Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Transcriptional regulation during appressorium formation and function in *Glomerella cingulata*

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular Biology at Massey University, Palmerston North, New Zealand

XingZhang Tong

2006

Glomerella cingulata, anamorph *Colletotrichum gloeosporioides*, causes bitter rot in apples and fruit rot in other subtropical fruits. In response to environmental cues such as contact with the host, *Glomerella cingulata* forms a special structure called an appressorium, which accumulates glycerol and thereby generates a sufficiently high turgor pressure to push an infection peg into the host tissue. It is known that the cAMP and MAPK signalling transduction pathways control appressorium formation and function in *Colletotrichum* species and other appressorium-forming fungi. This process is accompanied by a global change in gene expression. Little is known of transcriptional regulation during this process. The aim of this project was to study the transcriptional regulation of appressorium formation and function in *G. cingulata*.

The *G. cingulata SAP* gene had previously been shown to be expressed as a longer transcript during the early stage of appressorium differentiation. It was considered possible that the transcription factors that regulated expression of the longer transcript may be also involved in the regulation of appressorium differentiation. Identification of the transcription factor involved may help to understand the mechanisms that regulate appressorium differentiation. The plan was to use the yeast one-hybrid system to isolate the transcription factor. This required identification of the promoter regions responsible for expression of the longer *SAP* transcript. Therefore, the *G. cingulata SAP* promoter was characterized by mapping the transcription start point. Three transcription start points were determined by RLM-RACE. To further characterise the promoters, *SAP-GFP* reporter plasmids were constructed and transformed into *G. cingulata*. Even though a reasonable level of *GFP* expression was observed in RT-PCR experiments, however, no differences in fluorescence intensity were seen between the wild type and GFP reporter transformants. Therefore, no further attempts to study the *sap* promoter were made.

The candidate gene approach was chosen as an alternative way to study the transcriptional regulation of appressorium formation and function in *G. cingulata*. The

G. cingulata StuA gene was cloned using degenerate PCR, single specific primer PCR, subgenomic library screening and plasmid rescue from a disruption mutant. Targeted gene deletion of the *G. cingulata StuA* gene was successful. Deletion mutants display many phenotypic changes. Complementation mutants were constructed to confirm the function of this gene. A full length copy of this gene together with a second selection marker was reintroduced into the deletion mutant and the wild type phenotype was restored.

Deletion mutants form appressoria at the normal rate and with unaltered morphology. In comparison with the wild type, these appressoria did not generate high turgor pressure as shown by a cytorrhysis assay. This resulted in a defect in appressorium penetration of onion epidermal cells. Nor were these mutants able to invade unwounded apples. Therefore, the *G. cingulata StuA* gene is required for appressorium function. In addition, deletion mutants displayed stunted aerial hyphae, "wettable" mycelium, reduced conidia production, and a defect in conidiophore and perithecium formation. These results suggested that the *G. cingulata StuA* gene has multiple roles in fungal development.

I would like to thank my supervisor Dr. Peter Farley for his support, advice, constant approachability, encouragement, patience and help throughout my PhD.

I would also like to thank my co-supervisors Dr. Kathryn Stowell and Professor Patrick Sullivan, for their support and help.

I would like to thank all the past and present staff at Mainland Laboratories for their support and friendship.

I would like to thank all those people in the Institute of Molecular Biosciences.

I am very grateful to Dr. ChunHong Cheng, Dr. Xiuwen Zhang, and Dr. Shuguang Zhang for their helpful discussion during my studies.

I would like to thank Dr. Rosie Bradshaw for her helpful advices and providing plasmid pBC-phleo, Dr. Peter Johnston (Landcare Research) and Dr. Kim Plummer (University of Auckland) for their help in the morphological study for *Glomerella cingulata*, also Dr. Mathew Templeton (HortResearch) for providing hydrophobin ESTs.

I wish to express my appreciation for the financial support provided by Marsden Fund.

