Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Model of
Distributed Rights Allocation in
Online Social Interaction

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Information Technology
at
Massey University,
Albany, Auckland, New Zealand

Adnan Ahmad

2013

This research was sponsored by the National Science Foundation (NSF), U.S. under contract
no. 0968445. However, the views and conclusions contained in this dissertation are those of
the author and should not be interpreted as representing the official policies, either expressed
or implied, of NSF, or of the U.S. government or any other entity.

i

Abstract

In computing, the management of information resources is done through access control, a
process by which authorized users are granted permission over resources. The last decade has
witnessed the emergence of socio-technical systems (STS) like Facebook, Twitter, and
YouTube, where millions of users interact with each other and share billions of resources on
daily basis. Access control for a STS is different from traditional systems in having to satisfy

the social requirements of the community as well as the technical requirements of the system.

The problems traditional access control models face today are firstly the complexity of
mapping millions of users to billions of resources, and secondly the social requirements of
users who want to own the resources they post. Current access control models for STS
manage access through rule semantics, roles, trust, history management or contents. However,
there is no general logical scheme that allows users to allocate rights, covering not just transfer

and delegation but also joint and several ownership.

The trend from centralized to distributed access control demands a general model to manage
rights allocation for users having heterogeneous privacy policies. The model's validity derives
from socio-technical design, where social requirements like ownership, freedom and privacy
give technical access axioms. The aim is to satisfy not only technical but also social

requirements, over which the success of today’s software depends.

This research first proposes the social access control model for supporting local
administration, dynamic asymmetric relationships and object privacy classification. This core
model is then used as a basis of various rights allocation models. The research further
illustrates a rights allocation framework based on various properties of STS and presents a
reduction approach to design the model. This framework reduces all the possible rights
allocations into four basic models: Replace, Revoke, Share and Merge, which can manage evety
tweet, every post, and every single communication on any STS. The proposed rights allocation
models are demonstrated on various current and hypothetical use-cases of current STS to
show that it can be used in any system that has social interactions, and where users want to
control their resources. This research extends the online social interactions in STS to new

horizons which are currently restricted due to the limitations posed by current technology.

il

Acknowledgement

My success(es) are not through my individual effort alone, but rather through the combined efforts of many.
~Maori proverb

First and foremost, I would like to praise and thank Allah Almighty for bestowing upon me
the wisdom, courage, patience and blessings to complete such a huge research endeavor.
Thanks Allah, You have given me the power to believe in my passion and pursue my dreams. I

could never have done this without the faith I have in you.

The most important person I would like to thank is Dr. Brian, my supervisor, for his support
and care during this long and tiring journey. As a “mathematician is a machine for converting
coffee into theorems”, Dr. Brian is a mind for converting complex, detailed theorems into
amazingly simple ‘swo-/iners’. Whenever I struck in some problem, he always had a cheerful
smile with a mind boggling direction, and a friendly suggestion to enjoy the beautiful weather
and God's other blessings bestowed upon us. I have learned a lot from him in terms of
research and leading a joyful life — to disconnect from the ‘connected’ world. He really taught
me to appreciate the beauty of life along with my goals. Dr. Brian, I will surely miss our long
thoughtful discussions. I wish I could stay with you a little longer as I still have to learn a lot

from you.

I take immense pleasure in thanking Dr. Lech, my co-supervisor, for his friendly attitude that
he has maintained towards me throughout these years. I found a thoughtful supervisor, a
caring elder and a cherish friend in his form. His concern for his every single student, cycle
stealing from his busy schedule to adjust one of us was quite impressive. Dr. Lech, you are
more than a supervisor to me and for that I am really thankful to you. I wish, I can carry on

our relation in the future, and it may get stronger with time.

I would like to thank Dr. Yasir and Dr. Sohaib for their support throughout these years. Their
room was the ‘chamber of secrets’ for our lively discussions, absurd ideas and what not! I
especially thank Dr. Sohaib for reading out this dissertation and helping to improve its

presentation.

iv

Also, I wish to express my sincere gratitude to Dr. Tony Norris, Dr. David Parsons, Dr. Andre
Barczak, Dr. Andrew Colarik, Dr. Daniel Playne and Mrs. Siew Whitworth for their valuable
suggestions. I am also obliged to many anonymous conference and journal reviewers who

helped to improve the quality of my papers and thus this dissertation quite substantially.

Finally, I am forever indebted to my parents. I can barely find words to express their endless
love, unconditional support and encouragement when it was most needed. Mama and Papa, I
cannot thank you enough for being there. If it was not for you I cannot accomplish my greatly

desired dream!

Table of Contents

CHAPTER 1: INTRODUCTION.....ccoirutiiiuiiiieeniiininessseessseessseesssessssssssssesssssessssssssns 1
1.1 PROBLEM STATEMENT ..ottt ettt ea e ena e ae e 3
T T COMIPLEXTTY..cceoieiiee e 4

T o1 2 PEIDAC. ..ottt 4
11,3 OPOALIONS. ... 5
174 L0CAL OWHETSHID........c.voiiiiiiiiiiit e 5
1.2 RESEARCH OBJECTIVES AND SCOPE.....uttuttiiiiiiiiiiiiiiiasas e s e s esesaseseaaaeaaaeaeasaaaaeaaeeaaaaaaaaans 6
1.3 GUIDE TO THIS DISSERTATION.utututututnrnnnennnnnnnnnnnnnnasasasasssssessssssssssssssssesssssssssesssssasees 7
CHAPTER 2: STATE OF THE ARTcoovviiiiiiiiiniicnietnnecnsnteseaesssssesssssesssssesssssens 10
2.1 THE ORIGIN OF ACCESS CONTROL.....cuviiiiiiiiiiiiiiiieiiec et 11
2.2 POLICIES, MECHANISMS AND MODELScitttitiiitieeeeitieeeeeeeeeeeerieeeeeeieeeesrtieeessrneeeseninnns 11
2.2.1 Access control POLIcies................ccoooviiiiiiiiiiiiiiiiiiiiiiiii i 12
2.2.2 Access control mechanismtcccueeeeueeriiiiiniiiiiiiiiiiiie et 12
2.2.3 Aess Control model............c...cccoueeuviiimiiiiiniiiiiiiiiiiiec et 12
2.3 THE EVOLUTION OF ACCESS CONTROL......0vvvvvvvrrrrrrrrrsrsrssssssnsessnnsenenenanenennnnnnnnnnnnnnnns 13
2.3.1 Bell-LaPadula m0del.....................ccccccovuiiimiiiimiiiiniiiiiniiiiiniec et 13
2.3.2 Biba's integrity model..................cc.coouiiiiiiiiiiiiiiiii 13
2.3.3 DOD TOACLS ...ttt 14

2. 3.4 Clark WilS0m mm0del...............coocouuiiimiiiiiiiiniiiii it 14
2.3.5 Chinese Wall POligyccccovuiiiiiiiiiiiiiiiiiiiiieiie e 15
2.3.6 Role based access Control.............ccc..cooveuuiiimiiiiiiiimiiiiiiiniiiic et 15
2.3.7 Rule based access control.................cccccccocuieviiiiiiniiiiiiiiiiiiiiiiiceiiiceeiec et 16
2.3.8 Distributed enpiromments............cc.covvueiemiieiiniuiiiiiiii ettt 16
2.3.9 Custoniized access control models.................c...cccoooviiiiiiiiiiiiiiiiiiiiiiiiii 16
2.4 SOCIO-TECHNICAL SYSTEMS....cciutiiiiiiiiiiiieiticett ettt 17
2.4.1 S00i0-1echnmical desighcc..ocviviiiiiiiiiiiiiiiiii 20
2.5 TYPES OF STS ettt s 21
251 OREAO-ONC. .ot ettt e 22

vi

2.5.2006-10-IVLaNY ...ttt 22

2.5.3 Many-10-Many.............ccccccouiiviiiiiiiiiiiiiiiiiiiii i 22
2.6 CURRENT ACCESS CONTROL MODELS FOR SOCIAL NETWORIKS......ccevvtiiiiiieeeeeeeeeeiiiinnnnnn 23
2.6.1 Trust based access CONIOL...........cc.covcuuiimiiiiniiiiiniiiiiiiit ettt 24
2.6.2 Rutle hased @ccess CONITOL.cc..cccoveuuiiiimiiiiiiiiiiit et 26
2.6.3 Role based access control..............c...coccueoviiiiiniiiiiniiiiniiiiiiiiiiiniic et 28
2.6.4 History based access contiol..................ccccccccoovuiiiiiiiiiiiiiiiniiiiiiiiciics e 30
2.6.5 Content based Gess CONITOL...............ccccoviuiiiiiiiiiiiiiiiniiieniit et 31
2.7 CURRENT RIGHTS ATLOCATION PRACTICES....ccevtvertrerererereeeerreresssssssrssssssssssssssrrsssns. 32
2.7.1 Knowledge management SCIIges.couueereuieriieiiniieiiniiieaniee et esiiee e 33
2.7.2 80CIaL NEBYVOTRS ..ottt et 34
2.7.3 Video SHATING SOIDICES ...ttt 34
2.8 RIGHTS ALLOCATION FOR TRADITIONAL MODELS......covtiiiitiiiiaiiiiieiie e 35
2.8.1 DUOGation.............ccoevuiiiiiiiiiiiiiiiii i 36
2.8.1.1 Machine to machine dele@ationcueiecreeriereieriierieesiee s ssssessssssssesssesees 37
2.8.1.2 User t0 MAachine dEle@atiOn........wwumrrereumneemiricemmeriscrsecsiseessnesssesenessenesssssessssssessssessmesesssessssesses 38
2.8.1.3 USEE 10 USEE AEle@AtON.crrrrsesesessesesesesesssssseseseseses sttt sttt 38
2.8.2 RigHIs IRANSIEr. ...ttt 42
2.8.3 RiGHIS SHATING. ...ttt 43
2.8:4 RIGHIS TIOIGE <. 44
2.9 THESIS STATEMENTettttttttttttteetttteteteeeetueeereteeererereeerarerereae—.aeaeaeaeaenennannennnnnnnnnssnnnnnnnnns 47
2.10 RESEARCH QUESTION. .. .cetttttuuuuieeeerretttunenaeessresssennaeeeesesssssnnsaesesssssnnnaaseeseessmssnaaaeeees 48
N 121 G (0] 1) 1€ P 49
2.11.1 Constructive research methodology.................cc..cocouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 49
2.11.2 Exctreme formal modeling (XEM)........c..cccccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiicciccie e 52
212 SUMMARYciiuttitte ittt ettt ettt 53
CHAPTER 3: CONCEPTUAL FRAMEWORKccooctintirinienineeninneninneessnecsssecensees 56
3.1 CHARACTERISTICS OF ONLINE SOCIAL INTERACTIONS. . .uutiieiiiiiiiiiieeeeeeeeeiiieeeeeeeeeessennnns 56
317 Creator OWnershgb.............cccueiviuiiiiiiiiiiiiiiiiiic i 58
BuT.2 FIHOAON ..o 59

vil

BT 3 PPIDACY.......ccccuiiiiiiiiiiiiiiiiiiic e 59

314 ROLLIONSHIDS ... 59
3.1.5 Objects” 10! ViSihilit)................ccooccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 60
3.1.6 Object classificationccuiiviuiiiiiiiiiiiiiiiiiiiiiiie i 62
3.2 ACCESS CONTROL SPECIFICATIONS.ttteeeeseesiiirtreeeeaseesesaaannnsrereeeeeesassannnssseeeeaeessssnnnnnnes 62
BL20T AGHOTS .o 63
3.2.2 ODJECS.ccoiiiiiii e 64
3221 TEEIMIS ettt s 64
3.2.2.2 SPACES covvvvvvummriinnnssesssssssssssssssssssssssssssssis s ssssssss s 04
3.2.3 OPCHALIONS..c....c.eeoiieiiiiiii e 65
3204 REGDIS .o 65
3241 MEta-RIGHES. .cccrvvvvveeesiiccsvvssssssise s ssssssssssssisss s ssssssssssssss s ssssssssssss s sssssssssssssssseees 67
3.2.5 Authorization anthorit)..............ccccoueuieiiiiiiiiiiiiiiiiiiiiie it 67
3.2.5.1 Central AdMINISTTATON cecvvuerveeremeremrereriertereeesesserseesessesssesssesssesssesssesssesssesssesssssssessnesssesssesssenssessns 68
3.2.5.2 Ownership admMIMSTATON c.vuuuuucrvveeerirrvermssasresssssiessssssssesssssssssisss 08
3.2.6 Operations 0m 1ightsccceiiviuiiiiiiiiiiiiiiiiiii i 69
3.2.6.1 RIGNLS All0CAON 1ottt 70
3.2.0.1.1 REPIACE cooueriieiniici s s s 71
B.200.1.2 SRALC ..ottt et 71
3.2.0.1.3 MEIZCuuuturrrrvvvvimmmssiissssssssssssssssssissssssssssssssssssss s ssssssssssssass s sssssssss s ssssssssssas s 71
3.2.0.1.4 REVOKC..c.rvvviveiiiiissncs s ssssssssssssiss s ssssssssssssss s sssssssssss s ssssssssssss s 71

3.3 CHARACTERISTICS OF RIGHTS ALLOCATION ...ctitiiiieeitiees 72
B 3T CONTENMLeiiiii e 72
3. 3.2 TOIAILY..c..oi 72
3.3.3 CQimality..........ccccuveeviuiiiiiuiiiiiiiiiiiii ettt 73
3.3:4 MOROFORTCITY. ...t 73
3 3.5 DEPIh.ciiiiiiiiiiiii s 74
3.3.6 ROVOCALION ...t 74
3.4 REDUCTION APPROACH ...ceiitiiiiieieieeeeeee ettt ettt ettt ettt ee e eeeeeeeeeeees 75
3.4.1 Mutual excclusive allocation....................ccccoeuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 75
B80T CALBINAHY oottt sttt sttt sttt 75
I s v 1 76
3.4.1.3 COMSEML ettt st 77

B4 T4 DEPthiuciici e 77

3.4.2 Mutnal inclusive @llocation........................ccceeeuiiuiiiiiiiiniiiiniiiiiiiieiie e 77
3421 CatAINALLY covvvverrecrrereeeneeeeeenscereeiessseesssssseesesssssessssssssssessssssssssssssssssseesssssssssssasesssssssssasssssssnneces 78
Bi4.2.2 TOTANLY ettt 78
Bi4.2.3 COMSEML uurvrrtrirereireiseesseietsesseseseiessesise b ssessse s e ssses b e st bbbt se beess et s bsee bt baeeb st bsebienbae b saenines 78
R 0 1o 78

3.5 CHAPTER SUMMARY ..itiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaeaataaeaeaeeeeeseeetteeeeeeeeeeeeteeseerererrreereesrnne 79
CHAPTER 4: SOCIALACCESS CONTROLMODEL.........ccoocvnirniinninnnennecnsuecsneees 80
4.1 OWNERSHIP FRAMEW ORI .. ttttttuuneeeereetsstennaeeeeressssnnnaaaeessssssssnnaeeeessssmsnnaeeesssssmmmnnaeees 80

.17 R0l GSSIGUIMENT ...ttt 81
A1 10T OWNCT ittt ettt st bbb e bt et s s et s es st neen 81
A11.2 PALEIE ctttitieicieeretretret ettt ettt b bt e et bbbt 82
013, OFFSPIING oottt sttt 82
4.1.1.4. General PUDLC ..o 83

4.1.2 Space initial COMIGUTATION.cccuoiiviiiiiiiiiiiiiiiiiiiii i 84

4.2YOUTUBE CREATE PROCESS DEMONSTRATIONccvvvvvrirerererrrerererereersssrrssssssrsssrssenenne. 84
4.3 SOCIAL ACCESS CONTROL MODELcuvtitiiiiiiiiitieiieis ettt 85

F 37 DGIRTIIONS..c...cciiiiiiiii it 86

3.2 COMPONENIS ...t 86
4.3.2.1 NAMIESPACE cevvvevevvermmnereesssssenessssssssssssssssesssssssssasessessssssessssssssssessssssssssesssssssssassessssssssssassssssssnsssoees 86
4.3.2.2 TLOCAL TO1CSu e eeurierieiieiretistineiseie ettt sesease bbbt sttt st st sttt 87
4.3.2.3 ODJECE CASSES vureverrerrerrerciereiieieneerie i sss s s s s s s s e s sarss e sessssssesssessseses 88
4.3.2.4 AeStation CEItfICALES ..uummmriiriiierii it ssst st ssss s ssssssseees 88

F.3.3 SYSINI QTCDIIECTUTE ...t 89

G 34 DEINTHONM. ..ot 90

4.3.5 The Gccess CONIFOL PROCESS........c.ccocuiiviiiiiiiiiiiiiiiiiii et 91

F.3.6 Theoretical ASsessment..........c...ccccuiiviiiiniiiiiiiiiiiiiii ittt 92

4.4 IMPROVEMENTS OVER PREVIOUS MODELS.......ccvtiuiiiiiiiiiiiiiiieiieite et 93
4.5 SUMMARY....cuviiitiitiiitt ettt ettt ettt 94

X

CHAPTER 5: USE-RIGHTS MODEL.......iiiiiiniriiiiiiineiiniinecinnneeessneeesssssseeses 96

5.1 REPLACE (1q; MODEL....cetiiiiiiiiieeeeeeee ettt e e et e e e e e eeeeeeeeeeeeeeseeseeeeesereeeresnranes 97
5.1.1 Characteristics of R@DIace (u......ccuvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiicciicc 99
51101 COMSEAL uttrrereriirreritiereerietesenenatisessesesaease s sesase s sssase s ssssase s s st ssess s s ssssasessessenssssasssesses 100
5.1 T2 TOTALLY v ssaseesese s ssssse s sssse s ettt sre st sessenes 100
5.1.1.3 CAtdINALLY wecvvvrrreerncrisnreiseceiseesieeesssecssascssessesssseessssesssssesssssesssssesssssesssssesssssessssssnessssesssnssssnssssneces 101
5.1.1.4 MONOTONICILY oouvuieeierciniiiieisiiisssisss st ss b ss st st st 102
51015 DEPthucceiciiii s 103
5.1.2 Replace (1, PTOCESS ...ttt 104
D13 DINTIION. c.c.coiieiiiiee e 104
514 RIGHIS ANALYSTS ..ot 106
515 DeSIGN PIIRCIDLES. ...t 108
5106 ROVOCATION ...ttt e 108
5.1.6.1 SElf TEVOCAON cevvrvereerreeeieieeiseisctetise st ssessseesees bbb bbb e e et baes 109
5.1.6.2 TIME DASEA £EVOCATION..ctvvuverierrermneeseimeeretiseesessseeeseesseseseesse st sessesssesssessse s st ssse e sssesasessncs 109
5.1.6.3 RUle DASEA FEVOCAION. weuvurivuiercimeistimeiesireeeessseseeessesesesssessse et sessseessesssesssesssesssesssss e sssesasessns 110
5.1.6.4 The Replace tse FEVOKE PLOCESS...uiumiimiiiiiiiiiiisis i ssssssssssssssssssesssssssaes 110
5.1.7 Summary of RPIace (jy,.........ccocoouivoiiiiiiiiiiiiiiiiiiiiiiiiiiiiicci e 1170
5.2 SHARE (1, MODELcceiiiiiiieeeeeeeeeeee ettt e et e e e e e eeeeeeeeeeeeeeesesaeeaearaees 111
5.2.1 Characteristics of SHATe (.....c.ccovuiiouiiiiiiiiiiiiiiiiiiiiiiii i 113
5211 COMNSCML rerrrirrerirerrrrrierserseeeaessesseseasesssessessessesssessessesssessessesssesstasessessesssessessssessessessssssessessssessessecs 114
5.2 1.2 TOTANLY corveeeeicieeiece et seaes 114
5.2.1.3 CaLdINANLY w.oovereerieeeecieeieeiiecie e esesae st sese s sase s sssss s et esesssesians 115
5.2.1.4 MONOTONICILY oouvueieriirirmieiieieiisiseieis s ssssss s sssss b ss s sa s ss s bt sa s 116
5.2.1.5 DIEPthi.cuucieeiiiiiiiciiicc ittt 117
5.2.2 8Dare (, PIOCESS.....cuuciviiiiiiiiiiiiiiii i 117
5. 2.3 DfINIToN. c...cvveiiiiiiiiiiiiii e 118
5. 2.4 RIGHIS ANAIYSIS ... 119
5.2.5 DCSIGN PIIRCIPLES......oooieiiiiiieiii e 121
52206 ROVOCATION ...ttt 121
5.2.0.1 SCUf TEVOCAION cevuvvrererernrrnrirerserieireieesesseessesseeseessesseessessessessesssessessesssessessssssesssasesssnsssssnessessnsenessessncs 122
5.2.6.2 TIME DASEA £EVOCATON...cvuuverivrnermeeriimeereeiseeeessseseeessesesesssesasssesssessesssessessse s sssessse e sssesasessnes 122
5.2.60.3 Rule DASEA fEVOCATON. cuuvuerererierieririsissisiisisisisisstssessssssessessssessssssssssssssssssssssssssssesssssssssssssessessess 122

5.2.6.4 The Share tse FEVOKE PIOCESS ...cuuuivuiiiiiiiinciinissiississese s sssssssssessssssssessssens 122

5.2.7 Summary of Share (i,ccccoovuiiiiiiiiiiiiiiiiiiiiii 123
5.3 MERGE {1y, MODELutviuteteeieeeeeeeeeeee et et ettt e e e s eanns 123
5.3.1 Characteristics of MErge ,.....cooovuivviiiiiiiiiiiiiiiiiiiiiiiiiiic i 125
5.3.1.1 COMSMLvvttrrrrierncrrisreteeisseesissesssisesssissse st s e 126

5.3 1.2 TOMANLY ettt 126
5.3.1.3 CaINANLY worvvrvrirrieireeeiiseceeieeesissee i ssissesesi s ssss s bbb 127
5.3.1.4 MONOIONICILY coucevivriniesiiiiciaieseisiississs s ss bbb es 128
5.3.1.5 DEPthiucccuiiiiiciiiecicti s 129
5.3.2 Merge (j,, PIOCESS...c..uvviiiiiiiiiiiiiiiii it 129

5. 3.3 DUINTHON. ... s 130

5. 3.4 RIGHIS ANALYSIS ...t 131
5.3.5 DCSIGN PIINCIPLES. ...ttt 133
5.3.6 ROVOCATION ...t 134
5.3.0.1 Sl £EVOCAHON crvverrirrrirrceiiseeesieeesiissesssissesssisssessst st ssbs s ssss s ssin s 134
5.3.6.2 'TIME DASCA TEVOCAHON cevrrvrvvrrirrrimmreiiseseisseeesissesesisssssesissessssseesesisssssssssessssssess s s essssessssnn 135
5.3.6.3 The MEEge tee FEVOKE PEOCESS..orrrrrresssssososososeseseseseesssssosososesesesese 135
5.3.7 Summary of Merge (,.........ccocoviviiiiiiiiiiiiiiiiiiiiiiiiiiiiic i 135
5.4 CHAPTER SUMMARYooiiiiiiiiiiiiiiiiiis ittt 136
CHAPTER 6: META-RIGHTS MODEL.......iiinniiniiininecniiecnnnecsneeseneeesnee 137
0.1 REPLACE ;0 MODELitiiiiiiiiiie ettt ettt st 138
6.1.1 Characteristics of RePlace yy, «......coouveiviuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiicciccc e 139
0.1.1.1 COMSENL.euereerereeriereieieeiaetsetseisese et eb b ses st b st e bt e e ettt sene 140

0.1 1.2 TOTANLY ottt sise e e ssseas s sa et st st senes 141
0.1.1.3 CaIAINANLY covrvererrireeerireeieeeeiecterieeie et sese s ease e es et s sesse s sessaeees 142
0.1.1.4 MONOIOMUCILY tovvvrevrverrncrressecesissesssssncssasssessssssesssssssessesssesssssssesssssssesssssssessssssessssssssnessesssnessssssnessuses 142
0.1.1.5 DIEP Nttt 143

6. 1.2 RePlace yp,, PIOCESS...couviiiiiiiiiiiiiiiiciiic et 144

O 1.3 DINITON. ... 145

O. 1.4 RIGDIS ANALYSIS ... 145

6. 1.5 Design PrincIPIes.........c...ocouviviiiiiiiiiiiiiiiiiiic i 148

G 1.0 ROVOCAIION . ..coooovvviiiiiieeiiieeeeiee ettt e e e et e e e e 149

6.1.7 Summary of RQIACe yjyy,......oocovuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiccicc 149
0.2 SHARE yj10 MODE L.ttt ettt ettt ettt ettt ettt st et e e st e esteeeiteeenteesnnaeeenanee 150
6.2.1 Characteristics of SHAre pyp....ccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiicici e 151
0.2.1.1 COMSCML vtrvrirrrireireerrierseesesiseseasesseetssesessesssessessessessessessessessesssesssssessessesssessssssessessssnssnessesssssessessans 152
0.2.1.2 TOTAILY coverrerrereeeieceeeeietiesie et sisesase s e sase st s st s sensaces 153
0.2.1.3 CatdINALEY covoveevveerciriercirieeciieecrsisessssesesssiesesssassessssssessssesesssssse s sesas s esese s sens 154
0.2.1.4 MONOTOMUCILY wvvvverecvreermcrrrsesiresisnecssssssesssssesssssssesssssssessssssesssssssessssssnessssssnsssssnessssssssnessssssnssssesnesess 154
0.2.1.5 DIEPthuuuuriiricciiicceiiee i sssisesssis et sesis e 155

0. 2.2 SDATC yjyy PTOCESS .ottt 156
0. 2.3 DfINITION. ...t 156
6. 2.4 RIGDIS ANALYSIS ... 158
6. 2.5 DSign Principles.............c..ccouiiviiiiiiiiiiiiiiiiiiii i 160
G. 2.6 ROVOCATION ...ttt e 160
0.2.0.1 SCUE TEVOCATON cevrvererererrereireiseeseisetseeesseetseisessse b ssessseas et sse st e sse st s e ssses s sbsse bt sise s ssesbnes 161
6.2.6.2 The Shate et TEVOKE PIOCESS ...vvuuivvuiniirinsisissisiesissssssss s sssss st s sssssssssssssssssssssssssssssses 161
6.2.7 Summary of SBare yp,......coceevviiiiiiiiiiiiiiiiiiiiiiii i 161
6.3 MERGE 1.1y MODEL. ...ttt ettt ee e et e et eee s 162
6.3.1 Characteristics 0f MEIge yi«.ovveeoveeeueeioiiiiiiiiiiiiiiiiie it 163
0.3.1.1 COMSEIL urrrritrnrriercerisreeesiseeesisssesssisssesssissesssis et ssesse s bbb ebe et 164
0.3.1.2 TOTANLY covvereereeecieeiece et ss e s neaes 165
0.3.1.3 CALAINANLY w.covverrerieeeieieeieieeiiecie et sase s sase s ssse e sssss e e sesse e sseessessaces 165
0.3.1.4 MONOTOMICILY oovveveeivrirmieiieiseieiaeiess st ssse e sssas s ss s sas s sss s sss s st sssssses 166
0.3.1.5 DIEP vttt sssiasse i sssi e s 167
0.3.2 MEEGE 311y PTOCESS ..o 167
0. 3.3 DfINITON. ...t 168
0. 3.4 Rights analysiscc..coouiiiiiiiiiiiiiiiiiiiiiiiii it 169
6.3.5 DeSign PrinCIPLEs............cc.ooviiiiiiiiiiiiiiiiiiiii i 171
0. 3.6 ROVOCATION. ...ttt 172
0.3.6.1 Sl TEVOCAHON covvrevrviercerimrceeiseeeiisseeesisse st esissesessssessese bbb sbi s 172
0.3.6.2 The Merge nMeta FEVOKE PIOCESS....vvuirvvuinrisinsisississsissss st sssssesssssssssssssssss s sssssssssssssssssssssssses 172
6.3.7 Summary of VMIere peeeeeeceeeiiiiiiiiiiiiiiiiiiiiiiiiii i 173
0.4 CHAPTER SUMMARYuiiiiiiiiticiie ettt 173

xii

CHAPTER 7: ANALYSIS....uuiiiiitiiiniittininnteteeineesnisnecesssseessssssssesssssssesssssssssssssssseses 174

7.1 MODEL PERMUTATIONS AND THEIR PRECEDENCEuuuuietereieiiiiiieeeeeeeeiiinneeeeeseeeennenns 174
711 Use-Rights permutationsc..ccoueeviiiiiiiiiiiiiiiiiiiiiiiiiciiiiiie it 175
7111 ODSEIVALONS .vvvvvvvesirvisirississssssissssssse s ssssssssss s ssssss s sssss s s sss s ssssessssssssssssssssssssssssssoses 176
7.1.2 Meta-Rights PermmtQuions.............cc.covvuiiiiiiiiiiiiiiiiiiiiiieiie et 178
7121 ODSEIVAHOMNS cevvverrerverererereneaenerseesesisensserssesssesssessesssessesssessaesssessaesssessssssesssessssssssssssessnessnessnessnessenss 178

7.2 SIMILARITIES BETWEEN USE-RIGHTS AND META-RIGHTS MODELSccviiiiiiaianiiiennnn, 179
7.2.1 Replace model....................ccoocooiviiiiiiiiiiiiiiiiiiiiiiiiii 180
7.2.1.1 SIMIlALIEY ANALYSIS couvvrrereerceeeieeeirereeieeie ettt raenssesasesss s sasesssesssesssesssesssessssesssesssessnesssessnens 180
7.2.1.2 Precedence analysis ... sssse s ssessines 184
7.2.1.3 O1der ANALYSIS «.coucvvereriericiieiierieiiseiessise s assses sttt 185

7. 2.2 SDATE IOt 185
7.2.2.1 SIMIlALIEY ANALYSIS corcvvrrerrerceeereerirereeierie ettt riesssesassesesesassssssssssessssssessssesssesssessnessnessnens 185
7.2.2.2 Precedence ANAlYSIS c..c.cwceuceeericeieeineieeneciseeiesisesisesssessseesesssssesssessseessesssesssesssssmsnesssessnessessnees 189
7.2.2.3 O1der ANALYSIS «..oueverreericiieiie st 190
7.2 3 MEEGe IOl 190
7.2.3.1 SIMIlALIEY ANALYSIS weuververerereeererierireieeieriesierisensentse et ssssasesss s sssesasessssssesssessssesssessessnesssessnens 190
7.2.3.2 Precedence analysis ... ssessines 194
7.2.3.3 O1der ANALYSIS «..ouceverrvericiieiierieeseesessise s ess st ss st 195

7.3 COMPLETENESSoutiitiittattettastet sttt sttt ettt bbb n s 195
T SUMMARY ..cettttieeeeee ettt e e e e e e eettt e e e eeeeeeetta e aaeaaeesstsaanaaeaessssstesnnaaeassssssnnnaaaeeesessssnen 197
CHAPTER 8: DEMONSTRATION.....ccoceivviinriiniinnintecnieenrinneiseesnesssssssessssesssssssees 198
8.1 BASTC USE -CASES. ... uittttttteeee e ettt e e e e e ettt e e e e e e ettt et eeeeeeanantbeteeeaeeeaeeaannanes 199
81T CrOATION USC-CASE......ceeieici e 199
8.1.1.1 FACEDOOK ..ottt sas s s 199

S R B OO 199
8.1.1.3 YOUTUDE oottt sas s s s 199
8.1.1.4 WHKIPEAIA .cvvvvevviiiniiicii it sss s bs s 200
8.1.1.5 Knowledge management SYSEEMS ... sssssssssssssssssssssssssssns 200
8.1.1.6 DISCUSSION....uerieeririieici ettt s st 200
8.1.2 Systens administrator 1gHIS.........c..cocuevviiiiiiiiiiiiiiiiiii it 200

xiii

B.1.2.1T FACED OOK ettt bttt bttt sttt sttt ettt aet st aeretessnsasatnas 200

B.1.2.2 OLKUL . couteieeteeeiiicii i siass s ssss s ssss s st 201
8.1.2.3 YOUTUD ..ottt ssss s sss s s s 201
8.1.2.4 WIKIPEAIA..vuu.rvvreriiriiiririisiccii it ssss s sass s s s ssss s sss s s s 201
8.1.2.5 Knowledge Management SYSICMI ererreseerirersenersseeresssesesssnessnsessessssesssessssessssessesesssnessmenens 201
B.1.2.0 DISCUSSION c.eereeriereercienrereisreecie et sese s ssse st sase s s s sese e sase s ssesasssans 202
8.1.3 General public 1ights.............cccooviiiiiiiiiiiiiiiiiiiiiiiiiic 202
8.1.3.1 FACEDOOK ettt ittt st s sttt 202
G T O O 202
8.1.3.3 YOUTUD ..o 202
8.1.3.4 WHKIPEAIA...vuviveeriieniiiciiiii it sas s 203
8.1.3.5 Knowledge management SYStEM... ... umrimrieseisisississssssisssssssssssssssssssessssessssesssssssssens 203
B.1.3.0 DISCUSSION ...covierieriisiiniiiciicii st sttt 203

8. 1.4 CONLENIS CrOATION ... 203
B.1.4.T FACEDOOK ceueree et 203
8142 OTKUL.couiieeeieciiicii it ssss st st 204
B.1.4.3 YOUTUD ..ottt ssss s ssss s sss s s 204
8.1.4.4 WIKIPEAIA...uurrvvririiririiniiiicii st sasi st sass s s s 204
8.1.4.5 Knowledge Management SYSICMI mermerrrscrisermesersseeresessesesssneessnssssessssesssessssessssessesesssncssmenens 205
B.1.4.0 DISCUSSION c..ereereereeneenteseiaeeeeie s sse s esse st seesans 205
8.2 ADVANCE USE-CASES......viitiiiitiitiitiitt ettt 205
8. 2.1 FaehOO ...t 205
8.2.1.1 Priends Rights Management ... 206
8.2.1.2 TagEING A PROLO. ...t e sss e 206
8.2.1.3 ShafiNg 8 VIAEO....csiuuuiveriieiiieiiiie it sssse s ssss st asssssssssssssssasessssessssens 206
8.2.1.4 PerSONA SNALINGcvorreerriecriieiie et sesesssse st essssessasessass s s st esssessassessssessessssessasns 207
8.2.1.5 PEISONA MELGE.....ouvureerieuniienienciecieeie st st ssse s sass s sass s as s s sss s sass s s nssenaes 207
8.2.1.6 Persona 1ights dElE@AtIONuuuvumevemreerrrerereerieeseeesserisessisssesessesesssssssessssessssesssessssesssessssesssees 208
8.2.1.7 PerSONA trANSTET coouvereereereereeeeieeeieie ettt ssse st as st ss e ssse s nssenens 208

8. 2.2 Y0UTUDC ...t 208
8.2.2.1 VIAEO HANSTCL ..ceureericeircrireirieciseree e sissessssessesssesssesssessesessesessassssss st s sssssesssssesssssssessssessenens 208

8. 2.3 WIRIPOAIA. ... 209
8.2.4 Knowledge management SYStemt..........cc..coucueieviuiiimiiiimiiiieiiieeeiitesiie et 209
8.2.4.1 TTACK dClE@AUOMN ceuverevericrtrcirceierireeiaeeisriseeseeessessse st sesssse st s e sesesssssssessansssessessssessssessanens 209

xiv

8.2.4.2 Paper joInt aUthOISNIP ... sssssssssssess 209

8.2.4.3 Paper authorship Sharing ... sssssssins 210

8.2.4.4 REVIEW L TIZNES c.ucvvririeriimiiiiiciesie et ssss s sses s esss s sessssess s sssesessssessssssssssssssens 210

8.2.4.5 COPYLIZNE tIANSLCE ...cvvrrieiieiiieeceieteiessie s sssss st sese s ssnssessssesssse s seas 210

8.3 STUMMARY ...cetttueeeee ettt ce e e e e e e ee e e e e e e e et ee e e e e e e e ettt eeeeeeeeee e et eeeeeeeeeaaaeeaeeeeeenraaas 211
CHAPTER 9: DISCUSSIONotttueeeertnreeeerenseeeerssseeeesssseseessssesesssssssssssssssssssssssesssssesessssss 212
9.1 REVISITING RESEARCH QUESTIONS ..ttt 213
9.2 RESEARCH CONTRIBUTIONSuuitittnneetitineeetttneeetiineeesttnneessstneessrineesssineeeserneesserineesees 216
9.3 IMPLICATIONS OF THE PRESENTED RESEARCHcuueiiiiiieiiiiieeeiiiieeeeiieeeeeeieeeeevineeens 218
9. 3.1 Ownership Meory.........cc.covvuiiiiiiiiiiiiiiiiiiii i 218
9.3.2 ACCESS COMETOL.cevveeeeeeeeeeee e e e e e e eanas 219
9.3.3 Online SOCIal INIVACTIONS «.oovvoeeeeeieseeeseeee e e eee et e et et e e e et e et reeaeeeaneeans 219

D e IV T A TTONS ¢ ettt e e et ettt ettt e e e e e e e e aans 220
9.5 FUTURE RESEARCH OPPORTUNITIES.uuueiiiiineeiiiieertriinererieeeserieesssrineessernessnnneesenns 220
957 DIPIEIIEnIAtIoN...........ccoeeeviiiiiiiiiiiiiiiiiic e 220
9.5. 2 THANSPATENCY ...t 221
9.5.3 Repattation model..................c..ccooeviiiiiiiiiiiiiiiiiiiiiiiiicc 222

9.0 FINAL REMARICS. ..ttt ttvnteie ettt ettt et e et e et eetaee st eean e et e e st seanetaneeanneeaneernneeees 222
GLOSSARY couuitttiirttiettierenieetsserssierssseessseessssessssssssssesssessssssssssessssessssssssssssssssssssessssssssssssssss 224
REFERENCES ... tttiettirtttiertteeeeteerseesssssssssssssssesssns 228
APPENDIX A oeiettiittietetieetteeesseersseeesssessssessssesssssssssssssssessssessssessssssssssessssssssssssssessssssssss 246
2N 3 S PP 246
AN 53 01 A TR TR 248

xvi

List of Figures

Figure 1.1: Guide to this dISSEITAtIONiviviiiiiiiiiiiiiiiiiiiec s 9
Figure 2.1: Socio-technical system levels and requirements (Source: Whitworth, 2009, page 5)cccocvvviviciciiinane. 19
Figure 2.2: Summary of the literature and contribution of the aurrent research ..., 47
Figure 2.3: The general methodology used in this research (adopted from Kasanen et al., 1993) ..o, 51

Figure 2.4: Detailed illustration of the innovation phase using inaremental Extreme Formal Modeling (XFM) 55
Figure 3.1: A simple s0cial NEtWOTK .viviiiiiiiiciiic e 57
Figure 3.2: Aceess control matrix magnitude for different models based on eq. [3.1] and eq. [3.4] for Faccbook
SEALISEICS 1ovvvveetcte sttt ettt e h R h AR R e et 62

Figure 3.3: Reduction approach illustrated as a tree structure outlining various rights allocation models for online

SO AL INEETACLIONS 1urvivviiitititeteict ettt e bbb e bbb 76
Figure 4.1: Distributed access control model system architeCture. ..o 89
Figure 4.2: Access control matrix magnitude for different models based on [eq. 3.4] and [eq. 4. 11] ..o, 93
Figure 5.1: Replace use scenatio depicting a running NEren Ce .o 99
Figure 5.2: Sharing use-rights scenario depicting a VOD SYStEMcuiuiuiuiiiiiiiiiiiiiiirireee e 113
Figure 5.3: Merge use-rights scenario depicting collaborative SOftWareocovviviiieniniiccece e 125
Figure 6.1: Transfer scenario depicting copyright of accepted Paper.....ccciiiiiiiiiiiiiiiiiniiiccs 140
Figure 6.2: Sharing meta-rights scenario depicting Facebook wall ... 152
Figure 6.3: Meta-rights merge scenario depicting an Internet fOrum ... 164
Figure 7.1: Visual description of formation of use-rights allo cation permutation tableccccccoeiiiiiiiicincnnn. 177

xvii

Table 2.1:
Table 2.2:
Table 2.3:
Table 3.1:
Table 4.1:
Table 4.2:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:

List of Tables

Evolution of access control models based on application requirementscocevvvviiviririiciiiiccnnen. 17
Type of STS and their respective online sodal iNteractions tyPescvvrevriiiicieiiiiiiesccceeeens 23
Various operations on rights and their definitions ..o 36
Rights Allocation for use-rights and meta- fights ... 71
Right for different roles assodated with the created Object ..o 83
Abbreviations and their defInItionsooviiviiiiiiii e 86
Delegator and delegatee rights over different objects before and after delegation ... 106
Rights for different roles assodated with the object before and after delegationcccccceeiiiiinnnen. 107
Difference between proposed and traditional d elegation models.........ccoeeiiiiiiiiiiiiiiiiiiie, 111
Owner and benefidary rights over different objects before and after the Share use model.................... 119
Rights for different roles assodated with object before and after the Share use model.......ccccuveinnnnee 120
Owner and benefidary rights over different objects before and after the Merge use model................... 132
Rights for different roles assodated with object before and after the Merge use modelccvviviinnnnnn 132

Table 6.1 (a): Rights for different old roles assodated with object before and after the Replace pera model......... 146

Table 6.1 (b): Rights for different new roles assodated with object before and after the Replace yera model....... 147

Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 7.2:
Table 7.4:
Table 7.5:
Table 7.6:
Table 7.7:
Table 7.8:
Table 7.9:

Table 7.10:
Table 7.11:
Table 7.12:
Table 7.13:
Table 7.14:
Table 7.15:
Table 7.16:
Table 7.17:

Old and new owner rights over different objects before and after the Replace meta model.................... 147
Difference between proposed and traditional d elegation models.........cccoeiiiiiiiiiiiiiiiiiiie, 149
Rights for different roles assodated with the object before and after the Share mMera model.................. 158
Primary and Secondary Owner rights over different objects before and after the Share meta model..... 159

Rights for different roles assodated with object before and after the Merge Meta model.......occcucuinnnnes 170
Primary and Joint Owner rights over different objects before and after the Merge mewa model............. 170
Precedence of vatious use-rights model applications over each other ..o, 178
Precedence of vatious meta-rights model applications over each other

Output summary of Replace use and Replace Mera MOAELS.....oooviviviiiiniiiiiiiiccecc

Comparison of various characteristics of Replace modelccccovuviiiiiiiiiiiiiiiiiiicce 181
Rights of different roles assodated with the objects before and after Replace model ... 182
Owner and benefidary rights over different objects before and after Replace model ..o 182
Output Summary of the Replace model ... 184
Precedence of Replace model over other rights allo cation modelsccoovvviiiiiiiiiiiiiiii, 184
Output summary of Share use and Share MetamMOdelS....oviiiiiiiiiiiiiiiiii 186
Comparison of various characteristics of Share model......oovciiiiiiiiiiiii 186
Rights of different roles asso ciated with the objects before and after Share modelccceuvurrnnnee 187
Owner and beneficiary rights over different objects before and after Share model........ccccovviiiiinine 188
Output Summary of the Share model ..o 189
Precedence of Share model applications over other rights allo cation models.........cccccovvviiiiiiinniinine 189
Output summary of Merge Use and Merge Meta MOAElS.....viiiiiiiiiiiicccc e 191

Table 7.18: Compatison of various characteristics of Merge modelccccviiiiiiiiiiiiiiiiiiiiice 191

Table 7.19: Rights of different roles asso ciated with the objects before and after Merge model ... 192
Table 7.20: Owner and beneficiary rights over different objects before and after Merge modelcccevciiiiiinnns 193
Table 7.21: Output Summary of the Merge model.......cccoiiiiiiiiiii e 194
Table 7.22: Precedence of Merge model applications over other rights allocation modelscccccoviiiiiinnnns 195
Table 7.23: All the Possible Options for Various Characteristics of Rights Allocation Framewotkccccooveeuie. 197
Table 7.1: Possible permutations for use-rights MOAELSccuririiiiiriiiiiiiiiiici s 248
Table 7.3: Table depicting all possible cases for meta-tights MoOdelsccccccuiiiiiiiiiininccce 250

List of Publications

Whitworth, B., & Ahmad, A. (2013). The Social Design of Technical Systems: Building

technologies for communities. Aarhus, Denmark: The Interaction Design Foundation.

Ahmad, A., Whitworth, B., & Janczewski, L. (2012). A Framework of Rights Allocation in
Online Social Networks. International Conference on Advances in Information Technology.

Bangkok, Thailand.

Ahmad, A., Whitworth, B., & Janczewski, L. (2012). Dynamic Rights Reallocation in Social
Networks. International Information Security and Privacy Conference. Heraklion, Crete,

Greece.

Ahmad, A., Whitworth, B., & Janczewski, L. (2012). More Choices, More Control: Extending
Access Control by Meta-Rights Reallocation. IEEE International Conference on Trust,

Security and Privacy in Computing and Communication. Liverpool, United Kingdom.

Whitworth, B., & Ahmad, A. (2012). Socio-Technical System Design. In M. Soegaard, & R.
Dam (Eds.), Encylopedia of Human-Computer Interaction. Aarhus, Denmark: The

Interaction-Design.org Foundation.

Whitworth, B., Janczewski, L., & Ahmad, A. (2012). A Logic of Creation in Online Social
Networks. Las Vegas, Nevada, USA.

Ahmad, A., & Whitworth, B. (2012). Ethical Issues in Online Social Networks. International
Conference on Networks and Information. Bangkok, Thailand.

Ahmad, A., & Whitworth, B. (2012). A Reduction Tree for Social Networks. 8#h Annual IIMS
Conference. Auckland, New Zealand.

Ahmad, A., & Whitworth, B. (2012). Future Directions in Access Control for Online Social

Networks. International Conference on Networks and Information. Bangkok, Thailand.

XX

Ahmad, A., & Whitworth, B. (2012). Characteristics of an Access Control Model for Online
Social Networks. New Zealand Information Science Doctoral Conference. Hamilton, New

Z.ealand.

Ahmad, A., & Whitworth, B. (2011). Access Control Taxonomy for Social Networks.

International Conference of Information Assurance and Security. Malacca, Malaysia.

Ahmad, A., & Whitworth, B. (2011). Addressing Technical Complexity in Social Networks. 77
Annual IIMS Conference. Auckland, New Zealand.

Ahmad, A., & Whitworth, B. (2011). Distributed Access Control for Social Networks.

International Conference of Information Assurance and Security. Malacca, Malaysia.

Ahmad, A., & Whitworth, B. (2011). Towards an Access Control Model for Social Networks.
New Zealand Information Science Doctoral Conference. Wellington, New Zealand.

xxi

Admin
AC
AU
Ben
D/C
Dge
Dgr

GP
JBen

Rev
SH
Shr

SO

UR

Terms used in formulae

Administrator of a system
Attestation Certificate
Active Users
Beneficiary

Don’t Care condition
Delegatee

Delegator

Entity

General Public

Joint Beneficiary
Joint Owner

Local Role
Meta-Right

Merge

Namespace

Object

Object Class
Operation

Primary Owner
Right

Replace

Revoke

Subject

Stakeholder

Share

Secondary Owner
Virtual User

Use-Right

xxii

Chapter 1

Introduction

“The best way to predict the future is to invent it”

(~Alan Curtis Kay)

uthorization is a concept used since people has had the need to protect their
valuable assets, and this has been done typically by locks and keys to limit individual
access to resources (Ferraiolo, Kuhn, & Chandramouli, 2003). In information
technology, authorization is termed access control — a process to grant certain privileges over
information and resources to identified users (Sandhu & Samarati, 1994), and it is part of
security and privacy in information systems. As modern web systems are mainly about
accessing resources, every such request must pass through an access control system. This
makes it a key factor in the success of any information system used by individuals or

communities.

In order to provide access to appropriate users only, access control systems incorporate the
requirements of the application to fulfill them in the most suitable manner (Sandhu &
Samarati, 1994). As every application is different, various customized solutions have been
proposed based on the application’s domain. Some examples of incorporating application

requirements in access control are the systems for medical data networks (Morchon & Wehtle,

2010), supply chain databases (Kerschbaum, 2010), peer-to-peer file sharing (Bram, 2003), grid
environment (Thompson, Johnston, Mudumbai, Hoo, Jackson, & Essiari, 1999), webOS
(Belani, Vahdat, Anderson, & Dahlin, 1998), mobile ad-hoc networks (Kraft & Schafer, 2004),
and coalition environments (Freudenthal, Pesin, Port, Keenan, & Karamcheti, 2002). The
understanding of application requirements plays an important role in designing the access
control system just like understanding the requirements of software is important in directing its

design and development (Goguen & Linde, 1993).

The recent past has observed the rapid emergence of socio-technical systems (STS) like
Facebook, YouTube, Wikipedia, where information technology mediates a community of users
interacting as equal partners (Hippel, 2005). These systems support different types of online
social interactions among users and provide platforms where millions of users interact with
each other and share billions of resources (Oltsik, 2009; Preece & Shneiderman, 2009). These
systems are built around the social requirements of the communities and create virtual online
communities similar in structure and requirements as the physical ones (Jahnke, 2009). In this
regard, their access control systems not only deal with technical requirements of the systems
but also with the social requirements of the communities. If these requirements are not
tulfilled by the system, the community will leave and the system would collapse even having
the best software design (Mclnnerney & Roberts, 2004). The access control models for STS
differ from traditional models as they involve ownership, freedom, relationships and local
control rather than centralized security administration. For example, social networks have
introduced local visibility of objects, that is, mapping the resources only to visible users, which

significantly reduces the complexity overhead posed by traditional models'.

The increasing popularity of STS has given rise to new types of security and privacy concerns
(Simpson, 2008). Access control in these systems is critical, as a single mishandling of access
allocation can cause outrage. For example, it is well-documented that some online social
interactions have cost people their jobs when their employer discovered that they had said
inappropriate things about their company online (Simonetti, 2004). Sexual predators use social
networks to find victims (Poulsen, 20006). Individuals have been stalked due to their personal

information being placed on their online profiles (Rowse, 2006). Universities have taken

1 For Facebook 955 Million users with 67 billion resources, the traditional access control mattix has 246 trillion

2

disciplinary actions against students posting photographs (Barnes, 20006). In 2010, a teenager
was murdered in Australia due to her online activities, and the local police department claimed
to have received at least one complain every month in relation to online offenders (Breen,
2010). Currently many STS provide only the basic privacy access controls: a resource can be
either completely private or completely public, and so they are struggling to deal with the new
demands of online social interaction (Carminati, Ferrari, Heatherly, Kantarcioglu, &

Thuraisingham, 2009, 2011).

Initially, the access control models for STS provide ownership and local control. With further
evolution, other social requirements are incorporated in access control design to support
owner trust (Pujol, Sanguesa, & Delgado, 2002; X. Zhang & Q. Zhang, 2005; Ali, Villegas, &
Maheswaran, 2007), rule semantics (Elahi, Chowdhury, & Noll, 2008; Carminati, Ferrari, &
Perego, 2009), relationship based roles (J. Li, Tang, Mao, Lai, & Zhu, 2009; Tapiador, Carrera,
& Salvachua, 2011), history based decisions (Fong, Anwar, & Zhao, 2009) and content
awareness (Hart, Johnson, & Stent, 2007). These models significantly contributed to the area
of access control research for STS and are used widely in industry in order to facilitate users.
However, none of the current access control models for STS provide the formal semantics of
rights allocation — methods in which rights can be assigned to different users, which include

rights transfer, delegation, sharing and merge.

Rights allocation is important as it allows the users to collaborate, introduces the opportunities
associated with multiple-ownership, and provides a facility to manage meta-rights more
efficiently. It is useful in many situations, such as backup of role, collaboration of work and
decentralization of authority (Park & Lee, 2005; X. Zhang, Oh, & Sandhu, 2003). As a STS is
built around the social requirements of a community, there is need of an access control model

that incorporates various types of rights allocation.

1.1 Problem statement

This research was motivated by the absence of a general rights allocation model for STS.
Rights delegation and rights transfer are not supported in current STS. Also, the ‘merging’ of
rights of two users and the opportunities associated with multiple-ownership have not yet been

explored for these systems. Besides, only rights sharing has been explored for STS and

considered as one of the major reasons for their great success, for example sharing of view
rights over Wikipedia articles, YouTube videos, and Facebook photos. But the current rules of
rights sharing in STS are based on designer intuitions rather than formal models, so they vary
between systems and over time, with public outrage the only check. There is no agreed scheme

for allocating permissions to create, edit, delete or view object entities, let alone manage roles.
Moreover, traditional rights allocation models are less useful for STS for the following reasons:

1.1.1 Complexity

The number of users and objects is quite high in STS as compared to traditional systems, (for
example Facebook reports 955 million active user accounts each adding many hundreds of
photos and comments each year, with more than 100 billion friend connections®). So models
that map resources to all the users in the system become over-complex for millions of users
and billions of resources. Role based access control (RBAC) (Ferraiolo & Kuhn, 1992;
Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001; Sandhu, Coyne, Feinstein, &
Youman, 1996) is often proposed as the solution to reduce the complexity of traditional
systems by introducing roles. However, if traditional access control is about who can enter a
system, it grows linearly with number of users, but if STS access control is about who can
connect to whom, the relationship combinations — potential access permissions, increase
geometrically as a function of the number of users. This global visibility of traditional access
control models introduces the challenge of managing the access rights of so many users’
contributions, and affects access control efficiency. Also, the frequent content updates and
volatile nature of friendship makes it even more difficult to use traditional access control

systems for online social interactions (Hart et al., 2007).

1.1.2 Privacy

Connecting to others satisfies relationship needs but also raises privacy concerns (Simpson,
2008). As users contribute online contents, like family or friend photos, they naturally expect
to control them. In traditional access control, each user is allocated the same access control
policy values, so variants must be requested from a central authority (Hart et al., 2007). Roles

in traditional access control systems are system wide groups whose membership is set by a

2 Facebook statistics page, http://www.faccbook.com /press/info.php?statistics, acessed on 30th July 2012.

system administrator. The access rights over user's resource are allocated to a role the user has
no control over. In contrast, users on STS want to set their own values without reference to a
central authority, for example to share their data with everyone or to restrict it to family and
friends. Traditional access control systems do not provide the functionality needed for online
social interactions and so struggle with the demand of diverse privacy requirements of today’s
user (Carminati et al., 2011; Gollu, Saroiu, & Wolman, 2007; J. Li et al., 2009). Generic roles
tend to reveal more than the users want, as users cannot specify local requirements using

generic roles.

1.1.3 Operations

The set of operations offered by STS is much larger than the set offered by traditional systems.
To a traditional access control system, a file can only be read, written to or executed, but users
involved in online social interactions want to exercise a much richer set of operations in
parallel to that used in physical societies. This sophisticated set not only includes read, write,
like /unlike, tag, subsctibe and so on, but also other operations to manipulate different objects
with different types of collaborations among different users, such as joint ownership of a
couple common online persona, transfer of a colleague’s research paper to him, or delegation

of tracks to track chairs from conference organizers.

1.1.4 Local ownership

STS are built around the social concept of ownership’ which is not widely supported by
traditional access control models. From the set of traditional models, only Discretionary
Access Control (IDAC) can work with the social structure of STS, but it faces the problems of
global visibility of objects, central administration of groups®, and users’ interactional
complexity. Another alternate to the complexity problem is RBAC, but it has proved to be
even more expensive while supporting ownership (Sandhu & Munawer, 1998a). Besides,
traditional access control models assume single ownership of objects, whether it is a person or
an organization, but do not support multiple-ownership of objects which may restrict

collaboration opportunities in STS.

3 Either the owner of the content as in the case of YouTube, or owner of the space as in the case of Wikipedia.

4 Users give rights to groups whose membership is not in their control.

Besides, only rights delegation is explored in reasonable depth for traditional access control
models, but other types of allocations like rights transfer, rights share and rights merge are
hardly explored in much detail. Also, the delegation in literature is mainly about role to role
delegation as permissions are associated with roles. However, STS require domain based
delegation where permissions are associated with objects. Various access control models for
STS have been proposed in recent years but they lack a systematic scheme for managing rights
allocation — methods in which the owner can assign rights to other users, and so lack the
opportunities associated with multiple-ownership, rights transfer, rights delegation and rights

merge.

