Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FACTORS INFLUENCING THE TRANSFORMATION AND FATE OF SULPHUR AND NITROGEN IN GRAZED HILL COUNTRY PASTURES

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

KARUPPAN SAKADEVAN 1991

N

Massey University Library **Thesis Copyright Form**

Title of thesis: FACTORS INFLUENCING THE TRANSFORMATION MAD FATE of SULPHUR AND NATRIGEN AN GARAZED HILL LOUNTRY

- (1) (a) I give permission for my thesis to be made available to Pastures. readers in Massey University Library under conditions determined by the Librarian.
 - (b) I do not wish my thesis to be made available to readers without my written consent for ... months.
- (2) (a) I agree that my thesis, or a copy, may be sent toanother institution under conditions determined by the Librarian.
 - (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for .4. months.
- (3) (a) I agree that my thesis may be copied for Library use.
 - (b) I do not wish my thesis to be copied for Library use for .4. months.

Signed Thomas

Date

14-6-1991

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE 14-6-1951

K. SAKADEVAN JEPT. OF SOIL SLIENCE 15 MASSEY UNIVERSITY PALMERSTON NORTH

ABSTRACT

The increasing cost of agricultural grade sulphur and the high leaching losses of sulphate sulphur(S) from superphosphate fertilized pastures in New Zealand create a need to develop more efficient S fertilization techniques. The objective of the present study was to identify the main origins of the sulphate being leached from superphosphate fertilized hill country pastures with soils (Typic Dystrachrepts) developed from underlying sedimentary parent materials.

Origins of leached sulphate were categorized as S leached directly from fertilizer, from zones enriched in animal excreta and from the mineralization of soil organic matter. Mineralization studies, both in laboratory and in field were conducted to establish the extent of and the relationship between sulphur and nitrogen mineralization and the fate of mineralized nutrients in pasture soils that contrasted in their superphosphate fertilizer history.

In the preliminary laboratory study in which an open incubation technique was used to measure potential net mineralization, top soils (0-7.5cm) taken from sites that had received higher rates of superphosphate in the past, mineralized more soil organic sulphur and nitrogen than soils taken from sites that had received smaller amounts of superphosphate in the past. In addition top soils collected from low slope (0-12°) sites where a greater proportion of animal excreta is returned, mineralized more S and N than the soils from medium slope (13-25°) sites. The ratio of N to S mineralized was narrower (2.0 to 3.6) than the N to S ratio of the whole soil (7.1 to 8.9) suggesting that in these soils relatively more S remains in a mineral form in the soil and is more susceptible to leaching than N which is conserved in the soil.

Cylindrical, mini-lysimeters with ion exchange resin traps for collecting solutes from drainage water were developed to measure the net mineralization of soil organic S and N under field conditions. Leaching losses of S and N, pasture uptake of S and N and changes in mineral S and N pools in the soil at the same site were measured simultaneously and the rate of mineralization calculated. A laboratory evaluation of the lysimeter showed that the resin trap was capable of removing all the sulphate from

drainage water at several different flow rates. The main advantage of these lysimeters over the conventional methods of measuring the leaching losses of anions and cations in the field is that regular drainage collection was not necessary. By introducing mixtures of both anion and cation exchange resins in the trap in the lysimeter it was possible to monitor the amount of anions and cations in field drainage over long periods of time before it was necessary to change the resin mixtures.

In the initial field lysimeter study the net mineralization and pasture uptake of N (119 to 251 kg N ha⁻¹) was 10 times more than that of S (12 to 27.5 kg S ha⁻¹), yet approximately 10 times more sulphate S (2.0 to 17.3 kg S ha⁻¹) than mineral N (0.19) to 1.3 kg N ha⁻¹) was lost by leaching. Previous fertilizer history had a marked effect on the leaching losses of sulphate with seven times more S lost $(2.1 \text{ vs } 15.3 \text{ kg S ha}^{-1})$ from sites which received greater rates of superphosphate and had higher stocking rates. During the initial seven month period S leaching losses on the low and high fertility sites were equivalent to 15% and 33% of the annual fertilizer application. More sulphate was leached from areas identified as animal camping areas. The lack of any change in sulphate below the 150mm soil depth during a period of active plant growth and no leaching suggested that any sulphate that moved below 150mm of the soil could be considered to be effectively lost from the system. Increased leaching losses of calcium and magnesium were associated with increased sulphate losses. The amount of calcium lost by leaching (4.75 to 12.5 kg Ca ha⁻¹) was far greater than potassium (0.8 to 3.6 kg K ha⁻¹), although twice the amount of potassium (240 kg K ha⁻¹ vs 120 kg Ca ha⁻¹) was cycled through the plant-animal system. The amount of magnesium lost by leaching was greater than the amount of potassium lost by leaching.

