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Abstract 

This thesis is the outcome of research in two areas of computer technology: microprocessor and multi-processor 

architectures (specifica lly from the perspective of how differently they tolerate highly-latent and non-deterministic 

events), and hardware design of complex digital systems containing both datapath and control (particularly 

microprocessors). 

This thesis starts by pointing out that in order to achieve high processing speeds, current popular superscalar 

microprocessors (e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of specu lating the outcome of 

instruction flow in order to predict the behaviour of non-deterministic computing operations (as in loading operands 

from high-latency memory into the processor). This is fine only if the specu lation is correct. But, what if it isn ' t? If 

the speculation fails , this would mean that the processor has to abandon its current decision (which now proved to be 

the wrong one) for the instruction flow path taken and to start al l over again with the other path (the actual correct 

one). This is a waste of valuable processing time and hardware resources and a reduction of performance when 

specu lation fai ls. Therefore, these processors can ach ieve high performance on ly when the majority of specu lations 

are successful (being able to predict the right path). 

In an attempt to overcome the above shortcomings, the first part of this thesis is an in vestigation of the novel vector 

micro-threading architecture as an alternative approach to the current superscalar-based speculative microprocessor 

designs . Micro-threading is based on the not-so-novel multithreading technique, which avoids speculation altogether 

and instead, starts running a different thread of instructions while waiting for the non-determinism to be resolved. 

This utilizes the chip resources more efficient ly without waste of any processing power. 

The rest of this thesis focuses on the baseline RISC processor platform, the MIPS R2000, which is reviewed first then 

partially synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested . 

This is conducted in order for future research to build upon and add the micro-threading architectural add-ons and 

modifications. 

Keywords: 

Micro-threading, Latency Tolerance, FPGA Synthesis, RISC Architecture, MIPS R2000 processor, VHDL. 
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CHAPTER ONE 

INTRODUCTION 

This chapter outlines the motivation behind this thesis, followed by the scope and logical 

structure of the research work undertaken. The key ideas to be presented in the body of the thesis 

are introduced and the contents of the chapters and appendices are briefly outlined. 
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11 1.1 How It All Started 

So~ why did I decide to do my MSc? And~ why did I choose this 

particularly challenging yet equally inspiring subject of Microprocessor 

Design? 

It all started back in Christmas of 1991; only a few months after I graduated with a B.Sc. degree in 

Electronics Engineering and Communications. It was the subject of microprocessor design, which really 

mesmerized my imagination! It was the idea of how powerful the human spirit is, how creative the minds of 

scientists are, and how today's technology is so developed to the point of conceiving such powerful 

inventions while keeping them tamed to the point of advancing our lives . 

So, I wanted to design microprocessors! I wanted to sit in front of the screen and design the internal 

interconnections, components, and wiring diagram of the microprocessor. Although back then in 1991 it 

seemed to me no more than a dream, but the following 15 years led to the successful fruition of this MSc 

thesis in the FPGA implementation of a RISC microprocessor. 

Embarking on this 15-year quest towards achieving my dream, my first job after graduation was as a PC 

Repair Technician. I did not know what exactly I had to do in the short term (with PCs), but I knew exactly 

where I am headed to in the long run (with designing microprocessors) . Coming from an engineering 

background was the main drive behind my involvement in the hardware aspects of PCs as the starting point. 

Being involved with PCs, I learned of Intel's line of the then-popular microprocessors (8086/8088, 80286, 

80386, 80486 . .. ). 

The main events behind turning my dream of designing microprocessors into an actual MSc dissertation 

took place between 1991 and 1996. That was the time when I started to take notice of the fact that a great 

percentage of Intel's microprocessors were actually fab ricated in Malaysia, where Intel has the largest chip 

manufacturing facility in the world, located on the industrial island of Penang in the northern part of 

Malaysia. Therefore, my dream of designing microprocessors became then synonymous with another one : 

working as a chip design engineer at Intel Malaysia. So, it was time to pay Malaysia a visit! 

So, I arrived in Malaysia in October 1996. A few days later, I paid Intel Penang' s office a visit. That was a 

historic event! I could not believe that I was finally walking into the offices of the Holy Grail of the 

microprocessor industry and the largest chip designer and manufacturer in the world! I asked the receptionist 

for a job application form. Instead, she got the human resources manager to come down and see me. He told 

me that Intel would not hire me unless I have, at the least, a Masters in VLSI/Chip/Microprocessor Design . 
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THAT was the moment when my dream became even more focused: to have a Masters in Microprocessor 

Design! 

Of course, I did not end up getting any job at Intel back then but I continued to look out for any 

opportunities to pursue my MSc studies in this field . This opportunity did finally arise in 2000 at Massey 

University. It brings me so much pride now that this MSc dissertation is the end of that 15-year quest. 

Now that the story behind this research has been told, the next section elaborates on the scope of this 

research and thesis overview. 

Scope of This Research: Thesis Overview 

This thesis is the outcome of research in two areas of the computer technology: microprocessor and multi

processor architectures (specifically from the perspective of how differently they tolerate highly-latent and 

non-deterministic events), and hardware design of complex digital systems containing both datapath and 

control (particularly microprocessors). 

As a result, the key achievements of this work are based on the three key areas of research investigated and 

covered in thi s thesis. These are: 

• The problems assoc iated with tolerating highly latent and non-deterministic events 111 ex isting 

microprocessor and multi-processor architectures. 

• The high level behavioural VHDL (Very High Speed Integrated Circuit Hardware Description 

Language) description of the novel vector micro-threading chip multi-processor architecture, which 

is proposed to efficient ly tolerate such high latency and non-determinism. The starting point for the 

design of this micro-threading architecture is the popular MIPS RISC (Reduced Instruction Set 

Computing) processor architecture. 

• The hardware implementation involving the VHDL description, synthesis and simulation of the 

MIPS R2000 RISC microprocessor onto an FPGA (Field Programmable Gate Array) chip . The 

MIPS microprocessor is an existing architecture and is implemented in this research to provide the 

baseline processor platform for the future micro-threading architectural add-ons and modifications. 

This thesis shows that in order to achieve high processing speeds, current popular superscalar 

microprocessors ( e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of speculating the 

outcome of instruction flow in order to predict the behaviour of non-deterministic computing operations (as 

in loading operands from high-latency memory into the processor). This is fine only if the speculation is 

159.899 M.Sc. Computer Science Firas Al-Ali 99203447 



MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-4 
Part One - Ch. I - Introduction 

correct. But, what if it isn't? If the speculation fails, this would mean that the processor has to abandon its 

current decision (which now proved to be the wrong one) for the instruction flow path taken and to start all 

over again with the other path (the actual correct one). This is a waste of valuable processing time and 

hardware resources and a reduction of performance when speculation fails. Therefore, these processors can 

achieve high performance only when the majority of speculations are successful (being able to predict the 

right path). 

A part of the focus of this research is an investigation of the novel vector micro-threading architecture as an 

alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is 

based on the not-so-novel multithreading technique, which avoids speculation altogether and instead, starts 

running a different thread of instructions while waiting for the non-deterministic outcome of the instruction 

execution to be resolved. This utilises the chip resources more efficiently without waste of any processing 

power. 

As this research progressed, the baseline RISC processor platform, the MIPS R2000, was reviewed first then 

synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested. 

This was conducted in order for future research to build upon and add the micro-threading architectural add

ons and modifications. 

One outcome of this research is the publication of a total of five papers (refereed and non-refereed) in five 

different conference proceedings within New Zealand [2, 4, 5, 6] and abroad [3]. It is worth mentioning here 

that [3] was a refereed publication in the conference proceedings of an international conference of high 

standing. 

The next section briefly looks at the contents of the rest of the chapters in this thesis . 

IJ 1.3 Contents of the Chapters 

Chapter Two: 

Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures 

This chapter provides the necessary background and motivation for this research work by addressing the first 

of the three key areas of research investigated and covered in this thesis. Therefore, in this chapter, existing 

material and literature is surveyed in order to shed the necessary light on the problem at hand: the 

shortcomings of existing and future processor architectures in terms of their tolerance for high-latency and 

non-determinism. The architectures surveyed are the Superscalar, VLIW (Very Long Instruction Word) , 

EPIC (Explicitly Parallel Instruction Computing), Dataflow, and the different Multi-threading variants. 
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Consequently, this sets the scene for the introduction of the micro-threading architecture (which will be 

introduced in chapter three). 

Chapter Three: 

Introducing Micro-threading as a Solution to the Problem of High-Latency 

In this chapter, the Micro-threading architecture as a proposed solution to the problems of high-latency and 

non-determinism, is formally introduced and described. The material presented here is based mainly on 

research work carried out by Jesshope [13, 32] and Jesshope and Luo [34, 39, 33] and then surveyed by the 

author [5, 6]. 

Chapter Four: 

Hardware Design Methodology and EDA Design Tools 

This chapter outlines the hardware design methodology, processes, challenges, CAD/EDA design tools, and 

lessons learnt from synthesizing a MIPS R2000 RISC microprocessor onto an FPGA VLSI chip. The 

chapter starts with an overview of the design process and hierarchical partitioning. Then, the issues of 

implementing the datapath (combinational logic) and memory (sequential logic) components onto the 

chosen Xilinx Virtex-II FPGA, are discussed. This determines the efficiency with which a design can be 

implemented on an FPGA chip. 

Chapter Five: 

Review of MIPS R2000 Architecture 

This chapter presents a brief review of the basics of the MIPS R2000 microprocessor Instruction Set 

Architecture (ISA), or simply, Architecture. This is the interface between the highest layer of the 

microprocessor hardware and the lowest layer of the software. The basics outlined in this chapter constitute 

the foundation on top of which the rest of the chapters are based. This chapter is extracted mainly from 

excerpts from [47]. Wherever necessary and possible, reference to the relevant page numbers will a lso be 

made. This chapter is annotated with the author' s comments and tailored adaptation for the context of this 

research. 

Chapter Six: 

VHDL Description and Synthesis of MIPS R2000 Microprocessor 
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This chapter presents a brief review of the Register Transfer Level (RTL) description of the MIPS R2000 

microprocessor followed by the author's own work on implementing this description in VHDL. This VHDL 

description (also called RTL Model) of the MIPS R2000 microprocessor includes synthesis onto the target 

Xilinx Virtex-11 FPGA chip followed by simulating a machine language code running on this 

microprocessor. Again, this chapter is based on and complements the material presented in [47] and [48] and 

is annotated with the author's comments and tailored adaptation for the context of this research . The details 

are covered in Appendices A to C (on the Companion CD). 

Chapter Seven: 

Assembler/Loader for the Synthesised MIPS R2000 Microprocessor 

This chapter presents a novel and unconventional way of writing an assembler/loader for the MIPS R2000 

microprocessor synthesized in chapter six, using the VHDL language. This was simulated in Model 

Technology Inc. (MTI) ModelSim XE. 

Chapter Eight: 

VHDL Description of the Micro-threading Chip Multi-processor 

This chapter briefly describes how the micro-threading architectural add-ons and components are added to 

the standard MI PS architecture to build the micro-threading microprocessor and also the chip 

multiprocessor. The micro-threading VHDL description presented in this chapter is at a high level of 

abstraction as it is a behavioural description augmented with algorithms. Some VHDL pseudo-code is also 

included. As elaborated in chapter four, this is the first step of the hardware design process for the micro

threading microprocessor/multiprocessor and, therefore, paves the way for future research in which these 

algorithms and high level descriptions are utilized in designing the final micro-threading microprocessor 

and/or chip multiprocessor. 

Chapter Nine: 

Conclusions and Future Work 

This chapter concludes this thesis by reviewing the summaries of the key points from the previous chapters 

along with the important areas of research covered by the thesis . Conclusions are drawn and further areas of 

enhancement and future research work are listed. 

A glossary is also provided following the list of references. The next section briefly looks at the contents of the 

appendices found on the accompanying Companion CD. 
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11 t.4 Contents of the Appendices ( on the Companion CD) 

Appendix A: 

VHDL Description and Synthesis of MIPS R2000 Datapat!, Basic Building Blocks 

This appendix presents a brief review of the Register Transfer Level (RTL) description of the basic building 

blocks for the datapath of the MIPS R2000 microprocessor followed by the author's own work on 

implementing this description in VHDL. This VHDL description (also called RTL Model) of these datapath 

basic building blocks includes simulation and synthesis onto the target Xilinx Virtex-11 FPGA chip. Again, 

this appendix is based on and complements the material presented in [47) and [48) and is annotated with the 

author's comments and tailored adaptation for the context of this research. This appendix is the basis on 

which Appendix B builds upon to create the VHDL description and synthesis of the finalized full MIPS 

R2000 microprocessor in chapter 6. 

Appendix B: 

VHDL Description and Synt'1esis of MIPS R2000 Complete Datapath 

This appendix presents the development of the Register Transfer Level (RTL) description of the complete 

datapath (without the control unit yet) of the MIPS R2000 microprocessor. The datapath concepts are first 

reviewed and then followed by the author's own work on implementing this description in VHDL. This 

VHDL description (also called RTL Model) of this complete datapath includes simulation and synthesis 

onto the target Xilinx Virtex-11 FPGA chip. Again, this appendix is based on and complements the material 

presented in [47) and [48) and is annotated with the author's comments and tailored adaptation for the 

context of this research. This appendix is the basis on which Appendix C builds upon to create the VHDL 

description and synthesis of the finalized full MIPS R2000 microprocessor in chapter 6. 