1.2 Research objectives and scope

The objective of this research is to design a rights allocation model for online social
interactions, which is decentralized, socially valid, and enhances group interactions. The model
will support ownership, relationships and local control, and act as a standard for the
implementation of rights allocation in any STS, in any programming language over any
platform. It may cover future options not yet coded, and take online social interactions to the
new level of online group interactions where various geographical/ethnical/religious/political
groups interact as a community to users from other groups. It may allow group ownership,
joint persona, decentralization of authority, and let users manipulate online objects as they see

real world objects.

However, this research only focuses on rights allocation; secutity is a huge domain. In order to
achieve the above mentioned goals, this research assumes some basic considerations that are
not included in the scope of this research and neither discussed in this dissertation. Some of

those considerations are as follows:

a) It is assumed that an authentication mechanism is in place and all the users are
authenticated before they can access system resources. It is also assumed that there is
some mechanism to verify the identity of the requestor and so no threat of any identity
theft exists. Further, this research does not focus on operating systems or security

basics, or mechanisms that come from a blend of well-known techniques.

b) This research does not focus on set of operations over information objects. The model
addresses how operational rights are allocated, so is independent of the specific type of
objects and operations. However, common operations like create, view, edit and delete
are used for explanation.

c) This research does not cover trust mechanism between users, reputation of user in a
community or various security leakages and attacks that can happen in online social
interactions.

d) This research does not deal with the design principles of STS as software, nor with the
load management or credential management systems/architectures of these

applications.

Hence this model does not cover the above mentioned functions, that is, authentication,
operation types, trust, reputation, software design, and load management. This modularity
means that an access control system based on this model can easily be inserted into any

current system without modifying other semantics.

1.3 Guide to this dissertation

The rest of the dissertation is organized as follows. The introduction chapter gives a brief

overview of the background knowledge, problem domain and research objectives.

Chapter 2 outlines the literature related to traditional access control models, their previous
evolution and the challenges posed by the new generation of STS, where communities of
people socially interact. Following this basic description of access control models, it further
highlights the emergence of STS and the issues related with them. The chapter then explores
five different categories of access control models for social networks and briefly reviews the
published work in each of them. It then discusses some traditional rights allocation models on
delegation, transfer, share and merge, followed by the reasons why they cannot be mapped
onto the new requirements of online social interactions. These differences highlight the

research gap and lead towards formulating the research question.

Chapter 3 describes the conceptual framework to meet the issues raised in the previous
chapter and basic theories related to the design of access control models. It also details the
social validity principles used. Further, it presents a rights allocation framework based on the

7

characteristics of rights allocation and provides a reduction approach to design the models for
online social interactions. The proposed framework extends the availability of rights and is

used as a basis for different rights allocation models in online social interactions.

After brief overview of the domain requirements, chapter 4 illustrates the social access control
(SAC) model, based on ownership domains, local administration, local roles and object classes
proposed in general terms. These core components and their interactions merged into an
access control model, to give owner control over resources and relationships. The model acts
as the core access control model for STS and as the supporting base for various rights

allocation models.

Chapter 5 and 6 specify in detail the allocation models in use-rights and meta-rights allocations
respectively. The four basic models Replace, Share, Merge and Revoke are explored for use-
rights and meta-rights to result in designing eight different rights allocation models. Each
model starts with the definition of the operation in the context of particular right and then
takes some STS scenario to emphasize the importance and need of the particular model. It
further outlines the characteristics used for the reduction approach generation in chapter 3,
and uses it to generate the model. The rights of various roles associated with the owner
domain are discussed and logical definitions of the models are given, followed by its

revocation.

Chapter 7 critically analyzes all the use-rights and meta-rights allocation models. The models’
permutations are calculated to estimate all their possible outcomes, along with some
generalized rules. These permutations give insights about the behavior of each model and help
to generalize some notions and rights equations for both types of rights. It also illustrates the
completeness of the models by combining all the characteristics provided in chapter 3, and

showing that the proposed models cover all the design options.

Chapter 8 validates the proposed models by demonstrating basic and advanced use-cases from
current STS to emphasize that the models are generic enough to provide functionality to most

types of online social interactions.

Chapter 9 concludes the dissertation on how research questions were addressed. Subsequently,

the implications of the presented research are discussed followed by some limitations and

future research directions. The guidelines to this dissertation are given in figure 1.1.

Introduction

<

h 4

State of the Art

Conceptual

Framework

@)

O

Social Access

Use-Rights

Meta-Rights

Demonstration ———

Discussion

®

Figure 1.1: Guide to this dissertation

Chapter 2

State of the Art

his chapter reviews the state of the art of rights allocation in online social
interactions. The literature for this chapter is gathered based on the three core themes
for this research, thatis, access control, rights allocation and socio-technical systems.
The research in these areas is explored based on ‘keyword search’ on various research
databases’. The work is then filtered based on the reputation of the authors, the reputation of

the conference/journal and the relevance to the cutrent research.

The chapter starts with the evolution of access control and outlines various popular access
control models present in the literature. It highlights the fact that those models were proposed
to fulfill the requirements of different applications. The chapter then introduces the emergence
of STS along with its various new properties and requirements, which demands the
development of different access control models. The chapter further explores various rights
allocation models for traditional systems followed by the reasons why they are less useful for
STS. This leads to the identification of research problems and formulization of the research

question for this research.

5 Such as IEEE, ACM digital library, Springer, Google Scholar and home pages of various well-known

researchers of the field.

10

2.1 The origin of access control

In computing, rights over resources are managed by access control system, which defines who
can do what under what circumstances (Ferraiolo et al., 2003). The need of first access control
system arose with the emergence of multiuser computer systems, when people realized the
need to prevent one user from interfering the work of others sharing the same system. So, they
developed a model that associates users with identities and assigns permissions over system
resources based on those identities (Karp, Haury, & Davis, 2010). That earliest model in 1969,
introduced the formal notions of subjects and objects, and an access control matrix to hold the

access permission of subjects over objects (Lampson, 1969).

An important requirement of information systems is to protect data and resources against
unauthorized disclosure (secrecy) and improper modifications (integtity), while at the same
time ensuring their availability to legitimate users (availability) (Ferraiolo et al., 2003). Hence,
enforcing protection requires that every access to the system and its resources should be
controlled, so that only authorized accesses can take place (Samarati & Vimercati, 2001).
Access control is arguably the most fundamental and the most pervasive security mechanism
in use today. It shows up in virtually all systems and imposes great architectural and
administrative challenges at all levels of enterprise computing. From a business perspective,
access control has the potential to promote the optimal sharing and exchange of resources, but
it also has the potential to frustrate users, impose large administrative costs, and cause the
unauthorized disclosure or corruption of valuable information (Ferraiolo et al., 2003).
Although access control may sometimes seem conceptually straightforward, it is both complex

and error-prone in practice (Abadi, 2009).

2.2 Policies, mechanisms and models

When planning an access control system, three abstractions should be considered. They are

access control policies, access control models, and access control mechanisms (Ferraiolo et al.,

2003).

11

2.2.1 Access control policies

Access control policies are high-level requirements that specify how access is managed and
who may access what information, and according to which access control must be regulated
(Samarati & Vimercati, 2001). While access control policies can be application-specific and
thus taken into consideration by the application vendor, policies are just as likely to pertain to
user actions within the context of an organizational unit or across organizational boundaries.
For instance, policies may pertain to resource usage within or across organizational units or
may be based on need-to-know, competence, authority, obligation, or conflict-of-interest

factors. Such policies may span multiple computing platforms and applications.

2.2.2 Access control mechanism

An access control mechanism defines the low level (software and hardware) functions that
implement the controls imposed by the policy and formally stated in the model. An access
control list is a well-known example of an access control mechanism. At a high level, access
control policies are enforced through a mechanism that translates a uset’s access request, often
in terms of a structure that a system provides. There are a wide variety of structures; for
example, a simple table lookup can be performed to grant or deny access. Although no well-
accepted standard yet exists for determining their policy support, some access control
mechanisms are direct implementations of formal access control policy concepts (Ferraiolo et

al., 2003).

2.2.3 Access control model

An access control model provides a formal representation of the access control policy and its
working. The formalization allows the proof of properties provided by the access control
system being designed (Samarati & Vimercati, 2001). Rather than attempting to evaluate and
analyze access control systems exclusively at the mechanism level, security models are usually
written to describe the security properties of an access control system. Access control models
bridge the wide gap in abstraction between policy and mechanism. Access control mechanisms
can be designed to adhere to the properties of the model. Users see an access control model as
an unambiguous and precise expression of requirements. Vendors and system developers see
access control models as design and implementation requirements. On one extreme, an access

control model may be rigid in its implementation of a single policy. On the other extreme, a

12

security model may allow for the expression and enforcement of a wide variety of policies and

policy classes (Ferraiolo et al., 2003).

2.3 The evolution of access control

The understanding of requirements of the application plays an important role in designing the
access control model, in the same way as understanding the requirements of software directs
the design and development of it (Goguen & Linde, 1993). In order to allow authorized access
only, access control model generally incorporates the requirements of the application (Sandhu
& Samarati, 1994). As new applications are developed on users’ requirements, new access

control models are designed to provide them security and privacy in a consistent manner.

Lampson (1969) introduced a formal model to manage the users, resources and their access.
With time, some other models were designed to solve the access control for earlier systems.
However, those earliest access control models support centralized monolithic administration,
but faced problems with distributed systems (Karp et al., 2010). The emergence of roles in
organizations (Ferraiolo & Kuhn, 1992), business domains (Brewer & Nash, 1989), and
interactions of multi-domain systems (Freudenthal et al., 2002) has shifted the application
domain towards more distributed control. Following is a brief overview of the major access

control models:

2.3.1 Bell-LaPadula model

Bell and LaPadula (1973) formulated the military rules for military security applications into a
mathematical model. As military security form a hierarchy and higher rank documents are only
accessible to higher rank officials, the model introduced the multilevel secure system. Users are
only allowed to access information which is classified as lower than their own security

clearance. This way confidential information is restricted only to the higher ranked officials.

2.3.2 Biba’s integrity model

Bell-LaPadula model was designed for the confidentiality® of the data, but does nothing to

prevent unauthorized modification of information (integrity). To overcome this drawback,

6 Unauthorized read.

13

Biba integrity model (Biba, 1977) was introduced. It was not an alternative to Bell-LaPadula
but canact as an adjunct to it. The Biba model allows a subject to read an object, if the object
has greater security level than the subject. The model further extends that a subject can only
write to an object if the security level of the subject is higher than the object. In general, an

object can only be written from the higher levels and read from the lower levels.

2.3.3 DoD models

In 1985, the United States Department of Defense (DoD) published its own standards for
military and personal applications, commonly known as MAC (mandatory access control) and
DAC (discretionary access control) (TCSEC, 1985). The working domain of MAC was also
military applications just like Bell-LaPadula model, so it has implemented the same multilevel
security and classified users into multiple security levels. The system has one administrator
who controls every system resource and manages its access for all the users in the system. This
centralized administration not only suits the military applications but also works for various
commercial applications (Jajodia & Sandhu, 1991; Qian & Lunt 1996; Sandhu & Chen, 1998;
Morchon & Wehtle, 2010).

As opposed to MAC, discretionary access control (DAC) was introduced to support
ownership, local control and other requirements of personal applications. DAC was developed
for personal applications and data, and held the owner responsible for the security of their
data. The model was based on the Locke’s idea of ownership (Locke, 1963) and successfully
worked for various applications till date (Belani et al., 1998; Bram, 2003; Thompson et al.,

1999; kerschbaum, 2010; Freudenthal et al., 2002).

2.3.4 Clark Wilson model

By involvement of information technology in business, most commercial firms recognized that
DAC and MAC were not sufficient for their needs (Ferraiolo et al., 2003; Karp et al., 2010).
The commercial users’ need was to secure data from unauthorized modifications instead of its
secrecy. Also, business processes require some mechanism to protect their clients from
untrusted employees. So, Clark and Wilson (1987) formulated a model to satisfy these needs.

There are two central concepts in their model, well-formed transaction and separation of duty

14

(SoD). The former constraints the user to modify data only in authorized way, and the latter

ensures that every critical operation must be completed by at least two users.

2.3.5 Chinese wall policy

To facilitate business organizations and understanding the requirements of third party
employers and brokers, Brewer and Nash (1989) proposed the Chinese wall security policy.
The model distributes the objects in company wise dataset, and further categorized them into
conflict of interest (COI) circles. A subject can read an object if the object belongs to the same
dataset from which the subject has previously read, and if the subject had not read some other

object from the same conflict of interest circle.

2.3.6 Role based access control

In 1992, a study was initiated to gather the requirements of commercial and government
organizations, which found that their needs were not being met by access control models of
that time (Ferraiolo, Gilbert, & Lynch, 1993). In traditional computer based applications,
access control was managed for a known population of predefined users over some known
resources through some centralized mechanism (Kane, 20006). In those systems, the number of
users and system resources were limited, so the access control models could map every system
resource directly to every system user. As the number of users grew, the administrative
overhead of managing the users became unsustainable, as well as the system complexity (Karp
etal., 2010). The study also explored the fact that in any organization the permissions of some
users are similar to one another. The study was followed by a solution to meet these needs,
integrating features of existing applications into a generalized Role based access control model
— RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). RBAC
introduced system wide roles, which were assigned permissions over resources. In order to
access a resource, the user needs to be a part of some role and that role must have access
rights over the requested resource. The introduction of roles solved many problems of
commercial and government organizations and RBAC became one of the popular access

control model (Ferraiolo et al., 2003).

15

2.3.7 Rule based access control

With further evolution in applications, it was found to be important for an access control
decision to support the context. For example, in banking system, the access decisions at day
should be different than the same decisions at night, or in military applications, some decision
at war may be completely different than the same decision during peace times. To handle such
cases, Rule base access control was introduced to support the context in access control

decisions (Brucker & Petritsch, 2009; Kirkpatrick & Bertino, 2010; Kulkarni & Tripathi, 2008).

2.3.8 Distributed environments

The challenges with centralized access control models became apparent when the software
systems were extended to cross domains (Karp et al., 2010). The agreement of all the
companies over rights associated to some role existing in multiple domains proved to be quite
difficult. Also, the working rights of one role of one company are restricted to its domain only,
which makes the situation more complex. The solution to these problems is given by
distributed role based access control (ARBAC) by maintaining separate system domains for

each company in the collation (Freudenthal et al., 2002).

2.3.9 Customized access control models

Many other customized access control models were proposed to fulfill the requirements of
different applications. This happened because the goal of every application is different and a
customized access control model can give the best solution to their needs. Some of the
examples of modeling the application requirements in access control are the systems for
medical data networks (Morchon & Wehrle, 2010), supply chain databases (Kerschbaum,
2010), peer-to-peer file sharing (Bram, 2003), grid environment (Thompson et al., 1999), web
Operating System (Belani et al., 1998), mobile ad-hoc networks (Kraft & Schafer, 2004), and
coalition environments (Freudenthal et al., 2002). Table 2.1 shows the major access control

models and their application requirements.

Access control was started from earlier systems supporting centralized administration. With
evolution, access control logic was developed to offer roles for large organizations and domain
based access control for distributed systems. With variations, the traditional access control

approach has worked for military and commercial applications, organizational structures,

16

contextual decisions, distributed applications, medical data, peer-to-peer networks and the grid
environment. However, the last decade has seen extreme multi-user system emerge, that is,
socio-technical systems (for example email, chat, bulletin boards, blogs, Wikipedia, E-Bay,
Twitter, Facebook and YouTube) where millions of users interact with each other and share
billions of resources. The permission matrix for social interactions increases geometrically, not
linearly, with group size, so the possible connections are astronomical. These systems vastly
increase access control complexity, as millions of users want all rights to billions of resources,

plus rights to allocate those rights.

Application Requirements Model
Mainframe computers Time sharing, Prevent users from interfering Lampson
Military applications Users” dearance, Multilevel security Bell-LaPadula
Military applications Hierarchy of users, confidentiality, secure system state, MAC

Admin control

Personal applications Ownership, No administrator, user control DAC
Commerdal applications Integrity, Separation of duties, well-formed transaction | Clark Wilson
Commerdal and System wide roles, complexity, user overhead, RBAC
government organizations otganizational structures
Organizations Context aware, situation based Rule based
Collation environment Security and availability in overlapping domains dRBAC

Table 2.1: Evolution of aceess control models based on application requirements

2.4 Socio-technical systems

Traditionally, the word ‘community’ is linked to a geographic area such as a neighborhood
(Wellman & Gulia, 1999) or with collectivities of people, who share a common experience,
interest, or conviction; who experience a positive regard for other members; and who
contribute to member welfare and collective welfare (Bender 1978; A. Etzioni & O. Etzioni
1999; Knoke, 1986; Putnam, 2000). However, with the development of communication media,
people can go further to broaden the community. Telephone, radio, television and the internet
connect distant people with one another without face-to-face communication. Communities
built on the information technology are social worlds, where groups of people with common
interests and practices communicate regularly and in an organized way (Ridings & Gefen,
2004). These communications are done under the guidance of the community standards and

rules to meet the social needs (Rothaermel & Sugiyama, 2001). These communities together

17

with their rules and communication within it can be viewed as social-technical systems. Socio-
technical systems (STS) are social systems sitting upon a technical base, with email as a simple
example of social communication by technology means (Whitworth, 2009). They allow people

to communicate with each other through technology rather than through physical means.

Socio-technical system theory was originally developed by the Tavistock Institute of Human
Relations in the 1950s to explain how new technology impacted primary work systems (Trist,
Higgin, Murray, & Pollock, 1963). It was arisen in response to the challenge of understanding
complex technical systems that are embedded in a human world (Trist, 1981). In general
systems theory (Bertalanffy, 1968), systems form when autonomous (self-directing) parts
mutually interact to create equally autonomous wholes. Such systems do not reduce entirely to
their parts as their creation involves not just those parts but also complex feed-back and feed-
forward interactions. Just as a person is a system of autonomous cells, so a society is a system
of autonomous citizens. Such holistic systems whether simple cells or complex people can self-
organize and self-maintain (Maturana & Varela, 1998). Therefore, STS is not just social and
technical systems side-by-side but the whole unit. Hence STS research is not just applying
sociological principles to technical effects (Coiera, 2007), but how social and technical aspects

integrate into a higher level system with emergent properties.

Also, it is reported in (Whitworth, 2009, p.4), that as system complexity increases higher
system views seem to apply. For example, in the 1950s/60s computing was primatily about
hardware, while in the 1970’s it became about business information processing, and in the
1980s about ‘personal computing’. With the 1990s and email computers became a social
medium, and in this decade social computing has flourished with chat rooms, bulletin boards,
e-markets, social networks, wikis and blogs. Computing reinvented itself each decade or so,
from hardware to software, from software to HCI', and now from HCI to social computing.
To explain this, Grudin reported three IT levels (hardware, software and cognitive) (Grudin,
1990, p. 2) and Kuutti later added an organizational level (Kuutti, 1996, p. 4). These physical,
informational, personal and communal levels show hardware, software, HCI and STS as

illustrated in figure 2.1.

7Human Computer Interaction.

18

Higher Better

Contexts -« - - Performance
4 Society A
' .
! Community 7
Organization Communal
Emergence | STS System Group Requirements
A
Personal
HCI System Regquirements Sacio-
> Technical
Information Requirements
Software System “" Requirements D
v Physical
Dependence | Hardware System Requirements y,

AJ

Increasing Requirements

Figure 2.1: Sodo-technical system levels and requirements (Source: Whitworth, 2009, page 5)

STS emerge when users utilize information technology to exchange information with other
systems in social settings. The implementation of these systems is an ongoing social process as
people can form groups, organizations and communities (Kling & Lamb, 1999). A STS is one
that involves all four socio-technical levels and their interactions. STS research describes the
connections between hardware and software technologies and people and communities. The
top of Figure 2.1 is open-ended, as social groups can coalesce into bigger ones, for example, in
social evolution people first formed villages, then city-states, then nations, super-nations and

perhaps today a global humanity (Diamond, 1999).

The increasing popularity of online communities is giving rise to new classes of security and
privacy concerns (Simpson, 2008). The rights management in these social communities is the
core thing, as a single mishandling of rights allocation can shift the whole paradigm of the
social community. Currently a number of online communities provide only the basic access
control: a resource can be either completely private or completely public (Carminati et al.,
2009, 2011). The traditional aspect of security is again tested as access control in these online
communities is more about access than control. The permission matrix for friend interactions
increases geometrically, not linearly, with group size, so for hundreds of millions of users, the
possible connections are astronomical. Each account also adds hundreds or thousands of
photos/comments a year. Finally, each user wants the same domain control previously

reserved only for system administrators. The users allocate access to local roles (Tapiador et

19

al., 2011) and social structures (Sanders & McCormick, 1993) to restrict a photo to family or
friends without asking a central authority. This vastly increases access control complexity as

millions of users want all rights to billions of resources.

This research revisits the problems of access control in STS and proposes the rights allocation
models in ownership domain by following socio-technical design approach. Even if these
virtual societies are new, people have been socializing for thousands of years and the social
principles of physical society can work for these online communities as well. The aim is to
identify software patterns that embody social principles as well as technical principles. The
result would be a consistent scheme to allocate distributed rights in a socially acceptable way

that works for any STS.

2.4.1 Socio-technical design

Developing a STS is a system engineering task: not only the software should be taken into
account but also hardware, system interactions with its human users and various constraints
coming from social policies and regulations (Scacchi, 2004; Sommerville, 2004). System
engineering is inherently interdisciplinary involving different engineering disciplines as well as,
particularly in case of STS, organizational sciences. STS research explicitly shows the human
social dimensions that ought to be taken into account when designing systems involving
technology. It recognizes that technology does not exist in a vacuum, but affects those who
use it and that they, in turn, affect its design. A STS, then, has a social component and a
technical component, and both of these must be integrated and function together smoothly in

order for the overall system to achieve its true potential (Davenport, 2009).

If the software system is developed first and the social needs are mapped on the already
existed technology, there would always be a gap between the requirements and the final
outcome. This is a well-known shortcoming in software engineering that software does not
exactly match the requirements of the user. In socio-technical terms, this gap is often termed
as socio-technical gap. So as in software engineering, requirement analysis of STS is done first
followed by the system development, to fulfill the requirements in the most appropriate way. It
will reduce the overhead for the designer (the system design matches the requirements), the
developer (know what to build and how) as well as the end user (the product matches the

social needs). The challenging problems related to the analysis and design of a STS are the

20

problems of understanding the requirements of its software component, the ways technology

can support human and organizational activities, and the way in which the structure of these

activities is influenced by introducing technology (Clegg, 2000; Gregoriades, Shin, & Sutcliffe,

2004).

2.5 Types of STS

STS are built around the social requirements of the community and create a virtual online

community, which is similar in structure and requirements as the physical ones (Sproull &

Arriaga, 2007). They can be divided into many types based on their purpose and functionality.

Some of the common STS types are as follows (Whitworth & Ahmad, 2012, p. 37):

a)

b)

g

h)

Communicate: STS like email, chat and instant messages allow users to communicate

with each other in a private manner.

Learn: STS like WebCT and Moodle allow teachers and students to promote distant

learning by establishing a virtual classroom environment.

Trade: STS like E-bay and Amazon allow users to exchange goods with each other in

a trusted manner.
Work: STS like Monster allow users to find and offer work easily.

Friends: STS like Facebook, Orkut and MySpace allow users to communicate with

their friends and family by making a social circle.

Knowledge: STS like EasyChair and Wikipedia allow users to exchange knowledge
with the community through open web encyclopedia and/or reviewed research

settings.

Download: STS like Webdonkey and bit-torrent allow users to download files and

software.

Play: STS like second life allow users to play virtual wortld games, communicate with

other virtual friends and allow an experience which is impossible in reality.

Keeping Current: STS like Digg and Delicious allow users to remain up-to-date and

provide others a chance to look at most viewed topics in the desired area of interest.

21

j) Media Sharing: STS like YouTube and Flickr allow users to exchange media files with

the community.

k) Follow: STS like Twitter allow users to forms a group view by linking leaders and

followers.

) Advice: STS like Internet forums allow users to get advice/information from one

another.

Online social interaction is a communication instance between users in these STS. It can be
divided into three major types, with respect to the source (sender) and the sink (receiver): one-

to-one, one-to-many, and many-to-many.

2.5.1 One-to-one

In STS supporting one-to-one online social interactions (like communicate, play, trade and so
on), the owner gives the access rights to the desired user set over a particular resource and
deny all the other users in the system. So, it is not necessary to map every resource in the

system with all the users, who are not the candidate for any access right over the resource.

2.5.2 One-to-Many

In STS supporting one-to-many online social interactions (like advise, media sharing, learn and
so on), the owner gives the access rights to the desired group of users on a particular resource
and deny all the other users in the system. Also, sometimes the owner grants write access to
one group but read access to the whole community. This requires local roles for every user

where they can decide the access for different roles over different resources.

2.5.3 Many-to-Many

In STS supporting many-to-many online social interactions (like knowledge, download,
keeping current and so on), a set of users having administrative rights over the resource
decides its access for various groups. This requires the support for multiple administrative

authorities for different types of resources and roles. (See Table 2.2)

Among all the mentioned types of online social interaction in table 2.2, social networks can be

seen as the richest example of supporting all three types. Before going into the details of rights

22

allocation in online social interactions, the next section outlines some of the current access

control models for social networks.

Type of STS Type of online social interaction

Purpose Example One-to-One | One-to-Many | Many-to-Many
Communicate Email, chat, IM Yes Yes No
Learn WebCT, Moodle Yes Yes No
Trade E-bay, Amazon Yes Yes No
Work Monster Yes Yes No
Friends Facebook, MySpace Yes Yes Yes
Knowledge Wikipedia No Yes Yes
Download Webdonkey, Bit-torrent No Yes Yes
Play second life Yes No Yes
Keeping current Digg, Delidous No No Yes
Media Sharing YouTube, Flickr No Yes No
Follow Twitter No Yes No
Advice help boards, AnandTech No Yes No

Table 2.2: Type of STS and their respective online sodal interactions types

2.6 Current access control models for social networks

Social networks are systems based on relationships and friendships. These systems allow the
user to create a self-descriptive profile — which is used to share information about them, to
make connections with other users. The social need of relationship building is the undetlying
requirement of these systems, and they allow their users to establish, develop, and maintain
‘social networks’ through publishing and linking ‘profile’ pages created by other users. These
systems have three major features: a) They allow the users to add other users as their friends,
b) they allow the users to exchange asynchronous email messages and synchronous online
chat, this feature is further extended to post messages on one’s wall to propagate to all friends,
and c) they support user oriented groups, which one can joint based on common interest or
experience (boyd, 2006; boyd & Ellison, 2007). During the last decade, these systems have got
enormous attention from users which can be seen by the presence of more than 955 million

users on Facebook, where they share billions of resources (Carminati, Ferrari, & Perego, 2000).

This section covers various access control models for social networks and their distinguish

properties. The access control models for social networks have mainly focused on ownership,

23

relationships and local visibility and span over the following five categories: a) Trust based, b)
Role based, c¢) Rule based, d) history based and, ¢) content based. Following are some of the

current access control models for social networks:

2.6.1 Trust based access control

The concept of trust has an important role in social exchange theory (Roloff, 1981), and has
highly influenced the dynamics of our social and individual interactions. It may be defined as
“the willingness of a party to be vulnerable to the actions of another party based on the
expectation that the other will perform a particular action important to the trustor, irrespective

of the ability to monitor or control that other party” (Mayer, Davis, & Schoorman, 1995, p. 4).

The idea of using trust as an indicator of some characteristic is not new. One of the most well-
known trusts metric is Google’s PageRank (Page, Brin, Motwani, & Winograd, 1998), which is
used to evaluate the trustworthiness of websites. Trust mechanism is generally based on the
reputation of the involved entities, such as online transaction sites, or third party certificate
issuing authorities. In social networks, trust plays its part when a user joins the network and

starts making connections with other users to form his/her own trusty network.

As there are some access control models based on trust for Peer-to-Peer file sharing (Tran,
Hitchens, Varadharajan & Watters, 2005; Kamvar, Schlosser, & Garcia-Molina, 2003), mobile
ad-hoc collaborative environment (Adams & Davis, 2005) and trust for RBAC (Dimmock,
Belokosztolszki, Eyers, Bacon, & Moody, 2004), the same approach has been explored for
social networks as well. It is proposed that social trust can be used as an access control

decision parameter in social networks rather than giving user the control over the resources.

For instance, a multi-level security approach is adopted in (Ali et al., 2007), where access is
granted on the security level of the requestor and community trust is the only parameter used
to determine the security level of the users and the resources. Each user is assigned a
reputation value as the average of the trust rating given by other users in the system. Every
resource is assigned a confidence level equal to the trust level of the owner, and only users
with equal or higher trust level can access it. It means that the maximum security value of a
resource is the maximum trust value assigned to the owner by the community. To enforce this,

the resources are encrypted using a threshold based secret sharing scheme (Shamir, 1979). For

24

each resource, the owner generates a secret key K, which can be split into # portions and then
reconstructed only by using x portions of it. The #» portions of K are distributed among
trustworthy nodes — based on owner social circle, prestigious nodes or at random among users.
When a requestor tries to access some resource, he needs to retrieve the x portions of K from
the set of #» nodes and then decrypts the challenge for that resource. These portions are only

released if the requestor trust level satisfies the resource confidence level.

A theoretical online trust formation model is explored in (X. Zhang & Q. Zhang, 2005), based
on the theories of social exchange (Blau, 1964), reasoned action (Fishbein & Ajzen, 1975),
planned behavior (Ajzen, 1985, 1991), and expectation-confirmation theory (Oliver, 1980).
The authors have distinguished trust in three different approaches, that is, cycle approach,
stage development approach and factor approach, and use them to form an integrated model
for online trust formation. The cycle approach is about keeping the trust of a user, and is
based on the assumption that the satisfactory outcomes of the prior actions positively affect
the trust over that party (Deelmann & Loos 2002; Fung & Lee, 1999). The stage development
approach deals with trust in different stages and shows that trust starts with initial stage and
may transform to committed stage if increased by positive outcomes (Ba, 2001; Kim &
Tadisina, 2003; McKnight, Choudhury, & Kacmar, 2000; Shapiro, Sheppard, & Cheraskin,
1992). The factor approach identifies different factors that can affect trust and discusses the
weighted multi-dimensional approach towards trust formation (Kim, Song, Braynov, & Rao,
2001; Pavlou, Tan, & Gefen, 2003; Yoon, 2002). An integrated model based on all the three
approaches is presented in three layers: the beliefs-attitude-intention-behavior logic is the
fundamental layer, the core of the model is common trusting belief, system trust belief and
situational decision to trust, and five critical factors from which trust can be formed and
enhanced. These factors are trustor factors, trustee factors, system trust factors, interaction
factors and external environment factors. In addition to that, the model also illustrates the

dynamic two stage development, that is, initial trust and robust trust.

An algorithm similar to Google’s PageRank is explored for evaluating links for social networks,
and is termed as NodeRank (Pujol et al., 2002). The approach uses a trust metric to calculate
the users’ reputations, and is based on the links between users. The reputation of a user is
calculated based on the analysis of his position in the social network. The algorithm associates

a degree of authority with every user, which reflects his/her reputation within his/her

25

community and is calculated as a function of total authority present in the social networks and
the authority of incoming links to the user. The main idea behind NodeRank is that each user
has an authority and a part of it is propagated to other users through his /her outer links and so
the authority of a user depends on the authority of the users with in-links. This approach has
been criticized as trust is multi-dimensional and human psychology evaluates it on various
parameters, which cannot be covered by a single connection based trust evaluation (Meo,

Nocera, Quattrone, Rosaci, & Ursino, 2009; Kate, 2009).

Some other interesting approaches to evaluate trust among users in social networks are also
explored in literature. For example, Kate (2009) and Golbeck (2009) proposed that users’
profile information and internet activity should be taken into account while evaluating the
trust, because it is how people evaluate trust in the real world. Also, the work to standardize
the trust metric and mechanism to use it with current social networks was discussed in (H. Liu
et al., 2008; Massa & Avesani, 2007; Matsuo & Yamamoto, 2009). However, the similarities

among the interests of two individuals do not indicate any psychological trust between them.

2.6.2 Rule based access control

Rule based access control provides the facility to the owner to implement their own privacy
policy based on some pre-defined rules. Models in this category normally define some rules
and then users are granted access based on those rules. This class of access control models
easily accommodates contextual information and provides the flexibility to introduce rules
according to the precise requirements of the application (Brucker & Petritsch, 2009;

Kirkpatrick & Bertino, 2010; Kulkarni & Tripathi, 2008).

In the category of rule based access control models for social networks, a semi-decentralized
access control model is presented based on relationship types, trust metrics® and degree-of-
separation policies for sharing information on social networks (Carminati, Ferrari, & Perego,
2000, 2007,2009). The model allows the owner to specify the access rules and authorized users
in terms of relationship type, depth, and trust level existing between the owner and the

requestor. So the relationships are also represented as a tuple with actors along with the type,

8 The models which consider trust just as a rule/parameter are disaussed in this section, wheteas the models

which are primarily based on trust (or some other parameter) are discussed in their respective sections.

26

depth and trust level. Additionally, each access request is represented by the owner of the
resource, the requestor and the system. When a requestor requests some resource, (s)he
receives a set of rules from the resource owner regulating the release of the requested resource.
These rules state the type of relationship, maximum depth and minimum trust level that must
be present between the owner and the requestor. The requestor then has to acquire the proof
from a central node showing the desired relationship type, depth and trust level. Access
decisions are made locally at client side; however, to avoid the forgery of proof, semi-
centralized certificates are used, where a central node is responsible for managing the

certificates.

A well-known drawback of the work proposed by Carminati and colleagues (2006,2007, 2009)
is its vulnerability to privacy threats. The access rules contain the type of relationship and
stores at a shared repository which may lead to privacy breach if the owner wants to keep
certain types of relationship private to themselves. The authors overcome this drawback in
(Carminati & Ferrari, 2008) by proposing an alternative way for the enforcement of access
control rules. As opposed to the semi-decentralized approach, the access control is enforced
through distributed collaborative process started by the owner. Instead of storing the rules at
the server side, the owner contacts the nodes that satisfy the access control rules, so avoiding
the privacy breaches. This privacy patch is done by modifying the approach of access grant
decision, where the owner is in command of the distribution path rather than issuing the rules
and lets the requestor takes the charge. To avoid forgery and trust disclosure, digital signatures

and encryption techniques have been used.

To extend their previous work (Carminati et al. 2006, 2007, 2009), a more precise access
control model for social networks is proposed in (Carminati et al., 2011), where the user
information is encoded using ontologies. The work illustrates the modeling of a social network
based on users’ profiles, resources, relationship among users, relationship between user and
resources, and actions. As various relationships and inferences about them can be easily
generated in ontologies, the access control decision uses this knowledge along with the security
policies stated as rules. A centralized security kernel is used to enforce the privacy policies at

the server side.

27

All the approaches proposed by Carminati and colleagues (2006, 2007,2009, 2011) have some
common deficiencies. For example, the relationship between two users is considered static
which is mostly dynamic in real social networks scenarios. Online relationships start by adding
each other as acquaintance which matures into friends and sometimes close friends. The same
happens to the trust level, which increases by socializing. Storing the static certificates at the
beginning of a relationship can adversely affect the purpose and growth of social networks.
Also, the centralized management of certificates exposes a single point of failure and may

become processing bottleneck.

In another ontology based work for social networks, a distributed Friend of a Friend (D-
FOAF) identity management system and access control model was proposed (Kruk,
Grzonkowski, Gzella, Woroniecki, & Choi, 20006). The access control model is based on the
social structure of users in terms of friendship level existed between them. An access is granted
if the requestor meets the trust and friendship level criteria as mentioned by the resource
owner. However, the authors only considered single type of relationships which was later
extended to multiple relationship types between the two users in the subsequent work (Choi et

al., 2000).

Another ontology based semantic web access control model manages the access to the
resources on the basis of relationships between the users and the community (Elahi et al.,
2008). The model adopts the Web Ontology Language (OWL) approach and instead of
defining the exact rules, uses Jess rule inference engine to execute the inferred semantic rules.
The implementation has used the centralized architecture, which may not be very scalable
keeping in view the size of social networks. This centralized approach also introduces a shared
relationship repository which may compromise the individual privacy, if someone wants to

keep certain types of relationship private to themselves.

2.6.3 Role based access control

Role based access control (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996)
is one of the most popular access control model present in the literature. RBAC introduced
system wide roles which are assigned permissions over resources. In order to access the

resource, the user needs to be a member of some role which has access rights over the

28

requested resource. Some access control models based on RBAC advantages also have been

proposed for social networks. Following is the description of some of these models:

Tie-RBAC was proposed to support users in online communities by introducing roles
(Tapiador et al., 2011). The claim of that research was the similarity between social networks
and organizations. As the latter has administrators, operators and organizers so former has
colleagues, classmates and acquaintance, so the access control in social networks can be seen as
an extension of organizational RBAC. A relationship is considered as a tie between the two
users, and is equivalent to the assighment of an actor to a role. The model allows actors in the
social network to define their own relations and provides a method for actors to concede
access rights to their contacts at the time of establishing the relationships. Relationships are
non-reciprocal as Alice can consider Bob” as friend but Bob can state Alice as acquaintance. A

centralized server stores access control policies and is responsible for enforcing them.

Another extension of the RBAC model for social networks is explored in (J. Li et al., 2009). In
that approach, the system is divided among user set, role set, resource set and permission set.
The user set includes all the users in the system, role set is extracted from social relationships
between users, resource set denotes all the resources shared by users with every resource
identified by a unique identity RID", and permission set includes the set of available
operations. In their proposal, the resource owner defines his own set of roles and access rights
over resources related to those roles. When a requestor requests some resource, the RID and
the requested operation is sent to the owner. On receiving the request, the resource owner
retrieves the role relation between the two users from the server and grants the access if the
requestor exist in some role and the role is assigned the access permission over the requested
resource. The access control module follows a semi-centralized approach, where the server is
in charge of role relation management, and the client is in charge of resource and permission

management.

Both of the approaches discussed in this section (J. Li et al., 2009; Tapiador et al., 2011) only

considered static relationships but do not handle the dynamic nature of relationships. Static

2 The two most convential placcholder names used in computer security. These names are used for convenience
and help technical topics to be explained in a more understandable manner.

10 Resource Identitifier.

29

modeling of relationship ignores the fact that relationships matures with time and interactions
— if two users start their relation as acquaintances it may take some time before they get the
status of close friends. Also, both the models use the centralized setver, which can be a
bottleneck for the efficient implementation of the scheme due to the enormous load in social
networks. Additionally, the centralized server approach may expose a single point of failure
and some denial of service (DOS) attack or intrusion to the server may result in compromising
the whole system. Furthermore, the centralized approach stores the privacy policies of all the
users at the same server, which may lead to privacy breaches as the privacy policies of both the

. : 11
owner and the requestor reside on the same repository .

2.6.4 History based access control

Another interesting approach to manage access in social networks is history based access
control, which takes the history of the requestor into account and grants the access if the
history satisfies the desired criterion. The key idea behind this class of access control models is
to maintain a history of access requests by all the users, and use it to grant access to
trustworthy requestor while rejecting the malicious ones (Edjlali, Acharya, & Chaudhary, 1998,
1999). In a history based access control model for social networks, the history of previous
access requests and their outcomes are used as an identifying factor to handle the future access

requests between the owner and the requestor.

A history based access control model for Facebook style social networks is presented in (Fong
et al.,, 2009), where authorization is based on two factors, communication history and
acquaintance topology. Communication history is the set of past events between the two users,
including the friend request invitation from one user to the other and its acceptance. A
communication event is any communication primitive that one user initiates and addresses it
to the other. The communication event cannot be out of sequence as the initiation and the
response are ordered pair with respect to time. The communication state between any two
users is local but occasionally consumes global information — communication history of other
users. Acquaintance topology is the social graph gathered by the communication history
between users of social networks, and provides a global topology for assisting access control

decisions. The users of the social network make the graph vertices and the existence of

1 \Where the owner and the requestor both have acess to that repository.

30

communication history defines the edges. Acquaintance topology is introduced to simplify the
communication history as evaluating an access control request on the basis of all the
communication history is inefficient. Every owner is responsible for managing his/her privacy
policy and whether other users have access to his /het resoutces depends on his/het policy and

the requestor’s relationship with him/her.

However, the approach does not differentiate among different types of relationships, but only
provides coarse social circle which may restrict the resources to completely public or
completely private. Also, the work does not support asymmetric relationships to deal with

different perspective of users about each other.

2.6.5 Content based access control

Content based filtering is widely used in literature to solve various problems (Amati &
Crestani, 1999; Churcharoenkrung, Kim, & Kang, 2005; Kim, Hahn, & Zhang, 2000),
however, it has recently got some attention in the social network research. Content based
access control decides the outcome of a request based on the contents of the requested object
(Bertino et al., 2003; Samarati, Bertino, & Jajodia, 1996). In general, the contents of an object
are used to tag it with labels and the access control policy specifies those labels (Bennett,
Dumais, & Horvitz, 2002; Collins & Singer, 1999). These schemes only provide partial
automatic response and in essence learn from their own mistakes, so they are not employed at

full scale but only to reduce the administrative overhead.

One of the examples of content based filtering in social network is the spam filter proposed by
Boykin and Roychowdhury (2005), which works on the contents of users’ messages by
exploiting various characteristics of social networks. The anti-spam tool distinguishes
commercial emails and spam messages from legitimate emails. Another interesting work about
filtering the user’s wall on Facebook based on the contents of the post is done in
(Vanetti, Binaghi, Carminati, Carullo, & Ferrari, 2010). The key idea is to apply user-based
content filtering on the messages posted on one’s wall and filter out the unwanted messages.
The approach uses machine learning text categorization procedures (Sebastiani, 2002) to assign
a category to every message based on its contents. However, the work on access control for
social networks, based on the resource contents, is hardly explored by any research work. This

may be due to less-than-100% efficiency of content based filtering approaches.

31

In addition, a content aware access control model is presented in (Hart et al., 2007). The model
decides the access decision based on the contents of user data by tagging all the documents
and users, and uses machine learning techniques to extract the meta-information. The model
uses existing relationships between users to decide the authorized users, and identify the
resources on their contents rather than some resource identifier. The work has introduced user
readable policy specification and its automatic application. However, as recognized by the
authors, the system makes occasional mistakes and needs some feedback mechanism to correct
erroneous tags. Also, the work does not provide any access control enforcement mechanism,

and only considered direct relationship between the owner and the requestor.

The literature highlights interesting patterns in current access control models for social
networks. The models have used different approaches to solve the access control problem, but
they all have common grounds of ownership and relationships. These two concepts are
fundamental to the growth of a community whether offline or online. In traditional access
control models, ownership is only supported by discretionary access control (DAC) driven
models, as mandatory access control (MAC) is centrally administered and role based access
control (RBAC) has proved to be quite expensive while implementing ownership (Sandhu &
Munawer, 1998a). Owner oriented relationship requires owner based local roles in DAC driven
access control model. This was implicit in most of the access control models for social
networks discussed in this section and explicitly defined in (Tapiador et al., 2011; J. Li et al,,
2009). However, there does not exist any access control model that supports rights allocation

for social networks or any other STS.

2.7 Current rights allocation practices

Today, STS cannot prosper without rights allocation. While currently there does not exist any
formal rights allocation model for online social interactions, some systems have some
functionality that can be considered as advancement in this direction. For example, sharing of
rights can be seen as one of the major reasons for glorious success of STS during the last
decade. Revocation is also supported as it is necessary to support sharing. However, delegation
and transfer of rights is not supported by any STS. Also, rights merge is not supported by any
current STS. Moreover, the opportunities associated with multiple-ownership are not yet

explored for these systems. This section covers some of these approaches taken from the

32

examples of current systems, and highlights the absence of rights allocation along with the

opportunities associated with them.

2.7.1 Knowledge management services

Knowledge sharing is a behavior when one disseminates their knowledge and experience to
others (Fan & Wu, 2011). To leverage the knowledge effectively, people participate in activities
of both knowledge contribution and knowledge seeking (Bock & Kankanhalli, 2000).
Knowledge management systems are platforms for people to share knowledge, where
conference systems, knowledge repositories and wikis come under this category (Kalman,

Monge, Fulk, & Heino, 2002; Majchrzak, Wagner, & Yates, 2000).

Social interaction has been viewed as an important trigger for knowledge creation and sharing,
where people have different types of relationships with each other. For instance, conference
chairs delegate some of their rights and responsibilities to track chairs. Authors share the rights
over a paper with their coauthors, and organizing committee allocates and revokes rights for
attendees based on current conference sessions. The ability to allocate social rights is the key
to meet these social requirements. This allows STS to evolve from an initial state of one

administrator with all rights to a community with delegated and shared rights.

However, current systems do not allow delegating tracks and mini-tracks to different chairs in
a running conference. The delegation of online responsibilities is not supported while it is
commonly practiced in the physical world. Also, papers are joint property of all of its
authors'”, but current systems only allow the submitting author to control all the properties
associated with it. In order to give greater legitimacy (Whitworth & deMoor, 2002, 2003) for
online social interactions, online delegation should be introduced along with other allocation
options. The one author paper scenarios should be changed to allowing all the authors having
joint control over editing, versioning, and withdrawing of the work. For example, a many-
author paper submitted online can let oze author alone edit it (transfer), let oze author edit as
allowed by the primary author (delegate), let edits proceed only if confirmed by «// authors

(merge), or let any author do any edit (share).

12 As they have contributed to its completion.

33

2.7.2 Social networks

Social networks are systems based on relationships and friendships. These software systems
are built around the social requirements of friendship and allow users to communicate with

their friends by creating a social circle (boyd, 2006; boyd & Ellison, 2007).

Current popular social networks like Facebook allow the owner to control the privacy setting
of their content, which are by default private . Other users are added to the social circle of the
owner and rights over resources are managed across the social circles. Privacy settings can limit
the access of resources to friends, friends of friends or to everyone; however there are
currently 275 settings on a Facebook profile, far more than most users can keep track of.
Despite of the privacy support by current social networks, some concerns are still raised as any
friend of yours can tag you on a photo without your consent and it is displayed as a photo of
yours. If people create their personas, they should be able to own it', but one cannot delete

his/her Wikipedia or WordPress profile .

2.7.3 Video sharing services

Video sharing services allow users to distribute their videos through public or private channels.
There are two major types of video sharing services, that is, paid and free. The paid services
only allow the subscribed users to watch a video, while free services (like YouTube) allow
everybody to watch stuff. Irrespective of their apparent different types of rights allocation,
both the services share the video contents to restricted or unrestricted users in the community.
The rights management in paid services restricts the number of views to particular users; while
free video sharing services allow everybody to watch a video for any number of times.
Irrespective to their similar nature, there is no agreed formal rights allocation model for these

video sharing services to operate on desired set of rights.

The current rules of online social interactions are based on designer intuitions rather than

formal models, so they vary between systems and over time, with public outrage the only

13 Previously Orkut did it differently by allowing everybody to look at your messages and profile information.
14 By freedom, one should own one’s online self.

15 See how to permanently delete your account on popular website here: http://www.smashingmagazine.com

2010/06/11/how-to-permanently-delete-your-account-on-popular-websites

34

check. There is no agreed scheme for allocating permissions to create, edit, delete or view

object entities, let alone manage roles.

On Facebook, everything is private and owner can share information with level one friends,
level two friends or with the whole community, conversely it was public in Orkut as every
information was visible to everyone. On YouTube, videos are publically viewable as everyone
can watch a posted video, while it is restricted on paid video sharing services. On Wikipedia,
articles are publically editable — everyone can modify the contents of a page; on the contrary,
conference systems do not allow anybody but the corresponding author to edit the paper.
However, rights allocation in tagging a photo on Facebook is similar in nature as having a co-
authored paper on Easy Chair. Also, allowing everybody to watch a video on YouTube is not
very different from allowing everyone to edit an article on Wikipedia or allowing a restricted

audience to watch the same video on a paid video sharing service.

There is a need to define a formal model for online social interactions based on socio-technical
design, which may provide a unanimous framework to be used in most of the current
applications. The model may not only support the current practices in STS but also extends
the rights allocation to support rights delegation, rights transfer, rights sharing, joint rights and
multiple-ownership. This will allow the conference chairs to delegate tracks and mini-tracks to
different track/mini-track chairs, conference systems to provide different real world options to
authors, solve various identified problems in STS, and give an undisputed rights allocation
model for all the other cases. The introduction of rights allocation model for online social
interactions may open up new research directions in this field. To highlight the significance of
the proposed work, the next section focuses on rights allocation work supported by traditional

models and emphasizes the fact why they cannot be used for online social interactions.

2.8 Rights allocation for traditional models

Rights allocation refers to the methods that can be used by the owner to allocate rights to
other users. Specifically, it is associated with the methods in which the actor entity in the rights

triplet can be modified. It covers the set of possible operations on rights such as rights

35

delegation, rights transfer, rights sharing and rights merge. Table 2.3 shows the list of possible

set of operations on rights':

Operation Term Definition

Replace temporary| Delegation | Temporarily gives rights to another user who can exercise them on
the owner’s behalf, where the previous user cannot exercise it

(Gasser & McDermott, 1990).

Replace pemanent| Transfer | Permanently gives rights to another user who becomes the new

owner, and the previous user cannot exercise it anymore (Barka,

2002).

Share Sharing | Gives away rights over an object while keeping them at the same

time, so both users can exercise it (Y. Liu, Yu, & Hao, 2009).

Merge Joint Merges the rights of the entire user set over an object, so all parties
ownership | must agree to perform some action (Ilic, Michahelles, & Fleisch,

2007).

Table 2.3: Various operations on rights and their definitions

Current access control models for STS do not support any type of rights allocation, however
some other traditional access control models support some types of allocation. This section
covers the previous work on rights allocation for traditional access control models and
highlights the differences which make it difficult to use the existing access control models for

online social interactions.

2.8.1 Delegation

Delegation is a process which allows a user A/ice to authorize another user Bob to access
resources on her behalf (Abadi, Burrows, Lampson, & Plotkin, 1993; Gasser & McDermott,
1990; Varadharajan, Allen, & Black, 1991). There are two delegation views: administrative
directed delegations and user directed delegations (Linn & Nystrom, 1999). In the former, each
delegation request should be approved by some security officer, while the latter allows the
users to delegate rights on their own responsibility. However, in both cases, it is important to

have some proper delegation model to prevent unwanted flow of the delegated rights.

16 See section 3.2.6 for details.

36

The delegation work in traditional access control models can be classified into three categories:
a) machine to machine delegation, b) user to machine delegation, and c) user to user delegation
(Abadi et al., 1993; Barka & Sandhu, 2004; Gasser & McDermott, 1990; Gladney, 1997).

Following are some of the details of these categories:

2.8.1.1 Machine to machine delegation

Machine to machine delegation is a process which allows a computer based process to
authorize another process to act on the behalf of the former (Gasser & McDermott, 1990). It
mostly deals with scenarios in the context of distributed systems when one local process
requests some resource on the remote machine, and delegates rights to the remote process to

request the resource on the former’s behalf.

The delegation of rights from local process to remote process was explored in (Gasser &
McDermott, 1990) with a mechanism for users to explicitly terminate it. The delegation
framework deals with single level delegation and chained delegation. Where single level
delegation covers the cases when a single process from local machine deals with single process
on the remote server; and chained delegation covers the cases when more than one system is
involved between the local and the remote server. Additionally, limited delegation is
considered and two options were given, that is, one process can delegate the rights over a
subset of its authorized resources, or it can delegate a subset of rights over its complete
authotized resource set. The work authotized the claimed delegation by public/private key
cryptography (Rivest, Shamir, & Adleman, 1978) to verify that the information is securely

transferred between processes.

Another example of machine to machine delegation was explored in (Abadi et al., 1993). The
work had proposed single level delegation model that operates on a subset of rights. It also
provided powerful mechanisms to implement the delegation with and without the use of
signed certificates. However, the delegation model is not adequate for users as they cannot
refresh delegation certificates so often and longtime certificates introduce a security threat of

being abused by users’ delegation.

Another work of a similar type used the term proxy to discuss how one object can delegate its

rights to another object to act on the former’s behalf (Varadharajan et al., 1991). The authors

37

claimed that process proxy situations arise in object oriented systems where multiple objects
cooperate with each other to perform some task. The research allowed multi-step, partial
machine to machine delegations for limited durations, and introduced various mechanisms for
its revocation. To prevent the forgery and to maintain the system trust, the instantiation was
done using two encryption solutions, that is, public key based solution, and secret key based
solution. The research also proposed the extension of Kerberos mechanism (Miller, Neuman,

Schiller, & Saltzer, 1987; Steiner, Neuman, & Schiller, 1988) to implement delegation.

2.8.1.2 User to machine delegation

User to machine delegation can be defined as a process which allows users to authorize a
process to act on their behalf (Gasser & McDermott, 1990). It is done in every computer
application in the context of human-computer interaction, where a process acts on users’
behalf. Thus the user has to delegate his/her rights to the process in order to execute some

instruction or to fetch some information from another process.

The work of Gasser and McDermott (1990) in machine to machine delegation also explicitly
explored the characteristics of user to machine delegation. Instead of only focusing on the
delegation between local and remote processes, the authors also considered the delegation of
rights form the user to the local process. The delegation model covers complete design
considerations and starts when a user signs in to a machine. If then the local machine requires
some resource on the remote machine, the user delegates their rights to the local process to
request the resource from the remote machine on their behalf. However, if there are multiple
remote machines involved in fetching the desired resource, the local process then delegates the
rights to the remote process, so it can request the resource on the behalf of the local process.
The model ensures that the delegation is authorized and authenticated, and can be revoked
when needed. It also allows partial delegations where a process can only exercise limited rights

over subset of resources.

2.8.1.3 User to user delegation

User to user delegation is a process which allows a user to authorize another user to act on the
former’s behalf (Gaaloul, Schaad, Flegel, & Charoy, 2008). This type of delegation is normally
exercised in collaboration environments, where one user may not able to perform some task

and/or for distribution of authority (Park & Lee, 2005). Most of the research in this area deals

38

with role delegation in role based access control (RBAC) environment (Barka, 2002; Sandhu,

Bhamidipati, & Munawer, 1999; L. Zhang, Ahn, & Chu, 2001; X. Zhang et al., 2003).

Investigation of user to user delegation with the focus on RBAC was done in (Barka, 2002;
Barka & Sandhu, 2004, 2007). In RBAC, permissions and responsibilities are associated with
roles and users are made members of these roles to grant them permissions. In RBAC
delegation, the user in one role can delegate his/her role to another uset, so the latter can
perform actions on the former’s behalf. The work differentiated between permanent and
temporary delegations and considered a number of cases to develop a framework for role
based delegation model (Barka & Sandhu, 2000b). In another work by the same authors, they
proposed the role based delegation model (RBDMO) for flat RBAC roles, and extend the work
as RBDM1 for hierarchical RBAC roles (Barka & Sandhu, 20002). The RBDM1 differentiates
between upward, downward and cross sectional delegations in hierarchical roles. The upward
delegation is from a junior role to a senior role and is considered useless because of the
permission inheritance proposed in (Sandhu etal., 1996), where the senior role already gets all
the permissions associated with the junior roles. The downward delegation is from a senior
role to a junior role, which can only work with the subset of rights associated with the role
because it may shrink the hierarchy of the organization. The cross sectional delegation is the
most useful in RBAC as it gives the mechanism to assign rights within two different
departments at two different hierarchical levels. The models also support revocation using
time-out, where every delegation has a time-stamp which expires to terminate the delegation.
Also, the models support grant-independent revocation, where any member of the delegated

role can revoke the delegation from the delegatee.

To handle the administration in RBAC and to manage users and roles assignments in an
organization, an administrative RBAC model (ARBAC) was proposed in (Sandhu et al., 1999;
Sandhu & Munawer, 1999). The basic motivation behind ARBAC is to use RBAC to manage
RBAC itself. The model is divided into three major components: user-role assignment (URA),
permission-role assignment (PRA), and role-role assignment (RRA). URA model is used for
the management of user to role assignment, and is defined in two sub models — URA grant
model and URA revoke model. The first sub-model deals with the grant of role membership
to users, and the second deals with the revocation of users’ membership from the role. The

PRA model is used for the management of permission to role assignment, and is similar to

39

URA. The permission role assignment and revocation are handled by ‘can_assign’ and
‘can_revoke’ relations respectively. The RRA model is used for the management of role to role
assignment and distinguishes among three types of roles, namely abilities — roles consists of
permissions only, groups — roles consists of users only, and UP-roles — roles consists of both
users and permission (Sandhu & Munawer, 1998b). The RRA model is composed of several

sub-models for ability-role assignments and group-role assignments.