In a second lysimeter study the direct effects of freshly applied fertilizer on the mineralization of S and N from soil organic matter, their plant availability and losses by leaching were studied under field conditions using ³⁵S labelled superphosphate. Fertilizer application significantly increased the mineralization of both organic S and N. The recovery and measurement of ³⁵S activity over a nine month period showed that major proportions of pasture S (85 and 86% of the pasture S for low and high fertility farmlets, respectively) and leached S (75 and 87% of the leached S for low

the mineralization of soil organic matter and not recently applied fertilizer. The amounts of both S and N mineralized from soil organic matter depends upon the past fertilizer history of the site and the present fertilizer application rate (22 and 40 kg S ha⁻¹ and 125 and 204 kg N ha⁻¹ for low and high fertility farmlets, respectively). Further, when the net mineralization of S was greater a greater proportion (59%) of mineralized S was lost by leaching than removed by pasture (39%). Irrespective of the amount N mineralized virtually all was removed by pasture. The results suggested that low N availability was a major factor limiting carbon fixation and the formation of organic S in these pasture soils.

In a third lysimeter study, field simulated sheep dung and urine events boosted pasture growth and S and N uptake by approximately (50%), whereas the leaching losses of S and N were not influenced by the their application.

A preliminary computer simulation model describing the mineralization of soil organic S, pasture S uptake and leaching losses in grazed pasture was developed. The preliminary model gave reasonable predictions of the changes in soil sulphate concentrations in the soil up to a depth of 25cm, pasture uptake of S and leaching losses of S at four pasture sites varying in their fertilizer history. Further refinement of the model is necessary before it can provide the basis for predicting fertilizer S requirement for hill country pastures.

The experimental results and model output confirm balance study predictions that large leaching losses of S occur and these are derived mainly from the mineralization of soil organic matter which accumulates in well fertilized soils. The extent of S losses appear to be a function of the general levels of soil productivity and the data suggested that only a small, probably less than 20% reduction in this loss could be achieved by changing to slow release S fertilizers.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the following people for their contribution towards the completion of this thesis.

Dr M.J.Hedley for his supervision, encouragement, patience, guidance and friendship during my study.

Dr A.D.Mackay for his supervision, encouragement, patience, guidance and friendship during my study.

Other members of the Soil Science Department, particularly Dr D.R.Scotter for valuable discussions.

The DSIR Grasslands for providing the experimental site.

Members of the DSIR Grasslands' hill country research group, particularly Roanne Poi, Venessa Pokiya, Des Costall, Phil Budding, Nick Dimmock and Brian Devantier for their help in conducting the field experiment.

Mr Donald Tambunan, Ms Sylvia Weil and Sathien Phimsam for their help with proof reading part of the thesis.

Messrs G.N.Magesan, S.Mahimairaja and S.Baskaran for their help and friendship during my study.

The University Grants Committee for providing Post Graduate Fellowship.

Lastly, but most important, to my family.

ABSTRACT
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES
LIST OF TABLES
LIST OF APPENDICES

I INTRODUCTION		l
----------------	--	---

CHAPTER-2

REVIEW OF LITERATURE

2.1	INTRODUCTION TO SULPHUR IN THE BIOSPHERE 4		
2.2	AMO	UNT AND FORMS OF SULPHUR IN THE SOIL 4	
2.3	NATU	JRE OF SOIL SULPHUR 6	
	2.3.1	Soil Organic Sulphur 7	
		2.3.1.1 Chemical Nature of Organic Sulphur	
		2.3.1.2 Hydriodic Acid Reducible Sulphur	
		2.3.1.3 Carbon Bonded Sulphur	
	2.3.2	Soil Inorganic Sulphur	
		2.3.2.1 Soil Inorganic Sulphate	
		2.3.2.2 Water Soluble Sulphates	
		2.3.2.3 Adsorbed Sulphate	
		2.3.2.4 Insoluble Sulphate	
	2.3.3	Plant Available Sulphur in the Soil	
2.4	TRAN	SFORMATION OF SULPHUR IN SOILS	
	2.4.1	Microbial Biomass Sulphur	
		2.4.1.1 Factors Affecting Microbial Sulphur	
	2.4.2	Mineralization by Microorganisms	
		2.4.2.1 Mechanism of S Mineralization	