Appendix C: 

VHDL Description and Synthesis of MIPS R2000 Control Unit 

This appendix presents the development of the Register Transfer Level (RTL) description of the control unit 

of the MIPS R2000 microprocessor. The control unit concepts are first reviewed and then followed by the 

author's own work on implementing this description in VHDL. This VHDL description (also called RTL 

Model) of this control unit includes simulation and synthesis onto the target Xilinx Virtex-11 FPGA chip. 

Again, this appendix is based on and complements the material presented in [ 4 7) and [ 48) and is annotated 

with the author's comments and tailored adaptation for the context of this research. This appendix is the last 
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piece of the big picture used to create the VHDL description and synthesis of the finalised full MIPS R2000 

microprocessor in chapter 6. 

Appendix D: 

Supplementary Material for Chapter Six 

This appendix covers the supplementary material for Chapter Six. This includes, higher resolution figures , 

diagrams, and detailed VHDL code. 

Appendix E: 

Published Conference Proceedings 

This appendix is a collection of the five papers generated by this research and published in conference 

proceedings. These papers are: 

• Survey of High-latency Tolerance in Contempora,y Microprocessor Architectures [5} 

• Survey of High-latency Tolerance in Future Microprocessor Architectures [6} 

• An FPGA Implementation of a RISC Microprocessor [2] 

• VHDL Modelling of a RISC Microprocessor: Synthesis, Assembler, Loader, and Testing [./} 

• Behavioural VH DL Model of a Vector Micro-threading Chip Multi-processor [3 J 

1.5 Summary and Conclusions 

This chapter outlined the motivation behind this thesis, along with the scope and structure of the research 

work undertaken. The key ideas to be presented in the body of the thesis were introduced and the content of 

each chapter was briefly outlined. 

The next chapter surveys high-latency tolerance in contemporary and future microprocessor architectures 

and the problems associated with that. 
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CHAPTER Two 

SURVEY OF HIGH- LATENCY TOLERANCE IN 

CONTEMPORARY AND FUTURE PROCESSOR 

ARCHITECTURES 

This chapter provides the necessary background and motivation for this research work. This is 

achieved by surveying existing material and literature to shed the necessary light on the problem 

at hand, i.e. , the shortcomings of existing and future processor architectures in terms of their 

tolerance for high-latency and non-determinism. The architectures surveyed are the Superscalar, 

VLIW (Very Long Instruction Word), EPIC (Explicitly Parallel Instruction Computing), 

Datajlow, and the different Multi-threading variants. Consequently, this sets the scene for the 

introduction of the micro-threading architecture, which is introduced in chapter three. 
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11 2.1 Introduction 

This chapter presents a survey of contemporary and future microprocessor architectures from the viewpoint 

of their different techniques used in tolerating highly latent and non-deterministic events. This is a key factor 

in determining the microprocessor's performance. Each architecture is presented with a brief review and an 

example commercial implementation or at least a proposed one. 

Th is survey starts with section 2.2 where the problem of high-latency tolerance is identified first. Then, a 

brief review of how the different microprocessor architectures are classified base on the von Neumann 

comput ing model is covered in section 2.3 . The sections that follow review the different architectures and 

how they tolerate high-latency. The Data/low architecture is reviewed in section 2.4. This exploits the finest

grained parallelism available in a program, using dataflow graphs. The Supersca/ar approach is reviewed in 

section 2.5, where one sequence of instructions is issued out of order on multiple datapaths. The VL!W and 

EPIC architectures are reviewed in section 2.6. They utili se sequentia l streams of wide instruction words, 

again executed on multiple datapaths. Finally, Mu/tithreaded processors are reviewed in section 2.7. 

Multithreading provides coarse-grained parallelism through context switching between multiple threads of 

instructions. This chapter ends with a summary and conclusions in section 2.8. 

2.2 The Problem of High Latency Tolerance 

Pushing microprocessor designs to the extreme limits of high performance has led to different approaches in 

this field of design, in order to meet evolving and increasingly high, computational demands. This trend is 

reinforced by Jesshope and Luo [34] in the fo llowing extract: 

The transition from the earlier CISC, to RISC, and now to the post-RISC era has been driven by the demand to 

achieve good efficiency, optimising the common case to make it as fast as possible, obtaining a larger !PC 

(Instructions Per Cycle) , and extracting the best of !LP (Instruction-level Parallelism) while executing 

sequential legacy code [34]. 

One main obstacle facing microprocessor designers in their quest towards achieving higher performance is 

that of tolerating high latency and non-determinism in instruction execution, such as the latency in the 

access to main or remote memory, responding to branches in control, or performing a floating-point 

division. Another example of non-determinism is the result of statically scheduling concurrent operations 

and the need for synchronisation between these operations. It is worth mentioning here that scheduling is the 

process of assigning specific instructions and their operand values to designated hardware resources at 

designated times [17]. 
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In the following sections of this chapter, current and future micro-architectures (microprocessor 

architectures) are reviewed along with a description of how they differently address the above issues. 

2.3 Review of Microprocessor Architectures Classification 

At least four possible classes of micro-architectures can be recognized [53 , 54] some of which continue in the 

ongoing evolution path of the von Neumann computer [53 , 54] while others follow a totally different path: 

• Microprocessors that retain the von Neumann architectural principle of Result Serialisation (where the order 

in which the instruction flows as observed from the outside by the compiler sti ll retains the original 

sequential program order), despite the inherent use of out-of-order execution technique within the 

microprocessor [53]. Micro-architectures that belong to this class are today 's Superscalar architectures. 

There is still a considerable effort being directed towards improving such architectures, e.g. 

Superspeculative [36, 35, 37], Multiscalar [18, 57, 58], Trace [50, 56, 68], Datascalar [ 14], and 

Superthreaded [53, 66]. All these approaches fall into the same category because the result seria lisation 

must be preserved [53]. A reordering of results is performed in a Retirement or Commitment stage in order to 

fulfil this requirement. These architectures are reviewed in this paper. 

• Microprocessors that modestly deviate from the von Neumann architecture principle while allowing the use 

of sequential von Neumann languages by compiling programs to the new instruction set principles [53]. 

Examples of such approach are the Very Long Instruction Word (Vl/W), Single Instruction Multiple Data 

(SIMD), and Vector architectures. VLIW is reviewed in this chapter. While the SIMD and vector 

architectures are not covered in this architecture, the vector instruction set is implemented in the proposed 

Micro-threading architecture discussed later (chapters 3 and 9). 

• Microprocessors that optimise the throughput of a multi-programming workload by executing multiple 

threads of control at the same time [53]. In this case, each thread of contro l is a sequential thread of 

instructions executable on a separate von Neumann computer [53]. Two example architectures are the Multi

threaded approach and the Chip Mult i-Processor (CMP). Multi-threaded architectures are discussed in this 

chapter. CMP is not discussed explicitly, but rather implicitly as it is tightly coupled with multi-threading 

and micro-threading as discussed in chapters 3 and 9. 

• Microprocessor architectures that deviate totally from the standard von Neumann architecture and that need 

to use new languages, such as Dataflow with Datajlow Single-Assignment languages (SALs) [53]. These are 

discussed in this chapter. 
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One of the many motivations for this diversity of approaches is that of tolerating high latency and non

determinism, as explained earlier. In the remaining sections of this chapter, these micro-architectures are 

reviewed along with a description of how they differently address the above issues of latency tolerance. 

II 2.4 Dataflow Architectures 

The dataflow architecture exploits all the finest-grained parallelism available in a program [53]. In this 

architecture, there is no need at all for a program counter since program execution is driven only by the 

availability of operands at the inputs to the functional units. This is why this architecture is also known as 

being data driven, and hence the name "dataflow", as opposed to the standard von Neumann control-flow 

principle. Thus, in dataflow the parallelism is limited only by the actual data dependencies in the application 

program. Dataflow architectures are not classified as RISC and they represent a truly radical alternative to 

the von Neumann control-flow architecture because they use datajlow graphs as their machine language. 

Dataflow graphs specify on ly a partial order for the execution of instructions and thus provide opportunities 

for parallel and pipelined execution at the level of individual instructions. A program for a dataflow 

architecture is usually written in a SAL (Single-Assignment Language), then compiled into a data flow graph 

which is a directed graph consisting of named nodes, which represent instructions, and arcs, which represent 

data dependencies among instructions . When a program executes, data "propagates" along the arcs as data 

packets, called tokens . This flow of tokens enables an instruction when all its input arcs have been 

traversed . The arcs in the graph are represented dynamically as unique tags in the tokens and the firing 

mechanism uses special memories called matching stores to match operands to instructions. 

While a single thread of contro l in other microprocessor architectures often does not incorporate enough 

fine-grained parallelism to feed multiple functional units of today 's microprocessors, the data flow approach 

resolves any threads of control into separate instructions that are ready to execute as soon as all required 

operands become available. Therefore, the fine-grained parallelism potentially utilised by a dataflow 

computer is much greater than the parallelism availab le for today's conventiona l microprocessors [53]. The 

massive parallelism generated in a dataflow computer is controllable through the implementation of 

techniques such as K-bounded loops, which are used to introduce false dependencies into the dataflow graph 

to limit and throttle concurrency [12, 5] . Thus, dataflow processors not only support a dynamic schedule but 

also dynamic parallelism, which is not required in compiling most imperative programming languages [ 13] . 

Consequently, code must be recompiled for a dataflow processor, and single-assignment languages produce 

much more parallelism than is usually required for good performance. 

The dataflow concept offers the potential of high performance and was thought by many to provide the 

answer to the scheduling problem, but the solution it provides is far too general and the overheads are high . 

This is because the performance of an actual datatlow implementation can be restricted by two main 
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limitations; firstly, the need for deep pipelines and a resulting high ratio of non-productive instructions, 

secondly, the need for expensive matching logic required for matching pending operations with operands 

generated by other instructions. 

Since the early 1970s, there has been significant research and practical realisations of dataflow computers 

[53]. These dataflow computers can be based on either a Pure Datajlow [64 , 59, 19, 52] or an Augmented 

Datajlow with Control-flow. Examples of the pure dataflow model are the MIT Stat ic Datajlow Machine 

(based on static data flow) [ 15] , MIT Tagged-Token Datajlow Architecture (based on dynamic dataflow) [9 , 

I 0, 21], and the Monsoon Multiprocessor (based on explicit token-store dataflow) [43 , 45 , 46 , 44]. 

On the other hand , there has been active research and development in the field of augmenting dataflow with 

control-flow [53] . Examples are: 

• Threaded Datajlow (multithreaded architectures which have evolved from the dataflow model), eg. 

Epsilon-I and Epsilon-2 processors [22] and, again, the Monsoon Multiprocessor [43, 45, 46, 44]. 

• Large-Grain Datajlow, an example of which is the MIT and Motorola joint venture StarT processor 

[ 41 ]. 

• Datajlmv with Complex Machine Operations, an example of which is the ASTOR architecture [76]. 

These developments have also had a certain impact on the conception of high-performance processor 

architectures in the "post-RISC" era. For example, dataflow is used in Tomasulo 's Algorithm (an example of 

Datajlow Scheduling), which is a hardware-dependent resolution scheme that allows for dynamic scheduling 

out-of-order execution of instructions in the presence of hazards. This technique was first introduced in the 

IBM 360 Model 9 I [62] and is now used in today' s popular superscalar microprocessors, as we will be 

covered in the next section . 

As noted above, the Monsoon multiprocessor features both explicit token-store dataflow and threaded 

dataflow. This is one solution in dataflow research to address the problems associated with dataflow 

architectures, as raised earlier (the need for deep pipelines, . .. etc.) . Two main features are introduced in the 

Monsoon Multiprocessor which are of direct relation to this research and are discussed below in a little more 

detail: 

• Explicit Token-Store (ETS) Datajlow 

This is an evolution from the tagged-token dynamic dataflow principles [28]. ETS was the result of 

Papadopoulos' work [46 , 44] and was later incorporated in the Monsoon multiprocessor, the latter being 

the product of a joint effort of the MIT Computation Structures Group, and the Motorola company [ 45, 

46] after ETS was developed. The earlier tagged-token dataflow architectures used an associative 

matching store to determine when instructions are ready for execution. For a two-operand instruction to 
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become enabled, tokens carrying the two-operand values must be received. The first token to arrive is 

held in the matching store until its associate companion has arrived . Two tokens provide a pair of 

operands to the instruction if they have the same tag. In ETS, the associative search for matching tokens 

is replaced by establishing a memory location where each synchronization takes place. This location is 

within an Activation Frame associated with each function activation. Therefore, the memory where the 

token is waiting is directly addressed, without the need for associative matching which is slow and 

expensive [27] . Every location that corresponds to an activation of a two-input operation is augmented 

with a Presence Bit that is initially in the "empty" state. When the first token arrives it notices the 

"empty" state and writes its value into the location. Then, the presence bit is set into the "present" state. 

The second token notices the "present" state and reads the location, and then resets the presence bit back 

to "empty". The operation defined by the instruction (from the tag) is performed on the incoming 

token's value and the value read , and a new token is generated with the resulting value. Details of how 

ETS works are found in [43 , 44]. This ETS model is what is implemented in Monsoon. The benefit of 

eliminating the associative search is obtained, generally, by reducing the cost of dynamically allocating 

storage for an activation frame for each function initiation (pre-allocation is can occur when a static 

analysis of the program demonstrates that this is feasible [28]). Another innovation in the Monsoon is 

its support for I-structures, which refer to arrays of data in which reads of an element are made to wait 

until the element is defined by a write operation . Actually, as will be described later, the registers in the 

Micro-threaded architecture are in fact I-structures. 

