In #estion | explicitly investigated the
mate choice of both sexes and male ejaculate &ilbocaf E. kuehniellain relation to
body size, mating experience and age at matingerusichultaneous and/or sequential

choice.

5.2.2 Materials and Methods
5.2.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per
cylinder (Section 3.3.2.2). Bodyweight was catezgdti as in Section 3.5. Insect age
was categorized as in Section 4.2.

5.2.2.2 Mate Choice in Relation to Age at MatingVirginity and Body Size

To test whether males and females performed mabeehased on their
partners’ age, | allowed a 1-day-old moth (selgctorchoose from three potential
partners (selectees) of different ages (1-, 4- &aky-old) for copulation. For each
replicate, | released a selector and three sekeaté® a plastic cylinder and observed
mating events during the entire scotophase unpilitzdion occurred. Virgin insects of
average weight were used in this experiment. Igoeréd 36 replicates for male
selectors and 47 replicates for female select@ieci&es were marked as described in
Secetion 4.4.2.3.

Results from Section 4.3 indicated that all maled most females accepted a
second mating in the subsequent scotophase a#efirth mating. To test whether
males and females performed mate choice basedeanpédutners’ mating history, |
released a 1-day-old virgin moth (selector) and petential partners (one 2-day-old
virgin moth and one 2-day-old once-mated moth (chaiel-day-old)) into a plastic
cylinder and observed mating events during therergcotophase until copulation
occurred. Insects of average weight were used i1 @kperiment. | performed 26
replicates for male selectors and 27 replicatesfdorale selectors. Selectees were

marked as described in Secetion 4.4.2.3.
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To test whethelE. kuehniellanales and females discriminated between partners
based on their body weight, | caged a virgin selef@tale or female of a specific
weight class) in a plastic cylinder with three puial virgin mates (light-, average-, and
heavy-weight) and recorded mating events duringtitiee scotophase until copulation
occurred. All insects used in this experiment wieeold virgin moths. A total of 126
males and 129 females were used as selectors ¢Taldeand 5.4). Selectees were

marked as described in Secetion 4.4.2.3.

5.2.2.3 Sperm Allocation in Relation to Female Ag#8ody Size and Mating Status

To test whether males allocated different numbdrsperm to females of
different age, | set up three female age treatméhits-old male x 1-d-old female,
1-d-old male x 4-d-old female, and 1-d-old male-&-@ld female) with 20, 18, and 18
replicates, respectively. In each replicate, lvaéld a male and a female to copulate in a
plastic cylinder during the scotophase. All insaesed were of average weight and
virgin. Females were dissected under a stereo suope immediately after copulation.

The numbers of eupyrene and apyrene sperm in grengpophore were counted.

To test whether males allocated different numbdrsparm to females of
different body size, | undertook three female baayght treatments (average male x
light female, average male x average female, aachge male x heavy female) with 20
replicates for each treatment. All insects usedeviieday-old and virgin. Females were
immediately dissected after copulation to countgberm in the spermatophore.

To test whether the presence of a rival spermatepimothe bursa copulatrix
affected the male ejaculate size, | set up twdnreats: (1) virgin males copulated with
virgin females (n = 17), and (2) virgin males caatl with once-copulated females
(copulated once with other virgin males previousithin the same scotophase) (n =
17). Females were immediately dissected after edjon to count the sperm in the
spermatophore. For treatment (2), sperm were cduntthe spermatophore from the

second male.

5.2.2.4 Effect of Sex Ratio on Male Ejaculates

To determine whether the presence of rival malegobential mates affected
male ejaculates, | set up three mating treatméhjsone male and one female were

allowed to mate in the presence of rival males ¢atddhsed sex ratio), (2) one male and
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one female were allowed to mate in the presencepaiéntial female mates
(female-biased sex ratio), and (3) one male andemale were allowed to mate in the
absence of other males or females (even sex r&o)male-biased mating, three rival
males (virgin and < 3-d-old, randomly selected) evezleased to the cylinder once
copulation had commenced in the previously releas@dSimilarly, for female-biased
mating, three potential female mates (virgin an8-d&-old, randomly selected) were
released to the cylinder once copulation had coneeteim the previously released pair.
Females were dissected immediately after copuléi@ount sperm in spermatophores.
All insects used for mating were 1-d-old virgin mmetvith average body weight. Thirty

replicates were used in each treatment.

5.2.2.5 Influence of Body Size of Both Sexes onnk@e Remating

This experiment was designed to tesetivdr female and male bodyweight
affected female remating rate. In the first scoagah 151 virgin females (randomly
selected from the colony, 1-d-old) were randomlyrgzh with 151 virgin males
(randomly selected from the colony, 1-d-old) fortimg with one pair in one cylinder.
Mated females were reared individually. In the sececotophase, these once-mated
151 females were paired randomly with another lisjinvmales (randomly selected
from the colony, 1-d-old) from the start to the efdhe scotophase until copulation
occurred. Females mated with the second malesreeoeded. Body weight of all used

insects was recorded.

5.2.2.6 Influence of Female Age at First Mating okler Remating

To test whether female age at the first matingcadig her remating rate, virgin
females of different age (27 from 1-d-old, 22 frdnd-old, 22 from 7-d-old) were
allowed to mate once with 1-d-old virgin males. Bthtfemales were reared
individually. In the second scotophase, these anated females were paired with
novel 1-d-old virgin males from the start to thel e the scotophase until copulation
occurred. Insects of average bodyweight were uSerhales mated or not with the

second males were recorded.
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5.2.2.7 Influence of Male Ejaculate Size on Femakemating

In this section, | tested whether larger ejaculatadd delay or reduce female
remating rate. The above experiments (Section BRshowed that males transferred
significantly more sperm to females under maledadastio than under female-biased
ratio (Fig. 5.4). Therefore, | allowed virgin ferealto mate once under male-biased
ratio (n = 90) and female-biased ratio (n = 90)hat beginning of the scotophase as
described in Section 5.2.2.4. All insects used wangin with average body weight.
Once the first copulation had completed, the madéedales were paired with new
1-d-old virgin males (which had similar body weigbtthe first males;t 1mg) for
mating by one pair per cylinder. Observations weneducted from pairing to the end

of scotophase under red light. The number of fesntilat remated was recorded.

5.2.2.8 Statistics

The Marascuilo procedure of the nonparametric amlgDaniel 1990) was
used to assess the effect of age, bodyweight aguhity on mate choice, and the effect

of age on female remating rate.

The difference between treatments in the numbeapyfene and eupyrene
sperm ejaculated by males were analysed using ANGdllowed by Tukey's
studentized range test.

The Logistic procedure was used to analyze thetefficbodyweight on female
remating. The relationship between female remapirapability and bodyweight of
their own and their partners was given by the eqonay/(1-y)= exp fo + 1% + foXm1+
[3Xm2 t03 Xm2-m2), Wherepo, f1, - andpzare model parameters is female body weight,
Xm1andxmzare the firsand second male’s bodyweight,,.m1is the weight difference
between the second and first males (2nd male makt), andy is female remating
probability (the probability of females that makes tsecond time)espectively. Only
significant terms, after running the full regressimodels, were kept in the final

models.

A Fisher’s exact test was used to analyse theteffegjaculate size on female

remating rate.

Data on intermating duration were analysed usin@AN.
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5.2.3 Results
5.2.3.1 Mate Choice in Relation to Age at MatingVirginity and Body Size

When offered females of three different ages, malgsificantly preferred
1-day-old females to 4- or 7-day-old females fopwation but did not appear to
demonstrate any preference between 4- and 7-dafeoldles (Table 5.1). However,
femaleE. kuehniellasignificantly preferred 4-d-old males to 1- or -6id males for
mating but did not appear to have any preferentedsn 1- and 7-day-old males
(Table 5.1).

When offered virgin and mated potential partneete(sees), the male selector
significantly preferred virgin to mated females {elfemale selectors did not have any

preference over selectees’ mating history (Tal22¢. 5.

Both E. kuehniellamales and females selected their mates basedtbriHsor
own and their mates’ bodyweight and showed sinsidection pattern (Tables 5.3 &
5.4). Heavy and average selectors significantljgored heavy selectees, whereas light

selectors did not have preference over selecteghivelass when they selected mates.