		2.4.2.2 Factors Affecting Mineralization
		2.4.2.2.1 Temperature
		2.4.2.2.2 Moisture 23
		2.4.2.2.3 pH
		2.4.2.2.4 Availability of Substrate and other
		Nutrients 24
		2.4.2.3 Relationship Between Sulphur and Nitrogen
		Mineralization
	2.4.3	Immobilization
		2.4.3.1 Biochemistry of Immobilization
	2.4.4	Leaching of Sulphate
		2.4.4.1 The Influence of Soil Texture
		2.4.4.2 Factors Affecting the Accumulation of Soluble
		S-pool
2.5	SULP	HUR CYCLING IN GRAZED PASTURE SYSTEM
	2.5.1	Fertilizer Sulphur Inputs
	2.5.2	Sulphur Returned in Plant Litter
	2.5.3	Sulphur Return in Animal Excreta
		2.5.3.1 Dung and Urine Sulphur Content
		2.5.3.2 Dung and Urine Distribution by Grazing
		Stock
		2.5.3.3 Decomposition of Dung Sulphur
		2.5.3.4 Urine in the Sulphur Cycle
	2.5.4	Losses Through Animal
		2.5.4.1 Losses in Animal Products
		2.5.4.2 Losses by Transfer
		2.5.4.3 Losses of Sulphur from Dung and Urine
		Patches
2.6	SUM	MARY AND CONCLUSION

LABORATORY INCUBATIONS TO DETERMINE THE POTENTIAL OF SOILS TO MINERALIZE SULPHUR AND NITROGEN

3.1	INTR	NTRODUCTION		
3.2	MATI	ERIALS AND METHODS		
	3.2.1	Description of Soils		
	3.2.2	Incubation Techniques		
	3.2.3	Leaching Procedures		
	3.2.4	Analytical Measurements		
	3.2.5	Presentation of Results		
3.3	RESU	LTS AND DISCUSSION		
	3.3.1	Characteristics of the Soils Prior to Incubation		
	3.3.2	Effect of Incubation System on Organic Matter		
		Mineralization		
	3.3.3	Mineralization Measured Using the Open Incubation		
		System		
	3.3.4	Fertilizer History		
	3.3.5	Topography		
	3.3.6	Relationships between C, N and S mineralized		
3.4	GENE	RAL DISCUSSION AND CONCLUSION		

CHAPTER-4

DEVELOPMENT OF AN ION EXCHANGE RESIN TRAP LYSIMETER SYSTEM FOR MONITORING SULPHATE SULPHUR LOSSES BY LEACHING IN GRAZED HILL COUNTRY PASTURES.

4.1	INTRO	DDUCTION
4.2	MATE	RIALS AND METHODS
	4.2.1	Construction of Lysimeters
	4.2.2	Preparation of Anion Exchange Resin
	4.2.3	Leaching

	4.2.4 Herbage and Soil Analysis
4.3	RESULTS AND DISCUSSION
	4.3.1 Sulphate Leaching
	4.3.2 Drymatter Production and S Removed
	4.3.3 Net Mineralization of Sulphur
4.4	GENERAL DISCUSSION AND CONCLUSION

FIELD INVESTIGATION OF THE NET MINERALIZATION OF SULPHUR AND NITROGEN, THEIR RELATIVE PLANT UPTAKE AND LEACHING LOSSES IN GRAZED HILL COUNTRY PASTURES

5.1	INTRODUCTION			
5.2	MATH	ERIALS AND METHODS		
	5.2.1	Field Site		
	5.2.2	Lysimeter Installation		
	5.2.3	Measurements		
		5.2.3.1 Drainage 84		
		5.2.3.2 Pasture Production		
		5.2.3.3 Ion Exchange Resin		
		and Resin Care		
		5.2.3.4 Soil Sampling		
	5.2.4	Analytical Measurements		
	5.2.5	Statistical Analysis		
5.3	RESU	LTS AND DISCUSSION		
	5.3.1	Rainfall and Drainage		
	5.3.2	Soil Sulphate		
	5.3.3	Mineral Nitrogen		
	5.3.4	Leaching Losses of S and N		
	5.3.5	Leaching Losses of Cations		
	5.3.6	Pasture Production		
	5.3.7	Pasture S and N Concentration		

