Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A functional analysis of *RYR1* mutations causing malignant hyperthermia

A thesis presented to Massey University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry

Keisaku Sato

2009

ACKNOWLEDGEMENTS

I would especially like to thank my supervisors, Associate Professor Kathryn Stowell and Associate Professor John Tweedie for their help, advice and patience in my study.

I came to New Zealand in 2000, not expecting to complete a PhD, but it was always an option that I had considered. The nine years I have spent at Massey University have not always been easy and I found the last few years, trying to complete my PhD very difficult. It has been a stressful time in very many ways and I do not think I would have completed the PhD if it had not been for the support of my supervisors and my lab mates.

I would particularly like to thank Natisha who has always been my friend as well as someone to discuss my work with. Special thanks also go to Robyn for technical support and as a travelling companion in Spain after attending a conference in Lund. Hilbert and his wife Liat made travelling in Europe an interesting experience, and William, Lili and her husband Cameron have also been my friends. It was fun to work in the lab next to Miranda and I will always remember the good times we had as a group.

I would especially like to thank my friends Dr Aiko Tanaka and Dr Daigo Takemoto working in Japan. They understand me and are always there for me over the internet or at the other end of an email.

I am grateful for the scholarship provided by Mid Central Health, without which my PhD study would not have been possible.

Finally I would like to thank my mother living in Japan. I have been away from home for a long time and it has not been easy either for me or for her as I am her only son. I am looking forward to going back to Japan and renewing those ties that are most important to me.

ABSTRACT

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder in humans induced by volatile anaesthetics and depolarising muscle relaxants. An MH reaction shows abnormal calcium homeostasis in skeletal muscle leading to a hypermetabolic state and increased muscle contracture. A mutation within the skeletal muscle calcium release channel ryanodine receptor gene (*RYR1*) is associated with MH and is thought to cause functional defects in the RYR1 channel leading to abnormal calcium release to the sarcoplasm and consequent MH reactions. Mutations within *RYR1* are also associated with a rare congenital myopathy, central core disease (CCD). CCD is characterised by muscle weakness and is thought to be caused by insufficient calcium release from the RYR1 channel during excitation-contraction (EC) coupling.

To investigate functional effects of *RYR1* mutations, the entire coding region of human *RYR1* was assembled and cloned into an expression vector. Mutant clones containing *RYR1* mutations linked to MH or CCD were also constructed. Wild-type (WT) and mutant *RYR1* clones were used for transient transfection of HEK-293 cells. Western blotting was performed after harvesting and expressed WT and mutant RYR1 proteins were successfully detected. Immunofluorescence showed co-localisation of RYR1 proteins and the endoplasmic reticulum in HEK-293 cells. [³H]ryanodine binding assays showed that RYR1 mutants linked to MH were more sensitive to the agonist 4-chloro-*m*-cresol (4-*CmC*) and less sensitive to the antagonist Mg²⁺ compared with WT. Two C-terminal RYR1 mutants T4826I and H4833Y were very significantly hypersensitivity of mutants linked to MH may result in a leaky channel. This hypersensitivity of mutants linked to MH may result in abnormal calcium release through the RYR1 channel induced by triggering agents leading to MH reactions. RYR1 mutants linked to CCD showed no response to 4-*CmC* showing their hyposensitive characteristics to agonists.

This study showed that the human RYR1 proteins could be expressed in HEK-293 cells. Moreover, using the recombinant human RYR1 clone, a single mutation within *RYR1* resulted in a functional defect in expressed RYR1 proteins and functions of mutant RYR1 proteins varied from hypersensitive to hyposensitive depending on the mutation and whether it was linked to MH or CCD.

ABBREVIATIONS

Α	absorbance
APS	ammonium peroxodisulfate
ATP	adenosine triphosphate
bp	base pair
BSA	bovine serum albumin
CCD	central core disease
cDNA	complementary DNA
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CHCT	caffeine-halothane contracture test
4-C <i>m</i> C	4-chloro- <i>m</i> -cresol
cpm	counts per minute
C-terminal	carboxy terminal
DAPI	4',6-diamino-2-phenylindole dihydrochloride
DMEM	Dulbecco's modified eagle's medium
DNA	deoxyribonucleic acid
DEPC	diethylpyrocarbonate
DHPR	dihydropyridine receptor
DNase	deoxyribonuclease
DMSO	dimethyl sulphoxide
dNTPs	deoxynucleoside triphosphates
DTT	dithiothreitol
EC	excitation-contraction
EC ₅₀	half maximal effective concentration
ECCE	excitation-coupled calcium entry
EDTA	ethylenediaminetetraacetic acid