Abstract	i
Acknowledgements	
Table of contents	
List of figures	
List of tables	
Abbreviations	xiv
Chapter One Introduction	1
1.1 Plant Pathogenic Fungi	2
1.2 Glomerella and Colletotrichum	4
1.2.1 Genus Glomerella	4
1.2.2 Glomerella cingulata and Colletotrichum gloeosporioides	4
1.2.3 Bitter rot of apple in New Zealand	5
1.2.4 Pathogenicity of G. cingulata	7
1.3 The infection process in <i>Colletotrichum</i> and other fungi	7
1.3.1 Spore adhesion	9
1.3.2 Spore germination and appressorium formation	11
1.3.3 Appressorium development and penetration	12
1.3.3.1 Morphological development	12
1.3.3.2 Mechanism of appressorium penetration	15
1.3.3.3 The role of extracellular enzymes	17
1.3.4 Signal transduction during appressorium development	19
1.3.4.1 Sensing mechanism	19
1.3.4.2 cAMP-PKA signal transduction patheway	20
1.3.4.3 MAP kinase pathway	24
1.3.5 Transcriptional regulation	27
1.3.5.1 Transcription factors linked to the MAP kinase	30
pathway	
1.3.5.2 The APSES transcription factor family	30
1.3.5.3 Transcriptional regulation of nitrogen metabolism	34
1.3.6 Gene expression during appressorium formation	36
1.3.7 Colonisation	39
1.4 Aim of this study	42
Chapter Two Materials And Methods	43
2.1 Suppliers	44

	2.1.1 Enzymes	44
	2.1.2 Vectors	44
	2.1.3 Laboratory chemicals	44
	2.1.4 Buffers and Solutions	45
2.2	Fungal and bacterial strains, plasmids	45
2.3	Growth and maintenance of organism	47
	2.3.1 Growth and maintenance of Escherichia coli	47
	2.3.2 Growth and maintenance of G. cingulata	48
2.4	DNA isolation, purification and quantification	49
	2.4.1 Isolation of G. cingulata DNA	49
	2.4.2 Plasmid DNA isolation	49
	2.4.3 Isolation of DNA from agarose gels	50
	2.4.4 Purification of PCR products	50
	2.4.5 Purification of DNA by phenol/chloroform extraction	50
	2.4.6 Agarose gel electrophoresis of DNA	51
	2.4.7 Determination of DNA concentration	51
2.5	DNA digestion, ligation, cloning and subcloning	52
	2.5.1 Restriction endonuclease digestion of genomic DNA	52
	2.5.2 Restriction endonuclease digestion of plasmid DNA	52
	2.5.3 Exonuclease III digestion of DNA	53
	2.5.4 Alkaline phosphatase treatment of vector DNA	53
	2.5.5 Ligation of DNA fragments	54
	2.5.6 Preparation and transformation of competent <i>E.coli</i> cells	54
	2.5.7 Screening for transformants	55
	2.5.8 Subgenomic library construction and screening	55
2.6	DNA sequencing and sequence analysis	55
	2.6.1 DNA sequencing	55
	2.6.2 Bioinformatic analysis	56
2.7	Southern blotting and hybridisation	56
	2.7.1 Southern blotting (Capillary)	56
	2.7.2 Hybridisation with Digoxigenin (DIG) labelled probe	57
	2.7.3 Chemiluminescent detection of DIG-labelled probes	58
	2.7.4 Hybridisation with 32P labelled probe	58
2.8	Polymerase chain reaction (PCR) amplification	58
	2.8.1 Oligonucleotide primers	59
	2.8.2 Routine PCR	59
	2.8.3 Degenerate PCR	59

2.8.4 Bacterial colony PCR	59
2.8.5 Single specific primer PCR	60
2.9 RNA manipulations	60
2.9.1 Isolation of total RNA	60
2.9.2 Quantification of RNA	61
2.9.3 DNase I treatment of RNA	62
2.9.4 Reverse transcription of RNA into cDNA and amplification	62
2.9.5 RACE (Rapid Amplification of cDNA Ends)	63
2.9.6 Formaldehyde gel electrophoresis of RNA	64
2.9.7 Northern blotting	65
2.9.8 Probe labeling	65
2.9.9 Northern hybridization	65
2.10 G. cingulata transformation	66
2.10.1 Conidium induction, collection and quantification	66
2.10.2 Protoplast preparation	66
2.10.3 G. cingulata transformation	67
2.10.4 Single spore isolation	68
2.10.5 Plasmid rescue	68
2.11 Phenotypic characterisation of G. cingulata mutants	69
2.11.1 Radial growth rate	69
2.11.2 Mycelium morphology observation	69
2.11.3 Conidia production	69
2.11.4 Induction of germination and appressorium formation	70
2.11.5 Conidium adhesion assay	70
2.11.6 Mobilisation of glycogen and lipid	71
2.11.7 Appressorium penetration assay	71
2.11.8 Appressorium cytorrhysis assay	71
2.11.9 Pathogenicity Assaay	72
2.11.10 Firmness of lesion	72
2.11.11 Statistics analysis	72
Chapter three Characterisation of the SAP promoter	73
3.1 Determination of the transcription start points of the SAP gene	74
3.1.1 Mapping the most upstream transcription start point by RT-	74
PCR	
3.1.2 Determination of transcription start points by RLM-RACE	75
3.2 GFP-reporter gene assay	79
3.2.1 GFP-reporter plasmid construction	84