The flat and hierarchical delegation models (Barka 2002; Barka & Sandhu 2000a,2000b, 2004,
2007), and URA, PRA and RRA administration models (Sandhu et al., 1999; Sandhu &
Munawer, 1999) are nice additions to the RBAC original model. However, only security
administrator can control these assignments and their continuous involvement is necessaty,
which can increase management efforts in large distributed systems. This problem was
addressed in (L. Zhang, Ahn, & Chu, 2001, 2003), where a delegation approach is investigated
to decrease the load of role management from security officers. The delegation model is based
on RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996) and
decentralizes the administrative process in distributed environments. The model allows the
users to delegate their roles by a rule based delegation framework that supports role hierarchies
and multistep delegations by introducing delegation relations. Also, a rule based declarative
language to specify different policies was defined. The work shares the same purpose as URA
discussed in (Sandhu et al., 1999; Sandhu & Munawer, 1999).

The notions of active and passive delegation in the context of RBAC were introduced in (Na
& Cheon, 2000). Active delegation covers the cases when the delegator and the requestor are
same subject (after satisfying some prerequisite condition), while passive delegation covers the
cases when the requestor and the delegators are different subjects, and the requestor requests
the delegation server to grant the rights to act on the delegator’s behalf. The model only works
with upwards delegation, where the junior role can take the rights associated with the senior
role. The model consists of the delegation server and the delegation protocol, where the
former decides the possibility of a particular delegation by maintaining delegation policies, and

the latter deals with the methods by which a delegation can be performed.

In another work, a flexible permission based delegation model (PBDM) based on RBAC was
introduced (X. Zhang et al., 2003). The model supports chained, partial and temporary

40

delegations, and distinguishes between role level and permission level delegations. The model
particularly addresses the problem of delegating high level permissions to low level users and
extends the RBAC model with three types of roles, that is, regular roles, delegation roles and
delegatable roles. Regular roles are kept same as in RBAC, delegation roles are specifically used
for delegating permissions, and delegatable roles are based on regular roles but their
permission can be delegated to other users by creating delegation roles. The model has one-to-
one mapping between regular and delegatable roles, which is handled by the security

administrator, the problem of illegal flow of permissions is minimized.

An attribute based delegation model (ABDM) based on RBAC role structure was proposed to
handle user to user delegation (Ye, Wu, & Fu, 2005, 20006). The authors combined the high
flexibility of RBDM (Barka & Sandhu, 2000a) and medium security of PBDM (X. Zhang et al.,
2003) to construct a model that works on delegation constraints. These delegation constrains
consist of delegation prerequisite condition role (CR) — membership of specific roles, and
delegation attribute expression (DAE) — set of attribute constraints that must be fulfilled by
the delegatee. A delegation can only take place if the delegatee role satisfies both the CR and
the DAE.

Some other research works also proposed the semantics of delegation and its revocation. For
example, Li and colleagues proposed a logic of delegation in large scale distributed systems (L,
Feigenbaum, & Grosof, 1999; Li & Grosof, 2000). Crampton and Khambhammettu (2008)
proposed a rights transfer model based on RBAC, but for completeness they also included the
delegation model. The delegation proposed in their work allows the delegator to grant a role or
a permission to the delegatee in the context of flat as well as hierarchical roles of RBAC. A
delegation model for trust management systems in RBAC was presented in (Tamassia, Yao, &
Winsborough, 2004). The model combines the advantages of RBAC in trusted systems and
delegation in distributed systems. It was designed to support chain delegations and verify the
hierarchical delegation chain. Another fine grained user-to-user delegation model for RBAC
allows the users to delegate part of rights associated with their role to another user (Wainer &
Kumar, 2005). Another delegation work for RBAC in the presence of multiple hybrid
hierarchical structures was explored in (Joshi & Bertino, 20006). A trust based delegation model

for pervasive computing was discussed in (Steffen & Knorr, 2005). A delegation model of

41

RBAC in workflow scenarios was discussed in (Bammigatti & Rao, 2008), and a delegation

model for workflow management systems was proposed in (Atluri & Warner, 2005).

There are several shortcomings with the application of RBAC delegation for online social
interactions. First, the delegation is not expressive enough in RBAC and the only way to grant
permission to a user is by granting the permission to a role and assigning him/her that role.
This leads to management overhead for administrators as running multiple delegation
scenarios at the same time using roles is difficult. Another shortcoming of the RBAC
delegation models is their coarse nature, as they do not differentiate among different users
within the same role. Further, any user in the delegated role can revoke the delegation in
RBAC, while the delegation model based on socio-technical design only allows the delegator to

revoke the rights.

2.8.2 Rights transfer

Rights transfer is a process which allows a user .4/ice to give away rights to another user Bob,
where the transferred rights are no longer available to A/ce. It is used when there is a need to
restrict the cardinality of users having the same right. In some of the literature, rights transfer
is referred to as transfer delegation (Crampton & Khambhammettu, 2008, p. 1) or permanent
delegation (Barka, 2002, p. 72). The work on rights transfer for traditional access control

models is presented in this section.

In his PhD dissertation, Barka (2002, p. 38) proposed the user to user delegation model based
on RBAC. The delegation was categorized as temporary and permanent, which can be
considered as delegation and transfer in the context of the current work. In the traditional
user-to-user rights delegation section'’, Barka’s work on temporary delegation in the context of
RBAC was discussed. Now his work on rights transfer (permanent delegation) will be
discussed in this section. The transfer model was based on RBAC and allows a user to
permanently transfer his/her role membership to another user in the organization, where the
previous member losses his/her membership of that role. The permissions associated with the
transferred role are also given to the new member. The transfer model is irrevocable, where

the old member cannot take back the role membership but only the security administrator can

17 Section 2.8.1.3.

42

remove the new member from the role. The work reported two permanent role-based

delegation models — PRBDMO and PRBDMI, for flat and hierarchical roles respectively.

Crampton and Khambhammettu (2006, 2008) also proposed a rights transfer model for flat
and hierarchical roles in RBAC. The transfer model allows the user to grant a role/permission
to another user, where the latter gets all the transferred permissions while the former can no
longer exercise the permission or role. Two different relations were introduced for role and
permission transfer each. The first deals with the set of roles/permissions that can be
transferred from the set of all the available roles/permissions in the system, and the second
deals with authotization of users to transfer a role/permission. The transfer considered was
temporary in nature and can be revoked. The work is similar to Barka (2002), but considered
temporary permission transfers as well. The authors reported that the only difference between
delegation and transfer is monotonicity of rights, which means that .4/ice cannot exercise the

right after its transfer, while she can exercise it after delegation .

2.8.3 Rights sharing

Rights sharing is a process which allows the user to give the right to another user while
keeping it at the same time, so both can exercise it. Rights sharing is mostly used in scenarios
where multiple users share the same right over an object. There are some research projects that
indirectly relates to this area. One of those research works is of Y. Liu and colleagues (2009),
which deals with rights sharing in online digital rights management (DRM) systems for digital
contents. DRM provides the management, tracking and protection of copyrighted digital assets
(Q. Liu, Safavi-Naini, & Sheppard, 2003; Iannella, 2001). There are some commercial DRM
systems available from Microsoft”’, IBM™ and Apple”. The online rights sharing model by Y.
Liu and colleagues (2009) works on light-weighted ticket transfer protocol which does not
change the semantics of DRM system. The model supports time constraints and rights

description to support fine grained rights management. A security mechanism was also

18 However the aurrent research differentiates between delegation and transfer, on the basis of the ability to

further allocate the right.

19 Micosoft Windows Media Digital Rights Management, http://www.micosoft.com /windows/windowsmedia

forpros/drm /default.mspx, 2007.

20IBM's Electronic Music Management System (EMMS), http://www.almaden.ibm.com /cs/madison.html, 2005.

21 {Tune. http://www.apple.com /itunes/, 2006.

43

proposed to encrypt the tickets and reduce the risks of over-issuance and multiple spending of

tickets.

Another rights sharing model based on digital rights management for copyrighted digital
contents was explored in (Z. Zhang, Pei, Ma, Yang, & Fan, 2008). The proposed sharing of
rights over copyrighted contents was mutually inclusive as all the previous and new holder of
the right may exercise it. The authors proposed a granular, time, depth and cardinality
constrained sharing model based on trusted computing components. However, the model is
based on static trust certificates, which may not support the dynamic nature of social

interactions.

2.8.4 Rights merge

Rights merge is a process which allows the user to merge the rights of a set of users, where all
must agree to exercise the right. It is used in collaborative environments where multiple users’
consent needs to be considered for any decision. Little work on rights merge has been done in
literature for access control models. Among them, Ilic and colleagues (2007) explored a dual
ownership model for access control in safety supply chains. Another approach for ownership
protection along with a model for joint ownership of watermarked digital contents was
explored in (Wu, 2003). In addition, Guo and Georganas (2002) proposed a joint-ownership
verification algorithm to verify the watermark on digital images. However, all of these
approaches were more oriented towards verification of ownership rather than rights allocation

over the online resources.

In traditional access control models, only delegation has got some serious attention but other
modes of rights allocation, for example, rights transfer, rights sharing or rights merge are
sparsely explored. Moreover, the work of rights allocation in literature is less useful if applied

to STS due to the following reasons:

The number of users and objects is quite high in STS as compared to traditional systems. For
example, Facebook reports 955 million active user accounts, each adding many hundreds of
photos and comments each year, with more than 100 billion friend connections; so models
that map system resources to all the users in the system soon become over-complex for a STS

with millions of users and billions of resources. Role based access control (RBAC) is often

44

proposed as the solution to reduce the complexity of traditional systems by introducing roles
(Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, access control
for STS depends on the number of interactions rather than the number of users in the system,
so its complexity increases geometrically with size, not linearly. Also, the object visibility in
STS is restricted to the social circle of the owner rather than the whole system, which makes
traditional systems unsuitable for them. Furthermore, the frequent content updates and the
volatile nature of friendship makes it difficult to use traditional access control systems for STS

(Hart et al., 2007).

Connecting to others satisfies relationship needs but also raises security and privacy concerns
(Simpson, 2008). As users contribute online contents, for example, family photos or online
videos, they naturally expect to control those contents. In centralized access control, each user
is allocated the same access control policy values, so variants must be requested from a central
authority (Hart et al., 2007). Roles in traditional access control systems are system wide groups
whose membership is set by a system administrator. The access rights over uset's resource are
allocated to a trole the user has no control ovet. In contrast, usets involved in online social
interactions want to set their own values without reference to a central authority, for example,
to share their data with everyone or to restrict it to family and friends. Traditional access
control systems do not provide all the functionality needed and so struggle with the demand of
today’s individual user for a diverse range of privacy requirements (Gollu et al., 2007, J. Li et
al., 2009). Generic roles tend to reveal more than the users want, as they cannot specify local

requirements using generic roles.

In addition, the set of operations offered by STS is much larger than the number of operations
offered by the traditional systems. To a traditional access control system, a file can only be
read, written to or executed, but users involved in online social interactions want to exercise a
much richer set of operations in parallel to that used in physical societies. This sophisticated
set not only includes read, write, vote, tag, subscribe and so on, but also other operations to
manipulate different types of objects with different collaborations among different users, such
as joint ownership of a couple common online persona, transferring a colleague’s research
paper to him/her, or delegation of management of tracks to track chairs from conference
organizers. Rights allocation is useful in many situations, such as backup of role, collaboration

of work and decentralization of authority (X. Zhang et al., 2003; Park & Lee, 2005).

45

STS are built around the social requirement of ownership, which is not widely supported by
traditional access control models. From the set of traditional access control models, only DAC
can work with the ownership requirement of STS, but it faces the problems of global visibility
of objects, central administration of groups, and users’ interactional complexity. Another
alternate to the complexity problem is RBAC, but it is proved to be even more expensive while
supporting ownership (Sandhu & Munawer, 1998a). Besides, traditional access control models
assume single ownership of objects, whether it is a person or an organization, but do not
support multiple-ownership of objects which may restrict online social collaboration

opportunities.

Further, only one of type of rights allocation — rights delegation is extensively explored in
literature but other rights allocations, such as rights transfer, rights sharing and rights merge
are hardly explored in much detail. Also, the rights delegation work in literature is mainly about
role to role delegation in RBAC, where permissions are associated with roles. However, STS
require domain based rights delegation where permissions are associated with objects. Besides,
the delegation models in traditional access control do not support multiple sub-delegations,
but provide support for multi-level delegations — delegatee can further delegate its role, which
raises the question of accountability in online systems. On the other hand, STS require single-
level, multiple delegations to maintain the accountability and to support the coexistence of
multiple delegation subdomains, for example, one conference can be divided into multiple
tracks, each of which can be then delegated to different track chairs. Another major difference
between traditional delegation models and the required one is the scope of allocation. In
traditional models, the allocation scope is system wide, while the required allocation may only
have domain based scope and will be invalid outside the domain and outside the local role’s
scope”. Figure 2.2 illustrates the progress of access control and identifies the position and

contribution of the proposed work.

This research revisits the problems of access control in STS using socio-technical design and
introduces an access control model supporting rights allocation as well as ownership and
relationships. There is currently no formal access control model for STS that supports rights

delegation, rights transfer, rights merge or multiple-ownership.

2 Which restricts the demage of alloation if anything goes wrong.

46

Traditional OSN

B onicol Access Control
L

Figure 2.2: Summary of the literature and contribution of the current research

2.9 Thesis statement

From the literature review, the following conclusions can be derived:

a) STS are new and their emergence has introduced one of the largest user interaction
platforms that computing has ever seen. They are unlike any of the previous existing

platforms, and have technical as well as social requirements.
b) Various access control models for STS have been proposed in recent years but they

lack a systematical scheme for managing rights allocation, including rights delegation,

rights transfer, rights share and rights merge.
¢) While traditional access control models can be used for this new type of software, and

some types of rights allocations are already explored for them, their support to capture

the STS requirements is difficult for several reasons:
1) Traditional access control models define the access rights for every resource

for every usetr/role in the whole system. However, this approach is too

47

complex for STS as it contains millions of users and billions of resources. Also
access control for STS depends on the number of interactions, which makes
access control entries quite enormous.

2) Traditional access control models work on global administration and roles are
system wide groups whose membership is set by a system administrator. In
contrast, users involved in online social interactions require local control and
domain based local roles without any central reference.

3) Most of the traditional access control models do not support ownership. Also,
in cases where they do support it, they do not have fine grained policy
implementation required for STS like fine grained local roles and their
membership. Further, the opportunities and challenges associated with
multiple-ownership are raised in STS are not much explored before.

4) The rights allocation models proposed in literature were mainly about role to
role allocations, as permissions were associated with roles. However, STS
require domain based rights allocations where permissions are associated with

objects.

Hence, the existing work in rights allocation is not suitable for STS for their differences in

nature with the traditional applications.

2.10 Research question

Given the above thesis statement, this research hypothesizes that a general access control
model can be designed to supports rights allocation in all online social interactions. The model
must also support social requirements like ownership, local relationships and heterogeneous

privacy policies. The objective of this research is to answer the following question:

Q) Can a general rights allocation model for online social interactions, which is
decentralized, logically consistent, socially valid, and supports dynamic local roles, be

designed?
This question also raises the following issues:

a) What are the basic types of rights allocation for online social interactions?

48

b) Can the allocation models be applied to simple rights as well as meta-rights?
c) What are the characteristics of those rights allocations?
d) What are the rights of various roles associated with an object after every allocation?

e) What is the difference between the allocation models for simple and meta-rights?

Also, the rights allocation model has the following base condition:

Condition) Can an access control model for STS be designed to support ownership,

relationships and local administration?

a) Can the model be applied to emerging scenarios of online social interactions?

2.11 Methodology

A methodology is defined as a set of procedures to meet some predefined goal (Welke, 1981).
Sometimes it specifically refers the actual research method used for some research (Tashakkori
& Teddlie, 1998), and recommends the sequence in which the procedures should be
performed throughout the lifecycle of the project (Heuvel, 2002). Methodologies are also
considered as wortld views as they make certain assumptions about the nature of the paradigm
(Kuhn, 1970; Burrell & Morgan, 1979). Therefore, different methodologies generate
knowledge about different aspects of the same world (Mingers, 2001). This research aims to
design a rights allocation model for online social interactions; therefore it follows the
constructive research methodology which focuses more on developing novel technologies and

innovations (Crnkovic, 2010).

2.11.1 Constructive research methodology

The constructive methodology is a research approach for producing innovative constructions,
intended to solve problems faced by real world and thus makes contributions to the theory of
the applied discipline (Kasanen, Lukka, & Siitonen, 1993; Lukka, 2003; Caplinskas & Vasilecas,
2004). The focus of constructive methodology is more on developing new models, algorithms
and design principles rather than solving a local problem in a new way (Glass, Ramesh, &
Vessey, 2004). This research aims to produce a rights allocation model for online social
interactions. The model is divided into four sub-models, namely, Replace, Share, Merge and

Revoke, to handle different types of rights allocations. These models may solve the problem of

49

richts allocation in online social interactions and may also contribute to the theories of access
g y

control, ownership and online social interactions.

This research adopts the constructive research methodology, where the construction of the
models starts with identifying the characteristics associated with each of the models. These
characteristics are then refined based on the parametric values, and the procedural steps are
defined for the implementation of each of the models. Further, the effects of each model
application on different roles associate with the allocated object are analyzed along with their
design principles. The construction provides the logic for the development of rights allocation
models for online social interactions that can be implemented in any programming language

over any platform.

The constructive research methodology used in this research divides the research process into

the following phases (Kasanen et al., 1993):

a) Problem Identification: Absence of rights allocation model for STS.

b) Literature Review: Detailed understanding of traditional access control models, types
and requirements of STS, their access control models and current practices, along with
various rights allocation models for traditional systems.

¢) Conceptual Framework: Identification of STS access control components and their
types, along with the basic rights allocation operations and their characteristics.

d) Innovation: Detailed specification and modeling of the rights allocation models.

¢) Demonstration”™ Show that the proposed solution works on both actual and
hypothetical cases of different types of current STS.

f) Contribution: Reporting theoretical connections and research contributions.

@) Applicability: Examine the scope of applicability of the solution.

The basic illustration of the general methodology used in this research is shown in figure 2.3.

2 In modeling methodologies, the model’s working is usually demonstrated. As this research designs the model
for online sodal interactions, it could not be demonstrated without building the community first. So, the

researcher has demonstrated the model on actual and hypotheticaal ases from airrent online sodal interaction

scenarios.

50

Literature Research Demonet cona
—_— —— —_— 1
Review Objectives
1 b\ 1
| \ 1
| ~ |
\ 4 > \ 4
q Conceptual . .
P@E}ler@ - — Innovation Applicability
Identification Framework

Workflow — >

Helps to refine ----- >

Figure 2.3: The general methodology used in this research (adopted from Kasanen et al., 1993)

This dissertation follows the constructive methodology in the following manner: The
background and motivation for the problem are explained in chapter 1. Chapter 2 outlines the
literature related to the research and concludes with research question and objective. Chapter 3
describes the conceptual framework along with the reduction tree for the identification of
basic rights allocation models. Chapter 5 and 6 illustrate the innovation phase by outlining the
use-rights and meta-rights models in detail. Chapter 8 demonstrates the working of the rights
allocation models by showing that they work on current as well as on hypothetical use-cases,

while chapter 9 emphasizes on the contribution and applicability of the presented research.

The core element of a successful constructive methodology is the innovation phase, which is
often heuristic by nature. However, this research has used an incremental approach (Mills,
Dyer, & Linger, 1987) to devise each allocation model, and extreme formal modeling (XFM)
within it to refine the rules and characteristics by applying them onto various online social

interaction scenatios.

The use of XIFM has several benefits over the ad hoc abstract modeling. First, the ad hoc
construction is error prone and the effort of model building and debugging grows exponential
along with the size of the model, whereas XFM includes one property at a time and an error in
the model automatically identifies the latest property as the culprit. Second, the ad hoc
approach has the tendency to include more behavior than the specifications which increases

unwanted complexity, but XFM, by definition, is less likely to include extra features. Third, in

51

ad hoc model construction, there is no way to confirm the inclusion of all properties, thus
significance of the model reduces. However, XFM incrementally adds properties, so it

constructs the model having all the functionalities.

2.11.2 Extreme formal modeling (XFM)

Extreme Formal modeling (XFM) (Suhaib, Mathaikutty, Shukla, & Berner, 2005) is an agile
formal methodology based on extreme programming concepts to construct abstract models
from natural language specifications of the complex systems. It was designed to bridge the gap
between formal system engineering and requirement specification. It provides a ‘golden
reference model’ that is not only correct with respect to the requirements but also
unambiguous through formal semantics. XFM ensures that the model is regressively verified
during the construction phase, so the resultant abstract model remains constructively correct
and closer to the intended specifications. This is achieved by adding one feature at a time and

testing the whole model after every increment.

The initial phase of XFM involves the breakdown of intended outputs of the model. Then
starting from the basic functionality of the system, it takes one functionality at a time and
transforms it into some logical property. It is important to focus on the behavior of the
current property while constructing the model. The next step is to check if the logical property
correctly expresses the intended output. Once the property satisfies the specific functionality,
the next functionality is taken, converted into a logical property, and is tested against the
intended output to check whether both properties hold. On the other hand, if the property
does not satisfy the functionality, it is debugged until it matches the intended output. This
procedure is repeated until the abstract model acquires all the functionalities of the intended
behavior. The result of this incremental approach is a compact and structured abstract model.
Whenever the model fails, the most recent addition is investigated as all previous properties

wetre well structured and tested.

This research first divides the rights allocation into four basic sub-models, that is, Replace,
Share, Merge and Revoke, and applies the XM to one model at a time. For this purpose, it
takes a model, explores its different functionalities, convert them one by one into logical
properties and incorporate into the model. At each step, it ensures that the added functionality

exhibits the desired function. After completing all the functionalities of one model, it then

52

moves onto the next one. The complete set of models are then tested and demonstrated on
both real and hypothetical online social interaction use-cases. The details of the use of XFM

for this research are illustrated in figure 2.4.

2.12 Summary

This chapter has summarized the access control literature, its evolution in design and outlines
various well-known access control models for traditional applications. It has acknowledged the
fact that access control is an important component of every computer system and is designed
against the particular requirements of the application. It has further highlighted the emergence
of various well-known requirement sets and the models based on them. This strengthens the
fact that the design and requirements of computer applications are different from each other

and one access control model cannot fit the requirements of all types of applications.

Following this basic description of access control models, the chapter further highlighted the
emergence of STS, their properties and the issues related with them. STS are based on social
requirements of physical communities and so share their inherited structure. The users’
interaction, their social circle, the desire to own and trust are some of the key features of these
STS and the access control models should incorporate these social requirements in their design
as well. After outlining the requirements of online social interactions, it has briefly described

some access control models for social networks.

As there does not exist any rights allocation model for online social interactions, the chapter
then presented some previous work on rights allocation in traditional access control models on
rights delegation, rights transfer, rights share and rights merge. The delegation work is
explored in much detail in literature and categorized into three types: machine to machine
delegation, user to machine delegation, and user to user delegation. However, other types of
rights allocations, that is, rights transfer, rights share and rights merge are not explored in

much details.

After presenting all the access control models for social networks and rights allocation models
for traditional applications, the chapter outlines the differences between their structures and
the reasons why they cannot be mapped onto the new requirements of online social

interactions. The reasons include number of users’, their interactional structure, local

53

administration, local object visibility, support for ownership and the nature of allocations. This
problem and the differences among traditional access control models and STS lead towards
the research question. Further, the constructive research methodology was presented as an
approach to answer the research question. The next chapter will cover the basic components

of an access control model based on socio-technical design.

54

Rights Allocation

~ Characteristics

—>

Framework

Worktlow

Helps to refine

Figure 2.4: Detailed illustration of the innovation phase using incemental Extreme Formal Modeling (XFM)

— Replace p| Model
I_ N ’
No
Satishied
Yes
v
| Share » Model
I_ N *
No
Satisfied
Yes
v
—» Merge » Model
S
No
Yes
v
Ly Revoke » Model
I_ B *
No
Satistied
Yes
Final Model
Use-case
Demonstration

55

Chapter 3

Conceptual Framework

o answer the questions raised in chapter 2, this chapter outlines the basic components
and the possible ways to use them. The conceptual framework is based on the socio-
technical design, which involves technical and social requirements, to design not just
what can be done but what shou/d be done. This chapter is organized as follows: first it outlines
some basic characteristics of online social interactions by generalizing the literature explored in
chapter 2. It then describes some basic concepts used in access control literature for designing
various models. This basic discussion leads to rights allocation, which introduces various
methods to allocate rights. It further presents various characteristics of rights allocation

followed by the reduction approach that provides the basis for rights allocation models.

3.1 Characteristics of online social interactions

Generalizing the work on access control models for social networks from the previous

chapter, this section picks their common characteristics. However, before going into these

56

details, it illustrates an example of a social network™ (for example Facebook), which can help

in highlighting the properties and will direct the design of an access control model for STS.

Figure 3.1 shows a simple social network where nodes are network users and lines are the
relations between them. These relationships can be of different types, for example A/ice sees
George and Frank as friends, David as family, and Bob and Car/ as colleagues. These direct

friends of .A/ice further see other users as friends, which are considered as indirect friends of

Alice.

Figure 3.1: A simple sodal network

In social terms, if A/ice owns some object, say a photo, only she has the right to manage its
access (Locke, 1963). If she then shares it based on her personal connections, it is not

necessary to map that resource to all the users beyond her social circle. This introduces the

2 Sodal Networks are purely based on sodal interactions and supportt its all three types, so an be seen as the

richest example of STS having all types of online sodal interactions.

57

concept of local visibility, which is used by modern access control models for social networks
to reduce the complexity (Carminati et al., 2009; Fong et al., 2009). In the social circle,
relationships have degrees of closeness as people relate not only to their best buddies but also
to family, coworkers, teachers and acquaintances, and access to resources is managed based on

the type of relationship with other users (J. Li et al., 2009; Tapiador et al., 2011).

Equally, sharing of the photo can take many forms as it can be A/ photo which she wants to
show her friends, it can be her photo with David on which she wants to tag him, or it can be
some campaign poster or community service message which she wants her friends to
propagate. These types of activities are supported by rights allocation, which is useful in many
situations such as backup of role, collaboration of work and decentralization of authority (Park
& Lee, 2005). In physical communities, lending a book to a friend, selling/putrchasing of car ot
house, joint ownership of bank account by a married couple are some common examples of
rights allocation. To evolve socially, a system must allow rights to be allocated, given an initial
state of just one system administrator holding all rights and can be done by involving others in

ones permissions (Gaaloul et al., 2008).
The above mentioned requirements of social networks can be outlined in details as follows:

3.1.1 Creator Ownership

In the physical society, people see objects in terms of who owns them (Locke, 1963). In
particular it is considered right that one should own what one creates, for example a painting
or poem. In STS, people create information objects by posting them, so they should own
them, that is, be able to manage their access. Essentially the privacy requirements of STS are
that if people cannot control access to what they post, they will not post, and so the system
will collapse (Mclnnerney & Roberts, 2004). The concept of ownership divides the whole
system into multiple autonomous administrative domains, managed by owners themselves.
STS are built upon the social concept of ownership, that is, every resource in them must be

owned by at least one person. Ownership can also add complexity, as in physical society it can

be sold, delegated and shared.

58

3.1.2 Freedom

In the physical world, freedom is the right to control one's body, to not be a slave to another.
If freedom online is the right to control one's online body, or persona, one should be able to
edit or delete it, yet many systems don't permit this (Lessig, 1999). A system offers freedom if
actors can remove themself from it, for example delete a Facebook wall or YouTube channel
with nothing left behind. The social logic of freedom is that one owns oneself online, that is,

an online persona does not belong to the system administrator (SA).

3.1.3 Privacy

Privacy can be defined as the right to control the access of others over ones information
(Gavison, 1980; Allen, 1988; Moore, 2003). The boundaries of privacy differ among
individuals and cultures, but share some common grounds. Due to this diversity, a system
offers privacy if actors can devise their privacy policy and the system helps them to impose it,
for example a Facebook photo can be shared with a couple of friends, with one’s whole social

circle or with the entire community.

3.1.4 Relationships

Every user in STS has a unique social circle which may consists of her friends, family and
colleagues™. This social circle is different for every user where they define their own privacy
requirements, for example a person may trust their friends more than their family and so give
them more privileges. So it cannot be system wide; ratherits scope is just within the domain of
the owner. Similarly, as people are not only connected to their friends but also with their
family, colleagues, acquaintances and others, the social circle should not be coarse but fine
grained which can be divided according to the closeness in relationship between the two users
(J. Li et al., 2009; Tapiador et al., 2011). Furthermore, as the relationship between two users
changes over time” and asymmetric in nature”, the support of relationships in social networks
should also be dynamic and asymmetric. This implies that relationships in social networks

should support unique, fine grained, dynamic and asymmetric social circles. These

% It can be extended to involve general public.
26 One may add some user as acquaintance which evolves into friend and dose friend over time.

27 Alice may consider Bob just as colleague but he may consider her as friend.

59

requirements can be met using domain based local roles where the owner configures them
according to their privacy requirements. Roles and access rights should vary by local domain,
that is, let users define local roles for their domain to decentralize resource management. As
the scope of these roles is limited to the domain, they can provide support for dynamic

asymmetric relationships.

In contrast, current access control models for social networks do not distinguish between
friends, and treat all of them with the same privacy policy, where users can share their
information either with level one or with level two members (Fong et al., 2009). Also, the
supported relationship is symmetric (Ali et al., 2007), and static in nature (J. Li et al., 2009;

Tapiador et al., 2011).

3.1.5 Objects’ local visibility

In social networks, traditional access control models face a serious scalability problem, as
potentially many more subjects must be mapped to many more objects, regardless of whether
a subject has access rights over an object or not. A special matrix is used to estimate the
relations between subjects, objects and operations by §' X O X gpr, where § is the number of
subjects, O is the number of objects and gpr is the number of operations possible on that

object. The authorization matrix

subject x object x operation... [eq.3.1]2

is therefore huge and diverse (Kerschbaum, 2010). For example, currently Facebook reports to
have more than 955 million active users with 90 resources added by each user, every month™.
In a traditional Discretionary Access Control (DAC) model, this is over 246 trillion access
control entries per month, where every request must traverse the whole list. One often
proposed solution is Role-Based Access Control (RBAC) (Sandhu et al., 1996), which succeeds
in reducing complexity (Chung, Choi, Lee, & Rhyoo, 2007; H. Lee, K. Lee, & Chung, 2000;
Wu, Ke, & Tzeng, 2008) by dividing the authorization matrix using a level of indirection via

the role concept:

subject xroles role x object % access ...[eq.3.2]

28 Facebook statistics page, http://www.faccbook.com /press/info.php?statistics, acessed on 30th July 2012.

60

The subjects are mapped to roles which are assigned access permissions over objects. In this
way, the access permissions for thousands of subjects are reduced to hundreds of roles.
However, RBAC cannot be used for STS due to system wide roles, and their global
management. Also as discussed eatlier, online social interactions need the ownership support
while RBAC has proved to be even more expansive than DAC if ownership is supported
(Sandhu & Munawer, 1998a).

Current access control models for STS introduced the local visibility of objects by introducing
social circles. Users mostly share their information among their social circle, so it is not
necessary to map ones resources with all the users in the system. This reduces the
authorization matrix, as the visibility of an object is not across the whole system but limited to
the social circle of each owner. This limits the number of subjects having potential access over

resources:

Potential Users = Subject N Social Circle...[eq.3.3]

where subject is the number of users present in the system, social circle is the number of users
connected to the owner, and potential users are the users that can request a resource from the
ownet.

The concept of restricting the visibility of objects to the social circle of owner is quite useful in
reducing the complexity of traditional access control models. As objects are not mapped to the
whole user set of the system rather to only a small subset of it, the visibility of resource

reduces to local roles. Thus, the authorization matrix for the whole system is reduced to

N x ¥ =z
Z Z Friends; % Z Objectsy % Z Operations;| ... [eg. 3.4]
=1|;=1 k=1 = :

i

L
where N is the number of total users present in the system, while x, y and g are the number of
friends, objects and operations that exist in one’s social circle. This local visibility reduces the
access control entries from 246 trillion to 33 trillion for the above mentioned data, and is

illustrated in figure 3.2.

61

Comparison of Access Control Entries

300

*
250 -
=
*
2 200 p
= »
£ 150
7 Lt = # = Traditional Model
-E 100 Pad —@— Current Models
w ‘*’
50 5

100 200 300 400 500 600 700 800 5001000

Users [in Million)

Figure 3.2: Aaess control matrix magnitude for different models based on eq. [3.1] and eq. [3.4] for Facecbook
statistics

3.1.6 Object classification

Most of the current access control models treat objects as independent entities, which are
managed separately regardless to their disclosure level. This approach is quite simple but lacks
the ease of use and access efficiency which may result in poorly configured privacy policies.
On the contrary, most social networks have different types of resources where some are more
private than others, like a family photo as compared to activity status. So resources of the same
disclosure level can be grouped into same clearance class”, which can be given a privacy
classification, for example to let only family view the family photo album. The classification of
objects has only explored in some access control models such as (Hart et al., 2007), where
access control decisions are based on the contents present in an object. Creating owner
oriented object classes to define privacy levels reduces rights management complexity and

increases usability.

3.2 Access control specifications

As most of the online social interaction requirements have been outlined based on socio-
technical design, this section now gives the basic understanding about access control
components. The standard view point of an access control system is a composition of set of

subjects, set of objects and a set of operations (Lampson, 1972).

2 For example, a photo album.

62

3.2.1 Actors

Any human interaction system must contain users (or subjects) that represent people or a
group of people who exist in that system (Whitworth, de Moor, & Liu, 2006). They may be
referred to people interfacing with a single computer system (Ferraiolo et al., 2003), or
communicating with multiple communication forums (Kling, McKim, & King, 2003). The
relationship type can also be multiple as it may be an instance of uset’s particular login
(session), it may be a computer agent working on user’s behalf, or a user associated with a role

(RBAC) (Sandhu et al., 1990).

This research uses the term ‘actors’ rather than ‘users’ or ‘subjects’ for several reasons. First, a
user is characterized in relationship to a particular system, whereas an actor may participate in
multiple communications forums (Kling et al., 2003), such as an e-journal, an e-publisher, and
several conferences. Second, the term ‘user’ generally implies a single type of relationship with
the system, whereas an actor may play multiple relationships (Kling et al., 2003), and he may
have conflicting or ambiguous requirements about the actions they perform (Lamb & Kling,
2003). For example, a reviewer in an e-journal system could also be an author. Also, subject is
a bit more system term, where it means any computer process” requesting a resource (Gasser
& McDermott, 1990), while user is more HCI term which refers to users’ choices, their
cognitive process and other HCI factors (Myers, 1998). However, actor is a more STS term
where an actor exists within a community and can have many types of relationships in a

system.

In general, the actor is any entity that can participate in a social interaction on a user’s behalf”

and can be of two types:

a) Persona: An online persona represents an offline party, for example an avatar, profile,
mail account, Facebook wall or YouTube channel can represent an offline person,
group or organization. An online persona is activated by a logon operation, which
equates it to the offline party and makes that party accountable for the persona’s

actions. An online computer agent can act for a group, like installation software for a

30 May be on uset’s behalf.

31 An actor needs not be a person, for example a program can be an agent.

63

company, but social acts must ultimately trace back to people and online is no
different”. If an installation misleads, we sue company directors not software s,

b) Group. A set of personae acting as one.

3.2.2 Objects

Objects are passive entities that convey meaning, that is, evoke cognitive processing, for
example a photo. They are manipulated by operations (Lampson, 1969), and can be

categorized into items and spaces.

3.2.2.11tems

An item is a simple object with no dependents, like a board post. It can be viewed, edited or
deleted. If the system object hierarchy was a tree, its leaves would be items. Items can be of

different types, for example:

a) Comment. An item whose meaning depends on another, for example ‘I agree’ makes no
sense without a source item.
b) Message: An item with sendet/receiver, for example an email.

c) Vote/Like: An item that conveys a choice position to a response set.

3.2.2.2 Spaces

As leaves need branches so items need spaces to carry them, for example an online wall that
accepts photos or notes. In information terms, a space is a complex object with collection of
dependent entities. It can be viewed, edited or deleted as an item, but can also contain other
objects, for example a bulletin board. Spaces within spaces give object hierarchies, with the

system itself the first space.

A spaceis a parent to any child entities it contains, as they depend on it to exist. Deleting a space
deletes its contents for that reason, for example deleting a board deletes its posts. Allowing
spaces improves access efficiency, for example one can deny access to every object in a space

by denying entry to the space. An access control system can assume that every entity has a

32 Registeting by a nickname online instead of one's real name denies acountability offline but not online, for
example a banned EBay seller name loses its online reputation.

3 A person who acts as an agent an still be held accountable, for example if told to shoot someone and does do.

64

parent space’M. Its ancestors are the set of all spaces that containit, up to the system itself, as the
first ancestor. Equally the offspring of a space are any child objects it contains, their children,

and any other derived children.

3.2.3 Operations

Operations are actor initiated methods that target information entities. They can be clustered
for access control purposes, that is, operations of the same type can be combined to simplify
the design of an access control model, for example edit and append can be grouped under one
set, edit. As variants of a set present the same access control issues, so to resolve one is to
resolve all and an access control model that can manage one can manage all. Following are

some of the common operation sets for online objects:

a) Create: Create adds a new entity, for example creating a Wikipedia stub for others to
edit. Duplicate™ is a variant of create.

b) 1View. Operations like view are null acts that do not change the information stored in
the target but only allow others to view it.

c) Edit: 1t is the operation to change existing entity values. It has some variants like edit
alters entity values, append extends them, version edits with backup, and Wikipedia's
revert is the inverse.

d) Delete: It is the operation to remove the object and all the rights associated with it. Its
variants include delete, destroy and so on, in a way that delete flags an entity for
destruction, undelete reverses that, and destroy kills it permanently.

e) Process (execute): 1t is the operation to extract the basic information related to an entity

to do the statistical analysis without revealing the identity of the entity.

3.2.4 Rights

In physical society, rights are defined as entitlements to perform certain actions or be in certain
states (Encyclopedia of Philosophy, 2007). Communities, by norms, laws or culture, grant

citizens rights, or social permissions to act. Rights reduce physical conflict, as parties who agtee
24 P g phy >, aS P ar

3 Except of course for the system itself.

% Creating with same parameters values (copy and paste).

65

on rights do not have to fight. Rights arise when social requirements manifest as personal

cognitions, which manifest as informational rules, which manifest as action directives.

Physical society specifies rights in contracts, laws and customs, but in online society a right is a
stored access control permission. Online, the access control program 7s the law (Lessig, 1999),
but it can still act on behalf of a community, that s, it need not be a tyrant. A social right does
not require the act it allows, for example the right to sue does not force one to sue. Likewise,
access control model for online social interactions is about defining legitimate choices —
individuals still choose what they do. Access control defines what online actors w# do not
what they must do, so is today more about access than control. It gives a rights context, but
how people actually act depends on bias, habit, reward and the acts of others, as in any society

(Rand & Branden, 1964). A right transmitted or stored is often called a permission.

A right is a system permission for actor () to apply operation (gpr) to object (O) (Whitworth
& deMoort, 2002, 2003), or in symbolic terms:

Right(Actor, Object, Operation) or R(A,0,0pr)..[eq.3.5]

The above equation can be generalized to write:
Right(Actor, Entity, Operation) or R(A,E, opr) ...[eq.3.6]

where actoris any social entity, for example a persona, the entity can be an object, an actor or
a right, and the operation is any that is available to that entity, for example view/edit for items
and enter/exit for spaces. It means that rights are not only used to apply operations on objects,
but can also be used to apply operations on actors, or rights. So an actor can act on itself using
a right which can be owned by him or the system administrator™. Also a right can be used to

manipulate a right which is often referred as meta-right in literature.
The above discussion gives the following definitions:

a) Right: A system permission for an actor to operate on an entity. A right can be

categorized in one of the following:

3 For example, some systems don’t allow the users to delete their profile.

66

i. Use rights”’: Rights to act on object or actor entities.
1. Meta-rights: Rights to act on right entities.

3.2.4.1 Meta-Rights®

A meta-right is the right to allocate a right, and defines who can operate on rights entities
within the access control system (Dewan & Shen, 1998; Indratmo & Vassileva, 2007; Mattas,
Mavridis, Ilioudis, & Pagkalos, 2006). Meta-rights are absolute in nature as there are no meta-

meta-rights, and they can use to operate on entity rights as well as themselves.
In other terms:

MR(Actor, Right, Operationgpcarion) - |£G- 3.7]

where MR is meta-right and the entity acted on is a right to an entity.

This is the same form as equation [3.6] but the entity acted on is now a right, and A/location is
any operation on a right. While dealing with modification of rights (and meta-rights), there are

two basic questions that need to be answered:

a) Who can modify a right?
b) How a right can be modified?

The next section — authorization authority, answers the first question, while the second

question is addressed in section 3.2.3 (operations on rights).

3.2.5 Authorization authority

This section discusses the different possibilities of authorization authorities and chooses what
is more appropriate for online social interactions. There are two basic types of authorization
authorities, which are considered appropriate for most of the computing applications, that is,

central administration and ownership.

37 Use rights are rights to use an object/actor (for example view, edit, delete) and are sometimes referred to as
simple rights — operations on objects.

38 Simple rights are already discussed as rights over object. Now this section discusses meta-rights.

67

3.2.5.1 Central administration

Central administration allows the organization to manage the access rights for all the users in

the whole organization through some centralized mechanism. The system has one or more
. . 39

system administrators” who control every system resource and manages access for all the users

in the system over them. It also covers the cases where some predefined rules compute the

access decision.

Access control model that support central administration normally falls in the broader category
of Mandatory Access Control (MAC) and has many useful practical scenarios. For example,
access control of this sort is normally used in organizations (Brewer & Nash, 1989), military
(Clark & Wilson, 1987; TCSEC, 1985), health services (Morchon & Wehrle, 2010) and many
others (Jajodia & Sandhu, 1991; Sandhu & Chen, 1998; Qian & Lunt, 1990).

3.2.5.2 Ownership administration

This type of authorization is based on Locke’s idea that one should own what one creates,
whethera book, a painting or a crop (Locke, 1963). It allows the creator of a resource to have

all the rights over it including the right to manage those rights, that is, meta-rights.

Access control model that support ownership normally falls in the broader category of
Discretionary Access Control (DAC), which was developed for personal applications and held
user responsible for managing the security of their data. It also has many useful practical
scenarios like operating system (Belani et al., 1998), peer to peer file sharing (Bram, 2003), grid
computing (Thompson et al., 1999) and many more (Freudenthal et al., 2002; Kerschbaum,
2010).

The physical society expresses rights in terms of ownership (Freeden, 1991), so specifying who
owns what online can specify rights in a way that designers can support and users can
understand (Rose, 2000). People want to contribute personal stuff without wortying about its
unauthorized disclosure. So, everything posted on a STS should be owned, and conversely if
people own their posts, they should manage their access. It is also one of the important

features of online social interactions as discussed in section 3.1.1. Ownership of newly created

% Secutity officers.

68

online objects is critical to STS success and this research will use owner as the authorization

authority for the same reason.

3.2.6 Operations on rights

As a single right consists of three variables, that is, actor, entity and operation by equation 3.6
Right(Actor, Entity, Operation) or R(A,E, opr)
it gives that modification of a right includes:

a) Modifying the entity: As an entity can be an object, an actor or a right, it can be

modified by:

1. Modifying the actor at the entity location means modifying the properties
associated with the online persona.

ii. Modifying the object means modifying the object set for the right or the
properties associated with an object.

ii. Modifying the right at the entity slot means changing its actor, entity or

operation slot. It again has all the three levels®.
b) Modifying the actor set of a right over an object™

1. Replacing an actor with another for a right over an object.
ii. Adding some actor to the right and the rights of existing actors do not change.
iii. Merging the rights of all the existing actors for an object.

iv. Removing some existing actor from a right over an object.
¢) Modifying the operation that is applicable to that entity
i. Addition/removal of some operation associated with a particular type of entity.

This research does not deal with the modification of operations as they change according to

the object type, and new operations came with new object types. For example subscribe

40 1¢’s logical recursion, consider modification of actor set for assigning rights.

#'Which deals with allocating rights to actors, that is, the meta-rights.

69

operation is associated with mailing lists and event subsctiptions, like /unlike operation is used
over photos, videos and status, and announce operation is used when you want everybody in

your friend list to know about some special event.

Besides, this research does not deal with the modification of object in the entity slot of the
rights triplet as it is associated with modifying its properties, which are different for each
object type. For example, properties of a video, picture and comment are different from each
other and depend on the application type. Also, it does not deal with the modification of actor
in the entity slot of the rights triplet as modifying the actor properties is associated with
particular actor type, for example the properties for email profile, Facebook personae, and
YouTube channel are different from each other and should be explored for the specific

application type.

However, this research deals with various ways to modify the actor set of a right, that is, ways
to assign rights”. As discussed eatlier, the actor of a right can be modified in four ways: a) by
replacing the existing one, b) by adding another actor without modifying the rights of already
existing ones, ¢) by merging the rights of the entire existing actor set, and d) by removing some
actor from a right. It is also discussed that rights can be categorized into two different types,
that is, use-rights and meta-rights. So for completeness, this research proposes the above
mentioned four models of modifying the actor entity for use-rights as well as for meta-rights,
resulting in eight different rights allocation models. The details of these models will be

provided in the subsequent chapters, but their introduction is as follows:

3.2.6.1Rights allocation

If the owner” agrees to give a right to another actor who agrees to take it, along with its
obligations, the system should be able to allocate the right. There are four basic types of rights

allocation which can be classified as:

4 Rights allocation.
43 As this research aims to design the models for online sodal interactions, the administrative authority is the

owner, who is the actor having all the meta-rights over the object.

70

3.2.6.1.1 Replace
It allows replacing the current actor for a right overan object with a new one. After the replace
operation, the previous actor cannot exercise the right but only the new actor can exercise it,

for example replacing the head of department with another person.

3.2.6.1.2 Share

It allows adding a new actor to the already existing set of actors for a right over an object.
After the share operation, multiple actors™ can exercise the right without interfering each other
rights and can act alone as if they owned the right exclusively, for example a couple's bank

account where both can withdraw all the money.

3.2.6.1.3 Merge
It allows merging the rights of multiple actors over an object. After the merge operation, all
the actors need to collaborate together in order to complete the task, for example cash

withdrawal from the bank where cashier and manager both completes the request.

3.2.6.1.4 Revoke

It allows removing the existing actor from a right over an object. After the revoke operation,
the actor who was previously assigned the right no longer able to exercise it. It has different
characteristics and different outcomes if applied after all the above three operations, and so it

is discussed under each of these operations.

Also as discussed eatlier, there are two types of rights, that is, use-rights and meta-rights, it

gives the table 3.1 in the context of the literature:

Use-Rights Meta-Rights
Replace Delegation Transfer
Share Rights Sharing Several Ownership
Merge Separation of Duties Joint Ownership

Table 3.1: Rights Allocation for use-rights and meta-rights

4 The previous and the new.

71

3.3 Characteristics of rights allocation

Based on the above discussion, this research proposes the rights allocation models to deal with
the modification of actor entity in the rights triplet for use-rights and meta-rights. This section
now presents some characteristics for the basis of the rights allocation models. Some of these
characteristics are explored in various studies in literature (Barka & Sandhu, 2000a; L. Zhang et
al., 2003; X. Zhang et al., 2003) and are used here due to their helpfulness in understanding the

nature of the models. The description of these characteristics is as follows:

3.3.1 Consent

This characteristic deals with whether the consent of the owner and beneficiary is required for
an allocation or not. There are two possible design options for this characteristic: several
consent — only the consent of the owner is required, and joint consent — the consent of both
owner and beneficiary is required. The case when the allocation can be done only with the
consent of the beneficiary is ignored as it would reduce the community trust on the system,

which is quite important for the success of a STS.

Online scenarios where the owner can allocate the rights without the consent of the
beneficiaries can be seen in giving view rights to general public over YouTube videos. The
consent of both the owner and the beneficiary is required in cases when allocating rights also
impose some responsibility to the beneficiary, for example assigning reviewers to papers in a
conference system requites their consent. Also, by taking the consent, the owner and/or the
beneficiary agree on the rules for the use of the object. These rules (allocation contract) must
be met under all circumstances and failure to do so may result in revocation of rights from the

beneficiary.

3.3.2 Totality

Totality of rights was first introduced in the context of machine to machine delegation, where
it deals with delegating a subset of access rights from one local process to another remote
process (Gasser & McDermott, 1990). In the context of user to user allocations, it becomes a
characteristic that deals with allocating the proper/improper subset of rights over
propet/improper subset of authotized resources (Barka, 2002; Barka & Sandhu, 2004, 2007; X.
Zhang et al., 2003; Ye et al., 2005, 2000).

72

This characteristic refers to the amount of rights that can be allocated to another actor, and
has two design options: total and partial. Total rights allocation means allocating the complete
set of rights associated with an object, while partial allocation deals with allocating a subset of
rights over an object. For example on Facebook, it is possible for the owner of a video to give
only the view rights to friends who cannot vote or comment on it, in which case the allocation
is partial, or to give all the rights over the video to friends, in which case the allocation is
total®,

In rights allocation, totality can be discussed in two ways: a) an actor can allocate a subset of
his rights over all his resources, or b) an actor can allocate all of his rights over a subset of his
resources. This gives four possible cases for this characteristic: a) total resources with total
rights, b) partial resources with total rights, c) total resources with partial rights, and d) partial

resources with partial rights.

3.3.3 Cardinality

Cardinality of an allocation refers to the number of beneficiaries in a single rights allocation
operation, who can simultaneously hold an allocated right (Barka & Sandhu, 2000b; Y. Liu, Yu,
& Hao, 2009; Z. Zhang et al., 2008). There are two possible design options: single-cardinal
where a right over a particular object can be allocated to a single beneficiary at a time, and
multiple-cardinal where a right over a particular object can be allocated to multiple
beneficiaries at the same time. For example, the conference chair can assign a single person as
reviewer over a research paper where the cardinality is singular, or he can assign multiple

reviewers over the paper where the cardinality is multiple.

3.3.4 Monotonicity

This characteristic refers to the state of rights46 of previous actors after rights allocation”’
(Barka, 2002; Crampton & Khambhammettu, 2006, 2008; Y. Liu et al., 2009; Z. Zhang et al.,

2008). It has two design options: mutual exclusive and mutual inclusive. Mutual exclusivity

4 Here the author is not concerned about all the possible operations on a video posted on Facbook wall, but
only cnsidered view, vote and comment for illustration purpose.
4 How much rights remain with whom.

4 Whether the previous actor can still exerdse the right or not.

73

refers to the state where the previous actors do not maintain their rights over the object after
the allocation and the rights of the new actor replace the rights of the previous actors over that
object. On the contrary, mutual inclusivity means that the allocation makes no change in the

state of rights of the previous actor, who continue to exercise it along with the new actor.

3.3.5 Depth

Depth of an allocation was first explored in (Gasser & McDermott, 1990), in the context of
machine to machine delegation among processes, where it deals with the number of

connections between the local machine and the remote setver.

With further evolution in the context of user to machine and user to user allocations, this
characteristic refers to the ability of the beneficiary after getting a right to further allocate it or
not and is explored in some well-known studies (Abadi et al., 1993; L. Zhang et al., 2001, 2003;
Varadharajan et al., 1991; X. Zhang et al., 2003; Z. Zhang et al., 2008). It has two possible
design options: chain depth where the beneficiary can pass the right to another actor, and
single pass where the beneficiary cannot pass the right to someone else. For example,
purchasing a house allows the new owner to further sell it so it is chained depth, while renting
a house does not allow the tenants to further sub-rent it in which case it is single pass. This
characteristic is also one of the key differences between use rights and meta-rights, as
allocating someone use rights does not allow them to further pass it on, whereas allocating

meta-rights allow them to further pass the right to other actors.

3.3.6 Revocation

Revocation is a process by which rights are taken back from the beneficiary (Barka, 2002;
Barka & Sandhu, 2000a; Crampton & Khambhammettu, 2006, 2008). Revocation of rights is
of the same importance as its allocation because granting rights to actors are not static but

dynamic in nature. There are three possibilities associated with revocation of a right.

a) Self-Revocation: The owner himself revokes the rights from the beneficiary based on
inappropriate use of the allocated right or at will.

b) Time-based Revocation: At the time of allocating the right, the owner can assign a
time-stamp with the right for the proposed lifespan of the allocation. When the time-

stamp expires, the right is automatically revoked from the beneficiary.

74

c) Rule-based Revocation: At the time of allocating a right, a set of rules are defined for
the use of right, which are known as the allocation contract. If the beneficiary violates
any of those conditions, the right is revoked automatically and they cannot further

exercise it.

3.4 Reduction approach

If one tries to enforce all of these characteristics with all the possible design options, the result
would be quite enormous and may not be possible to cater in any practical model. So, to
reduce the total number of possible combinations, this research uses socio-technical design to
identify a systematic reduction approach, depicting as a tree structure, by eliminating the
branches where some particular design option is not very useful. The first partitioned of the
tree is based on discretionary/mandatory domains, but as online social interactions are based

on ownership, the tree has overlooked the mandatory domain.

The first practically visible distinction is of monotonicity which divides the whole tree into
mutual exclusive and mutual inclusive sub-branches. Further, both the sub-branches are
partitioned based on cardinality, totality, consent and depth. Some of the tree branches are
eliminated due to lack of interesting real world practices and the remaining branches lead to a
framework, which is used as a basis of different rights allocation models for online social

interactions. The reduction approach illustrated as a tree structure is shown in figure 3.3.

3.4.1 Mutual exclusive allocation

This branch deals with cases when only the owner or the beneficiary can exercise a right in a
given state of the object at a particular time. It is further divided into two sub-branches with

respect to cardinality: single-cardinal and multiple-cardinal.

3.4.1.1 Cardinality

In mutual exclusive side, the multiple cardinality of an allocation is not very practical in today’s

. - 48
online environment

b

and so the multiple-cardinal sub-branch is eliminated. However, the

single-cardinal, mutual exclusive sub-branch seems more useful as it deals with cases where

4 If aright an be given to multiple actors at the same time then it can also be kept by the owner.

75

once a right is allocated to one actor, it cannot be allocated to another without revoking it
from the first beneficiary”. This has many useful scenarios in STS, for example allocating the
copyright of an accepted paper to only one conference. This sub-branch is further divided into

two sub-branches with respect to totality: total and partial.

-~ Centralized administration Rights Allocation
is not considered as STS .

5 operate on ownershi -~ :

Mo P p Ownership

Mutual Exclusive Mutual Inclusive

~ F
~ -
~ s
~ ”
~ ”
-~ rd

A L
Cardinality(S) Cardinality(M) Cardinality(S) Cardinality(M)

5 (Eliminated) (Eliminated) ,
¥ 4
: » ™ s ,
~ /

Y &
Partial Total Total Partial
7 \ (Eliminated) (Eliminated)
’I
s
rd
'/
Severally Jointly Severally Jointly
(Eliminated) /\ / s /-\
~ ~ A
~ ~ ~
b A A
\\ » ~ \n
Single pass Chain depth Single pass Chain depth Single pass Chain depth
(Eliminated) (Eliminated) (Eliminated)
Replace Share Merge
F Y A r 3

Revoke Revoke Revoke

Figure 3.3: Reduction approach illustrated as a tree structure outlining various rights allocation models for online
sodal interactions

i

3.4.1.2 Totality

Total allocations are less useful in current online social interactions as allocating the complete

set of rights gives ultimate control to the beneficiary. Also if it is desired in some cases, it can

4 Renting an apartment to only one tenant is a physical wotld example.

76

be achieved using multiple partial allocations. So the total sub-branch is eliminated in the
reduction tree. However, the partial, single-cardinal, mutual exclusive allocation is more useful
in different online social interaction scenarios as users normally give some rights to the
beneficiary rather than all rights. The copyright example also supports this as it only gives the
right to publish the paper but not to edit it or to remove the authot’s (owner) name from it.
This sub-branch is further divided into two sub-branches with respect to consent: several

consent and joint consent.

3.4.1.3 Consent

If rights are allocated to the beneficiary in a mutually exclusive manner, where no other actor
can exercise it, the consent of the beneficiary is required. Also, the ownership principle directs
that the owner’s consent is always considered, so their consent is also required, so the joint
consent sub-branch is taken while several-consent sub-branch is eliminated. The joint consent
sub-branch is further divided into two sub-branches with respect to depth: single-pass and

chain depth.