Table 5.1Mate choice in relation to age i kuehniella*

Selectee
Selector DF Uo P
1-d-old  4-d-old 7-d-old n
Male (1 d) 36 A 13B 17 B 66 2 23.80 <0.001
Female (1 d) 11a 28 b 8a 47 2 21.03 <0.001

* numbers with different letters are significantlifferent P < 0.05).

Table 5.2Mate choice in relation to virginity iB. kuehniell&

Selectee
Selector DF Uo P
Virgin Mated n
Male 24 A 2B 26 1 18.62 < 0.001
Female 12 a 15 a 27 1 0.33 > 0.05

* numbers with different letters are significantlifferent @ < 0.05).
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Table 5.3Effect of body weight on mate selectionbykuehnielldemales*

Female weight class Male weight class (Selectee) U 5
0
(Selector) Heavy Average Light n
Heavy 20 a 9 ab 6b 35 1790721 <0.001
Average 35a 15b 4 b 54 21.0308% 0.001
Light 13 a 15a 12 a 40 0.43427 >0.05

* numbers with different letters are significantlifferent @ < 0.05).

Table 5.4Effect of body weight on mate selection bykuehniellanales*

Male weight class Female weight class (Selectee) U 5
0
(Selector) Heavy Average Light n
Heavy 22 a 6b 8b 36 90997194 <0.001
Average 32a 6b 13b 51 3934073 <0.001
Light 18 a 10 a 11 a 39 5.168188> 0.05

* numbers with different letters are significantlifferent < 0.05).

5.2.3.2 Sperm Allocation in Relation to Female Ag#8ody Size and Mating Status

Males allocated significantly more apyred(= 2, 50;F = 9.71;P = 0.0003)
and eupyreneldF = 2, 50;F = 13.17;P < 0.0001) sperm to 1-d- and 4-d-old females
than to 7-d-old ones (Fig. 5.1).

However, males only adjusted the number of apyrsperm ejaculated
depending on female weight, with significantly mapyrene sperm being allocated to
heavy females¥F = 2, 59;F = 13.49;P < 0.0001) but similar number of eupyrene
sperm to females of all weight categoriB$ (= 2, 59;F = 0.91;P = 0.4095) (Fig. 5.2).

There was no significant difference in copulatiomadion between the first and
second copulations in femaleBK = 1, 26;F = 1.91; P = 0.18), with the mean
copulation duration being 112 £ 3 min. Males ejated similar number of apyrene
(DF =1, 31;F =0.0;P =0.98) and eupyren®F =1, 31;F = 0.20;P = 0.66) sperm to
virgin and once-copulated females (Fig. 5.3). Femttore, no significant difference

was found in the ratio of apyrene : eupyrene spgmtween treatment®fF = 1, 31;F =
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0.77;P = 0.39), with the ratio of apyrene : eupyrene spbeing about 14 : 1.
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Female age at mating (days after emergence)

Fig. 5.1 Number of apyrene (a) and eupyrene (b) sperm etemilby maleE.
kuehniellato 1-, 4- or 7-d-old females. For each paramdiars with different
letters are significantly differenP(< 0.05).
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Fig. 5.2 Effect of female pupal weight on the number of apgr (a) and eupyrene (b)
sperm ejaculated by make kuehniella For each parameter, bars with different
letters are significantly differenP(< 0.05).
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Fig. 5.3Number of apyrene (a) and eupyrene (b) sperm wenesf by virgin males to
virgin or once mated females. For each parameges, with different letters are
significantly different P < 0.05).
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Fig. 5.4 Number of apyrene (a) and eupyrene (b) sperm egjeanilby maleE.
kuehniellaunder different sex ratios. For each parameters math different
letters are significantly differenP(< 0.05).

5.2.3.3 Effect of Sex Ratio on Male Ejaculates

Males under male-biased or even sex ratio ejaallatgnificantly more
apyrene DF = 2, 70;F = 5.37;P < 0.0068) and eupyren®F = 2, 70;F = 10.8;P <

0.0001) sperm to females than under female-biasedagio (Fig. 5.4). No significant
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difference was found between male-biased and esenasio P > 0.5).

5.2.3.4 Influence of Bodyweight of Both Sexes orefale Remating

The Logistic procedure analysesaat that female remating probability

significantly increased with the increasing of thedyweight of their own and
bodyweight difference between males (2nd male —mate) (n

= 151, Global
likelihood ratio test fop = 0: y* = 14.33;P = 0.0008) (Fig. 5.5)

y/(1-y)= exp (-4.9025 + 0.1783+ 0.1108%n2-m)

probub'\\ity

o
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27
00,
LRAEILLARIRAL
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OREEAKS

predicted female rematin

Fig. 5.5Predicted female remating probability in respaiasiemale bodyweight and
bodyweight difference between males (2nd male -Aibde) inE. kuehniella.

5.2.3.5 Influence of Female Age at Mating on Her émating

Female remating rate significantly decreased withihcrease of their age at
first mating (Marascuilo procedurBF = 2; Uy = 8.36;P = 0.02) (Fig. 5.6).

5.2.3.6 Influence of Male Ejaculate Size on Femakemating

Of 90 females that received large ejaculates irfiteemating (from mating
under male-biased sex ratio), 34 mated the seamadwith the new mates in the same

scotophase (remating rate = 34/90 = 37.8%), wighritkermating duration being 115.7

+ 14.1 minutes. Of 90 females that received smialtidates (from mating under
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female-biased sex ratio), 37 mated with the newemah the same scotophase
(remating rate = 37/90 = 41.1%), with the interm@tiduration being 65.5 £ 9.1
minutes. Females that mated in male-biased sex faid significantly longer
intermating duration than those that mated in fertehsed sex ratio (ANOVAF =1,
68; F=9.21;P = 0.003). No significant difference on rematingerbetween treatments
(Fisher’s exact tesP = 0.38).
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Female age at first mating (d)

Fig. 5.6Percentage of females that mated the secondmnimedation to their age at first
mating inE. kuehniellaBars with different letters are significantly feifent @ <
0.05).

5.2.4 Discussion

My results show thak&. kuehniellamales preferred younger females for
copulation when given a choice. This strategy adlanales to gain the maximum
reproductive return as younger females have higigroductive potential (Section 4.2).
However, females of this species significantly predd 4-d-old males to 1- or 7-d-old
males for mating. This preference is unlikely finedt benefit (higher fecundity and
fertility) or indirect (genetic) benefit (higherfepring fithess) because age of males has
no significant effect on female fecundity, ferylitegg-hatching rate, and offspring’s
survival and body weight (Section 4.4 & 4.5). Cal\& Corbet (1973) show that male
responsiveness to female sex pheromone peaked &ye after emergence and
declined 5 days after emergencéirkuehniellaThis could be the reason why 4-d-old

males have higher mating success than 1- or 7-dvwdd in this species.

Mating history in males and females has differeahsequences. Male’s
preference for virgin to mated females for matingyrbe his strategy to reduce sperm

competition. Unlike some other species, suck agctatana(Jimenez-Perez & Wang
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2004c) where females prefer virgin to non-virginlesafor mating, my study shows
thatE. kuehniellafemales do not discriminate their partners in gohvirgin or not.
This difference may be due to the fact that maléngaistory has negative effect on
female reproductive fitness @. jactatana(Jimenez-Perez & Wang 2004b) while this
does not have significant effect on female fecyndihd fertility in E. kuehniella
(Section 4.5).