• Threaded Datajlow (Augme11ti11g Datajlow with Co11trol-jlow) 

Evolving from the dataflow model , is the Monsoon multithreaded architecture [27]. The maximum 

configuration build consists of 8 processors and 8 I-structure memory modules using an 8x8 crossbar 

network, and became operational in 1991. The Monsoon is a cycle-by-cycle-interleaving, multithreaded 

computer due to its capability of Direct Token Recycling [46]. Direct token recycling allows a particular 

thread to occupy only one pipeline frame slot in the 8-stage pipeline, which implies that at least 8 

threads must be active to achieve full pipeline utilisation [53]. Figure 2.1 shows the Monsoon execution 

pipeline. The question that arises here is how are threads tracked and scheduled in this threaded 

dataflow architecture since there are no program counters involved to refer to? The answer is that 

massively parallel processors operate in an asynchronous manner in a network environment, where 

asynchrony is used to solve the two fundamental latency problems: Remote Loads and Synchronization 

Loads [27]. One solution to this problem is Threaded dataflow, by multiplexing between many threads 

(when one thread issues a remote-load request, the processor switches to another thread) where 

"full /empty" bits present in memory words are used to synchronize remote loads associated with 

different threads [27]. In threaded datatlow, the threads are tracked and scheduled by associating each 

remote load and response with a thread identifier (referred to as a "continuation on a message") for the 

appropriate thread, so it could be re-enabled upon arrival of a response. A large hardware-implemented 

Continuation Name Space is provided to store an adequate number of threads for remote responses [27] . 
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Threads in Monsoon are short instruction sequences that access the local variables of its function 

initiation from its activation frame , and pass intermediate results using a small register file, thereby 

eliminating the need for dataflow synchronization during each instruction ofa program [28]. 

Execute 
Operation 

& 
Compute 

Token 

Store 

Interconnection 

Network 

Frame 

Memory 

Presence Bit 
Memo 

Instruction 
Memo 

Figure 2.1 Monsoon multiprocessor execution pipeline [53/. 

2.5 Superscalar Architectures 

Token 
Queue 

Superscalar microprocessors are implicit multiple-issue processors [53]. The principal motivation behind 

the superscalar architecture was to overcome the single-issue of uni-scalar (single pipeline) RISC processors 

by providing the facility to fetch, decode, issue, execute, retire, and write back results of more than one 

instruction per clock cycle. The instructions are scheduled dynamically by the hardware. In other words, a 

conventional serial instruction stream is split dynamically into concurrent instruction sequences by an 

instruction window during execute time inside the processor [ 17] . 
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The superscalar trend is based on replicating the internal datapath components of the microprocessor so that 

it can launch multiple instructions in every pipeline stage. This a llows for the instruction execution rate to 

exceed the clock rate and for the CPI (Cycles Per Instruction) to be less than I [47]. The superscalar 

pipeline (as shown in Figure 2.2) features several independent Functional Units (FUs) that execute 

instructions independently. 

FUl 

Inst. FU2 
Win- Issue 

IF 
dow 

FU3 

FU4 

Figure 2.2 A quad-issue superscafar pipeline /53/. 

The problem of tolerating high latency in superscalar processors is addressed with the use of Out-of Order 

Execution hardware that invokes different techniques such as Dynamic Branch Prediction, and Control 

Speculation to solve the problems of control and data conflicts and hazards [53 , 5]. A point worth 

mentioning here is that out-of-order execution is an example of dynamic scheduling which implements 

Tomasulo 's algorithm mentioned earlier in section 2.4. The performance of branch prediction depends on 

the prediction accuracy and the cost of misprediction. Although static branch prediction techniques can be 

used here, implementing the alternative dynamic branch prediction usually delivers better performance. The 

high penalty of misprediction, on the other hand, could be no less than 2 cycles, and sometimes up to I I or 

more cycles in the Pentium II or the Alpha 21264 processors [53]. This is a high misprediction penalty, 

especially as these processors execute many instructions in each cycle. Another severe problem with the 

superscalar approach is keeping its pipelines full. This problem is well understood and so lved using 

speculation . But speculative instruction issue generates write-after-read and write-after-write hazards, which 

would severely reduce instruction issue rates when not using register renaming [34]. That, again , adds 

complexity and cost to the design. 

By now, it is clear that superscalar execution increases instruction throughput. Wider superscalar issue puts 

even more pressure on the compiler to deliver on the performance potential of the hardware. But data and 

control dependencies in programs, together with instruction latencies, offer an upper limit on delivered 

performance because the processor must sometimes wait for a dependency to be resolved, such as with a 

mispredicted branch. Furthermore, the techniques of out-of-order execution and dynamic branch prediction, 

as shown above, attempt to predict the non-determinism in the areas of cache accesses and branching, or try 

to counteract the effects of mis prediction [ I 3]. These techniques do increase the processing power of 

superscalar processors, but rarely by a factor proportional to the width of the pipeline used. Even with 4- or 

8-way superscalar pipelines, it is difficult to obtain an IPC count of much more than 2 [34]. Moreover, 
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speculation makes a computer's performance dependent on the application and large penalties are paid for 

misprediction both in terms of execution time and, perhaps more importantly, in silicon chip area as much 

digital logic is used for the prediction mechanisms and for misprediction clean-up (34] . 

It is, thus, concluded that some tolerance of high latency is achieved in superscalar architectures. With wider 

issue pipelines, the performance depends critically on branch prediction accuracy and dynamic scheduling, 

as there is always a limit on the window in the instruction stream. 

Most of current microprocessors utilize /LP (Instruction Level parallelism) by implementing a deep 

processor pipeline (more than five pipeline stages) and superscalar instruction issue techniques [5]. Future 

VLSI technologies will allow future generations of microprocessors to exploit aggressively ILP of up to 16 

or even 32 IPC. Due to technological advances, gate-delay will be replaced by an on-chip wire-delay as the 

main obstacle to increase chip complexity and cycle rate [53 , 54]. 

Superscalar processors began to dominate the microprocessor market at the beginning of the 1990s with 

dual-issue processors (53]. Today ' s superscalar microprocessors try to find six or more instructions to 

execute in every pipeline stage [ 4 7]. Examples of the most successful and popular commercial superscalar 

processors are: 

• Intel i960 RISC processor, Pentium, Pentium Pro, Pentium II, Celeron, Klamath, and Pentium Ill [53 , 

47, 25]. 

• DEC Alpha 21064, 21164 , and 21264 [53 , 47, 25]. 

• IBM Power PC 60 1, 603 , 604, 620, and 750 (the G3) (53 , 47, 25]. 

• MIPS RlOOOO and Rl2000 (53 , 47, 25]. 

Following is a review of the current trends in superscalar architecture developments (53]: 

2.5.1 Advanced Superscalar Processor Architecture 

Although this architecture still focuses on using !LP together with speculation, these processors are wide

issue superscalars with an IPC of up to 32 [42]. This is achieved through the use of features such as; a large 

sophisticated trace cache for providing a contiguous instruction stream (more details on this approach are 

covered in subsection 2.5 .3 shortly), a multi-hybrid branch predictor, a large number of reservation stations 

to accommodate approximately 2000 instructions, and 24 to 48 pipelined functional units. Figure 2.3 shows 

the internal architecture for such a processor (53, 54] . 
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Figure 2.3 An advanced superscalar architecture [53]. 

2.5.2 Superspeculative Processor Architecture 
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These are also wide-issue superscalar microprocessors that use speculation techniques 53 , 36, 35 , 37] . This 

approach is based on the observation that in real programs, instructions generate many highly predictable 

result values. Therefore, consumer instructions can frequently and successfully speculate on their source 

operand values and begin execution without actual results from their producer instructions, thus removing 

the serialization constraints between producer and consumer instructions. As a result, it is claimed that the 

performance of a superspeculative program can exceed the classical datatlow limit which where even with 

unlimited machine resources, a program counter cannot execute any faster than the execution of the longest 

dependent instruction chain introduced by the program's actual data dependencies [53, 54]. It is further 

claimed that the dataflow limit is huge and unmatchable by any other architecture, and that the problems are 

in managing the dependencies. Superspeculative processors speculate on data dependencies, instruction 

flow, register datatlow, and memory datatlow in addition to branch prediction [25] . This is all possible by 

using the Weak-Dependency Model [47,43, 35], which states that dependencies can be temporarily violated 

during instruction execution as along as recovery can be guaranteed before affecting the permanent machine 

state. If a significant percentage of speculations are correct, the machine can exceed the performance limit 

imposed by the traditional, Strong-Dependency Model. 
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2.5.3 Trace Processor Architecture 

The Trace processor is derived from the Mu/tiscalar processor. The main features of this processor 

architecture are presented in [53, 50, 56, 68]. The trace processor extends the instruction window size to a 

trace, where traces are dynamic instruction sequences constructed and cached by the hardware. Thus, the 

trace cache stores dynamic instruction traces contiguously and fetches instructions from the trace cache 

rather than from the instruction cache. Since a dynamic trace of instructions may contain multiple taken 

branches, there is no need to fetch from multiple targets, as would be necessary when predicting multiple 

branches and fetching 16 or 32 instructions from the instruction cache. Trace processors also distribute the 

instruction window and register file to solve the instruction issue and register complexity problems (found in 

other designs such as Simultaneous Mu/tithreading) by breaking up the processor into several Processing 

Elements - PEs (similar to Multiscalar - see next subsection 2.5.4) and the program into severa l traces so 

that the current trace is executed on one PE while the future traces are speculatively executed on other PEs. 

Because traces are neither scheduled by the compiler, nor guaranteed to be parallel , they still rely on control 

speculation and memory dependency speculation. The main difference between the trace processor and the 

multiscalar processor is that the traces in a trace processor are built as the program is executed, whereas the 

tasks in the multiscalar processor require explicit compiler support. 

2.5.4 Multiscalar Processor Architecture 

The Mu/tisca/ar model [53 , 18, 57, 58] represents another architecture in which large amounts of inherent 

paralle lism are extracted from a sequential instruction flow . Multiscalar and trace processors define several 

parallel processing cores, or PEs, that speculative ly execute different parts of a sequential program in 

parallel. Multiscalar uses a compiler to partition the program segments, whereas a trace processor uses a 

trace cache to generate dynamically trace segments for the processing cores. 

2.5.5 Datascalar Processor Architecture 

Datasca/ar processors run the same sequentia l instruction stream redundantly across multiple processors 

using distributed datasets [53 , 14]. Loads and stores are only performed locally by the processor that owns 

the data, but a local load broadcasts the loaded value to all other processors . Figure 2.4 demonstrates the 

execution of load and store operations for replicated and communicated memory. Assume that both 

processors execute a sequence of load-/ , store-/, load-2, and store-2. Operations load-I and store-/ are 

issued to the replicated memory and can therefore complete loca lly on both processors . Operations load-2 

and store-2 are issued to the communicated memory of the first processor. The load-2 of this processor is 

deferred until the value is broadcast from it. Since all processors are running the same program, they all 

generate the same store value, which is stored only in the communicated memory of the processor that owns 

the address. Therefore, store-2 is completed by the first processor, but is aborted on the second processor. It 

is quite clear here that the datascalar approach emphasises redundancy rather than performance. The increase 
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in speed here is not from the increased ILP, but rather from increased data locality that is hiding the latency 

to some degree [53] . 
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Figure 2.4 Datascalar processors access to replicated and co1111111111icated memory /53/. 

2.5.6 Superthreaded Processor Architecture 

This is a concurrent multiple-threaded architecture for exploiting thread-level parallelism (TLP) on a 

processor [53 , 66]. This architectural model adopts a thread pipelining execution model that allows threads 

with data dependencies and control dependencies to be executed in parallel , thereby enforcing data 

dependencies between concurrent threads . The basic idea of thread pipelining is to compute and forward 

recurrence data and possible dependent store addresses to the next thread as soon as possible, so the next 

thread can start execution and perform run-time data dependence checking on its own thread processing unit. 

Thread pipelining also forces contiguous threads to perform their memory write-backs in order, which 

enables the compiler to fork threads with control speculation. 

The superthreaded architectural model can exploit loop-level parallelism from a broad range of applications 

through run-time support for data dependence checking and control speculation [53, 66]. The memory 

buffering and the in-order thread completion schemes a llow control dependent threads to be executed 

concurrently with control speculation. Unlike the instruction pipelining mechanism in a supersca lar 

processor, where instruction sequencing and data dependence checking and forwarding are performed by the 

processor hardware automatically, the superthreaded architecture performs thread initiation and data 

forwarding through explicit thread management and communication instructions. The execution of a thread 
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is partitioned into several pipeline stages, each of them performing a specific function. The first pipeline 

stage is the Continuation Stage where a thread starts after being initiated by its predecessor thread. The next 

stage is the Target-Store-address-Generation (TSA G) stage, which performs the address computation for 

Target Stores (TSs) . Target stores are performed by a thread, and are store operations on which later 

concurrent threads could be data-dependent. To facilitate run-time data dependence checking, the addresses 

of these target stores are calculated as soon as possible in the TSAG stage. The following computation stage 

performs the main computation of a thread. The last stage is the Write-Back (WB). Because all of the stores 

are committed, thread-by-thread, write-after-read (anti -dependence) and write-after-write (output

dependence) hazards cannot occur during run time [53 , 66] . Figure 2.5 depicts the organisation of the 

superthreaded processor. 