3.4.1.4 Depth

Chain depth allows the beneficiary to further pass on the rights to others, which is a key
distinction between use and meta rights. It also involves the discussion of the administration
of rights, so it is ignored in the framework and only the single pass option is explored™. So the
mutual exclusive allocation branch supports the rights allocation models that work with single

pass, joint consent, partial and single-cardinal allocations.

3.4.2 Mutual inclusive allocation

This branch deals with cases when both the owner and the beneficiary can exercise a right in a
given state of the object at a particular time. This assumption gives many useful scenarios like
YouTube videos, Wikipedia articles, and sharing of one research paper among various
reviewers. Itis further divided into two sub-branches with respect to cardinality: single-cardinal

and multiple-cardinal.

50 Tt will be discussed later, after outlining the use and meta rights models (section 7.3).

77

3.4.2.1 Cardinality

In mutual inclusive side, the single cardinality of an allocation is not useful at all as if a right
can only be given to a single user then it cannot be mutual inclusive, so the single-cardinal sub-
branch is eliminated. On the other hand, the multiple-cardinal, mutual inclusive allocation
seems more useful as it deals with cases when a single right over an object is allocated to
multiple actors at the same time. This sub-branch is further divided into two sub-branches

with respect to totality: total and partial.

3.4.2.2 Totality

Total allocation sub-branch is less useful in online social interactions as allocating the complete
set of rights gives ultimate control to the beneficiary, and having multiple-cardinality makes it
even worse. So the total, multiple-cardinal, mutual inclusive sub-branch is eliminated in the
reduction tree. However, the partial, multiple-cardinal, mutual inclusive sub-branch is more
useful in different online social interaction scenarios as users normally give some rights to the
beneficiary rather than all rights. The view right example of YouTube video also supports this
as it only gives the view right over videos to the general public but not the right to edit or
delete it. This sub-branch is further divided into two sub-branches with respect to consent:

several consent and joint consent.

3.4.2.3 Consent

Both of the options in this sub-branch are often used in current online social interaction
scenarios, like viewing the video not requires the joint consent while acceptinga paper at some
conference requires the joint consent of all the reviewers. These practical opportunities lead
this research to take both of these sub-braches into account for rights allocation framework
for online social interactions. Both of these sub-branches are further divided into two sub-

branches with respect to depth: single-pass and chain depth.

3.4.2.4 Depth

Again, as the depth of an allocation relates to the discussion of meta-rights, the chain depth
option, where the beneficiary can further pass on the right, is ignored. This gives that both the

mutual inclusive sub-branches operate on single pass.

78

The above discussion provides two different mutual inclusive sub-branches, where the rights
model should support single pass, several and joint consent, partial and multiple-cardinal rights
allocations. This gives three major rights allocation models (Replace, Share and Merge) as

illustrated in figure 3.3.

3.5 Chapter summary

This chapter has outlined the basic components for this research. It has explored the
ownership and relationship properties of online social interactions from the literature, and has
discussed some basic access control components and their semantics in the STS environment.
It has clearly distinguished two types of rights and four basic types of operations that are
possible on those rights, to illustrate the scope of this research. It has further explored various
characteristics of rights allocation and has outlined a framework for online social interactions
based on socio-technical design. This framework will be used in the later chapters to define the

models.

79

Chapter 4

Social Access Control Model

his chapter outlines the basic access control model for online social interactions based
on the properties explored in the previous chapter. This social access control (SAC)
model needs to support ownership, local administration, relationships and object
classification. This chapter is organized as follows: First the ownership framework and its
semantics have been outlined along with role assignments and initial space configurations.
Further various components of the model are presented followed by its logical definition and
the grant process. This social access control model will be later used as a basis for various

rights allocation models.

4.1 Ownership framework

To create an information object from nothing is as impossible in an online space asitisina
physical one. Creation cannot be an act upon the object created, as it by definition does not
exist before it is created. Likewise, an actor cannot request an access control permission to
create for an object that does not exist yet. Also, to create an information object its attribute
structure must already be known, that is, exist within the system. To be consistent, creation is
an act upon the system, or in general, an act on the space containing the created object. This

gives the design principle:

80

P.4.7°": Creation is an act on a space, up to the system space.

It is well defined as a system always has some space, and the system itself is the first space.
Creating is also an act upon a space because it changes the space, as it now contains the
created object. If creation is always an act upon a space, it follows that the right to create in a

space belongs to the space owner:

Rightt—mﬂm{ﬂwnergpmgﬁpacej Gpe:r"ationﬂmﬂm}... [eg.4.1]

where Space is the object, Owner y,,,1s the actor who has created the space, while Operation ,,,,is

the operation performed on that space.

This allows an access control system to be initialized with a system administrator (SA) owning
a system space with all rights, including create rights, which then evolves into a community as
the S.A gives rights away. To create a community of others, one must give rights away (Gaaloul

et al., 2008).

The logic can generalize to any space — the right to create in the space is initially allocated to
the space owner who can allocate it to others who enter the space. For instance, to create a
board post, YouTube video, blog comment or conference paper requires the board, video,

blog or conference ownet's permission.

4.1.1 Role assignment

If every object is created in a parent space and can contain other objects as its children, it
requires some generic roles associated with every space. Following are the roles that can be

assigned when an entity is created:

4.1.1.1 Owner

Owner role is associated with every object and has all the use-rights and meta-rights over the
object. This conveniently resolves the issue of how to allocate the rights to newly created
object — they are allocated to its creator, including meta-rights. Create then immediately gives
the right to edit which is useful as create sets no new object values. Yet it is not what must

happen — a technical program can create an information object however it likes, for example

51 Should be read as P(Prindple). 4(Chapter number). 1(Prindple sequence number within the chapter).

81

give its ownership to the system administrator as in traditional applications. Creator ownership
is a requirement for social success not a technical necessity. This gives the access control

design principle:
P.4.2: The creator of new entity should immediately gain all rights to it.
As the owner role gets all the rights over the object, it gives

Rolegymer = (Owner, Object, Operationgy) ... [eq.4.2]

where Objectis the object thatis created ina space, Owneris the actor creating the object, while

Operation,,is the grant for all operations that can be performed on that object.

4.1.1.2 Parent

The parent role is assigned to the owner of the parent space where the object is created™ As a
created entity becomes part of the space it is created in, it should be visible to its parent space
owner who is accountable for their space™. By the same logic, an entity should be visible to all

its parents, giving the design principle:
P.4.3: A space owner should have the right to view/ delete any offspring.
It gives:
Rolep pen: = {Gwne:r"s.mm,ﬂbject, view [deiete} ..[eg.4.3]

where Object is the object that is created in the space, Owner g, is the actor created the space,
while view/delete are the operations granted for the role. A posted conference paper could be
visible to its conference, track and mini-track chairs, but not to other track or mini-track

chairs. Parents may receive notifications of new additions.

4.1.1.3. Offspring

The offspring role is assigned to the owner of the child object in perspective of the owner of

the space. As the child has already entered its parent space, they can view whateveris displayed

52 1tis arole from the perspective of the owner of the object.

5 Acoountability also allows the parent to delete the objects (or restrict its visibility) created in their space.

82

in it, that is, child can always see the space they are in. By extension, they can also enter any

parent space as they are already in it, giving the access control design principle:
P.4.4: An entity owner has the right to enter its parent.

For example, adding a paper to a mini-track should let one enter the mini-track, track and

conference spaces to view whatever is displayed there. The offspring role is:

Rolegssopring = '[Gwnerﬂff_ﬂ,mg,ﬂbject, E‘nter} . 4.4]

where Objectis the object that is created in the space, Owner o, is the actor created the child

object, while Enferis the operation granted for the role.

4.1.1.4. General public

A space owner can create a local public role, to define what others can see or do in the space:
Role; ocoipubiic = (LacaiPubiiq Space, Gpemtmnmy} .. |2q.4.5]

where LocalPublicis the actor visiting the space, while Operation ,, is any operation granted for
the role by the space owner. Actors in a local public role can be set manually by the owner, as
friends are assigned, or set to a general public list given by the system. A space owner can
grant any right they own to their local public subject to conditions, for example Wikipedia

create condition is to allow public edits.

A complete list of rightss4 for various roles associated with the created object is given in table

4.1.

Parent Owner Offspring G. Public
UR(V, D) UR(V,D,E) UR(V) D/C
MR(V,D,E)

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively

D/C represents don’t care and depends on space configuration for G. Public role

Table 4.1: Right for different roles assodated with the created object

5 This dissertation has taken these rights as the general common subset for most applications, see CRUD

(Create, Read, Update, Delete) desaiption in the context of software engineering.

83

4.1.2 Space initial configuration

These conditions are applied when a space owner assigns various rights in his space to

different default role set, where they can limit:

a)

b)

Object hpe. The space owner may limit the object type created, for example in a
conference, the right to create paper in a track is not the right to create a mini-track.
Operations. The operations allowed on created objects, for example a comment is not
usually editable once posted but ArXiv lets authors edit publications.

Exclusivity. Who can access created objects, for example journals give authors exclusive
edit rights while Wikipedia lets anyone edit any creation.

Visibility. Who can view created objects, for example bulletin boards let you see what
others submit but conferences do not until the review phase is done.

Defanlts. Space owners set created entity default values.

Rights of Roles: The default set of rights associated with each role, for example YouTube
allows general public role to view the video, while Wikipedia allows them to edit the

articles.

A space owner can assign creation rights as needed, for example to set vote results to only

show to people who have voted, to avoid bias.

4.2 YouTube create process demonstration

Technically, creating an entity is simple — a program just creates it, but socially adding to

anothet's space is not a one-step act, for example adding a YouTube video involves:

)
b)
0
)
0
f

Registration. Creating a YouTube public role persona.
Entry. YouTube allows public entry, if not banned.
Creation. YouTube lets the public role upload videos.
Edit. One gets edit right to title, notes and properties.
Submit. To submit it to the public view.

Display. The space displays it so the public sees it.

In this model, YouTube gives create video rights to anyone who has registered in the public

role (a). They enter the YouTube space (b) and create a video by uploading or recording,

84

which they own (c). They can then in private view it and edit details (d). At this point, the
video is visible to themselves and administrators but not to the public, and they can still delete
it. The video is then submitted to YouTube for display to its public (e), which usually occurs
quickly as YouTube gives display rights (f). Note that create, edit and display a video are
distinct steps. As YouTube only gives display rights, it can still reject videos that fail its
copyright or decency rules by taking the rights back. This rejection is not a delete, as the video

owner can still view, edit and resubmit it.

In contrast, a purely technology based system might let space owners delete items at will.
Ignoring creator ownership would discourage social participation and the system might fail
socially. The above logic generalizes easily, for example a YouTube video is itself a space with
dependent comments and votes. YouTube is consistent and fair as the same principles apply
when the video creator becomes a space owner. They can choose to allow comments or votes
on their video, that is, they can grant rights to their domain space, just as Facebook citizens do.

STS succeed by allocating social rights legitimately (Whitworth & deMoor, 2002, 2003).

4.3 Social access control model

From the previous discussion, it is clear that access control for STS should support the basic
requirements of ownership, dynamic asymmetric relationships, local administration, local
visibility and object classification. This section now outlines the distributed social access

control model for STS based on the above mentioned concepts.

The ownership resolves the issue of who will manage the rights over online objects. By
extension, it also resolves the issue of the ownership of the personae. In the physical world,
freedom is the right to control one's body, to not be a slave to another. If freedom online is

the right to control one's online body, or persona, one should be able to edit or delete it.

Further local visibility demands to restrict the visibility of objects to some virtual domain. All
the objects by one owner can be collected in a domain, and categorized according to their
privacy level. These domains can be locally administered by their owners who are responsible
for managing the rights of other users over their objects. Relationships can also be managed
through domain based roles that are administered by the owners. These domain based local

roles provide fine-grained control over resources and their access. To make it asymmetric, two

85

unidirectional information objects can be stored in each domain accessible and modifiable by
each owner. The introduction of unidirectional relationship objects also solves the problem of
heterogeneous individual traversal policies and allows every user to formulate their policy

according to their own discretion.

4.3.1 Definitions

Table 4.2 defines the constructs of the social access control model.

Definition

SH | Stakeholder: 'The owner who posts system resource objeds, for example

photos, videos, comments or votes.

NS Namespace: The set of objects a stakeholder creates.

VU Virtnal wser: A user, from the sodal drde of stakeholder, seeking a NS

resource access.

LR Local role: A VU group with defined access to NS resources.

oc Object class: An object group, based on security dearance, whose acwess is

mapped to LRs.

AC | Attestation certificates: Permission objects encapsulated vatious acess rights

and map LR to OC.

Table 4.2: Abbreviations and their definitions

4.3.2 Components

The concept of stakeholder is introduced to support ownership, namespaces are introduced to
support local administration, virtual users and local roles are introduced to support fine
grained relationships, object classes are introduced to support object privacy classifications,
while attestation certificates are introduced to support asymmetric dynamic relationships. The

details of these components are as follows:

4.3.2.1 Namespace

Every STS allows its users to administer their resources and local roles associated with them.
Also the role management is done by the users themselves. Forinstance, if A/ belongs to the
friend group of Bob, it is the responsibility of Bob to manage membership of A/ice to his friend
role as well as administer rights for friend role over his resources. This divides the whole STS

into multiple administrative domains managed by multiple users (owners).

86

The proposed model distinguishes between owner of a resource and the virtual users accessing
them, and divides the system with respect to the owners owning resources. The whole system
is divided into multiple namespaces with owner administering his namespace along with the
resources in it. Dividing the system into autonomous namespaces reduces administration and
processing costs, and enhances user trust. It lets stakeholders control their own domain. They
can classify virtual users by relationship, and objects by who can see them. Mapping local roles

to object classes manages access control.

4.3.2.2 Local roles

Roles like parent, friend or boss are used in norms and laws to simplify rights management, for
example owner as the generic party with the right to use an owned object. In online access
control, roles both simplify rights management and improve social acceptability. Roles are
loosely seen as an actor set, but here are an actor set in a rights statement, for example the
friend role is a set of people in the context of stated permissions. So roles are here generic

rights, giving the access control principle:
P.4.5: A role is an entity right expressed in general terms.

The model allows local roles to restrict access to resources. Roles represent classes of
permissions controlled by their namespace. A virtual user seeking access to a resource must
acquire a role in the namespace with the requested access rights. Local roles have namespace
wide scope and do not exist beyond that. They are dynamic, as different stakeholders can
implement different roles and one virtual user can concurrently acquire various roles in

multiple namespaces.

Roles reduce rights management complexity and are flexible enough to accommodate social
variety, for example the friend role lets one add or remove others who can view photos posted

on a social network wall:

Rolep,;ma = (Actor, Entity, . Operation ;) ... [eq. +.6]

L

where actor is the entity having view right over wall by getting the friend role. To friend another
adds them to a role actor set and to unfriend removes them. To ‘friend’ does not change the

target persona but the actot's role, so it is really an act upon a role.

87

4.3.2.3 Object classes

In this model, objects present in one namespace are classified according to their privacy
clearance. They are first put in an object class, or container, and then the class is given a
privacy clearance depending on its objects. This clearance is based on the contents of the
objects depending on the owner discretion™. Access mappings are between object classes and

local roles, not between objects and actors.

Local roles and object classifications give owners both the simplicity of high control and the
flexibility of low level control. In high level control, users link abstract roles to abstract object
classes that make user sense, for example whether to let friends view the family photo album.
In low level control, users can define a new role of one person or a new object class of one
object, to define exactly who can see what, allowing a degree of fine grained access control not
currently offered. This introduces new communicational aspects and helps to enhance social

relationships.

4.3.2.4 Attestation certificates

To introduce an additional security layer between OC and LR, the concept of attestation
certificates (AC)is introduced similar to (Thompson et al., 1999). These client-side distributed
certificates are local to NS and helpful in maintaining unidirectional relationships. For
example, when _4/ice establishes a relationship with Bob, she creates a local certificate stating
that Bob is a colleague of A/ice. This certificate is locally stored in her NS, accessible to her
only, so cannot be forged. A similar but independent certificate is generated and stored by Bob
as well, where he may consider her as friend. When Bob requests a resource from her domain,
Alice's access control module matches Bob’s ‘userid’ against her roles to decide the request
outcome. Having one way attestation certificates provides flexibility and also resolves the
problem of certificate forgery. In contrast, centralized certificates need more processing and
also expose a single point of failure. Further it is liable to security attacks, in that the resource
owner and the requestor both have certificates in the same repository and can access and

modify them.

% One owner an tag a dass as public while the other an tag a similar dass as private.

88

4.3.3 System architecture

These features define an access control model independent of the policy. Each $H manages its
access control policy by allocating "Us to LRs with known access to OCs. No global

administration is needed, as SHs administer their NS resources by mapping I.Rs to OCs.

The 1U are not directly mapped to the resources rather the entry point to a NS is the
abstraction of roles. All the VU in SH NS are assigned some LR and access to objects is
granted on the basis of LR membership. Also, the objects O in SH NS are categorized into
some security labeled OC with respect to their disclosure level. Every LR is assigned an AC
and the access decision is made on the encapsulation of requested right in .AC for the
requested OC label. The system architecture of social access control model is illustrated in

figure 4.1.

' = [- e) __Local Roles l _—
! .’/ * Friend \"J ,:'. Family) (Colleague) g e 4
Stakeholder Arre.sm:‘m LR Handler
| Security Kernel |
' Policy Decision Point and Policy Enforcement Point ,
Attestation Cert. e —

= =it . !

OC Handler —‘/ Private OC Oy Cla Public OC
- Pvt Obj Pub Obj

Obj Classifier |~

Figure 4.1: Distributed access control model system architecture

An access control policy is a definition of how a system should provide or deny access which

can range from an abstract statement like, “only users on this list should have access”, to

89

policy languages with executable (operational) semantics (Chu, Feigenbaum, Lamacchia,
Resnick, & Strauss, 1997; Li, Grosof, & Feigenbaum, 2003). As described eatlier, STS users do
not have the same global access control policy working for everyone; rather it is different from
everybody else depending on their social structure. One may want to share all her information

with everyone, whereas one may want to restrict it to her social circle only.

4.3.4 Definition

Based on the above components, the SAC model can be defined as follows:

SH, NS, VU, LE, OC and _AC are sets of Stakeholders, Namespaces, Virtual Users,
Local Roles, Object Classes and Attestation Certificates respectively.

¢ The system space is divided into different administrative namespaces
denoted by IN.S.
l|||'

N5 = {715 = Spaces_}'sraml {715:'} = Spaces_}'sram}

i=1
® Objects associated with a single owner are gathered in a single namespace
resulting in dividing the whole system in autonomous NS owned by SH.
The stakeholder SH is the trusted authority to perform adnunistration of a

namespace.
N

SH = {sh € Users|(sh, ns) = admin, . A U{shi} = Users)
i=1

where Ulsers 15 the set of all users present in the system and admia, 1s the

administrator of the namespace.
¢ [T denotes the set of virtual users present in SH social circle.
N

VU = {vu € ns|| |{ru,} = SocialCircle;)

i=1
where N 1s the number of I°U present in a N§;

* LK denotes the set of local roles present in 5H IN.S. LK has local scope in
SH NS, and U are associated with them to access the resources. A many-

to-many virtual user to local role assignment relation is given by

VU LR C VU xLR

90

® VU_assign: (Ir:LR) — 2% is a function derived from I“U_LR for mapping
of local role /r onto a set of virtual user in a namespace.
VU_assign(ir) = {Ir € LR,vu € VU|(lr,vu) E VU_LR,
¥ LR,VU € NS;}
® FEvery objectin the NS 1s categonzed into object pavacy classes, denoted by
OC, under some label (default L,(T)), that is, O — OC_ Where, ris the set of
all security labels that are used for confidentiality levels and the access to
objectis managed by the OC label 1 it contains. These labels are hierarchical
under a partial order > such that L,.>L,; if and only if L; € L. A many-to-
many object to object class assignment relation 1s given by
0_0C €0 x 0C;
® Obj assign: (oc:0C) = 29 is a function derived from O_OC for mapping
of object class to a set of objects in 4 namespace.
0bj_assign(oc) = {0, € 0,0¢t € oc,|(0;0ct) € 0_oc,
¥ 0,0C ENS; AT € SHpppicy}
which assigns the OC, to objects present in the N under the security label ©
depending on the policy of namespace stakeholder.

4.3.5 The access control process

This section illustrates some basic default conditions that a I’U must satisfy to get access to a
resource. These conditions (as a subset of policy) are stored in the NS that only the SH has
access rights to. The access control model defines the access control operation and grant

access to a virtual user over a resource using the following rules:

e The requestor VU, is mapped to some LR, in the N, .

vu; = LR;, ¥ LR; € NS; ... [eq.4.7]
e The requested object O is mapped to some OC..

0 — 0C.,v OC_. € NS5;...[eq.4.8]

e [R has been granted attestation certificate which encapsulates the requested right over the
requested object class.

91

LRy — OC,,¥ LRy-,AC,0C, € NS; ...[eq.4.9]

Givena NS/, anaccess request is only granted if the virtual user 1”U,acquires a local role LR,
in namespace NS, Also the object O needs to be mapped in object class OC; with the privacy
label 7 Further the LR has a valid attestation certificate .4C that has the mapping to the

requested OC.in the N,

4.3.6 Theoretical assessment

In section 3.1.5, this dissertation has discussed how the concept of restricting the visibility of
objects to the social circle of owner is quite useful in reducing the complexity of traditional
access control models. As objects are not mapped to the whole user set of the system rather to
only a small subset of it, the visibility of resource reduces to local roles. This concept of local
visibility is used in the many access control models of STS to reduce the complexity, which

would be enormous as discussed eatliet.

The proposed model refines the visibility from social circles to domain based local roles,
introduced the object classes based on their privacy clearance and encapsulated various rights
over object classes into one attestation certificate. The authorization matrix is distributed

among various stakeholders and for one namespace it is reduces to

VU % LR Object x OC Rights x AC LR X 0C x AC ...[eq.4.10]

and the sum of the entire authorization matrices for the whole system under the proposed

model is

N x

F ¥ =
Z ZLR}-K Zack X ZAC: ..[eg.4.11]
=1 k=1 ;

i=1|j= =1

where N is number of users present in the whole system, x, y and g are the number of LR, OC
and AC present in particular NS, LR and OC represents local roles and object classes present
in the NSrespectively, and ACrepresents attestation certificates used for mapping of LR and

OC'in the NJ.

92

These settings under the proposed model give feweraccess control entries. For the above case,

the number of entries is reduced from 33 trillion to 3.7 trillion. Figure 4.2 shows the number

of access control entries generated by user number for a fixed object contribution in the last

two cases — current existing access control models for social networks and the proposed

model.

Comparison of Access Control Entries

a5 ‘-/I
30 /.,
- l/.

—8— Current Models

15 e
. /'/I ==k =-Proposed Model

L‘—_-ﬂr*—-n—--t-—t—-i---t-—A
e

100 200 300 400 500 600 700 800 900 1000

Users [in Million)

Entries {in Trillion)
"
(=]

[=TT]

Figure 4.2: Aaess control matrix magnitude for different models based on [eq. 3.4] and [eq. 4.11]

4.4 Improvements over previous models

The social access control (SAC) model has contributed to the literature in the following

manners:

a) The social validity of the SAC model comes from its support to the social principles of

1.
1i.

1il.

1v.

vi.

Ownership by stakeholder namespace

Freedom by giving stakeholder right over persona and its updation/deletion
Privacy by allowing heterogeneous privacy policies by mapping various virtual
users to local roles, and local roles to object classes

Dynamic asymmetric relationships by introducing one way locally stored
attestation certificates

Object visibility by reducing it to the local roles present in the namespace
Object classification by allowing the owner to group objects with similar

privacy disclosure level.

b) The concept of domains is used in STS without any formal semantics based on local

requirements and programmer’s intuition, so there are many variations of it. This

model proposes the owner oriented domains for STS to support ownership and local

93

administration. It defines various components of the domain and explores their
interaction.

c) Fine grained social circles were proposed in (J. Li et al., 2009; Tapiador et al., 2011),
but they do not support the dynamic nature of friendship. This model not only
provides full control to the owner over modification of relationship, but also gives the
notion of fine grained social circles.

d) The object tagging was explored in (Hart et al., 2007), but it is based on rules rather
than owner preferences and thus has less accuracy. This model has introduced owner
oriented object privacy classes to support object classification based on their contents
and owner privacy policy.

e) It has introduced attestation certificates in STS, which also contributed towards
decentralized access control credential distribution. These certificates provide a
mechanism to support asymmetric relationships.

f) It has introduced initial space configuration to support different types of online
applications using the basic social access control model. These configurations allow the
SAC model to be used for most types of online applications supporting social

interactions.

The SAC model refines and extends the basic components required for online social
interactions. The refined model supports dynamic asymmetric relationships, owner oriented
object privacy classes, fine grained social circles, and ownership domains. These basic
components are further used it as a basis of rights allocation models for online social

interactions presented in chapter 5 and 6.

4.5 Summary

This chapter has outlined the social access control model for STS based on the requirements
of creator ownership, relationship and object classification. It has given the ownership
framework in a hierarchical structure, where objects are created within spaces. Various roles
associated with each object are defined to describe some basic rules to initialize and configure
the particular type of STS. The roles are generic but the rights associated with them can be
modified according to the application requirements to provide a generalized framework. This

chapter has further defined the constructs of the social access control model followed by their

94

description. These construct give the basis of a generalized model for most type of STS based
on ownership and local administration. Also, the logical model is defined and the access
control process is provided to show the semantics of the proposed model. Further, theoretical
assessment of the proposed model is done to show that it does not reduce the efficiency rather
it increase by some extend. The chapter then concludes by outlining the improvements of the

model.

95

Chapter 5

Use-rights Model

ost of the studies in literature have used different terms for use-rights models

and meta-rights models. This includes separate models for rights delegation and

rights transfer (Barka, 2002), separate models for RBAC (Sandhu et al., 1996)
and their administration (Munawer, 2000), different models for usage control and its
administration (Park, 2003), delegation and transfer models for RBAC (Crampton and
Khambhammettu, 2008) and many others (Dewan & Shen, 1998; Indratmo & Vassileva, 2007;
L. Zhang et al., 2001, 2003; Mattas et al., 2006; X. Zhang et al., 2003). This research has
outlined the four general operations possible on objects and rights, and will discuss their
similarities and differences in the subsequent chapters. The issue, that use-rights and meta-
rights are different but their allocation models can be same, will be discussed in detail in

chapter 7, along with the possibility of designing a generalized model for both of them.

This chapter establishes the basic understanding behind the allocation of use-rights in online
social interactions. Use-rights are system permissions for actors to apply operations on objects
(Whitworth & deMoor, 2002, 2003). As discussed in chapter 3, there are four possible options
to allocate use-rights and this chapter outlines these models in detail. The models introduced
are Replace (., Share ., Merge . and Revoke .. However, as the revoke process is different
for each of the three allocation models, it is discussed under each allocation model section

rather thanin a separate revoke model section. Every model is described by using four distinct

96

steps: a) the general description of the model along with various rights allocation
characteristics and their values for online social interactions, b) the mapping of various
components of SAC model to describe the working of the model in an online social
interaction instance, c¢) the logical definition of the model to illustrate the exact possible
combinations of rights over an object for the roles of owner and the beneficiaries, and d) the
rights analysis of different roles of parent, offspring and general public associated with the

object. After outlining each allocation model, its revocation process is discussed.

5.1 Replace ;. model

Replace , model allows the owner to replace the actor for use-rights, and is commonly
termed as delegation56 (Abadi et al., 1993; Gasser & McDermott, 1990; Varadharajan et al.,
1991). This is done by replacing the actor entity in the use-rights triplet, but the meta-rights
triplet remains the same. The need of Replace arises when the owner of an object wants to
delegate the use-rights over his object to another actor who can exercise the rights on the
owner’s behalf (Barka & Sandhu, 2004). After the delegation operation, the owner acquires the
role of delegator — who cannot exercise the delegated right anymore, while the beneficiary
becomes the delegatee — the only responsible actor for the delegated right as all the other
actors holding that right are also replaced by him (Barka & Sandhu, 2000a). Delegating a right
changes the actor for use-rights but not for entity meta-rights, so it can be revoked by the
owner, for example after lending a book to a friend it can be taken back at any time.
Delegation is used in scenarios when one actor assigns some task to another, and wants him to
act independently to carry out that task even without the interference from the owner (Gaaloul
etal., 2008). In the physical world, renting an apartment to a tenant, lending a book to a friend,
and assigning an acting head of department are some of the examples of delegation. In these
examples, the tenant/borrower/acting head can use the rights for a specific amount of time

without any interference.

Let’s consider the scenario of a conference system, which enables knowledge sharing and

collaboration through academic peer reviews (Whitworth & Friedman, 2009a). Online

% As this research foaises on actors involved in online sodal interactions, evety allocation should be considered

as user to user right allocation, unless spedfied otherwise.

97

conference systems let researchers upload their work and assign various academic peers as
reviewers to assure the quality of the submitted work. The system can run multiple
conferences simultaneously, each with different fields, qualities, rules and other properties
associated with it (Whitworth & Friedman, 2009b). Every conference consists of an
independent space with various tracks” in it, and different roles™ like organizers, publishers,
reviewers, authors, attendees and so on, are associated with it. For big conferences where one
conference chair is not able to handle all the tracks within the conference, it is normal to assign
different track chairs™ to different tracks. The system administrator is the owner of the system
space, the conference chair is the owner of the conference space, while each

papet/treview/comment submitted to the conferences has a different owner associated with it.

To map this scenario on the core SAC model, the conference systemis the parent space for all
the conferences owned by the system administrator. The conference space is the namespace
with conference chair as the stakeholder. Different tracks are the object classes with
papers/comments/vote as objects, and organizers, publishers as the local roles associated with
each conference. Various virtual users are assigned to these local roles and permissions over

objects are assigned to local roles through attestation certificates.

Now, suppose that Alice — the conference chair for a ‘Seaurity Conference’ wants to give Bob all
the use-rights over the ‘“Aaess Control” track and assigns him the role of track chair. She wants
Bob to have full authority over the track for the entire duration of the conference without any
interference, so he can work freely. He can create and manage mini-tracks, assign reviewers,
accept/reject papers, and is fully accountable for the success/failute of his track. At the same
time, A/ice also wants to maintain her authority over the whole conference and tracks, so if Bob
is unable to manage it properly she can take it back. In this case, she replaces the use-rights
actor for the track ‘Aaess Control” with Bob, who can act freely over the whole track. This

scenario is depicted in figure 5.1.

57 For objects (research papers) of different types (areas).
3 For actors having different privileges.

¥ Who are considered as the actual responsible person for that track.

98

(Organizer) (TPC) (Track Chair)

— e o z - e

ﬁ]

Security Kernel

Il

]

Network Security Access Control &,
Track 7 Track
i SignOn| | DOS Grid | | SN

Figure 5.1: Replace use scenario depicting a running conference

5.1.1 Characteristics of Replace use

Following are some of the characteristics of this Replace . model that distinguish it from
other models. Some of these characteristics are explored in literature (Barka & Sandhu, 2000b;
L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role delegation in RBAC (Ferraiolo &
Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the values of these
parameters are different in this research from the values proposed in the literature due to the

nature of online social interactions and the ownership domain.

There are two basic axioms for this model, which are also kept consistent throughout all the
other use-rights models defined in this research. First, the Replace . model presented in this
research is domain based, as rights are associated with objects, and second, no one can share a
use-right associated with an object which they do not own. So, A/ice can only delegate a right
to Bob if she holds the meta-right for that right over the object. It is not possible for her to
assign Bob rights over another conference for example “Trust Conference’, where she does not

have any meta-right.

99

5.1.1.1 Consent

As success/failure of tracks counts towards success/failure of the whole conference, and as
the delegatee will work on A/ice’s behalf, her consent is required before Bob has delegation of
any responsibility. If Bob can get rights over a track without .A/ce’s consent, she will not trust
the system and would not use it. Also, running a track means that Bob is responsible for the
success of his track, which includes attracting the researchers, assigning the reviewers and
incorporating the results. All of these tasks require time and effort, so Bob’s approval is needed

before he can be assigned the role of track chair.

The above implies that delegating a right means that the delegator is agreeing to trust the
delegatee with the delegated rights, and delegatee is agreeing to take all the responsibilities
associated with the object. This is important as an online system may not succeed if it modifies

rights without the consent of the owner. It gives the design principle:
P.5.1.1": Consent of the delegator and the delegatee is required for every delegation.

5.1.1.2 Totality

Totality deals with allocating the propet/improper subset of rights over propetr/improper
subset of authorized resources. In the above example, if A/ice has all the rights over the object,
itis up to her that how much she wants to delegate to Bob from her set of rights. She may want
to delegate all the use—rightsG1 over the track® to Bob, in which case the delegation is total, or
she may want to assign Bob as track chair — assigning only a subset of her complete set of
rights“, but keeping the rest” with her, in which case the delegation is partial. This model
supports allocating the partial rights over partial set of resources. Total delegation reduces the
efficiency as only one beneficiary can work on one object, which does not scale well over

multiple domains and cannot support task specialization.

% Should be read as P(Prindple). 5(Chapter number). 1(Model sequence number within the chapter). 1(Prindple
sequence number within the model).

o1 View, edit and delete, for example.

02 As the illustrated scenario discusses a single track, it is implied that the model supports delegating partial set of
resourees.

03 View and edit.

64 Delete.

100

Generalizing the above implies that the Replace . model can operate on two design options,
that is, only complete delegation is supported so all the use-rights or none can be delegated, or
partial delegation is supported so part of use-rights can be delegated. This model supports
partial delegations as it is more useful and also total delegation can be achieved using multiple-

partial delegations, which gives
Repu (URE!J = Repi(URi} A Repi(URE} AN Repi(URn} [Eq 51]
This gives the design principle:

P.5.1.2: The owner can delegate proper/ improper subset of their rights.

5.1.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the running scenario, A/ice can delegate management responsibilities over the “Acess Control’
Track to Bob and financial responsibilities over the same track to Car/, which gives that she can

delegate different rights over the same object to multiple beneficiaries. This gives

Rep, — (URy){Bob| Beb € VU Y VU € N§;} ...[eq.5.2]

Rep, — (UR,){Carl| Carl e VUY VU € N5;} ... [eq.5.3]

However, she cannot delegate financial responsibilities to Bob and Car/ at the same time,
resulting in conflict of delegated rights”. The conflict of rights occurs when she delegates
some rights to Bob and the subset of Bob’s rights to Carl, where rights sets are mutually

inclusive. So, the case

Rep, — (UR3){(Bob,Carl) | Bob,Carl VUV VU € N5;) ...[eq.5.4]

will raise conflict in the system and is not allowed in the model.

Generalizing the above scenario gives that the rights over an object can be delegated to

multiple delegatees, but their rights should not conflict. The support for cardinality is

% If it is desired in some ase, it can be achieved by applying Replace use first and then applying Share use (Section

5.2).

101

important because one namespace can be delegated among many actors resulting in separation
of duties, and avoiding the conflict is important for accountability reasons®. This gives the

design principle:

P.5.1.3:1t is not possible to delegate same right over same object to multiple delegatees, however one can delegate

different rights over same object to multiple delegatees.

5.1.1.4 Monotonicity

Monotonicity refers to whether the previous holder of the right can exercise it after the
allocation. If Alice delegates the edit rights over a track to Bob, she cannot modify it anymore
but only Bob can do any changes®’. This condition is important for tracing the social errors to
maintain trust of an actor. Socially, full accountability for a track increases effort, and likewise a
‘free’ community with delegated rights participates more. If Bob knows that .4/ice can remove
his contributions without his consent, he would be reluctant to produce as much as he could
do freely. Also, if he knows that Alice is also responsible for doing the same job®, both may
rely on each other and the task could suffer and progress will be reduced. However, If A/ice
feels that the administration of track is not proper and appropriate actions are not taken by the

track chair, she can un-delegate and take the track back.

Each delegation gives two roles for every delegated right over object, that is, Delegator (Dgr)
and the Delegatee (Dge), It means that given x rights associated with an object, the Replace
model can create up to 2x roles, which is also convenient for assigning rights to various roles.

For actor centric implementations, the rights associated with them are

UR(Dgr,0, ¢)

Repy (Dg™) = yp(pgr, 0, a1t) ~ [€9-55)]

and

UR(Dge,0,All)

Rep, (Dge) — MR(Dge, 0, &) ..[eq. 5.6]

% Delegation in literature allows the user to delegate one role/permission to multiple users; however it is not
supported by aurrent online sodal interactions scenarios, so the proposed model has singular cardinality.
7'The possibility when both cn exerdse the right is explored in Share use (section 5.2).

% For example, sending reminder to reviewers.

102

where
Dgryr N Dgeyg = ¢ ...[eq.5.7]

The above concludes that delegation is mutually exclusive, so if one right is delegated to the
delegatee then it cannot be further exercised by the delegator. Only the delegator or the
delegatee can exercise a right in a given state of the object ata particular time. This assumption
1s necessary to maintain the accountability of actions. It also provides full control over object
and the delegatee will produce more as free control produces more. This gives the design

principle:
P.5.1.4: The delegator cannot exercise the delegated right, without un-delegating it.

5.1.1.5 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. In the
proposed model, if a delegatee gets no meta-rights, they cannot pass rights on, for example
renting an apartment gives no right to sub-let”. Similarly, lending a book to another does not
give them the right to on-lend it, for example if one loans a book to a person who loans it to
another person who then loses it, who is accountable to the original owner? It is necessary to
restrict the delegatee from passing on a delegated right” to maintain accountability and
consistency in the system. In cases when delegatee is unable to perform the delegated task, he
may give up the delegated right, which reverts back to the delegator — the owner, by the

principle that all rights must be allocated.

In the above scenario, Bob cannot pass his track to Car/ as Alice and Car/ has no direct
communication contract and Car/is not accountable to .A/ice. However, if for some reason, Bob
is unable to continue his responsibilities as track chair, he can request 4/ to take back the

track and then she can delegate it to someone else. This gives the design principle:

P.5.1.5: Being delegated does not give the right to delegate.

© By this sodal logic, lessees can't sub-let, that is, delegate tenancy rights on to others.
0 In traditional models, delegation is multi-step, which is against the ownership prindples, so this model supports

single-step delegation.

103

5.1.2 Replace use process

The Replace (. model maps various components of the SAC model to each other and defines

the delegation operation using the following set of rules:

a) The requestor [”U, belongs to the LR;in the N, .
VU; = LR;, ¥ LR; ENS5; ..[eq.5.8]
b) The requested object O is classified into the same OC..
0 = 0C.,¥ OC, € NS,...[eq.5.9]
c) The assignment of Dge role to U, and Dgr role to SH,

VU; = Dge

,% Dgr,Dge € LR; ... [2q. 5.10

d) The addition of use-rights to Dge, and their removal from Dgr.
UR — Dge

YUR - 0 ..[eq.5.11
_UR = Dgr'" VR 0-leq-511]
e) Meta-rights remain with the Dgr.

MR — Dgr , VMR — 0 ..[eq.5.12]

Givena NS/, a delegation access request is only granted if the virtual user U, acquires a local
role LR;in namespace NS, Also the object O is mapped in object class OC with the privacy
label 7z Further, ”U;is assigned to the delegatee role Dge, which has the use rights over the
object O.

5.1.3 Definition

Delegation is an operation that replaces the active actor set with another actor, that is,

delegatee. It can be defined as follows:

NS, SH, VU, Opr, LE, Dge, Dgr, UR and O are sets of Namespaces, Stakeholders, Virtual
Users, Operations, Local Role, Delegatee, Delegator, Use-Rights and Objects respectively.
s A one-to-many stakeholder to delegator role assignment relation is given by
SH_Dgr € 5H X Dgr
® assigned_delegator: (sh:SH) — 2P97is a function derived from SH_Dyr, for
mapping of any power set of delegator role onto stakeholder, which can be ¢

104

{empty) or the SH for the delegation operation based on the current state of the
object.
assigned_delegator(sh) = {sh€ SH,dgr € Dgr|(sh,dgr) € SH_Dgr,
¥ 5H,Dgr € N5;}
A one-to-many virtual user to delegatee role assignment relation is given by
VU _Dge S VU % Dge
assigned_delegatee: (vu:VU) — 2P8%is 3 function derived from I"U_Dg, for
mapping of delegatee role over objects onto a virtual user.
assigned_delegatee (vu) = {vu € VU, dge € Dge|(vu,dge) € VU_Dge,
¥ VU,Dge € NS;}
AC = 2(o7r%0) i5 the set of attestation certificates for use-rights.

A manv-to-many delegatee role to attestation certificate assignhment relation is
given by
Dge AC € Dge x AC
delegatee_rights: (dge:LR) — 24C is a function derived from Dge AC, for
mapping each Delegatee role to a set of attestation certificates.
delegatee rights (dge) = {dge € LR|(dge,ac) € Dge AC,¥ LR € NS;)
A many-to-many delegator role to attestation certificates assignment relation is
given by
Dgr AC € Dgr x AC
delegator_rights: (dgr:LR) — 24Cis a function derived from Dgr _4C, for
mapping each Delegator role to a set of attestation certificates, which are not
delegated to Dge.
delegator_rights (dgr) = {dgr € LR|(dgr,AC) € Dgr_AC,¥ LR € N5;)
As all the nghts over an object can be delegated to one or more delegatees, it
gives the concept of active users over an object for a particular state. It can be
calculated by equation
Active Users = Dgr UDge
and the rights for these roles over the object is mutually exclusive, such that
Dgr URNDge UR = ¢

which shows that the nghts of delegatee and delegator are disjoint for the same

105

object.
Access Grant
A virtual user #r can perform an operation gproveran object O under the delegation model
only if there exist a mapping of v«; for the delegatee role over the object, and the delegatee
tole is authorized for the requested right by having the desired 4, so making v, 2 member
of active user set, under the following relation:
vu_,-:VU, All: Active Users, ac: ACY VU, AU € NS§;

vu; € assigned_delegatee (vu;) A ac € delegatee_rights(dge) = vu; € AU

5.1.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and
general public associated with the delegated object. Consider the conference and track
example, the delegated track was not moved from one conference to another, but remained in
the same space — conference space, so the rights of objects’ parent, offspring and general
public remain the same. The rights of the delegator, that is, the conference chair, are reduced
from the complete set of rights to a reduced set after giving it to delegatee, that is, the track

chair. The delegatee rights are increased from none to the delegated set.

Below is table 5.1 for the roles of delegator and delegatee, and their rights over parent,

delegated, and child objects.

Delegator Delegatee
Parent | Delegated Child Parent | Delegated Child
Before Rep use [UR(V) | UR(V,D,E) [UR(V,D)| D/C D/C D/C
MR(V,D,E)
After Rep use | UR(V) UR(V,D) UR(®V) UR(V) | UR(V,D,E) | UR(V,D)
MR(V,D,E)

IV, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively

D/ C represents don’t cate and depends on Delegatee’s previous role in the space

Table 5.1: Delegator and delegatee rights over different objects before and after delegation

106

Below is table 5.2 illustrating different rights for different roles associated with the object

before and after delegation.

Parent Delegator Delegatee Offspring | G. Public
Before Rep use| UR(V, D) UR(V,D,E) D/C UR(V) D/C
MR(V,D,E)
After Rep use | UR(V, D) UR(V,D) UR(V,D,E) UR(V) D/C
MR(V,D,E)

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively

D/C represents don’t are and depends on Delegatee’s previous role in the space, or space

configuration for G. Public role

Table 5.2: Rights for different roles assodated with the object before and after delegation

A complete analysis of rights for different roles based on table 5.1 and 5.2 for the Replace .

model is as follows:

2

b)

g

h)

After Replace ., the delegator can only exercise the view right over the object for
accountability reasons. The meta-right to revoke the delegation also remains with the
delegator.

The view right of delegator over the parent object spaces remains the same, to enter
the space.

The rights of delegator over child object also reduce from view and delete to view
only.

The delegatee gets the delegated use-rights over the object, but does not get the meta-
rights.

The delegatee gets the view right over the parent space.

The delegatee also gets the view and delete rights over the child objects.

The model does not change the space of the object, so parent’s rights over the object
remain the same, that is, they can view and delete the object.

Offspring role is associated with object, so its rights after the delegation of parent
object are not changed and they can view/enter the patrent space.

General public role remains the same for the object and so its rights, which depends

on the parent and object configurations.

107

5.1.5 Design principles

The above discussion gives the following design principles for the Replace . model.

a) The model addresses domain based delegations, where rights are associated with
objects.

b) The delegator can only delegate the rights over the object for which they have the
meta-rights.

c) Delegation gives use-rights, but meta-rights remain with the delegator.

d) The consent of delegator as well as of delegatee is required for the delegation.

e) A delegator can delegate some/all of his use-rights to the delegatee.

f) A delegator can delegate different rights over an object to multiple delegatees, but
cannot delegate same right over the same object to multiple delegatees.

@) The delegator cannot exercise the delegated right.

h) The delegatee cannot further delegate the delegated rights.

1) The rights of delegator and delegatee are changed based on the delegated rights, but

the rights of parent, offspring and general public role over the object remain the same.

5.1.6 Revocation

Revocation of rights is as important as it allocation in real life because granting rights is not
static but dynamic in nature (Barka, 2002; Crampton & Khambhammettu, 2006, 2008; Ruan &
Varadharajan, 2010). Friends in roles, employees in organizations and virtual users in events are
changed with respect to time and their responsibilities (Barka, 2002; Barka & Sandhu, 2000a).
In the running scenario, the conference may run for a certain time period and even during that
time period it may have various phases, like submission phase, review phase, publishing phase,
printing phase and the conference running phase. So the role of track chair for the reviewing
phase can be assigned to Bob, but during the printing phase, Car/ or David may replace him for
the same track. This section will cover the possible ways in which a delegated right can be

revoked from the delegatee.

A right allocation is revocable if the initiating party keeps the meta-rights and delegation
allocates use-rights to the delegatee, but the meta-rights remain with the delegator, so it is

revocable, for example a system administrator who delegates rights can take back the top

108

system priority (Gaaloul et al., 2008). In this case, the delegatee is responsible for the object,
but the delegatoris responsible for the delegatee, and can revoke their permission at any time.
As the delegator keeps the meta-rights, they have the right to reallocate the delegation to

anybody else or take it back, which gives the principle:
P.5.1.6: Delegator can revoke the delegation.
There are three types of revocation supported in the Replace (. model.

5.1.6.1 Self revocation

The delegator revokes the delegation based on inappropriate use or at will. Similarly if the
delegatee cannot perform the task, they can withdraw from the delegated rights, in which case
all the delegated rights previously delegated to that particular delegatee are returned to the
delegator. In the above scenario, .4/ice can revoke the track chair position from Bob at any time

at will.

Allowing self-revocation gives the freedom to the delegatee to work under one delegator and
to fulfill the expectations of only one person. It also gives the sense of authority to the
delegator that the object still belongs to them even after delegatingit, and it can be taken back

at any time if the requirements are not fulfilled by the delegatee.

5.1.6.2 Time based revocation

At the time of delegating the right, the delegator can assign a time-stamp with the delegated
right for the proposed lifespan of the delegation. When the time-stamp expires, the delegation
is automatically revoked from the delegatee and the delegator retrieves all the delegated rights
over the object. Time based revocation provides a tool to the delegator so he does not need to
worry about revoking each delegation. In the above scenario, A/ice can set a time-stamp with

the delegation so it would be revoked at the end of the review phase.

Time based revocation provides the facility to revoke the delegation without the involvement
of the delegator. It gives the delegator the ease of not having to remember to revoke each
delegation over his objects. In addition, it gives the delegatee incentive to properly manage the

object and the assigned tasks within the time frame.

109

5.1.6.3 Rule based revocation

At the time of consent from the delegator and the delegatee, a set of rules are defined for the
use of object, which is known as the delegation contract. If the delegatee violates any of the
conditions, the delegation is revoked automatically and the delegator gets back all the rights. In
the above scenario, A/ice can define the rule that Bob can only review the papers but cannot
delete any paper from the system, so as soon as Bob tries to delete any paper, the track chair

delegation is revoked automatically.

Rule based revocation ensures the proper usage of the delegated rights and the delegator need
not worry about tracking the delegated object. It gives the delegatee a boundary to work within
as they know about their limits. This option tracks and maintains the consistency of the

delegated object.

5.1.6.4 The Replace . revoke process

The revocation removes the delegated use-rights UR from the delegatee Dge and adds them

back to the delegator Dgr.

UR — Dgr;

YUR =0 ..[eq.5.13
~UR = Dge; =0 leq.5.13]

which reverts all the delegated rights previously delegated to the particular delegatee back to

the delegator. It also takes back the Dge role from VU, and Dgr role from SH,

Dgr — 5H;

~Dge - vy, " DomPge ELR A SHVU; ENS, . [eq.5.14]

5.1.7 Summary of Replace use

The difference between the characteristics of the proposed delegation model and the

traditional delegation models can be seen in table 5.3.

In traditional role based delegation, the rights are associated with roles which are delegated to
users, while the presented model associates rights with objects and the owner has the option to
delegate subset of rights over subset of objects. Also, the Replace (, model is based on

discretionary grounds, whereas the delegation model in RBAC was based on mandatory

110

grounds and a security officer is responsible for assigning roles (Sandhu & Munawer, 1998a,
1998b, 1999). This central administration approach cannot work in STS which are based on
ownership and has the potential of millions of users. Furthermore, the delegation in RBAC
allow the other role members to revoke the delegation (Barka & Sandhu, 2002), while the

Replace . model presented here only allows the owner to delegate/revoke the delegation.

Characteristic Proposed Model Traditional Models
Consent Joint Several
Totality Partial Total
Cardinality Singular Multiple
Monotonicity Mutually Exdusive Mutually Indusive
Depth Single pass Single pass
Revocation Self/ Time/Rule based Member/Time based
Who can delegate | If one has the meta-right If one has the use-right™
Who can revoke Owner Any member from the role

Table 5.3: Difference between proposed and traditional delegation models

To summarize, the Replace (model allows the owner of an object to give the use-rights to
some other actor to work on his/her behalf. The characteristics ate given in section 5.1.1,
which distinguish the model from other models of use-rights allocation. Section 5.1.2 explains
the allocation process, followed by the logical definition of the model in section 5.1.3. Section
5.1.4 illustrates the rights analysis, the design principles are mentioned in section 5.1.5 while

the revocation is discussed in section 5.1.6.

5.2 Share ;.. model

Share (. model allows the owner to allocate the use-rights to other actors while the rights of
existing actors do not change (Y. Liu et al., 2009; Z. Zhang et al., 2008). In the use-rights
triplet, it is done by adding an actor to the actors set, while the meta-rights triplet remains the
same. The need for Share . model arises when the owner of an object wants to give some
rights over his object to others as well as keeps them, which in effect copies the rights. Entity
operations like view are usually shared rather than replaced. It is used in scenarios when one

actor wants to give away richts to others without giving them any responsibility, or giving the
g y g giving y resp y, Of giving

I Member of the role.

111

responsibility to multiple actors simultaneously”. In sharing, the entire right is given
completely, so any party can act alone as if they own it exclusively. Sharing a use-right adds an
actor for use-rights but meta-rights remains with the original owner, so it can be revoked at
any time. In the physical wotld, a couple's bank account where either can withdraw all the
money is an example of sharing use-rights. In this example, the owner has the meta-right to
close the account or to remove the beneficiary, but both can withdraw any amount of money

as they own the ‘withdraw’ right completely.

Let’s consider the scenario of a ‘wideo on demand (1’OD)’website, which is a platform of sharing
videos among the community on the basis of payment. The website allows the viewer to
stream the specific video on the server at any time — provided that they are in the purchased
window, and gives them personalized control” such as pause, forward and rewind. The video
owner or the distributor adds videos and gives their view rights to the users who pay to watch
that video. This view right cannot be delegated to a user as the same video can be seen by
many users at the same time. Every video is a separate space with different settings, comments,
rating and has various roles of distributor, commenters, likers, viewers and general public. The
system contains thousands of videos viewed on a daily basis by millions of users around the
wotld, so the rights need to be shared among all the viewers. The Replace . model cannot be

used as giving rights to single user will reduce the system’s growth and business opportunities.

To map this scenario on the core SAC model, ‘I7OD’ system is the parent space for all the
videos, owned by the system administrator. So, all the videos are at the same hierarchical level
in the inheritance tree of the system, so parent and general public roles are same for every
video. Videos are spaces with distributor as stakeholder and likes and comments are child
objects of the video space. The parent” has the right to ban a video which violates the
copyright or decency policy. The owner (distributor) has the right to decide its view access to

the general public and/or to a specific set of viewers.

Now suppose that an actor A/ice creates a new video in the system for distribution purposes,

and wants to give Bob — an actor in viewer role, the view rights over the video. She wants Bob

72 For example, to delegate a right to multiple actors at the same time.
73 Against pay-per-view and video broadcast.

74'The system administrator.

112

to be able to view the video for the time he has paid for, and he may comment or like it. She
also wants to maintain her authority over the video and do not want him to delete the video,
view it for an unspecified amount of time, or pass the view right to another user. Moreover,
she wants to give this right for a specific number of views or time duration, and can take it
back for next view if required. She then shares the view rights over her video with Bob, to

include him in the allowed viewer for the video. This scenario is depicted in figure 5.2.

(Commenter) (Liker | (Viewer

Security Kernel .

; - i

. LR = i

Men in Black The PhD Movie & . |
Comments | | Likes Comments | | Likes

-== Can View

Figure 5.2: Sharing use-rights scenario depicting a VOD system

5.2.1 Characteristics of Share use

Following are some of the characteristics of the Share model that distinguish it from other
models of use-rights. Some of these characteristics are explored in the literature (Barka &
Sandhu, 2000b; L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role delegation in
RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the
values of these parameters are different in this research from the values proposed in the

literature due to the nature of online social interactions and the ownership domain.

113

There are two basic axioms for this model, which are also kept consistent throughout all the
other use-rights models in this research. First, the Share . model presented in this research is
domain based as rights are associated with objects. The second is that no one can share a use-
right associated with an object which they do not own. So, it is not possible for A/ice to assign

Bob rights over a video, where she does not have the meta-right.

5.2.1.1 Consent

Allocating the right to view a video to Bob requires A/ice to initiate the process as the system
should enhance the trust of the owner that she has all the control over her object. A/ may
want to add or delete a video at will and decide whether it is appropriate to display the video to
a specific actor or not. However, Bob can request a video and pay if necessary, but it is not
necessary to take the consent of Bob for every video he can watch. As the system may contain
free videos available to the general public, this design option may have scalability issues, for
example, it is not possible to ask the entire viewer and/or general public role for every free
video, which can result in too many requests per video. Allowing someone to watch something

is not a responsibility, so it does not require their consent.

This implies that the owner’s consent is needed before any modification to the use-rights
triplet and only the owner can decide whether to allow some actor over his object or not. It
also implies that rights with no accountability to the beneficiary can be allocated without their
consent, as others can use them if they wish, for example view and enter. So space owners can

give entry and view rights without inconsistency. It gives the design principle:

P.5.2.1: Beneficiary’s consent is not required for sharing of use-rights.

5.2.1.2 Totality

Totality deals with allocating the proper/improper subset of rights over proper/improper
subset of authorized resources. The Share . model allows .4/ to decide how much use-rights
she wants to give to Bob from her set of rights. She may want to allow him to only view the
trailer or view the complete video, in which case the sharing is partial, or she may want to

allow him to edit/delete the video as well, in which case the sharing is total”. This model

75 As the illustrated scenario discusses a single video, it is implied that the model supports sharing partial set of

resources.

114

operates on partial rights since total sharing reduces growth opportunities, as only all or none
right can be assigned. Also, partial rights can be extended to the complete set, in cases where

complete right set need to be shared by using

Shr,(UR .z) = Shry,(URy) A Shry(URy) A ... A Shr, (UR,) ... [eq.5.15]

Generalizing the above implies that the Share . model can operate on two design possibilities,
that is, only complete sharing of use-rights where all the rights or none can be assigned to the
beneficiary, or partial sharing where subset of rights held by the owner can be allocated. This
model supports partial sharing as it is more beneficial in most cases and total allocation can be

achieved using multiple partial sharing. This gives the design principle:
P.5.2.2: The owner can share proper/ improper subset of their rights.