	5.3.8	Sulphur and N Removed in Pasture	5
	5.3.9	Net Mineralization of S and N 10	8
		5.3.9.1 Quantitative Estimation of Excreta Return 10)8
		5.3.9.2 Net mineralization of S and N $\ldots \ldots $.1
5.4	GENE	RAL DISCUSSION AND CONCLUSION	20

.

x

CHAPTER-6

FATE OF FERTILIZER SULPHUR APPLIED TO GRAZED HILL COUNTRY PASTURES

6.1	INTRODUCTION		
6.2	MATI	ERIALS AND METHODS 123	
	6.2.1	Preparation of Radioactively Labelled ³⁵ S	
		Superphosphate	
	6.2.2	Application of Fertilizer	
	6.2.3	Rainfall, Drainage and Pasture Measurements 125	
	6.2.4	Analytical Measurements	
	6.2.5	Preparation of Scintillation Cocktail 127	
6.3	RESU	LTS AND DISCUSSION	
	6.3.1	Rainfall and Drainage	
	6.3.2	Pasture Production	
	6.3.3	Herbage Sulphur and Nitrogen Concentrations	
	6.3.4	Sulphur and N Removed by Pasture	
		6.3.4.1 Contribution of Soil and Fertilizer S to S	
		Removed by Pasture	
	6.3.5	Sulphur Lost by Leaching	
		6.3.5.1 Contribution of Soil and Fertilizer S to S	
		Leaching Losses	
	6.3.6	Soil Sulphate and Mineral Nitrogen	
	6.3.7	Net Mineralization of S and N 154	
6.4	GENE	RAL DISCUSSION AND CONCLUSION	

THE INFLUENCE OF SHEEP EXCRETA ON THE PASTURE UPTAKE AND LEACHING LOSSES OF SULPHUR IN GRAZED HILL COUNTRY PASTURES.

7.1	INTRO	$DDUCTION \dots \dots \dots \dots \dots \dots \dots \dots \dots $
7.2	MATE	ERIALS AND METHODS
	7.2.1	Application of Dung and Urine
	7.2.2	Measurements
		7.2.2.1 Rainfall and Drainage
		7.2.2.2 Pasture Production
		7.2.2.3 Resin Replacement
	7.2.3	Analytical Measurements
	7.2.4	Statistical Analysis
7.3	RESU	LTS AND DISCUSSION 166
	7.3.1	Pasture Production
	7.3.2	Sulphur, N and K concentrations in pasture 168
	7.3.3	Sulphur, N and K Removed in Pasture
	7.3.4	Leaching Losses of S, N and K $\dots \dots $
	7.3.5	Leaching losses of Calcium and Magnesium 175
7.4	GENF	RAL DISCUSSION AND CONCLUSION

CHAPTER-8

MODELLING THE FATE OF SULPHUR IN THE SOIL-PLANT SYSTEM IN GRAZED PASTURE

8.1	INTR	ODUCTION	179
8.2	MATH	ERIALS AND METHODS	180
	8.2.1	Determination of the relationship between extractable	
		and solution sulphate	182

8.3	MOD	EL DEVELOPMENT
	8.3.1	Water balance
		8.3.1.1 Calculating drainage volumes
		8.3.1.2 Estimating actual daily evapotranspiration
	8.3.2	Testing the concept of single sulphate pool for plant
		and leached sulphate
	8.3.3	Modelling the fluxes of S between various pools 195
		8.3.3.1 Predicting the soil solution sulphate
		concentration
		8.3.3.2 Accounting for Leaching of Sulphate
		8.3.3.2.1 A layered drainage model with mobile and
		immobile water phases
		8.3.3.2.2 Estimating the mobile volume (α)
		8.3.3.3 Plant Uptake of Sulphur
		8.3.3.4 Accounting for mineralization of soil organic
		Sulphur
		8.3.3.5 Executing the Model
8.4	RESU	LTS AND DISCUSSION 208
	8.4.1	Comparison of model output with field measurements 208
	8.4.2	Sensitivity analysis of Kd and α values
8.5	CONC	CLUSION