My results show that both sexeskfkuehniellaprefer larger mates to mate.
Moreover, females were significantly more likelyreanate if encountering males that
were larger than their previous mates. Body sizgeigerally considered a cue of the
female reproductive potential with large femalesdirg to offer greater reproductive
returns to males than small ones (Arak 1988; Baadsky & Brassil 2005). IrkE.
kuehniella male preference to mate with larger femaleskeyito gain direct benefit
because female fecundity and fertility increasethwier weight (Section 4.3). Large
size may also be a cue of good quality in malesh s having better genes and more
sperm supply over smaller ones (Phelan & Barke61B&soondath & Wiklund 1996).
In E. kuehniella(Section 3.6) and many species of Lepidopterasibe of ejaculate
transferred during first matings is positively @ated with male body size (reviewed
in Bissoondath & Wiklund 1996), suggesting that &#s mated to large males may
gain direct benefit in terms of more sperm and itiotr. For example, Wiklund &
Kaitala (1995) show that iRieris napilarger males inseminated larger ejaculates to
females and that females receiving more male iedesttrients had higher fecundity.
However E. kuehniellamales do not provide nutrition (Section 4.4), #rely generally
transfer more sperm than necessary in one matifgytibze all eggs, suggesting that
female’s preference for large males for matingas to gain direct benefit. Fisher’s
(1958) genetic model explains why females prefaraorented males: a female
choosing a male with an attractive trait will haaas and daughters that can both carry
alleles for the attractive trait. B. kuehniellaa female choosing a large mate will have
large offspring (Section 4.3) and thus she wilhgadirect genetic benefit because her
large sons and daughters possess higher fithgsg-copulatory mate choice (Tables
5.3 & 5.4), and probably also in post-copulatorytenghoice (e.g. Kempenaers et al.
1992; Keller & Reeve 1995).

My study also shows that larger and younger femalka® significantly more

likely to remate than smaller and older ones. Phisnomenon has also been reported
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in other insect species (Van Dongen et al. 199%alV& Cook 1999; Jimenez-Perez et
al. 2003; Schafer & Uhl 2005). Heavy females, vathinherently greater egg-laying
capacity, are able to produce more eggs and sogexyto obtain more sperm and male
derived factors from remating to achieve their maxn reproductive gains (Shapiro et
al. 1994). Male preference for larger mates mag play a role in the probability of
female remating (Schafer & Uhl 2005; this studyjved the cost of mating, female
remating rate would be expected to evolve to themim necessary to achieve full
egg-fertility (Chapman et al. 1995). One matingnsugh to achieve full fertilization in
females ofE. kuehnilla(Section 4.4 & 4.5). Older females remating lesstilounger
ones may be a strategy to save time and energyedgrlaying. Moreover, the
decreasing of female attractiveness with ageingamycontribute to the low remating
rate in old females.

Although sperm competition has resulted in the @toh of sperm so small and
S0 numerous, the nontrivial cost of sperm productiod the varying intensity of sperm
competition have also promoted prudent ejaculddeation by males between matings
(Dewsbury 1982; Pitnick & Markow 1994; Wedell et aD02). A tradeoff between
opportunities to remate and sperm competitioneslisted to shape optimum ejaculate
allocation at a given mating (Wedell et al. 20imilar to previous reports in other
species (Pitnick 1993; Nicholls et al. 2001), mydst indicates that ifE. kuehniella
males allocated (1) significantly more sperm of hbdypes to females under
male-biased sex ratio than under female-biasedatix (2) significantly more sperm
of both types to 1- and 4-day-old females than-ttay-old ones, and (3) significantly
more apyrene sperm to heavy females than to avarabkght ones but similar number
of eupyrene sperm to females of all three weiglegaries. These results generally
support the sperm competition theory (Parker 19880) which predicts that males
experiencing higher levels of sperm competitionk resre selected to increase
investment in sperm production. Parker (1982, 198@pests that the mechanisms of
sperm competition may follow a ‘loaded raffle’,.irelative to their rivals males, the
more sperm a male inseminates into a female, thie hkely he is to fertilize her eggs.
Generally, males ejaculate much more apyrene thpyrene sperm (Silberglied et al.
1984; Cook & Gage 1995) during mating and the nurob@pyrene may make up as
much as 99% of the sperm ejaculated to femalegjnigajust 1% capable of
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fertilization (Baker 1996). It has been suggested more apyrene sperm may fill the
spermatheca and delay female receptivity (Cook &l#ll€1999).

On the contrary, when males face low risk of speampetition, they should
produce a smaller ejaculate and conserve spernfutare matings (Galvani &
Johnstone 1998). Wedell et al.’s (2002) hypothasi Galvani & Johnstone’s model
(1998) suggest: given the diverse factors affectpgmal ejaculate characteristics,
males are expected to exhibit prudence in ejacaliieation to maximise their overall
lifetime reproductive success. Sperm productionastly and a very small ejaculate
(from a male that had mated 8 times previously) ciin fully fertilize all eggs of a
female inE. kuehniella(Section 4.5). It is expected thgt kuehniellamales will
inseminate more females and thus gain more offgpnn their lifetime under

female-biased matings because of sperm saving.

Sperm competition theory (Parker 1982) and empistady (Cook & Gage
1995) predict that males are selected to incregsrilate size to achieve a higher
paternity in the presence of rival sperm. Howelgatigson & Hosken (2006) propose
an opposite scenario whereby the second male shedide his ejaculate size because
the ejaculate by the previous male has bufferedhtistile female tract. In the present
study | found no evidence to support either of ¢hegpotheses, becausekuehniella
males ejaculate a similar number of sperm of bggeg to females regardless of
whether there is already a rival spermatophoréerbursa copulatrix.

As have been mentioned above, previous studiethar msect species suggest
that transfer of more sperm to females may delagauce female remating (Gromko et
al. 1984; Cook & Wedell 1999). In the present sfudgnsferring more sperm |.
kuehiellamales does marginally delay female remating bwsdwot reduce female
remating rate. Therefore, delay in reamating oucédn in remating rate can not
perfectly explain the evolution of why. kuehniellamales have to allocate more sperm
to females under higher risk of sperm competitibneoretical (Parker 1990, 1998),
comparative (Parker et al. 1997) and experimeMalttfn et al. 1974; Gage & Morrow
2003) studies have suggested that the paterrigtesmined by the relative number of
competing sperm in females from different male<€.Ilkuehniellathe more sperm are
transferred, the more sperm will reach female spératae (Section 4.5) and sperm
competition outcome is determined by the relativenber of competing sperm in

spermathecae (Section 5.5).
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5.3 Development of Method for Sperm Use Pattern Meurement

5.3.1 Introduction

Sperm competition, which occurs when sperm from emttran one male
compete for a given set of eggs (Parker 1970)esgmts an important component of
sexual selection and is recognized as a key fattbe evolution of so many tiny sperm
(Parker 1982; Simmons 2001). When two males copwiéth the same female, the
measurement of the proportion of eggs fertilizedebgh male has been used to help
elucidate sperm competition mechanisms (e.g. Boo&RBarker 1976; He et al. 1995;
Harano et al. 2008).

There are three main approaches used for detemgnsperm precedence in
insects: sterile male technique (Parker 1970), ctete breeding for diagnostic
morphological traits (e.g. Suzuki et al. 1996), #r@luse of DNA markers (e.g. Dierkes
et al. 2008). The sterile male technique usingatamh (e.g. He et al. 1995; Vermette &
Fairbairn 2002; Harano et al. 2008) is the most mom approach. However,
sterilization using radiation is likely to be rested by the equipment availability and
cost. Chemosterilization may thus be a cheapeeasigr alternative for sterilization of

male insects in sperm competition studies.

The chemosterilant, tepaNN’,N”-triethylenephosphoramide; Chemical
formula: GH12N3OP), has proved to be effective in pest controetdam sterile insect
technigue (Fernando 1970) and in study of spernpetitiveness in insects (Snow et al.
1970) and other animals (Beil et al. 1976; Wallakt 1985). However, thiotepa
(N,N’,N”-triethylenethiophosphoramide; Chemical formulaHGN3sPS), an analog of
tepa, has been found to be the most effectivelaténn a number of insect species
without obvious adverse effect on mating and loitgeiNabi & Harrison 1984a, b;
Thakur & Kumar 1987). It reacts with DNA by formimgoss-links with guanine or
adenine and thereby inhibits DNA synthesis and eguent cell division (van Maanen
et al. 2000). Therefore, thiotepa-treated malesilshstill produce sperm that fertilize
the eggs but those eggs fertilized by sterile medggsnot hatch (e.g. Nabi & Harrison
1984a).

In the application of chemosterilants both dose tadtment methods need
considering to ensure full sterilization and no ede effect on male copulation and
fertilization (Fernando 1970; Tan & Mordue 1977)Has et al. 1981; Nabi & Harrison
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1984b). So far little is known about whether chetaoksnts can be reliable markers for

the study of sperm competition and precedence.

