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ABSTRACT

The operation and performance of anaerobic digesters treating thermomechanical
pulping wastewater was investigated. The aim of this work was to develop a
reactor design that could successfully treat the wastewater with minimal

pretreatment.

Six reactors were trialed, all modifications of the upflow anaerobic sludge
blanket [UASB] reactor design. Seed sludge source, start-up regime and
suspended solids retention were varied to determine effective operation
methodology. A screw press effluent from Pan Pacific Forestry Industries Ltd
thermomechanical pulp [TMP] mill at Whirinaki, North Island, New Zealand
was used as feed for all of the reactors. Seed sludge was obtained in granular
form from UASB reactors treating dairy industry wastewaters and in non-
granular form from the aerated lagoons of the New Zealands central North Island
pulp mills. Operation of all six experimental reactors was difficult due to many
feed blockages caused by the relatively high suspended solids concentration in
the feed. Inhibition was frequently observed after feed interruptions with slow
recovery of performance, possibly due to the lack of a co-metabolite soon after
the feed supply ceased. Many modifications to the reactor inlet and feed system

greatly reduced blockage problems.

In the later reactors a low suspended solids retention allowed granulation to be
achieved from a non-granular forestry industry sludge. With the final reactor
configuration total COD removals of 50-60% and dissolved COD removals of
70-85% were achieved at organic loading rates up to 40 kgCOD.m™>.d". A 20
to 50 % conversion of feed suspended solids to methane was calculated on a

COD basis.

Granulation was achieved without a gas-solids-separator. This was attributed to
the need for severe selection against poorly settling wood suspended solids, and

the presence and precipitation of iron. The granules were approximately 37%
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iron on a dry weight basis and had densities averaging 2000 kg.m>. Scanning
electron microscope work indicated that extensive precipitates, presumed to be
iron based complexes, were responsible for the structural integrity of the granule.
An abundant layer of bacteria of predominantly Methanothrix morphotypes was
found beneath the surface of the granules. The granules have been demonstrated

to provide some protection from inhibition, probably by diffusional gradients.

After five years exposure to TMP wastewater a dissolved extract of feed resin
acids exerted an inhibitory effect on granules at similar concentrations to that
reported for dehydroabietic acid with unacclimated granules. Thus no
acclimation to soluble resin acids was evident. Changes in the distribution of
resin acids suggested that some degree of resin acid dissolution occurs within the
reactors but degradation of the total concentration of resin acids is poor,

averaging 10 % reduction as total acids.

Overall, the final reactor design has proved to be an effective treatment of TMP
wastewater. Suspended solids removal rates are not high but equally the
suspended solids do not threaten the viability of the reactor system. Changes in
the nature of the suspended solids passing throlugh the reactor are such that
subsequent suspended solids removal will be more efficient and have a lower
loading rate than for the untreated wastewater. The reactor has demonstrated a
high degree of ability to accept large variations in feed rate and strength and still

functon efficiently.

The work has produced the basis for a successful primary reactor design for the
treatment of a problem wastewater and the necessary information on which a
pilot scale plant could be designed for high suspended solids wastewaters. A

possible method for the cultivation of granules in difficult wastewaters has been

identified.
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