Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GRAPPLING WITH COMPLEXITY: FINDING THE CORE PROBLEMS BEHIND AIRCRAFT ACCIDENTS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Aviation

at Massey University, Palmerston North, New Zealand

Dmitri Victorovitch Zotov

2006

Abstract

The purpose of accident investigation is the discovery of causal factors, so that they may be remedied, in order to avert the recurrence of accidents (ICAO, 1994). However, experience has shown that the present intuitive methods of analysis do not always achieve this aim. Investigation failure may come about because of failure to discover causal factors, or to devise effective remedies, or to persuade those in a position to act of the need to do so.

Each of these types of failure can be made less likely by the use of formal analytical methods which can show whether information gathering has been incomplete, and point to the sources of additional information that may be needed. A formal analysis can be examined by formal logical tests. Also, the use of formal change mechanisms can not only devise changes likely to be effective, but can present these changes in such a way that the case for them is compelling.

Formal methods currently available are concerned with *what* happened, and *why* it happened. To produce generic remedies which might avert future accidents of similar type, some formal change mechanism is needed. The Theory of Constraints has become widely adopted in business as a way of replacing undesirable effects with desired outcomes. The Theory of Constraints has not previously been used for safety investigation, and a principal object of this thesis is to see whether it can usefully be employed in this area.

It is demonstrated that the use of formal methodology can bring to light factors which were overlooked during an official accident investigation, and can 'tell the story' in a more coherent manner than is possible with present methods. The recommendations derived from the formal analysis are shown to be generic in nature, rather than particular to the airline involved and the accident studied, and so could have a wider effect in improving safety.

Acknowledgements

The author was greatly encouraged in his studies of formal methodology for the analysis of accidents by Ludi Benner, formerly head of the Hazardous Materials Bureau of the United States National Transportation Safety Board, and by Professor Peter Ladkin, of the University of Bielefeld. Alan Wright, of Massey University, taught the author the use of the Theory of Constraints, and assisted in the development of this methodology to adapt it to accident investigation.

The author's colleagues at the Australian Civil Aviation Safety Authority, Michael Nendick and Melanie Todd, proofread the entire document, and made numerous suggestions relating to style and content. Finally, the authors' gratitude goes to his Supervisor, Dr. Lynn Hunt of Massey University, for her advice and encouragement throughout the study.

Table of Contents

Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
Chapter 1: Introduction	1
Chapter 2: Review of the Literature	17
Chapter 3: Research Methods	108
Chapter 4: Case Study – The Ansett Dash 8 Accident	121
Chapter 5: Analysing the Dash 8 Accident with a MES Graph	125
Chapter 6: Analysing the Dash 8 Accident with a WB Graph	175
Chapter 7: Analysing the Dash 8 Accident with the Theory	
of Constraints	198
Chapter 8: Comparison of Methodologies	301
Chapter 9: Discussion	328
References	341

Annex B: The Official Report

Annex C: Author's Qualifications as Accident Investigator

List of Tables

Table 1. General Failure Types	31
Table 2. Ansett CRT: Injections and Reservations	264
Table 3. CAA CRT: Injections and Reservations	282

List of Figures

Figure 1. The Skyferry accident	3
Figure 1A. The Skyferry accident: Years before	4
Figure 1B. The Skyferry accident: Months before	5
Figure 1C. The Skyferry accident: Hours and Days before	6
Figure 1D. The Skyferry accident: Immediately before	7
Figure 2. Jet air transport departures and hull-loss accidents	12
Figure 3. Perceptions of the accident phenomenon	22
Figure 4. Helmreich's Spheres of Influence	27
Figure 5. The structure of an organisational accident	29
Figure 6. Complex interactions in the aviation industry	33
Figure 7a. Flight path diagram: first part	37
Figure 7b. Flight path diagram: second part	38
Figure 8. Events and causal factors analysis	48
Figure 9. Events and causal factors charting	50
Figure 10. Deriving root causes	51
Figure 11. Event link analysis network	53
Figure 12. Fault tree analysis	54
Figure 13. Fishbone diagram	64