In the present study | dipped madde kuehniellaadults in aqueous solution of
thiotepa of different concentration and evaluatedlgotential of this chemical in male
sterilization and sperm precedence determinatioith viour objectives: (1) to
determine the effective dose for full sterilizati@®) to test whether the effective dose
affected male copulation ability and female fectydi3) to examine whether the
effective dose affected sperm transfer, motilitg dertilization, and (4) to evaluate

whether thiotepa could be used as a reliable méokesperm competition study.

5.3.2 Materials and Methods
5.3.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per

cylinder (Section 3.3.2.2). Insects of average bwodight were used in this study.

5.3.2.2 Determination of Optimal Thiotepa Dose folComplete Sterilization of

Males and Effect of Treatment on Male Copulation Alility and Female Fecundity

Thiotepa is toxic to humans (van Maanen et al.,0208II operations were
made under a fume cupboard and protection glasgesiber gloves worn when this
chemical was handled. Three thiotepa (SIGMA-ALDRICEb., USA) doses (5.0%,
1.0% and 0.5% aqueous solution) were used tormalE. kuehniellaadults. Newly
emerged male moths (< 12 h old) were light ana&égttewith carbon dioxide and then
treated by dipping their heads in the thiotepatsmtuor 10 s. Treated males were kept
individually in above mentioned glass tubes forH&urs before being paired with
females. Each male was paired with a virgin fenrake plastic cylinder from the start
to the end of the first scotophase to allow copoatCopulation events were recorded
by hourly observation as the copulation duratiothcd species is 2 h. Fifteen replicates

were performed for each dose. Twenty-six untreatalibs were used as controls.

Immediately after copulation females were cagedviddally for their lifespan
in the same plastic cylinders. Eggs were colled&ty and incubated in Petri dishes
(8.5 x 1.5 cm). The number of eggs laid (fecunditty number of fertilized eggs laid
(fertility) and egg hatch rate (no. of hatched éggsof eggs laid) were recorded.
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Unfertilized eggs are yellow and transparent amivsled after 48 hours incubation but
eggs fertilized by either treated or untreated sake white, opaque and not shriveled
after 48 hours incubation. Egg-hatching occurreeraf-5 days’ incubation. All males
treated with 5% thiopeta died < 24 h after treatireerd were thus excluded from

copulation tests.

My preliminary experiments revealed that eggs lfeedl by males treated with
1.0% thiopeta in their first copulation failed tatbh. Furthermore, multiply copulated
E. kuehniellamales could fertilize full load of eggs in femal@zection 4.5). To test
whether the sterilization effect on males was hagéfter the first copulation, | allowed
the above 1.0% thiotepa-treated males to coputate $econd (n = 15) and third times
(n = 15) with 1-d-old virgin females with an intafvof 24 h between copulations.

Fecundity, fertility and hatch rate were recordsdbove.

Whether treated and untreated males had differeptilation ability in the

above experiments was also recorded.

5.3.2.3 Effect of Thiopeta Treatment on Sperm Trasfer and Motility

These experiments were designed to test whethepeta treatmenaffected
sperm transfer and motility. Males were treatechwlit0% thiopeta and allowed to

copulate 24 h after treatment as above.

In the first experiment, 18 females were alloweddpulate with treated males
and then dissected under a stereo microscope inategdiafter copulation. The
numbers of eupyrene and apyrene sperm in the spmghwae were counted.

Thirty-two females that copulated with untreatedevavere used as controls.

Sperm in spermatophores need to move to the speeoed before they can
fertilize eggs (Friedlander et al. 2005). In thew® experiment, 15 females were
allowed to copulate with treated males five hour® ithe scotophase. Copulated
females were individually caged for 14 hours arehttiissected to count the number of
sperm in the spermatheca before the start of tbensescotophase (oviposition will
start in the 2nd dark period, Section 3.4). Fifteemales that copulated with untreated

males were used as controls.
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5.3.2.4 Measurement of Sperm Precedence

To determine whether thiotepa could be used adiable marker for sperm
precedence measurement in the study of sperm ciiopet allowed females to
copulate twice in the same scotophase with 1.0%dpa-treated and untreated males
in different orders, and then examined the offgppaternity through the measurement

of hatch rate.

Four treatments were set up (Table 5.6): (1) fesfalst copulated with treated
males and then with untreated ones (T-U); (2) fesidirst copulated with untreated
males and then with treated ones (U-T); (3) femalgsulated twice, each with a
different treated male (T-T), and (4) females cafed twice, each with a different
untreated male (U-U). First copulation was allova¢the beginning of the scotophase
and the copulated females were separated from raakksndividually caged for 4.5
hours before the second males were introduced. riimemum 4.5 hour interval
between two copulations was chosen because 4 hftarsopulation almost all sperm
of the first male have moved from the spermatopkmtbe ductus seminalis that leads
to the spermatheca (Section 3.6). The above twpedated females were caged
individually for their lifespan to measure hatchlieras above. The success of both
matings was verified by examining the dead fematehs) for the presence of two

spermatophores (Section 4.4).

The proportion of eggs fertilized by sperm fromleatale was calculated using

the formula developed by He et al. (1995):

P, = 1/[SQRTKh) + 1]

k= (Xu-u = X1u)/ (X1u — X1-1)

h = (Xu-1 = X7-1)/(Xuu = Xu-1)
where B = proportion of eggs fertilized by sperm of the@®d male, X.y and X.y =
egg hatch rate of U-U and T-U treatments, respelgtiXr.t and Xyt = egg hatch rate

of T-T and U-T treatments, respectively.

5.3.2.5 Statistics

Data on fecundity, fertilityy, and number of spermdaratio of sperm
(apyrene/eupyrene) in the spermatophore and speecetwere analyzed using an

analysis of variance (ANOVA) followed by Tukey'sidentized range test. Data on
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hatch rate were analyzed using the nonparametnskat-Wallis test followed by

Dunn’s procedure for multiple comparisons (Zar 1999

5.3.3 Results

5.3.3.1 Determination of Optimal Thiotepa Dose folComplete Sterilization of

Males and Effect of Treatment on Male Copulation Alility and Female Fecundity

Table 5.5 summarizes the effect of thiotep&okuehniellamale reproductive
performance and fecundity, fertility and hatch rafeheir mates. Almost all males
copulated and inseminated their mates. Femalesdpatated with untreated or treated
males laid similar number of egd3K = 4, 80;F = 0.74;P = 0.57) and fertile egg®F
= 4, 80;F = 0.84;P = 0.53). However, eggs laid by females copulatét tweated
males had significantly lower hatch rate than tHagkby females that copulated with
untreated maleDF = 4, 80;y° = 68.02;P < 0.0001).

Results also show that 1.0% thiotepa completelyiligezl males and the

sterilization effect remained in their second amdditcopulations (Table 5.5).

Table 5.5Effect of thiotepa treatment on reproductiorirkuehniell&

Males Females
Treatment % of males % of males  No. of No. of Hatch
copulated inseminated eggs fertilized rate
laid eggs laid %

Control 26 96 92 318+21A 307+24 90.3+3.&
1st copulation by males treated
with 0.5% thiotepa 15 100 100 3104+26A 300125 38.1+9.h
1st copulation by males treated
with 1.0% thiotepa 15 100 93 288+31A 281+22 0.0+0.¢
2r_1d copulatipn by males treateq5 100 93 277+431A 262+24  0.0+0 G
with 1.0% thiotepa - - T
3rd copulation by males treated, 5 4, 93 079+24A 267+26 0.0+0.&

with 1.0% thiotepa

®Proportion of copulated females that laid fertitizggs.
*For each parameter, numbers with different letterscolumn are significantly
different < 0.05).

5.3.3.2 Effect of Thiopeta Treatment on Sperm Trasfer and Motility

Males treated with 1.0% thiotepa transferred sinmlanber of apyrenédf = 1,
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47;F = 0.00;P = 0.98) and eupyren®F =1, 47;F = 0.33;P = 0.57) sperm to females
in comparison with untreated males (Fig. 5.7). Tét& of apyrene/eupyrene sperm
transferred was also similar between treated arndecated males (16.6 + 1.8 for
untreated males, 17.4 £ 1.9 for treated mds= 1, 46;F = 1.03;P = 0.32).