	3.2.2	Transformation of G. cingulata	86
	3.2.3	Characterisation of transformants by PCR	88
	3.2.4	Fluorescence of the transformants	92
	3.2.5	Examination of GFP transcription in the transformants	92
3.3	Summa	ary	96
Chapte	er Four	Cloning and Characterisation of the StuA gene	97
4.1	Clonir	ng of a 5' fragment of the G. cingulata StuA gene	98
4.2	Disrup	otion of the G. cingulata StuA gene	109
4.3	Clonir	ng of the remainder of the StuA gene and sequence analysis	125
	of the	gene	
	4.3.1	Cloning of a 3' fragment of the StuA gene by plasmid rescue	125
	4.3.2	Analysis of the sequence of the StuA gene and its flanking	131
		regions	
	4.3.3	Analysis of the StuA mRNA	131
4.4	Deleti	on of the G. cingulata StuA gene	148
4.5	Restor	ation of the G. cingulata StuA gene function	156
	4.5.1	Single crossover strategy for complementation of the StuA	156
		deletion	
	4.5.2	Double crossover strategy for complementation of the StuA	161
		deletion	
4.6	Chara	cterisation of the StuA mutant phenotype	167
	4.6.1	Mycelium	167
		4.6.1.1 Radial growth rate	167
		4.6.1.2 Mycelial morphology	168
		4.6.1.3 Wettability of mycelium	179
	4.6.2	Conidia and appressoria	179
		4.6.2.1 Conidium shape	179
		4.6.2.2 Production of conidia	183
		4.6.2.3 Adhesion of conidia to a hydrophobic surface	185
		4.6.2.4 Germination and appressorium formation	185
		4.6.2.5 Mobilisation of glycogen and lipid	191
		4.6.2.6 Cytorrhysis assay	194
		4.6.2.7 Penetration assay	194
	4.6.3	Pathogenicity assay	200
	4.6.4	Gene expression	205
		4.6.4.1 Expression of the G. cingulata gpd, actin, and β -tublin	209
		genes	

4.6.4.2 Expression of the G. cingulata PKS1, SCD1 and THR1	211
genes	
4.6.4.3 Expression of the G. cingulata SAP and pnlA genes	211
4.6.4.4 Expression of the G. cingulata StuA and areA genes	213
4.7 Summary	216
Chapter Five Discussion	219
5.1 Characterisation of the SAP promoter	220
5.2 Cloning and characterization of the G. cingulata StuA gene	222
5.2.1 Cloning and sequence analysis of the G. cingulata StuA gene	222
5.2.2 Generation of deletion mutants for the G. cingulata StuA	224
5.2.3 The G. cingulata StuA protein controls mycelium morphology,	227
sexual and asexual development	
5.2.4 The G. cingulata StuA may control hydrophobin expression	228
5.2.5 The G. cingulata StuA is dispensible for conidia adhesion and	229
appressorium formation	
5.2.6 The G. cingulata StuA is required for appressorium penetration	230
5.2.7 The G. cingulata StuA is required for pathogenicity	233
5.2.8 Gene expression in the G. cingulata StuA deletion mutants	234
5.2.9 Conclusion	235
Appendix	237
Appendix 1 Media, common solutions and buffers	238
Appendix 1.1 Growth Media	239
Appendix 1.2 Antibiotics and other supplement stocks	240
Appendix 1.3 Buffers and solutions for DNA isolation and detection	241
Appendix 1.4 Buffers and solutions for RNA work	243
Appendix 1.5 Buffers and solutions for Southern/northern blotting,	244
hybridisation and detection	
Appendix 1.6 Buffers and solutions for G. cingulata protoplast	245
preparation and transformation	
Appendix 2 The G. cingulata SAP gene sequence	246
Appendix 3 Oligonucleotide primers used in this study	251
Appendix 4 Characterisation of the phenotypic changes for the	253
complementation mutants	
Appendix 5 The gene sequences used for northern analysis	254
References	257