Instruction Cache 

Thread Pr cessing Unit Thread Pr cessing Unit 

Data Cache 

Figure 2.5 Superthreaded processor architecture /53/. 
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JI 2.6 VLIW and EPIC Architectures 

2.6.1 VLIW Processor Architecture 

VLIW (Very long instruction Word) microprocessors are, essentially, programmed multiple-issue processors 

[53]. They are predecessors to their superscalar counterparts but not as flexible. Therefore, they have been 

confined to signal processors during the last two decades, due to their fixed static schedule, which can easily 

be destroyed by non-determinism. This previously-not-very-successful VLIW technique has come into focus 

again recently with the introduction of the EPIC design style (covered in the next subsection), and its 

adoption by Intel for its 64-bit architecture. 

VLIW processors use a sequential stream of long instruction words (called instruction tuples) that normally 

contain a fixed number of operations that are fetched , decoded, issued, and executed synchronously. All 

operations specified within a VLIW instruction must be independent of one another and , also , independent 

of previous instructions that may still be executing in the pipeline. Thus, VLIW is characterised by a static 

issue whereby a fixed number of instructions are issued each cycle, which are statically scheduled by the 

compiler. These instructions, as previously mentioned, can be organized as one large instruction or as a 

fixed instruction packet (instruction tuple) [53]. To summarise, dynamic (superscalar) issue utilising 

dynamic (out-of-order) scheduling is in contrast to static (VLIW) issue utilising static (in-order) scheduling 

[25] . 

VLIW microprocessors , including the Intel Merced architecture [29, 31] use concurrency detected by the 

compiler to perform Aggressive Static Code Scheduling. However, this solution also requires speculation, as 

static schedules do not work in the presence of non-determinism (conditional branch direction and memory 

access latency). The result is that misprediction may now require an interrupt and software intervention, and 

although non-computational hardware overhead is reduced, performance in the event of speculation failure 

is significantly impaired. VLIW usually implements speculation through the use of Predication or Guard 

Bits, and usually executes both branches of a condition until it is resolved. This still does not solve the basic 

problem however, which is that some operations are inherently non-deterministic. This situation performs 

more work than is strictly necessary in order to maintain a schedule in the presence of non-determinism. 

Only with hardware-based, asynchronous scheduling can the use of explicit concurrency overcome non

deterministic instruction execution. This approach is addressed in chapter 3, where Micro-threading is 

proposed as a solution. To conclude this discussion of VLI W, some commercial implementations are listed 

below: 

• TI TMS320C6x family [61]. 

• Sun MAJC-5200 Chip Multi-processor [65, 60] (which also features multithreading). 
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• Transmeta Crusoe TM3200, 5400 and 5600 processors [63, 20]. 

2.6.2 EPIC Processor Architecture 

Generally, the VLIW style of architecture addresses the issue of achieving high levels of ILP with reduced 

hardware complexity. However, it is specialised for numerical computing and has shortcomings when 

executing branch-intensive and pointer-based scalar applications. These were some of the reasons behind the 

evolution of VLIW, which led to the introduction of its successor, EPJC (Explicitly Parallel Instruction 

Computing). The EPIC architecture is the result of the joint R&D project between Hewlett-Packard and 

Intel announced back in June 1994, aimed at developing the 64-bit instruction set and compiler optimisation, 

leading to the EPIC design style. This design philosophy seeks to further simplify hardware complexity 

while still extracting even more ILP from programs than either VLIW or superscalar strategies. 

Actually, EPIC is a broad concept, as defined by HPl-PD (Hewlett-Packard laboratories - Play Doh) 

architecture, which defines a large number of possible EPIC instruction set architectures [51 ]. The first 

commercia lly avai lable EP IC ISA is Intel 's IA-64 (64-bit Intel Architecture) [29, 31], also jointly developed 

by HP and Intel and introduced in 1999. 

One of the main goa ls for EPIC is to retain VLIW' s philosophy of statically constructing the POE (Plan Of 

Execution). This is how the processor will execute the code. However, augmenting it wi th features (akin to 

those in a superscalar processor) would permit it to better cope with dynamic factors , which traditionally 

limited VLIW-style para llelism . To accomplish these goals, the EPIC philosophy is based on three main 

princip les. Firstly, designing the des ired PO E at compile time, and the architecture should provide 

successful support for it. Secondly, the architecture should provide features that assist the compi ler in 

exploiting static ILP. Thirdly, the POE must be conveyed to the hardware [51 ]. The architectural techniques 

that EPIC uses to support the above philosophy are Static Scheduling, Branch Unbundling, Predicated 

execution, Control Speculation, Predicated Code Motion [51 , 29], and Scalability [53] . 

The EPIC architecture addresses the problem of memory latency with two techniques. The first is the use of 

Cache Specifiers [51 ], where load instructions are provided with a source cache specifier that the compiler 

utili ses to inform the hardware of the cache location it can expect to find the referenced datum and, 

implicitly, the assumed latency. The second technique is Data Speculation, or sometimes called Speculative 

l oading [53 , 51], where the processor will load data from memory we ll before the program needs it, and 

thus to effic iently minimise the impact of memory latency. This technique, just like predication, also is a 

combination of compile-time and run-time optimisations. 

EPIC benefits from advanced compiler techniques that are closely coupled with the micro-architecture. 

EPIC exploits compiler ability, and enhances interactivity between the compiler and architecture. EPIC also 

uses double branch execution, code movement, and other techniques, but still relies heavily on speculation to 

overcome non-determinism. Finally, An example commercial processor of the EPIC architecture, and the 

IA-64 instruction set, is the Intel Itani um Processor [31]. 
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2. 7 Multithreading Architectures 

We can conclude now that the superscalar, VLIW and EPIC architectures discussed so far, although they 

seem different in the way they address the scheduling and latency-tolerance problems, all introduce the 

potential for severely impaired performance when speculation fa il s. We have seen how superscalar, VLIW 

and EPIC either attempt to predict the non-determinism in the areas of cache accesses and branching, or try 

to mitigate aga inst the effects of misprediction (by executing both branches of control concurrently), 

prefetching, and speculative loading. Often however, these techniques introduce further speculation, which 

can have an even more detrimental effect on performance in the event of misprediction. 

According to Bolchevsky, Jesshope, and Muchnick [13] , microprocessor architects are looking in the wrong 

direction. They are designing processors that try to prejudge and predict a program 's data accesses or 

branches, when instead; they shou ld simply look at tolerating the latencies involved. The proposed 

alternative approach is Mullithreading genera ll y, with Micro-threading being one of its numerous variants . 

The multithreaded architecture is used as a solution to the problem of limited ILP in a conventional 

instruction stream. A multithreaded processor is based on the concept of additional utilisation of more fine

grained to medium-grained parallelism [6] . It optimises the throughput of a multiprogramming workload 

rather than just single-thread performance. This is done by executing multiple threads of control 

simultaneously. Each thread of control is a sequential program, and exists within a context of its own. 

Therefore the terms thread and context can be used interchangeably. Actually, a thread is a lightweight 

process (a few instructions) comp lete with minimal context [ I 3] , such as stack and registers . Thus, 

multithreaded processors are also known as Multiple-context processors, as they are based on the idea of 

switching the processor to another context (or thread) when a long-latency event occurs . This is poss ible 

because the multithreaded processor generally has several register files and maintains several PCs (Program 

Counters) along with related program states. Each register file and PC holds the program state for a separate 

parallel thread (or context). The functional units (FUs) are multiplexed between the threads in the register 

sets [6]. 

When long-latency or non-deterministic events are encountered, such as branches and loads, the processor 

switches to another thread, executing instructions from this new thread while the non-deterministic event is 

being handled [6]. This is called Context Switching and must be very fast for this to be effective [6]. 

Still, one problem with multithreaded architectures, in general, is that context switching might cause 

problems of loss of cache locality [6]. One proposed solution is the Micro-threading approach, introduced in 

the next chapter. 

The different multithreading architectural approaches are discussed below. 
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2.7.1 Cycle-by-Cycle Interleaving 

In this model , the processor switches to a different thread after each instruction fetch [53] . Some example 

implementations of this multithreaded architecture are: 

• Burton Smith's Delencor HEP 

The Heterogeneous Element Processor (HEP) [53 , 55, 28 , 27, 26] is a MIMD (Multiple Instruction 

Multiple Data) shared-memory multiprocessor system. Switching occurs between two queues of 

processes: one queue controls program memory, register memory, and the functional memory while the 

other queue controls data memory. The main processor pipeline has eight stages. Consequently, at least 

eight threads must be in cycle-by-cycle interleaving execution concurrently within a single HEP 

processor to give maximum performance. All threads within a HEP processor share the same register 

set. Multiple processors and data memories are interconnected using a pipelined switch. Any register

memory or data-memory location could be used to synchronize two processes on a producer-consumer 

basis via a "full /empty" bit synchronizat ion on a data memory word [53 , 32, 26]. Figure 2.6 illustrates 

the control loop for a single HEP pipeline. The 8-stage execution pipeline is shown, where IF denotes 

Instruction Fetch, DF for Data Fetch, INC for Increment, PSW for Process Status Word, and SFU for 

the shared memory. The pipeline is controlled by a queue of Process Tags (one for each thread 

representing an instruction stream). These process tags (or threads) rotate around the control loop, 

which executes one instruction from each thread every clock cycle. When an instruction accesses 

memory, it is removed from this loop and waits on memory in another queue (SFU queue) . This is 

similar to Vertical Micro-threading (VT) as will be discussed in chapter 3, but with one main difference, 

being that the threads in HEP are stored in the memory queue, while in micro-threading, the micro

threads are stored in the registers. The problem with HEP is that to tolerate long memory access 

latencies, a large number of threads and non-blocking memory accesses are necessary . 
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Figure 2.6 Coutrol loop of a HEP pipeline /53/. 
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The Tera Multi-Threaded Architecture (MTA) computer features a VLIW instruction set, a three

dimensional toroidal interconnection mesh network of pipelined packet-switching nodes, uniform 

access time from any processor to any memory location, and zero-cost synchronization and swapping 

between threads of control (53 , 8, 28, 27, 7]. The uniform access time is accomplished through 

distributing the resources (i.e., processors, data memory units, 1/0 processors , and 1/0 cache units) 

uniformly throughout the network, instead of locating the processors on one side of the network and 

memories on the other. This allows data to be placed in memory units adjacent to the appropriate 

processor when that is possible and otherwise, generally, maximizes the distance between potentially 

interfering resources (8]. The Tera MTA exp loits parallelism at all leve ls, from fine-grained !LP within 

a single processor to parallel programming across processors, to multi-programming among several 

applications simultaneously. As a consequence, processor scheduling occurs at multiple levels, and 

managing these levels introduces some unique and challenging scheduling problems [7]. The Tera MTA 

contains 128 thread contexts and register sets per processor node to mask remote memory access 

latencies effectively. This is considered too much overhead in order to tolerate such latencies, as a 128-

register set is expensive to implement in logic. Figure 2.7 shows the Tera MTA 256 multiprocessor 

where the interconnection network is a I 6x l 6x 16 three-dimensional sparsely populated torus 
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architecture, with 4096 pipelined packet-switching nodes. Every processor posseses a clock register 

which synchronizes exactly with its counterparts in the other processors and counts up once per clock 

cycle [53]. The average latency in the Tera is about 70 clock cycles. This means that when a latency 

happens, this requires 70 different instruction streams to be running on each processor in order to 

tolerate such latency. The Explicit-Dependence lookahead technique detailed in [8] allows streams to 

issue multiple instructions in parallel, which reduces the number of streams needed to achieve peak 

performance. 

3D Toroidal Mesh (l 6xl 6xl 6) 

Figure 2.6 The Tera MTA 256 Computer System /53/. 

2.7.2 Block Interleaving 

In this approach, a sing le thread continues to execute unti I it encounters a situat ion that triggers a context 

switch to another thread [53]. Such a situation could be a long-latency operation, which usual ly causes the 

pipeline to be flushed and a new register set is used . Examp le implementations of this multithreaded 

architecture are: 

• Sun MAJC-5200 Chip Multi-processor 

The Microprocessor Architecture for Java Computing (MAJC) processor architecture [65 ,60] from Sun 

Microsystems is based on a variable-length VLIW instruction set. Each Processing Unit (PU) contains 

I to 4 Functional Units (FUs). Each FU is viewed as a RISC processor in itself and is the basic building 

block of a PU. Individual instructions are issued to these FUs. Also, a new technique referred to as 

Space Time Computing (STC), is used to enable speculative threads (future instruction streams) to 

execute across separate processor units, which substantially improves performance of many single

threaded and multithreaded applications. For example, if we have two processors on a chip, then two 

threads (Head and Speculative) execute on separate processors. They operate in a different space 

(speculative heap) and in a different time [60] . Also supported is Vertical Multithreading (VMT), where 

the CPU switches to a new instruction stream (thread) whenever there is a cache miss . Each processor 

can switch between four different threads. The large register file maintains these four thread references. 
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• Nanothreading 

Nanothreading [53 , 24] proposed for the Dansoft processor breaks away from full multithreading by 

introducing a nanothread that executes in the same register set as the main thread. The DanSoft 

nanothread requires only a 9-bit PC, some simple control logic, and it resides in the same page as the 

main thread. Whenever the processor stalls on the main thread, it automatically begins fetching 

instructions from the nanothread . Only one register set is available, so the two threads must share that 

register set. Typically, the nanothread will focus on a simple task, such as prefetching data into a buffer, 

which can be done asynchronously to the main thread. 

In the DanSoft processor, nanothreading is used to implement a new branch strategy that fetches both 

sides of a branch. A static branch prediction scheme is used, where branch instructions include 3 bits to 

direct the instruction stream. The bits specify eight levels of branch direction. For the middle four cases, 

denoting low confidence on the branch prediction, the processor fetches from both the branch target and 

the fall-through path. If the branch is miss-predicted in the main thread, the back-up path executed in 

the nanothread generates a misprediction penalty of only I to 2 cycles. 