5.2.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the above scenario, A/ice can share the view right over her video to multiple actors say Bob and
Carl at the same time. In this case the view right is given away to multiple actors who can

simultaneously exercise the right, and it does not affect the object state, which gives

Shr, — (UR){(Bob | Carl)| Bob,Carl € VUV VU € N5} ... [eq.5. 16]

Howeverif the edit right is given to multiple actors then the locking of objects, preservation of

state and precedence of edits need to be recorded.

Generalizing the above implies that a right that does not change the object state can be given
to multiple beneficiaries and it will not affect the object consistency. This feature is quite
important for system growth and lack of it can result in decrease of financial benefits.
However, in order to share edit rights (or rights associated with change) the system should
support object locking and precedence of operation occurrences. The second case happens in
collaborative software and Wikipedia, which shares edit rights among multiple actors. This

gives the design principle:

P.5.2.3: 1t is possible to share same use-right with multiple beneficiaries.

115

5.2.1.4 Monotonicity

Monotonicity refers to whether the previous owner can exercise the right after the allocation.
In the running example, if A/ice shares view rights over her video with Bob, she can still view
the video. The case where the owner cannot exercise the right is covered in Replace . and
thus this model covers the other cases where the owner and the beneficiary both can exercise
the right”. If Alice has to decide every time she has a right, whether to keep it or to give it to

Bob, the system would not grow to its full potential.
The Share (, model adds the beneficiary to the actor set for use-right, which gives

Shr, — UR({Alice | Bob),0,0pr) ...[eq.5.17]

Sharing creates one role with the shared right associated with the object, that is, the Beneficiaty
(Ben,), where the rights of the owner do not change. It means that given x rights associated
with an object, the Share . model can create up to x roles, which is convenient for assigning
rights to roles as well. For actor centric implementations, the rights associated with the owner

and the beneficiary can be considered as

UR({Ben,},0,0pr)

Shr(Bena) =\ p((Beny),0,6) ™

[eq.5.18]

and

UR({Owner}, 0, 0pr)

Shr, (Owner) — MR({Owner},0, Al ™

[eq.5.19]

The above concludes that the sharing of use-rights is mutually inclusive, so if a right is shared
between two actors, then both can exercise it as they have the complete right. This assumption
allows many useful scenarios like YouTube video, Wikipedia articles, sharing of one research
paper among various reviewers or in general sharing of any online object viewed by multiple
actors. Another insight drawn is that the rights which do not affect the system state can be

mutually inclusive while the rights modifying the object state needs to be mutually exclusive

76 The other cse when the owner and the benefidary both have to agree to exerdse a right is covered in Merge

Use (Section 5.3).

116

(or the system should support some locking mechanism), if exercised by multiple actors

simultaneously. This gives the design principle:
P.5.2.4: Both the owner and the beneficiary can exercise the shared use-right.

5.2.15 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. The Share .
model does not give any meta-right to the beneficiary, so they cannot pass the right to others,
for example you cannot invite guests on someone else’s party. This condition maintains the
owner’s authority over the object, where only they can decide who may have rights over it”.
As the Share (. model does not account the beneficiary for any responsibility, this model is

single step, so the beneficiary may exercise the right but cannot pass it on to another actor.

In the above scenario, Bob cannot pass the view right to Car/ as he does not have the meta-
right to do so. However, Car/ can get the right by directly requesting it from A/ice, who may
allow or deny. As the Share (. model gives no meta-rights, only .4/ice can perform any rights

assignment, which can be seen by

UR({Owner | Ben,},0, opr)

Shry = MR(Owner, 0, AlD

.. [2g.5. 20]

This gives the following design principle:
P.5.2.5: Sharing use-rights does not give the right to further share it.

5.2.2 Share use process
The Share (. model maps various components of the SAC model to each other and defines

the share operation using the following set of rules:

a) The U, belongs to the LK; in the NJ;.
VU, = LR, V LR; € NS; ...[eq.5.21]

b) The requested object O is classified into the same OC..

77 Traditional rights allocation models do not maintain this accountability and so any user can pass the rights after

acquiring it.

117

0 — 0C.,¥ 0C, € NS;...[eq.5.22]

¢) The assignment of Ben, role to 1'U,.

VU; - Benl, ,V Benl, € LR; ...[eq.5. 23]

d) The sharing of use-rights with the Bex,"

UR — Owner

Sty = "Up , peni, 7 UR =0 .[eq.5.24]

e) Meta-rights remain with the Owner,

MR — Owner; , VMR — 0 ...[eq.5.25]

Givena NS/, a share access request is only granted if the virtual user 1”U,acquites a local role

LR, in namespace NS, Also the object O is mapped in object class OC with the privacy label =

Further, 17U;is assigned the beneficiary role Ben, which has the use-rights over the object O.

5.2.3 Definition

Sharing is an operation that adds another actor to the actor set for a use-right. It can be

defined as follows:

NS, VU, Opr, LR, Ben, UR and O are sets of Namespaces, Virtual Users, Operations, Local
Roles, Beneficiary, Use-Rights and Objects respectively.

A many-to-many virtual user to Benefician ., role assignment relation 13 given by
VU_Beny € VU X Ben,,
assigned_Beny: (beny:LR) — 2¥Vis a function derved from ©“T_Bem. for
mapping of Bea; role over object to a set of virtual users in a namespace.
assigned_Ben,, (beny) = {vu € VU, ben,, € LR|(vu, ben,) € VU_Beny,
¥ VU,LR € NS;}
AC = 2(ePmx0) i5 the set of attestation certificates.
A many-to-many Ben; role to attestation certificate assignment relation i3 given by
Beng AC € Ben, ® AC
Beny_rights: (beny:LR) — 24€ is a function derived from Ben,._.AC for mapping
each Beneficiary role to a set of attestation certificates.
Beny_rights (beny) = {beny € LR|(beny,ac) € Beny_AC, W LR € NS,

As all the nights over an object can be shared among one or more beneficiaries, it

118

gives the concept of active users over an object state and can be calculated as
Active Users = Owner U Beny

where Bes, is the set of all beneficiaries for a right over an object.
Access Grant
Using the above functions, a virtual user #; can perform an operation gpr over an object O,
under the Share ., model only if there exist a mapping of v, for the Ben, role over the object,
and the Bes, role is authorized for the requested 4, so making vx; a member of active user set,
under the following relation:

vu;: VU, AU: Active Users,ac: AC YVU,AU € N5;

vu; € assigned_Ben,, (vu;) A ac € Ben, _rights(Ben,) = vu; € AU

5.2.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and
general public associated with the shared object. Consider the VOD system example: the
viewed video is not moved from one space to another, but remains in the same space —
system/genre, so the rights of its owner, parent, offspting and general public role remain the
same. The beneficiary (viewer) rights are increased from none to the some subset, while the

rights of owner (the distributor) are not affected by the sharing of use-rights.

Below is table 5.4 for the roles of owner and beneficiary, and their rights over parent, shared,

and child objects.

Owner Ben use
Parent Shr. Obj Child Parent Shr. Obj Child
Before Shr use| UR(Y) | UR(V,D,E) | UR(V,D) | D/C D/C D/C
MR(V,D,E)
After Shr use | UR(Y) | UR(V,D,E) | UR(V,D) | UR(V) | UR(V,D,E) |UR(V,D)
MR(V,D,E)

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights tespectively
Shr. ODbj. represents the object with shared rights

Ben use represents the benefidary of use-rights allocation

D/C represents don’t care and depends on benefidary previous role in the space

Table 5.4: Owner and benefidary rights over different objects before and after the Share use model

119

Below is table 5.5 illustrating different rights of different roles associated with object before

and after the Share . model.

Parent Owner Ben use Offspring | G. Public
Before Shr use | UR(V,D) | UR(V,D,E) D/C UR(V) D/C
MR(V,D,E)
After Shr yse UR(V, D) | UR(V,D,E) UR(V,D,E) UR(V) D/C
MR(V,D,E)

V, D and E represents view, delete and edit respectively.

UR and MR represents use-rights and meta-rights respectively

Ben use represents the benefidary of use-rights allocation

D/C represents don’t are and depends on benefidaty previous role in the space, or space

configuration for G. Public role.

Table 5.5: Rights for different roles assodated with object before and after the Share use model

A complete analysis of rights for different roles based on table 5.4 and table 5.5 for the Share

v Model is as follows:

a)

b)

2

h)

After Share (., the owner can exercise all the rights over the object as he used to
exercise before sharing. The meta-rights also remain with the owner, so he can also
revoke the rights from the beneficiary at any time.

The rights of owner over parent object spaces remain the same, so they have view
rights over them to enter.

The rights of owner over child object remain the same, that is, they can view and
delete the child object.

The beneficiary gets the shared rights over the object except meta-rights.

The beneficiary gets the view right over the parent objects to enter the space.

The beneficiary gets the view and delete rights over the child object.

The Share (. model does not change the space of the object so parent’s rights over
object remain the same, that is, they can view and delete the object.

Offspring role is associated with object so its rights after the sharing of rights over
patent object are not changed, that is, they can view/enter the parent object space.
General public role, its active users and their rights associated with the video remains

the same, which depends on the system and the video space configurations.

120

5.2.5 Design principles

The above discussion gives the following design principles for the Share ;. model.

a) The model addresses domain based sharing, where rights are associated with objects.

b) The owner can only share the rights over the object for which they have the meta-
rights.

c) Sharing gives use-rights, but meta-rights remains with the owner.

d) The Share ,, model only requires the owner’s consent, but can operate without the
consent of the beneficiary.

e) The owner can share some/all of his use-rights.

f) The owner can share the same right over the same object to multiple beneficiaries.

2) Both the owner and the beneficiary can exercise the right at the same time.

h) The beneficiary cannot pass on the right.

1) The rights of owner, parent, offspring and general public role remain the same after

sharing the right with the beneficiary.

5.2.6 Revocation

Rights’ sharing is a core component of STS as they are used to share millions of objects on a
daily basis. However, sharing is not static but dynamic in nature due to removal of objects and
frequent change in access permissions for roles (Barka, 2002; Crampton & Khambhammettu,
2006, 2008; Ruan & Varadharajan, 2010). In the running example, A/ce — the distributor in
T7OD’ system, may assign view rights to Bob over videos he has purchased for a certain
amount of time agreed upon by the purchased contract. So the rights over “The PhD Movie’ can
be assigned to Bob for, let’s say, two days and after that it may get expired. This section covers
the possible ways in which a shared right can be revoked from the beneficiary. As the owner
keeps the meta-rights, A/ce has the authority to take back the view right over her video from

Bob (or the whole community) by revoking the right or by deleting the video at any time.

A right allocation is revocable if the initiating party keeps the meta-rights and the Share
model allocates use-rights to the beneficiary, but the meta-rights remain with the owner, so it is

revocable. This gives the following principle:

P.5.2.6: The owner can revoke the shared right.

121

There are three types of revocation supported in the Share . model.

5.2.6.1 Self revocation

The owner revokes the right based on inappropriate use or at will. In the above scenario, A/ice
can revoke the view rights over her video from Bob at any time she wills. Self-revocation gives
the sense of authority to the owner that the shared object still belongs to them as they can

manage the rights over it, or take them back at any time.

5.2.6.2 Time based revocation

At the time of sharing the right, the owner can assign a time-stamp with the shared right for
the proposed lifespan of the sharing. When the time-stamp expires, the sharing is automatically
revoked from the beneficiary. Time based revocation provides a tool to the owner so he does
not need to worry about revoking each right for each object. In the above scenario, A/ice can
set a time-stamp on the right over the video so it is revoked when the payment window
expires. Time based revocation provides the facility to revoke the sharing without the
involvement of the owner. It is especially beneficial in the environment of ‘1OD’ systems,

where payment is the measure of sharing rights for a time constraint window.

5.2.6.3 Rule based revocation

At the time of sharing, a set of rules is defined for the use of the object, which is known as the
sharing contract. If the beneficiary violates any of the conditions, the sharing is revoked
automatically. In the above scenartio, A/ice can define the rule that Bob can only view the video
for three times and so as soon as Bob tries to watch it fourth time the view rights are

automatically revoked.

Rule based revocation allows the owner to ensure the proper usage of the shared right so he
does not need to track the object and rights for each beneficiary. This option allows worry-free

tracking and maintains the consistency in the Share , model.

5.2.6.4 The Share y, revoke process

The revocation removes the use-rights from the beneficiary Bez,.

~UR(yss) = Beni, ¥ UR = 0 ...[eq.5.26]

122

It also takes back the Ben, role from 17U, .
- Benl, = VU;,| Benl, €LR A VU; € NS; ...[eq.5.27]

5.2.7 Summary of Share use

The proposed model outlines the sharing of rights in online social interactions. To summarize,
the Share . model allow the owner of an object to give the use-rights to another actor and
keep them at the same time. The characteristics are given in section 5.2.1, which distinguish
the model from other models of use-rights allocation. Section 5.2.2 explains the allocation
process, followed by the logical definition of the model in section 5.2.3. Section 5.2.4 illustrates
the rights analysis, the design principles are mentioned in section 5.2.5 while the revocation is

discussed in section 5.2.6.

5.3 Merge ;.. model

Merge . model allows the owner to allocate use-rights over his object among an actor set in a
way that they all must agree to exercise that right (Guo & Georganas, 2002; Ilic, Michahelles,
& Fleisch, 2007). In the use-rights triplet, it is done by adding another actor to the existing set
of actors and then merging the right of all of them, while the meta-rights triplet remains the
same. The need of Merge (. model arises when the owner of an object allows other actors to
exercise some right over his object with the strict condition of joint consent (Wu, 2003).
Sensitive operations which involve critical changes in the object state are usually merged rather
than shared, and it requires multiple actors to collaborate in order to complete the task. Merge
ue amalgamates the entity use-rights but the meta-rights remain with the owner and so it can
be revoked at any time. The owner of an entity gives rights to others and also keeps the
authority to finalize it, which in effect divides the right. For example, Microsoft Word track
changes allow the beneficiary to modify but the final accept/teject decision remains with the
owner. In rights merge, any participant can stop an act, but performing it requires the consent
of the whole actor set. In the physical world, a bank loan process where the bank clerk and the
manager both agree to give the loan to a specific customer is an example of merging use-rights.
In this example, both the bank clerk and bank manager are responsible for the loan approval

and one cannot complete the process without the consent of the other.

123

Let’s consider the scenatio of cw/laborative 50flwme78, which are platforms designed to help team
collaborations. This software is used for working in co-ordinated environments to achieve a
common goal. For example, in an editing exercise, ‘w/laborative software provide functionality by
coordinating all changes made on a document edited by multiple authors. The edit rights of all
the authors are merged so one may modify the work and others may have a chance to look at
the modifications and accept them if they agree. In case of disagreement, the change can be
rejected or modified again and send back to the first author. The system cannot use the Share
e model as it would allow the second author to modify whatever they want without the
consent of the first author, it cannot use the Replace . model as the first author then cannot
modify the same document, so a model where all the authors have the authority must be used
to enhance community usage and productivity. Obviously, this kind of allocation is only
applicable within trusted users and the owner takes all the responsibility if the merging goes

wrong.

To map this scenario on the core SAC model, the ‘w/laborative software’is the parent space of all
the group activities going on including puzzle matching, documents including/excluding, local
events and so on. All the documents are at the same hierarchical level in the inheritance tree of
the system so parent and general public roles are the same for every document. Documents are
spaces with owner as stakeholder and ‘like” and ‘comments’ are child objects of the document
space. The parent has the right to view and delete a document if necessary, while the owner

has the right to decide its access to the general public, to viewer and/or to the group members.

Now suppose that an actor A/ice creates a new document in the system and wants to give Bob —
another actor, the edit rights over the document. She wants Bob to be able to edit the
document but the editing should not be done without her consent. She also wants to maintain
her authority so Bob cannot delete the file, cannot give access to others, and if needed she can
revoke his access to the document. She then merges the editing rights over her document with
Bob to allow him conditional edits. For such cases, merging the editing rights of two actors
requires both of them to agree on any edits, as MS Word processing track-change functions

currently try to do. This scenario is depicted in figure 5.3.

78 Also known as groupwate.

124

Research Paper .

Comments | | Likes Comments | | Likes

IRt Can Edit

Figure 5.3: Merge use-rights scenatio depicting cllaborative software

5.3.1 Characteristics of Merge use

Following are some of the characteristics of the Merge . model that distinguish it from other
models of use-rights. Some of these characteristics are explored in the literature (Barka &
Sandhu, 2000b; L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role delegation in
RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the
values of these parameters are different in this research from the values proposed in the

literature due to the nature of online social interactions and the ownership domain.

There are two basic axioms for this model: First the Merge . model presented in this research
is domain based as rights are associated with objects. Second, no one can merge a use-right
associated with an object that they do not own. So it is not possible for A/ice to assign Bob the

rights over another document, if she does not have the meta-right.

125

5.3.1.1 Consent

Allocating the edit right over a document to Bob requires Alice to initiate the process as the
system should maintain the owner’s authority and full control over her object. .4/ice may want
to create or delete documents at will and decide whether it is appropriate to give the document
access to a specific actor or not. Also, when the model merges the rights of .4/ice with Bob, his
consent is required to execute the operation over the object, and it is necessary to ask Bob
whether he wants to take the right or not. This would increase A/ce’s trust in the system and
Bob will also be aware of his responsibility. If a right can be merged without the consents of
the parties involved, the system will collapse due to unwilling authorities involved in
performing a task, and the objects remain with no possible action, for example, assigning

reviewers to papers without their consent.

The above implies that merging requires the consent of both parties and both are responsible

for the right over the object. It gives the design principle:
P.5.3.1: Merging use-rights require the consent of the owner and the beneficiary.

This principle along with design principle 5.1.1 and 5.2.1 also gives the insight that rights
which imply no real responsibility can be assigned freely without the consent of the

beneficiary, but the rights imposing some responsibility require the consent of the beneficiary.

5.3.1.2 Totality

Totality deals with allocating the propetr/improper subset of rights over proper/impropetr
subset of authorized resources. In the above example, if A/ice is the owner of the document,
she decides how much rights she wants to assign to Bob from her set of rights. She may only
want to merge the editing rights over the document with Bob, in which case the merging is of
partial set of use-rights, or she may want to merge all the rights over the document with him,
in which case the merge is total and applied on the complete set of use-rights”. Partial merging
has some useful scenatios like only metging the accept/reject right among the reviewers of a
conference, which can lose its effectiveness if only total is allowed as then the reviewers can

modify the paper, or even delete it from the system.

7 As the illustrated scenatio discusses a single doaument, it is implied that the model supports metging of partial

set of resources.

126

As the Merge (. model supports different use-right sets, the partial merge can be used for any

subset of rights using
Mrgu(UREH} = MTQJ{URl} A MTQ.L(URZ}ﬂ s MTQ..L(UR?‘!} ["-?'-'-:I| 2. 28]

The above concludes that there are two design possibilities when merging the use-rights, that
is, only complete use-rights set merging is supported so all the rights or none can be assigned
to the beneficiary, or partial merge is supported so part of use-rights set held by the owner can
be merged with the beneficiary. The Merge . model supports partial merging as it has more
useful scenarios and also total merging can be achieved using partials if needed, but the reverse

is not possible. This gives the following design principle:
P.5.3.2: The owner can merge proper/ improper subset of their rights.

5.3.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the running example, ~A/ice can merge the edit rights over her documents with multiple actors,
say Bob and Car/ at the same time. In this case, the same set of use-rights is merged with Bob
and Car/ and all need to coordinate with each other in order to perform the operation, which

gives
Mrg, — (UR;){(Alice&Bob&Carl)|Bob,Carl € VUAAlice € SH,¥V VU,5H € NS,}...[eq.5.29]

Merging use-rights can raise the case when only one actor may veto to carry out the operation
and thus cause the whole process to terminate. Generalizing the above statement implies that
the same set of use-rights can be merged with multiple beneficiaries without concerns about
the preservation of state. This feature is important in cases where maintaining the locks over
objects may reduce the benefit of the system use. However, as the number of actors holding
the merged right is increased, it becomes more difficult to modify the object as the agreement
of the complete actor set needs to be considered for every single modification. This gives the

design principle:

P.5.3.3: 1t is possible to merge the same use-right with multiple beneficiaries.

127

5.3.1.4 Monotonicity

Monotonicity refers to whether the previous owner can exercise the right after the allocation.
In the above example, if A/ice merges the edit rights over her document with Bob, she cannot
modify it without his confirmation. The case where the initiating party cannot exercise the
right at all is covered in the Replace (. model and the case when both the owner and the
beneficiary can exercise the right at the same time is covered in the Share , model, so this
Merge (. model covers the options when the rights can be used by both actors but only with
the joint consent. It adds the beneficiary to the actor set for a particular use-right and merges

the right of the whole set, which gives

Mrg, —» UR({Alice & Bob},0,0pr) ... [eq.5. 30]

The Merge . model creates two roles with the merged right associated with the object, that is,
the Primary Owner (PO) and the Joint Beneficiary (JBen,). It means that given x rights
associated with an object, the Merge . model can create up to 2x roles, which is also
convenient for assigning rights to various roles. For actor centric implementations, the rights

associated with them can be considered as

URr(1/,,{JBen,},0,0pr)
Mrg, (]Ben,) = N udr = ..[eq.5.31
i gu’.U u'.} MRUBE‘HEJ GJ d}} [q]

and

UR(L/y{P0},0,0pr)

Mrg,(PO) —
“ MR(PO, 0,All)

..|eq.5.32]

where N is the total number of joint beneficiaries for a given use right. It can be generalized
that if rights of two actors are merged, then both of them have to co-ordinate to exercise the
right. This assumption allows many useful scenarios like MS office, collaborative software,
video conferencing, and so on, and gives the opportunity for collaboration even without the

presence of object locking and rights precedence. This gives the design principle:

P.5.3.4: Joint consent of primary owner and joint beneficiary is required to exercise the merged use-right.

128

5.3.1.5 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. In the
proposed model, as merge only modifies the use-rights triplet but the meta-rights remain with
the owner, the beneficiary cannot pass the merged use-right to others. This condition
maintains the owner’s authority over the object since they retain the authority to decide who
else can have the rights over the object or when to retrieve the merged right. The Merge ..
model proposed in this research is single step, therefore the beneficiary cannot pass on the

use-right to another actor.

In the above scenario, Bob cannot pass the edit rights over the document to Car/as he does not
have the meta-right to do so. Use-rights merge leaves the meta-rights with 4/c who can
modify the use-rights triplet. This condition is necessary for user trust and gives the following

design principle:
P.5.3.5: Merging use-rights does not allow the beneficiary to further allocate it.

5.3.2 Merge use process

The Merge (. model maps various components of the SAC model to each other and defines

the merge operation using the following set of rules:

a) The U, belongs to the LR; in the NJ;.

VU, = LR;, ¥ LR; € NS; ... [eq.5.33]
b) The requested object O is classified into the same OC..

0 - 0C.,¥ OC, € NS,...[eq.5.34]
¢) The assignment of JBen, role to 1”U, and PO, to SH,

VU; - JBen,

sH, po, ¥ POn]Ben; € LR, ..[eq.5.35]

d) The addition of use-rights to the JBex, and restricting PO, and [Ben, to act jointly.

1/2 UR - PO,
. VUR =0 ..[eq.5.36]

Mrg,
T84 4 2 UR - JBeni,

e) Meta-rights remain with the PO.
MR — PO; ,¥MR — 0 ..[eq.5.37]

129

Givena NS 7, a merge access request is only granted if the virtual user I”U,acquires a local role
LR, in namespace NS, Also the object O is mapped in object class OC with the privacy label =
Further, 17U, is assigned to the joint beneficiary role JBen, which has the joint use rights over

the object O.

5.3.3 Definition

Merge is an operation that adds another actor to the actor set for a use-right and merges the

use-right of the entire actor set. It can be defined as follows:

NS, JH, VU, Opr, LE, [Ben, PO, UR and O are sets of Namespaces, Stakeholders, Virtual
Users, Operations, Local Roles, Joint Beneficiary, Poimary Owner, Use-Rights and Objects
respectively.
* A one-to-many stakeholder to Prmary Owner role assignment relation 13 given by
SH_PO € SH X PO
* assigned_PO:(sh:SH) — 2P? is a function derived from SH_PO, for mapping of
primary owner role onto stakeholder, which can be ¢ (empty) or the SH for the
merge model based on the cument state of the object.
assigned_PO(sh) = {sh € SH,po € PO|(sh,po) € SH_PO,¥ LR € N5}
* A many-to-many virtual user to Joint Beneficiary ,, role assignment relation is given
by
VU _JBeny S VU X JBeny
* assigned JBeny:(Jbeny:LR) — 2VY is a function derived from "U_JBesn,. for
mapping of [Bes; role over object to a set of virtual users.
assigned_]Beny (Jbeny) = {vu € VU, Jbeny € LR|(vu,Jbeny) € VU_]Beny,
¥ VU,LR € N5;}
o AC = 2(oPr*0) i the set of attestation certificates.
* A many-to-many FO role to attestation certificate assighment relation is given by
PO_AC S POx AC
* PO_rights: (po:LR) — 24¢ is a function derived from PO_.AC, for mapping each
primary owner role to a set of attestation certificates.
PO _rights (po) = {po € LR|(po,ac) € PO_AC,¥ LR € N5,)

* A many-to-many [Bes,. role to attestation certificate assignment relation is given by

130

JBen, AC € |Ben, x AC
® Beny_rights: (Jbeny:LR) — 240 is a function derved from [Bew. .AC, for
mapping each Joint Beneficiary role to a set of attestation certificates.
]Beny _rights (Jbeny) = {Jbeny € LR|(Jbeny,AC) € JBeny_AC,¥ LR € NS,
® As all the rights over an object can be merged with one or more beneficiaries, it
gves the concept of active users over an object state, and can be calculated by
Active Users = PO U [Beny
Access Grant
Using the above functions, a virtual user #& can perform an operation gfr over an object O,
under the Merge ,,, model only if there exist a mapping of v, for the [Ben, role over the object,
and the [Ben, role is authorized for the requested 4, 50 making vx; a member of active user set,
under the following relation:
vu;: VU, AU: Active Users,ac: AC YVU,AU € NS§;
vu; € assigned_JBeny (Jbeny) A ac € [Beny_rights(JBeny) = vu; € AU

but an operation can only be performed with the consent of PO.

5.3.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and
general public associated with the object. Consider the collaborative software system example,
the document is not moved from one system to another but remain in the same space — the
document category of the system, so the rights of its owner, parent, offspring and general
public role remain the same. The joint beneficiary — Bob’s rights are increased from none to a
subset and the rights of primary owner — A/ice, are reduced as now she needs to act together

with the joint beneficiary.

Below is table 5.6 for the roles of primary owner and joint beneficiary, and their rights over

parent, merged”, and child objects.

80 The focused object in the context of rights allocation.

131

PO JBen use
Parent Mtg. Obj Child Parent Mtg. Obj Child
Before Mg use | UR(V) UR(V,D,E) UR(V,D) D/C D/C D/C
MR(V,D,E)
After Mrg Use UR(®V) | 2UR(V.D,E) ["2UR(VD) [UR(V) ["2UR(V,D,E)|"“2UR(V,D)
MR(V,D,E)

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

PO represents primary owner, while JBen use represents the joint benefidary of use-rights
Mrg. Obj. represents the object with merged rights

D/C represents don’t aare and depends on benefidary previous role in the space

Table 5.6: Owner and benefidary rights over different objects before and after the Merge use model

Below is table 5.7 illustrating different rights of different roles associated with object before

and after the Merge . model.

Parent PO JBen use Offspring G. Public
Before Mrg use | UR(V,D) UR(V,D,E), D/C UR(V) D/C
MR(V,D,E)
After Mrg use UR(V,D) Y2 UR(V,D,E), | 2 UR(V,D,E) UR(V) D/C
MR(V,D,E)

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

PO represents primary owner, while JBen use tepresents the joint benefidary of use-rights

D/C represents don’t care and depends on benefidaty previous role in the space, or space

configuration for G. Public role.

Table 5.7: Rights for different roles assodated with object before and after the Merge use model

A complete analysis of rights for different roles based on table 5.6 and 5.7 for the Merge (.

model is as follows:

a) After Merge ., the primary owner rights over the object are reduced from having all
rights as single authority to joint authority. The meta-rights remain with the owner so
they can revoke the right at any time.

b) The rights of the primary owner over parent object spaces remain the same, that is,

they can enter the space as before.

132

g

h)

The primary owner’s rights over child objects are also merged with the joint
beneficiary, so they cannot delete anything alone.

The rights of joint beneficiary over the object are increased as they can exercise some
of the rights with the consent of the primary owner except meta-rights.

The joint beneficiary gets the view right over the parent spaces to enter the space.
The joint beneficiary also gets the merged delete right over the child objects.

Merging of use-rights does not change the object space, so parent’s rights over the
object remain the same, that is, they can view and delete the object.

Offspring role is associated with object, so its rights after the merging of parent object
rights are not changed and they can still view/enter the patrent space.

General public role, its active users and their rights associated with document remains

the same, which depends on the parent and object configurations.

5.3.5 Design principles

The above discussion gives the following design principles for the Merge (.. model.

a)

b)

%)

g

h)

The model addresses domain based use-rights merge where rights are associated with
objects.

The primary owner can only merge the use-rights for which they have the meta-rights.
Merge . gives use-rights, but meta-rights remain with the primary owner.

Consent of both the primary owner and the beneficiary is required for use-rights
merge.

The ptimary owner can merge some/all of their use-rights with the joint beneficiary.
The primary owner can merge same right over an object with multiple joint
beneficiaries at the same time.

The primary owner cannot exercise the merged use-right without the consent of the
joint beneficiary.

The joint beneficiary cannot further give away the use-right.

The rights of primary owner and joint beneficiary are merged so they need to act
jointly, but the rights of parent, offspring and general public role remain the same after

merging the use-right.

133

5.3.6 Revocation

Merging use-rights is a common practice in collaborative software environment as multiple
actors work together to achieve a common goal. However rights allocations as well as team
memberships are not always static so it requires a mechanism to revoke the merged rights
(Barka, 2002; Crampton & Khambhammettu, 2006, 2008; Ruan & Varadharajan, 2010). In the
running example, Alice — the owner of the document, may assign edit rights to Bob over her
document for a certain period of time, which may expire or change depending on the type of
user contract. So the rights over “Thesis’ can be assigned to Bob for say two months®, and after
that it may get expired. This section covers the possible ways in which a merged right can be
revoked from the joint beneficiary. As the primary owner retains the meta-rights, A/ce has the
authority to take back the editing right over her document from Bob (or the whole community)

by revoking the right or by deleting the document at any time.

A right allocation is revocable if the initiating party keeps the meta-rights and when the Merge
v model allocates use-rights to the beneficiary, the meta-rights remain with the owner, so the

rights are revocable. This gives the principle:
P.5.3.6: The primary owner can revoke the merged right at any time.

There are two types of revocation supported in the Merge . model, that is, self-revocation
and time based revocation. Rule based revocation is not needed as the primary owner has the
right to view the changes done by the joint beneficiary before accepting it and only allows

them if they do not violate the rules.

5.3.6.1 Self revocation

The owner revokes the use-rights based on inappropriate use, difficulty in coordination or at
will. In the above scenario, A/ can revoke the edit rights over her document from Bob at any
time at will. Self-revocation gives the sense of authority to the owner that the object still

belongs to them even after merging rights over it with other actors.

81 Or for the lifetime of the team.

134

Allowing self-revocation renders easy retrieval of the use-rights by the owner when there is a
deadlock between the joint beneficiaries. It also maintains the collaborative sense between the

joint beneficiaries so they may not act too extremely to refuse all suggestions.

5.3.6.2 Time based revocation

At the time of merging the use-rights, the owner can assign a time-stamp with the assigned
right for the proposed lifespan of the allocation. When the time-stamp expires, the allocation is
automatically revoked from the joint beneficiary. Time based revocation provides a tool that
the owner can utilize to preset the revocation time for each right for each object when the
team separates. In the above scenario, .A/ice can set a time-stamp on the right over the
document so it is revoked after the team contract expires. Time based revocation provides the

facility to revoke the allocations in the future without additional involvement of the owner.

5.3.6.3 The Merge (. revoke process

The revocation removes the use-rights from the joint beneficiary /Ben, and gives the full rights
back to the primary owner, if no other joint beneficiary is left for the particular right over the
object.

“UR = Beny e 0. Jeq. 5.36]
UR = PO, e

It also takes back the JBes, role from 1”U, and PO, role from SH,

— JBeni, = VU; :-
PO, = SH, ¥ JBen!, ,PO; € LR A VU, SH; € NS; ... [eq.5.39]

5.3.7 Summary of Merge use

To summarize, the Merge , model allow the owner of an object to merge the use-rights of all
the actors and their joint consent is needed to exercise that right. The characteristics are given
in section 5.3.1, which distinguish the model from other models of use-rights allocation.
Section 5.3.2 explains the allocation process, followed by the logical definition of the model in
section 5.3.3. Section 5.3.4 illustrates the rights analysis, the design principles are mentioned in

section 5.3.5 while the revocation is discussed in section 5.3.6.

135

5.4 Chapter summary

This chapter discussed the use-rights allocation for online social interactions by outlining the
Replace , Share , and Merge . models. It also outlined the revoke process for each case.
The Replace . model was demonstrated with the example of a conference system, the Share
e model was explained using the Video On Demand system, while the Merge . model was

illustrated with a collaborative software example.

136

Chapter 6

Meta-Rights Model

his chapter establishes the basic understanding behind the allocation of meta-rights

in online social interactions. Meta-rights are system permissions for actors to apply

operations on rights® (Dewan & Shen, 1998; Indratmo & Vassileva, 2007; Mattas et
al., 2000). As discussed in chapter 3, there are four possible options to allocate meta-rights and
this chapter outlines these models in detail. The models introduced are Replace y,,, Share .,
Merge (., and Revoke ... However, as the revoke process is different for each of the three
allocation models, it is discussed under each allocation model section rather than in a separate
revoke model section. Every model is described by using four distinct steps: a) the general
description of the model along with various rights allocation characteristics and their values for
online social interactions, b) the mapping of various components of SAC model to desctibe
the working of the model in an online social interaction instance, c) the logical definition of
the model to illustrate the exact possible combinations of rights over an object for the roles of
owner and the beneficiaries, and d) the rights analysis of different roles of parent, offspring
and general public associated with the object. After outlining each allocation model, its

revocation process is discussed. The meta-rights models are usually associated with ownership

82'They allow the owner to grant use-rights to other actors.

137

and administration of objects and thus Replace ., often termed as object transfer, Share ., is

termed as secondary ownership while Merge .., is termed as joint ownership.

6.1 Replace ., model

Replace ., model allows the owner to replace the actor for meta-rights™, and is commonly
termed as transfer (Crampton & Khambhammettu, 2006, 2008). This is done by changing the
actor entity for all meta-rights triplets®. The need of rights transfer arises when the owner of
an object wishes to permanently transfer it to another actor (Barka, 2000), who becomes the
new owner. Transfer gives away all entity meta-rights (Gaaloul et al., 2008), so the previous
owner loses the owner role for the object, and so cannot exercise any right over the transferred
object. Also the beneficiary becomes the new owner, who is completely responsible for the
object and all rights associated with it. Rights are irrevocably given to the new owner, for
example after selling a house the old owner has no right to it and so cannot take it back.
Transfer is used in scenarios when the owner no longer wishes to maintain the object, or the
object rightfully belongs to the other actor, so the owner transfers the object and gives all its
privileges to the new owner”. In the physical wotld, selling/putrchasing of house/car is an
example of rights transfer. In these examples, the purchaser gets all the rights over the object

including the ownership and the seller remains with no right.

Let’s consider the scenario of the conference system which was discussed in the previous
chapter™, but this time the focus is on the copyright of an accepted paper. The conference
chair is the owner of the conference space which is also the parent space for submitted papers,
and authors are the owners of papers. Many research papers are submitted to a conference and
undergo a peer review process (Whitworth & Friedman, 20092, 2009b). Reviewers often judge
them on the basis of quality, relevance, novelty and presentation and give their expert opinion
to conference chair to decide the accept/reject outcome. If some paper is accepted, the

authors are required to submit the final draft after incorporating the reviews, and a copyright

8To make them the new owner.
8The new actor then can add themselves for use rights as well.
8 The parent role is notified about the transfer of the child object.

86 Chapter 5, section 5.1 (Replace use model).

138

form to transfer the use, distribute, publish, license, exhibit, record, digitize, broadcast,
reproduce and archive rights over the paper to the conference/organization.

To map this scenario on the core SAC model, the conference systemis the parent space for all
the conferences owned by the system administrator. The conference is the namespace with
conference chair as the stakeholder, different papers/comments as objects, and vatious local
roles are associated with each conference. The patrent has the right to view/delete any paper,
which is rejected or not matched to the conference theme for example, while the owner
(author) has the right to decide the copyright transfer.

Now suppose that A/ice is the conference chair of a conference the Security Conference’ and Bob
has a paper accepted in her conference. At the time of final camera ready submission, in order
to publish the paper, Bob is required to sign a copyright form to transfer the display right® over
his research paper to A/ice and give her the authority over it. A/ice wants full authority over the
research paper as she has over her other objects — so she can publish or reproduce the work
without concerning any other authority. She also wants that she (or the organization she is
working for) should be able to decide who can read that research or who cannot®. So she
wants that Bob should not only transfer all the use-rights but also the meta-rights over the
paper to handle those rights. Bob, in order to publish his work and to get the credit”, needs to
give that authority to Alie (or her organization)”. In this case, Bob chooses to transfer the
publish rights over his paper to A/ice, including the meta-rights. This scenario is depicted in
figure 6.1, where Bob — the original owner of ‘paper!23”has transferred his paper to .4/ice —who

will manage the view rights over it.

6.1.1 Characteristics of Replace meta

Following are some of the characteristics of this Replace ., model that distinguish it from
other models. Some of these characteristics are defined in the literature (Barka & Sandhu,
2000b; L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role membership transfer in
RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the

87 The meta-right to view.
8 May be based on some subsaiption fee or affiliation.
8 In the form of publiation cmunt and recognition, which also leads to promotions and grants.

% Under certain conditions, of curse, like the aredit should always go to Bob and the work will never be edited.

139

values of these parameters are different in this research from the values proposed in the

literature due to the nature of online social interactions and the ownership domain.

;.:‘ %ha -. Bob

st oo e
| = (Orgamizer | (TPC : ;

: ! '

: ! :

| i ' | oo
E Secunty Kemel : i Curtent owner

i 1 i

| : | [|
| i ;

Paper 234 Paper 123 :

Paper 345 ' Paper 456 Paper 567

Figure 6.1: Transfer scenario depicting copyright of accepted paper

There are two basic axioms for this model, which are kept consistent throughout all the other
meta-rights models in this research. First, the model presented in this research is domain based
as rights are associated with objects, and second, that no one can merge a right associated with
an object which they do not own. So, it is not possible for Bob to transfer A/ice some other

paper ‘Paper234°, where he does not have any meta-right.

6.1.1.1 Consent

As the paper is owned by Bob so only he can decide whether he wants to publish it in this
conference or not based on his personal discretion, which gives that the system should allow
the owner to decide about the transfer of the object. Also, papers accepted in one’s conference
establish the repute of the conference chair. It gives that .4/iee would be known for the
credibility and quality of accepted papers in her conference, which could affect her online and
offline reputation in her social circle. For example, she may not like to accept the transfer of a
paper, which was rejected in the review phase. So A/ice should be asked before transfer of any

object to her, in this case acceptance decision before the actual transfer of the paper.

140

The above implies that the rights allocation system should support users’ trust and provide the
guarantee that no object will be transferred without the consent of its owner. Also, as objects
can contribute to one’s repute, the new owner should also be agreed to take all the
responsibilities associated with the object. However, the allocation contract is not used for the
transfer of the object as it cannot be revoked from the new owner. It gives the operational

principle:
P.6.1.1: Consent of the previous and new owners is required for transfer of an object.

6.1.1.2 Totality

Totality deals with allocating the proper/improper subset of rights over proper/improper
subset of authorized resources. In the above example, as the paper belongs to Bob, it is up to
him that how much meta-rights he wants to replace with .4/ice. He may want to replace all the
rights over the paper with A/ice, in which case the replace is total, or he may want to replace
only some of the meta-rights with 4/ice but keeping rest with him, in which case the replace is
partial. The model supports replacing partial set of meta-rights, where Bob may sign the
copyright and transfer the view meta-right over the paper to A/ce but he may want to keep the

meta-right to edit or delete it.

Generalizing the above scenario gives that the Replace ., model deals with partial set of meta-
rights as it has more significance for online social interactions. Also, total transfer of an

object” can be achieved through multiple-partial transfers, which gives

Repm(MREH}: Repm(MRij M Repm(MRE}ﬂ . Repm(MRn}[eqﬁ'i]

However, the replaced meta-right cannot not be taken back from the beneficiary as it cannot
be exercised by the old owner. Transfer is the permanent replacement of meta-rights so the

model supports partial transfers, which gives the following design principle:

P.6.1.2: The owner can transfer proper/ improper subset of their rights.

91 All the meta-rights over it.

141

6.1.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the copyright example, Bob was the owner of the research paper and he transferred some rights

over it to Alice. This gives

Rep,, — (MR, MAlice | Alice e VUY VU € NS} ... [eq.6.2]

He cannot transfer the copyright to more than one conference at the same time, which may
encourage corruption in STS, for example in the form of multiple publication of the same
paper. However, if .4/ice wants to have more than one owner over the object, she can later use

the Share ., model to do it.

Generalizing the above gives that the right can only be transferred to a single actor, however, if
the right needs to be transferred to more than one actor, it can be done by the new owner after
the transfer operation takes place™. This singular cardinality eliminates the corruption at rights
level, so one cannot transfer one object to multiple recipients at the same time”. The
possibilities that are associated with giving the ownership to multiple beneficiaries are left for
the case of Share y,,, which is covered later™ . The benefit of restricting the cardinality is the
simplicity to maintain the accountability of atomic operation associated with the new and old

owners, and precedence of various allocations over each other.
This gives the design principle:
P.6.1.3: It is not possible to transfer meta-rights to more than one beneficiary.

6.1.1.4 Monotonicity

Monotonicity refers to whether the previous owner can exercise the right after the allocation.
In the running example, if Bob transfers the meta-rights over the paper to A/ice, ownership and

accountability principles demand that he cannot manage the object anymore, but only .A/ice will

2 When he becomes the new owner.

9 The traditional models presented in literature works on multiple cardinality of rights, while the cardinality of
transfer is singular in offline communities and so this model supports the singular cardinality following sodo-
technical design.

94 Section 6.2.

142

do any management. This condition is important as the need of transfer arises because of the
demand of new owner to manage the object. If either .4/ice cannot manage the access of other
actors over the paper, or Bob can still allow others to access it, the purpose of meta-rights
transfer is not fulfilled. It is also justified in this case as the transfer of copyright comes at the

cost of some other benefit — publication and recognition in this case” which Bob will enjoy™.

Replace ., model replaces the actor in the owner role for the right and gives the rights of old

and new owner by

UR(0OldOwner, 0, ¢)

Rep,, (0ldOwner) — MR{(0ldOwner,0,¢) ™

[eg.6.3]

and

UR(NewOwner, 0,All)

MR(NewOwner. 0, Arl) - €9-64]

Rep,, (NewOwner) —
The above discussion can be generalized that transfer is mutual exclusive, that is, if meta-rights
over an object are transferred they cannot be further exercised by the old owner, but only the
new owner can exercise those rights”. Even if the object is not handled very well by the new
ownet, the old owner has no right over it, for example after selling the house the old owner

remains with no right over it. This gives the design principle:
P.6.1.4: After the transfer, the old owner has no right over the object.

6.1.1.5 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. In the
proposed model, if the new owner gets all the meta-rights over the object, they can again
modify the meta-rights triplet to pass the object to some other actor, for example selling of a

second hand car. The Replace .., model supports multi-level depth™ of meta-rights transfer,

% Which may lead to other indirect benefits of promotions, grants and so on.

% In physical world, transfer also gives some benefits to the old owner in form of money or exchange with other
needs and so on.

97'The new owner can assign some tights to old owner as they an assign rights to other actors.

% The old owner an restrict this by keeping some of the rights using Merge Meta model (Section 6.3).

143

which supports ownership and makes the model recursive, where one can transfer any right

after holding the meta-right.

In the presented scenario, .A/ice can pass the paper to any other actor or organization as she
has the meta-rights over it. Bob cannot restrict A/ice to do any further transfers as he does not

have any meta-right left over the paper”. This gives the operational principle:
P.6.1.5: Transfer allows the new owner to further transfer the object.

6.1.2 Replace Mmew process

The Replace ., model maps various components of the SAC model to each other and defines

the transfer operation using the following set of rules:

a) The requestor U, belongs to the LR, in the N,
VU; = LR;, ¥ LR; € NS;...[eq.6.5]
b) The requested object O is classified into the same OC..
0 = 0C,,¥ OC,€ NS, ... [eq. 6.6]
c) The transfer of object O from NS, to N,
0 - NS;,3NS; | VU; € (SH;,NS;) ... [eq. 6.7]
d) The replacement of I'U, with SH, in the Owner role for the object
VU; = Owner,,¥ 0 € N5;... [eq.6.8]
which results in the following two operations

e) The addition of use-rights and meta-rights to the I"U.

VR= VU vur MR =0 [eq.6.9]
_> mam v "
MR- VU, =

f) The removal of use-rights and meta-rights from the SH.

—~UR - SH;

YUR,MR = 0 ...[eq.6.10
~MR - SH, MR =0 ..[eq.6.10]

Givena NS/, a transfer request is only granted if the virtual user 1”U,acquires a local role LR,

in namespace NS, Also the object O is mapped in object class OCwith the privacy label 7. The

9 He may restrict A/ice at the time of transfer by making some conditional contract.

144

object is moved from NS to NS, which adds the meta-rights to ’U, and removes them from

SH,

~

6.1.3 Definition

Replace,,,, 1s an operation that replaces the active actor set over use-rights and meta-rights

with another actor, that is, the new owner. It can be defined as follows:

NS, JH, Opr, LR, UE, ME and O are sets of Namespaces, Stakeholders, Operations, Local
Roles, Use-Rights, Meta-Rights and Objects respectively. After the object has been moved
from INS;to NS, the following role and rights are assigned to SH;:
® A transfer of owner role from (OldOwner) LU to (NewOwner) I'T;
® A many-to-many NewOwner role to all nghts assignment relation is given by
NewOwner UR € NewOwnerx UR
NewOwner MR C NewOwnerx MR
®» NewOwner_rights: (NewOwner:LR) — 2V® is a function derived from
NewOwner UR, for mapping NewOwner role to a set of use-rights.
NewOwner_rights (NewOwner) = {NewOwner € LR|(Newowner,ur) €

NewOwner_UR,Y LR € N5;}

* owner rights: (Owner:LR) — 2M% is a function derved from NewOuwaner MR, for
mapping NewOwner role to a set of meta-rights.
Newowner_rights (NewOwner) = {NewOwner € LR|(Newowner,mr) €
NewOwner_MR,¥ LR € NS5;}
Access Grant
The transfer model does not affect the way an object can be accessed but only the virtual user

in the owner role 15 changed.

6.1.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and

general public associated with the transferred object. Transfer replaces the meta-rights owner

145

. . : 100
role from one actor to another, which may results in change of space in some cases ", it also

changes the rights of all the roles associated with that object.

If the object s transferred from old owner to new owner but resides in the same parent space,

then only the old and new owner rights will be changed but the rights of parent, offspring and

general public role remain the same. However, if the object is moved from one parent space to

another parent space then the rights of old and new parent, old and new general public, and

old and new owners will be changed. On the contrary, if the transferred object is a space and
101

has some dependent objects, all the child objects will move along with their parent so,

offspring rights remain the same for the object being transferred in both cases.

Consider the copyright example, the transferred paper is transferred from Bob to Alice, where
Alice was previously the owner of the parent space — conference, so the rights of parent,
offspring and general public role will be changed. The rights of old owner — the paper author,
reduce from all the rights to none after transferring it to Alice — the conference chair'™. The

new owner’s rights increased from some to all — use as well as meta-rights.

Below are the tables for different rights of different old and new roles associated with object

before and after the Replace ., model.

Old Parent | Old Owner | Old Offspring | Old G. Public
Before Rep mew | UR(V, D) | UR(V,DE) UR(V) D/C
MR(V,D,E)
After Rep Meta NR NR UR(Y) NR

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively
D/C represents don’t aare and depends on benefidary previous role in the space

NR represents No Right

Table 6.1 (a): Rights for different old roles assodated with object before and after the Replace Meta model

10 In other ases, it may happen from one author to another author for example.
101 As change of host server in ase of website does not affect the contents of the website.
12 He may view his own copy but to view the published copy, he may need to subsaibe for the organization at

some cost, just like any other actor.

146

New Parent | New Owner | New Offspring | New G. Public
Before Rep Meta D/C D/C UR(V) D/C
After Rep Meta UR(V, D) UR(V,D,E) UR(V) D/C
MR(V,D,E)

V, D, E and C represents view, delete, edit and create respectively
UR and MR represents use-rights and meta-rights respectively

D/C represents don’t aare and depends on benefidary previous role in the space

Table 6.1 (b): Rights for different new roles assodated with object before and after the Replace nmeta model

Below is table 6.2 for the roles of old and new owner, and their rights over parent, current, and

child objects.

Old Owner New Owner
Parent |Transferred Obj.| Child Parent | Transferred Obj.| Child
Before Rep mera| UR(V) UR(V,D,E) UR(V,D) | D/C D/C D/C
MR(V,D,E)
After Rep Meta NR NR NR UR(®V) UR(V,D,E) UR(V,D)
MR(V,D,E)

IV, D and E represents view, delete and edit respectively

[UR and MR represents use-rights and meta-rights respectively

ID/C represents don’t care and depends on benefidary previous role in the space

Table 6.2: Old and new owner rights over different objects before and after the Replace nera model

A complete analysis of rights for different roles based on table 6.1 (a, b) and 6.2 for the Replace

Mera model is as follows:

a) After Replace ., the old owner remains with no right over the object. However, if he
acquires some role in the new owner space, for example general public, he would only
get the rights associated with that role.

b) The old owner also loses all the rights to the parent space unless he has the
membership for general public role or has some other object in the same parent space.

¢) The old owner remains with no right over the child object.

d) The new owner gets all the rights over the object including the meta-rights, so they can
manage other actors’ access.

e) The new owner gets entetr/view right over the patent space.

f) The new owner also gets all the rights of parent role over the child objects.

147

@) If new and old owners are offspring of the same parent space, then the rights of parent
will not change.

h) If the object remains in the same parent space the rights of the general public role
remains the same.

i) If the object is transferred from one parent space to another'”

, then the old parent and
old general public role left with no rights over the object. New parent role gets all the
rights appropriate for them (for example view and/or delete right) and new general
public role may get some view rights (for example view) depending on the new owner’s
space configuration.

j) If the transferred object is a space and contains other child objects, they will also

transfer with their parent space. So in both cases, the rights of offspring role will not

change.

6.1.5 Design principles

The above discussion gives the following design principles for the Replace ., model.

a) The model addresses domain based object transfers, where rights are associated
with objects.

b) An actor can only transfer objects under their ownership and over which they have
the meta-rights.

c) Transfer gives use-rights and meta-rights to the new owner.

d) Transfer should notify the parent about old and new owner.

e) The consent of old and new owner is required for any transfer.

f) Anactor can transfer any subset of complete meta-rights set.

@) An actor can only transfer an object to single beneficiary.

h) Old owner cannot exercise any right over transferred object.

1) The new owner can further transfer the rights over the object.

j) The rights of old parent, old owner and old general public roles will be removed,
while new parent, new owner and new general public role acquire all the rights.

The rights of offspring role remain the same.

103 The change in patrent space.

148

6.1.6 Revocation

A right allocation is revocable if the old owner keeps the meta-rights, but transfer allocates use
as well as meta-rights to the new owner, so is irrevocable. In this case, the old owner is no
more responsible for the object nor can he exercise/ manage any right over the object, and the

new owner can exercise all the management of object, which cannot be revoked.

In the above scenario, Bob remains with no authority to withdraw the paper from A/ice’s

conference after it is being published, giving the operation principle:
P.6.1.6: Transfer is irrevocable, so the old owner cannot take back the rights.

6.1.7 Summary of Replace met

The difference between the characteristics of the proposed transfer model and the traditional

transfer models can be seen in table 6.3.

Characteristic Proposed Model Traditional Model
Consent Joint Several
Totality Partial Total
Cardinality Singular Singular
Monotonicity Mutual Exdusive Mutual Exdusive
Depth Chain Chain
Revocation No Yes
Who can transfer If one has the meta-right Owner/Security Administrator/
If one has the use-right!04
Who can revoke No one Seaurity Administrator

Table 6.3: Difference between proposed and traditional delegation models

In role transfer, the complete role is transferred from one user to another as all the rights over
all the objects are associated with roles, while the presented model treats each right separately
and the owner has the option to transfer subset of rights over subset of objects.. Also, the
Replace ., model is based on discretionary grounds, whereas the transfer in RBAC was based
on mandatory grounds and a security officer is responsible for assigning roles (Sandhu &

Munawer, 1998a, 1998b, 1999b). This central administration approach cannot work for STS

104 Member of the role.

149

which are based on ownership and has the potential of millions of users. Furthermore, the
transfer in RBAC allows the security officer to revoke the transfer (Barka, 2002), while the

model presented here not allows anybody to revoke the transfer of an object™.

To summarize, the Replace ., model allows the owner of an object to transfer the use as well
as meta-rights over his object to some other actor, who becomes the new owner. The
characteristics are given in section 6.1.1, which distinguish the model from other models of
use-rights allocation. Section 6.1.2 explains the allocation process, followed by the logical
definition of the model in section 6.1.3. Section 6.1.4 illustrates the rights analysis, the design

principles are mentioned in section 6.1.5 while the revocation is discussed in section 6.1.6.

6.2 Share ., model

Share ., model allows the owner to allocate the meta-rights over his object to other actor
while keeping the same meta-rights, so both can exercise it (Y. Liu et al., 2009; Z. Zhang et
al., 2008). In the meta-rights triplet this is done by adding an actor to the existing set of actors,

107 .
. The need of Share ,,,, arises when the owner of

while the use-rights triplet does not change
an object wants to give meta-rights over his object to other as well as keep them so both can
manage the rights over the object. It is used in distributed scenarios where multiple actors own
the same object and manage the distribution of rights over it, for example multiple organizers
of the same event. The Share ., model adds a new actor for meta-rights but the rights of
existing actors do not change. In Share ;,,, the meta-right is given completely so any party can
act alone without any involvement as if they owned it exclusively. As both the original owner
and the beneficiary have the meta-rights, either of them can transfer the object or abstain the

other owner from use or meta-rights'”. In the physical world, multiple salesmen working in a

store is an example of sharing se// meta-rights'”, whete any of them can transfer the object'".

105 Only the new owner can again transfer the object back to the old owner.

106 Thhis is the reverse case for Replace meta with respect to the owner, where the original owner loses his rights.

107 The benefidary gets the meta-rights so can add use-rights to them if they want.

108 For this reason, sharing of meta-rights needs some contract which poses some restrictions on the benefidaries.
109 The salesmen have the right to transfer the use-rights and meta-rights over the object but they annot use it
themselves.

10Who becomes the new owner.

150

Let’s consider the scenario of sharing a video on ‘Facebook’, which is a social networking
service allowing users to share their information and activities with their friends and family. A
wall is associated with every Facebook account which displays the activities of its owner. These
activities involve reading various articles, watching videos, uploading pictures and posting
comments. Users add friends on ‘Facebook’ and exchange messages which also include
automatic notification when one of their friends updates their wall. Every wall has different
roles of friends, family and so on, among which the owner manages the access rights over his
objects. Every video (or any other object) has various roles of owner, commenters, likers,

viewers, sharer and general public.

To map this scenario on the core SAC model, the Facebook system is the parent space of all
the profiles, walls and so on, owned by the system administrator. Wall is the parent space for
all the videos posted in it, and likes and comments are child objects of the video space. Every
video in the system has different set of parent, offspring and general public roles. The system
space is the namespace with system administrator as the stakeholder, and wall is the namespace
with profile owner as stakeholder. The profile owner has the right to create a video, display it

to some users, or delete it.