EGTA	ethyleneglycol-bis(2-amino-ethylether)-N,N,N',N'-tetraacetic
	acid
ER	endoplasmic reticulum
FITC	fluorescein isothiocyanate
IC ₅₀	half maximal inhibitory concentration
IgG	immunoglobulin G
IVCT	in vitro contracture test
kb	kilobase
kDa	kilo Dalton
MEGAWHOP	megaprimer PCR using whole plasmids
MH	malignant hyperthermia
MHE	malignant hyperthermia equivocal
MHN	malignant hyperthermia negative
MHS	malignant hyperthermia susceptible
MmD	multi-minicore disease
mRNA	messenger RNA
N-terminal	amino terminal
PAGE	polyacrylamide gel electrophoresis
PIPES	piperazine-1,4-bis(2-ethanesulfonic acid)
POPOP	1,4-bis(5-phenyl-2-oxazolyl)benzene
PPO	2,5-diphenyloxazole
pBS	pBlueScript
PBS	phosphate buffered saline
рс	pcDNA
PCR	polymerase chain reaction
PDI	protein disulfide isomerase

RNase	ribonuclease
RT	reverse transcriptase
RT-PCR	reverse transcription-polymerase chain reaction
RYR1	ryanodine receptor 1
SDS	sodium dodecyl sulphate
SEM	standard error of the mean
SERCA	sarco/endoplasmic reticulum Ca ²⁺ -ATPase
SLB	super LB
SOCE	store-operated calcium entry
SR	sarcoplasmic reticulum
TAE	Tris-acetate-EDTA buffer
TEMED	N,N,N',N'-tetramethylethylenediamine
TBS	tris buffered saline
TBST	tris buffered saline Tween 20
TE	Tris-EDTA buffer
Tris	tris(hydroxymethyl)aminomethane
TRITC	tetramethylrhodamine isothiocyanate
TRPC	transient receptor potential channel
T-tubule	transverse tubule
UV	ultraviolet light
WT	wild-type

LIST OF FIGURES

Figure 1-1	Excitation-contraction coupling	4
Figure 1-2	Hotspots for MH mutations in RYR1	7
Figure 1-3	A proposed role of region 1 and 2 in Ca^{2+} release	9
Figure 1-4	A role of the α_{1S} subunit of the DHPR	11
Figure 1-5	Hypersensitive RYR1	15
Figure 1-6	Leaky RYR1	17
Figure 1-7	Hyposensitive RYR1	18
Figure 1-8	Reduced RYR1 expression	20
Figure 1-9	Schematic description of mechanisms of MH and CCD	21
Figure 3-1	PCR strategy for RYR1 cDNA	44
Figure 3-2	General strategy used to connect PCR fragments	45
Figure 3-3	Enzyme map of <i>RYR1</i>	46
Figure 3-4	Construction of pBSXC+	47
Figure 3-5	Construction of pBSHO+ and pBSOX+	49
Figure 3-6	Construction of pBSHK+	51
Figure 3-7	Construction of pBSKCII+	53
Figure 3-8	Construction of pBSKO+	55
Figure 3-9	Construction of pBSH+	57
Figure 3-10	Construction of pBSXK+ and pBSKX+	59
Figure 3-11	Direct plan for construction of RYR1	60
Figure 3-12	Cloning site of pcDNA3.1 (+)	61
Figure 3-13	Cloning of pcNK+	62
Figure 3-14	Cloning of pcRYR1	63
Figure 3-15	Confirmation of RYR1 cDNA cloning	65
Figure 3-16	The MEGAWHOP technique	67
Figure 3-17	PCR example for mutagenesis	68
		v

Figure 3-18	Restriction enzyme digestion for mutated plasmids	69
Figure 3-19	Example of direct sequencing for RYR1 mutations	70
Figure 3-20	Western blotting for RYR1	71
Figure 3-21	Immunofluorescence strategy	73
Figure 3-22	Immunofluorescence for transfected HEK-293 cells	74
Figure 3-23	[³ H]ryanodine binding after 4-CmC activation	76
Figure 3-24	4-CmC activation for CCD mutants	78
Figure 3-25	[³ H]ryanodine binding after Mg ²⁺ inhibition	79
Figure 3-26	[³ H]ryanodine binding ability for the RYR1 proteins	81
Figure 3-27	Scatchard analysis of [³ H]ryanodine binding	82

