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Abstract 

This thesis investigates the modelling of the New Zealand hydro-thermal elec
tricity generation system in order to determine an optimal strategy for gen

eration, in terms of minimizing fuel costs. The model currently used by ECNZ 
(Electricity Corporation of New Zealand) uses an SDP (Stochastic Dynamic Pro
gramming) method for solution; this allows little detail of the physical system, and 
models two explicit hydro reservoirs. The model developed in this thesis is flexi

ble, in order to allow the balance between ensuring stochastically stable solutions 
and the detail of the physical system, to be altered, whilst ensuring computational 
t ractibility. The areas of the system which are important to be modelled accurately 
are isolated, as are those which may lead to computational intractibility if they are 
modelled in too much detail . The flexibility in the model also allows the effects of 
t he approximations used on solutions to be explored in a wider framework .  

The time horizon of the model i s  one t o  two years , with time steps of the order 
of a week . The time horizon describes the level to which many aspects of the system 
are to be modelled. Transmission is modelled explicitly so as to include information 
on t he geographical locations of power stations and power users; this takes the 

form of a network structure underlying the model. The load at each geographic 
location is represented by a Load Duration Curve (which is more robust ,  in terms of 
forecasting, than a direct representation of load with respect to time) . Hydro river 
chains are modelled as single power stations with a single reservoir and connect 
t he model temporally; we model six explicit hydro river chains. Thermal stations 
are modelled individually, and the generation from run-of-river and geothermal 
stations is removed from load before solution begins . 

The initial approach considers a model which, upon further investigation, IS 

unacceptable. However ,  examination of the issues highlighted by this approach 
provide insight into the system. The resultant re-modelling of the problem leads 
to a linear model which does not explicitly model the uncertainty in the generating 
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capacity of stations due to forced outages. This accentuates the reason why the 

usual approach to explicitly modelling the uncertainty of supply (within a week) 
cannot be used in the case where the geographic distribution of generation has 
been explicitly modelled. The deterministic model may then be formulated as a 
Generalized Network with side constraints. 

The deterministic model developed can be extended stochastically in many 

ways . The stochastic extension investigated uses Rockafellar and \Nets' Progres
sive Hedging Algorithm. This takes a scenario approach , in which the stochastic 
variables are approximated by a number of scenarios of observed values. A policy 
is  required which minimizes the expected cost of generation over these scenarios, 
ensuring that information on the observed values of the stochastic variables is not 
used before it would be available in practice. 

Results and implementation issues are discussed for both the deterministic and 
stochastic models. Consideration is given to the implementation of a finished prod

uct , as well as implementation for the purposes of investigating the feasibility and 
examining the computational effectiveness of approximations made in the model . 
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Addendum 

Page 25, line 1 1; '·optimallity" should read "optimality". 

Page 1 09 ,  §6.2, sentences t\vo and three should become: 
"The general stochastic program can be written a.s a multi-stage st.ochastic program 

with recourse. The two-stage stochastic program \vith recourse can be \nitten as follows: 

subject to: 

f-.1in ft(x)+�[.f2(a:,�)] 
� 

A:r = b 

( 6 . 0a.) 

where x is the decision Yaria.ble representing a decision that must be implemented prior 
to the realization of the random variable [ , fi(.r) represents the cost of decision a�, and 
f2(x,0 (where (is a single observation of [ ) is defined as: 

h(;r,�) = l\Iin g( y) 

subject to: ( G.Ob) 

l.Vy = �- Tx, 

y'2 0 

where this involves the determination of the optimal recourse variable y gi,·en the initail 
decision x. Extension to the multi-stage case indoves defining (6.0b) in a similar manner 
to (6.0a) . In our case the recourse variables are the releases of the subsequent weeks." 

Page 1 13, paragraph 3; should be appended with the sentence: 
"vVhile there are many other stochastic techniques which could be considered, since 

the focus here· is to sho•v that it is feasible to extend the deterministic model developed 
to a full stochastic model and we cannot cover every method here, the following are a 
selecti'on of approaches which have been used in the pa.st to model such a. system." 

Page 1 15, §6.5, line 2; " ... as it offers the greatest flexibility in the extenl .... ·· should read 
" ... as it appears to offer the greatest flexibility, of any of the many possible stochastic 
approaches which could be used, in the extent ... " 
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