Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE EFFECT OF HEAT ON THE STRUCTURE AND AGGREGATION BEHAVIOUR OF BOVINE β -Lactoglobulins A, B and C.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University.

> Gavin Andrew Manderson B.Sc.(Hons)

> > 1998

Errata.

1) The citation Elofsson et al. (1996b) should read Elofsson (1996b).

2) The errors shown for the ΔG_{app} values in Chapters 5 and 7 were calculated incorrectly and are smaller than the true errors.

Abstract.

The bovine milk protein β -lactoglobulin (BLG) possesses a thiol group which becomes solvent exposed at elevated temperatures, leading to the formation of disulphide-linked milk protein aggregates. This phenomenon is of interest to the dairy industry because milk is heat-treated in many modern processes. This study is concerned with how the structure of BLG is altered during and as a consequence of heat treatment and how aggregates are formed. Bovine BLG exhibits genetic polymorphism and the A, B and C variants, present in New Zealand milks, differ in their susceptibilities to heat-induced structural change and aggregate formation, and their response to heat treatment is examined in the present study.

This study used the following techniques: near and far UV CD, intrinsic protein fluorescence, hydrophobic probe fluorescence, thiol group solvent-exposure and both native-PAGE and SDS-PAGE.

Spectroscopic and thiol exposure results suggest that the tertiary structure of BLG is altered during and as a consequence of heat treatment and that the amount of β -sheet in this protein does not alter appreciably as a consequence of heat treatment. PAGE results indicate that BLG forms a mixture of non-covalently-linked and disulphide-linked aggregates during heating, and that disulphide-linked dimers in particular are associated into larger non-covalently-linked aggregates. These non-covalently-linked aggregates are intermediates and large disulphide-linked aggregates are the end product of the BLG aggregation pathway. β -Lactoglobulin A forms aggregates, particularly large disulphide-linked aggregates, more slowly than BLGs B and C. Spectroscopic and thiol availability results suggest that the "intrinsic thermostability" of BLG C is appreciably greater than that of BLG B, which is slightly greater than that of BLG A. Furthermore, the extent of "irreversible structural change" in molecules of BLG C which occurs as a consequence of heat treatment is less than that in molecules of BLG A, which is less than that in molecules of BLG B. In the case of BLGs A and B this reflects the slower rate at which aggregates of BLG A form compared to that of BLG B. The present study has advanced the understanding of the BLG aggregation mechanism and how the A, B and C variants differ in their response to heat treatment.

ACKNOWLEDGEMENTS

Firstly, I thank my supervisors for their advice and assistance throughout the course of this project:

- Associate Professor Michael Hardman, Institute of Molecular Biosciences, Massey University. Thank you especially for the invaluable assistance in the areas of computer fitting and reaction kinetics, and during the write-up period.
- Dr. Lawrence Creamer, Food Science Section, New Zealand Dairy Research Institute (NZDRI). Your advice in designing experiments and expertise in the areas of CD, fluorimetry, thiol group reactivity and aggregation are gratefully acknowledged.
- Professor Edward Baker, School of Biological Sciences, Auckland University. Thank you in particular for the invaluable comments regarding the crystal structures of BLGs A, B and C.

I also thank the members of the Food Science Section (NZDRI) for their friendship during the course of this project. In particular, I wish to thank:

- Mr. Richard Burr for helping me set up and run the FPLC system.
- Mrs Christina Coker for "showing me the ropes" during my first few weeks at NZDRI.
- Dr. Alistair MacGibbon for the helpful discussions in the area of thiol group reactivity.
- Miss Helen Brittan for the diagram of the amino acid sequence of BLG.

I thank the staff of Site Operations at NZDRI, Mr. John Bond, Mr. Steve Beros and Mr. Andrew Mansfield in particular, and also Mr. Scott Valentine for maintaining the spectropolarimeter, fluorimeter and spectrophotometer during the course of this project.

I also thank the following people at Massey University:

- Associate Professor Geoffrey Jameson and Mr. Bin Qin, Institute of Fundamental Sciences for the coordinates of the BLG A, B and C crystal structures and for the invaluable comments regarding thermodynamics and BLG structure.
- Associate Professor Paul Buckley, Institute of Fundamental Sciences for allowing me to use the computer in his office.
- Associate Professor Gavin Hedwig, Institute of Fundamental Sciences for the useful comments regarding thermodynamics.
- Dr. Simon Brown, Institute of Fundamental Sciences for the invaluable assistance with "Enzfitter" data files.
- Mr. Ross Davies, Institute of Technology and Engineering for the use of the high resolution colour printer.

I also thank Dr. Lindsay Sawyer, Department of Biochemistry, University of Edinburgh - for the coordinates of the crystal structure of BLG A/B.

The research in this thesis was funded by the Foundation for Research, Science and Technology (Contract number DRI 403). I sincerely thank this organisation for the financial support.

I would like to record my gratitude to the senior management of NZDRI for access to the excellent scientific facilities and to Dr. Jeremy Hill, Section Manager, Food Science Section, NZDRI, for the opportunity to conduct research at NZDRI.

Finally, a big thank you to my family for all your encouragement, support and friendship.

TABLE OF CONTENTS.