Females copulated with treated or untreated mades dimilar number of
apyreneDF =1, 28;F = 0.42;P = 0.52) and eupyren®F =1, 27;F = 0.25;P = 0.62)
sperm in their spermathecae 14 hour after copulaffelg. 5.8). The ratio of
apyrene/eupyrene sperm in the spermathecae wasgmificantly different between
females copulated with treated and those with atdétemales (8.8 + 1.6 for females
copulated with untreated males, 8.5 £+ 1.2 for fasabpulated with treated mal&s:
=1, 27;F =0.02;P = 0.89).
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Fig. 5.7 Effect of thiotepa treatment on the number of spar spermatophores iB.
kuehniella

5.3.3.3 Sperm Precedence Estimation

Females in all four treatments had similar fecun(IitF = 3, 67;F = 0.83;P =
0.48) and fertility DF = 3, 67;F = 0.34;P = 0.80) (Table 5.6).

Hatch rates were significantly different betweeratmentsF = 3; y* = 58.65;
P < 0.0001) (Table 5.6). Itis indicated that spémm thiotepa-treated males competed
effectively with those from untreated males fotifemation. Based on He et al.’s (1995)
method, the Pvalue equaled 0.86 fdt. kuehniellaindicating that 86% offspring of

the twice-copulated females were fathered by tlversd males and 14% by the first

males.
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Fig. 5.8Effect of thiotepa treatment on the number of spier spermathecae 14 h after
copulation inE. kuehniella.

Table 5.6Fecundity, fertility and hatch rate of four treatmis*

No. of No. of
Treatments n o fertilized Hatch rate%
eggs laid )
eggs laid
T-U 17 311+21 A 302122 82.5+3.6 a
U-T 16 298+22 A 283122 12.4+4.4 b
T-T 19 309+14 A 301+1&\ 0.0+0.0c

u-u 20 337+17 A 31526\ 95.9+0.7 d

*For each parameter, numbers in column with diffieréetters are significantly
different P < 0.05).

5.3.4 Discussion

Previous studies show that insects could be treasgty chemosterilants in
several ways, for example, dipping fruit fly pupaechemosterilant solutions after
which the mouthparts of the emerging adults tou¢hedesidue on the outside surface
of puparial case (Fernando 1970), feeding mothtaduith liquid food baited with
chemosterilants (Snow et al. 1970), and injectiregewsoluble chemosterilants into
moth abdomen or applying acetone-soluble onesete¢htral surface of the abdomen
(Tan & Mordue 1977). My preliminary attempts toargupae by dipping failed to
achieve male sterilization and hence no details reported here. Injection and

abdominal treatment involving solvents can sigaffity reduce insect fithess (Tan &
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Mordue 1977) including. kuehniellaSection 3.5). For these reasons, | decided to dip
adult moths. Snow et al.’s (1970) work suggestetltthe water-soluble thiotepa can be
transported from mouthparts to testes. Althokghkuehniellaadults do not feed, they
have well-developed mouthparts, suggesting thay thay ingest at least water.
Therefore, in the present study | dipped heads afenadults in thiotepa aqueous
solution to sterilize males, assuming that the dbaincould be ingested from

mouthparts.

Sperm competition studies using sterile male tepli(Parker 1970) have
generally assumed that sperm transferred by gtedilmales can compete with sperm
from normal males (e.g. Parker 1970; Danielssori 28@th et al. 2002). Many studies
have showed that males treated by optimal dose®¢lodose which induces complete
sterilization) of gamma ray often retain normal imgubehaviour and competitiveness
in procuring mates (e.g. Parker 1970; Danielssdil28eth et al. 2002; Vermette &
Fairbairn 2002). However, radiation measures mayrdg germinal tissue, resulting in
reduced sperm production and eventual aspermiagiS#01990; Gilchrist & Partridge
2000). Chemostrilants can also cause high mortadiipsects even at the dose level
that does not fully sterilize males (Tan & Mordu@7T). It has been reported that
thiotepa can negatively affect spermatogenesisiae ifiNejad et al. 2008) and sperm
motility in fruit fly (Thakur & Kumar 1987). Therefe, it is essential to determine
effective treatment doses that completely steriiedes with minimal negative effects

on male copulation ability and sperm production qudlity (Parker 1970).

In the present study, treatment of adult mothsgu%if% thiotepa completely
sterilizedE. kuehniellamales but did not significantly affect male copiga ability
and female reproductive potential, sperm transi@tjlity and fertilization (Table 5.5;
Figs 5.7 & 5.8). Furthermore, the reverse coputatieatments (T-U and U-T) clearly
showed the last male precedencE.kuehniellgTable 5.6), i.e., Xy~ (100 - Xy.1) X
Xu-u, indicating that sperm from thiotepa-treated anleated males have very similar
or the same competitive ability for fertilizatio®drker 1970). It is thus strongly
suggested that the male treatment using 1.0% traoselution is an effective and
reliable method for sperm competition studiesEinkuehniellaand probably other

species.

Results of this study support the notion that offgp of twice-copulated

females appear to be mostly fathered by the lagtsr(geviewed in Silberglied et al.
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1984; Friedlander et al. 2005). In the presentystit sperm of the first male had
moved from the spermatophore to the ductus semitiait leads to the spermatheca
when the second copulation was allowed. It is fbsghat the last copulation had in
some way influenced the movement of sperm fromfitlke male to the spermatheca
and even induced females to displace sperm of itisé rhale that had reached
spermatheca (e.g. Villavaso 1975). However, thecter@echanism underlying the
sperm competition battle ik. kuehniellaremains unknown and warrants further

investigation.
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5.4 Mechanisms of Last Male Precedence Bphestia kuehniella

5.4.1 Introduction

Polyandry has evolved to allow different males edilise a female’s eggs,
simultaneously allowing females to gain additionatrients (reviewed in Arngvist &
Nilsson 2000; Simmons 2001) and/or genetic benéfégiewed in Simmons 2005;
Cornell & Tregenza 2007; Ivy 2007). In many polysng species, including
lepidopteran insects, the last male to mate witferaale often sires most of her
offspring, a phenomenon called “last male spernsgaence” (reviewed in Silberglied
et al. 1984; Simmons 2001; Friedlander et al. 200Hjs phenomenon has been
explained as the result of males and/or femaldaen€ing sperm use for maximum
reproductive success (reviewed in Danielsson 1888mons 2001; Snook & Hosken
2004; Snook 2005). On one hand, males have eveledus strategies to gain sperm
precedence, such as stimulating mating when fenaa¢éesot sperm limited, allocating
more sperm to females to compete with rival spetisplacing sperm from previous
males, and inducing females to favor their speraviéwed in Danielsson 1998;
Simmons 2001; Gillott 2003; Hotzy & Arnqvist 2009Dn the other hand, in the
process of sperm reception, storage and releasealde have opportunities to
manipulate the fate of sperm from different matesaiximize possible genetic benefits,
a process known as cryptic or post-copulatory fernhbice (Thornhill 1983; Eberhard
1996; Dixson 2002; Fedina 2007). For example, fesyatay dump aged sperm from
storage (Villavaso 1975; Hellriegel & BernasconD@pSnook & Hosken 2004) and
eliminate sperm bearing somatic mutations (Jonea.e2000; Siva-Jothy 2000) to
favor younger and healthier sperm. Therefore, gebenefits appear to be a primary
force behind the evolution of polyandry and pogtdatory female choice over the
cost of matings (reviewed in Simmons 2005; Cor&elregenza 2007; vy 2007).

Similar to many other species in the Lepidopteeaigwed in Silberglied et al.
1984; Friedlander et al. 2005), the last male tteraghieves a higher fertilization rate
in E. kuehniellg(Section 5.3). As reviewed in Section 2.6.5, taate precedence may
be due to (1) the second male increased his ejacsize in the presence of a rival
sperm (Cook & Gage 1995), (2) the second male aligpl the spermatophore of the
first male in the bursa copulatrix before most spef the first male emigrate from the
spermatophore (Retnakaran 1974; Drnevich et al0;208kami 2007), (3) resident
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sperm from the first male are flushed out from $it@rage organ by the incoming
ejaculate of the last male (Pair et al. 1977; $gled et al. 1984) or ejected from the
storage organ by the female to accept the spermm fhe last male (Villavaso 1975;
Hellriegel & Bernasconi 2000), and (4) the lastrapéo enter the sac would be the
nearest to the exit and more likely to fertilize #ggs first and to fertilize more eggs as

the spermatheca is a blind sac (Parker 1970).