The Dansoft processor proposal is a dual-processor CMP, called Dan 2./33, each processor featuring a 

VLIW instruction set and the nanothreading technique. Each processor is an integer processor, but the 2 

processor cores share a floati ng point unit as well as the system interface. 

However, the nanothread technique might also be used to fill the instruction issue slots of a wide 

superscalar approach as in simultaneous multithreading. Finally, nanothreading is proposed in the 

context ofa block-inter leaving multithreading technique. 

2.7.3 Other Multithreading Architectures 

• Simultaneous Speculation Scheduling (S3) 

The architectu re of Simultaneous Speculation Scheduling (SJ) is a combined compi ler and hardware 

technique to control multiple path execution [53, 67]. The S3 technique can be applied to dual path 

branch speculation in case of unpredictable branches and to multiple path speculative execution of loop 

iterations. In this approach, separate threads are generated by the compiler that harnesses thread-level 

speculation by speculating on the outcome of branches executing in parallel on a multithreaded 

microprocessor. Loop-carried memory dependencies that cannot be disproven by the compiler are 

handled by data dependence speculation. The architectural requirements are the ability to run two or 

more threads in parallel and three new instructions (fork, sync, wait) to control threads. This technique 

is targeted at simultaneous multithreaded, nanothreaded, and micro-threaded processors, but can also be 

modified for implementation in multiscalar, datascalar, and trace processors [6]. Applying the S3 
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technique to branches in kernel sections of SPECint95 benchmark programs shows a performance 

increase of up to 40% compared to purely static scheduling techniques [53]. 

• Simultaneous Multi-threading (SMT) 

The SMT processor [34, 16, 3 8] which is the result of combining the multithreading and superscalar 

architectures together. This leads to having all hardware contexts active simultaneously and competing 

each cycle for all available hardware resources [53]. This is why SMT is also known as the 

Multithreaded Superscalar approach. SMT architecture implements a rather large register tile in which 

each thread can address 32 dedicated integer (and floating point) registers, and there are another 

additional I 00 integer and floating-point renaming registers. Due to the longer access time of the larger 

register file , the SMT pipeline must be extended by using a two-cycle register read and a two-cycle 

register write [34]. The first commercial implementation of the SMT processor is the Intel Xeon 

implementing Hyper-Threading, which is the commercial name chosen by Intel for its SMT architecture 

[30]. 

• Dynamic Multi-threading (OMT) 

The DMT processor [34, I] also uses an SMT pipeline to increase processor utilisation, except that the 

threads are created dynamically from the same program. The hardware breaks up a program 

automatically into loops and procedure threads that execute simultaneously on the superscalar 

processor. 

JI 2.8 Summary and Conclusions 

Th is chapter presented a survey of different microprocessor architectures and how they tolerate high latency 

and non-determinism in instruction execution. 

It was then shown that the solution to the latency-tolerance problem by each one of these architectures is 

both offset and compromised by the high overheads of the dataflow approach, the speculation involved in 

the superscalar approach, and the long context switch time introduced by the multithreading architecture. 

This is where Micro-threading proposes a solution as a new approach towards highly efficient latency

tolerance and elimination of non-determinism through the use of micro-threads drawn from the same 

context. This is covered in the next chapter. 
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CHAPTER THREE 

INTRODUCING MICRO-THREADING AS A 

SOLUTION TO THE PROBLEM OF 

HIGH-LATENCY 

3-1 

In this chapter, the Micro-threading architecture as a proposed solution to the problems of high

latency and non-determinism, is formally introduced and described. The material presented here 

is based mainly on research work carried out by Jesshope [J 3, 32} and Jesshope and Luo [34, 39, 

33} and then surveyed by the author [5,6}. 
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3.1 Introduction 

It is was shown in the previous chapter (Ch.2) that the so lution to the latency-tolerance problem by each one 

of the different microprocessor architecture families is offset by the high overheads of the data flow approach, 

the speculation involved in the superscalar and VLI W approaches, and the context switch time introduced by 

the multithreading architecture. This is where Micro-threading is proposed as a solution to provide a new 

approach towards highly efficient latency-tolerance and elimination of non-determinism through the use of 

micro-threads drawn from within the same thread context. 

This chapter starts with section 3 .2 where micro-threading is first introduced. Then, a brief review of how 

micro-threading handles the issue of contro l transfer is covered in section 3.3. Section 3.4 introduces the 

basics of implementing micro-threading on a multi-CPU chip, wh ile section 3.5 reviews the micro-threading 

vector instruction set architecture. This chapter ends with summary and conclusions in section 3.6. 

11 3.2 What Is Micro-threading? 

Micro-threading was introduced in [I 3, 34, 5, 6]. Simply put, micro-threading is multithreading within a 

single thread context [ 13] . In the micro-threading architecture, a thread (also known as micro-thread) is just 

a reference to a program counter. Non-deterministic events, such as branches and synchronisations, which 

may fail , will cause a new thread (program counter) to be executed, which may happen on every cycle. 

Thus, micro-threading combines the best of both block and cycle-by-cycle thread interleaving techniques. 

With the expectation that such threads will be rather small, maybe only a few instructions long, it is 

imperative that the overheads for fork, join and synchronisation are extremely low [ 13]. 

While existing multithreaded architectures are implicitly based on the assumption that latency tolerance 

requires massive parallelism, which must be found from diverse contexts, the quantitative analysis carried 

out for the efficiency of multithreaded execution as a function of the number of threads, shows that there are 

fundamental reasons for the efficiency to grow very rapidly with the number of threads [ I 3] . This has been 

verified in [39] and, therefore, justifies the micro-threading approach, where the original goal of latency 

tolerance is achieved with only relatively few threads; these can easi ly be drawn from within the same 

referential context and do not, therefore, require the heavy weight hardware solutions of conventional 

multithreading [ I 3]. This approach attempts to overcome the limitations of RISC instruction control (branch, 

loop, etc.) and data control (data miss, etc.) by providing such a low context switch time that it can be used 

not only to tolerate high latency memory, but also to avoid speculation in instruction execution [34]. It is, 

therefore, able to provide a more efficient approach to instruction pipelining [34]. 
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II 3.3 Micro-threaded Control Transfer 

Micro-threading performs true dynamic scheduling of several instruction streams by introducing the explicit 

notion of independent points of control (i .e. the manipulation of multiple program counters by the processor) 

113, 5, 61 . Generally, a PC represents the minimum possible context information that can be kept for a given 

micro-thread, and it is the main reference to a micro-thread in the suggested micro-threading architecture 

113, 5, 61. Since several micro-threads can be act ive simultaneously, an explicit storage for their PCs, called 

the Continuation Queue, must be provided. This is associated with the instruction fetch logic at the entry 

point of the pipeline as shown in Figure 3. I below 113, 5, 6 I. 

Next address .. deterministic 
Horizontal Transfer (HT) 

(PC=PC+ 1) 
block interleaving 

Instruction 
Fetch Logic further pipeline stages 

PCl 
PC2 
PC3 

ready 
threads 

Next address .. non-detem1inistic 
Vertical Transfer (VT) 

(PC=head of CQ) 
cycle-by-cycle interleaving 

Figure 3. 1 Micro-threaded Control Transfer/ 13, 5, 6]. 

In a normal RISC pipeline, the next address is transferred from the first stage of the pipeline in order to 

allow the next instruction to follow without delay. Branch instructions will normally involve speculation to 

predict the branch to be taken. If this prediction fails , any subsequent change of state must be "cleaned- up". 

This conventional mechanism of transferring control is called Horizontal Transfer (HT), and the alternative 

mechanism proposed by micro-threading, which utilises the continuation queue, is called Vertical Transfer 

(VT) . In a vertical transfer, the next instruction is fetched from the PC at the head of the continuation queue. 

This is performed on non-deterministic operations 113, 5, 61, 
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3.4 Micro-threading on a Multi-CPU 

There are a number of different problems in designing a multi-threaded multi-CPU, with all CPUs sharing 

the same L2 cache. The major principle decision is whether a single or multiple register files shou ld be 

implemented . Using a single register file means a potentially slow register access and possibly two pipeline 

cycles for an access, as demonstrated previously in the SMT architecture [34,5, 16,38] . Additionally, there 

will be a large area overhead for multiple read ports to support all of the CPUs. On the other hand, there are 

also difficulties in the implementation of multiple register files , one per CPU . Firstly, there is a requirement 

for inter-CPU synchronisation and possibly data transfer. However, this is not so difficult to implement [5]. 

What poses the greater problem is the requirement to statically allocate resources, where register identifiers 

are allocated by the compiler for different threads that are executing a loop body, for examp le. This means 

that the compiler would effectively have to make a decision regarding thread allocation to each CPU, 

without any regard to the resolution of non-determinism and, hence, issues of load balancing. Clearly, this is 

not a good so lution [5]. 

The proposed micro-threading solution to this problem is to effectively have multiple instances of exactly 

the same loop being executed (expecting the register resources not to be shared by the parallel threads). 

Ideally, one parametric loop body is written and then instanced as many times as the compiler thought 

necessary (i.e . depending on the number of CPUs) [5]. This situation is similar to register renaming, where 

additional registers are used to remove write-after-read and write-after-write hazards. Thus, a two-level CQ 

(Continuation Queue) is proposed. The first level holds ready threads that have not yet been allocated to any 

CPU. The register requirements for these ready threads are generic and subject to the limit of registers in any 

CPU 's register file. This first level CQ is called the Global Continuation Queue (GCQ). From the GCQ, 

threads are allocated to a CPU but only when that CPU has resources availab le. Once allocated, the thread 

runs to completion on that CPU and is held in the CPU's own CQ, the second level, called the Local 

Continuation Queue (LCQ). Hence, there is a pool of unallocated threads in the GCQ, and a pool of 

allocated threads being held in the LCQ for each CPU. The allocation mechanism must ensure that register 

resources are available on the CPU where the threads are to be executed, and must rename the thread ' s local 

registers from their generic form to the actua l registers allocated [5]. 

The proposed architecture for a single micro-threaded CPU is shown in figure 3.2, while figure 3.3 shows 

the multiple-CPU organization. For more details, see [32]. 
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Figure 3.2 Micro-threaded Processing Unit /5, 6/. 
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3.5 Micro-threaded Vector Instruction Set Architecture (ISA) 

The following discussion is extracted from [32] where the micro-threaded vector instruction set architecture 

is described in detail. This is a combination of two different techniques from quite different eras in terms of 

computer architecture; one of which, using a vector instruction set has a long history dating back to 

pipelined vector supercomputers, such as the Cray I and its successors. The other technique, multi

threading, is also well understood . The comb ination can exploit both loop- and instruction-level parallelism 

without the need for specu lation [32, 6]. This is important in the design of efficient chip-multi-processors, 

where large amounts of ILP are required . This novel approach proposed in [32, 6] combines both vertical 

and horizontal micro-threading with vector instruction descriptors, where it was shown that a family of 

threads can represent a vector instruction with dependencies between the instances of that family, the 

iterations. This technique gives a very low overhead in implementing an n-way loop and is able to tolerate 

high memory latency [32]. The use of micro-threading to handle dependencies between threads provides the 

ab ility to trade off between instruction level paralle lism and loop para llelism [32, 6]. 

In a micro-threaded, vector architecture, threads are used to execute multiple loop bodies simu ltaneously, 

which provides paralle lism to [3 2, 6]: 

0 Support multiple processors 

o Keep the pipelines full in the presence of both data and contro l dependencies, and 

0 Tolerate high latency memory events . 

To achieve parallelism on a large sca le, it is imperative that just one instance of the loop body be used fo r all 

iterations. This is for reasons of code size and portability [32, 6] . 

In pipeline vector architectures, such as the Cray I [32 , 6], vector instructions group single operations across 

the iterations in a loop. Thus a loop is transformed from a sequential execution model, where each 

instruction in the loop is executed for each iteration of the loop, to one where, each instruction in the loop is 

executed for all iterations of the loop before the next is executed. This grouping of the multiple scalar 

operations into vector operations allows the architecture to organise memory access and pipeline operation 

to achieve the optimal throughput of one cycle per operation, even for chained operations [6, 26]. Because of 

the parallel semantics of this execution methodology, there can be no dependencies between loop iterations 

[32, 6] . 

In a micro-threaded vector architecture, complete loop bodies can be executed in parallel for each loop 

index. This allows instruction level parallelism as well as loop parallelism to be exploited [32 , 6]. Therefore 

any loop generates parallelism, even one containing a dependency between successive iterations. Code-
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generation techniques normally used to maximise ILP at compile time, such as loop unrolling and software 

pipelining occur automatically at run time through dynamic thread creation. Thus the depth of unrolling is 

determined by the resources available on the target processor rather than by the compiler, giving more 

portable code [32, 6]. 

One problem faced , in devising a scheme to support the above execution model , is in the use of registers . 

This problem is addressed in [32, 39], as well as the means by which instruction classes may be instanced as 

independent parallel micro-threads along with an illustration of the speed-up that may be obtained compared 

to using a conventional loop. 

3.6 Summary and Conclusions 

This chapter presented micro-threading as a proposed solution to the problem of tolerating high-latency and 

non-determinism in existing and proposed microprocessor architecture. 

The next chapter reviews the hardware des ign methodology and design tools used 111 designing and 

implementing the baseline MIPS RISC microprocessor onto an FPGA chip. 
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CHAPTER FOUR 

HARDWARE DESIGN METHODOLOGY 

AND 

EDA DESIGN TOOLS 

Good design doesn't j ust happen. 