Now suppose that an actor A/ice creates a video on her wall, and wants to share it with Bob —
an actor in her friend role. She wants that Bob can view the video, may comment or like it, and
also can show it to his friends/family if he wants. She then shares the view meta-tight with Bob
so he can manage the view access for his friends over the video. As Bob has the view meta-
rights, he can further share the video with Car/ — results in forwarding him the view meta-
rights. Sharing the video on their own wall gives them the meta-rights over it for their own
wall, but the rights of the original owner remain the same for his/her wall. This scenario is

depicted in figure 6.2.

6.2.1 Characteristics of Share Mewa

Following are some of the characteristics of this Share ., model that distinguish it from other
models of meta-rights. Some of these characteristics are defined in literature (Barka & Sandhu,
2000b; L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role membership transfer in
RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the

151

values of these parameters are different in this research from the values proposed in the

literature due to the nature of online social interactions and the ownership domain.

A

po=oy 2,;3 &Bau “b 2_?; & Car!
T Sl f_’j-’ff: ””””””” : _’_’j—’f.ff""""::""". ””” :_:_’_’i’_’_f_:""":;i:_f__"""""""f_.’f—ll-’f.:_f ”””” K
. (T/(‘mmnemel' ,‘ (" Liker (Viewer - i & Friends / Family Ay 'ﬁ_:‘ Liker .
e e Boas Eoeeas
Al 1 ' Bob 1 W
Security Kernel : i _Security Kernel
i : T
| !

Lo -

I

H e
= =7 i -
. =5,
//\ Vi
'
|
1

- Shares with

Figure 6.2: Sharing meta-rights scenario depicting Facebook wall

There are two basic axioms for this model, which are kept consistent throughout all the other
meta-rights models in this research. First, the model presented in this research is domain based
as rights are associated with objects, and second, that no one can share a right associated with
an object which they do not own. So, it is not possible for .4/ice to assign Bob some rights over

another video, where she does not have any meta-right.

6.2.1.1 Consent

Allocating the meta-rights over a video to Bob requires Alice to initiate the process as the
system should enhance the owner’s trust. 4/ice may want to add or delete video at will and
decide whether it is appropriate to share the meta-rights over the video to a specific actor or
not. Also, it is necessary to take Bob’s consent as he would be responsible for its propagation
and handling of rights over the video. Also, he must be aware of the object due to reputation
management. If this condition is relaxed, one can share indecent videos with your name on

your wall without your consent which is socially inacceptable.

152

The above implies that meta-rights are associated with one’s repute111 and gives the
responsibility in some cases as well. So, meta-rights can only be shared with the consent of the

owner and the beneficiary. It gives the following design principle:
P.6.2.1: Meta-rights sharing require the consent of the owner and the beneficiary.

6.2.1.2 Totality

Totality deals with allocating the propetr/improper subset of rights over propet/impropetr
subset of authorized resources. In the above example, it depends on A/ discretion that how
much meta-rights she wants to share with Bob from her complete set of meta-rights. She may
give him only the view meta-rights so he can only manage the users to view the video, in which
case the sharing is partial, or she may give the edit/delete meta-rights so he can allow others to
edit/delete the video, in which case the sharing is total. Total sharing of meta-rights creates
another primary owner with the same rights over the object and may not be appropriate in all
conditions, so this Share ., model supports partial sharing. Also, partial can be extended to
the complete meta-right set, in cases where complete set of meta-rights need to be shared

using
Shr, (MR ;) = Shr,,(MR,)AShr, (MR;) A ... AShr, (MR,) ...[eq. 6.11]

Generalizing the above implies that there are two possible design options in the Share .,
model, that is, only complete sharing of meta-rights is supported as all the meta-rights or none
can be shared with the other actor, or partial sharing is supported so a subset of all the meta-
rights held by the owner can be shared. This model supports partial sharing as it has more
useful scenarios and also total can be achieved using multiple partial sharings in cases where it

is needed. This gives the design principle:

P.6.2.2: The owner can share the proper/ improper subset of their meta-rights.

11 Having view right over an indecent/controversial video on YouTube may not affect ones repute as they are
part of general public role. However, having the same video on ones wall with their name may be of more

concern.

153

6.2.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the above example, A/ice can share the view meta-right over her video to multiple actors say
Bob and Car/ at the same time by sharing it with both of them. Now if both of them want to
share it with their social circles, they can do it because they have the view meta-right over the

object, which gives
Shr,, - (MR){(Bob| Carl) | Bob,Carl € VU ¥ VU € NS} ... [eg. 6.12]

Generalizing the above case gives that the same meta-right over the same object can be shared

with multiple beneficiaries, which gives the operational principle:
P.6.2.3: It is possible to share same meta-right to more than one beneficiary.

6.2.1.4 Monotonicity

Monotonicity refers to whether the previous owner can exercise the right after the allocation.
In the running example, if A/ice shares view meta-right over her video to Bob, she can still
manage the view access over the video, that is, can exercise the meta-rights. The case where

1]12

the initiating party cannot exercise the right is covered in the Replace ., model “and so this

Share ., model covers the cases where the owner and the beneficiary both can exercise the

right at the same time'",

The Share ., model adds the beneficiary to the actor set for meta-right, which gives
Shr,, = MR({Alice|Bob},0, opr) ...[eq.6.13]

Share ., creates two roles with each shared meta-right associated with the object, that is,
Primary Owner (PO) and the Secondary Owner (§O). It means that given x rights associated
with an object, the Share ;.. model can create up to 2x roles, which is convenient for assigning
rights to roles as well. For actor centric implementations, the rights associated with them can

be considered as

12 Section 6.1.

113The case when both of them need to jointly agreed upon some operation is covered in Merge Met (section 6.3).

154

UR({50},0,0pr)

Shrm(S0) = yip((s0). 0, opr) ™

[eg.6.14]

and

UR({PO}, 0,0pr)

Shr.(PO) = \rp(tpo}, 0, AlD)

[eg. 6.15]

It can be generalized that the sharing of meta-rights is mutual inclusive, so if some meta-right
is shared between two actors, then both can exercise it as they have the complete right. This
provides the sharing of authority and opportunities for team work, as one can share meta-
rights with another actor and both of them can accomplish the task. This gives the design

principle:
P.6.2.4: Both the primary and secondary owner can exercise the shared meta-right.

6.2.1.5 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. In the
proposed model, as the secondary owner gets meta-rights, they can pass the use or meta-rights
to others. Sharing of meta-rights addressed in this model is multistep, so the beneficiary can
further pass the right to others. This condition permits the sharing of information, pictures
and videos on social networks, and allows the information to propagate from within a single

social circle to the whole community.

In the running example, ~A/ice may share the view meta-rights to Bob, who can further share it
with other actors, for example Car/. The social circles of Bob and Car/ can further share the
video with their social circle if Bob and Car/ have shared the meta-rights with them, which can

be seen by
Shr,, = MR({P0|50},0, opr) ... [eq. 6.16]
This condition is important for system growth and gives the operational principle:

P.6.2.5: Sharing meta-rights allows the beneficiary to further share it.

155

6.2.2 Share Mewa process

The Share ., model maps various components of the SAC model to each other and defines

the share operation using the following set of rules:

a) The I"U, belongs to the LK; in the NJ;
VU, = LR, V LR; € NS;...[eq.6.17]
b) The requested object O is classified into the same OC,
0 = 0C,,¥ 0C, € NS, ... [eq. 6.18]
c) The assignment of SO, role to 1’U, and PO, to SH,
SH; — PO

VU, =

50: ¥ PO, 50; € LR; ..[eq.6.19]

d) The sharing of use-rights and meta-rights with the SO,

UR - 50,
MR = 50, ¥ UR,MR — 0 ..[eq.6.20]

Shry, —
e) The rights for PO, remain the same.

UR - PO,

MR » po, " URMR=0 .. [eq. 6.21]

Givena NS/, a share request is only granted if the virtual user 1"U,acquires a local role .R;in
namespace NS, Also the object O is mapped in object class OC with the privacy label
Further, "U,is assigned to the secondary owner role SO, which has the meta-rights over the
object O.

6.2.3 Definition

Share ., 1s an operation that adds an actor to the actor set for meta-rights. It can be defined

as follows:

NS, SH, VU, Opr, LE, FO, 50, ME, and O are set of Namespaces, Stakeholders, Virtual Users,
Operations, Local Roeles, Primary Owner, Secondary Owner, Meta-Rights and Ohbjects
respectively.
* A one-to-many stakeholder to Primary Owner role assignment relation is given by
SH PO CSH= PO

* assigned_PO:(sh: SH) — 2P? is a function derived from SH_PO, for mapping of

156

primary owner role onto stakeholder, which can be ¢ (empty) or the 5H for the
Share ... operation based on the current state of the object.
assigned_PO(sh) = {sh € SH,po € PO|(sh,po) € SH_PO,¥ LR € N5,}
* A many-to-many virtual user to Secondary Owner role assignment relation 13 given
by
VU 50 c VU X 50
* assigned SO:(so:LR) — 2VY is a function derived from I“U_ SO, for mapping of
SO role over object to a set of virtual users.
assignedco(so) = {vu € VU,s0 € SO|(vu,s0) € VUg,, ¥ VU,LR € NS;}
® AC,, = 2(eP™=UR) is the set of attestation certificates for meta-rights.
* A many-to-many PO role to attestation certificate assignment relation is given by
PO_AC,, SPOxAC,
* PO_rights:(po:LR) — 24%m i3 a function derived from PO_.AC, , for mapping
each Primary Owner role to a set of attestation certificates.
PO_rights (PO) = {ac € AC,,,po € LR|(po,ac) € PO_AC,,¥ LR € NS;}
* A many-to-many SO role to attestation certificate assignment relation 15 given by
S0_AC,, S 50 X AC,,
* SO_rights:(so:LR) — 24Cm is 3 function derived from §O_AC, for mapping each
Secondary Ovwner role to 4 set of attestation certificates.
S0_rights (50) = {50 € LR|(s0,ac) € 50_AC,,¥ LR € N5;]
As all the meta-rights over an object can be distributed among one or more secondary owners,
it gives the concept of active users over an object state, which can be calculated by

Active Users = PO U 50

Access Grant
An actor can perform an operation gpr over an object O, under the Share ;. model only if
there exist a mapping of v for the SO role over the object assigned by the primary owner, and
the SO role is authorized for the requested meta-right s, so making vx; 2 member of active
user set, under the following relation:
vu : VU, AU: Active Users, ac: AC,, ¥ VU, AU € N5;
vu € assigned_SO (vu) A ac € 50_rights(so) = vu € AU

And the beneficiary of a use-right over a shared meta-right is the union of all the actors

157

assigned by all the paimary and secondary owners. 5o, an actor can perform an operation gfr
over an object O only if there exist a mapping of #, for the Bes, role over the object assigned
by the primary or secondary owner, and the Bea, role is authorized for the requested use-right
wr, so making #a; 2 member of allowed user set, under the following relation:

vu: VU, AU: Active Users, ur:Use — Rights ¥V VU AU,Ben, € N5;

vu € assigned_SO (s0) = AU A ac € 50_rights(s0) = Access Granted

6.2.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and
general public associated with the shared object. Consider the ‘Facebook’ wall example, the
shared video is not moved from one namespace to another, but remain in the same space —
wall, so the rights of its old owner, parent, offspring and general public role remain the same.
The secondary owner’s rights are increased from no meta-right to some subset, which modifies

the rights of all the new roles associated with his video.

Below is table 6.4 for different rights of different roles associated with the object before and

after the Share ., model.

Parent PO SO Offspring G. Public
Before Shrmeta | UR (V,D) UR(V,D,E) D/C UR (V) D/C
MR(V,D,E)
After ShrMeta UR (V,.D) R(V,D,E) R(V,D,E) UR (V) D/C
MR(V,D,E) MR(V,D,E)

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively
PO represents primary owner, while SO represents secondary owner

D/C represents don’t aare and depends on benefidary previous role in the space

Table 6.4: Rights for different roles assodated with the object before and after the Share mera model

158

Below is table 6.5 for the roles of primary and secondary owner, and their rights over parent,

current, and child objects.

PO SO
Parent Shr. Obj Child Parent Shr. Obj Child
Before Shrymera | UR (V) UR(V,D,E) UR (V,D) | D/C D/C D/C
MR(V,D,E)
After Shrmera | UR (V) UR(V,D,E) UR (V,D) | UR (V) UR(V,D,E) UR
MR(V,D,E) MR(V,D,E) (V,D)

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively

PO represents primary owner, while SO represents secondary owner

D/C represents don’t care and depends on benefidary previous role in the space

Table 6.5: Primary and Secondary Owner rights over different objects before and after the Shatre neta model

A complete analysis of rights for different roles based on table 6.4 and 6.5 for Share,, model

is as follows:

)

b)

g

h)

After Share i, the primary owner can exercise all the right over the object without
reference to any other actor in the system, as before. They can also revoke the meta-
rights from the secondary owner at any time.

The rights of primary owner over the parent space remain the same, that is, they can
enter the parent space.

The rights of primary owner over child objects remain the same, that is, they can view
and delete the child object.

The secondary owner rights are increased from no meta-right to some subset of meta-
rights'"* over the object.

The secondary owner gets the view right over the parent space to enter.

The secondary owner gets the shared right over the child objects.

Share ., does not change the space of the object, so parent’s rights over the object
remains the same, that is, they can still view and delete the object.

Share ., model does not affect the child objects so their rights remain the same over

the object, that is, they can still enter the space.

114 Depending on the shared subset.

159

1) General public role is not affected by the sharing of rights over the object so their

rights over the object remain the same, which depends on the system and the space

configuration.

6.2.5 Design principles

The above discussion gives the following design principles for the Share ., model.

a)

2
h)

The Share ., model addresses domain based sharing, where rights are associated
with objects.

The owner can only share the meta-rights which they have themselves.

Share ., gives only meta-rights, but the secondary owner can add use-rights
himself.

Share ., requires the consent of the primary as well as secondary owner.

The ptimary owner can share proper/improper subsets of their meta-rights.

The primary owner can share same meta-right over the same object to multiple
secondary owners.

The primary and secondary owner can exercise the meta-right at the same time.
As the secondary owner gets the meta-right, they can further allocate the use or
meta-right.

The rights of primary owner, parent, offspring and general public roles remain the

same after sharing the meta-right with the secondary owner.

6.2.6 Revocation

As the primary owner keeps the meta-right, they can revoke the right from the secondary

owner giving that sharing of meta-rights is revocable. However, as the secondary owner also

has the meta-right, they can also remove the primary owner from use or meta-rights. This

condition can be restricted by making a shadow of the original object and assigning the meta-

tights over it'". If this model is not designed carefully it may result in sharing all meta-rights

among primary and secondary owners, which leads to loss of ownership and makes the system

unstable. In the above example, A/ice — the owner of the video, may assign view meta-right to

115 Like aurrently done by Facebook, where secondary owner cannot delete the original video.

160

Bob over a shadow of the original video, so he may manage the access of his social circle

without interfering the other actors in the system.

The model only supports self-revocation as time-based revocation and rule based revocation
can be modified by the secondary owner after taking the meta-right. The model allows the
owner to revoke the meta-right at will, but it also allows the secondary owner to revoke the

rights of the primary owner. This gives the following design principle:
P.6.2.6: The meta-rights owner can revoke the shared meta-right.

6.2.6.1 Self revocation

The owner revokes the meta-right based on inappropriate use or their will. In the above
scenatio, Alice can revoke the view meta-rights over her video from Bob at any time at will,
which results in removal of video from his wall. It is also consistent with the basic access
control structure as the parent can delete the video of their offspring. Self-revocation gives the

sense of authority to the owner that the object can be taken back at any time.

6.2.6.2 The Share ,,, revoke process

The revocation removes the meta-rights from the secondary owner SO.

~MR — 50 ,Y MR = 0 ...[eq. 6.22]

However he may exercise the use-rights over the object under some other role. It also takes

back the SO role from 1"'U.
- 50, = VU;,|50; e LR A VU; ENS5; ...[eq.6.23]

6.2.7 Summary of Share meta

To summarize, the Share ., model allow the owner of an object to give the meta-rights to
some other actor and keep it at the same time. The characteristics are given in section 6.2.1,
which distinguish the model from other models of use-rights allocation. Section 6.2.2 explains
the allocation process, followed by the logical definition of the model in section 6.2.3. Section
6.2.4 illustrates the rights analysis, the design principles are mentioned in section 6.2.5 while

the revocation is discussed in section 6.2.6.

161

6.3 Merge ., model

Merge ., model allows the owner to merge the meta-rights over his object with another actor,
where both must agree to manage the access rights for others. In the meta-rights triplet it is
done by adding an actor to the existing set of actors and then merging the right of all of them.
It allows the beneficiary to access the meta-rights triplet, but they can only modify it with the
help of other meta-rights owners. The need of Merge ., arises when the owner wants to give
meta-rights over his object to other actors and at the same time wants to maintain his
authority. In Merge ., the meta-right is divided completely so no participant can act alone
but anyone can stop an act which gives that all must agree to change any right. As the meta-
rights are merged, it cannot be revoked by the primary owner alone but only if all the meta-
rights owners agree to take the right back from the beneficiary including themselves. In the
physical world, a couple who jointly own a house is an example of merging the meta-rights
where both must agree to sell it. In this example, the rights of both the owners are merged to
sale the house so they need to cooperate for any modification on use-rights and/or meta-

rights.

116
7% which are online discussion boards to allow

Let’s consider the scenatio of ‘Infernet forum
people to discuss various topics in the form of posted messages — threads. People use them to
post/read information about some specific interest as they are built around group discussions
from the community to the community. They provide the facility to allow single user to post a
message to all the members of the forum. However for keeping the group discussion on the
interest track and to avoid spam, some moderated forums require the consent of the
moderator before posting a thread on it. For this, the meta-rights of the sender and the forum
moderator are merged for the display of the thread. Only after the confirmation of the

sender'’” and the moderator, the thread is displayed to the whole community. In case of

disagreement the post is rejected and sends back to the sender'".

116 Also known as message board.
17 In form of posting the thread.
118 The system cannot use Share Mer as it will allow the sender to bypass the moderator, also it annot use Replace

Meta as then the moderator ean modify any post or use their own name to post it.

162

To map this scenario on the core SAC model, the Internet forum’ system is the parent space of
all the subgroups'”’ and topics with system administrator as the stakeholder. Subgroup is the
namespace with moderator as the stakeholder and message posts and their replies are child
objects of the subgroup space. Every post in a moderated group has a different creator — the
sender, but all are at the same hierarchical level with same role of parent and general public.
The owner has the right to start a discussion, create a thread, decide whether to post the thread

to this group or not, and in affect will decide who can have access to their object.

Now suppose that an actor A/ice is the moderator of a forum “Social Gaming and Bob is one of
the users in it. A/ice wants that if Bob post some thread to the forum, it may not be forwarded
to the community without her consent as the community may leave due to indecent threads
which can also ruin her reputation. She then merges the meta-rights of the sender and herself,
for all the threads posted on her forum. If then Bob posts some thread ‘importance of user interfaces
in social gaming to share it with the community, A/ce’s consent is required and it would only be
displayed if she finds it appropriate for the forum audience. This scenario is depicted in figure

6.3.

6.3.1 Characteristics of Merge Meta

Following are some of the characteristics of this Merge .., model that distinguish it from other
models of meta-rights. Some of these characteristics are defined in literature (Barka & Sandhu,
2000b; L. Zhang et al., 2003; X. Zhang et al., 2003) for role to role membership transfer in
RBAC (Ferraiolo & Kuhn, 1992; Ferraiolo et al., 2001; Sandhu et al., 1996). However, the
values of these parameters are different in this research from the values proposed in the

literature due to the nature of online social interactions and the ownership domain.

There are two basic axioms for this model, first, the model presented in this research is
domain based as the meta-rights are associated with objects, and second, that no one can
merge a meta-right associated with an object which they do not own. So, it is not possible for

Bob to give Alice rights over another thread, where he does not have any meta-right.

119 Also known as sub-forums.

163

; . . -
[Reader | { Commenter [Sender

\
[
|
|
\
\

R = e
Q I
!]
: :
Security Kernel : |
: I |
| | |
: ! |
| —y | :
: AN = :
| Ubuntu Social Gaming ~ &, | i
s : |
: 1
I 1
1
1
Boot | [Disk 10 Platform Ul |le-!

Figure 6.3: Meta-rights merge scenario depicting an Internet forum

6.3.1.1 Consent

Allocating the meta-right over a thread to .A/ice requires Bob to initiate the process as the
system should enhance the owner trust. Also, it is necessary to take A/ice’s consent for every
thread in her forum as she is responsible for its propagation and handling of its rights. Also,
she must be aware of the object due to reputation management. If this condition is relaxed,

one can share indecent threads within your forum without your consent.

The above implies that meta-rights are associated with one’s repute'™. So, a meta-right can
only be merged with the consent of the owner and the beneficiary. It gives the following

design principle:

P.6.3.1: Meta-rights merge requires the consent of the owner and the beneficiary.

120 As discussed eatlier in section 6.2.1.1.

164

6.3.1.2 Totality

Totality deals with allocating the propetr/improper subset of rights over proper/improper
subset of authorized resources. In the above example, it is up to Bob that how many meta-
rights he wants to merge with A/¢e from his set of meta-rights. For example, only display
meta-right for thread propagation can be merged so .A/ice cannot edit the thread nor can give
the right to edit it to someone else, in which case the merge is partial or all the meta-rights
over the thread can be merged where it is total. Partial merging of meta-rights is useful in
various scenarios like only allowing the article publishers to decide about the display of articles
but not let them edit it or display with their own name. Also multiple-partial merges can be

used to achieve total merge of meta-rights using

MTQm(MRE::} = Mrgm(MRl}ﬂ MTQm(MRg::' MM MT‘gm(MRn} [€q524]

Generalizing the above implies that there are two design possibilities for the Merge .., model,
that is, only complete meta-rights merge is supported so all the meta-rights or none can be
merged with the beneficiary, or partial merge is supported so subset of all the meta-rights held
by the owner can be merged. This model supports partial meta-rights merge as total can be
achieved using partial and also there are scenarios where the original owner only wants to
merge some of the meta-rights with the beneficiary, as display meta-rights in the above

example. This gives the operational principle:
P.6.3.2: The owner can merge proper/ improper subset of their rights.

6.3.1.3 Cardinality

Cardinality deals with the number of beneficiaries in a particular rights allocation operation. In
the above example, Bob can merge the meta-rights over his thread with multiple actors say .A/zce
and Cuar/ at the same time'™. Now if both of them agree to propagate it to the forum

community only then the thread will be displayed, which gives

Mrg,, — (MR){(Alice®& Bob&Carl)|Bob,Carl € VUNAlice € SHYVU,5H € NS;}...[eq.6.25]

121 This supports the case when there are multiple moderators of the same forum. The moderators can’t use the

Share nera model as it will exdusively give them meta-rights.

165

The propagation of information is only allowed if all the beneficiaries are agreed. This is also
the case with public telephone directories where the telephone company and the telephone line

owner both agree to display their telephone number on the list'”.

Generalizing the above case gives that a single meta-right can be merged with among multiple
beneficiaries. This will not affect the object state but with higher number of beneficiaries, the
agreement among all of them and thus the rights management becomes more difficult. It gives

the design principle:
P.6.3.3: 1t is possible to merge a meta-right to more than one beneficiary.

6.3.1.4 Monotonicity

Monotonicity refers to whether the previous owner can exercise the right after the allocation.
In the running example, if Bob merges meta-rights over his thread with .4/ice, both of them
jointly manage the display of the thread. The case where the initiating party cannot exercise the
right is covered in the Replace y,, model and the case when both of them can exercise at the
same time is covered in the Share ., model, so this Merge ., model covers the cases when
both can exercise it with the consent of each other. It merges the meta-rights of the entire

actor set and gives

Mrg,, — MR({Alice & Bob),0,0pr) ... [eq. 6.26]

Merge ., model creates two roles with each merged right associated with the object, that is,
the Primary Owner (PO) and the Joint Owner (JO). It means that given x meta-rights
associated with an object, the Merge ., model can create up to 2x roles, which is also
convenient for assigning rights to local roles. For actor centric implementations, the rights

associated with them can be considered as

UR({J0},0,¢)
Mrg,,(JO) = MR(lfNUG}J 0, 0pr) ™" [eg. 6.27]

and

122'The telephone directory.

166

UR({P0},0,All)

Mrgn(PO) = 4 p(1 /5 {PO}, 0,0pr)°

.[eq.6.28]

where N is the total number of beneficiaries for the particular meta-right. It can be generalized
that if a meta-right of two actors is merged then both can exercise it with joint consent. This
gives the division of authority and can be used to support separation of duties as one cannot
complete the process without involving the other meta-right holder. This gives the design

principle:
P.6.3.4: Joint consent of primary and joint owner is required to exercise the merged meta-right.

6.3.1.5 Depth

Depth deals with allowing the beneficiary to further pass on the allocated right. In the
proposed model, as the joint owner cannot exercise the meta-rights alone, they cannot pass it
to others but with the consent of all the other primary/joint owners. Meta-rights merge
addressed in this model is single step which implies that the joint owner cannot further pass
the right to another actor. This condition maintains the owner’s authority and covers the

options of sharing of information in moderated settings.

In the running scenario, .A/ice cannot further propagate the meta-right to Car/. If she initiates
this, the system would not add Car/ to the active actor set of the meta-right unless it is

approved by Bob. This condition is necessary for system trust and gives the design principle:
P.6.3.5: Merging meta-rights does not allow the joint owner to further merge it.

6.3.2 Merge mew process

The Merge ., model maps various components of the SAC model to each other and defines

the merge operation using the following set of rules:

a) The U, belongs to the LK; in the NJ;
VU; = LR;, ¥ LR; € N5; ... [eq.6.29]

b) The requested object O is classified into the same OC..
0 - 0C.,¥ OC, € NS,...[eq. 6.30]

c) The assignment of JO, role to I”U, and PO, to SH,

167

3= PO po 0. € LR [eg.6.31]
vU; = Jo, i JO; i 1240

d) The merging of meta-rights with the JO, and restricting PO, and JO, to act jointly.

1/2 MR - PO,

12 MR = Jo, " MR =0 ..[eq.6.32]

Mrg, =

Givena NS/, a merge request is only granted if the virtual user [’U,acquires a local role LR;in

namespace NS, Also the object O is mapped in object class OC with the privacy label

Further, 17U, is assigned to the joint owner role JO, which has the meta-rights over the object

O.

6.3.3 Definition

Merge .., is an operation that adds an actor to the actor set for a meta-right and merge the

meta-right of the entire actor set. It can be defined as follows:

NS, SH, U, Opr; LR, JO, PO, ME and O are sets of Namespaces, Stakeholders, Virtual Users,

Operations, Local Roles, Joint Owner, Pramary Owner, Meta-Rights and Objects respectively.

A one-to-many stakeholder to Primary Owner role assignment relation 1s given by
SH PO S 5H X PO

assigned_PO:(sh: SH) — 2P0 is a function derived from SH_PO, for mapping of

Prmary Owner role onto stakeholder, winch can be ¢ (empty) or the SH based on

the current state of the object.

assigned_PO (sh) = {sh € SH,po € PO|(sh,po) € SH_PO,¥ SH,PO € N5;}

A many-to-many virtual user to Jomt Owner role assignment relation 1s given by
VU JO SVU X JO

assigned_JO: (jo:J0) — 2" is a function derived from T/U_JO, for mapping of

JO role over object to a set of virtual users.

assigned_JO (jo) = {vu € VU, jo € JO|(vu,jo) € VU_JO,

v VU, JO € N5;}

AC,, = 200PT™%UR) 15 the set of attestation certificates for meta-rights.

A many-to-many PO role to attestabon certificate assignment relation 1s given by
PO_AC S PO X AC,,

PO_rights: (po: PO) — 240m is a function denved from PO_AC, for mapping

168

each Primary Owner role to a set of attestation certificates.
POyigpes (PO) = {ac € ACp,,po € PO|(po,ac) € PO_AC,,,¥ PO,AC,, € N5;}
e A many-to-many O role to attestation certificate assignment relation 1s given by
JO_AC, € JO X AC,,
e JO_rights: (jo:JO) — 24%mis a function derived from JO_MR, for mapping each
Jount Owner role to a set of attestation certificates.
JOrignis JO) = {jo € JO, ac € AC,|(jo,ac) € JOu ¥ JO,ACy, € NS}
As all the meta-rights over an object can be merged with one or more joint owners, it gives the
concept of active users over an object state, and can be calculated by
Active Users = PO U JO
Access Grant
A virtual user e# can perform an operation gpr over an object O, under the Merge ., model
only if there exist 2 mapping of s, for the JO role over the object, and the JO role 1s authorized
tor the requested ac, so making vi; 2 member of active user set, under the following relaton:
vu : VU, AU: Active Users,ac: AC,, V VU, AU, AC,, € N5;

€ assigned JO (jo) A ac € JO _rights(JO) = vu; € AU

TLL; i

i)

but an operation can only be performed with the consent of PO.

6.3.4 Rights analysis

This section describes the modification of rights for various roles of parent, offspring and
general public associated with the merged object. Consider the thread moderated forum
example, after submitting the thread to the group moderator, the thread is not moved from
one topic/group to another, but temain in the same space — subgroup, so the rights of its
parent, offspring and general public role remain the same. The rights of joint owner— the

moderator are increased from none to a subset.

Below is table 6.6 for different rights of different roles associated with object before and after

merge.

169

Parent PO Jo Offspring | G. Public
Before Mrg mea | UR(V,D) UR(V,D,E) D/C UR(V) D/C
MR(V,D,E)
After Mrg meta | UR(V,D) UR(V,D,E) UR(V) UR(V) D/C
2 MR(V.D,E) | 2 MR(V,D,E)

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

PO represents primary owner, while JO represents joint owner

D/C represents don’t aare and depends on benefidary previous role in the space

Table 6.6: Rights for different roles assodated with object before and after the Merge wmera model

Below is table 6.7 for the roles of primary owner and joint owner, and their rights

current, and child objects.

over parent,

PO Jo
Parent Mrg. Obj Child Parent Mrg. Obj Child
Before Mtrg meta | UR(V) UR(V,D,E) UR(V,D) D/C D/C D/C
MR(V,D,E)
After Mtg Meta UR(V) UR(V,D,E) 2 UR(V,D) UR(V) UR(V) 2 UR(V,D)
Y2 MR(V,D,E) 2 MR(V,D,E)

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

PO represents primary owner, while JO represents joint owner

D/C represents don’t care and depends on benefidaty previous role in the space

Table 6.7: Primary and Joint Owner rights over different objects before and after the Merge mera model

A complete analysis of rights for different roles based on table 6.6 and 6.7 for the Merge .,

model is as follows:

a) After Merge .., the primary owner rights over the object are reduced from having all

meta-rights as single authority to joint authority.

b) The rights of primary owner over the parent space remain the same, that is, they can

enter the parent space.

c) The rights of primary owner over child objects are also merged with the joint owner.

170

5

g

h)

The rights of joint owner over the object are increased as they can now exercise some
of the meta-rights'> with the consent of the primary owner.

The joint owner also gets the view right over the parent spaces.

The joint owner gets view and joint delete right over the child objects.

Merging of meta-rights does not change the space of the object, so parent’s rights over
the object remain the same, that is, they can still view and delete the object.
Offspring role is associated with the object, so its rights after merging the rights of
parent object ate not changed, that is, they can view/enter the parent space.

General public role, its active users and their rights associated with the forum and

thread remains the same, which depends on the parent and object configuration.

6.3.5 Design principles

The above discussion gives the following design principles for the Merge .., model.

a)

g

h)

The model addresses domain based meta-rights merge where rights are associated with
objects.

The owner can only merge the meta-rights over their own object.

Merge ... gives only meta-rights'™, but use-rights remains with the primary owner.
Meta-rights merge requires the consent of both the primary and joint owner.

The owner can merge some/all of his meta-rights with the joint owner.

The same meta-right can be merged with multiple actors at the same time.

The primary owner can exercise the merged meta-right with the joint consent of the
joint owner.

The joint owner cannot further pass the right as it would require joint consent of the
primary owner.

After Merge ., the rights of primary and joint owners are merged, so they can
exercise it with the joint consent of each other. However, the rights of parent,

offspring and general public role remain the same.

123 Depending on the merged subset of rights.

124 For example in ase of public bulletin board, the administrator only has the right to display the message or not

but cannot modify it.

171

6.3.6 Revocation

As the meta-right is merged with the joint-owner, it can only be revoked by their joint consent.
In the moderated forum scenario, Bob can only takes back the meta-right from A/ice if she is

agreed to do it, which gives the design principle:
P.6.3.6: The primary owner can revoke the merged meta-rights with the consent of joint owner.

The model only supports half way self-revocation where both the primary owner and the joint
owner must agree to revoke the right. Rule based revocation is not needed as the primary
owner needs to confirm every action taken by the joint owner, which not allows him to violate
any contract. Time based revocation is also ignored as the model is used in cases where online
contents are mostly published and rarely changed. So, the model allows the primary owner to

revoke the meta-right at will, and is allowed only if the joint owner agrees.

6.3.6.1 Self revocation

The primary owner requests the joint owner to revoke the right based on inappropriate use,
difficulty in coordination or their will. In the above scenario, Bob can request A/ice to remove
the thread from display at any time at will, or delete it altogether. Allowing self-revocation
gives the ease to the owner that a meta-right can be taken back if there is a deadlock between

the joint owners.

6.3.6.2 The Merge ., revoke process

The revocation removes the meta-rights from the joint owner JO and gives the full rights back
to the Primary Owner, if no other joint owner is left for the particular meta-right over the
object.

MR 0 MRS 0. [eq.6.33]
_} am v v

MR- PO; °q

It also takes back the JO, role from ”U, and PO, role from SH,

"= VU 10,0, € LR A VU,SH, € NS 6.34
—~ PO, - SH, J0;,PO; € LR A VU;,SH; € NS; ... [eq. 6.34]

172

6.3.7 Summary of Merge Meta

To summarize, the Merge ., model allow the owner of an object to merge the meta-rights of
all the actors and their joint consent is needed to exercise that right. The characteristics are
givenin section 6.3.1, which distinguish the model from other models of use-rights allocation.
Section 6.3.2 explains the allocation process, followed by the logical definition of the model in
section 6.3.3. Section 6.3.4 illustrates the rights analysis, the design principles are mentioned in

section 6.3.5 while the revocation is discussed in section 6.3.6.

6.4 Chapter summary

This chapter has discussed the meta-rights allocation in online social interactions by outlining
the details of Replace y,, Share y,, Merge .., models. It has also outlined the revoke process
in each case. The Replace ., model was demonstrated with the copyright example of research
papers, Share ., model was explained using video sharing on Facebook wall, while Merge ..,

was explained with threads in Internet discussion forum example.

173

Chapter 7

Analysis

his chapter analyzes the use-rights and meta-rights models presented in chapter 5 and
6. It contains some important general observations about the behavior of the models,
their precedence over each other and the effect of that precedence. It starts with the
possible permutations of the basic models and their precedence over each other. It then
outlines the similarities of the use-rights and meta-rights models in terms of their output,
characteristics, and rights of various roles associated with the object. If further generalizes the

notion of rights triplet to incorporate the semantics of both use-rights and meta-rights.

7.1 Model permutations and their precedence

In the previous chapters, various use-rights and meta-rights models for online social
interactions are outlined. However, they only cover the basic scenarios and a complex policy
may require some complex allocation model — built on a combination of these basic models.

Conversely, as any combination of two, three, or four models can result in a new complex

1]25

model ”, it may not be possible to incorporate all the possible complex models in one

b

concrete piece of work. However, the outlined basic models can be used in combinations to

125\With new scenarios, distinet characteristics values and different rights of the entire role set.

174

provide any desired complex allocation. This section outlines all the possible permutations of

the use-rights and meta-rights models presented in chapter 5 and 6.

To generate all the possible permutationsm, the models are united keeping the upper limit
constant. The permutations used are "Prwith 7 as 4'” and ras 1, 2, 3 and 4 for separate
permutation upper limits'®. The resultant permutations are #Ps, #P2, #Ps, and #Py, which give
4, 12, 24 and 24. This gives all the permutations using a single model — 4 possible
permutations, any two models — 12 possible permutations, any three models — 24 possible
permutations, and all the four models — 24 possible permutations. This results in total 64
possible permutations for use rights and the same number of permutations for meta-rights.
Given below are these permuted complex models and their possible outcomes followed by

some interesting observations.

7.1.1 Use-Rights permutations

In chapter 5, this dissertation has outlined four models of use-rights, that is, Replace ., Share
ues Merge (. and Revoke (.. Revoke (. has different characteristics for each of the three
models but for generalization, here it is considered as a single model — that revokes the already
allocated right from a user. The rules for generating these permuted complex models for use-

rights are taken from the basic models’ definitions in chapter 5, and are as follows:

a) Replace (Rep) — Replaces the existing actor set with a new actor, provided as the
function argument.

b) Share (§/7) — Adds an actor to the actor set and allocates them the same rights as of the
previous actors, without changing their existing rights.

c) Merge (Mrg) — Merges the rights of the entire actor set.

d) Revoke (Rev) - Removes the actor provided as the function argument, from the use-

right and adds the owner if the actor set is empty.

Table 7.1 present in appendix-A, shows the possible permutations in every possible order for

use-rights based on the basic use-rights models presented in chapter 5. The table and its

126 Permutations consider the order during arrangement, where (x, y) is different than (y, x).

127 Four types of rights allocation models, that is, Replace use, Shate vse, Merge use and Revoke Use.

1!
128 Permutations under single upper limit is calaulated by el

175

analysis has two benefits: First, it provides the opportunity of having all the models jointly
(complex models) for complex scenarios, which has enormous possible outcomes'”, by using
only four basic models. Second, it provides the complete description of the outcomes that can
possibly arise in an access control state after applying a use-rights model followed by any other
use-rights model. Here MO stands for meta-owner — the owner of the object having all the
rights, and A, B and C are any arbitrary actors in the system. Also actors as argument in a
model function are allocated some rights, and target is the actor being affected by those
allocations. Table 7.1 can be easily understood by figure 7.1, where model represents the
sequence of use-rights model application, start state represents the state of rights triplet before
allocation, target represents the actor that will affect by the allocation and end state represents
the state of rights triplet after the particular use-rights allocation. The dotted arrows show that
the previous end state is used as the start state for the next allocation. The figure has been
drawn for the Replace (. model only by keeping the Share . model at the second position in
the permutation, where similar figures can be drawn for Share ., Merge . and Revoke .

models.

7.1.1.1 Observations

Following are some of the observations drawn from table 7.1 and the precedence of use-

rights allocation models over each other:

a) If the Replace . model is applied after any model, it removes the previous features
and completely applies its own.

b) The Share (. model adds its features but also keeps the features of the previous
applied models.

c) Applying the Share , model on previously merged use-rights just adds another actor
but the use-rights remain merged.

d) The Merge . model adds its features but also maintains the features of the previous

applied models.

129 For example, (Replace use —Metge use) has different output than (Replace vse —Shate use), which are different
from (Replace use —Metge vse —Shate vse) and (Replace use —Share use —Merge Use).

130 The effectiveness of one alloaation model over others.

176

e) Applying the Merge (. model on already shared use-rights does not add any actor but

merges the use-rights among the existing actors.

Model Start State End State
P — oo v — R —
Rep (A) T+ TR0, 0, 0pr) H—| UR(A, O, opy)
JTarget:\ __,--"%"'" """"
Rep—Shr (B) "t UR(A,O,0pr) H—» UR(A|B, O, opy)
: P
o Target: A,B ™, =T Pt h
R 2 5 v
Rev—Shr—Mg (C) || ™ UR(A|B, O, opr) > UR (AdB&C, O,
N ! _..-f:"
Target:(: ’_,_-—""T"" /)
—-.. ‘ i !’
A s 4 1o £ ST . L i . !
Rep—Shr—Mg—Rer (C) " [UR (A&B&C, O, opr) > UR (A&B, O, ops)
;"__-;l:a_rget:. B . ___i,’/
%__\\i ‘,f’ | :
W 1 I
Rep—Shr—Rev (B) i UR(A|B, O, opr) -—-'—'-D UR (A, O, opr)
P vy N B SO
: \:-\--_-----\-.l--‘--’/, ” 1 :
| Rep—Shr—Rer—Mrg(B) || | UR(A,O,0pr) —»|UR (A&B, O, opy)

g

Figure 7.1: Visual desaiption of formation of use-rights allocation permutation table

The Revoke (. model removes the features of the previous applied models and applies
its own features.

The Revoke (, and Replace (,, models are similar as they remove the previous features
and apply their own, while the Share . and Merge . models are similar as they keep

the features of the previous models and also add their own features.

The precedence of these models over each other is illustrated in table 7.2.

177

Replace , Share (), Merge Revoke ,
Rep Rep Rep Rep
Shr Rep, Shr Mrg, Shr Rev, Shr
Mrg Rep, Mrg Shr, Mrg Rew, Mrg
Rev Rew Rew Rev

Table 7.2: Precedence of various use-rights model applications over each other

7.1.2 Meta-Rights permutations

Chapter 6 of this dissertation has sketched four models of meta-rights, that is, Replace .,
Share,,, Merge .., and Revoke ... Revoke ., has different characteristics for each of the
three models but for generalization, here it is considered as a single model — that revokes the
already allocated right from a user. The rules for generating these permuted complex models
for meta-rights are taken from the basic models’ definitions in chapter 6, and are same as the
rules illustrated in section 7.1.1. Table 7.3 present in appendix-A, shows the possible
permutations in every possible order for meta-rights based on the basic meta-rights models
presented in chapter 6. The table can be easily understood by figure 7.1 drawn for use-rights

permutations.

7.1.2.1 Observations

Following are some of the observations drawn from table 7.3 and the precedence of meta-

rights allocation models over each other:

a) If the Replace ., model is applied after any model, it removes the previous features
and completely applies its own.

b) The Share ., model adds its features but also maintains the features of the previous
applied models.

c) Applying the Share ., model on previously merged meta-rights just adds another
actor but the meta-rights remain merged.

d) The Merge ., model adds its features but also maintains the features of the previous
applied models.

e) Applying Merge .., model on already shared meta-rights does not add any actor but

merges the meta-rights among the existing actors.

178

f) The Revoke ., model removes the features of the previous applied models and
applies its own features.

g) The Revoke ., and Replace ., models are similar as they remove the previous
features and apply their own, while the Share ., and Merge ., models are similar as

they keep the features of the previous models and also add their own features.

The precedence of these models over each other is illustrated in table 7.4.

Replace ,,,, Share ,;,, Merge ,,,, Revoke ,;,,
Rep Rep Rep Rep
Shr Rep, Shr Mrg, Shr Rev, Shr
Mrg Rep, Mrg Shr, Mrg Rew, Mrg
Rev Rev Rev Rev

Table 7.4: Precedence of various meta-rights model applications over each other

7.2 Similarities between use-rights and meta-rights models

In previous chapters, this dissertation took the same approach as some of the previous studies
that meta-rights are different from use—lrights131 (Barka, 2002; Barka & Sandhu, 2004, 2007;
Crampton & Khambhammettu, 2008; Dewan & Shen, 1998; Indratmo & Vassileva, 2007; L.
Zhang etal., 2001, 2003; Mattas et al., 2006; Munawer, 2000; Park, 2003; Sandhu, Bhamidipati
& Munawer, 1999; Sandhu & Munawer, 1998a, 1998b, 1999b; X. Zhang et al., 2003).
However, after analyzing the models’ precedence over each other in table 7.2 and 7.4, along
with the outcome of their applications in tables 7.1 and 7.3, this research recommends the
generalization of the use-rights and meta-rights allocation models. This section now discusses
the possibility that use-rights and meta-rights allocation models are not very different and their
objective can be achieved using one generalized kind. Meta-rights allocation models deal with
only special types of rights which are involved in the administration of rights but their other
132

characteristics, and their behavior is quite similar to those of use-rights allocation models

Following are some of the similarities between these use-rights and meta-rights models:

131 Meta-rights deal with the administration of rights.

132'This argument leads to the generalization of delegation and transfer models in traditional models.

179

7.2.1 Replace model

Replace model replaces the previous actor set with a new actor, whether it is applied on use-
rights or meta-rights, and is done by replacing the current actor set with the single beneficiary

in the rights triplet. The replace function can be represented by

Rep (A) = R ({D/C},0,0pr) = R ({A}L,0,0pr) ..[eq.7.1]

where D/C stands for don’t care and shows that whoever is in the rights triplet is replaced by

the new actor.

Following is some analysis related to various properties of the Replace model, which give
insights about the generalized model, predict its behavior, and show the stability of the access
control state after applying that model. It also shows that if the system is in stable state as
initial state, and one applies any combination of these allocations, the system still remains in

the stable state.

7.2.1.1 Similarity analysis

The similarity between the Replace . and Replace ., models can be analyzed by the following
three arguments: a) the similarity between their output, b) the similarity between their
characteristics, and c) the similarity between their effects on rights of different roles. These

arguments are given as follows:
Argument 1: Both the Replace models have similar output if applied on same right.

The outputs of both the Replace models are similar in nature as can be seen from table 7.1 and
7.3, and summarized in table 7.5, where applying the Replace , model and the Replace .,

model results in similar output.

Use-Rights and Meta-Rights
Allocation Sequence Start State Target End State
Replace 1, () UR(MO}, O, opr) MO UR({A}, O, opr)
Replace 51, () NR({MOY, O, opr) MO NR(TAY, O, o)

Table 7.5: Output summary of Replace usc and Replace Mera models

180

RepUsa - UR({A}.I 0, GW} [EG‘ ?Z(Q}]
Rep yera — MR({A}, 0, 0p7) ...[eq.7.2(b)]

UR({A}: 0, GPT"} ~ MR({A}J 0, G]UT} = RepUsa R REpMﬂtE ["?":-:I| ?Z(C}]

Argument 2: Both the Replace models have similar characteristics.

To highlight the similarities between the two types, table 7.6 depicts various characteristics of

Replace (and Replace ., models.

Consent Totality Cardinality |Monotonicity| Depth Revocation

Replace Both Partial One Mut. Exd. | Single pass S/T/V

Replace ., Both Partial One Mut. Exd. Chain No

Table 7.6: Comparison of vatious characteristics of Replace model

From the above table, some insights are drawn and are as follows:

a)

b)
<)

d)

Consent of the owner and the beneficiary is required for both Replace models, which
means that Replace model can only be used with owner and beneficiary consent.
Both the Replace models operate on partial subset of rights.

Both the Replace models have singular cardinality as they replace the actor with single
beneficiary.

The owner can no longer exercise the replaced right, so both the models are mutually
exclusive.

As meta-rights give the authority to the beneficiary to further allocate the right while
use-rights does not allow it, depth is associated with the nature of meta-rights and does
not affect the allocation process.

Another difference between the two models is revocation, which can be seen from
tables 7.1 and 7.3 as well. However, revocation is also directly concerned with the
nature of meta-rights where if the owner remains with no meta-right, they cannot
exercise it (revoke it). Also as the beneficiary becomes the new owner, they can revoke

the rights of other actors.

There are two differences between these Replace models. If it is generalized for both types of

rights, then it should take these characteristics — depth and holder of the meta-right, as

parameters.

181

Argument 3: Both the Replace models have similar effect on rights for different roles.

To highlights the similarities of rights allocations between the Replace . and Replace .,

models, table 7.7 depicts the rights for every role associated with the object for both the

Replace models.

Parent Owner Beneficiary Offspring G. Public
UR (V,D) UR (V,D,E) D/C UR (V) D/C
Before
MR(V,D,E)
UR (V,D) UR (V) UR (V,D,E) UR (V) D/C
Rep Use
MR(V,D,E)
After
NR NR UR (V,D,E) UR (V) D/C
Rep Meta
MR(V,D,E)

D/C represents don’t care

NR represents No Right

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

Table 7.7: Rights of different roles assodated with the objects before and after Replace model

Further, table 7.8 depicts the rights of owner and beneficiary over different objects for both

types of Replace model.

Owner Beneficiary
Replace Parent Object Child | Parent Object Child
Before UR(V) UR(V,D,E) UR(V,D) | D/C D/C D/C
MR(V,D,E)
Use | UR(Y) UR(V) UR(Y) | UR(Y) UR(V,D,E) | UR(V,D)
MR(V,D,E)
After [Meta | NR NR NR UR(V) UR(V,D,E) | UR(V,D)
MR(V,D,E)

D/C represents don’t care

NR represents No Right

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

Table 7.8: Owner and benefidary rights over different objects before and after Replace model

182

From the above tables, some insights are drawn and are as follows:

a)

b)

The owner completely loses the replaced right over the object in both models, whether
it is edit, delete or meta-right.

If owner has some right over their object, they remain with view right over the parent
space. However if they lose all the rights over the object then they also lose all the
rights over the parent space. The owner’s rights over the parent space are similar for
both models, keeping this assumption in place.

The owner loses control over child object in both models, however if they have some
right over the object, then they can view the child object.

The beneficiary gets the replaced right over the object from the owner in both models.
The beneficiary gets the view right over the parent spaces in both models.

The beneficiary gets the same rights over the child object in both models.

The rights of parent role over the object remain the same for both replace models;
however the actors in the old owner’s parent role are replaced with the actors in the
new owner’s parent role.

The rights of offspring role remain the same after both the Replace models.

The actors in the old general public role are replaced with the actors in new general
public role; however, their rights may change depending upon the configuration of the

new space.

Based on the above, the definition of rights can be generalized to make it consistent for use

rights as well as meta-rights. As the major difference is of the allowed depth of the model

along with the meta-rights authority, it is good to include both of them in the rights equation.

It will change the rights equation by

Right (Actor,Object, Operation, Depth, Owner) ... [eq. 7.3]

where the first three variables are the same as traditional rights equation. The newly introduced

depth relates to the capability of the beneficiary to further allocate a right or not. If it is 0, the

actor cannot further allocate the right, while if it is 1, the actor is allowed to further pass the

183

ticht on. The last variable is the owner of the object™ and its modification is associated with
g]

the allocation of meta-rights over the object.
This generalized equation can be used for the Replace model and can be represented as

Right (Dge, 0, view,0,Dgr) ...[eq. 7.4]

where 0 mentions thatitis the replace of use-right and the delegator is still the owner of the

object.

7.2.1.2 Precedence analysis

Replace model has higher precedence over other rights allocation models. A rights allocation
model has higher precedence if two different allocations sequences x and y ending at the same

model achieve the same final state with respect to rights as well as characteristics.

The rights output of Replace model does not depend on the order of applications of previous
rights allocation models. Thus it has high precedence as the right’s state of two different
allocation sequences ending at Replace are same, which can be seen in table 7.1 and 7.3 and

summarized in table 7.9.

Allocation Sequence Start State Target End State
Shr— Rep (B) UR({MO | A}, O, apr) MO, A UR({B}, O, apr)
Mg — Rep (B) UR({MO&A}, O, opr) MO, A UR({B}, O, apr)
Rev— Rep (B) OR(MO3, O, opr) MO UR({B}, O,)

Table 7.9: Output Summaty of the Replace model

Also, as highlighted in table 7.2 and 7.4, and summarized in table 7.10, if Replace model is

applied after any model, it overrides the characteristics of that model with its own.

Share Merge Revoke

Rep Rep Rep Rep

Table 7.10: Precedence of Replace model over other rights allocation models

133 For ownership domain in particular.

184

7.2.1.3 Order analysis

The change in order of multiple applications of the Replace model affects the final outcome.
The order of multiple applications of Replace model does matter and the output changes
depending on the order of input. It is visible from tables 7.1 and 7.3, and can also be seen

from the following two equations, where
Rep (A) = Rep (B) = Rep (C) = R({C},0,0pr) ..[eq.7.5]

results in different final stage as
Rep (C) — Rep (B) = Rep (A) = R({A},0,0pr) ...[eq.7.6]

7.2.2 Share model

Share is a function that adds a new member to the actor set without changing the previous
actors, whether it is applied on use-rights or meta-right, and is done by adding the beneficiary

to the actor set for the shared right. The Share function can be described as

Shr(B) = R({4},0,0pr) = R({4,B}, 0,0pr) ... [eq.7.7]

where A is added to the actor set for the specific right without changing the previous actor B.

Followingis some analysis related to various properties of the Share model, which give insights
about the generalized model, predict its behavior, and show the stability of the access control
state after applying that model. It also shows that if the system is in stable state as initial state,
and one applies any combination of these allocations, the system still remains in the stable

state.

7.2.2.1 Similarity analysis

The similarity between the Share . and Share ., models can be analyzed by the following
three arguments: a) the similarity between their output, b) the similarity between their
characteristics, and c¢) the similarity between their effects on rights of different roles. These

arguments are given as follows:

Argument 1: Both the Share models have similar output if applied on same right.

185

The outputs of both the Share models are similar in nature as can be seen from table 7.1 and
7.3, and summarized in table 7.11, where applying the Share , model and Share ;,, model

results in similar output.

Use-Rights and Meta-Rights
Allocation Sequence Start State Target End State
Share ;, (A) UR({MO}, O, apr) MO UR({MO | A3}, O, opr)
Share y;,, (A) MR({MO}, O, apr) MO MR({MO | A}, O, apr)

Table 7.11: Output summary of Share (xand Share ae models
Shryse = UR({MO|A}L, 0, 0pr) ...[eq.7.8 (a)]
Shrpresa = MR({MO|A},0,0pr) ...[2q. 7.8 (b)]
UR({M0O|A4},0,0pr) & MR({MO|A},0,0pr) = Shry.. ¥ Shryerq - [€q. 7.8 (c)]
Argument 2: Both the Share models have similar characteristics.

To highlight the similarities between the two types, table 7.12 depicts various characteristics of

Share . and Share ., models

Consent Totality | Cardinality | Monotonicity Depth Revocation

Share . Owner Partial Many Mut. Ind. Single pass S/T/V

Share ., Both Partial Many Mut. Ind. Chain Self (Both)

Table 7.12: Compatison of various characteristics of Share model
From the above table, some insights are drawn and are as follows:

a) Consent of both the owner and the beneficiary is required for meta-rights model while
it is not necessary for use-right model. The use-rights model is often used for giving
away rights and making things publically available, so it is efficient and scalable not to
take the beneficiary consent for use-rights sharing.

b) Both the Share models operate on partial subset of rights.

c) Both the Share models have multiple-cardinality as they share the rights with multiple

beneficiaries.

186

d) Both the Share models are mutually inclusive, that is, owner and the beneficiary both

can exercise the shared right.

e) As meta-rights give the authority to the beneficiary to further allocate the right while

use-rights does not allow it, depth is associated with the nature of meta-rights and does

not affect the allocation process.

f) Both the Share models allow the owner to revoke of rights from the beneficiary.

The only prominent difference between the two Sharing models is the depth of rights

allocation. Ifit is generalized for both types of rights, then it should take depth as a parameter.

Argument 3: Both the Share models have similar effect on rights for different roles.

To highlight the similarities of rights allocations between Share . and Share ., models, table

7.13 depicts the rights for every role associated with the object for both the Share models.

Parent Owner Beneficiary Offspring G. Public
UR (V,D) UR (V,D,E) D/C UR (V) D/C
Before
MR(V,D,E)
UR (V,D) UR (V,D,E) UR (V,D,E) UR (V) D/C
Shr yse
MR(V,D,E)
After
UR (V,D) UR (V,D,E) UR (V,D,E) UR (V) D/C
Shr Meta
MR(V,D,E) MR(V,D,E)

D/C reptesents don’t care

NR represents No Right

V, D and E represents view, delete and edit respectively

UR and MR represents use-rights and meta-rights respectively

Table 7.13: Rights of different roles assodated with the objects before and after Share model

Further, table 7.14 depicts the rights of owner and beneficiary over different objects for both

the Share models.

187

Owner Beneficiary
Share Parent Object Child Parent Object Child
Before UR(V) UR(V,D,E) UR(V,D) D/C D/C D/C
MR(V,D,E)
Use | UR(Y) UR(V,D,E) UR(V,D) UR(Y) UR(V,.D,E) | UR(V,D)
After MR(V,D,E)
Meta | UR (V) | UR(V,D,0) UR (V,D) | UR(V) | UR(V,D,E) | UR (V,D)
MR(V,D,E) MR(V,D,E)
V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively
D/C tepresents don’t cate

Table 7.14: Owner and benefidary rights over different objects before and after Share model
From the above tables, some insights are drawn and are as follows:

a) In both models, the owner’s rights over the object, parent space, and the child object
remain the same with no change in their previous state.

b) The beneficiary gets the shared right over the object in both models'™.

c) The beneficiary gets the view right over the parent space in both models.

d) The beneficiary gets the view and delete rights over the child object in both models.

e) The rights of parent role remain the same after both the Share models.

f) The rights of offspring role do not change after both the Share models.