SUMMARY

9.1	REVIEW OF LITERATURE 223
9.2	LABORATORY MINERALIZATION STUDIES
9.3	DEVELOPMENT OF A TECHNIQUE TO MEASURE
	MINERALIZATION RATES IN FIELD SOILS
9.4	MEASURING MINERALIZATION RATES IN FIELD SOILS 225
9.5	THE FATE OF FRESHLY APPLIED SUPERPHOSPHATE
	SULPHUR

9.6	THE FATE AND INFLUENCE OF DUNG AND URINE 227		
9.7	MODELLING THE FATE OF SULPHUR IN GRAZED		
	PASTURES		
9.10	APPLICATION OF CONCLUSIONS TO FUTURE RESEARCH 229		
REFERENCE §			

List of figures

Fig.2.1	The S Cycle
Fig.3.1	Incubation system used in the experiment
Fig.3.2	Effect of incubation system on the net mineralization of
	S, N and C, change in the amounts of HI-reducible S
	and change in pH during 140 days of incubation in soils
	from all four farmlets (see Table 3.1 for full description
	of symbols)
Fig.3.3	Effect of fertilizer application on the net mineralization
	of S, N and C and the decrease in HI-reducible S in
	soils from all four farmlets during 140 days of
	incubation in open system (see Table 3.2 for full
	description of symbols) 58
Fig.3.4	Effect of land slope on the net mineralization of S, N
	and C and the decrease in HI-reducible S in soils from
	all four farmlets during 140 days of incubation in open
	system (see Table 3.2 for full description of symbols) 60
Fig.3.5a	Relationship between nitrogen mineralized and the total
	soil nitrogen during 140 days of incubation in open
	system for soils from all four farmlets
Fig.3.5b	Relationship between sulphur mineralized and the total
	soil sulphur during 140 days incubation in open system
	for soils from all four farmlets
Fig.3.5c	Relationship between nitrogen mineralized and the soil
	N:C ratio during 140 days of incubation in open systems
	all four farmlets 64
Fig.3.5d	Relationship between sulphur mineralized and the C:S
	ratio during 140 days of incubation in open systems for
	soils from all four farmlets
Fig.4.1	The mini lysimeter with ion exchange resin trap used in
	the experiment

Fig.5.1	Exclusion cage and lysimeter installation in the field (A,
	Exchange resin above ground access tube; B, Soil
	suction cup sampler)
Fig.5.2	Rainfall and predicted net drainage for the period from
	Jun. 1989 to Jan. 1990 and the long term (1979-1988)
	average rainfall for the same period
Fig.5.3	Soil sulphate present for the depths 0-75 mm (),
	75-150 mm (+) and 150-250 mm (*) at all sites
	from Jun. 1989 to Jan. 1990. Soil samplings were done on
	31/5/89, 4/7, 24/8, 5/9, 6/10, 30/11 and 8/1/1990.
	The L.S.D values are given in Appendix-5.3
Fig.5.4	Soil mineral nitrogen present for the depths 0-75 mm (),
	75-150 mm (+) and 150-250 mm (*) at all sites
	from Jun. 1989 to Jan. 1990. Soil samplings were done
	on 31/5/89, 4/7, 24/8, 5/9, 6/10, 30/11 and 8/1/1990.
	The L.S.D values are given in Appendix-5.4
Fig.5.5	Cumulative amounts of sulphur removed by pasture
	from Jun. 1989 to Jan. 1990 at all four sites. Harvests
	were made on 5/9/89, 6/10, 6/11, 30/11 and 8/1/90
	(Vertical bars=LSD,p<0.01) 106
Fig.5.6	Cumulative amounts of nitrogen removed by pasture
	from Jun. 1989 to Jan. 1990 at all four sites. Harvestsy
	were made on 5/9/89, 6/10, 6/11, 30/11 and 8/1/90
	(Vertical bars=LSD,p<0.01) 107
Fig.5.7	Net mineralization of S and N from Jun. 1989 to Jan.
	1990 at all four sites (Vertical bars=LSD,p<0.01) 113
Fig.5.8	Relationship between nitrogen net mineralized and
	pasture dry matter production from Jun. 1989 to Jan.
	1990 at all four sites. Values for 40 individual
	lysimeters
Fig.5.9	Relationship between nitrogen net mineralized and
	pasture dry matter other than legumes produced from
	Jun. 1989 to Jan. 1990 at all four sites. Values for 40
	individual lysimeters 118