Abstract	iii
Acknowledgements	v
Contents	vii
List of Figures	xiii
List of Tables	xxi
List of Abbreviations	xxv

Chapter 1:

-			
Introduction	· · <i>· · ·</i> · · · · · · · · · · · · · ·	 	 1

Chapter 2.

Rev	iew of	Literature	3		
2.1	β-Lao	ctoglobulin	3		
2.2	The Pi	rimary Structure of Bovine β-Lactoglobulin	4		
2.3	Geneti	ic Variants of Bovine β-Lactoglobulin	6		
2.4	The T	hree-dimensional Structure of Bovine β-Lactoglobulin	8		
	2.4.1	Environments of Aromatic Side Chains	24		
	2.4.2	Cysteine Residues	25		
	2.4.3	Dimer Interface	35		
	2.4.4	Genetic Variants			
	2.4.5	Ligand Binding Site	49		
	2.4.6	Lipocalin Family and Lipocalycin Superfamily	49		
2.5	The D	The Dissociation of Bovine β -Lactoglobulin Dimers and			
	Confo	rmational Transitions	50		
	2.5.1	Dimer Dissociation			
	2.5.2	Conformational Transitions	51		
2.6	Structu	ural Change in Molecules of Bovine β-Lactoglobulin	53		
	2.6.1	The Reversible Unfolding of β -Lactoglobulin	54		
	2.6.2	Irreversible Structural Change in Molecules			
		of β-Lactoglobulin			
	2.6.3	Structural Change in Molecules of β -Lactoglobulin			
		at High pH	62		

	2.6.4	Effect of pH and β -Lactoglobulin Concentration		
		on Thermostability	63	
2.7	The A	ggregation and Gelation of Bovine β-Lactoglobulin	64	
	2.7.1	Models for the Heat-induced Aggregation		
		of β -Lactoglobulin	64	
	2.7.2	The β-Lactoglobulin Aggregation Model of		
		McSwiney et al. (1994b) and the Formation of		
		Non-covalently-linked Aggregates During Heat Treatment	67	
	2.7.3	The Relationship Between Heat-induced Structural		
		Change in β -Lactoglobulin Molecules and the		
		Commencement of Aggregation	70	
	2.7.4	Complexity of the β -Lactoglobulin Aggregation Mechanism	70	
2.8	Compa	arison of the Susceptibilities of Bovine β -Lactoglobulins		
	A, B a	nd C to Heat-induced Structural Change	71	
	2.8.1	Rates and Extents of Heat-induced Structural Change		
		in Molecules of β-Lactoglobulins A and B	71	
	2.8.2	Comparison of the Nature of Aggregates Formed by		
		β -Lactoglobulins A and B	72	
2.9	Resear	Research Objectives		
	2.9.1	Summary of the Literature Review	74	
	2.9.2	Objectives of Research	. 75	
	2.9.3	Research Plan	75	
	2.9.4	Selection of Experimental Techniques	76	

Chapter 3.

Gen	eral M	ethods	77
3.1	Materia	als and Equipment	.77
	3.1.1	Materials	. 77
	3.1.2	Equipment	.78
3.2	Genera	ll Methods	. 83
	3.2.1	Alkaline Native Polyacrylamide Gel Electrophoresis	.83
	3.2.2	Sodium Dodecyl Sulphate Polyacrylamide Gel	
		Electrophoresis	. 85
	3.2.3	Buffer Solutions	. 87
	3.2.4	Circular Dichroism Spectroscopy	. 88
	3.2.5	Fluorimetry	. 90

Prej	paratio	n of β-Lactoglobulin	93
4.1	Introd	uction	93
4.2	Metho	ds	98
	4.2.1	Preparation of β -Lactoglobulin from Whole Milk	
	4.2.2	Spectroscopic Analysis of Purified β-Lactoglobulin	
		Samples	103
4.3	Result	s	
	4.3.1	Preparation of β -Lactoglobulin	107
	4.3.2	Spectroscopy	121
4.4	Discu	ission	142

Chapter 5.

Extents of Heat-induced Irreversible Structural Change in			
β - L	actoglo	obulin Molecules	145
5.1	Overv	iew of Data Collection Protocols	145
	5.1.1	CD and Fluorescence Measurements	145
	5.1.2	Confirmation of CD and Fluorescence Results	146
	5.1.3	Thiol Availability	146
	5.1.4	Confirmation of Thiol Availability Results	146
	5.1.5	Polyacrylamide Gel Electrophoresis	147
5.2	Metho	ds	148
	5.2.1	CD and Fluorimetry	148
	5.2.2	Confirmation of CD and Fluorescence Results	151
	5.2.3	Thiol Availability	152
	5.2.4	Confirmation of Thiol Availability Results	154
	5.2.5	Polyacrylamide Gel Electrophoresis	154
	5.2.6	Time-dependent Changes in Concentrations of	
		Aggregate Species During Heat Treatment	156
	5.2.7	Two-dimensional Polyacrylamide Gel Electrophoresis	157
	5.2.8	Fitting of Experimental Data to 2-state Thermal	
		Unfolding Models	159
5.3	Result	s and Discussion	161
	5.3.1	Near UV CD	161
	5.3.2	Far UV CD	183
	5.3.3	Intrinsic Protein Fluorescence	201

5.3.4	ANS Fluorescence	223
5.3.5	Thiol Availability	245
5.3.6	Comparison of T_{mid} Values Determined using $\Delta \epsilon_{293}$,	
	$[\theta]_{205}, I_{Trp}, I_{ANS}$ and Thiol Availability Data	257
5.3.7	Confirmatory Studies: CD and Fluorimetry	259
5.3.8	Confirmatory Studies: Thiol Availability	
5.3.9	Aggregation of β -Lactoglobulins	
5.3.10	Correlation of Spectroscopic and PAGE Results	

Chapter 6.