@) The rights of general public role remain the same after both the Share models.

Based on the above, the definition of rights can be generalized to make it consistent for use
rights as well as meta-rights. As the major difference is of the allowed depth of the model
along with the meta-rights authority, it is good to include both of them in the rights equation.

It will change the rights equation by
Right (Actor, Object, operation, Depth, Owner) ... [eq. 7.9]

where the first three variables are the same as traditional rights equation. The newly introduced

depth relates to the capability of the beneficiary to further allocate a right or not. If it is 0, the

134 As sharing view right gives only view right and sharing edit right gives only edit right, and both rights are
different but the model is the same, that is, Share use. The same applies in case of use-rights and meta-rights,

where the rights are different but the models’ procedure is the same.

188

actor cannot further allocate the right, while if it is 1, the actor is allowed to further pass the
right on. The last variable is the owner of the object and its modification is associated with the

allocation of meta-rights over the object.
This generalized equation can be used for the Share model and can be represented as

Right ({Ben1,Ben2},0,view,0, Owner) ... [eq. 7.10]

where 0 mentions thatitis the share of use-right and the owner is still the actual authority over

the object. Also the sharing of meta-rights with the secondary owner can be represented as

Right (Ben, 0,view, 1, {P0,501) ... [eq. 7.11]

7.2.2.2 Precedence analysis

Share model has lower precedence over other rights allocation models. A rights allocation
model has higher precedence if two different allocations sequences x and y ending at the same

model achieve the same final state with respect to rights as well as characteristics.

The rights output of Share model does depend on the order of applications of previous rights
allocation models. Thus it has low precedence as the rights state of two different allocation
sequences ending at Share are different, which can be seen in table 7.1 and 7.3 and

summatized in table 7.15.

Use-Rights
Allocation Sequence Start State Target End State
Rep — Shr (B) UR({1}, O, opr) A UR({A|B}, O, opr)
Mg — Shr (B) UR({MO&A}, O, opr) MO, A UR({MO&A&B}, O, apr)
Rev — Shr (A) UR({MO}, O, apr) MO UR({MO | A}, O, opr)

Table 7.15: Output Summary of the Share model

Also, as highlighted in table 7.2 and 7.4, and summarized in table 7.16, if Share model is

applied after any model, it adds its features but also keeps the features of the previous model.

Replace Merge Revoke

Shr Rep, Shr Mrg, Shr Rev, Shr

Table 7.16: Precedence of Share model applications over other rights allocation models

189

7.2.2.3 Order analysis

The change in order of multiple applications of the Share model does not affect the final
outcome. The order of multiple applications of Share model does not matter and the output
remains the same by changing the order of input. It is visible from tables 7.1 and 7.3, and can

also be seen from the following two equations, where

Shr(A) = Shr(B) = Shr{C) = R({A|B| C},0,0p7) ... [eq. 7.12]
results in the same final stage as

Shr{C)— Shr(B) = Shr(A) =R({A| B | C},0,0pr) ...[eq. 7.13]

7.2.3 Merge model

Merge is a function that (adds a new actor to the actor set if not present and then) merges the
rights of the complete actor set, whether it is applied on use-rights or meta-rights. The Merge

function can be represented by

where A is added to the actor set and the rights of .4 are merged with all the previous actors, B

in this case.

Following is some analysis related to various properties of the Merge model, which give
insights about the generalized model, predict its behavior, and show the stability of the access
control state after applying that model. It also shows that if the system is in stable state as
initial state, and one applies any combination of these allocations, the system still remains in

the stable state.

7.2.3.1Similarity analysis

The similarity between the Merge . and Merge ..., models can be analyzed by the following
three arguments: a) the similarity between their output, b) the similarity between their
characteristics, and c) the similarity between their effects on rights of different roles. These

arguments are given as follows:

190

Argument 1: Both the Merge models have similar output if applied on same right.

The outputs of both the Merge models are similar in nature as can be seen from table 7.1 and

7.3, and summarized in table 7.17, where applying Merge . model and Merge .., model results

in similar output.

Use-Rights and Meta-Rights

Model Start State Target End State
Merge ;,(A) UR({MO}, O, apr) MO UR({MO&A}, O, opr)
Merge ., (A) MR(AMO}, O, apr) MO MR({MO&A}, O, apr)

Table 7.17: Output summary of Merge vse and Merge Meta models

Mrg yse = UR({MO&A}, 0, opr) ... [eq.7.15 (a)]

Mrg preea = MR({MO&A},0, opr) ...[eq.7.15 (b)]

UR({MO&4},0,0pr) ¥ MR({MO&A},0, opr) = Mrg yee ¥ Mrguzea - [69.7.15 (¢)]

Argument 2: Both the Merge models have similar characteristics.

To highlight the similarities between the two types, table 7.18 depicts various characteristics of

Merge . and Merge ., models.

Consent Totality Cardinality | Monotonicity Depth Revocation
Merge (. Both Partial Many Joint Ind. Single S/T
Merge /... Both Partial Many Joint Ind. Jointly Chain | Self (Joint)

From the above table, some insights are drawn and are as follows:

Table 7.18: Comparison of vatious characteristics of Merge model

a) Consent of the owner and the beneficiary is required for both Merge models.

b) Both the Merge models operate on partial subset of rights

¢) Both the Merge models have multiple-cardinality as they merge a single right with

multiple beneficiaries.

d) Both the Merge models are joint mutually inclusive, that is, owner and the beneficiary

both can exercise the right with the consent of each other.

191

¢) As meta-rights give the authority to the beneficiary to further allocate the right' while
use-rights does not allow it, depth is associated with the nature of meta-rights and does
not affect the allocation process.

f) Both the Merge models allow the owner to revoke of rights from the beneficiary but in

meta-rights revocation, their consent is required as well.

The only prominent difference between the two Merge models is the depth of rights

allocation. Ifit is generalized for both types of rights, then it should take depth as a parameter.
Argument 3: Both the Merge models have similar effect on rights for different roles.

To highlight the similarities of rights allocations between Merge (. and Merge ., models, table

7.19 depicts the rights for every role associated with the object for both the Merge models.

Parent Owner Ben Offspring | G. Public
UR(V,D) UR (V,D,E) D/C UR (V) D/C
Before
MR(V,D,E)
UR(V,D) Y2 UR(V,D,E) 2 UR(V,D,E) UR (V) D/C
Mr £ Use
MR(V,D,E)
After
UR(V,D) UR (V,D,E) UR (V) UR (V) D/C
Mt
s 2 MR(V,D,E) Y2 MR(V,D,E)
Meta

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively
D/C represents don’t care

NR represents No Right

Table 7.19: Rights of different roles assodated with the objects before and after Merge model

Table 7.20 shows the rights of owner and beneficiary over different objects for both the Merge

models.

135With the consent of the owner.

192

Owner Beneficiary
Merge Parent Object Child Parent Object Child
Before UR(Y) | UR(V,D,E) UR(V,.D) | D/C D/C D/C
MR(V,D,E)
UR(V) | %UR(V,D,E) | %2UR(V,D) | UR(Y) | " UR(V,D,E) | 2 UR(V,D)
Wz MR(V,D,E)
After UR(Y) | UR(V,D,E) | %2 UR(V,D) | UR(Y) UR(V) 7, UR(V,D)
Meta 12MR(V,D,E) 12 MR(V,D,E)

V, D and E represents view, delete and edit respectively
UR and MR represents use-rights and meta-rights respectively
D/C tepresents don’t cate

NR represents No Right

Table 7.20: Owner and benefidary rights over different objects before and after Merge model

From the above tables, some insights are drawn and are as follows:

2

b)

g
h)

i)

The owner’s rights over the object are merged with the beneficiary in both models,
whether it is a view, edit or meta-right.

In both models, the owner’s rights over the parent space remain the same with no
change in their previous state.

The owner’s rights over the child objects are also merged and remain the same in both
models.

The beneficiary gets the merged rights over the object in both models ™.
The beneficiary gets the view right over the parent space in both models.
The beneficiary rights over the child object are same for both models.
The rights of parent role remain the same in both the models.

The rights of offspring role do not change after both the Merge models.

The rights of general public role remain the same after both the Merge models.

Based on the above, the definition of rights can be generalized to make it consistent for use

rights as well as meta-rights. As the major difference is of the allowed depth of the model

136 As merging view right gives only view right and merging edit right gives only edit right, and both rights are

different but the model is the same, that is, Merge use. The same applies in case of use-rights and meta-rights,

where the rights are different but the models’ procedure is the same.

193

along with the meta-rights authority, it is good to include both of them in the rights equation.

It will change the rights equation by
Right (Actor, Object, operation, Depth, Owner) ... [eq. 7.16]

where the first three variables are the same as traditional rights equation. The newly introduced
depth relates to the capability of the beneficiary to further allocate a right or not. If it is 0, the
actor cannot further allocate the right, while if it is 1, the actor is allowed to further pass the
right on. The last variable is the owner of the object and its modification is associated with the

allocation of meta-rights over the object.
This generalized equation can be used for the Merge model and can be represented as

Right ({JBenl & JBen2},0, view, 0, Owner) ... [eq. 7.17]

where 0 mentions that it is the merge of use-right and the owner is still the actual authority

over the object. Also the merge of meta-rights with the joint owner can be represented as
Right (Ben, 0,view,1,{P0 &/ 0}) ...[eq. 7.18]

7.2.3.2 Precedence analysis

Merge model has lower precedence over other rights allocation models. A rights allocation
model has high precedence if two different allocations sequences x and y ending at the same

model achieve the same final state with respect to rights as well as characteristics.

The rights output of Merge model does depend on the order of applications of previous rights
allocation models. Thus it has low precedence as the right’s state of two different allocation
sequences ending at Merge are different, which can be seen in table 7.1 and 7.3, and

summarized in table 7.21.

Use-Rights
Seq. of Model Start State Target End State
Rep — Mg (B) UR({A}, O, opr) A UR({A&B}, O, opr)
Shr— Mg (B) UR({MO | A}, O, opr) MO, A UR({MO&A&B}, O, gpr)
Rev — Mg (A) UR({MO}, O, apr) MO UR({MO&A}, O, opr)

Table 7.21: Output Summary of the Merge model

194

Also, as highlighted in table 7.2 and 7.4, and summarized in table 7.22, if Merge model is

applied after any model, it adds its features but also keeps the features of the previous model.

Replace Share Revoke

Mrg Rep, Mrg Shr, Mrg Rev, Mrg

Table 7.22: Precedence of Merge model applications over other rights allocation models

7.2.3.3 Order analysis

The change in order of multiple applications of the Merge model does not affect the final
outcome. The order of multiple applications of Merge model does not matter and the output
remains the same by changing the order of input. It is visible from tables 7.1 and 7.3, and can

also be seen from the following two equations, where
Mrg(4) = Mrg (B) = Mrg (C)=R({A &B &C},0,0pr) ...[eq. 7.19]
results in the same final stage as

Mrg(C)—= Mrg(B) = Mrg(A)=R({A&B &C},0,0pr) ...[eq. 7.20]

7.3 Completeness

Chapter 3 presented the reduction approach that exhibits all the characteristics of rights
allocation found in literature. The reduction, illustrated by a tree structure, was generated by
eliminating some of the parameter values arguing that they are not very useful in the current
online social interaction scenarios. This section, however, illustrates the completeness of the
reduction approach by claiming that it has incorporated all the characteristics and thus the
models can support all the other cases as well'”’. The completeness is based on the following

axioms:

a) Chain depth deals with the nature of meta-rights, so the meta-rights models cover
those cases.

b) Total allocation can be achieved through using multiple-partial allocations.

137 Even if they are not very useful in carrent STS scenatios.

195

c) Some of the parameter values can be achieved through a combination of two or more
basic models.

d) The multiple-cardinal mutual exclusive sub-branch is further divided into totality
(axiom B), and depth (axiom A). However, the mutual exclusive, multiple-cardinal,
partial, jointly-consent, single pass allocation can be achieved using Merge—Replace
(axiom C). While the mutual exclusive, multiple-cardinal, partial, several-consent, single
pass allocation can be achieved using Replace—Share (axiom C).

e) The single-cardinal, mutual inclusive sub-branch is also covered in multiple-cardinal,
mutual inclusive sub-branch as the latter does not put any restriction on the minimum

number of beneficiaries.

Referring back to figure 3.3, table 7.23 gives all the possible combinations of the characteristics

of rights allocation.

Monotonicity | Cardinality | Totality | Consent Depth Model

Mut. Exd. Singular Total Several Single pass |U{Replace vse}*

Mut. Exd. Singular Total Several Chain U{Replace Meta}”

Mut. Exd. Singular Total Joint Single pass |U{Replace s}

Mut. Exd. Singular Total Joint Chain U{Replace Meta}

Mut. Exd. Singular Partial Several Single pass |Replace use”

Mut. Exd. Singular Partial Several Chain Replace Meta"

Mut. Exd. Singular Partial Joint Single pass |Replace use

Mut. Exd. Singular Partial Joint Chain Replace Mera

Mut. Exd. Multiple Total Several Single pass |U{Replace usxe—>Share vsc}
Mut. Exd. Multiple Total Several Chain U{Replace meta—>Share Meta }
Mut. Exd. Multiple Total Joint Single pass |U{Merge use—Replace vse}
Mut. Exd. Multiple Total Joint Chain U {Merge Mcta—Replace Meta}
Mut. Exd. Multiple Partial Several Single pass |Replace use—Share Use
Mut. Exd. Multiple Partial Several Chain Replace neta—>Share Meta
Mut. Exd. Multiple Partial Joint Single pass [Merge use—Replace Use
Mut. Exd. Multiple Partial Joint Chain Merge Meta—Replace Meta
Mut. Ind Singular Total Several Single pass U {Share Use}

Mut. Ind Singular Total Several Chain U {Share Meta}

Mut. Ind Singular Total Joint Single pass |U{Merge Us}

Mut. Ind Singular Total Joint Chain U {Merge Meta }

196

Mut. Ind Singular Partial Several Single pass |Share use

Mut. Ind Singular Partial Several Chain Shate Meta
Mut. Ind Singular Partial Joint Single pass [Merge Use
Mut. Ind Singular Partial Joint Chain Merge Meta
Mut. Ind Multiple Total Several Single pass |U{Share s}
Mut. Ind Multiple Total Several Chain U {Share weta}
Mut. Ind Multiple Total Joint Single pass |U{Merge s}
Mut. Ind Multiple Total Joint Chain U {Merge Mecta}
Mut. Ind Multiple Partial Several Single pass |Share vse

Mut. Ind Multiple Partial Several Chain Shate Meta
Mut. Ind Multiple Partial Joint Single pass [Merge Use
Mut. Ind Multiple Partial Joint Chain Merge Meta

* These cases may make the system unstable due to the presence of too many unwilling parties

Table 7.23: All the Possible Options for Various Characteristics of Rights Allocation Framework

The above table shows that the options left in the reduction tree can be covered by the
combination of one or more proposed models. However, some of the options may lead the
system to an unstable state, which also justify the case why there were left in the first place. It
also shows that the designed models are complete and generic enough to cover all the other
parameter values that were eliminated while designing the reduction tree for online social

interactions.

7.4 Summary

This chapter has analyzed the use-rights and meta-rights allocation models for online social
interactions presented in chapter 5 and 6. The possible permutations of the models are
outlined to extend the effectiveness of these proposed models and to configure more complex
privacy policies using a combination of them. The outcome of these permutations has leaded
us to explore some similarities between the models of the same type. The similarities are
investigated in values of characteristics of the models, the outcome of their application and
their effect on rights of different roles associated with the object, and lead to the generalization
of the rights allocation models. The chapter has further investigated the precedence of every
rights allocation model over each other, and the effect of multiple application of the same

model.

197

Chapter 8

Demonstration

his chapter demonstrates the rights allocation models presented in previous chapters

using both actual and hypothetical use-cases. The model use-cases discuss various

practical scenarios from the current STS and suggest their initial configuration using
the proposed rights allocation models. However, they will not cover all the functionality of the
applications but only the features that are relevant to the access control . This chapter
illustrates how specific functions can be implemented in a specific STS using terminologies
discussed in this dissertation. Five application types are considered to describe the working of
the models and to emphasize the fact that the models are generic enough to accommodate
most variations. The chapter is divided into two major sections: a) Basic use-cases, which are
similar in most types of applications, and b) Advanced use-cases, which are specific to the
application type. Advanced use-cases are both actual and hypothetical — which are not there
yet, but the current applications can be enhanced in these directions by using the proposed
models. It is significant to mention that both types of use-cases atre successfully demonstrated

using the proposed rights allocation models.

138 For example search featute on YouTube (or suggested friends feature on Facebook) is not illustrated.

198

8.1 Basic use-cases

This section covers the basic use-cases that are present in most types of applications. It is

divided with respect to the types of use-cases commonly present.

8.1.1 Creation use-case

Does the system administrator (admin) allow the general public (GP) to create objects (for

example profile) in the system space? And who owns that object?

8.1.1.1 Facebook

The Facebook admin allows the GP to create profile in Facebook Space and gives the

ownership to the creator.

Rights implementation

Replace v, ({admin’}, {Owner}) — UR ({Owner'}, FacebookSpace, CreateProfile, 0, admin)

8.1.1.2 Orkut'”

The admin allows the GP to create profile in Orkut Space, and gives the ownership to the

creatotr.

Rights implementation

Replace , ({admin}, {Owner}) — UR ({Owner}, OrkutSpace, CreateProfile, 0, admin)

8.1.1.3 YouTube

The YouTube administrator (admin) allows the general public to create/upload some video on

YouTube space in their name.

Rights implementation

Replace , ({admin}, {Owner}) — UR ({Owner}, YouTubeSpace, Createl ideo, 0, admin)

139 Owner is the actor creating the profile.
140 Orkut has changed its privacy settings after 2006 and now it is more like Faccbook. , Here, the old Orkut

system is discussed for giving another perspective and variation in the privacy settings.

199

8.1.1.4 Wikipedia

The Wikipedia administrator (admin) allows the general public to add some article on
Wikipedia space. However, the ownership remains with the system administrator as they can

remove it.

Rights implementation

Share v, ({admin}, {GP}) — UR ({admin| GP}, WikiSpace, CreateArticle, 0, admin')
8.1.1.5 Knowledge management systems
The conference administrator allows the general public to submit some paper to the

conference space, where the author is the owner.

Rights implementation
Replace ,, ({admin’y, {Owner}) — UR ({Owner'”}, ConferenceSpace, CreatePaper, 0, Owner)
8.1.1.6 Discussion

All the above mentioned systems allow the general public to create the object (for example
profile, video, article and so on) in the system space. Also, most of the systems give the
ownership to the owner but only Wikipedia keeps it with the administrator.

8.1.2 System administrator rights

What are the rights of system administrator (admin) over the newly created object (for

example profile, video and so on)?

8.1.2.1 Facebook
The system administrator can view or delete a profile, but cannot edit it.
Rights implementation

Share , ({admin}, {Ownery) — UR ({admin| Owner}, profile, view, 0, Owner)
Share ,, ({admin}, {Ownery) — UR ({admin|Owner}, profile, delete, 0, Owner)

141'The artides continue to belong to the admin as they can delete it.

142 Owner is the actor creating/uploading the paper.

200

8.1.2.2 Orkut

The system administrator can view or delete a profile, but cannot edit it.

Rights implementation
Share , (Ladmin}, {Owner|GP})— UR ({admin| Owner|GP}, profile, view, 0, Owner)
Share ,, ({admin}, {Owner}) — UR ({admin|Owner}, profile, delete, 0, Owner)

8.1.2.3 YouTube

The system administrator can view or delete a profile/video but cannot edit it.

Rights implementation
Share , ({admin}, {GP})— UR ({admin|GP}, YouTubeSpace, view, 0, admin)
Share , ({admin}, {Owner|GP}) — UR ({adnin| Owner|GP}, video, view, 0, Owner)
Share ., {admin}, {Owner}) — UR ({admin| Owner}, video, delete, 0, Owner)

8.1.2.4 Wikipedia

The system administrator can view, edit or delete an article from the space.

Rights implementation
Share , ({admin}, {GP})— UR ({admin|GP}, WikiSpace, view, 0, admin)
Share , {admin}, {GP}) — UR ({admin|GP}, articles, view, 0, admin)
Share i, {admin}, {GP}) — UR ({admin| GP}, articles, edit, 0, admin)
Share , {admin}, {admin}) — UR ({admin}, articles, delete, 0, admin)

8.1.2.5 Knowledge management system
The system administrator can view or delete a paper, but cannot edit it. They can also allow

others (mostly reviewers) to view the paper.

Rights implementation
Share ., ({admin}, {Ownery) — UR ({admin|Owner}, paper, view, 0, Owner)
Share ,, ({admin}, {Owner}y) — UR ({admin|Owner}, paper, delete, 0, Owner)
Share ,,, (Ladmin}, {Authory) — MR ({admin| Author}, paper, view, 1, Author)

201

8.1.2.6 Discussion

In all the above mentioned cases, the system administrator has the right to delete some object
from their space. Even in cases where the ownership resides with the owner, the system
administrator shares the delete right with them. This also satisfies the accountability principles

as everybody is responsible for their domain and its contents.

8.1.3 General public rights

What are the rights of the general public over the space and the created object (for example
profile)?

8.1.3.1 Facebook

The GP gets the view rights in the system space and so can see the basic information about

some profile.

Rights implementation

Share , {admin}, {GP})— UR ({admin|GP}, FacebookSpace, view, 0, admin)
8.1.3.2 Orkut
The GP gets the view rights over the space as well as over the created objects.
Rights implementation
Share , ({admin}, {GP})— UR ({admin|GP}, OrkutSpace, view, 0, admin)
Share , ({adminy, {GP})— UR ({admin|GP}, profile, view, 0, Owner)
8.1.3.3 YouTube
The GP gets the view rights over the entire space as well as individual videos. The GP also

gets the right to vote or comment on the videos.

Rights implementation
Share ,, ({admin}, {GP})— UR ({admin|GP}, YouTubeSpace, view, 0, adnin)
Share ,, ({admin| Owner}, {GP})— UR ({admin|owner|GP}, video, view, 0, Owner)
Replace ;, ({admin}, {GP|Owner}) — UR ({GP | Owner}, video, Createl ote, 0, Owner)
Replace ,, ({admin}, {GP|Owner}) — UR ({GP | Owner}, video, CreateComment, 0, Owner)

202

8.1.3.4 Wikipedia

The GP role gets the view and/or edit rights over the entire article space as well as individual

articles. The GP also gets the right to vote the authenticity of the articles.

Rights implementation
Share , ({admin}, {GP}) — UR ({admin| GP}, WikiSpace, view, 0, adwin)
Share ., {admin}, {GP})— UR ({admin|GP}, articles, view, 0, admin)
Replace , ({admin}, {GP|Owner}) — UR ({GP | Owner}, article, Createl ote, 0, admin)

8.1.3.5 Knowledge management system

The GP does not get any right over the paper, nor can they see the listing.

8.1.3.6 Discussion

As personal data is shared on Facebook, it restricts its visibility. Orkut did not support this and
it might be one of the reasons of its relatively slower growth as compared to Facebook .
Today, social networks do not give the view right to the general public, while social media (for
example YouTube) and social knowledge sharing (for example Wikipedia) allow the GP to
explore the whole system space along with the objects in it. However, it is interesting to note
that the proposed model can work with all the above mentioned scenarios even in presence of

different initialization requirements.

8.1.4 Contents creation

What are the rights of the owner over the newly created objects (for example profile, video,

article and so on)?

8.1.4.1 Facebook

The owner can view, edit or delete the profile, they can also decide who can view or contribute

to the contents in their personal space.

Rights implementation

Share ., {admin}, {Owner}) — UR ({admin| Owner}, profile, view, 0, Owner)

143'This may be one of the reasons that they changed their visibility function afterwards.

203

Replace ,, ({admin}, {Owner}) — UR ({Owner}, profile, edit, 0, Owner)
Share , (Ladmin}, {Owner}y) — UR ({admin|Owner}, profile, delete, 0, Owner)
Replace \,, ({admin}, {Owner}) — MR ({Owner}, profile, view, 1, Owner)
Replace ,,, ({admin}, {Owner}) — MR ({Owner}, profile, create, 1, Owner)

8.1.4.2 Orkut

Owner manages their profile spaces and decides who can contribute to the contents in the

space. However, the GP can view the space and the contents in it.

Rights implementation
Share ,, ({admin}, {Owner|GP}) — UR ({admin| Owner|GP}, profile, view, 0, Owner)
Replace , ({admin}, {Owner}) — UR ({Owner}, profile, edit, 0, Owner)
Share , (\admin}, {Owner}) — UR ({admin|Owner}, profile, delete, 0, Owner)
Replace ,,, ({admin}, {Owner}) — MR ({Owner}, profile, create, 1, Owner)

8.1.4.3 YouTube

The owner can edit the properties/version of the video, but cannot decide who can
comment/vote over their video, nor who can view it. On the contrary, the GP role gets the

view tights over the entire space/videos and they can also vote or comment on the videos.

Rights implementation
Share , (admin}, {GP}) — UR ({admin| GP}, video, view, 0, Owner)
Replace , ({admin}, {GP|Owner}) — UR ({GP|Owner}, video, Createl ote, 0, Owner)
Replace , ({admin}, {GP|Owner}) — UR ({GP | Owner}, video, CreateComment, 0, Owner)
Replace , ({admin}, {Owner}) — UR ({Owner}, video, edit, 0, Owner)

8.1.4.4 Wikipedia

The owner (creator/conttibutor) does not have the right to decide the allocation of view/edit
rights. The GP role gets the view and/or edit rights over the entire article space as well as

individual articles. The GP also gets the right to vote the authenticity of the articles.

Rights implementation
Share , ({admin}, {GP}) — UR ({admin|GP}, WikiSpace, view, 0, admin)
Share , ({admin}, {GP})— UR ({admin|GP}, articles, view, 0, admin)
204

Replace , ({admin}, {GP|Owner}) — UR ({GP | Owner}, article, Createl ote, 0, admin)

8.1.4.5 Knowledge management system

The owner can view, edit or delete the paper, however, they cannot decide about the view

rights of viewer or anyone else.

Rights implementation
Share , ({adminy, {Owner}) — UR ({admin| Owner}, paper, view, 0, Owner)
Replace , ({admin}, {Owner}) — UR ({ Owner}, paper, edit, 0, Owner)
Share , ({admin}, {Ownery) — UR ({admin|Owner}, paper, delete, 0, Owner)

8.1.4.6 Discussion

The owner has more authority on Facebook, as they can restrict the visibility of information,
which Orkut'™ does not allow. Social Networks (for example Facebook and Orkut) give the
view meta-rights to the owner while social video media (for example YouTube) and social
knowledge sharing (for example Wikipedia) allows the whole general public role to view all the
space and its objects. However, the proposed model can work with all the above mentioned

scenarios even in presence of different content creation conditions.

8.2 Advance use-cases

This section covers the advanced use-cases that are specific to the application type. This

section will be divided with respect to the applications and then to various application uses.

8.2.1 Facebook

This section covers the use-cases that are specific to the Facebook application. Facebook is a
private owner-oriented application which allows the owner to manage the rights over their
created objects. Currently, this type of applications only concentrates on single ownership;
however they have the potential to be extended towards multiple ownerships and thus group
interactions. The following use-cases cover various options related to the management of

rights in Facebook.

144 Orkut before 2006. Afterwards, Orkut also follows the same logic of local visibility.

205

8.2.1.1 Friends Rights Management

5

An actor A allows his friends to look at his photo' on Facebook. They can also vote or

comment on the photo, but could not further allow their friends to look at it.

Rights implementation
Share v, (1A}, {Friends}) — UR ({A|Friends}, photo, view, 0, A)
Replace ;, ({A}, {Friends}) — UR ({Friends}, photo, Createl ote, 0, Friends)
Share ., { A}, {Friends}) — UR ({A| Friends}, vote, view, 0, Friends)
Share , (A}, {Friends}) — UR ({A| Friends}, Photo, CreateComment, 0, A | Friends)
Share , ({A}, {Friends}) — UR ({A| Friends}, comment, view, O, Friends)
Share , ({A}, {Friends}) — UR ({A| Friends}, comment, delete, 0, Friends)

8.2.1.2 Tagging a photo

An actor A tags another actor B on a photo'™. The rights of both the actors are merged over
the photo and both of them required agreeing for any modification of rights allocation over

the photo.

Rights implementation
Merge o (LAY, {BY) — MR (LAGBY, photo, view, 1, AB)
Merge ., (1A}, {B}) — MR ({A>B}, photo, edit, 1, A>B)
Merge .., (\A}, {B}) — MR ({AB}, photo, delete, 1, A>B)
Share ., {A}, {B}) — UR ({A|B}, photo, view, 0, A>B)
Merge (LA}, {B}) — UR (LABY, photo, edit, 0, AB)
Merge ., ({A}, {B}) — UR ({ASB}, photo, delete, 0, A>B)

8.2.1.3 Sharing a video

An actor A shares a video with his friend B, who can further share it with his friends. The
rights of both the actors are shared over the video and any of them can manage the rights of

their friends.

145 The same set of rights can be illustrated for status update, video and other activities posted on one’s wall.
146 Currently this is happening with single ownership of the photo and the owner can display any photo by tagging
anyone. However, as tagging means that the photo also showing the other actor, his cnsent should be taken into

account for any display.

206

Rights implementation
Share \,,, (1A}, {B}) — MR ({.A|B}, photo, view, 1, A|B)
Share \,, (1A}, {B}) — MR ({A|B}, photo, edit, 1, A|B)
Share \,,, (1A}, {B}) — MR ({A|B}, photo, delete, 1, A|B)
Share ,, (1A}, {B}) — UR ({A|B}, photo, view, 0, A|B)
Share , (1A}, {B}) — UR ({A|B}, photo, edit, 0, A|B)
Share , ({A}, {B}) — UR ({A|B}, photo, delete, 0, A|B)

8.2.1.4 Persona sharing

The possibility of family persona currently does not exist on Facebook. However, with the use
of these basic models, husband and wife can own the family personae with their children and
have their social circles as relative families and family friends. For this scenario, consider an
actor A sharing the family personae with another actor B, where anyone of them can modify
the personae, decide about the friend’s requests and other actions associated with the

personae.

Rights implementation
Share ., (1A}, {B}) — MR ({AB}, persona, view, 1, A|B)
Share y,, (1A}, {B}) — MR ({ABY, persona, edit, 1, A|B)
Share y,, (1A}, {B}) — MR ({AXB}, persona, delete, 1, A|B)
Share ,, A}, {B}) — UR ({A|B}, persona, view, 0, A|B)
Share ., {A}, {B})— UR {A|B}, persona, edit, 0, A|B)
Share ,, (A}, {B}) — UR ({A|B}, persona, delete, 0, A|B)

8.2.1.5 Persona merge

The possibility of company/group persona currently does not exist on Facebook. For this
scenario, consider an actor A as the owner of a company, adding the company board of

directors as the joint decision maker.

Rights implementation
Merge v, ({A}, {Directors™}) — MR ({ A& Directorsy, company, view, 1, A& Directors)
Merge ... (AA}, {Directors}) — MR ({A»Directors}, company, edit, 1, A& Directors)

147 ‘Directors’ is the role having all the ditectors as members.

207

Merge ., (AA}, {Directors}) — MR ({ADirectors}, company, delete, 1, A& Directors)
Share , ({A}, Directors) — UR ({.A| Directors}, company, view, 0, A& Directors)
ue ($AY, {Directors}) — UR ({A&Directors}, company, edit, 0, A&Directors)
Merge ,, ({A}, {Directors}) — UR ({ADirectors}, company, delete, 0, A& Directors)

Merge

8.2.1.6 Persona rights delegation

An actor A, as the owner of a company, assigns another actor B as the acting chairman for the
company in his absence. The ownership remains with the original owner, while the use-rights

are given to the delegatee.

Rights implementation
Replace , ({A}, {B}) — UR ({B|Directors}, company, view, 0, A& Directors)
Replace , ({A}, {B}) — UR ({B&Directors}, company, edit, 0, A& Directors)
Replace ., ({A}, {B}) — UR ({B&Directors}, company, delete, 0, A& Directors)

8.2.1.7 Persona transfer
An actor A, as the owner of a company, sells his company to another actor B, who becomes

the new owner.

Rights implementation
Replace ,, (1A}, {B}) — UR ({B|Directors}, company, view, 0, B&Directors)
Replace \y,, (1A}, {B}) — UR ({B&Directors}, company, edit, 0, B&Directors)
Replace ,,, (1A}, {B}) — UR ({B&Directors}, company, delete, 0, B& Directors)

8.2.2 YouTube

This section covers the use-cases that are specific to the YouTube application. YouTube is a
fairly public-oriented application and so it does not have many group interaction use-cases.
Following are the use-cases covering various options related to the management of rights in

YouTube.

8.2.2.1Video transfer

An actor A transfers his video to another actor B. The rights of the system administrator as

well as general public role remain the same.

208

Rights implementation
Replace ,, (1A}, {B}) — UR ({B}, video, edit, 0, B)
Share , ({admin}, {B|GP})— UR ({admin|B|GP}, video, view, 0, B)
Share , ({admin}, {B}) — UR ({admin|B}, video, delete, 0, B)
Replace , ({admin}, {GP|Owner}) — UR ({GP | Owner}, video, create, 0, B)

8.2.3 Wikipedia

Wikipedia is a purely public-oriented application, so it is less likely to be extended towards
these social interactions. This dissertation has not included any advanced case on Wikipedia

usc.

8.2.4 Knowledge management system

This section covers the use-cases that are specific to the knowledge management systems.
Currently, these systems only provide quite a few functionalities but they have the potential to
extend towards group interactions. Following are some of the use-cases that cover various

options related to the management of rights in these systems.

8.2.4.1Track delegation

The conference chair A4 delegates a track to track chair B and give him full control over the
track. The track chair can view and edit the track on the conference chair behalf but cannot

delete it. Also the track chair cannot further pass that right to someone else.

Rights implementation
Share ., ({A}, {B}) — UR ({A|B}, track, view, 0, A"™)
Replace , (1A}, {B}) — UR ({B}, track, edit, 0, A)
Replace ,,, ({A}, {B}) — MR ({B}, track, view, 0, A)

8.2.4.2 Paper joint authorship

An author A adds another actor B as one of the authors of the paper, where both of them

required agreeing for any update or removal of the paper.

Rights implementation

148 The conference chair A still remains the owner of the conference and tradk.

209

Share 1, (A}, {B}) — UR ({A|B}, paper, view, 0, A&B)

Merge 1, (14}, {B}) — UR ({AB}, paper, edit, 0, AKB)

Merge 1, (1A}, {B}) — UR ({LACBY, paper, delete, 0, A&B)
Merge 1y, ({A}, {B}) — MR ({ABY, paper, view, 1, AB)
Merge ., (1A}, {B}) — MR {ASB}, paper, edit, 1, A&B)
Merge 1 (A}, {B}) — MR ({AC>B}, paper, delete, 1, AKB)

8.2.4.3 Paper authorship sharing
An author A shares the authorship with another actor B, where anyone of them can perform

any update on the paper.

Rights implementation
Share , ({A}, {B}) — UR ({A|B}, paper, view, 0, A|B)
Share 1, (1A}, {B}) — UR ({A|B}, paper, edit, 0, A|B)
Share ., {A}, {B}) — UR ({.A|B}, paper, delete, 0, A|B)
Share \,,, {A}, {B}) — MR ({A|B}, paper, view, 1, A|B)
Share s (1A}, {BY)— MR (LA|B}, paper, e, 1, A|B)
Share y,., (1A}, {B}) — MR ({A|B}, paper, delete, 1, A|B)

8.2.4.4 Reviewer rights

The conference chair (admin) gives the view rights over the paper to the reviewers X, Y and Z.

Rights implementation

Share , ({admin}, {X|Y|Z})— UR ({admin| X |Y|Z}, paper, view, 0, Owner)

8.2.4.5 Copyright transfer

The paper author A, transfers the copyright of the view rights over the paper to conference

chair (admin).

Rights implementation

Replace \,, (1A}, {admin}y) — MR ({admin}, paper, view, 1, A)

210

8.3 Summary

This chapter has demonstrated the use-cases that are covered by the proposed rights allocation
models. The use-cases are categorized into a) basic and b) advanced; where basic use case are
commonly present in most of the current applications supporting online social interactions,
and advanced use-cases are specific to the application type. Some interesting observations have
been made as two entirely different types of applications (YouTube and Wikipedia) provide
quite similar types of rights allocation support. Also, the set of functions within an application
increases as more rights are allocated to the owners. It supports the Locke argument that

societies that encourage free will and ownership prosper more.

The proposed models give options to various STS and cover their current functionality. Also,
few hypothetical cases are also discussed to illustrate the further extension of these application
towards becoming more group oriented. The illustrations also help to estimate the full
potential of the proposed models where it supports not only most of the current scenarios but

also the online group social interactions, which is not present yet.

211

Chapter 9

Discussion

his chapter discusses the research questions and the contributions of this dissertation.
It also outlines some of its limitations and illustrates some future directions. It is
organized as follows: section 9.1 revisits the research questions along with its
research contributions in section 9.2. Section 9.3 provides some theoretical and practical
implications, and section 9.4 discusses some of the limitations of the presented work. Section
9.5 gives some future directions particulartly in the proposed work and generally in the access

control for online social interactions, while section 9.6 formally ends the dissertation.

This research was motivated by the absence of a consistent and broadly applicable rights
allocation model for online social interactions, and the differences between the structure of
STS and traditional applications which make them difficult to be used for online social
interactions. The objective of this research was to investigate the possibility of designing
standard rights allocation models for online social interactions. This objective was twofold: a)
to design the basic access control model supporting ownership, relationship and local control;
and b) to design the rights allocation models for online social interactions based on the
semantics of basic access control model. The research has achieved both the above mentioned
objectives by presenting the social access control model in chapter 4 and by presenting the

rights allocation models in chapter 5 and 6.

212

SAC model has been proposed as the basic access control model for STS. It supports the STS
requirements of ownership, relationship, and local administration. These three components
allow the enforcement of heterogeneous privacy policies with ease and reduced overhead. The
model illustrates how systems with huge number of users can be divided into autonomous
distributed domains. These owner administered domains permit the introduction of local roles,
attestation certificates and object classes, where the former two allow the management of
dynamic asymmetric relationships and the latter contributes towards refined resource
management with reduced overhead. These constructs not only satisfy the technical
requirements of efficiency and scalability but also the social requirements of ownership,
relationships and heterogeneous privacy policies. The latter arises because online contents are
contributed by the community of users, who by social logic expect to own what they
contribute. The research has used socio-technical design to reduce the socio-technical gap. The
aim of this design is to satisfy both technical and social needs to avoid technical and social
errors, with community outrage is an example of the latter. The logical model is defined to

work with any existing security module.

The SAC model was then used as the core model to build the rights allocation models. The
rights allocation models are Replace, Share, Merge and Revoke which were outlined for use
rights as well as meta-rights, to result in the formation of eight different models. These models
were discussed using various current online social interaction scenarios to illustrate their need
and practical importance. Furthermore, some of the characteristics of rights allocation were
discussed along with the rights of different roles associated with the owner domain, which help
to identify the logical structure of each model. The models were further generalized on the

basis of their features and some analysis is done to understand the generalized models.

9.1 Revisiting research questions

This section demonstrates the scope and success of the research by revisiting the research

questions and describing how they were answered.

Q) Can a general rights allocation model for online social interactions, which is
decentralized, logically consistent, socially valid, and supports dynamic local roles, be

designed?

213

The rights allocation models are presented in chapters 5 and 6. The models were mapped onto
the social access control model to show that they are decentralized, support dynamic local
roles associated with stakeholder’s namespace, and socially valid by its support for ownership,
freedom, privacy, relationships and local administration. The models were designed to be
logically consistent as shown by their shift from different roles and their access towards

different objects before and after allocation of right.
a) What are the basic types of rights allocation for online social interactions ?

There are four basic types of rights allocation discussed in chapter 3, which were later
elaborated in chapters 5 and 6. The allocation models are Replace, Share, Merge and Revoke,
and they were mapped on to simple rights and meta-rights giving eight models in total. The

complete discussions of these models are given in chapters 5 and 6.
b) Can the allocation models be applied to simple rights as well as meta-rights?

These use-rights allocation models are presented in chapter 5. The Replace . model is
presented in section 5.1, the Share . model is presented in section 5.2, while the Merge ..
model is presented in section 5.3. The Revoke model is discussed separately under each of the
above mentioned models in section 5.1.6, 5.2.6 and 5.3.6. The meta-rights allocation models
are presented in chapter 6. The Replace ., model is presented in section 6.1, the Share .,
model is presented in section 6.2, while the Merge .., model is presented in section 6.3. The
Revoke model is discussed separately under each of the above mentioned models in section

6.1.6, 6.2.6 and 6.3.0.
c) What are the characteristics of those rights allocations?

Various characteristics of rights allocation are extracted from literature and their parameters
have been adjusted using socio-technical design. The characteristics associated with each type
of allocation are consent, totality, cardinality, monotonicity and depth. These characteristics are
defined in general in chapter 3 and discussed with respect to each specific model in chapter 5

and 6.

d) What are the rights of various roles associated with an object after every allocation?

214

To answer this question, various generalized roles are identified for every object space like
parent, offspring and general public in chapter 4 (section 4.3) along with their basic rights over
the owner object. Additionally, the modification in the rights for every role after each
allocation model is discussed in chapter 5 and 6. Further, the generalized rights states for these
roles are discussed: a) for the Replace model — in section 7.1.3, b) for the Share model — in

section 7.2.3, and c) for the Merge model — in section 7.3.3.
e) What is the difference between the allocation models for simple and meta-rights?

After critical analysis of the use-rights and meta-rights models, chapter 7 concludes that the
prominent differences between use-rights and meta-rights allocation models are the depth of
the allocated right and the revocation by meta-owner. So the models are generalized to work
with use rights as well as meta-rights without modifying the semantics of the models. This
generalization is discussed in chapter 7 for various characteristics of the model as well as for

the rights associated with every role.

Condition) Can an access control model for STS be designed to support ownership,

relationships and local administration?

Chapter 4 of this dissertation has presented SAC — the core distributed access control model
for STS, which supports ownership, relationship and local administration. The model divides
the whole system into autonomous domains, with the distinction of stake holders, virtual
users, local roles, attestation certificates and object privacy classes. The Stakeholder is the
administrative authority for the local domain, who manages the local roles, attestation
certificates, and object classes. The Virtual user is a delegate pointer to the actual user’s
persona and is used to reduce the complexity of information management. Local roles are
domain based groups, whose membership is based on relationships. Attestation certificates are
encapsulated rights and are used with local roles to support dynamic asymmetric relationships.
Object classes are introduced to ease the administration of contents and their mapping to
appropriate local roles. This provides the facility to enforce heterogeneous privacy policies
through local control over domain and its components. The complete description of the SAC

model is given in chapter 4.

215

a) Can the model be applied to emerging scenarios of online social interactions ?

The proposed SAC model is applied throughout to various scenatios of current STS in chapter
5 and 6. Before outlining the characteristics of every rights allocation model, an online social
interaction scenario is depicted using the SAC model. The model is illustrated through
conference systems, YouTube, collaborative software, Facebook and internet forums. These
demonstrations illustrates that SAC can be used for most types of STS without any

modification in their semantics.

9.2 Research contributions

This research has presented Social Access Control model for online social interactions based
on the social principles of ownership, relationships and local administration. Further, it has
explored various ways to allocate a right in STS, and proposed their logical semantics. Some

innovative contributions of this research are summarized as follows:

a) The concept of domains is used for online social interactions without any formal
semantics based on local requirements and programmet’s intuition, so there are many
variations of it. The SAC model formalizes the owner oriented domains to support
ownership and local administration. It defines various components of the domain and
explores their interaction.

b) Fine grained social circles were proposed in (J. Li et al., 2009; Tapiador et al., 2011),
but they do not support the dynamic nature of friendship. The SAC model not only
provides full control to the owner over modification of relationship, but also
formalizes the notion of fine grained social circles.

¢) The object tagging was explored in (Hart et al., 2007), but it was based on rules rather
than owner preferences. The SAC model has introduced owner oriented object privacy
classes to support object classification based on their contents and owner privacy
policy.

d) SAC has introduced attestation certificates in STS, which also contributed towards
decentralized access control credential distribution. These certificates provide a

mechanism to support asymmetric relationships.

216

e) SAC has introduced initial space configuration to support different types of online
application using the basic social access control model. These configurations allow the
SAC model to be used for most types of online applications supporting social
interactions.

f) The research has used socio-technical design in the area of access control research, and
proposed an access control model based on the social structure of ownership,
relationship and local control.

@) It has explored various characteristics of rights allocations and introduced a reduction
tree illustrating useful options in current online social interaction scenarios. The
reduction tree has outlined the logical choices for online interactions, and has shown to
be complete in order to cover all the remaining possible options.

h) Rights delegation was introduced in (Gasser & McDermott, 1990) for local and remote
processes. It was matured to the delegation of roles in (Barka & Sandhu, 2004).
However, there does not exist any rights delegation model for ownership domain or
STS. This research has introduced a rights delegation model for online social
interactions based on ownership and local administration. This will enhance online
interactions by providing backups and decentralization of authority.

1) Rights transfer for organizational roles was introduced in (Barka, 2000) and refined in
(Crampton & Khambhammettu, 2008). However, STS are entirely different from
organizations and there does not exist any rights transfer model for online social
interactions based on ownership. This research has introduced a rights transfer model
for online social interactions based on ownership and local administration. This will
enhance the online ownership framework and may introduce more complex ideas like
selling/purchasing of online objects and personae.

j) The concept of use-rights and meta-rights sharing is used in current STS without any
formal semantics based on programmers’ intuition, so there are many variations of it
This research has formalized the rights sharing supporting ownership and local control.
This formalization provides the programmers with a refined set of rules and

programmable instructions which can be used for most types of online applications

149 From video sharing on sodal networks to photo tagging (whete one can remove their id to remove the access

right of their sodal drde).

217

supporting social interactions. It also gives the opportunity to introduce the ownership
sharing of various interesting online objects like family personae and family friends.

k) It has introduced the rights merge model for online social interactions. The proposed
model supports ownership and local control and enhances collaborative scenarios,
team work and distribution of authority, and thus improves online social interactions.
It also gives the opportunity to introduce group interactions in the management of
rights like company personae with board of directors as joint owners.

) The research has used extreme formal modeling in the area of access control research
to formalize the rights allocation models. It allows the introduction of fine grained
models based on the specifications of owner oriented domains, local roles and
attestation certificates.

m) This research has outlined the four basic allocation models for use-rights as well as for
meta-rights to extend the availability of rights in ownership domain. The detailed
outlining of these models along with their logical definitions provide the programmers
with exact semantics for the desired application. The introduction of these allocation
models will improve the online social interactions and offer much richer options to

online users.

9.3 Implications of the presented research

This research has several implications on the theory of access control and on the current state

of the STS software system development. This section will cover those implications.

9.3.1 Ownership theory

This research supports the ownership theory associated with objects (LLocke, 1963) and extend
it to include the administration of personal relationships and their rights over one’s resources.

The access control for STS works on the basic theory of ownership, which states that
“The owner has the meta-right over an object to administer it”.

The proposed access control model supports this theory of ownership and extends it towards
relationship management. The model considers the relationship between two actors as a type

of directed information object owned by the owner. This creates two directed relationship

218

objects for a single relationship between A/ice and Bob, one owned by A/ice for how Bob relates

to her, and one owned by Bob for how A/ice relates to him. The extended theory includes:
“Relationship is also an information object which is owned by the owner.”

9.3.2 Access control

This research summarizes the literature of access control model for STS and explores that they
have the common grounds of ownership and relationships. It also adds the observation that
socio-technical design can be applied to the access control domain so it can work with the
social structure of the community. This research has introduced roles in the discretionary

domain and discussed the opportunities associated with it.

This research has made an interesting observation that meta-rights are special types of rights
associated with the administration of rights. However, when it comes to the rights allocation
models, the same models that are used for use rights can also be used for the allocation of
meta-rights. The only difference between the two types of models is the depth and the
revocation of a right, which are related to the nature of meta-rights and do not affect the

standard procedure of rights allocation.

9.3.3 Online social interactions

This research extends the online social interactions from individual users to groups. It permits
families, groups and organization to have their combined personae and their online
interactions. This can introduce various interesting opportunities for objects sharing, online
and offline relationships, and make online social interactions more realistic and closer to the

real world.

Group online personae will let cities, and countries to have their personae which can help
improving the governance of offline societies and the relations of different groups with each
other. It may also encourage discussion of political situations with the perspective of citizens
and nationals, and may help in resolving contradictory issues playing the role of online United

Nations.

219

9.4 Limitations

Following are some of the limitations of this research:

a)

b)

d)

The research does not provide any mechanism or architecture to implement the rights
allocation models. Also, the simulation was not done due to the scope of this
research™. If it was taken into account the whole debates of client server architectures,
distributed control, heterogeneous privacy policies, users’ behavior, their feedback and
some other concerns also need to be considered. However, the research provides the
logical formulae and the logical steps that can be directly translated into any
programming language.

The basic access control model is based on ownership, relationship and local control,
but has not considered trust between the users, and reputation of a user in the
community.

The models have assumed that every actor is authorized and there is no identity theft,
while it is not the scope of this research to deal with these matters, these factors can
affect the real world implementation.

The similarities between different roles with in a namespace are not taken into account
which can significantly reduce the computational overhead and storage efficiency of

access control.

9.5 Future research opportunities

This section discusses the future research opportunities particularly in the proposed models,

and generally in the access control for STS. Following are some of the future research

opportunities:

9.5.1 Implementation

A future direction can be advised to implement the proposed rights allocation models as a

component of the security kernel for STS and include all the proposed options to the users.

The implementation can take advantage of semantic web ontologies for its inter-reference

qualities and can use Google stream as the simulation agent. This simulation and

150 Tt only deals with the design of the allocation models.

220

implementation may be able to suggest solutions to some of the other interesting debates
posed by the current research, for example whether centralized or distributed implementation
architecture is more suitable for STS; and whether client-side or server-side management of
policy credentials is better for load management in STS. Also the implementation can be tested
against various network attacks to suggest an error resilient approach suitable for STS.
Additionally as the content retrieval for a user is based on their social circle, the
implementation may give insights about storing data in a more efficient way. The

implementation would be an interesting addition to the literature of security in general.

9.5.2 Transparency

Another interesting research direction in access control for STS is the introduction of
transparency, so users know about what to expect rather than making social errors. In general,
transparency is the choice to view rights that affect you. Transparency in access control
provides readable error messages for guidance to what users can do, in terms of allowed rights.
In social terms, transparency of access control rules allow users to anticipate and avoid social
errors and reduces community governance corruption as people see the permissions of others
(Kooiman, Bavinck, Chuenpagdee, Mahon, & Pullin, 2008). The goal is to show that social
rights are openly applied and can be scrutinized, as this is critical for trust and synergy. If a
social requirement of access control systems is transparency, this sets access control apart from
the security aim of system defence, which by definition requires secrecy. The evolution of
access control to meet the needs of social networks opens it up to new research dimensions

beyond its security origins.

Some design options for transparency model are: a) the model should be able to generate
statements that actor X has permission P over object O; b) before putting any object into a
space, the object owner may sign a contract with the space owner that they have such rights
over the object and parent space; ¢) upon entering any space the model should notify the user
that they have such rights over the space and the objects within it. These design options may
help in designing a transparency model that may translate the possible actions of the security

kernel.

221

9.5.3 Reputation model

Another interesting research direction for access control for STS can be the reputation model.
The model may be able to calculate the reputation of a user in a community by how
trustworthy the community considers the user. The reputation model for access control may
suggest the owner to opt for a particular rights allocation model™ based on the reputation of
the requestor. The reputation model that rates users in a community can have multiple
research implications: a) the model can be used by online shopping systems, which tracks the
reputation of a particular user; b) it can be used by online trading systems to rate someone’s
trustworthiness to trade; c) a reputation based access control model can be designed to allow

access to resources based on the reputation of the user.

In the context of this research, the reputation model for rights allocation models will
determine whether a particular user is trustworthy enough for delegating/transferring of rights
or not. The model may be based on some reputation rating system calculated on user’s
previous transactions. The model may introduce an automatic type of trust evaluator that
provides suggestions as to which allocation model is best suited for users with different trust
levels. The model needs to be distributed, dynamic in nature and flexible enough to suggest the
level of delegation/transfer based on the requestot’s reputation. However, due to the dynamic
nature of online social interactions and heterogeneous users’ policies, designing a reputation

model presents an interesting challenge to the research community.

9.6 Final remarks

Online communities today cannot survive without participation, so access control is
increasingly about letting people in rather than keeping them out. This research suggests how
to allocate access control rights to satisfy social requirements of ownership and relationship. It
not only defines what STS like Facebook currently should and should not does, but also
suggests new options not yet tried. The proposed model helps to avoid social errors at source
thus increasing the probability of online social success. The evolution of access control

towards the allocation of meta-rights will open up new research dimensions.

151'This particular user is better suited for rights delegation rather than rights transfer.

222

If the Internet is to be a global community, it must agree on a consistent logic of online social
rights. This research offers steps to the development of a standard and consistent rights
allocation model for all online social interactions. However, rights logic is powerful but
complex, as people can form groups, objects can contain other objects and rights can ovetlap
and contradict, for example free speech is not the right to defame. A socio-technical designer
might wonder, if even legal theorists cannot agree on social rights, how can we cope? Yet
some justice is always better than none, whether online or off. To do nothing until perfect

justice is defined is not how social evolution occurs.

This research has described, in access control terms, social rights in online social interactions.
This opens the way for the development of social standards for the internet, just as it already
has standards for hardware, software and HCIL Such standards would agree on how code
should mediate online social interactions in order to improve social performance by social
principles like synergy, fairness, creator ownership and transparency. Socio-technical systems

need social standards of rights to reach their full potential.
“You may never know what results come of your action, but if you do nothing there will be no result”

(~Mabhatma Gandhi)

223

Access Control
Actor
Attestation
certificates (AC)

Beneficiary
Cardinality

Consent

Constructive research

methodology

Creator Ownership

Discretionary access

control (DAC)

Delegatee (Dge)

Glossary

A process to grant certain privileges over information and
resources to identified users.

A subject/user/person/group in the context of access control
model.

Permission objects encapsulated various access rights and map
local role to object class.

The actor who is allocated some right.

Cardinality of an allocation refers to the number of beneficiaries,
who can simultaneously hold an allocated right.

This characteristic deals with whether the consent of the owner
and beneficiary is required for an allocation or not.

The constructive methodology is a research approach for
producing innovative constructions, intended to solve problems
faced by real world and thus makes contributions to the theory of
the applied discipline.

A right that one should own what one creates, for example a
painting or poem.

Access control model that is based on personal discretion and
users can give rights to other users.

The beneficiary of the use-right where the owner cannot exercise

224

Delegator (Dgr)
Denial of Service
(DOS)

Depth

Extreme Formal

Modeling (XFM)

Freedom

General Public (GP)

Incremental

approach

Joint Beneficiary

Joint Owner

Local roles (LR)

Mandatory access
control (MAC)
Merge
Meta-Rights

Monotonicity

Multiple-ownership
Namespaces (NS)

the right. They are the only accountable actor for the delegated
right over the object.

The owner of the delegated right, who cannot exercise the right
without taking it back from the delegatee.

An attack launched on the web services to deny that service to the
authorized users.

This characteristic refers to the ability of the beneficiary after
getting a right to further allocate it or not.

Extreme Formal Modeling is a methodology that constructs
abstract models which are constructively correct in nature and
closer to intended specification.

Freedom is the right to control one's body, to not be a slave to
another.

A general role defined for each space and has some rights over the
objects present in that space.

The approach where one feature is focused at a time. Multiple life
cycles take place, where one is completed before starting the next.
The beneficiary who cannot exercise the right without the consent
of the owner.

The owner of an object who cannot exercise the right over the
owned-object without the consent of the (primary) owner.

A VU group with defined access to NS resources.

A centralized access control model where the system
administrator is responsible for assigning rights.

Merge the rights of the entire user set over an object, so all parties
must agree to perform some action.

Meta-rights are system permissions for actors to apply operations
on rights.