Good design is the end result of a search for inspiration [2] . 

4-1 

This chapter outlines the hardware design methodology, processes, challenges, CAD/EDA design 

tools involved, and lessons learnt from synthesizing a MIPS R2000 RISC microprocessor onto an 

FPGA VLSI chip. The chapter starts with an overview of the design process and hierarchy 

partitioning. Then, the issues of implementing the datapath (combinational logic) and memory 

(sequential logic) components onto the chosen Xilinx Virtex-II FPGA are discussed. This 

determines the efficiency with which a design can be implemented on an FPGA chip. 
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4.1 Introduction 

A micro-threading processor is based on the conventional MIPS R2000 RISC architecture, which is 

enhanced with the micro-threading architectural add-on components [13 ,34,32,39] . To be able to synthesize 

a hardware implementation of a micro-threading microprocessor, the baseline MIPS R2000 RISC processor 

has to be synthesized first [2]. 

In this chapter the author first addresses the issue of complex digital system design. This is covered in 

section 4.2. Then, in section 4.3, the design tools and target FPGA chip used in this research are outlined , 

along with my design methodology. Following on from this, section 4.4 illustrates the process of performing 

the design and synthesis. This is followed by the RTL description , synthesis, and simulation of a multiplexer 

as an example design in section 4.5. Finally, section 4.6 concludes this chapter with a summary and 

conclusions. 

114.2 Complex Digital System Design 

4.2.1 Design Project Workjlow 

A modular, layered approach is taken in designing complex digital systems. As outlined in figure 4.1, this 

process begins at the top with a specification of the requirements , and the final result is the description for 

manufacture and tape out of the system, usually implemented on a VLSI chip. 

Requirements 

Functional Design 

Register Transfer 
Level (RTL) Design 

Logic Design 

Circuit Design 

Physical Design 

Description for Manufacture 

Figure 4.1 Design Project Work.flow /75}. 
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4.2.2 Design Views and Abstraction Levels 

Any digital system can be described in one or all of the three different design views and abstraction levels 

represented by the Y-chart [75], which is outlined in figure 4.2 below. An example would be to describe a 

microprocessor in terms of its algorithm and instruction set architecture (behavioural), or its gate layout 

(phys ical), or in terms of an interconnection of its internal datapath and control units (structural). 

BEHAVIOURAL 

algorithms 
register transfer 
Boolean expressions 

transfer functions 

PHYSICAL 

processor 
registers 

gates 
transistors 

cells 

modules 

chips 

boards 

STRUCTURAL 

Figure 4.2 Y-Clrnrt Representation for Design views and Abstraction Levels /75/. 

LESSONS LEARNT 

The pros and cons for each of the above three design descriptions are listed below [2]. 

• Behavioural Description 

• Pros. Ease of design at the highest leve l of abstraction without concern of the underlying hardware. 

• Cons. Requires tremendous optimization effort (and very long synthesis time) for the synthesis 

compiler to generate the hardware layout. This high dependence on the synthesis tools to ensure a 

consistent result is also a concern. 

• Structural Description 

• Pros. Designer has best control over exactly what hardware to synthesize. Thus, less effort is 

required from the synthesis compiler. 

• Cons. More manual effort (and time) required from designer. 

• Physical Description 

• Pros. Best representation for actual chip/board final layout/tape-out. 

• Cons. The most tedious and complicated style of design. 
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4.2.3 Hierarchical Design Approach 

The starting point for a hierarchical design approach is the structural representation (as per figure 4.2) . 

Figure 4.3 shows an example design hierarchy for combining logic gates into 32 reusable blocks of I-bit 

ALUs (Arithmetic Logic Units), which in turn are combined into one 32-bit ALU at the top of the design 

hierarchy [40] . 

1-bit 
ALU 

1-bit 
ALU 

No.1 No.2 

Gates Gates 

•••••••• 

Figure 4.3 Design Hierarchy and Reusable Blocks /40/. 

LESSONS LEARN T 

These are listed below [2]. 

1-bit 
ALU 

No.32 

Gates 

0 Tackle the design starting at the top of the hierarchy (Top-Down approach). 

D Divide and conquer. 

o The top design is repeatedly broken down (partitioned) into smaller blocks (modules, entities). 

o Reusable blocks are instanced (used) again. 

o Firstly, construct the smallest modules (at the bottom of the hierarchy), then combine them together 

working your way up the hierarchy (Bottom-Up approach) . 

SUMMARY 

Break (partition) the design into smaller modules (Top-Down) then build it up from these smaller modules 

(Bottom-Up). 
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4.2.4 Module Design Entry 

Most CAD/EDA (Computer-Aided Design/ Electronic Design Automation) tools would allow a module (the 

smallest designab le and reusable block in your des ign hierarchy) to be described using one of the following 

methods [2]: 

• Schematic Editor 

Here, the module is constructed from a hierarchy of smaller components. These could be gates, library 

primitives, or smaller modules. 

• Finite State Machine (FSM) Editor 

The FSM editor is an HDL code generator used for creat ing, edi ting, and typically simulati ng FSMs. 

This option is best for modules represented in the form of an FSM. Example modules wou ld be contro l 

units. 

• HDL Editor 

This is used when describing a module in a text-based Hardware Description Language (HDL). 

Examples of such languages are VHDL and Verilog. 

4.2.5 Digital Design with VHDL 

VHDL (Very High Speed Integrated Ci rcuit Hardware Description Language) is a text-based industry 

standard (IEEE- I 076) language for describing hardware and digital systems at multiple leve ls of abstraction 

(behav ioura l, RTL, structura l, logic, .. ) [40]. VHDL is the language of cho ice fo r this research due to its 

sui tabi lity for describing large complex digital systems like microprocessors [2] . 

LESSON LEARN T 

In VHDL, any module (block) which is ca lled Entity, must be associated with an Architecture describing its 

behav iour [2 ,75]. 

4.2. 6 Best Design Practices: More Lessons Learnt 

The final lessons and conclusions are summarized below [2]. 
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• Hierarchy and Structure 

The design must be structurally broken down into smaller modules (blocks), each of which can be 

comprised of other even smaller modules, and so on. This establishes a hierarchy of design modules. 

• Behavioural Description 

Never represent the whole design in one flat behavioural algorithm. Instead, break the design down into 

a hierarchy of smaller modules. 

4.3 CAD/EDA Tools and Target Device 

Since Field Programmable Gate Arrays (FPGAs) and their associated CAD/EDA software design tools are 

so popular nowadays for rapid prototyping, a very high-density FPGA has been chosen as the target device 

for this research [2]. 

4.3.1 Field Programmable Gate Arrays (FPGAs) 

First introduced in 1985 by Xilinx Inc., an FPGA is a general-purpose SRAM-based programmable logic 

device (PLO) customised package. Figure 4.4 shows the structure of an FPGA, which comprises 

Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), interconnections and other resources [8] . 

The advantages ofFPGAs include Non-recurring Engineering (NRE) costs, shorter time-to-market, low risk , 

and hardware prototyping (H/ W Emulation) [2] . 

Configurable 
Logic Block 

(CLB) 

Figure 4.4 Structure of an FPGA chip /23/. 
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4.3.2 Xilinx Virtex-11 Platform FPGA 

The Xilinx Yirtex-11 XC2V8000 is the chosen target device for prototyping this research design as it has 8 

million re-configurable system gates. It also has a 420 MHz internal clock, 3 Mb of dual-port RAM in 

multiples of 18 Kb block SelectRAM, up to 1.5 Mb of distributed SelectRAM, dedicated 18-bit x 18-bit 

multiplier blocks, fast look-ahead carry logic chains, 12 DCM (Digital Clock Manager) modules, precise 

clock de-skew with GCLK (Global Clock), 93 , 184 internal registers/latches with CE (Clock Enable), and 

93 ,184 Look-Up Tables (LUTs) [69] . Figure 4.5 shows the internal structure of this FPGA. The XC2Y8000 

has enough chip resources to implement the design outlined in this thesis . 

IOB 
/ 

Global Clock Mux--_,,..,.c....+-VW/ 

//.,,// BB~~BBBB~~BB ~--/_.,,~ •• •••• •• 

\ 

Progmmrnable I/Os 

\ 
\ 

\ 
\ 

Figure 4.5 Xilinx Virtex-11 Platform FPGA /69/. 

•• •••• •• 
•• ~••••~~•• •• •••• •• •• •••• •• • •••• •• 
I I I I I I 

CLB 8 locl< SflloctRAM Multiplic;.r 

4.3.3 Xilinx /SE Design Tools for FPGAs 

Figure 4.6 shows the design flow for FPGAs when using Xilinx ISE (Integrated Synthesis Environment) 

design tools. ISE version 5.1 was used for this research. Following are the four main stages/steps involved in 

the design flow process [72]. 
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Design -.... Design Verification 
Entry + 

I 
Functional 

I , ,. Simulation 

Design • 
Synthesis 

, , , , J Static Tuning I 
Analysis 

Design ... 
Implementation r+j Back_ i ... 

Tu11illg i .. , 
Annotalwn Si,rm/ation 

,, 
Download to a ... I In-Circuit 

' Xilinx Device .. I Verification 

Figure 4.6 Xilinx /SE Design Flow for FPGAs /72/. 

• Design Entry 

T he des ign is created using a schemati c editor, HDL editor, or state mac hine editor. This step 1s 

perfo rmed in th is research. 

• Design Synthesis 

T he synthes is co mpiler in fe rs the ha rd ware components. T hi s step is perfo rmed in thi s resea rch. 

• Design Implementation 

Implementing to a specific FPGA architecture (Spartan, Virtex, .. ) . Optiona lly program a PROM or 

EPROM for subsequent programming of the FPGA chip. This step is beyo nd the scope of thi s research. 

• Design Verification 

Using a gate-level s imulator or download cable, to test and ensure that the des ign meets the timing 

requirements and functions properly. This step is beyond the scope of thi s research. 
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4.4 Performing The Design and Synthesis 

4.4.1 Design Methodology 

Figure 4.7 outlines in more detail the author's design methodology adopted for this research . This design 

methodology is based on Xilinx technology [73]. 

Sche1r.a.-ci HDL S-cate 

C Design r-~achines 

ECS Entry StateCad 

... + 
Test~ench sirn.ulation 

HDL . ~ 

r MXE -
B•encher 

~, 
Synthesis 

Design Entry (XST) 

CoolRunner Spartan 
~,. XC9500 Virtex r 

FitL-er Irr:oleir.en 
CPLD Fitter 'C 

I I 

J.. 

I 
Chip-

Viewer 

?rograrr. 
iMPACT 

Figure 4. 7 The author's adopted design methodology [73[. 

LESSONS LEARNT 

These are listed below [2 ,72,73]. 

o Take each module separately, starting at the bottom of the hierarchy. 

D Design it using VHDL, or schematics, or from an FSM diagram. 
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D Synthesize the logic hardware using XST (Xilinx Synthesis Technology). 

D Check the synthesis report for percentage of FPGA resources utilized and any errors (if any) . 

• Check the RTL diagram generated by XST for the resulting schematic of lower level modules used . 

• Create a testbench with the input test vectors (input signals). 

• Run the simulation to check that the functionality of the design is correct. 

• If not correct, then: 

• Repeat this process from the beginning by modifying the design. 

• Re-synthesize. 

• Re-simulate. 

• This iterative process continues until the functionality is satisfied . 

• Move on to design the next module in the same level of the hierarchy, then in the next level up. 

4.4.2 VHDL Simulation vs. Synthesis: Lessons Learnt 

• VHDL for Simulation 

A simulatable VHDL model of a block is usually used for describing the behaviour/functionality at the 

highest levels of abstraction. This is not necessarily synthesizable, as it is not necessarily bound to any 

device architecture (FPGA, ASIC, .. ). This is because only a subset rather than all of the YHDL 

language is synthesizable [2]. 

• VHDL for Synthesis 

This is the best sty le for writing VHDL and is guaranteed to generate hardware logic as it must be 

bound to a specific device architecture. It is still not always optimal as the synthesis tools might 

generate much more logic than originally intended and take a long time in inferring (synthesizing) it [2] . 

• VHDL for Optimal Synthesis 

Understanding the underlying device architecture allows for writing synthesizable VHDL code that 

generates the exact amount of hardware logic that you want in the least amount of time [2]. 
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4.5 Example: Designing a Multiplexer 

This section elaborates on the design process for a multiplexer, as an examp le of utilising the concepts 

presented so far in the previous sections. This design process is the methodology of choice followed 

throughout this research. 

• RTL Description 

One basic logic function that is used quite often in the MIPS hardware implementation is the 

multiplexer. A multiplexer is a combinational logic component. The multiplexer is described in detail on 

page B-9 of[47] . 