Section 5.3 (Fig. 5.6) has showed the presenceafaperm did not influence
male ejaculate size, suggesting the last male gezxe is not because the second male
transferred more sperm to females. In this secticest the other three potential

hypotheses to elucidate the mechanisms of therals precedence . kuehniella

5.4.2 Materials and Methods
5.4.2.1 Insects

Insects were reared under the density of 100 nedaatae per 50 g food per

cylinder (Section 3.3.2.2). Insects of average bwodight were used in this study.

5.4.2.2 Effect of Second Copulation on Sperm Staga in Spermathecae

This experiment was designed to determine how ehwafe’s copulation with
the second male influenced the storage of the rinaie’s sperm in the spermatheca.
Section 3.6 showed that sperm did not reach thergibeca until 4 h after copulation
(Fig. 3.15); apyrene and eupyrene sperm in thensgtbieca peaked 8 h and 11 h after
copulation (Fig. 3.16), respectively. Thereforethis experiment, | allowed the female
to copulate the first time at the beginning of tmotophase and then kept her
individually for 8 h before the second male wasadticed to her. Females that
copulated with the second males within 10 min aftarred were used for sperm
counting in spermathecae in the following threatireents: (1) females were dissected
to count the sperm < 1 min after the second cojmatommenced (treatment
‘8h+1min’), (2) females were dissected 3 h aftergbcond copulation commenced (the
second copulation had completed at this time, li.&. after the end of the second
copulation; the duration of the second copulat®ra. 2 h, see results of this study)
(treatment ‘8h+3h’), and (3) females were dissedt@d after the second copulation
commenced (treatment ‘8h+13h’). Once-copulated fesnahat were individually

maintained for 8 and 11 h after copulation weredwsecontrols. Fifteen females were
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used for each treatment and control.

5.4.2.3 Band Sperm Use Patterns
| used thiotepa to treat males for sperm use pa#istimation (Section 5.3).

To test whether intermating duration had any impad®, | allowed females to
copulate first with thiotepa-treated males and théth untreated ones. Fifty-six
females were used for this experiment. The firgputation was allowed at the
beginning of the scotophase, and immediately aftgrulation the first males were
removed and the second males introduced. The darh@tween the two copulations
was recorded. Twice-copulated females were indallgumaintained for their lifespan.
Eggs were collected daily and incubated in Peshels (8.5 x 1.5 cm). The number of
eggs laid (fecundity) and the number of hatchedseggre recorded daily, which
allowed me to estimate sperm use patterns overlyreice-copulated females.

Thiotepa treatment did not significantly influenabeé male copulation ability,
sperm transfer, motility and fertilization, and spefrom males treated by thiotepa
competed equally with sperm from untreated malegettlize female eggs irE.
kuehniella(Section 5.3). Section 5.3 also showed that ncs dggched (0.0%) in
females mated to two thiotepa treated males (matgck in one scotophase as
conducted in the present study), whereas almostgals hatched (96%) in females
mated to two untreated males in this species. Ttrerein the present study, | use the
egg-hatching rate of a female as hg(Hg. 5.11).

5.4.2.4 Statistics

Data on the number of apyrene and eupyrene spetheispermatheca were
analyzed using an ANOVA followed by Tukey's studesd range test. Because the
variance of response changes with the mean, teetedf intermating duration o, P
was analyzed using a generalized linear model gathma distribution and log link
function (McCullagh & Nelder 1989). Hatch rate beem 50% of eggs laid earlier and
50% of eggs laid later during the ovipositon periaéhs compared using a
paired-sample t-test (Zar 1999).
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5.4.3 Results
5.4.3.1 Effect of Second Copulation on Sperm Staye in Spermathecae

The numbers of sperm in the spermathecae werdisagrtly different between
treatmentsDF = 4, 49;F = 4.56;P = 0.003 for apyrene aridF = 4, 49;F = 15.43,;P <
0.0001 for eupyrene sperm) (Fig. 5.9). The numlbepgrene and eupyrene sperm in
spermathecae in treatment ‘8h+3h’ (3 h after conuaement of, or 1 h after the
completion of the second copulation) was signifisatower than that in treatment
‘8h+1m’ (1 min after the commencement of the seamyplilation) and in controls ‘8h’
and ‘11h’ @ < 0.05). These results indicate that the first @sakperm in the
spermatheca in treatment ‘8h+3h’ were not flushgichy the second male’s ejaculate,
because at that time the sperm from the second maal@ot reached the spermatheca
(Fig. 3.16). Furthermore, 11h after the completdthe second copulation (treatment
‘8h+13h") both types of sperm in the spermathecmificantly increased with the
number of eupyrene being significantly greater ttret in all treatments and controls
(P < 0.05). On the basis of the sperm migration e@rpant reported above and this
experiment, | expect that all sperm in the spere@hn treatment ‘8h+3h’ were from
the first male after sperm reduction due to th@sdcopulation, and those in treatment
‘8h+13h’ were a mixture from both males. In thigsario, 75% of eupyrene sperm in
the spermatheca 11 h after the completion of tlverse copulation were from the

second male.

During dissection | found that the spermathecarested vigorously (Fig. 5.10
a-d). A contraction cycle was initiated from thedofie of the spermatheca followed by
the quick shrinking in the anterior half of the spatheca (near the ductus seminalis)
(Fig. 5.10 a-c), and then the spermatheca retutmétd original shape (Fig. 5.10 d).
Each contraction cycle took ca. 2 s or less. Iteapp that the spermatheca can eject

sperm by such movement.

5.4.3.2 Sperm Use Patterns in Females Mated TwiteOne Scotophase

Paternity tests in twice-copulated females showeat B significantly declined
with the increasing intermating duratiddi = 1, 54;° = 11.13;P = 0.0008) (Fig. 5.11).
Furthermore, there was no difference in hatchlvatereen 50% of eggs laid earlier and
50% of eggs laid later during the oviposition pdr(PF = 1, 53;t = 1.4;P = 0.17).
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5.4.4 Discussion

The spermatophore displacement hypothesis (reviawddanielsson 1998;
Simmons 2001) suggests that the sperm competititite bbetween males that copulate
with the same female should first take place inbimesa copulatrix, and the duration of
intermating intervals in females should be coreslatvith the outcome of sperm
competition. InE. kuehniella sperm migration from the spermatophore to the
spermatheca lasts > 10 h (Section 3.6). Detaileskdtion showed that the second male
pushes the first male’s spermatophore away whethugiog his own and positions the
opening of his spermatophore against the openirigeotiuctus seminalis (Fig. 3.11).
As a result, the sperm from the first male are ené®d from moving to, and those from
the second male are facilitated to migrate to therrmatheca (Figs 5.9 & 5.11).
Although the processes are different, spermatopltisplacement in the bursa
copulatrix has been reported in other species @karnan 1974; Drnevich et al. 2000;
Takami 2007). However, if such spermatophore despteent occurs after all or most
sperm from the first male have already moved taltitus seminalis, the second male
will not benefit much from this mechanism. Therefahe outcome of spermatophore
displacement in the bursa copulatrix depends on dinetion between the two
copulations. For example, ik. kuehniella,second male paternity significantly
decreases with the increase of intermating durgffeg. 5.11). In this scenario, the
intermating duration may be determined by two fext¢l) how quickly the second
males can persuade previously mated females tq aradg2) when copulated females
accept males’ mating attempts. On one hand, a devate should be able to fertilize
more eggs if he succeeds in copulating with a misedle sooner, thus displacing the
spermatophore of the previous male when fewer sgeawe moved to the ductus
seminalis. On the other hand, the once-mated festadeild benefit from genetic
diversity (see Section 4.4 for detail) if she dsldlye second mating to allow some
sperm from the first male to fertilize her eggswéwoer, the once-mated female remates
sooner if she encounters a male that is largerlibeaprevious mate (see Section 5.2 for
detail), probably for good gene benefit (see reviedimmons 2005). Therefore, the
intermating duration could be the product of mdteice and sexual conflict between

the sexes ife. kuehniella

My study indicates that 60% of females accept #wisd copulation < 24 h
after the first copulation (Section 4.4), 40% do<s® h after the first copulation
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(Section 5.3), and only 15% mate again < 4 h dRterfirst copulation (this Section).
Therefore, on most occasions wHenkuehniellafemales accept a second copulation,
most sperm from the first spermatophore have afreaolved to the ductus seminalis
and reached the spermatheca (Fig. 2.2). Consegudhd sperm displacement
mechanism in the bursa copulatrix alone can notagxghe second male paternity

precedence in this species.