xv

Fig.5.10	Relationship between sulphur net mineralized and	xvi
0	pasture dry matter production from Jun. 1989 to Jan.	
	1990 at all four sites. Values for 40 individual	
	lysimeters	,119
Fig.6.1	Rainfall and predicted drainage from Jan. to Sep. 1990,	1
U	rainfall for the year 1989 and the long term average	
	rainfall (1979-1989) for the same period.	129
Fig.6.2	Predicted and measured drainage for the experimental	
	period across all four sites. Symbols refered to four	
	different sites	130
Fig.6.3	Pasture production for fertilized and unfertilized plots at	
	all sites during the period from Jan to Oct. 1990	
	(Vertical bars= LSD,p<0.01).	133
Fig.6.4	Amounts of S removed by pasture in fertilized and	
	unfertilized plots at all four sites during the period from	
	Jan. to Oct. 1990 (Verical bars=LSD,p<0.01)	137
Fig.6.5	Amounts of N removed by pasture from fertilized and	
	unfertilized plots at all four sites during Jan. to Oct.	
	1990 (Vertical bars=LSD,p<0.01)	138
Fig.6.6	Changes in specific activity of ³⁵ S in pasture with time	
	at all sites from Jan. to Oct. 1990	140
Fig.6.7	Amounts of S lost by leaching from fertilized and	
	unfertilized plots at all four sites during the period from	
	Jan. to Oct. 1990 (Vertical bars=LSD,p<0.01).	144
Fig.6.8	Changes in specific activity of ³⁵ S in leachate with time	
	at all four sites during the period from Jan. to Oct. 1990	
	(Vertical bars=LSD,p<0.01)	146
Fig.6.9	Amounts of N lost by leaching from fertilized and	
	unfertilized plots at all four sites during the period from	
	Jan. to Oct. 1990 (Vertical bars=LSD,p<0.01).	149
Fig.6.10	Amounts of fertilizer(F) and soil(S) sulphur removed by	
	pasture and lost by leaching between Jan. to Oct. 1990	
	in LF-LS, LF-MS, HF-LS and HF-MS sites	150

Fig.6.11	Soil sulphate present for the depths 0-75 mm (),	
	75-150 mm (\longrightarrow + \longrightarrow) and 150-250 mm (\longrightarrow * \longrightarrow) at all sites	
	from Jan. to Oct. 1990. Soil samplings were done on	
	8/1, 15/2, 26/3, 30/4, 11/6, 14/7, 23/8 and 10/10.	
	The L.S.D values are given in Appendix-6.1.	152
Fig.6.12	Soil mineral nitrogen present for the depths 0-75 mm (),	
	75-150 mm ($-+$) and 150-250 mm ($+-$) at all sites	
	from Jan. to Oct. 1990. Soil samplings were done on	
	8/1, 15/2, 26/3, 30/4, 11/6, 14/7, 23/8 and 10/10.	
	The L.S.D values are given in Appendix-6.2.	153
Fig.8.1	A simple conceptual dynamic sulphur model for grazed	
	pastures	181
Fig.8.2	Effect of increasing soil water deficit on the amount of	
	evapotranspiration for 0-75mm soil depth from LF-LS	
	site	185
Fig.8.3a	Cumulative amounts of ³⁵ S activity removed by pasture	
	with time at all four sites from Jan. to Oct.	
	1990	188
Fig.8.3b	Cumulative amounts of S removed by pasture with time	
	at all four sites from Jan. to Oct. 1990	189
Fig.8.4	Relationship between predicted and measured specific	
	activity of S in pasture for the period from Jan. to Oct.	
	1990 at all four sites	192
Fig.8.5	Relationship between predicted (from plant S specific	
	activities) and observed specific activity of the leached	
	S at all four sites from Jan. to Oct. 1990	194
Fig.8.6	Hierarchical order of the processes in the S-cycle	197
Fig.8.7	Relationship between the soil solution sulphate	
	measured in the laboratory () or in the field ()	
	and 0.04M calcium phosphate extractable sulphate for	
	the 150-250mm soil layer	200