LIST OF TABLES

		Page
Table 1-1	Common RYR1 mutations associated with MH and/or CCD	8
Table 2-1	Components for SDS-PAGE gel	39
Table 3-1	Subclones for pBSXC+	48
Table 3-2	Subclones for pBSHO+ and pBSOX+	50
Table 3-3	Subclones for pBSHK+	52
Table 3-4	Subclones for pBSKCII+	54
Table 3-5	Subclones for pBSKO+	56
Table 3-6	Subclones for pcRYR1	64
Table 3-7	[³ H]ryanodine binding without 4-CmC	77
Table 3-8	Data of [³ H]ryanodine binding assay in this study	83

TABLE OF CONTENTS

Page

Abstract	i
Abbreviations	ii
List of figures	ν
List of tables	vi

CHAPTER ONE : INTRODUCTION

1.1	Malignant hyperthermia	1
1.2	Excitation-contraction coupling	2
1.3	Animal models	5
1.4	<i>RYR1</i> mutations in human	6
1.5	CACNA1S mutations	10
1.6	Other candidate loci to MH	11
1.7	Central core disease	13
1.8	Hypersensitive RYR1	14
1.9	Leaky RYR1	16

1.10	Hyposensitive RYR1	17
1.11	Reduced expression of the RYR1	19
1.12	Controversy	20
1.13	Methodology of functional studies	23
1.14	Project outline	25
1.15	Project aims	27

CHAPTER TWO : MATERIALS AND METHODS

2.1	Materials	28
2.2	RNA handling	30
2.2.1	RNA extraction from muscle	30
2.2.2	RNA extraction from blood	31
2.2.3	First-strand cDNA synthesis	31
2.3	DNA handling	32
2.3.1	PCR	32
2.3.2	Site-directed mutagenesis	32
2.3.3	DNA electrophoresis	33
2.3.4	DNA purification	33
2.3.5	Direct sequencing	33

2.4	Cloning	34
2.4.1	Restriction endonuclease digestion	34
2.4.2	Ligation	34
2.4.3	Transformation of E. coli	35
2.4.4	Inoculation	35
2.4.5	Manual plasmid preparation	36
2.4.6	Mini or Midiprep	36
2.5	Cell culture	37
2.5.1	Starting frozen HEK-293 cells	37
2.5.2	Passage of HEK-293 cells	37
2.5.3	Freezing HEK-293 cells	37
2.5.4	Transfection of HEK-293 cells	38
2.5.5	Harvesting transfected HEK-293 cells	38
2.6	Protein handling	38
2.6.1	Bradford assay	38
2.6.2	Western blotting	39
2.6.3	Immunofluorescence	40
2.7	[³ H]ryanodine binding assay	41
2.7.1	Assay for 4-CmC activation	41
2.7.2	Assay for Mg^{2+} inhibition	42
2.7.3	Assay for [³ H]ryanodine	42
2.7.4	Data analysis	42

CHAPTER THREE : RESULTS

3.1	Cloning of human <i>RYR1</i> cDNA	43
3.1.1	PCR for RYR1 cDNA fragments	43
3.1.2	Cloning individual fragments	43
3.1.3	Cloning of the N-terminal region of RYR1 cDNA	44
3.1.4	Cloning of the central region of RYR1 cDNA	48
3.1.5	Cloning of the C-terminal region of RYR1 cDNA	56
3.1.6	Cloning of the complete RYR1 cDNA	57
3.1.7	Confirmation of RYR1 cDNA	64
3.2	Site-directed mutagenesis	66
3.3	Western blotting for expressed RYR1	70
3.4	Immunofluorescence in transfected HEK-293	72
3.5	[³ H]ryanodine binding assay	75
3.5.1	Activation by 4-chloro-m-cresol	75
3.5.2	Inhibition by Mg^{2+}	79
3.5.3	Equilibrium binding parameters	80

CHAPTER FOUR : DISCUSSION

4.1	Cloning strategy	84
4.2	Mutation selection	85

х

4.3	Experimental design	87	
4.4	Expression and quantification	91	
4.5	Hypersensitive RYR1	93	
4.6	Leaky RYR1	94	
4.7	Hyposensitive RYR1	96	
4.8	Co-existence of MH and CCD	97	
4.9	Conclusions	99	
4.10	Future directions	99	
CHAPTER FIVE : REFERENCES		103	
APPENDICES			
Appendix 1	Primers used for PCR and mutagenesis of <i>RYR1</i> cDNA	A1	
Appendix 2	<i>RYR1</i> cDNA sequence in pcDNA3.1	A3	
Appendix 3	Polymorphisms identified within pcRYR1	A27	