Therefore, mechanisms outside the bursa copulatst be involved in
facilitating second male paternity precedence En kuehniella Here | clearly
demonstrate that after the second copulation tleensgrom the first male already
stored in the spermatheca are significantly redacedargely displaced by those from
the second male (Fig. 5.9). Furthermore, just leefmiposition occurs in the second
scotophase about 75% of eupyrene sperm in the gfieeoa are from the second male
(treatment ‘8h+13h’, Fig. 5.9). In accordance witlte sperm component in the
spermatheca at this time (Fig. 5.9),i® also about 75% (Fig. 5.11), suggesting that
offspring paternity is directly related to the telte number of sperm of the two males

in the spermatheca.

Sperm displacement within spermathecae is thoughetcommon (Eberhard
1996) but how this occurs is still poorly understo&everal hypotheses have been
proposed to explain this phenomenon: (1) ejaculfabes the second males may flush
the stored sperm out of the spermatheca (Silbergliel. 1984), (2) stored sperm may
be digested in the spermatheca (Barnett et al.)1@®5stored sperm may move into the
spermathecal accessory gland and be digested(tHes&en et al. 2001; Watanabe &
Hachisuka 2005), and (4) stored sperm may be pajssejected from the spermatheca
by the female (Villavaso 1975; Hellriegel & Bernasc2000; Snook & Hosken 2004).
My study does not support the flushing hypothesisabise the sperm loss has already
occurred before the sperm from the second malehrdee spermatheca (Fig. 5.9).
Similar to Watanabe & Hachisuka’s (2005) study loa $wallowtail butterflyPapilio
xuthus we found no evidence for sperm digestion in spdnecal accessory glands
and/or spermathecae because only a very small murhlsperm move into the glands
over time (Fig. 3.17), and in all my dissectionkave not found any half-digested
sperm (such as morphologically changed or damageahs e.g. Eady 1994). So far,
muscular manipulations by the female are the omsified mechanism by which

female insects influence sperm storage (Villavadbl Hellriegel & Bernasconi 2000).
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Lum et al. (1981) also suggest that stored spermentut of the spermatheca by
controlled spermathecal contractions in a pyraliothmIn the present study, | have
observed vigorous spermathecal contractiorts. ikuehniellawhich appear to be able

to eject sperm (Fig. 5-10 a-d).

Sperm displacement within spermathecae may be daduggost-copulatory
female choice (Pizzari & Birkhead 2000), male capaly manipulation
(Cordoba-Aguilar 1999), or both (Snook & Hosken £200In Drosophilg sperm
dumping is believed to be under female control lfartet al. 1998), although males
may have some effect (Civetta 1999; Civetta & CRORO). In the present study, stored
sperm in spermathecae decline more slowly in fesnledgt under a 24:0 h light:dark
cycle which inhibits oviposition as compared togbainder 14:10 h which promotes
egg laying (Fig. 3.16). This result suggests thatkuehniellafemales have some

control over sperm release, probably by spermativecdractions (Lum et al. 1981).

However, how and to what extent males affect stspstm displacement in or
dumping from spermathecae is still poorly underdtddales may induce females to
eject stored sperm through sensory exploitatiomduwopulation. For example, during
copulation male damselflyCalopteryx haemorrhoidalis asturicatimulates the
cuticular plates in the female genital tract theditomechanoreceptive sensilla, resulting
in ejection of stored sperm from the spermathe@ad@ba-Aguilar 1999). During the
two hour long copulation, malgé. kuehniellamight also mechanically stimulate the
female reproductive tract and increase spermathematractions for stored sperm

ejection.

Male accessory gland proteins (AGPs) may stimuwgtg production, reduce
female receptivity and promote male success imsgempetition (see review in Jin &
Gong 2001; Yapici et al. 2008; Fricke et al. 2008js also possible that AGPs could
trigger ejection of stored sperm by increasing s@a¢hecal contractions. Like other
closely related moth species (e.g. McNamara &(4l8),E. kuehniellanales transfer
seminal products before depositing the spermat@pimothe bursa copulatrix (Section
3.6). However, whether these products from thersgtooale are associated with stored

sperm ejection is unknown.

Finally, my experiments on sperm use patterns andd&ermination
demonstrate that the sperm from two males areyfr@eted in the spermatheca and
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randomly used for fertilization. Therefore, lastlengperm precedence is not the result

of sperm stratification in this species.

Based on the established facts, | suggest thatrakt sperm precedence is
facilitated by sperm displacement operating at Ispérm ejaculation and storage sites
in E. kuehniellafemales. The outcome of sperm displacement befodeafter sperm

storage appears to be the result of male x femgdeaictions.
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CHAPTER 6
GENERAL DISCUSSION AND CONCLUSION

6.1 Introduction

In this thesis, | report the reproductive biologydasexual selection dE.

kuehniella providing an insight into the life story of thépecies.

In this chapter, | summarise and discuss my marfirigs and their relevance to
the behavioural and evolutional biology Bf kuehniellaand to the development of

management measures for this insect.

6.2 General Reproductive Biology

The overall performance &. kuehnielladecreased with the increase of larval
density. A rearing density of 100 larvae per 50qdf per jar is highly recommended to

produceE. kuehniellaof satisfactory quantity and quality.

This study shows thd. kuehniellas a protogynous species (females emerge
earlier than males), which may have evolved to cedinbreeding because early
emerged females are less likely to mate with theathers (Rhainds et al. 1999).
Emergence and reproductive activitiestofkuehniellaare highly rhythmic. Calling
and courtship peaks are always followed by the mgapeak, suggesting that female
calling and male courtship are essential for swfoésmatings in this species.
Therefore, using sex pheromone for mating disrmptiomass trapping i&. kuehniella
appears to be a control tactic worth investigatifigs study suggests that the end of
photophase (emergence peak) and the start of $asegoviposition peak) are optimal
times to collect fresh moths and eggs, respectiielyresearch or natural enemy

rearing.

In Lepidoptera and many other insect species, spaagked in a spermatophore
are ejaculated to the bursa copulatrix from whiclyt migrate to the spermatheca
before they can fertilize ova (Friedlander et &0%). After mating, it takes 4 h for
sperm to first reach the spermatheca and anothdobi7 most of sperm to get into the

spermatheca i&. kuehniellaThis may be attributed to the long ductus sernsnalthis
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species. A long ductus seminalis may have evolaegaramote sperm competition by
favoring the ‘vigorous’ sperm that could reach gpmermatheca and fertilize eggs
(Keller & Reeve 1995). As a consequence, femaléBisfspecies generally do not lay
fertile eggs until the next scotophase after mating

This study clearly indicates that presence of drélé eupyrene sperm in the
spermatheca (e.g. Thibout 1979), rather than mecddastimulation by males during
mating (e.g. Sugawara 1981) or male accessory dgamars (e.g. Yi & Gillott 1999), is
the main factor for eliciting oviposition i. kuehniellaHowever, my study confirms
that male accessory gland factors enhance femglenaguration irk. kuehniellaand

this process is independent of the presence ofrsper

Both sexes can mate in the first scotophase foigwemergence. The best
reproductive performance can be achieved when &etles were 1-d-old at mating
comparing to older insects; delaying mating forréduces female fecundity by 60%. It
is thus suggested that it is necessary to delaglshmating for more than 7 d after

emergence to achieve a good control.

Both sexes mate multiply with males mating up ton#es and females up to 4
times. Female remating increases her chance ohgnatith a wild (fertile) male and
thus decreases the effectiveness of the stergetmschnique (Kraaijeveld et al. 2005).
However, the negative effects of remating on SI'y maameliorated by increasing the
overflooding rate (the ratio of sterile males tdddemales), or releasing sterile males

after mass trapping using female sex pheromonestove wild males.

6.3 Multiple Mating and Sexual Selection

Consistent with many other species (Dewsbury 198@¢rm production is
nontrivial inE. kuehniellanales. Females may also incur cost from copulatioch as
energy costs and disease transfer (Arnqvist & Niis2000). Therefore, both sexes
have evolved various strategies to choose matescanttol sperm investment or
fertilization for maximum reproductive success otrex cost of matings (reviewed in
Simmons 2001; Snook & Hosken 2004).