		xviii
Fig.8.8	Relationship between extractable sulphate and solution	
	sulphate measured in the laboratory for the soils from 0-	
	75, 75-150 and 150-250mm depths for LF and HF	
	farmlets	201
Fig.8.9	Predicted (+) and measured () cumulative	
	amounts of sulphur removed by pasture at LF-LS and	
	LF-MS sites	209
Fig.8.10	Predicted (+) and measured () cumulative	
	amounts of sulphur removed by pasture at HF-LS and	
	HF-MS sites	210
Fig.8.11	Predicted (+) and measured () extractable soil	
	sulphate present in the profile (0-25cm) at LF-LS and	
	LF-MS sites	212
Fig.8.12	Predicted (+) and measured () extractable soil	
	sulphate present in the profile (0-25cm) at HF-LS and	
	HF-MS sites.	213
Fig.8.13	Effect of changing the value of α (by 10%) on the	
	cumulative amount of sulphate leached at HF-LS site	
	during the period from Jun. 1989 to Oct. 1990 (No	
	leaching occurred from Oct. 1989 to Jan. 1990)	215
Fig.8.14	Effect of changing the values of K_d (by 10%) for each	
	soil layer on the cumulative amount of sulphate leached	
	at HF-LS site during the period from Jun. 1989 to Oct.	
	1990 (No leaching occurred from Oct. 1989 to Jan.	
	1990)	216
Fig.8.15	Effect of changing the value of α (by 10%) on the	
	cumulative amount of sulphur removed by pasture at	
	HF-LS site during the period from Jun. 1989 to Jan.	
	1990	217
Fig.8.16	Effect of changing the values of K_d (by 10%) for each	
	soil layer on the cumulative amount sulphur removed by	
	pasture at HF-LS site during the period from Jun. 1989	
	to Jan. 1990	218

1

LIST OF TABLES

Table 2.1	Empirical methods for extracting sulphur
	containing organic compounds from soils and their
	likely origin (Freney, 1961)
Table 2.2	Effect of incubation systems and period of
	incubation on the ratio of N to S mineralized and
	the ratio of N to S present in the soil from
	different regions of the world 27
Table 2.3	Experimental techniques used to evaluate
	sulphate leaching losses under glasshouse and
	field conditions 30
Table 3.1	Amounts of P (kg ha ⁻¹) and S (kg ha ⁻¹) applied
	as single superphosphate to each farmlet from
	1975-1988
Table 3.2	Physical and chemical characteristics of surface
	soils taken from low (LS) and medium (MS)
	slopes in each of the four farmlets before
	incubation
Table 3.3	Amounts of HI-reducible and C-bonded S before
	and after the incubation in open system for soils
	taken from four farmlets 52
Table 3.4	Net mineralization of carbon, nitrogen and
	sulphur and the change in pH for 140 days of
	incubation for the soils taken from four farmlets
	(mg kg ⁻¹ soil)
Table 4.1	Net drainage collected and the amount of
	sulphate leached for soil cores collected from LF
	and HF sites (Leaching volume 4.2 ml/min,
	duration 7 hours/event, total applied 99
	mm/event and for five events 495mm

.

Table 4.2	Initial and final sulphate present in the soil for
	three depths, S lost by leaching, S removed by
	plant and the net mineralization of S for the soils
	from HF and LF sites
Table 5.1	The fertility, land slope and percentage
	occurrence of each slope class in each of the two
	farmlets
Table 5.2	Amounts of Nitrate (N) and Ammonium (A)
	present at three depths in the soil for all the four
	sites during the experiment. No nitrate was
	observed in some of the samplings
Table 5.3	Predicted net drainage and the amounts of
	sulphate and mineral N lost by leaching
	in winter and spring at all four sites
Table 5.4	Amounts of cations leached for all the four sites
	between Jun. 1989 and Jan. 1990
Table 5.5	Pasture production from Jun. 1989 to Jan. 1990
	at all four sites
Table 5.6	Effect of fertilizer history and land slope on
	pasture S and N concentrations and N/S ratios 104
Table 5.7	Amounts of dry matter and S and N consumed
	and the amounts of readily available S and N
	returned in excreta in whole farmlets and the
	calculated amounts of excretal S and N taken up
	by pasture
Table 5.8	Calculation of the net mineralization of S and N
	during the periods of early winter and late spring
	for LF-LS and HF-LF sites (the symbols are
	described in text) 112
Table 5.9	Amounts of S and N net mineralized* during the
	experiment (31/5/1989 to 8/1/1990) for all four
	sites