3

Tim	e-deper	ndent Changes in the Structures of	
β -L	actoglo	bulins at Elevated Temperatures	333
6.1	Introd	luction	
6.2	Metho	ds	
	6.2.1	Preparation of Protein	
	6.2.2	Exposure of the Thiol Group of β -Lactoglobulin to	
		Solvent at Elevated Temperatures	
	6.2.3	Time-dependent Changes in $\Delta \epsilon_{293}$ at	
		Elevated Temperatures	337
	6.2.4	Time-dependent Increases in Tryptophan Emission	
		Intensity at Elevated Temperatures	337
6.3	Result	s and Discussion	339
	6.3.1	Exposure of the Thiol Group of β -Lactoglobulin to	
		Solvent at Elevated Temperatures	339
	6.3.2	Time-dependent Changes in $\Delta \epsilon_{293}$ at Elevated	
		Temperatures	359
	6.3.3	Time-dependent Increases in Tryptophan Emission	
		Intensity at Elevated Temperatures	
	6.3.4	Summary: Measurement of Time-dependent Changes	
		in β -Lactoglobulin Structure at Elevated Temperatures	

Chapter 7.

Exte	ents of Structural Change in β -Lactoglobulin Molecules at	
Elev	ated Temperatures	.369
7.1	Introduction	369
7.2	Methods	369
	7.2.1 Preparation of Protein	369

	7.2.2	Near UV CD Spectroscopy	
	7.2.3	Tryptophan Fluorescence	
7.3	Result	s and Discussion	
	7.3.1	Near UV CD Spectroscopy	
	7.3.2	Tryptophan Fluorescence	
Cha	pter 8.		
Disc	cussior	1	
8.1	Bovine	e β-Lactoglobulin Aggregation Models Post 1994	
	8.1.1	Cairoli et al. (1994), Iametti et al. (1995)	
		and Iametti et al. (1996)	
	8.1.2	Qi et al. (1995) and Qi et al. (1997)	393
	8.1.3	Elofsson et al. (1996a) and Elofsson et al. (1996b)	
	8.1.4	Roefs and de Kruif (1994)	
	8.1.5	Gezimati et al. (1997)	
	8.1.6	Conclusion	
8.2	Summ	ary of Experimental Results	
8.3	Heat-in	nduced Structural Change in Molecules of Bovine	
	β-Lact	oglobulin and the Heat-induced Aggregation of	
	Bovine	eβ-Lactoglobulin	
	8.3.1	Nature of the Heat-induced Structural Changes in	
		β-Lactoglobulin Molecules	
	8.3.2	Time-dependent Changes in β -Lactoglobulin Structure	
		During Heat Treatment	
	8.3.3	Evidence for Non-native Disulphide Bond Formation	
		from Spectroscopic Results	
	8.3.4	Aggregation	
	8.3.5	Proposed Model for the Heat-induced Aggregation of	
		Bovine β-Lactoglobulin	
8.4	The Ef	fect of pH on the Structure, Thermostability and	
	Aggreg	gation Behaviour of β-Lactoglobulin	417
	8.4.1	Thermostability at pH 6.7 and pH 7.4	
	8.4.2	The Structures of β -Lactoglobulin Molecules at Room	
		Temperature at pH 6.7 and pH 7.4	
	8.4.3	Maximum Extents of Heat-induced Irreversible	
		Structural Change in β -Lactoglobulin Molecules at	
		pH 6.7 and pH 7.4	

	8.4.4	Aggregates of β -Lactoglobulin Formed as a Consequence
		of Heat Treatment at pH 6.7 and pH 7.442
8.5	The Ef	fect of Variant Type on the Thermostability and
	Aggre	gation Behaviour of β-Lactoglobulins424
	8.5.1	Aggregates of β -Lactoglobulins A, B and C424
	8.5.2	The Thermostabilities of β -Lactoglobulins A, B and C427
8.6	Foldin	ng Pathways of β-Lactoglobulin439
	8.6.1	Folding Intermediates of Bovine β-Lactoglobulin
	8.6.2	Equilibrium Unfolding Intermediates of Bovine
		β-Lactoglobulin
	8.6.3	Equilibrium Unfolding Intermediates of Other
		Lipocalycins
	8.6.4	Formation of α -Helices by β -Lactoglobulin
	8.6.5	The Structure of Bovine β -Lactoglobulin at Elevated
		Temperatures and at Room Temperature After Heat
		Treatment
	8.6.6	The Structure of Bovine β -Lactoglobulin in
		Concentrated Solutions of Chaotropes and at Low pH441
	8.6.7	The Role of α -Helix on the Folding Pathway of Bovine
		β-Lactoglobulin
	8.6.8	The Folding Pathways of Other All-β Proteins
Cha	pter 9.	
Con	nclusio	ons
9.1	Aggreg	gation Mechanism
9.2	Effect	of pH on the Susceptibility to Heat-induced Structural
	Change	e and the Aggregation Behaviour of β -Lactoglobulin
9.3	Effect	of Variant Type on the Aggregation Behaviour of
	β-Lact	oglobulin
9.4	Effect	of Variant Type on the Susceptibility of β -Lactoglobulin
	to Heat	t-induced Structural Change445
Bibl	iograp	hy447
Appe	endix 1.	Temperature Control
-770		
Appe	endix 2.	Thiol Availability
A	1	Commuter Fitting of Spectrum is Data
Арре	enaix 5.	Computer r uting of spectroscopic Data

LIST OF FIGURES.