My study shows thaE. kuehniellamales prefer to mate with young, large and
virgin females to gain direct benefit in terms obna offspring (Halliday 1983;

Andersson 1994) as these females have higher negtroe potential. However, these
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high quality (larger and younger) females also eepnt a greater risk of sperm
competition because they are more likely to rentlaé® lower quality ones. Sperm
competition theory (Parker 1982, 1990) predict$ thales experiencing higher levels
of sperm competition risk are selected to increegeulate size to win sperm
competition. On the contrary, males should producealler ejaculate and conserve
sperm for future matings to achieve maximum lifetimeproductive success when
facing low risk of sperm competition (Galvani & Jitone 1998). As a consequeriee,
kuehniellamales strategically ejaculate more sperm to fesnalgen mating with high
quality females or under male-biased sex ratio tmating with low quality ones or

under female-biased sex ratio.

My study indicates thdE. kuehniellasfemales prefer large and mid-aged males
for mating regardless of male mating history. Hogre¥emales that mate with larger
and mid-aged males do not gain higher fecunditienility. In this species, a female
choosing a large mate will have large offspring #mgs she will gain indirect genetic
benefit because her large sons and daughters pdsgéer reproductive fitness (e.g.
Fisher 1958). Females’ preference for mid-aged smfalemating may be because those
males are more sensitive to female pheromone thanger or older ones (Calvert &
Corbet 1973), rather than because females choesefthr higher fecundity or “good
gene” (Brooks & Kemp 2001). Females’ non-discriation between virgin and
non-virgin males for mating may be because malengadtistory generally does not

affect female reproductive output in this species.

A male’s reproductive success primarily dependshennumber of females he
can inseminate (Simmons 2005). Females have atdeesito allow different males to
fertilise their eggs from which they gain additibnatrients (reviewed in Arngvist &
Nilsson 2000) and/or genetic benefits (reviewe@annell & Tregenza 2007). Multiple
mating inE. kuehnielldfemales does not significantly increase theirlfgrtfecundity
and longevity. However, females discriminate aggimsevious mates, and adjust their
oviposition patterns depending on whether they ent new or previous mates after
the first copulation and encourage multiple matetettilize their eggs. These results
suggest thaE. kuehniellafemales may mate multiply for genetic benefitemnts of
offspring diversity (Cornell & Tregenza 2007). Qffsng diversity theory suggests that
polyandry benefits females by reducing sib comjeti{e.g. Robinson 1992), disease
transfer (e.g. Tooby 1982), and inbreeding costrif€lb & Tregenza 2007)E.
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General Discussion and Conclusion

kuehniellais a stored-product pest with limited dispersalitgb(Rees 2003); each

female produces over 300 eggs, which are laid llpeathin a brief period (> 80% eggs
are laid in the first two scotophases), suggedtiag) sib competition and copulations
may be very common in this species. Thereforepdafig genetic diversity should be

extremely important foE. kuehniella

Furthermore, E. kuehniella females are more likely to remate when
encountering males are larger than their previoasesa Therefore, in addition to
offspring diversity, polyandry may also beneftis kuehniellafemales in terms of
“good gene” from selecting better males in thelvsaguent matings (Keller & Reeve
1995).

Similar to many other species (reviewed in Xu & \¢y@010a), the last male to
mate achieves a higher fertilization rateE. kuehniella This phenomenon has been
explained as the result of males’ and/or femalgfieénce on sperm use for maximum
reproductive success (reviewed in Xu & Wang 2010k last male sperm precedence
in E. kuehniellamay be due to sperm displacement at both speroulejaon and
storage sites, where the second male physicallyplaties the first male’s
spermatophore with his own in the bursa copulang triggers the female to dump
resident sperm in the spermatheca. Similar to ospecies (Drnevich et al. 2000;
Takami 2007), the effect of spermatophore displasgmn sperm precedence depends
on the duration between the two copulations wherdeRRreases with the increase of
intermating duration. However, on most occasion84%) whert. kuehnielldemales
accept a second copulation, most sperm from tls¢ $jpermatophore have already
moved to the ductus seminalis and reached the spleeca. Consequently, the sperm
displacement mechanism in the bursa copulatrixeat@m not explain the second male
precedence in this species. Just before oviposaamurs in the second scotophase
about 75% of eupyrene sperm in the spermathecsicé-mated females are from the
second male. In accordance with the sperm compaoméiné spermatheca at this time,
P, is also about 75%, suggesting that offspring paters directly related to the
relative number of sperm of the two males in thersyatheca and sperm displacement
within spermathecae should be the primary machefosiast male precedence i
kuehniella

The mechanisms behind the sperm displacement irmsgpleecae are still

poorly known. Although not observed directly, soagthors (e.g. Villavaso 1975;
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Hellriegel & Bernasconi 2000) suggest that thedesi sperm may be physically
displaced from storage by females. | have obsevigmlous constricting movements
of spermathecae i&. kueheniellawhich appear to be able to eject sperm. Sperm
displacement within spermathecae may be triggeyaubbt-copulatory female choice,
male copulatory manipulation, or both (Snook & HaskR004). IrDrosophilg sperm
dumping is believed to be under female control lfartet al. 1998) although males
have some effect (Civetta & Clark 2000). My stutipws thatE. kuehniellafemales
have some control over sperm release, probablyesnsathecal contractions (Lum et
al. 1981). However, how and to what extent maléscastored sperm displacement in
or dumping from spermathecae is still poorly untterd. E. kuehniellamales might
mechanically stimulate the female reproductivett{aay. Cordoba-Aguilar 1999) or
transfer male accessory gland factors to stimdp&gmathecal contractions and thus
trigger ejection of stored sperm from spermathe¥dbkether male accessory gland
factors from the second male are associated withedtsperm ejection remains

unknown and warrants further investigation.

6.4 Resource Allocation between Ova and Soma

Resource allocation between survival and reprododt a central question in
evolutionary ecology of senescence but the phygicéh mechanisms by which this
trade-off is controlled remain poorly understoodafshman & Zera 2006). One
supposed mechanism in female insects is nutriegtliag through oosorption (Kotaki
2003; Wang & Horng 2004). My study shows virgin tdas live significantly longer
than mated females but no obvious oosorption waadan all females. However,
female longevity significantly negatively correldt@ith egg production in this species.
According to the disposable soma model (Kirkwoodd&stad 2000), ageing occurs
because resources allocated to reproduction anaiaiale for investment in somatic
repair, making individuals or populations that istveore in reproduction likely incur
faster ageing and shorter lifespan. Therefore, |dingevity reduction in mateé.
kuehniellafemales is probably because females allocate mes@urces to ova than
soma after mating for higher fecundity under thegli derived from male accessory
factors. Unmated or mating-delayed females magatomore resources to soma than

ova to wait for mating.
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6.5 Thiotepa-based Sterile Technique and Sperm Ugattern Measurement

Chemosterilants have often been used to steriliasects and such
chemosterilization technique has long been sugdéstbe used in sperm competition
studies (Snow et al. 1970; Beil et al. 1976; Whakle 1985). However, little is known
about whether chemosterilants can be reliable mark@ the sperm use pattern
measurement. In my study, dipping heads of malésiot1% thiotepa solution results
in complete sterilization, i.e. their sperm stttilize eggs but those eggs do not hatch.
The sterilization treatment does not significaattiect male copulation ability, female
fecundity, and sperm transfer, motility and feztiiion. Reverse copulation treatments
clearly show that sperm from thiotepa-treated antteated males have the same
competitive ability for fertilization. Thereforehibtepa is an effective and reliable

marker for sperm competition studiesEnkuehniellaand probably other species.

6.6 Conclusion

In this thesis | have reported and discussed mynnieidings of the
reproductive behaviour in the Mediterranean flowtmE. kuehniella The work has
provided a much firmer basis of knowledge of timseict than existed hitherto, and a
more rounded perspective of the reproductive bipioghe species. Such knowledge
is vital, as noted in the thesis, to appraisingspeets for further investigation of the
reproductive biology and sexual selection, pest agament, and use of this

increasingly important insect.
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