List of Figures

Figure 1.1	The life cycle of <i>Glomerella</i>	3
Figure 1.2	Description of <i>Glomerella cingulata</i> structures	6
Figure 1.3	An apple infected by <i>Glomerella cingulata</i>	6
Figure 1.4	Outline of the infection process	8
Figure 1.5	Extracellular matrix of a spore	10
Figure 1.6	Process of spore germination and appressorium formation	13
Figure 1.7	Appressorium ultrastructure	16
Figure 3.1	RT-PCR to map the most distant transcription start point of the	76
	SAP gene	
Figure 3.2	Outline of the RLM-RACE procedure	78
Figure 3.3	Determination of a transcription start point (TSP) by RLM-RACE	80
Figure 3.4	Determination of two further transcription start points (TSP) by	82
	RLM-RACE	
Figure 3.5	GFP reporter gene construction	85
Figure 3.6	Generation of a SAP promoter deletion series for the SAP	87
	promoter-GFP reporter plasmid	
Figure 3.7	Characterisation of G. cingulata transformed with the plasmid	89
	pBHS	
Figure 3.8	Characterisation of G. cingulata transformed with the plasmid	90
	pBHG	
Figure 3.9	Fluorescence of appressoria	93
Figure 3.10	Fluorescence of mycelia	94
Figure 3.11	Detection of the GFP transcript in transformants by using RT-PCR	95
Figure 4.1	Design of degenerate primers for cloning the G. cingulata StuA	99
	gene	
Figure 4.2	PCR products from amplification of G. cingulata DNA using	100
	degenerate primers designed to the APSES domain	
Figure 4.3	Alignment of the deduced StuA432 protein sequence with fungal	101
	APSES gene products	
Figure 4.4	Nucleotide sequence and conceptual translation of the StuA432	102
	fragment	
Figure 4.5	Analysis of PCR products obtained using the single specific primer	104
	PCR strategy	
Figure 4.6	Strategy for identification of a specific PCR product based on the	105
	single specific primer PCR method	

Figure 4.7	Southern blot analysis of G. cingulata genomic DNA	107
Figure 4.8	Maps of the 4114 bp Xhol fragment and the surrounding sequence	108
Figure 4.9	Strategy for disruption of the G. cingulata StuA gene	111
Figure 4.10	PCR analysis of the G. cingulata StuA disruption mutants	112
Figure 4.11	Southern blot analysis of G. cingulata StuA disruption mutants	114
Figure 4.12	Predicted hybridisation patterns for different disruption mutants	115
Figure 4.13	Southern blot analysis of disruption mutants SC5 and SC6	116
Figure 4.14	Southern blot analysis of the disruption mutants SC10 to SC19	119
Figure 4.15	Southern blot analysis of the disruption mutants SC31 and SC40	121
Figure 4.16	Colony morphology of the disruption mutants	122
Figure 4.17	Reversion of the disruption mutant and PCR analysis of DNA from	124
	the colony	
Figure 4.18	Southern blot analysis of pERV3	127
Figure 4.19	Physical map of the plasmid pERV3	128
Figure 4.20	Assembly of the plasmid pXHE	129
Figure 4.21	Confirmation of the structure of the insert in the plasmid pXHE	130
Figure 4.22	Sequence of the StuA gene and its flanking region	132
Figure 4.23	5'RACE and 3'RACE strategies	139
Figure 4.24	Determination of 5' and 3' end of the G. cingulata StuA mRNA	142
Figure 4.25	Alignment of the StuA protein sequence with other proteins from	144
	the APSES family	
Figure 4.26	Construction of a StuA gene deletion vector	150
Figure 4.27	Strategy used for deletion of the StuA gene and predicted results	152
Figure 4.28	PCR analysis of the G. cingulata StuA deletion mutants	154
Figure 4.29	Southern blot analysis of the deletion mutants	155
Figure 4.30	First complementation construct and a predicted integration event	159
Figure 4.31	Southern blot analysis of the complementation mutants	160
Figure 4.32	PCR analysis of reversion of the complementation mutants	162
Figure 4.33	Construction of the second complementation vector and its	164
	predicted integration into the genome of the deletion mutant	
Figure 4.34	Southern blot analysis of the second complementation mutants	165
Figure 4.35	Predicted hybridisation pattern for the wild type, the deletion	166
	mutant and the complementation mutants	
Figure 4.36	Morphology of mycelium grown in the dark for 2 days	170
Figure 4.37	Morphology of mycelium grown under a light/dark cycle for 2 days	171
Figure 4.38	Morphology of mycelium grown in the dark for 4 days	172
Figure 4.39	Morphology of mycelium grown under a light/dark cycle for 4 days	173