Chapter 2.

2.2.1	The primary structure of bovine BLGs A, B and C5
2.4.1	Cartoon representation of the structure of BLG A/B of
	Brownlow et al. (1997): β -strands and selected
	side chains11, 13, 15
2.4.2	Cartoon representation of the structure of BLG A/B of
	Brownlow et al. (1997): different structural elements17
2.4.3	Cartoon representation of the structure of BLG A/B of
	Brownlow et al. (1997): relative flexibilities
2.4.4	Cartoon representation of the structure of a dimer of
	BLG A/B (Brownlow et al., 1997)21
2.4.5	Topology expression of the hydrogen bonds in
	BLG A at pH 7.1
2.4.6	The environment of Trp ¹⁹ in the structure of BLG A/B of
	Brownlow <i>et al.</i> (1997)
2.4.7	The environment of Trp ⁶¹ in the structure of BLG A at
	pH 6.2 of Qin <i>et al.</i> (1998)
2.4.8	The environments of Cys ¹²¹ and the disulphide bond
	Cys ¹⁰⁶ -Cys ¹¹⁹ in the structure of BLG A/B
	(Brownlow <i>et al.</i> , 1997)
2.4.9	The environment of the disulphide bond Cys ⁶⁶ -Cys ¹⁶⁰ in
	the structure of BLG A at pH 6.2 of Qin et al. (1998)33
2.4.10	The environment of residue ⁶⁴ in the structures of BLG of
	Bewley et al. (1998)
2.4.11	The environment of residue ¹¹⁸ in the structures of BLG of
	Bewley et al. (1998)41, 43
2.4.12	The environment of residue ⁵⁹ in the structures of BLG of
	Bewley et al. (1998)45, 47
2.7.1	The model for the heat-induced aggregation of bovine
	BLG of McKenzie (1971)65
2.7.2	The model for the heat-induced aggregation of bovine
	BLG A of Griffin et al. (1993)66
2.7.3	The use of SDS reduced-PAGE, SDS non-reduced-PAGE
	and alkaline native-PAGE to follow temperature-dependent
	changes in the concentration of monomeric BLG and different
	classes of BLG aggregate species

2.7.4	The model for the heat-induced aggregation of bovine BLG of	
	McSwiney <i>et al.</i> (1994b)6	i9

Chapter 4.

4.2.1	Schematic representation of the freeze-thaw-siphon
	protocol used to concentrate whey proteins
4.3.1.1	Alkaline native-PAGE electropherograms of the bovine
	milk protein fractions obtained when BLGs A, B and C
	were prepared using Method I109
4.3.1.2	Alkaline native-PAGE electropherograms of the bovine
	milk protein fractions obtained when BLG B was prepared
	using Method III113
4.3.1.3	Specimen alkaline native-PAGE electropherogram of eluate
	fractions obtained when crude preparations of BLG B were
	further purified by size-exclusion chromatography115
4.3.1.4	Alkaline native-PAGE electropherograms of the bovine
	milk protein fractions obtained when BLGs A and B
	were prepared using Method II119
4.3.1.5	Ion-exchange HPLC chromatograms of samples
	of BLGs A, B and C prepared using Method I123
4.3.2.1	Standardised near UV CD spectra of BLGs A, B and C
	prepared using different methods
4.3.2.2	Difference near UV CD spectra129
4.3.2.3	Standardised far UV CD spectra of BLGs A, B and C
	prepared using different methods
4.3.2.4	Difference far UV CD spectra
4.3.2.5	Fluorescence emission spectra of BLG B in the absence
	and in the presence of 0.5 and 1.0 equivalents of ANS per
	BLG monomer, and that of NATA139
4.3.2.6	Plots of ANS emission intensity at λ_{max} versus mole
	ratio ANS:monomeric BLG141

Chapter 5.