This characteristic refers to the state of rights of previous actors
after allocation.

When multiple actors hold the ownership of an object.

The set of objects a stakeholder creates.

225

Object Classes (OC)

Object

Offspring
Online Social

Interaction

Operation

Owner

Parent

Persona

Primary Owner

Replace

Revocation

Revoke

Right

Rights Allocation

Role based access

control (RBAC)

Secondary Owner

Share

An object group, based on security clearance, whose access is
mapped to LRs.

The system resources that needs to be protected.

The owner of the child object in perspective of the owner of the
space.

Online Social Interactions are user to user social interactions that
take place in STS. It is a concept that is used to explain different
types of interactions among users of a system. STS are systems
supporting OSL

Applicable actions on objects/actors/rights.

The actor having all the use-rights and meta-rights over an object
The owner of the patent space, where the object is created /
uploaded. It is a role from the perspective of the owner of the
object.

An online persona represents an offline party, for example an
avatar, profile, or a mail account.

The actual owner of an object who has shared / merged some
rights over their object with secondaty / joint owners.

Give rights to another user who can exercise them on the owner’s
behalf, where the previous user cannot exercise it.

Revocation is a process by which rights are taken back from the
beneficiary.

Taking back the rights over an object from an actor. It can be
done by removing the existing actor from a right over an object.
A logical triplet that defines the actor who can perform an
operation over an object.

Methods in which a right can be assigned to different users.

An access control model based on organizational roles, where the
security administrator assigns the roles and permissions to users.
The owner of an object who can exercise the right without the
consent of the (primary) owner.

Give away rights over an object while keeping them at the same

226

Simple rights

Social Access control

Social Networks

Socio-technical

System (STS)

Stakeholder

Totality

Use-Rights

Virtual user (VU)

time, so both can exercise the rights.

Use-rights are system permissions for actors to apply operations
on objects.

The access control model that supports the social requitements/
axioms of the online social interactions and is proposed in this
research.

Social Networks are systems supporting friendships and
relationships. They are subset of STS and are one of the richest
examples of online social interactions.

A socio-technical system (STS) is a social system sitting upon a
technical base, with email a simple example of social
communication by technology means. They allow people to
communicate with each other through technology rather than
through physical means. It is used in this dissertation to discuss
systems that support online social interactions.

The owner who posts system resource objects, for example
photos, videos, comments or votes in his namespace.

A characteristic that deals with whether the complete set of rights
over complete set of authorized resources are allocated.
Use-rights are system permissions for actors to apply operations
on objects.

A user, from the social circle of stakeholder, secking a NS

resource access.

227

References

Abadi, M. (2009). Logic in Access Control. In A. Aldini, G. Barthe, & R. Gorrieri (Eds.),
Foundations of Security Analysis and Design (pp. 145-165).

Abadi, M., Burrows, M., Lampson, B., & Plotkin, G. (1993, September). A Calculus for Access
Control in Distributed Systems. ACM Transactions on Programming Languages and

Systems, 15(4), 706-734.

Adams, W. J., & Davis, N. J. (2005). Toward a decentralized trust-based access control system
for dynamic collaboration. IEEE Workshop on Information Assurance and Security,
(pp. 317-324). New York, USA.

Ajzen, 1. (1985). From intentions to actions: A theory of planned behavior. (J. Kuhl, & J.
Beckman, Eds.) Action-control: From cognition to behavior, 11-39.

Ajzen, 1. (1991). The theory of planned behavior. Organizational Behavior and Human
Decision Processes, 50, 179-211.

Ali, B., Villegas, W., & Maheswaran, M. (2007). A trust based approach for protecting user
data in social networks. 18th Annual International Conference on Computer Science
and Software Engineering (CASCON '07), (pp. 288-293). Richmond-Hill, Ontario,
Canada.

Allen, A. (1988). Uneasy Access: Privacy for Women in a Free Society. Totowa, New Jersey,
USA: Rowman and Littlefield Publishers.

Amati, G., & Crestani, F. (1999). Probabilistic learning for selective dissemination of

information. Information Processing and Management, 35(5), 633-654.

228

Atluri, V., & Warner, J. (2005). Supporting conditional delegation in secure workflow
management systems. 10th ACM symposium on Access control models and
technologies, (pp. 49-58). Stockholm, Sweden.

Ba, S. (2001). Establishing online trust through a community responsibility system. De cision
Support Systems, 31(3), 323-336.

Bammigatti, P. H., & Rao, P. R. (2008). Delegation in role based access control model for

workflow systems. International Journal of Computer Science and Security, 2(2), 1-10.

Barka, E. S. (2002). Framework for Role-Based Delegation Models. PhD Dissertation.
Virginia, USA: George Mason University.

Barka, E., & Sandhu, R. (2000a). A Role-Based Delegation Model and Some Extensions. 23rd
National Information Systems Security Conference (NISSC), (pp. 101-114). Baltimore,

Maryland, USA .

Barka, E., & Sandhu, R. (2000b). Framework for Role-Based Delegation Models. 16th Annual
Computer Security Applications Conference (ACSAC), (pp. 168-176). New Orleans,
Louisiana, USA.

Barka, E., & Sandhu, R. (2004). Role-Based Delegation Model/ Hierarchical Roles (RBDM1).
20th Annual Computer Security Applications Conference (ACSAC) (pp. 396-404).

Tucson, Arizona, USA: IEEE Computer Society.

Barka, E., & Sandhu, R. (2007). Framework for Agent-Based Role Delegation. IEEE
International Conference on Communications (ICC), (pp. 1361-1367). Glasgow,
Scotland.

Barnes, S. (2000). Privacy paradox: Social networking in the United States. First Monday,
11(9).

Belani, E., Vahdat, A., Anderson, T., & Dahlin, M. (1998). The CRISIS wide area security
architecture. 7th conference on USENIX Security Symposium, (pp. 15-30). Berkeley,
USA.

Bell, E., & LaPadula, L. (1973). Secure Computer Systems: Mathematical Foundations and
Model. MITRE Technical Report 2547.

Bender, T. (1978). Community and social change in America. Princeton, New Jersey, USA:

Rutgers University Press.

Bennett, P., Dumais, S., & Horvitz, E. (2002). Probabilistic combination of text classifiers
using reliability indicators: Models and results. 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 207-214).
Tampere, Finland: ACM Press.

229

Bertalanffy, 1. V. (1968). General System Theory. New York, USA: George Braziller Inc.
Publishers.

Bertino, E., Fan, |., Ferrari, E., Hacid, M.-S., Elmagarmid, A., & Zhu, X. (2003). A hierarchical
access control model for video database systems. ACM Transactions on Information
Systems, 21(2), 155-191.

Biba, K. (1977). Integrity Considerations for Secure Computer Systems. USA: MITRE

Corporation.
Blau, P. M. (1964). Exchange and Power in Social Life. New York, USA: Willey.

Bock, G.-W., & Kankanhalli, A. (2006). Are Norms Enough? The Role of Collaborative
Norms in Promoting Organizational Knowledge Secking. FEuropean Journal of
Information Systems, 15(4), 357-367.

boyd, d. (20006). Friends, Friendsters, and MySpace Top 8: Writing Community Into Being on
Social Network Sites. First Monday, 11(12).

boyd, d. M., & Ellison, N. B. (2007). Social Network Sites: Definition, History, and
Scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230.

Boykin, P. O., & Roychowdhury, V. P. (2005, April). Leveraging social networks to fight spam.
IEEE Computer Magazine, 38(4), 61-68.

Bram, C. (2003). Incentives build robustness in BitTorrent. 1st Workshop on Economics of
Peer-to-Peer Systems. Berkeley.

Breen, G. (2010, May 17th). ABC News. Retrieved March 23rd, 2011, from ABC News
website: http://www.abc.net.au/news/2010-05-17 /teens-murdet-sparks-facebook-
ptivacy-plea/829850

Brewer, D., & Nash, M. (1989). The Chinese Wall Security Policy. IEEE Computer Society
Symposium on Research in Security and Privacy, (pp. 215-228). Oakland, California,
USA.

Brucker, A., & Petritsch, H. (2009). Extending Access Control Models with Break-glass.
Symposium on Access Control Models and Technologies (SACMAT), (pp. 197-2006).
Stresa, Italy.

Burrell, G., & Morgan, G. (1979). Sociological Paradigms and Organisational Analysis:
Element of the Sociology of Corporate Life. Heinemann, London, UK: Heinemann

Educational Books.

230

Caplinskas, A., & Vasilecas, O. (2004). Information systems research methodologies and
models. International Conference on Computer Systems and Technologies
(CompSysTech), (pp. 1-6). Rousse, Bulgaria.

Carminati, B., & Ferrari, E. (2008). Privacy-aware collaborative access control in web-based
social networks. 22nd annual IFIP WG 11.3 working conference on Data and

Applications Security (pp. 81-96). London, UK: Springer-Verlag Berlin, Heidelberg.

Carminati, B., Ferrari, E., & Perego, A. (2006). Rule-based access control for social networks.
On the Move to Meaningful Internet Systems (OTM) Workshops (pp. 1734-1744).
Springer-Verlag Berlin Heidelberg,

Carminati, B., Ferrari, E., & Perego, A. (2007). Private relationships in social networks. 23rd
IEEE International Conference on Data Engineering Workshop, (pp. 163-171).
Istanbul, Turkey.

Carminati, B., Ferrari, E., & Perego, A. (2009). Enforcing access control in Web-based social
networks. ACM Transactions on Information and System Security (TISSEC), 13 (1),
191-233.

Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., & Thuraisingham, B. (2009). A
semantic web based framework for social network access control. 14th ACM

Symposium on Access Control Models and Technologies, (pp. 177-186). New York,
USA.

Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., & Thuraisingham, B. (2011).
Semantic web-based social network access control. Computers and Security Journal,
30(2), 108-115.

Choi, H.-C., Kruk, S. R., Grzonkowski, S., Stankiewicz, K., Davis, B., & Breslin, J. G. (2000).
Trust models for community aware identity management. Identity, Reference, and the
Web Workshop (IRW). Edinburgh, Scotland.

Chu, Y.-H., Feigenbaum, J., Lamacchia, B., Resnick, P., & Strauss, M. (1997). Referee: Trust
management for web applications. World Wide Web Journal, 706-734.

Chung, M., Choi, J., Lee, K., & Rhyoo, S.-K. (2007). Enterprise Application Framework for
Constructing Secure RFID Application. International Conference on Advanced
Language Processing and Web Information Technology (ALPIT), (pp. 572-577).
Luoyang, Henan, China.

Churcharoenkrung, N., Kim, Y. S., & Kang, B. H. (2005). Dynamic web content filtering
based on user’s knowledge. International Conference on Information Technology:
Coding and Computing, (pp. 184-188). Hobart, Tasmania, Australia.

231

Clark, D., & Wilson, D. (1987). A Comparison of Commercial and Military Computer Security
Policies. IEEE Symposium on Security and Privacy, (pp. 184-194). Oakland,
California, USA.

Clegg, C. (2000). Sociotechnical principles for system design. Applied E rgonomics, 31(5), 463-
477.

Coiera, E. (2007). Putting the technical back into socio-technical systems research.
International Journal of Medical Informatics, 76, 98-103.

Collins, M., & Singer, Y. (1999). Unsupervised models for named entity classification. joint
SIGDAT conference on empricial methods in natural language processing and very
large corpora, (pp. 100-110). Maryland, USA.

Crampton, J., & Khambhammettu, H. (20006). Delegation in role-based access control. 11th
European Symposium on Research in Computer Security (pp. 174-191). Hamburg,
Germany: Springer-Verlag.

Crampton, J., & Khambhammettu, H. (2008). Delegation in role-based access control.
International Journal of Information Security, 7(2), 123-130.

Crnkovic, G. D. (2010). Constructive Research and Info-Computational Knowledge
Generation. Model-Based Reasoning in Science and Technology, 359-380.

Davenport, D. (2009). The Social Derivation of Technical Systems. In B. Whitworth, & A. de
Moor (Eds.), Handbook of Research on Socio-Technical Design and Social
Networking Systems (pp. 50-64). Hershey, Pennsylvania, USA: IGI Global.

Deelmann, T., & Loos, P. (2002). Trust Economy: Aspects of Reputation and Trust Building
for SMEs in E-business. 8th Americas Conference on Information Systems, (pp. 2213-

2221). Dallas, Texas, USA.

Dewan, P., & Shen, H. (1998). Flexible meta access-control for collaborative applications.
ACM conference on Computer supported cooperative work, (pp. 247-250). Seatle,
Washington, USA.

Diamond, J. (1999). Guns, Germs and Steel: The Fates of Human Societies. London: Vintage.

Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J., & Moody, K. (2004). Using trust and
risk in role-based access control policies. 9th ACM symposium on Access control
models and technologies (SACMAT), (pp. 156-162). New York, USA.

Edjlali, G., Acharya, A., & Chaudhary, V. (1998). History-Based Access Control for Mobile
Code. 5th ACM conference on Computer and communications security, (pp. 38-48).
San Francisco, California, USA.

232

Edjlali, G., Acharya, A., & Chaudhary, V. (1999). History-Based Access Control for Mobile
Code. Secure Internet Programming, Security Issues for Mobile and Distributed
Objects. Lecture Notes in Computer Science, 413-431.

Elahi, N., Chowdhury, M. M., & Noll, J. (2008). Semantic access control in web based
communities. International Multi-Conference on Computing in the Global
Information Technology (ICCGI) (pp. 131-136). Washington, DC, USA: IEEE.

Encyclopedia of Philosophy, S. (2007). Rights.

Etzioni, A., & Etzioni, O. (1999). Fact-to-face and computer-mediated communities, a

comparative analysis. The Information Society, 15(4), 241-248.

Fan, Y.-W., & Wu, C.-C. (2011). The Role of Social Capital in Knowledge Sharing: A Meta-
Analytic Review. 44th Hawaii International Conference on System Sciences (HICSS),

(pp. 1-10). Hawaii, USA.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, R., & Chandramouli, R. (2001, August).
Proposed NIST Standard for Role-Based Access Control. ACM Transactions on
Information and Systems Security (TISSEC), 4(3), 224-274.

Ferraiolo, D., & Kuhn, R. (1992). Role-Based Access Control. 15th NIST-NSA National
Computer Security Conference, (pp. 554-563). Baltimore, Maryland, USA.

Ferraiolo, D., Gilbert, D., & Lynch, N. (1993). An Examination of Federal and Commercial
Access Control Policy Needs. 16th NIST-NSA National Computer Security
Conference, (pp. 107-116). Baltimore, Maryland, USA.

Ferraiolo, D., Kuhn, D. R., & Chandramouli, R. (2003). Role Based Access Control. Artech

House.

Fishbein, M., & Ajzen, L. (1975). Belief, attitude, intention and behavior: An introduction to
theory and research. Addison-Wesley Publishing Company.

Fong, P. W., Anwar, M., & Zhao, Z. (2009). A Privacy Preservation Model for Facebook-Style
Social Network Systems. 14th European conference on Research in computer security

(pp. 303-320). Saint Malo, France: Springer-Verlag Berlin, Heidelberg.

Freeden, M. (1991). Rights (Concepts in Social Thought). Minnesota, USA: University of

Minnesota Press.

Freudenthal, E., Pesin, T, Port, L., Keenan, E., & Karamcheti, V. (2002). dRBAC: Distributed
role-based access control for dynamic coalition environments. 22nd International

Conference on Distributed Computing Systems, (pp. 411-420). New York, USA.

233

Fung, R., & Lee, M. (1999). EC-trust (trust in electronic commerce): exploring the antecedent
factors. 15th Americas Conference on Information Systems (pp. 517-519). Milwaukee,
Wisconsin, USA: AIS.

Gaaloul, K., Schaad, A., Flegel, U., & Charoy, F. (2008). A secure task delegation model for
workflows. 2nd International Conference on Emerging Security Information, Systems

and Technologies, (pp. 10-15). Cap Esterel, France.

Gasser, M., & McDermott, E. (1990). An Architecture for practical Delegation in a Distributed
System. IEEE Computer Society Symposium on Research in Security and Privacy, (pp.
20-30). Oakland, California, USA.

Gavison, R. (1980). Privacy and the Limits of Law. The Yale Law Journal, 89(3), 421-471.

Gladney, H. M. (1997, April). Access Control for Large Collections. ACM Transactions on
Information Systems, 15(2), 154-194.

Glass, R., Ramesh, V., & Vessey, . (2004). An Analysis of Research in Computing Disciplines.
Sprouts: Working Papers on Information Systems, 47(6), 89-95.

Goguen, J. A., & Linde, C. (1993). Techniques for Requirements Elicitation. Interna tional
Symposium on Requirements Engineering, (pp. 152-164). San Diego, USA.

Golbeck, J. (2009). Trust and nuanced profile similarity in online social networks. ACM
Transactions on the Web (TWEB) Volume 3, Issue 4.

Gollu, K. K., Saroiu, S., & Wolman, A. (2007). A Social Networking-Based Access Control
Scheme for Personal Content. 21st ACM Symposium on Operating Systems Principles
(SOSP). Stevenson, Washington, USA.

Gregoriades, A., Shin, J.-E., & Sutcliffe, A. (2004). Human-centred requirements engineering,.
12th IEEE International Requirements Engineering Conference, (pp. 154-163). Kyoto,

Japan.
Grudin, J. (1990). The Computer Reaches Out: The historical continuity of user interface

design. SIGCHI Conference on Human Factors in Computing Systems, (pp. 261-268).
Seattle, Washington, USA.

Guo, H., & Georganas, N. D. (2002). Digital Image Watermarking for Joint Ownership. 10th
ACM Confaence on Multimedia, (pp. 362-371). Juan les Pins, France.

Hart, M., Johnson, R., & Stent, A. (2007). More Content- Less Control: Access Control in the
Web 2.0. Workshop on Web 2.0 Security and Privacy at the IEEE Symposium on
Security and Privacy. Oakland, California, USA.

234

Heuvel, W. J. (2002). Integrating Modern Business Applications with Objectified Legacy
Systems. PhD Thesis. Center for Economic Research, Tilburg University.

Hippel, E. v. (2005). Democratizing Innovation. Cambridge, USA: The MIT Press.
Iannella, R. (2001). Digital Rights Management (DRM) Architectures. D-Lib Magazine, 7(6).

Ilic, A., Michahelles, F., & Fleisch, E. (2007). The Dual Ownership Model: Using
Organizational Relationships for Access Control in Safety Supply Chains. 21st
International Conference on Advanced Information Networking and Applications

Workshops, (pp. 459-4606). Niagara Falls, Canada.

Indratmo, & Vassileva, J. (2007). A Usability Study of an Access Control System for Group
Blogs. International Conference on Weblogs and Social Media (ICWSM), (pp. 235-
238). Boulder, Colorado, USA.

Jahnke, 1. (2009). Socio-Technical Communities: From Informal to Formal? In B. Whitworth,
& A. de Moore (Eds.), Handbook of Research on Socio-Technical Design and Social
Networking Systems (pp. 763-778). Hershey, Pennsylvania, USA: IGI Global.

Jajodia, S., & Sandhu, R. (1991). Toward a multilevel secure relational data model. ACM
International Conference on Management of Data (SIGMOD), (pp. 50-59). Denver,
Colorado, USA.

Joshi, J., & Bertino, E. (20006). Fine-grained role-based delegation in presence of the hybrid
role hierarchy. 11th ACM symposium on Access control models and technologies
(SACMAT), (pp. 81-90). California, USA.

Kalman, M., Monge, P., Fulk, J., & Heino, R. (2002). Motivations to Resolve Communication
Dilemmas in Database-Mediated Collaboration. Communication Research, 29, 125-

154.

Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The eigentrust algorithm for
reputation management in p2p networks. 12th international conference on World
Wide Web, (pp. 640-651). New York, USA.

Kane, K. M. (2006). Access Control in Decentralized, Distributed Systems. PhD Dissertation.
University of Texas, Austin.

Karp, A., Haury, H., & Davis, M. (2010). From ABAC to ZBAC: the evolution of access
control models. 5th International Conference on Information Warfare and Security,
(pp- 1-21). Ohio, USA.

Kasanen, E., Lukka, K., & Siitonen, A. (1993). The constructive approach in management

accounting research. Journal of Management Accounting Research, 5, 241-264.

235

Kate, S. t. (2009). Trustworthiness within social networking sites: A study on the intersection

of hci and sociology. Amsterdam, Netherlands: University of Amsterdam.

Kerschbaum, F. (2010). An Access Control Model for Mobile Physical Objects. 15th ACM
symposium on Access control models and technologies, (pp. 193-202). New York,
USA.

Kim, D., Song, Y., Braynov, S., & Rao, R. (2001). A B-to-C Trust Model for Online Exchange.
7th Americas Conference on Information Systems, (pp. 784-787). Boston, USA.

Kim, E., & Tadisina, S. (2003). Customers’ Initial Trust in E-Businesses: How to Measure

Customers’ Initial Trust. 9th Americas Conference on Information Systems, (pp. 35-
41). Tampa, Florida, USA.

Kim, Y.-H., Hahn, S.-Y., & Zhang, B.-T. (2000). Text filtering by boosting naive bayes
classifiers. 23rd annual international ACM SIGIR conference on Research and

development in information retrieval, (pp. 168-175). Athens, Greece.

Kirkpatrick, M., & Bertino, E. (2010). Enforcing Spatial Constraints for Mobile RBAC
Systems. Symposium on Access Control Models and Technologies (SACMAT), (pp.
99-108). Pittsburgh, Pennsylvania, USA.

Kling, R., & Lamb, R. (1999). IT and Organizational Change in Digital Economies: A Socio-
Technical Approach. ACM SIGCAS Computers and Society, 29(3), 17-25.

Kling, R., McKim, G., & King, A. (2003). A bit more to it: Scholarly Communication Forums
as Socio-Technical Interaction Networks. Journal of the American Society for
Information Science and Technology, 54(1), 47-67.

Knoke, D. (1986). Associations and interest groups. Annual Review of Sociology, 12, 1-21.

Kooiman, J., Bavinck, M., Chuenpagdee, R., Mahon, R., & Pullin, R. (2008). Interactive
governance and governability: an introduction. The Journal of Transdisciplinary

Environmental Studies, 7(1).

Kraft, D., & Schafer, G. (2004). Distributed access control for consumer operated mobile ad-
hoc networks. IEEE Consumer Communications and Networking Conference, (pp.

35-40). Las Vegas, USA.

Kruk, S. R., Grzonkowski, S., Gzella, A., Woroniecki, T., & Choi, H.-C. (2006). D-FOAF:
Distributed identity management with access rights delegation. Asian Semantic Web
Conference (ASWC) (pp. 140-154). Beijing, China: LNCS, Springer Verlag.

Kuhn, T. (1970). The Structure of Scientific Revolutions. Chicago, USA: Chicago University
Press.

236

Kulkarni, D., & Tripathi, A. (2008). Context-Aware Role-based Access Control in Pervasive
Computing Systems. Symposium on Access Control Models and Technologies
(SACMAT), (pp. 113-122). Estes Park, Colorado, USA.

Kuutti, K. (1996). Activity Theory as a Potential Framework for Human Computer Interaction
Research. In B. A. Nardi (Ed.), Context and Consciousness: Activity Theory and
Human-Computer Interaction (pp. 9-22). Cambridge, Massachusetts, USA: The MIT

Press.

Lamb, R., & Kling, R. (2003). Re-conceptualizing users as social actors in information systems
research. MIS Quarterly, 27(2), 197-235.

Lampson, B. (1972). Protection and access control in operating systems. Operating Systems,
Infotech State of the Art Report, 309-326.

Lampson, B. W. (1969). Dynamic protection structures. American Federation of Information
Processing Societies (AFIPS), (pp. 27-38). New Jersey, USA.

Lee, H., Lee, K., & Chung, M. (2006). Enterprise application framework for constructing
secure RFID application. International Conference on Hybrid Information
Technology, (pp. 480-489). Jeju Island, Korea.

Lessig, L. (1999). Code and other laws of cyberspace. New York, USA: Basic Books.

Li, J., Tang, Y., Mao, C., Lai, H., & Zhu, J. (2009). Role Based Access Control for Social
Network Sites. Joint Conferences on Pervasive Computing (JCPC), (pp. 389-394).

Taipei, Taiwan.

Li, N., & Grosof, B. (2000). A Practically Implementable and Tractable Delegation Logic.
IEEE Symposium on Security and Privacy, (pp. 27-42). Berkeley, California, USA.

Li, N., Feigenbaum, J., & Grosof, B. (1999). A logic-based knowledge representation for
authorization with delegation. 12th international IEEE Computer Security
Foundations Workshop (CSFW), (pp. 162-174). Mordano, Italy.

Li, N., Grosof, B., & Feigenbaum, J. (2003). Delegation Logic: A logic-based approach to
distributed authorization. ACM Transactions of Information and System Security
(TISSEC), 6(1), 128-171.

Linn, J., & Nystrom, M. (1999). Attribute Certification: An Enabling Technology for
Delegation and Role-Based Controls in Distributed Environments. ACM Workshop
on RBAC, (pp. 121-130). Fairfax, Virginia, USA.

Liu, H., Lim, E.-P., Lauw, H. W., Le, M.-T., Sun, A., Srivastava, ., et al. (2008). Predicting
trusts among users of online communities: an epinions case study. 9th ACM

conference on Electronic commerce, (pp. 310-319). Chicago, Illinois, USA.

237

Liu, Q., Safavi-Naini, R., & Pau, N. (2003). Digital Rights Management for Content
Distribution. Australasian information security workshop conference on ACSW
frontiers, (pp. 49-58). Adelaide, Australia.

Liu, Y., Yu, N., & Hao, Z. (2009). Rights Sharing Scheme for Online DRM System Using
Digital Ticket. International Conference on Management and Service Science (MASS),
(pp. 1-6). Hefei, China.

Locke, J. (1963). An essay concerning the true original extent and end of civil government:
Second of "Two Treatises on Government. In J. Somerville, & R. Santoni (Eds.),
Social and Political Philosophy: Readings From Plato to Gandhi (pp. 169-204).

Anchorp.

Lukka, K. (2003). The constructive research approach. In O. Lauri, & O.-P. Hilmola (Eds.),
Case study research in logistics (pp. 83-101).

Majchrzak, A.; Wagner, C., & Yates, D. (20006). Corporate Wiki Users: Results of a Survey.
linternational symposium on Wikis, (pp. 99-104). Odense, Denmark.

Massa, P., & Avesani, P. (2007). Trust-aware recommender systems. ACM conference on
Recommender systems, (pp. 17-24). Minneapolis, Minnesota, USA.

Matsuo, Y., & Yamamoto, H. (2009). Community gravity: measuring bidirectional effects by
trust and rating on online social networks. 18th international conference on World
wide web, (pp. 751-760). Madrid, Spain.

Mattas, A., Mavridis, L, Hioudis, C., & Pagkalos, 1. (2006). Dynamic access control
administration for collaborative applications. 10th WSEAS international conference on

Computers, (pp. 355-360). Athens, Greece.

Maturana, H. R.; & Varela, F. J. (1998). The Tree of Knowledge: the biological roots of human

understanding. Boston: Shambhala Publications.

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995, July). An Integrative Model of
Organizational Trust. The Academy of Management Review, 20(3), 709-734.

Mclnnerney, J. M., & Roberts, T. S. (2004). Online Learning: Social Interaction and the
Creation of a Sense of Community. Educational Technology & Society, 7(3), 73-81.

McKnight, D. H., Choudhury, V., & Kacmar, C. (2000). Trust in E-Commerce Vendors: A
Two-Stage Model. 21st International Conference on Information Systems, (pp. 532-
536). Brisbane, Australia.

Meo, P. D., Nocera, A., Quattrone, G., Rosaci, D., & Ursino, D. (2009). Finding reliable users
and social networks in a social internetworking system. International Database

Engineering & Applications Symposium, (pp. 173-181). Cetraro, Calabria, Italy.

238

Miller, S., Neuman, C., Schiller, J. L, & Saltzer, J. H. (1987). Kerberos Authentication and
Authorization System. Cambridge, Massachusetts, USA: Project Athena Technical
Plan, MIT Project Athena.

Mills, H. D., Dyer, M., & Linger, R. C. (1987). Cleanroom Software Engineering. IEEE
Software, 4(5), 19-25.

Mingers, J. (2001). Combining IS Research Methods: Towards a Pluralist Methodology.
Information Systems Research, 12(3), 240-259.

Moore, A. D. (2003). Privacy: Its Meaning and Value. American Philosophical Quartetly, 40(3),
215-227.

Morchon, O. G., & Wehtle, K. (2010). Modular context-aware access control for medical
sensor networks. 15th ACM symposium on Access control models and technologies

(SACMAT), (pp. 129-138). Pittsburgh, Pennsylvania, USA.

Munawer, Q. (2000). Administrative Models For Role-Based Access Control. PhD
Dissertation. Virginia, USA: George Mason University.

Myers, B. A. (1998, April). A brief history of human-computer interaction technology.
Interactions, 5(2), 44-54.

Na, S., & Cheon, S. (2000). Role delegation in role-based access control. 5th ACM workshop
on Role-based access control, (pp. 39-44). Berlin, Germany.

Oliver, R. L. (1980, November). A Cognitive Model of the Antecedents and Consequences of
Satisfaction Decisions. Journal of Marketing Research, 17(4), 460-469.

Oltsik, J. (2009). The Network Security Architecture (NSA) Meets Web 2.0. USA: The
Enterprise Strategy Group.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking: Bringing
order to the web. Stanford, California, USA: Stanford Infol.ab.

Park, D.-G., & Lee, Y.-R. (2005). A Flexible Role-Based Delegation Model Using
Characteristics of Permissions. 16th international conference on Database and Expert

Systems Applications (pp. 310-323). Springer-Verlag Berlin, Heidelberg.

Park, J. (2003). Usage Control: A Unified Framework For Next Generation Access Control.
PhD Dissertation. Virginia, USA: George Mason University.

Pavlou, P. A., Tan, Y.-H., & Gefen, D. (2003). The Transitional Role of Institutional Trust in
Online Interorganizational Relationships. 36th Annual Hawaii International

Conference on System Sciences (HICSS), (pp. 215-224). Hawaii, USA.

239

Poulsen, K. (2006, October 16). MySpace predator caught by code. Retrieved July 31, 2011,
from Wired:
http://www.wired.com/science/discoveties/news/2006/10/71948?currentPage=all

Preece, J., & Shneiderman, B. (2009). The Reader-to-Leader Framework: Motivating
Technology-Mediated Social Participation. AIS Transactions on Human-Computer
Interaction, 1(1), 13-32.

Pujol, J. M., Sanguesa, R., & Delgado, J. (2002). Extracting Reputation in Multi Agent System
by means of Social Network Topology. International Joint Conference on
Autonomous Agents and Multi-Agent Systems (pp. 467-474). Bologna, Italy: ACM.

Putnam, R. (2000). Bowling alone: The collapse and revival of American community. New
York, USA: Simon and Schustet.

Qian, X., & Lunt, T. (1996). A MAC policy framework for multilevel relational databases.
IEEE Transactions on Knowledge and Data Engineering, 8(1), 3-15.

Rand, A., & Branden, N. (1964). Virtue of Selfishness. New York, USA: Penguin Books.

Ridings, C., & Gefen, D. (2004). Virtual Community Attraction: Why People Hang Out
Online. Journal of Computer-Mediated Communication, 10(1).

Rivest, R. L., Shamir, A.; & Adleman, L. (1978). A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, 21(2), 120-126.

Roloff, M. E. (1981). Interpersonal Communication: The Social Exchange Approach. Beverly
Hills, California, USA: Sage Publications.

Rose, E. A. (2000). Balancing internet marketing needs with consumer concerns: a property
rights framework. ACM SIGCAS Computers and Society, 30(2), 20-24.

Rothaermel, F. T., & Sugiyama, S. (2001). Virtual internet communities and commercial
success: individual and community-level theory grounded in the atypical case of

TimeZone.com. Journal of Management, 27, 297-312.

Rowse, D. (20006, July 2). http://www.problogger.net/archives/2006/02/07 /blog-stalkers-
personal-safety-for-bloggers. Retrieved July 31, 2011, from Problogger:
http://www.problogger.net/archives/2006/02/07 /blog-stalkers-personal-safety-for-
bloggers/

Ruan, C., & Varadharajan, V. (2010). A graph theoretic approach to authorization delegation
and conflict resolution in decentralised systems. Distributed and Parallel Databases,
27(1), 1-29.

240

Samarati, P., & Vimercati, S. D. (2001). Access Control: Policies, Models, and Mechanisms. In
R. Focardi, & R. Gortieri (Eds.), Foundations of Security Analysis and Design (pp.
137-196). Springer-Verlag.

Samarati, P., Bertino, E., & Jajodia, S. (1996, August). An authorization model for a distributed
hypertext system. IEEE Transactions on Knowledge and Data Engineering, 8(4), 555-
562.

Sanders, M., & McCormick, E. J. (1993). Human Factors in Engineering and Design. New
York, USA: McGraw-Hill.

Sandhu, R., & Chen, F. (1998). The multilevel relational (MLR) data model. ACM Transactions
on Information and Systems Security (TISSEC), 1(1), 93-132.

Sandhu, R., & Munawer, Q. (1998a). How to do discretionary access control using roles. ACM
workshop on Role-based access control, (pp. 47-54). New York, USA.

Sandhu, R., & Munawer, Q. (1998b). The RRA97 Model for Role-Based Administration of
Role Hierarchies. 14th Annual Computer Security Applications Conference (ACSAC,
(pp- 39-49). Scottsdale, Arizona, USA.

Sandhu, R., & Munawer, Q. (1999). The ARBAC99 Model for Administration of Roles. 15th
Annual Computer Security Applications Conference (ACSAC), (pp. 229-238). Phoenix,
Arizona, USA.

Sandhu, R., & Samarati, P. (1994). Access Control: Principles and Practice. Communications
Magazine, IEEE, 40 - 48.

Sandhu, R., Bhamidipati, V., & Munawer, Q. (1999, February). The ARBAC97 Model for
Role-Based Administration of Roles. ACM Transactions on Information and Systems
Security (TISSEC), 2(1), 105-135.

Sandhu, R., Coyne, E., Feinstein, H., & Youman, C. (1996, February). Role-based access
control model. IEEE Computer, 29(2), 38-47.

Scacchi, W. (2004). Socio-technical design. In W. S. Bainbridge (Ed.), The Encyclopedia of
Human Computer Interaction. Berkshire Publishing Group.

Sebastiani, F. (2002, March). Machine learning in automated text categorization. ACM
Computing Surveys (CSUR), 34(1), 1-47.

Shamir, A. (1979, November). How to share a secret. Communications of the ACM, 22(11),
612-613.

Shapiro, D. L., Sheppard, B. H., & Cheraskin, L. (1992, October). Business on a Hankshake.
Negotiation Journal, 8(4), 365-377.

241

Simonetti, E. (2004, December 16). I was fired for blogging. Retrieved July 31, 2011, from
CNet: http://news.cnet.com/i-was-fired-for-blogging/2010-1030_3-5490836.html

Simpson, A. (2008). On the need for user-defined fine-grained access control policies for
social networking applications. Workshop on Security in Opportunistic and Social
networks, (pp. 1-8). New York, USA.

Sommerville, I. (2004). Software engineering (7th ed.). Addison-Wesley.

Sproull, L., & Arriaga, M. (2007). Online Communities. In H. Bidgoli (Ed.), Handbook of
Computer Networks: Volume 3, Distributed Networks, Network Planning, Control,
Management, and New Trends and Applications. New Jersey, USA: John Wiley &
Sons, Inc.

Steffen, R., & Knorr, R. (2005). A Trust Based Delegation System for managing Access
Control. Advances in Pervasive Computing: Adjunct Proceedings Pervasive, (pp. 1-5).

Munich, Germany.

Steiner, J. G., Neuman, C., & Schiller, J. I. (1988). Kerberos: An Authentication Service for
Open Network Systems. Usenix Winter Conference, (pp. 191-202). Dallas, Texas,
USA.

Suhaib, S., Mathaikutty, D., Shukla, S., & Berner, D. (2005). XFM: Extreme formal method for
capturing formal specification into abstract models. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 589-609.

Tamassia, R., Yao, D., & Winsborough, W. H. (2004). Role-based casdaded delegation. ACM
Symposium on Access Control Models and Technologies (SACMAT), (pp. 146-155).

New York, USA.

Tapiador, A., Carrera, D., & Salvachua, J. (2011). Tie-RBAC: an application of RBAC to Social
Networks. Web 2.0 Security and Privacy (W2SP). Oakland, California.

Tashakkori, A., & Teddlie, C. (1998). Mixed Methodology: Combining Qualitative and
Quantitative Approaches. Thousand Oaks, California, USA: Sage.

TCSEC. (1985). Trusted Computer Security Evaluation Criteria. USA: Department of

Defense.

Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., & Essiari, A. (1999).
Certificate-based access control for widely distributed resources. 8th conference on
USENIX Security Symposium, (pp. 215-228). Berkeley, USA.

Tran, H., Hitchens, M., Varadharajan, V., & Watters, P. (2005). A trust based access control
framework for p2p file-sharing systems. 38th Annual Hawaii International Conference

on System Sciences (HICSS), (p. 302c). Honolulu, Hawaii, USA.

242

Trist, E. L. (1981). The evolution of socio-technical systems : A conceptual framework and an

action research program.

Trist, E. L., Higgin, G. W., Murray, H., & Pollock, A. B. (1963). Organizational choice:
Capabilities of groups at the coal face under changing technologies. London: Tavistock

Publications.

Vanetti, M., Binaghi, E., Carminati, B., Carullo, M., & Ferrari, E. (2010). Content-based
Filtering in On-line Social Networks. International ECML/PKDD Workshop on
Privacy and Security Issues in Data Mining and Machine Learning (PSDML), (pp. 127-
140). Barcelona, Spain.

Varadharajan, V., Allen, P., & Black, S. (1991). An Analysis of the Proxy Problem in
Distributed systems. IEEE Symposium on Research in Security and Privacy, (pp. 255-
175). Oakland, California, USA.

Wainer, J., & Kumar, A. (2005). A fine-grained, controllable, user-to-user delegation method in
RBAC. 10th ACM symposium on Access control models and technologies

(SACMAT), (pp. 59-66). Stockholm, Sweden.

Welke, R. (1981). DBMS Support for information systems development. Hamilton, Ontario,
Canada.: McMaster University.

Wellman, B., & Gulia, M. (1999). Virtual communities as communities. In M. Smith, & P.
Kollock (Eds.), Communities in Cyberspace (pp. 167-194). New York, USA:
Routledge.

Whitworth, B. (2009). The Social Requirements of Technical Systems. In B. Whitworth, & A.
deMoor (Eds.), Handbook of Research on Socio-Technical Design and Social
Networking Systems (pp. 3-22). Hershey, Pennsylvania, USA: IGI Global.

Whitworth, B. & Ahmad, A. (2012). Socio-Technical System Design. In M. Soegaard, & R. F.
Dam (Eds.), Encyclopedia of Human-Computer Interaction. Aarhus, Denmark: The

Interaction-Design.org Foundation.

Whitworth, B., & deMoor, A. (2002). Legitimate by design: Towards trusted virtual community
environments. 35th Hawaii International Conference on System Sciences, (pp. 2831 -
2842). Hawaii, USA.

Whitworth, B., & deMoor, A. (2003). Legitimate by design: Towards trusted virtual community
environments. Behaviour and Information Technology, 31-51.

Whitworth, B., & Friedman, R. (2009a, August). Reinventing academic publishing online Part
I: Rigor, Relevance and Practice. First Monday, 14(8).

243

Whitworth, B., & Friedman, R. (2009b, September). Reinventing academic publishing online
Part II: A Socio-technical Vision. First Monday, 14(9).

Whitworth, B., deMoor, A., & Liu, T. (2006). Towards a Theory of Online Social Rights.
international conference on On the Move to Meaningful Internet Systems, LNCS 4277

(pp. 247-256). Montpellier, France: Springer-Verlag Berlin Heidelberg.

Wu, M.-Y., Ke, C.-K., & Tzeng, W.-L. (2008). Applying context-aware RBAC to RFID
security management for application in retail business. IEEE Asia-Pacific Services

Computing Conference, (pp. 1208-1212). Yilan, Taiwan.

Wu, Y. (2003). Dynamic Ownership Verification. 4th International Conference on
Information, Communications and Signal Processing, (pp. 985-988). Singapore.

Ye, C., Wu, Z., & Fu, Y. (2005). An Attribute-Based-Delegation-Model and Its Extension. 3rd
International Workshop on Security in Information Systems (WOSIS), (pp. 146-159).
Miami, USA.

Ye, C., Wu, Z., & Fu, Y. (2006). An Attribute-Based Delegation Model and Its Extension.
Journal of Research and Practice in Information Technology, 38(1), 3-17.

Yoon, S.-J. (2002). The antecedents and consequences of trust in online-purchase decisions.
Journal of Interactive Marketing, 16(2), 47-63.

Zhang, L., Ahn, G.-]., & Chu, B.-T. (2001). A Rule-Based Framework for Based Delegation.
ACM Symposium on Access Control Models and Technologies, (pp. 153-162).
Chantilly, Virginia, USA.

Zhang, L., Ahn, G.-]., & Chu, B.-T. (2003, August). A rule-based framework for role-based
delegation and revocation. ACM transactions on information and system security, 6 (3),
404-441.

Zhang, X., & Zhang, Q. (2005). Online trust forming mechanism: approaches and an
integrated model. 7th International conference on Electronic commerce (pp. 201-209).
Xi’an, China: ACM.

Zhang, X., Oh, S., & Sandhu, R. (2003). PBDM: A Flexible Delegation Model in RBAC. 8th
ACM Symposium on Access Control Models and Technologies (SACMAT), (pp. 149-

157). Villa Gallia, Como, Italy.

Zhang, 7., Pei, Q., Ma, J., Yang, L., & Fan, K. (2008). A Fine-Grained Digital Rights Transfer
Policy and Trusted Distribution and Enforcement. International Conference on
Computational Intelligence and Security , (pp. 457-462). Suzhou, China.

244

245

Table 7.1

Appendix A

Below is table 7.1, illustrating use-rights allocation sequences, referred by section 7.1.1

Use-Rights
Allocation Sequence Start State Target End State
Replace

Rep (A) UR(MO}, O, pr) MO UR((A}, O, opr)
Rep — Shr (B) UR({A}, O, opr) A UR({A|B}, O, opr)
Rep — Shr— Mg (C) UR({A|B}, O, opr) A,B"? UR({A&B&C}, O, opr)
Rep — Shr— Mg — Rev (C) UR(A&B&C}, O, opr) C UR({A&B}, O, opr)
Rep — Shr— Rev (B) UR({A|B}, O, opr) B UR({A}, O, opr)
Rep — Shr— Rev — Mig (B) UR({A}, O, opr) A UR({A&B}, O, opr)
Rep — Mg (B) OR(CAY, O, o) A OR({ASB}, O, opr)
Rep — Mrg — Rev (B) UR({AKB}, O, pr) B OR({A}, O, opr)
Rep — Mrg — Rev — Shr (B) UR({A}, O, opr) A UR({A|B}, O, opr)
Rep — Mg — Shr (C) UR({A&B}, O, opr) A,B UR({A&B&CY, O, opr)
Rep — Mg — Shr— Rev (C) UR({A&B&C}, O, opr) C UR({A&B}, O, opr)
Rep — Rev () OR({A}, O, opr) A OR({MO}, O, opr)
Rep — Rev — Shr (A) UR({MO}, O, apr) MO UR({MO | A}, O, opr)
Rep — Rev — Shr— Mg (B) UR({MO |A}, O, opr) MO, A UR({MO&A&B}, O, gpr)

1521f only B is the target actor, then the result would be UR({A | (B&C)}, O, opr).
Y g p

246

Rep — Rev — Mpg (A) UR({MO}, O, opr) MO UR({MO&A}, O, opr)
Rep — Rev — Mg — Shr(B) UR({MO&A}, O, opr) MO, A UR({MO&A&B}, O, gpr)
Share
Shr(A) UR({MO3}, O, opr) MO UR({MO| A}, O, opr)
Shr— Mrg (B) UR({MO| A}, O, opr) MO, A UR({MO&A&B}, O, opr)
Shr— Mg — Rev (B) UR({MO&A&B}, O, opr) B UR({MO&A}, O, opr)
Shr— Mrg— Rev — Rep (B) UR({MO&A}, O, opr) A UR({MO&B}, O, gpr)
Shr— Mg — Rep (C) UR({MO&A&B}, O, opr) B UR({MO&AKC}, O, gpr)
Shr— Mg — Rep — Rev (C) UR({MO&AKC}, O, opr) C UR({MO&A}, O, opr)
Shr— Rev (A) UR({MO A}, O, opr) A UR({MO}, O, opr)
Shr— Rev— Rep (A) UR({MO}, O, opr) MO UR({A}, O, opr)
Shr— Rev — Rep — Mpg (B) UR({A}, O, opr) A UR({A&B}, O, opr)
Shr— Rev — Mpg (A) UR({MO}, O, opr) MO UR({MO&A}, O, opr)
Shr— Rev — Mrg — Rep (B) UR({MO&A}, O, opr) A UR({MO&B}, O, opr)
Shr— Rep (B) UR({MO| A}, O, opr) A UR({MO|B}, O, opr)
Shr— Rep — Mg (C) UR({MO|B}, O, opr) MO,B UR({MO&B&C}, O, opr)
Shr— Rep — Mg — Rev (C) UR({MO&B&C}, O, opr) C UR({MO&B}, O, opr)
Shr— Rep — Rev (B) UR({MO|B}, O, opr) B UR({MO}, O, opr)
Shr— Rep — Rev — Mg (A) UR({MO}, O, opr) MO UR({MO&A}, O, opr)
Merge
Mrg (A) UR({MO}, O, opr) MO UR({MO&A}, O, opr)
Mg — Rev (A) UR(AMO&AS, O, opr) A UR({MO}, O, opr)
Mig — Rev — Rep (A) UR(AMOS, O, opr) MO UR({A}, O, opr)
Mrg — Rev — Rep — Shr (B) UR({A}, O, opr) A UR({A|B}, O, gpr)
Mg — Rev — Shr(A) UR({MO}, O, opr) A UR({MO| A}, O, opr)
Mrg — Rev — Shr— Rep (B) UR({MO|AY, O, opr) A UR({MO|B}, O, opr)
Mz — Rep (B) UR({MO&A}, O, gpr) A UR({MO&B}, O, gpr)
Mg — Rep — Shr(C) UR({MO&B}, O, gpr) MO,B UR({MO&B&C}, O, opr)
Mg — Rep — Shr— Rev (C) UR({MO&B&C}, O, opr) C UR({MO&B}, O, gpr)
Mg — Rep — Rev (B) UR(AMO&B}, O, opr) B UR({MO}, O, opr)
Mpg — Rep — Rev — Shr(A) UR({MO}, O, opr) MO UR({MO|A}, O, opr)
Mpg — Shr (B) UR({MO&A}, O, opr) MO,A UR({MO&A&B}, O, opr)
Mrg — Shr— Rev (B) UR({MO&A&B}, O, opr) B UR({MO&A}, O, opr)
Mg — Shr— Rev — Rep (B) UR({MO&A}, O, opr) A UR({MO&B}, O, gpr)
Mg — Shr— Rep (C) UR({MO&A&B}, O, opr) B UR(IMO&AKC}, O, gpr)
Mg — Shr— Rep — Rev (C) UR({MO&AKC}, O, opr) C UR({MO&A}, O, opr)

Revoke

247

Rev (MO) UR({MO}, O, opr) MO UR({MO}, O, opr)

Rev — Rep (A) UR({MO}, O, opr) MO UR({A}, O, gpr)

Rev — Rep — Shr (B) UR({A}, O, opr) A UR({A|B}, O, opr)

Rev — Rep — Shr— Mg (C) UR({A| B}, O, opr) 1B UR({AKBXC}, O, opr)
Rev — Rep — Mrg (B) UR({A}, 0, opr) A UR({AKB}, O, opr)

Rev — Rep — Mrg — Shr (C) UR({A&B}, O, opr) 1,B UR({A&BXC}, O, opr)
Rev — Shr (A) UR({MO}, O, opr) MO UR({MO| A}, O, opr)
Rev — Shr— Mg (B) UR({MO| A}, O, opr) MO, A UR({MOSAB}, O, opr)
Rev — Shr— Mg — Rep (C) UR({MO&A&B}, 0, opr) B UR({MOSAC}, O, opr)
Rev— Shr— Rep (B) OR((MO| A}, O, opr) A OR({MO B}, O, opr)

Rev — Shr— Rep — Mg (C) UR({MO| B}, O, opr) MO,B UR({MOSB&CY, O, opr)
Rev — Mrg () UR((MO}, O, opr) MO UR({MORA}, O, pr)
Rev — Mg — Rep (B) UR({MO&A}, O, opr) A UR({MO&B}, O, opr)
Rev — Mg — Rep — Shr (C) UR({MO&B}, O, opr) MO,B UR({MO&B&C}, O, apr)
Rev — Mg — Shr (B) UR({MO&A}, O, opr) MO, A UR({MO&A&B}, O, opr)
Rev — Mg — Shr— Rep (C) UR({MOSASB}, 0, opr) B UR({MOAKCY, O, opr)

Table 7.3

Table 7.1: Possible permutations for use-rights models

Below is table 7.3, illustrating meta-rights allocation sequences, referred by section 7.1.2.

Meta-Rights
Allocation Sequence Start State Target End State
Replace

Rep (A) MR({MOY}, O, pr) MO MR({A}, O, opr)
Rep— Shr (B) MR(LA}, O, opr) Z MR({AB}, O,)

Rep — Shr— Mg (C) MR({A|B}, O, opr) A,B MR{AKB&CY}, O, opr)
Rep — Shr— Mg — Rev (C) MRA{A&B&CY, O, opr) C MR({A&B}, O, opr)
Rep — Shr— Rev (B) MR({A|B}, O, opr) B MR({A}, O, opr)

Rep — Shr— Rev — Mg (B) MR({A}, O, opr) A MR{A&B}, O, opr)
Rep — Mg (B) MR({A}, 0, opr) A MR({AB}, O, opr)
Rep — Mrg — Rev (B) MR{AKB}, O, opr) B MR({A}, O, opr)

Rep — Mrg — Rev — Shr (B) MR({A}, O, opr) A MR({A| B}, O, opr)
Rep — Mg — Shr (C) MR({A&KB}, O, opr) A,B MR{A&B&C}, O, opr)
Rep — Mrg — Shr— Rey(C) MR{A&B&C}, O, opr) C MR{AKB}, O, opr)
Rep — Rev (A) MR({A}, O, opr) A MR({A}, O, opr)

Rep — Rev — Shr (B) MR({A}, O, opr) A MR({A|B}, O, opr)

248

Rep — Rev — Shr— Mg (C) MR({A|B}, O, opr) A,B MR({A&B&C}, O, opr)
Rep — Rev — Mg (B) MR({A}, O, opr) A MR({A&B}, O, opr)
Rep — Rev — Mrg — Shr (C) MR({A&B}, O, opr) A,B MR({A&B&C}, O, opr)
Share
Shr(A) MR(EMO}, O, opr) MO MR({MO| A}, O, opr)
Shr— Mrg (B) MR(EMO | A}, O, apr) MO,A MR({MO&A&B}, O, opr)
Shr— Mg — Rev (B) MR({MO&A&B}, O, opr) B MR({MO&A}, O, opr)
Shr— Mrg — Rev — Rep (B) MR({MO&A}, O, opr) A MR({MO&B}, O, opr)
Shr— Mg — Rep (C) MR({MO&A&B}, O, opr) B MR({MO&A&C}, O, opr)
Shr— Mg — Rep — Rev (C) MR({MO&A&CY, O, opr) C MR({MO&A}, O, opr)
Shr— Rev (A) MR({MO| A}, O, opr) A MR({MO}, O, opr)
Shr— Rev — Rep (A) MR({MO}, O, opr) MO MR({A}, O, opr)
Shr— Rev — Rep — Mg (B) MR({A}, O, opr) A MR({A&B}, O, opr)
Shr— Rev — Mg (A) MR({MO}, O, opr) MO MR({MO&A}, O, opr)
Shr— Rev — Mg — Rep(A) MR({MO&A}, O, opr) A MR({MO&B}, O, opr)
Shr— Rep (B) MR({MO | A}, O, opr) A MR({MO| B}, O, opr)
Shr— Rep — Mg (C) MR({MO| B}, O, opr) MO,B MR({MO&B&C}, O, opr)
Shr— Rep — Mg — Rev (C) MR({MO&B&C}, O, opr) C MR({MO&B}, O, opr)
Shr— Rep — Rev (B) MR({MO | B}, O, opr) B MR({MO}, O, opr)
Shr— Rep — Rev — Mg (A) MR({MO}, O, opr) MO MR({MO&»A}, O, opr)
Merge
Mrg (A) MR({MO}, O, opr) MO MR({MO&A}, O, opr)
Mg — Rev (A) MR({MO&A}, O, opr) A MR({MO}, O, opr)
Mg — Rev — Rep (A) MR({MO}, O, opr) MO MR({A}, O, opr)
Mrg — Rev — Rep — Shr(B) MR({A}, O, apr) A MR({A|B}, O, opr)
Mrg — Rev — Shr(A) MR({MO}, O, apr) MO MR({MO | A}, O, apr)
Mg — Rev — Shr— Rep (B) MR({MO | A}, O, apr) A MR({MO| B}, O, apr)
Mg — Rep (B) MR({MO&A}, O, opr) A MR({MO&B}, O, opr)
Mg — Rep — Shr (C) MR({MO&B}, O, opr) MO,B MR({MO&B&C}, O, opr)
Mg — Rep — Shr— Rev (C) MR({MO&B&C}, O, opr) C MR({MO&B}, O, opr)
Mg — Rep — Rev (B) MR({MO&B}, O, opr) B MR({MO}, O, opr)
Mg — Rep — Rev — Shr(A) MR({MO}, O, opr) MO MR({MO | A}, O, opr)
Mrg — Shr (B) MR({MO&A}, O, opr) MO, A MR({MO&A&B}, O, opr)
Mg — Shr— Rev (B) MR({MO&A&B}, O, opr) B MR({MO&A}, O, opr)
Mg — Shr— Rev — Rep (B) MR({MO&A}, O, opr) A MR({MO&B}, O, opr)
Mg — Shr— Rep (C) MR({MO&A&B}, O, opr) B MR({MO&A&C}, O, opr)
Mg — Shr— Rep — Rev (C) MR({MO&A&C}, O, opr) C MR({MO&A}, O, opr)

249

Revoke

Rev (MO) MR({MO}, O, opr) MO MR({MO}, O, opr)

Rev — Rep () MR({MO}, O, opr) MO MR({AY, O, opr)

Rev — Rep — Shr (B) MR({A}, O, opr) i MR({A| B}, O, opr)

Rev — Rep — Shr— Mg (C) | MR({A| B}, O, opr) B MR({AKBCY, O, opr)
Rev — Rep — Mrg (B) MR({A}, O, opr) A MR({AB}, O, opr)

Rev — Rep — Mrg — Shr(C) | MR({AB}, O, opr) 1,B MR({MO&A&B}, O, opr)
Rev — Shr (A) MR({MO}, 0, opr) MO MR({MO|[A}, O, apr)
Rev — Shr— Mg (B) MR({MO | A}, O, opr) MO, A MR({MO&AKB}, O, apr)
Rev — Shr— Mg — Rep (C) | MR({MOAB}, O, opr) B MR{MO&AKC), O, opr)
Rev — Shr— Rep (B) MR({MO A}, 0, opr) ! MR({MO|B}, 0, opr)

Rev — Shr— Rep — Mg (C) | MR({MO|B}, O, opr) MO,B MR({MO&B&C}, O, opr)
Rev — Mg (A) MR({MO}, O, opr) MO MR({MO&A}, 0, opr)
Rev — Mg — Rep (B) MR({MO&A}, 0, opr) A MR({MO&B}, 0, opr)

Rev — Mg — Rep — Shr(C) | MR({MO&B}, O, opr) MO,B MR({MO&B&C}, O, opr)
Rev — Mg — Shr (B) MR({MO&A}, 0, opr) MO, A MR({MO&AKB}, O, opr)
Rev — Mg — Shr— Rep (C) | MR({MOAB}, O, opr) B MR({MO&AKC}, O, opr)

Table 7.3: Table depicting all possible cases for meta-rights models

250