• Design Enlty and Synthesis 

Below is the VHDL code for synthesizing a I-bit 2-to-l multiplexer from the Xilinx ISE library using 

Schematic Editor: 

-- Vhdl model created from schematic C: \Xilinx\virtex2\data\drawing\m2_le . sch 

LIBRARY ieee ; 

USE ieee . std_logic 1164 . ALL ; 

-- Vhdl model created from schematic C : \Xilinx\virtex2\data\drawing\m2_1 . sch 

LIBRARY ieee ; 

USE i eee . std_logic 1164 . ALL ; 

US E ieee . numeric std .ALL ; 

-- synopsys translate_off 

LI BRARY UNISIM ; 

USE UNI SIM . Vcomponents. ALL ; 

-- syno ps ys translate o n 

ENTITY M2 1 MXILINX IS 

PORT ( DO IN 

Dl IN 

so IN 

0 OUT 

end M2_1_MXIL I NX ; 

STD_LOGIC ; 

STD LOGI C; 

STD_LOGIC ; 

STD_LOGIC) ; 

ARCH I TECTURE SCHEMAT I C OF M2 1 MXILINX IS 

SIGNAL MO 

SIGNAL Ml 
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ATTRIBUTE BOX TYPE STRING ; 

COMPONENT AND2 

PORT ( IO IN STD_LOGIC ; 

Il IN STD LOGIC ; 

0 OUT STD_LOGIC) ; 

END COMPONENT ; 

ATTRIBUTE BOX TYPE OF AND2 COMPONENT IS " BLACK_BOX "; 

COMPONENT AND2Bl 

PORT ( IO 

Il 

0 

END COMPONENT; 

IN 

IN 

OUT 

STD LOGIC; 

STD LOGIC ; 

STD_LOGIC) ; 

ATTRIBUTE BOX TYPE OF AND2Bl COMPONENT IS " BLACK BOX"; 

COMPONENT OR2 

PORT ( IO 

Il 

0 

END COMPONENT ; 

IN 

IN 

OUT 

STD LOGIC ; 

STD_LOGIC; 

STD_LOGIC); 

ATTRIBUTE BOX TYPE OF OR2 COMPONENT IS " BLACK_BOX" ; 

BEGIN 

I 36 9 : AND2 

PORT MAP ( IO=>Dl , I l=>SO , O=>Ml) ; 

I 36 7 : AND2Bl 

PORT MAP (IO=>SO , Il=>DO, O=>MO) ; 

I 36 8 : OR2 

PORT MAP (IO=>Ml , Il=>MO , O=>O) ; 

END SCHEMATIC; 

4-12 

The Xilinx ISE library schematic symbol for a I-bit 2-to-l multiplexor is shown in figure 4.8. 

M2 .1 
DO 

M2 1 i1 0 

01 

so 

Figure 4.8 RTL Schematic symbol for a I-bit 2-to-J multiplexer in Xilinx ISE library. 
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• Synthesis Results 

Using the Xilinx ISE synthesis tools, the hardware implementation for the above I-bit 2-to-l 

multiplexer, was generated. Figure 4.9 shows the resulting top level RTL symbol for the synthesized 

multiplexer while figure 4.10 shows the resulting top-level schematic diagram, which is also the gate 

level schematic. 

dO 0 

d1 

s0 

Figure 4.9 Resulting top level RTL symbol for the synthesized I-bit 2-to-l multiplexer. 

~>-~~~~~=======: .... ::_an_d.2_h_l __ _,o 1-----~.._:: ___ or_~ ___ o:1----[]) 

~-----< iO 0 

and.2 
oo--------;i1 

Figure 4.10 Resulting top level (is also gate level) schematic diagram/or the synthesized I-bit 2-to-l multiplexer 
of figure 4.9. 

• FPGA Device Synthesis Summary 

After the hardware implementation for the above I-bit 2-to- l multiplexer using the Xilinx !SE synthesis 

tools, the Synthesis Report was generated. The most important FPGA Device Synthesis Statistics from 

this report, are shown below: 

Design Statistics: 

# !Os 

Cel l Us age: 

# BELS 

# 

# 

and2 

and2bl 
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# or2 

# IO Buffers 

# 

# 

IBUF 

OBUF 

Device utilization summary: 

Number of bonded IOBs: 

Y Place-and-Route onto the FPGA 

1 

: 4 

: 3 

: 1 

4 out of ll08 0% 
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In figure 4 .11, FPGA Editor shows the synthesized 1-bit 2-to- l multiplexer after place-and-route onto 

the target Virtex-II FPGA chip. Notice that these are the small blue interconnections at the lower left 

corner in the figure. 

Figure 4.11 FPGA Editor showing the synthesized I-bit 2-to-1 multiplexer after place-and-route onto the target 
Virtex-II FPGA chip. 

• Simulation Results 

Figure 4.12 shows the waveform results of simulating the I-bit 2-to-l multiplexer VHDL behavioural 

model in Mentor Graphics Mode!Sim by accepting input test vectors from a suitable VHDL testbench. 

All these waveforms are in binary format. It is clear that the resulting synthesized hardware functions 

according to the specified behavior of the multiplexer. This concludes the design cycle for this 

component. 
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Figure 4.12 Results of simulating the synthesized I-bit 2-to-1 multiplexer using Mode/Sim. 

ummary and Conclusions 

This chapter presented the concepts and design methodology followed throughout this research in designing 

the hardware components and then the finalized MIPS R2000 microprocessor implementation on the Xilinx 

Virtex-II FPGA chip. 

The next chapter reviews the MIPS R2000 instruction set architecture (also known as just ·'architecture"). 

159.899 M.Sc. Computer Science Firas Al-Ali 99203447 



MICRO-THREADING AND FPGA 11\IPLEMENTATION OF A RISC MICROPROCESSOR 5-1 
Part Two Ch.5 Review of'M!PS R2000 Architecture 

CHAPTER FIVE 

REVIEW OF 

MIPS R2000 ARCHITECTURE 

This chapter presents a brief review of the basics of the MIPS R2000 microprocessor Instruction 

Set Architecture (ISA), or simply just known as Architecture. This is the interface between the top

most layer of the microprocessor hardware and the lower-most layer of the sofiware. The basics 

outlined in this chapter constitute the foundation on top c~f which the rest of the chapters are 

based This chapter is extracted mainly from excerpts from {/.7]. This chapter is annotated with 

the author's comments and tailored adaptation for the context of this research. 

\ 59.899 M.Sc. Computer Science Firas Al-Ali 99203447 



M ICRO-THREAD ING AND F PGA IMPLEMENTATION OF A RISC M ICROPROCESSOR 5-2 
Part Two - Ch.5 - Review of M IPS R2000 Architecture 

5.1 Introduction 

In today's computer systems, both the hardware and software consist of hierarchical layers, with each lower 

layer hidi ng detai ls from the layer above. This princip le of abs1raction is the way both hardware designers 

and software designers cope with the complexity of computer systems. One key interface between the level s 

of abstraction is the inslrnction set archi1ecture (also known as !SA or simply just architecture): the interface 

between the hardware and the lowest- level software. This abstract interface enables many i111plemen1ations 

of varying cost and performance to run the same identical software [ 4 7, p 18]. 

This leads to the fact that the MIPS R2000 architecture described herein and in detai l in (47], can be 

implemented either in a custom VLSI microprocessor chip, an embedded micro-controller, or in an FPGA 

chip; the latter be ing the scope ofa major portion of this thesis work. 

Any microprocessor can be programmed directly (exp licitly) by wr iting programs (code) direct ly in 111achi11e 

language. The words of a machine 's language are cal led instructions, and its vocab ulary is cal led an 

ins/ruction set. In thi s chapter, we wi II look at a subset of the MI PS R2000 instruction se t, both in the fo rm 

written and understood by humans (mnem onics form - asse111bly language) and in the form recognised and 

processed by the hardware (bina ,y form - machine language) (47, pp I 06-107] . This instruction set subset is 

suffi cient enough to implement a basic functioning MIPS R2000 microprocessor, as will be covered in 

forthcoming chapters. 

This chapter starts the MIPS review with sec ti on 5.2 highl ighting the underlying principles of MIPS 

hardware design , complemented by section 5.3 out lining the nomenclature implemented in th is thesis. 

Section 5.4 fo llows with coverage of the ba ic MIPS instruction fo rmats. Section 5.5 concludes the chapter 

with a su mmary. 

5.2 Underlying Principles of MIPS Hardware Design 

The MIPS R2000 is based on the RISC (Reduced Instruction Set Computer) principle, also known as the LIS 

(load/Store) pr inc iple [ 17]. Th is is because the MIPS architecture does not work directly on operands that 

are found in the main memory, but rather these operands must be loaded from the mai n memory into the 

local reg ister file (within the microprocessor) before operating on them , whi le the resulting operand from the 

operation can be stored back into the local register file , then into main memory. 

This section covers the four under lying princip les that were adhered to when or igina lly design ing the 

hardware for the MI PS microprocessor. These princip !es are [ 4 7]: 
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Design Principle 1: Simplicity favours regularity 

The MIPS architecture is ri g id in that each MIPS arithmetic instruction performs onl y one 

operation and must always have exactly three operands: two source operands (to be operated upon) 

and one destination operand [4 7, pp I 07-108) . Ari thmetic operations are covered in section 5.4. 

Requiring every arithmet ic instruction to have exactly three operands conforms to the phil osophy of 

keeping the hardware simple: hard ware for a vari able number of operands is more co mpli cated than 

hardware fo r a fi xed number [47, p108) . This same phi losophy applies to the instruction word 

length in the MIPS R2000 machine language; it 's fixed to I word = 32 bits fo r all instructions. 

Design Principle 2: Smaller is faster 

An operand in a MIPS instruction can either be a constant/ literal/immediate va lue supplied in the 

instruction itse lf, or a value stored in a reg ister in the local register fil e. These registers are visible 

to the programmer. Each register in the MIPS architecture is 32 bits wide (= I word) . The size of 

the register fil e in MIPS is 32 registers [47, pl 09). 

The small er-is -fas ter des ign principle may have had some histori cal bas is and is the reason for the 

limit to 32 registers. A very large number of reg isters would increase the cloc k cyc le time simply 

because it takes the electro nic signals longer time when they mu st trave l farther [47, pl 10] . Also, 

more registers simply means more complex instructi on decoding and higher instructi on latency. 

Guidelines such as "smaller is fas ter" are not abso lutes; 3 1 reg isters may not be fa ster than 32. Yet, 

the truth behind such obse rvations causes co mputer designers to take them se riously. In thi s case, 

the des igner must balance the programs demand fo r more registers with the need to kee p the clock 

cyc le fa st [47 , pl 10) . 

Design Principle 3: Good design demands good compromises 

A problem occurs when an instruction needs to be longer than the fixed 32 bits. This is usuall y the 

case in instructions with a constant/literal/ immediate operand value supplied in the instruction 

(refer to upcoming section 5.4), where the number of bits needed to represent the 

constant/litera l/immediate is more than what can be accommodated [47, p 118) . 

Hence, a conflict exists between the des ire to keep all instructions the same length (des ign principle 

I: simplic ity favours regularity) and the des ire to have a single unified instruction form at. This 

leads us to the third hardware design principle: Good design demands good compromises. 
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The compromise chosen by MIPS designers is, as mentioned earlier, to keep all instructions the 

same length , thereby requiring different kinds of instruction fo rmats for different kinds/catego ries 

o f instructions. These different instruction formats are described in section 5 .4 . 

Design Principle 4: Make the common case fast 

This des ign princ iple enta il s that common and frequently executed instructions are g iven more 

emphas is when designing the underl y ing hardware. 

An example would be the fact that the use of constant/ literal/immediate operands is quite co mmon 

in almost any code (series of instructions) . It is much fa ster to access a constant va lue if it is 

directly embedded within an instruction than if it is to be loaded from main memory [47, pl 46] . 

This is described in section 5.4.2. 

5.3 Nomenclature 

This thes is will ad here to the fo llowing nomenclature when referring to reg isters, memory locati ons, and 

their contents: 

$Reg: Actua l physical num ber of the specified reg ister, also known as reg isler specifier. 

{$Reg/ : Actual contents of register SReg. 

Memory: Address referring to memory location Memory. 

{Memory/: Actual contents of memory location Memory. 

Memory/ $Regj : Transfer program contro l to the memory location spec ified by the contents of 

reg ister $Reg. 

Memory{Memj: Transfer program contro l to the memory location specified by the contents of 

memory location Mem. 

Now that thi s nomenclature clarifies the conventions used in this thes is, the next section elaborates on the 

vari ous MI PS in struction fo rmats. 

Another issue, which was dec ided upon within the context of thi s research, is to adopt a word-addressable 

implementation as opposed to the original MIPS architecture, which implements a byte-addressable policy. 
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5.4 MIPS Instruction Formats 

Building upon the four underlying principles of MIPS hardware design (from section 5.2), this section 

describes the three main MIPS instruction formats . It is to be reiterated here that all instructions are of fi xed 

length (32 bits). A MIPS instruction consists of di st inct fields. MIPS instruction fi elds are given unique 

names to make them eas ier to discuss [47, pl 18]. Each fie ld has a va lue assigned to it. This value is in 

binary fo rmat (in machine language). However, for human readab ility, these fields are usually represented 

also in decimal format, which is the format I' ll be adopting throughout this chapter. 

An issue worth mentioning here is that all the binary numer ic values stored in registers are 2 's co mplement 

signed binary numbers [47, ch.4]. 

Following are the three main instruction fo rmats and their field layo uts. 

5.4.1 R-format Instructions 

The R-format instruction layo ut is used in arithmetic, and log ica l instructions. Figure 5.1 shows the generi c 

instruction encoding fo r such fo rmat. 

6 b its 5 bit s 5 bits 5 bits 5 b its 6 b its 

op rs rt rd lshamt l funct 

Bit s: 3 1 - 26 2 5-21 2 0 -16 15- 1 1 1 0 -6 5- 0 

Figure 5.1 R-format Instruction Encoding/ 47, 4/ 

Here is the meaning of eac h name of the fields [ I, p I 18]: 

• op: 

• rs: 

• rt: 

• rd: 

Bas ic operation of the instruct ion, traditionally ca ll ed the opcode. This has a unique value for 

each instruction as per the design of the ISA. Each in struction has a different set value fo r thi s 

fi eld and is usually represented in decimal format. 

The first so urce register spec ifier, usua ll y represented in decimal format. 

The second source register spec ifier, usually represented in decimal format. 