5.2.1	Sample loading pattern for SDS gels	155
5.2.2	Schematic representation of a 2D gel	158
5.3.1.1	The near UV CD spectra of pH 6.7 phosphate buffer and	
	unheated BLGs A, B and C in pH 6.7 phosphate buffer	165
5.3.1.2	The near UV CD spectra of unheated BLGs A, B and C	
	at pH 6.7 and pH 7.4 and that of BLG A at pH 8.1	167
5.3.1.3	The near UV CD spectra of unheated BLG B at pH 6.7	
	and BLG B previously heat-treated at this pH at different	
	temperatures	169
5.3.1.4	The near UV CD spectra of BLG B previously heat-treated	
	at pH 6.7 and pH 7.4	173
5.3.1.5	Effect of heat treatment on $\Delta \epsilon_{293}$ in the near UV CD spectra	
	of BLGs A, B and C at pH 6.7 and pH 7.4 and BLG A	
	at pH 8.1	175
5.3.1.6	Effect of heat treatment on $\Delta \epsilon_{270}$ in the near UV CD	
	spectra of BLGs A, B and C at pH 6.7 and pH 7.4	181
5.3.2.1	The far UV CD spectra characteristic of the various types of	
	secondary structures	183
5.3.2.2	The far UV CD spectra of water and unheated BLGs A, B	
	and C at pH 6.7 and pH 7.4 and BLG A at pH 8.1	187
5.3.2.3	The far UV CD spectra of unheated BLG B at pH 6.7	
	and BLG B previously heat-treated at this pH at	
	different temperatures	189
5.3.2.4	Effect of heat treatment on $[\theta]_{216}$ and $[\theta]_{205}$ in the	
	far UV CD spectra of BLGs A, Band C at pH 6.7 and	
	pH 7.4 and BLG A at pH 8.119	4, 195
5.3.3.1	The tryptophan fluorescence emission spectra of	
	unheated and previously heat-treated BLGs A, B and C	
	at pH 6.7	205
5.3.3.2	The tryptophan fluorescence emission spectra of unheated	
	and heat-treated BLGs A, B and C at pH 7.4 and BLG A	
	at pH 8.1	207

- -

5.3.3.3	Effect of heat treatment of solutions of BLGs A, B
	and C at pH 6.7 and pH 7.4 and BLG A at pH 8.1 on
	tryptophan fluorescence emission λ_{max}
5.3.3.4	Effect of heat treatment of solutions of BLGs A, B
	and C at pH 6.7 and pH 7.4 and BLG A at pH 8.1 on
	tryptophan fluorescence emission intensity
5.3.3.5	The fluorescence emission spectra of unheated and
	heat-treated BLGs A, B and C at pH 6.7 obtained using
	an excitation wavelength of 275 nm
5.3.4.1	Titration with ANS of unheated and previously
	heat-treated BLG B at pH 6.7
5.3.4.2	The fluorescence emission spectra of ANS bound to
	unheated and previously heat-treated BLGs A, B
	and C at pH 6.7
5.3.4.3	The fluorescence emission spectra of ANS bound to
	unheated and previously heat-treated BLGs A, B
	and C at pH 7.4 and BLG A at pH 8.1
5.3.4.4	The fluorescence emission spectra of ANS bound to
	unheated BLGs A, B and C at pH 6.7 and pH 7.4231
5.3.4.5	Effect of heat treatment of solutions of BLGs A, B
	and C at pH 6.7 and pH 7.4 and BLG A at pH 8.1
	on the λ_{max} of emission from bound ANS
5.3.4.6	Effect of heat treatment of solutions of BLGs A, B
	and C at pH 6.7 and pH 7.4 and BLG A at pH 8.1
	on emission intensity from bound ANS 236, 237
5251	The reaction of DTNP with protein thick groups 245
5.2.5.2	Effect of heat treatment of solutions of PL Co A. P.
5.5.5.2	end C at pH 6.7 and pH 7.4 on the availability of the
	thick group for reaction with DTNP
	unor group for reaction with DTNB249
5.3.7.1	Use of plots of IANS versus heat treatment temperature
	to select heating temperatures for BLG B at pH 6.7 for
	use in confirmatory studies
5.3.7.2	Confirmatory measurements at pH 6.7, set 1: Effect of
	heat treatment of solutions of BLGs A, B and C on
	$\Delta \epsilon_{293}$, [θ] ₂₀₅ , I _{Trp} and I _{ANS}

	٠	٠
YV	1	1
ΛV		

5.3.7.3	Confirmatory measurements at pH 6.7, set 2: Effect of heat treatment of solutions of BLGs A, B and C on
	$\Delta \epsilon_{293}, [\theta]_{205}, I_{\text{Trp}} \text{ and } I_{\text{ANS}}$ 264, 265
5.3.7.4	Confirmatory measurements at pH 7.4: Effect of
	heat treatment of solutions of BLGs A, B and C on
	$\Delta \epsilon_{293}$, [θ] ₂₀₅ , I _{Trp} and I _{ANS}
5.3.8.1	Thiol availability confirmatory measurements: Effect of
	heat treatment of solutions of BLGs A, B and C at pH 6.7
	and pH 7.4 on the availability of the thiol group for reaction
	with DTNB
5.3.9.1	SDS-PAGE electropherograms of samples of
	BLGs A, B and C heat-treated at pH 6.7 at
	various temperatures
5.3.9.2	Dependence of M_r on electrophoretic mobility on
	2-ME-free SDS gels for the series of disulphide-reduced
	proteins shown in gel 7 in Fig. 5.3.9.1
5.3.9.3	SDS-PAGE electropherograms of samples of
	BLGs A, B and C heat-treated at pH 7.4 at
	various temperatures
5.3.9.4	Alkaline native-PAGE electropherograms of samples of
	BLGs A, B and C heat-treated at pH 6.7 at
	various temperatures
5.3.9.5	Alkaline native-PAGE electropherograms of samples of
	BLGs A, B and C heat-treated at pH 7.4 at
	various temperatures
5.3.9.6	2D- (alkaline native-, then disulphide-intact SDS-) PAGE
	electropherograms of heat-treated samples of
	BLGs A, B and C at pH 6.7 and pH 7.4
5.3.9.7	Effect of heat treatment temperature on the intensity
	of the monomeric BLG band on polyacrylamide
	gels for BLGs A, B and C at pH 6.7 and pH 7.4
5.3.9.8	Effect of heat treatment temperature on the intensity
	of the dimeric and "unfolded" monomeric BLG bands
	on alkaline native gels for BLGs A, B and C at pH 6.7
	and pH 7.4