/

Table 6.1	Initial sulphate and mineral N present in the soil,	xxi
	fertilizer sulphate and ³⁵ S activity applied to each	
	core and the specific activity of fertilizer S for	
	all four sites.	126
Table ()		120
Table 6.2	Amounts of pasture produced in fertilized and	
	unfertilized plots at each site from Jan. to Oct.	122
		132
Table 6.3	Pasture S concentrations for fertilized and	
	unfertilized plots for all four sites from Jan. to	
	Oct. 1990	135
Table 6.4	Pasture N concentrations for fertilized and	
	unfertilized plots for all four sites from Jan. to	
	Oct. 1990	136
Table 6.5	Amounts of ³⁵ S activity, % fertilizer S removed,	
	amounts of fertilizer and soil S removed by	
	pasture and the percentage contribution of	
	fertilizer and soil S to pasture at all sites from	
	Jan. to Oct. 1990	141
Table 6.6	Amounts of ³⁵ S activity, % of applied fertilizer	
	S leached, amounts of soil and fertilizer S lost	
	by leaching and the % contribution of fertilizer	
	and soil S to leaching losses at all sites from	
	Jan. to Oct. 1990	147
Table 6.7	Net mineralization of S and N from soil organic	
	matter and the percentage of mineralized S and	
	N removed by pasture and lost by leaching at all	
	four SSP fertilized sites from Jan. to Oct.	
	1990	156
Table 7.1	Chemical composition of major plant nutrients in	
	dung and urine and the amounts of nutrients	
	applied to both dung and urine treatments	164

. /

Table 7.2	Pasture dry matter response to fertilizer plus	·	xxii
	dung or urine application for a period of 150		
	days	167	
Table 7.3	Effect of fertilizer and fertilizer plus dung or		
	urine on pasture S, N and K concentrations for		
	all treatments in three harvests.	169	
Table 7.4	Effect of fertilizer and fertilizer plus dung or		
	urine on the amounts of S, N and K removed in		
	pasture during 150 days	171	
Table 7.5	Effect of fertilizer and fertilizer plus dung or		
	urine on the amounts of S, N and K lost by		
	leaching during 150 days	174	
Table 7.6	Effect of fertilizer and fertilizer plus dung or		
	urine on the amounts of Ca and Mg lost by		
	leaching during 150 days.	176	
Table 8.1a	Regressions for the cumulative uptake of ³⁵ S		
	activity (cpm/core) with time for all four sites	190	
Table 8.1b	Regressions for the cumulative uptake of S (mg		
	S/core) with time for all the four sites	190	
Table 8.2	Soil solution sulphate concentrations sampled by		
	suction cup and amounts of 0.04M $Ca(H_2PO_4)_2$		
	extractable sulphate present in the soil from the		
	15-25cm depth for LF-LS and HF-LS sites for		
	seven sampling events.	199	
Table 8.3	Measured and predicted leaching losses of		
	sulphate during the experimental period at all		
	four sites.	211	

.

. /

LIST OF APPENDICES

Appendix-5.1	Soil moisture content for the period from
	Jun. 1989 to Jan. 1990 (seven sampling occasions)
	for three depths at all four sites
Appendix-5.2	Soil bulk densities for the depths 0-7.5, 7.5-15 and
	15-25cm at all four sites measured during July 1989 255
Appendix-5.3	Sulphate (kg/ha) present in the soil for three depths
	during the experimental period 256
Appendix-5.4	Mineral nitrogen (kg/ha) present in the soil for
	three depths during the experimental period 257
Appendix-5.5	Sulphur and nitrogen returned in excreta
Appendix-6.1	Sulphate (kg/ha) present in the soil for three
	depths during the experimental period 261
Appendix-6.2	Mineral nitrogen (kg/ha) present in the soil for
	three depths during the experimental period
Appendix-7.1	Distribution of excreta in grazed hill country
	pastures
Appendix-8.1	Change in specific activity of plant and leached
	S-35 with time and the days on which major
	drainage (vertical bars) occurred for all four
	sites from Jan. 1990 to Oct. 1990
Appendix-8.2	Ratio of shoot and root for the months from
	Jun. to Jan
Appendix-8.3a	Rainfall during the experimental period
	(Jun. 1989 to Jan.1990) 266
Appendix-8.3b	Evapotranspiration (E) during the experimental
	period (Jun. 1989 to Jan.1990)
Appendix-8.4	Predicted and measured extractable soil sulphate
	present in the soil for three depths at all four sites 268

.