Figure 4.40	Microscopic observation of mycelium grown under a light/dark	174
	cycle for 4 days	
Figure 4.41	Morphology of mycelium grown in the dark for 7 days	175
Figure 4.42	Morphology of mycelium grown under a light/dark cycle for 7 days	176
Figure 4.43	Microscopic observation of mycelium grown under a light/dark	177
	cycle for 7 days	
Figure 4.44	Morphology of mycelium grown under a light/dark cycle for 14	178
	days	
Figure 4.45	Wettability of the mycelium	180
Figure 4.46	Conidial shape	181
Figure 4.47	Appressorium morphology	190
Figure 4.48	Mobilisation of glycogen during appressorium development	192
Figure 4.49	Mobilisation of lipid during appressorium development	193
Figure 4.50	Collapsed appressoria	196
Figure 4.51	Wild type appressorium penetration of onion epidermal cells	197
Figure 4.52	Penetration of onion epidermal cells by the complementation	198
	mutant NR5	
Figure 4.53	Penetration of onion epidermal cells by the complementation	199
	mutant NR13	
Figure 4.54	Appressorium development of the deletion mutant DC42 on onion	201
	epidermal cells	
Figure 4.55	Appressorium development of the deletion mutant DC43 on onion	202
	epidermal cells	
Figure 4.56	Surface of apple lesions	206
Figure 4.57	Apple lesions	207
Figure 4.58	Northern blot analysis of the <i>gpd</i> , actin and β -tubulin genes	210
Figure 4.59	Northern blot analysis of the G. cingulata PKS1, THR1 and SCD1	212
	genes	
Figure 4.60	Northern blot analysis of the G. cingulata pnlA and SAP gene	214
Figure 4.61	Northern blot analysis of the G. cingulata stuA and areA genes	215

List of tables

Table 1.1	Summary of genes encoding components of the cAMP signal	28
	transduction pathway and the phenotypes of the corresponding	
	deletion mutants.	
Table 1.2	Summary of genes encoding components of the MAPK signal	29
	transduction pathway and the phenotypes of the corresponding	
	deletion mutants.	
Table 2.1	Fungal and bacterial strains used in this study	45
Table 2.2	Plasmids used in this study	47
Table 4.1	Summary of the three transformation experiments	120
Table 4.2	Growth rate of the G. cingulata wild type, disruption mutants and	123
	ectopic transformants	
Table 4.3	Comparison of the StuA protein with homologous proteins from the	147
	APSES family	
Table 4.4	Shape and size of conidia 182	
Table 4.5	Conidia production on PDA plates 18	
Table 4.6	Conidium adhesion assay 18	
Table 4.7	Appressorium formation on wax coated glass slides 1	
Table 4.8	Appressorium formation on polystyrene Petri dishes	188
Table 4.9	Appressorium formation and penetration on onion epidermal cells	189
Table 4.10	Cytorrhysis assay	195
Table 4.11	Pathogenicity assays on unwounded apples	203
Table 4.12	Pathogenicity on wounded apples	204
Table 4.13	3 Softness of apple lesions	

Abbreviations

bp	base pair
BSA	Bovine serum albumin
cAMP	cyclic AMP
cDNA	complementary deoxyribonucleic acid
CWDE	cell wall degradation enzyme
dATP	deoxyadenosine triphosphate
dCTP	deoxycytosine triphosphate
dNTP	deoxynucleotide triphosphate
DHN	dihydroxynaphthalene
DTT	1,4-dithiothreitol
DIG	Digoxigenin
EDTA	Ethylenediamine tetraacetic acid
ECM	extracellular matrix
GFP	green fluorescence protein
kb	kilobase pair
МАРК	mitogen activated protein kinase
ORF	open reading frame
PCR	polymerase chain reaction
PEG	Polyethylene glycol
РКА	protein kinase A
5' UTR	5' un-translated region
PCR	Polymerase chain reaction
RT-PCR	Reverse transcription PCR
RACE	Rapid amplification of cDNA ends
REMI	restriction enzyme mediated integration
Sec	Second(s)
SDS	Sodium dodecyl sulfate
SSC	sodium chloride/sodium citrate (buffer)