5.3.9.9	Disulphide-intact SDS-PAGE electropherograms of
	samples of BLGs A, B and C previously heat-treated
	for various times at 80 °C at pH 6.7
5.3.9.10	Disulphide-intact SDS-PAGE electropherograms of
	samples of BLGs A, B and C previously heat-treated
	for various times at 74 °C at pH 7.4
5.3.9.11	Alkaline native-PAGE electropherograms of samples of
	BLGs A, B and C previously heat-treated for various
	times at 80 °C at pH 6.7
5.3.9.12	Alkaline native-PAGE electropherograms of samples of
	BLGs A, B and C previously heat-treated for various
	times at 74 °C at pH 7.4
5.3.9.13	Effect of heat treatment time on the intensity of the
	monomeric BLG band for BLGs A, B and C on
	disulphide-intact and alkaline native gels
5.3.9.14	Effect of heat treatment time on the intensity of the
	dimeric and "unfolded" monomeric BLG bands on
	alkaline native gels for BLGs A, B and C at pH 6.7
	and pH 7.4
5.3.10.1	Plots of normalised $\Delta \epsilon_{293}$ versus normalised alkaline
	native-PAGE monomer band intensity, and versus
	normalised disulphide-intact SDS-PAGE monomer band
	intensity for BLGs A, B and C at pH 6.7 and pH 7.4319
5.3.10.2	Plots of normalised $[\theta]_{205}$ versus normalised alkaline
	native-PAGE monomer band intensity, and versus
	normalised disulphide-intact SDS-PAGE monomer band
	intensity for BLGs A, B and C at pH 6.7 and pH 7.4321
5.3.10.3	Plots of normalised I_{Trp} versus normalised alkaline
	native-PAGE monomer band intensity, and versus
	normalised disulphide-intact SDS-PAGE monomer band
	intensity for BLGs A, B and C at pH 6.7 and pH 7.4
5.3.10.4	Plots of normalised IANS versus normalised alkaline
	native-PAGE monomer band intensity, and versus
	normalised disulphide-intact SDS-PAGE monomer band
	intensity for BLGs A. B and C at pH 6.7 and pH 7.4

5.3.10.5	Plots of normalised A ₄₁₂ versus normalised alkaline	
	native-PAGE monomer band intensity, and versus	
	normalised disulphide-intact SDS-PAGE monomer band	
	intensity for BLGs A, B and C at pH 6.7 and pH 7.432	27

Chapter 6.

6.3.1.1	Reaction of reduced glutathione with DTNB at 60 °C	
	at pH 6.7	
6.3.1.2	Reaction of DTNB with the thiol group of BLGs A, B	
	and C at pH 6.7 and pH 7.4 at 20 °C	
6.3.1.3	Reaction of DTNB with the thiol group of BLGs A, B	
	and C at pH 6.7 at 60 °C and at pH 7.4 at 50 °C	
6.3.1.4	Reaction of DTNB with the thiol group of BLG A	
	at pH 7.4 at 50 °C and at pH 7.4 at 60 °C	
6.3.1.5	Reaction of DTNB with the thiol group of BLG A	
	at pH 6.7 at 60 °C after heat treatment at this temperature	
	for various times	
6.3.1.6	Reaction of DTNB with the thiol group of unheated	
	BLG A at pH 7.4 and BLG A previously heat-treated	
	at this pH at 85 °C for 12.5 min	
6.3.1.7	Reaction of ODNB with the thiol group of BLG A	
	at pH 6.7 at 60 °C	353
6.3.1.8	Reaction of ODNB with reduced glutathione at 60 °C	
	at pH 6.7	
6.3.1.9	Reaction of ODNB with the thiol group of BLGs A, B	
	and C at pH 6.7 at 60 °C and at pH 7.4 at 50 °C	
6.3.2.1	Time-dependent decreases in the intensity of $\Delta \epsilon_{293}$	
	in solutions of BLGs A, B and C at pH 6.7 and pH 7.4	
	after rapid temperature increase to 80 °C	
6.3.2.2	Time-dependent increases in the intensity of I_{Trp}	
	in solutions of BLGs A, B and C at pH 6.7 and pH 7.4	
	after rapid temperature increase to 80 °C	

Chapter 7.