Figure 14. MES matrix	67
Figure 15. MES network	68
Figure 16. Current Reality Tree	98
Figure 17. Conflict resolution diagram	99
Figure 18. Future Reality Tree	100
Figure 19. Prerequisite tree	101
Figure 20. Transition tree	102
Figure 21. TOC thinking process	104
Figure 22. Impact diagram	123
Figure 23. Events from the history of the flight	127
Figure 24. Ground proximity warning	129
Figure 25. Undercarriage malfunction	131
Figure 26. Palmerston North approach plate	133
Figure 27. Alternate undercarriage selection	135
Figure 28. Alternate undercarriage selection (modified)	136
Figure 29. Initial approach to Palmerston North	138
Figure 30. MES Graph from initial approach to impact	139
Figure 31. Impact sequence events	142
Figure 32. Impact sequence MES Graph	143
Figure 33. Fire sequence	146
Figure 34. Events in Medical Information	149

Figure 35. Injury MES Graph	151
Figure 36. Impact and fire MES Graph	156
Figure 37. MES Graph of impact sequence	156
Figure 38. Witness mark on undercarriage door	158
Figure 39. Crush lines: view from front	159
Figure 40. Crush lines: view from top rear	160
Figure 41. Port nacelle damage	161
Figure 42. Rear fuselage damage	162
Figure 43. Starboard wing damage	164
Figure 44. Starboard tailplane damage	165
Figure 45. Empennage damage	166
Figure 46. Impact sequence (revised)	170
Figure 47. WB Graph: first step	177
Figure 48. WB Graph: second step	179
Figure 49. WB Graph: elaboration of Figure 48	180
Figure 50. WB Graph further development of Figure 48	183
Figure 51. Attachment to Figure 50	185
Figure 52. Second attachment to Figure 50	186
Figure 53. Third attachment to Figure 50	187
Figure 54. Precursor events	189
Figure 55. Engineering considerations	190

Figure 56. Complete WB Graph	194
Figure 57. Ansett undesirable effects	201
Figure 58. Connections from undercarriage latch design	203
Figure 59. Financial stress and emergency training	205
Figure 60. Lack of continuation training	208
Figure 61. Maintenance aspects	209
Figure 62. Absence of a Safety Manager	213
Figure 63. Shortness of GPWS warning	215
Figure 64. Conflict between financial and safety concerns	217
Figure 65Ansett Current Reality Tree	219
Figure 66. Undesirable effects at the Civil Aviation Authority	225
Figure 67. Knowledge of crew training	227
Figure 68. Knowledge of recurring events	229
Figure 69. Knowledge of risk management	231
Figure 70. Combination of Figures 67, 68 & 69	232
Figure 71. Audit policy	234
Figure 72. Safe performance and cost	235
Figure 73. Civil Aviation Authority performance	236
Figure 74. Lack of financial information	239
Figure 75. Civil Aviation Authority: Current Reality Tree	241
Figure 76. Crew training	247

Figure 77. FRT: training, Sector 1	240
Figure 78. Forming the CRD	254
Figure 79. CRD: Safety Manager position	255
Figure 80. Assumptions in the Safety Manager CRD	256
Figure 81. FRT: Safety Manager functions	259
Figure 82. FRT: Safety management system, Sector 2	261
Figure 83. FRT: Maintenance, Sector 3	263
Figure 84. FRT: Pressures, Sector 4	265
Figure 85. FRT: Distractions, Sector 5	266
Figure 86. FRT: Ground Proximity Warning System	268
Figure 87. Ansett FRT	269
Figure 88. Positive reinforcing loop	271
Figure 89. Core conflict: CAA CRT	275
Figure 90. Conflict resolution diagram: CAA CRT	276
Figure 91. Funding is not a constraint on safety oversight	279
Figure 92. Oversight: surveillance, audits and safety management	281
Figure 93. Non-viability triggers greater depth of oversight	283
Figure 94. CAA is aware of deficiencies in airline operations	285
Figure 95. CAA FRT	287
Figure 96. Negative branch: perception of CAA performance	288