7.3.1.1	The effect of temperature increase on the near UV CD	
	spectrum of BLG B at pH 6.7	373
7.3.1.2	The effect of temperature increase on the near UV CD	
	spectrum of BLG B at pH 7.4	375
7.3.1.3	Effect of temperature increase on $\Delta \varepsilon_{293}$ in the spectra	
	of BLGs A, B and C at pH 6.7 and pH 7.4	379
7.3.2.1	The effect of temperature increase on the tryptophan	
	fluorescence emission spectrum of BLG B at pH 6.7	383
7.3.2.2	Effect of temperature increase on I_{Trp} for BLGs A, B	
	and C at pH 6.7 and pH 7.4	385
7.3.2.3	The effect of temperature increase on the fluorescence	
	emission intensity from NATA solution in pH 6.7	
	phosphate buffer	387
7.3.2.4	Plot of I_{Trp} versus temperature prepared using I_{Trp}	
	data corrected for the linear decrease in I_{Trp} with	
	increasing temperature below 50 °C and above 84 °C	387

Chapter 8.

8.1.1	The model for the heat-induced aggregation of	
	BLG of Iametti et al. (1996)	.393
8.1.2	The model for the heat-induced aggregation of	
	BLG of Qi et al. (1997)	.394
8.1.3	The model for the heat-induced aggregation of	
·	BLG of Roefs and de Kruif (1994)	.396
8.1.4	The model for the heat-induced aggregation of	
	BLG of Gezimati et al. (1997)	.397
8.3.5.1	Proposed model for the heat-induced aggregation of	
	bovine BLG	.413

LIST OF TABLES.

.

Chapter 2.

2.3.1	Sequence differences of the twelve known genetic
	variants of bovine BLG6
2.3.2	Dependence of the relative concentration of BLG in
	milk on BLG phenotype7
2.8.1	Summary of experimental conditions used in studies in
	which the thermostabilities of BLGs A, B and C were compared73

Chapter 3.

3.2.5.1	Excitation and emission wavelength calibration of the
	MPF-2A fluorimeter using six commercially prepared standards91

Chapter 4.

4.1.1	The protocols used to prepare BLG	.97
4.2.1	Solution volumes and NaCl masses required for a typical	
	preparation of BLG B	101

Chapter 5.

5.2.1	Selection of BLG heat treatment temperatures for use
	in confirmatory studies151
5.3.1.1	Values for the midpoint temperature (T_{mid}) and
	slope at T _{mid} for heat-induced irreversible structural
	change in the vicinity of Trp ¹⁹ for BLGs A, and C
	at pH 6.7 and pH 7.4 and BLG A at pH 8.1177
5.3.1.2	Values for ΔG_{app} at 72 °C at pH 6.7 and at 66 °C at
	pH 7.4 for irreversible structural change in the vicinity
	of Trp ¹⁹ in BLGs A, B and C179
5.3.2.1	Values for the midpoint temperature (T _{mid}) and
	slope at T _{mid} for the heat-induced irreversible increase
	in the proportion of random structure in molecules of
	BLGs A, B and C at pH 6.7 and pH 7.4 and BLG A
	at pH 8.1196

Ż

5.3.2.2	Values for ΔG_{app} at 72 °C at pH 6.7 and at 66 °C at
	pH 7.4 for the irreversible increase in the proportion of
	random structure in BLGs A, B and C
5.3.3.1	Values for the midpoint temperature (Tmid) and
	slope at T _{mid} for heat-induced irreversible structural change
	in the vicinities of Trp ¹⁹ and Trp ⁶¹ in BLGs A, B and C
	at pH 6.7 and pH 7.4 and BLG A at pH 8.1215
5.3.3.2	Values for ΔG_{app} at 75 °C at pH 6.7 and at 67 °C at
	pH 7.4 for irreversible structural change in the vicinities
	of Trp ¹⁹ and Trp ⁶¹ in BLGs A, B and C217
5.3.4.1	Values for the midpoint temperature (T _{mid}) and
	slope at T _{mid} for the heat-induced irreversible structural
	change which leads to an increase in the emission intensity
	from bound ANS for BLGs A, B and C at pH 6.7 and
	pH 7.4 and BLG A at pH 8.1
5.3.4.2	Values for ΔG_{app} at 72 °C at pH 6.7 and at 66 °C at
	pH 7.4 for the irreversible structural change which leads
	to an increase in the emission intensity from bound ANS
	for BLGs A, B and C240
5.3.5.1	Fitted values for the parameters $A_{412}(low)$ and $A_{412}(high)$
	and the derived values %Ex(low) and %Ex(high) for BLGs
	A, B and C at pH 6.7 and pH 7.4251
5.3.5.2	Values for the midpoint temperature (T_{mid}) and
	slope at T _{mid} for the heat-induced irreversible structural
	change in BLGs A, B and C at pH 6.7 and pH 7.4
	which leads to solvent-exposure of the thiol group254
5.3.5.3	Values for ΔG_{app} at 72 °C at pH 6.7 and at 66 °C at
	pH 7.4 for irreversible thiol group exposure in BLGs
	A, B and C255
5.3.6.1	Comparison of T _{mid} values determined using
	$\Delta \epsilon_{293}$, $[\theta]_{205}$, I_{Trp} , I_{ANS} and thiol availability data
5.3.7.1	Heat treatment temperatures for BLG samples used
	in confirmatory studies
5.3.8.1	The mean A ₄₁₂ values and standard errors obtained
	in confirmatory thiol availability measurements
5.3.10.1	Correlation of normalised $\Delta \epsilon_{293}$ data with normalised
	alkaline native-PAGE and normalised disulphide-intact
	SDS-PAGE monomer band intensity data

5.3.10.2	Correlation of normalised $[\theta]_{205}$ data with normalised	
	alkaline native-PAGE and normalised disulphide-intact	
	SDS-PAGE monomer band intensity data	
5.3.10.3	Correlation of normalised I_{Trp} data with normalised	
	alkaline native-PAGE and normalised disulphide-intact	
	SDS-PAGE monomer band intensity data	
5.3.10.4	Correlation of normalised I_{ANS} data with normalised	
	alkaline native-PAGE and normalised disulphide-intact	
	SDS-PAGE monomer band intensity data	
5.3.10.5	Correlation of normalised A_{412} data with normalised	
	alkaline native-PAGE and normalised disulphide-intact	
	SDS-PAGE monomer band intensity data	

Chapter 6.

6.3.1.1	Kinetic parameters for the exposure of thiol groups	
	in solutions of BLG A at pH 6.7 at 60 °C and at	
	50 °C at pH 7.4	344
6.3.1.2	Kinetic parameters for the exposure of thiol groups	
	in solutions of BLG A at pH 6.7 at 60 °C, at pH 7.4 at	
	60 °C and at pH 7.4 at 50 °C	347
6.3.1.3	Kinetic parameters for the exposure of thiol groups	
	in solutions of BLG A previously heat-treated for various	
	times at 60 °C	350
6.3.1.4	Kinetic parameters for the exposure of thiol groups	
	at pH 7.4 at 50 °C in solutions of unheated and	
	heat-treated BLG A	352
6.3.2.1	Kinetic parameters for time-dependent changes in	
	$\Delta\epsilon_{293}$ at 80 °C in solutions of BLGs A, B and C	362

Chapter 7.

7.3.1.1	Values for the midpoint temperature (T_{midET}) for	
	heat-induced structural change in the vicinity of Trp ¹⁹	
	in BLGs A, B and C at pH 6.7 and pH 7.4	
7.3.1.2	Values for ΔG_{app} at 67 °C at pH 6.7 and at 59 °C at	
	pH 7.4 for structural change in the vicinity of Trp ¹⁹ in	
	BLGs A, B and C	

7.3.2.1	Values for the midpoint temperature (T_{midET}) for
	heat-induced structural change in the vicinities of
	Trp^{19} and Trp^{61} in BLGs A, B and C at pH 6.7 and pH 7.4
7.3.2.2	Values for ΔG_{app} at 67 °C at pH 6.7 and at 59 °C at
	pH 7.4 for structural change in the vicinities of
	Trp^{19} and Trp^{61} in BLGs A, B and C

Chapter 8.

8.4.1.1	Comparison of midpoint temperatures (T _{midET})	
	determined using $\Delta \epsilon_{293}$ and I_{Trp} data collected at	
	elevated temperatures	.418
8.4.1.2	Comparison of midpoint temperatures (T _{mid})	
	determined using $\Delta \varepsilon_{293}$, $[\theta]_{205}$, I_{Trp} , I_{ANS} and	
	thiol availability data collected from pre-heated BLG solutions	.418
8.5.2.1	Rate constants for heat-induced structural change	
	in molecules of BLGs A, B and C	.428
8.5.2.2	Differences between ΔG_{app} values for BLGs	
	A, B and C at temperatures close to T _{midET}	428
8.5.2.3	Differences between ΔG_{app} values for BLGs	
	A, B and C at temperatures close to T _{mid}	429

LIST OF ABBREVIATIONS.

ANS -	l-anilinonaphthalene-8-sulphonate
BLG -	β-lactoglobulin
BLG A/B -	a 1:1 mixture of BLGs A and B
BSA -	bovine serum albumin
CSA -	(+)-10-camphorsulphonic acid
DEAE -	diethylaminoethyl cellulose
DLS -	dynamic light scattering
DSC -	differential scanning calorimetry
DTNB -	5,5'-dithio-bis(2-nitrobenzoic acid)
ΔC_p -	change in heat capacity
$\Delta \mathrm{H}^{\circ}$ -	change in enthalpy
far UV CD -	far ultra-violet circular dichroism
FPLC -	fast protein liquid chromatography
Gdn-HCl -	guanidine hydrochloride
HPLC -	high performance liquid chromatography
I _{ANS} -	ANS fluorescence emission intensity
I _{Trp} -	tryptophan fluorescence emission intensity
К -	equilibrium constant
NATA -	N-acetyltryptophanamide
near UV CD -	near ultra-violet circular dichroism
NEM -	N-ethylmaleimide
NMR -	nuclear magnetic resonance
ODNB -	5-(octyldithio)-2-nitrobenzoic acid
PAGE -	polyacrylamide gel electrophoresis
PCS -	photon correlation spectroscopy
PMT -	photomultiplier tube
Q -	fluorescence quantum yield
RET -	radiationless (or resonance) energy transfer
S -	Svedberg unit (measure of sedimentation velocity)
SDS -	sodium dodecyl sulphate
SDS-PAGE -	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SMUF -	simulated milk ultrafiltrate
TCA -	trichloroacetic acid
TEMED -	N,N,N',N'-tetramethylethylenediamine
T _m -	midpoint temperature
T _{max} -	denaturation temperature (DSC)
TNB -	thionitrobenzoate
3D -	three dimensional

.