The register destination specifier, usually represented in decimal format. It receives the result of 

the operat ion. 
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• sham/: Shift amount. This is reserved for use in shift instructions only. All other instructions will have 

this field set to the value zero (This is the case for all instructions implemented in this research). 

• func t: Function. This field selects the specific variant of the operation in the op field , and is sometimes 

called the fun ction code. This has a unique value for each instruction as per the des ign of the 

IS A. Each instruction has a different set value for thi s field and is usually represented in dec imal 

format. 

Following is a subset of the R-format instructions implemented in this research . The syntax and operation 

fo r each instruction is shown (the opcode is underlined for emphasis) along with a brief description and a 

fi gure illustrating its encoding layout. 

• ADD (A ddition) 

Figure 5.2 

This in struction adds the operand value found in the flrs t source reg ister $Src I Reg (=[$S rc I Reg]) to the 

operand value found in the second source register $Src2Reg (=[$S rc2Reg]) and stores the result 

operand value in the destination register $DestReg (=[$DestReg]). Figure 5.2 illustrates the encoding 

for thi s instruction. 

Syntax: ADD $Dest Reg, $S rc I Reg, $Src2Reg 

Operation: [$Dest Reg] = [$Src I Reg] + [$S rc2 Reg] 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

0 srcl src2 dest 0 32 reg reg reg 

Bits: 31-26 25-21 20-16 15- 11 10-6 5-0 

ADD Instruction format /4 7/ 

• SUB (Subtraction) 

This instruction subtracts the operand value found in the second source register $Src2Reg 

(=[$Src2 Reg]) from the operand value found in the first source register $Src I Reg (=[$Src I Reg]) and 

stores the result operand value in the destination register $DestReg (=[$DestReg]). Figure 5.3 illustrates 

the encoding for this instruction. 

Syntax: SUB $DestReg, $Src I Reg, $Src2Reg 

Operation: [$DestReg] = ($Src 1 Reg] - [$Src2Reg] 
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6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

0 srcl src2 dest 0 3 4 reg reg reg 

Bits: 31 - 26 25- 21 20- 16 15-11 10- 6 5-0 

Figure 5.3 SUB Instruction fo rmat /4 7] 

• SLT (Set on Less Than) 

Thi s instruction sets the value in the destinat ion register $DestReg (=[$DestReg]) to I only if the 

opera nd va lue fo und in the firs t source register $Src I Reg (=[$Src I Reg)) is less than the operand value 

fo und in the second source register $Src2Reg (=[$Src2 Reg]). Otherwise, the va lue in the destination 

register $DestReg (=[$DestReg]) is reset to O (zero). Figure 5.4 illustrates the encod ing fo r thi s 

instruction. 

Syntax: SL T $DestReg, $Src I Reg, $Src2 Reg 

Operation: 

6 bits 

0 

Bits: 31 -26 

if [$Src I Reg] < [$Src2 Reg] 

then 

[$ Dest Reg] = I 

else 

[$DestReg] = 0 

5 bits 

srcl 
reg 

5 bits 5 bits 

src2 dest 
reg reg 

25- 21 20- 16 15- 11 

Figure 5.4 S L T Instruction format /47] 

• JR (Jump Registe,-J 

5 bits 6 bits 

0 42 

10 - 6 5 -0 

This instruction causes the instruction execution fl ow of the program (specified by the contents of the 

program counter register PC) to start fe tch ing the next instructi on from the memory location spec ified 

by the value stored in the register $SrcReg (=[$SrcReg]) . Figure 5.5 illustrates the encoding fo r thi s 

instruction. 

Syntax. JR $SrcReg 

Operation: go to Memory[$SrcReg] 
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Figure 5.5 

• 

Figure 5.6 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

0 src 0 0 0 8 reg 

Bits: 31 - 26 25- 21 20-16 15- 11 10 - 6 5-0 

JR Instruction form at [ 4 7] 

AND (Logical AND) 

This instructi on perfo rms a logical/binary AND operat ion on the operand value fo und in the.first source 

register $Src I Reg (=[$Src I Reg]) and the operand value found in the second source reg ister $Src2 Reg 

(=[$Src2Reg]) and stores the result operand value in the destination register $DestReg (=[$DestReg]). 

Figure 5.6 illustrates the encoding for this instruction. 

Syntax: AND $DestReg, $Src I Reg, $Src2 Reg 

Operation: [$Dest Reg] = [$Src I Reg] AND [$Src2Reg] 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

0 srcl src2 dest 0 36 reg reg reg 

Bits: 31-26 2 5 - 21 20- 16 15- 11 10 - 6 5 -0 

AND /11structio11 fo r111at /If 

• OR (Logical OR) 

Figure 5. 7 

This instruction perfo rms a log ica l/binary OR operation on the operand value fo und in the firs t source 

register $Src I Reg (=[$Src I Reg]) and the operand va lue fo und in the second source register $Src2 Reg 

(=[$Src2Reg]) and stores the resul t operand value in the destination register $DestReg (=[$DestReg]). 

Figure 5.7 illustrates the encoding fo r th is instruction. 

Syntax: OR $DestReg, $Src l Reg, $Src2 Reg 

Operation: [$DestReg] = [$Src 1 Reg] OR [$Src2Reg] 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

0 
srcl src2 dest 0 37 reg reg reg 

Bits: 31 -26 25-21 20-16 15-11 10-6 5-0 

OR /11structio11 format /4 7jj 
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5.4.2 I-format Instructions 

The I-format instruction layout is used in control transfer, branching, and immediate value instructions. 

Figure 5.8 shows the generic instruction encoding for such form at. 

6 bits 5 bits 5 bits 16 bits 

op rs rt Offset/address/immv 

Bits: 31-26 25-21 20-16 15-0 

Figure 5.8 I-format Instruction Encoding [4 7, 4[ 

Here is the meaning of each name of the fi elds [ 4 7, p I 18] : 

• op: 

• rs: 

• rt: 

Bas ic operation of the instruction, traditionall y ca ll ed the opcode. This has a unique va lue 

fo r each instructi on as per the des ign of the ISA. Each instruction has a different set value 

fo r thi s fi eld and is usua ll y represented in dec imal fo rmat. 

The first register source spec ifier, usuall y represented in dec imal fo rmat. 

The second source reg ister spec ifi er, usually represented in dec imal fo rmat. 

• ojfsetladdressl immv: 

This is a 16-bit 2' s co mplement signed imm ediate va lue sup pli ed in the instruct ion itself. 

Depending on the opcode of the instruction, it can represent either an add ress , an offset, or 

simply an immedi ate va lue (litera l). 

Following is a subset of the I-format instructions imp lemented in thi s research. The syntax and operati on fo r 

each instruction is shown (the opcode is underlined fo r emphasis) along with a brief descript ion and a fi gure 

ill ustrati ng its encoding layout. 

• L W (Load Word) 

This instruct ion loads the data from the memory locati on spec ified by sum of the address value 

(suppl ied in the instruction) and the contents of the base register $ Base Reg (=[$8 aseReg]) into the 

destination register $DestReg (=[$DestReg]). Figure 5.9 illustrates the encoding fo r this instruction. 

Syntax: L W $ DestReg , address($ Base Reg) 

Operation: [$DestReg] = [Memory [[$BaseReg] + address]] 
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6 bits 

35 

Bits: 31-26 

5 bits 

base 
reg 

25-21 

5 bits 

dest 
reg 

20- 16 

Figure 5.9 LW Justructio11 format (a dapted from /47/) 

• SW (Store Word) 

16 bits 

address ( offset) 

15-0 

5-10 

Thi s instruction stores the data from source register $SrcReg (=[$Src Reg]) into the memory location 

spec ified by sum of the address value (suppl ied in the instruction) and the contents of the base regisrer 

$Base Reg (=($BaseReg]). fi gure 5. 10 illustrates the encoding fo r this instruction. 

Sy ntax: SW $SrcReg , address($Base Reg) 

Operation: (M emory [($Base Reg] + address]] = ($S rcReg] 

6 bits 5 bits 5 bits 16 bits 

43 base 
reg 

src · 
reg address ( offset) 

Bits: 31 -26 25 -21 20-16 15-0 

Figure 5.10 SW /11structio 11 format / 4 7/ 

• BEQ (Branch on Equal) 

Th is instruction tests the eq uality between the co ntents of the Jirsr source regisrer $Src I Reg 

(=[$S rc I Reg]) and the contents of the second source register $Src I Reg (=($S rc I Reg]) and, if these 

were equal, thi s causes the instruct ion executi on fl ow of the program to jump to the memory locati on 

calcul ated by add ing the contents of the program counfer regisrer PC plus I (poin ting to the next 

instruction a fter the current one) plus the address value supplied in the instr uction itse lf. Th is process is 

referred to as branch taken. Otherwise, if the equality condition was not met, then the instruction 

execution fl ow of the program resumes as normal by pointing to the next instruction directly fo llowing 

the current one. Th is process is referred to as branch not taken. 

An important note is that the value address is signed 2' s comp lement with values ranging from - i s to 

+i s, which means that the BEQ instruction allows us to jump 32k locati ons in the pos itive or negati ve 

direction relati ve to the program counter register. Figure 5.11 ill ustrates the encoding fo r this 

instruction. 
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Syntax: 

Operation: 

Bits: 

BEQ $Src I Reg , $Src2Reg, address 

if [$Src I Reg] = [$Src2Reg] 

then 

[PC] = [PC] + I + address 

else 

[PC] = [PC] + I 

6 bits 5 bits 5 bits 

4 

31-26 

srcl 
reg 

25-21 

src2 
reg 

20-16 

Figure 5.11 BEQ fllstr11 ctio11 format [4 7[ 

• BNE (Branch on Not Equal) 

16 bits 

address ( offset) 

15-0 

This instruct ion tests the equality between the contents of the firs t source register $Src I Reg 

(=[$S rc I Reg]) and the co ntents of the second source register $S rc I Reg (=[$S rc I Reg]) and , if these 

were NOT equal, thi s causes the instruction execution fl ow of the program to jump to the memory 

locati on ca lculated by addi ng the contents of the program counter register PC plus I (po inting to the 

next instruction after the current one) plus the address value supp lied in the instruction itself. This 

process is referred to as branch taken. Otherwise, if the eq uality condition was met , then the instruction 

exec ution fl ow of the program resumes as normal by pointing to the next instruction directly fo ll owing 

the curren t one . This process is referred to as branch not taken. 

An important note is that the va lues address is signed 2's complement with values ranging from - 2' 5 to 

+2' 5
, which means that the BEQ instruction a ll ows us to jump 32k locat ions in the positive or negative 

direction relative to the program counter register. Figure 5.1 2 illustrates the encodi ng fo r this 

instruction. 

Syntax: 

Operation: 

BN E $Src I Reg, $Src2 Reg, address 

if [$Src I Reg] /= [$Src2Reg] 

then 

[PC] = [PC] + I + address 

else 

[PC] = [PC] + I 
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6 bits 5 bits 5 bits 16 bits 

5 srcl 
reg 

src2 
reg address ( offset) 

Bits: 31 -26 25-21 20- 16 15-0 

Figure 5. 12 BNE Instruction fo rmat /4 7/ 

• A DDI (A dd immediate) 

This instruction adds the operand value fo und in the source register $S rcReg (=[$S rcReg]) to the 

operand value immediate fo und in the instruction itse lf and stores the result operand va lue in the 

des tination register $DestReg (=[$DestReg]). This instruction is used for adding constants. Figure 5. 13 

ill ustra tes the encoding fo r this instruction. 

Sy ntax: ADDI $DestReg, $Src Reg, im media te 

Operation · [$ DestReg] = [$SrcReg] + immediate 

6 bits 5 bits 5 bits 16 bits 

8 
src 
reg 

dest 
reg immediate 

Bits: 31 -26 25-21 20- 16 15 - 0 

Figure 5. 13 A DDI lmtructiou format /4 7/ 

• SL TI (Set on Less Than Immediate) 

This instruction se ts the value in the destination register $DestReg (=[$DestReg]) to I only if the 

operand va lue fo und in the source register $S rc I Reg (=[$Src I Reg]) is less than the operand va lue 

immediate sup plied in the instructi on itse lf. Otherwise, the va lue in the destination reg ister $DestReg 

(=[$DestReg]) is reset to O (zero). Figure 5. 14 illustra tes the encoding fo r thi s instructi on. 

Syntax: SL T l $DestReg, $SrcReg, immediate 

Operation: 

159.899 M.Sc. Computer Sc ience 

if [$SrcReg] < immediate 

then 

[$DestReg] = 1 

e lse 

[$DestReg] = 0 
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6 bits 

10 

Bits: 31 -26 

5 bits 

src 
reg 

25-21 

Figure 5.14 SL Tl Jnstructio11 format [4 7/ 

5.4.3 J-format Instructions 

5 bits 

dest 
reg 

20-16 

16 bits 

immediate 

15-0 

5-13 

The J-format instruction layout is used in control transfer th rough jumps. Figure 5. 15 shows the generi c 

instruction encoding for such format. 

6 bits 26 bits 

op address 

Bits: 31-26 25-0 

Figure 5. 15 J-fo rmat Instruction Encoding [47, 4] 

Here is the meaning of each name of the fields [47, pl 3 I]: 

• op.· Basic operation of the instruction, traditiona ll y ca lled the opcode. This has a unique va lue 

fo r each instruction as per the des ign of the ISA. Each instruction has a different set value 

fo r thi s fi eld and is usually represented in decimal format. 

• address: 

This is a 26-bit 2's comp lement signed imm ediate value supplied in the in structi on itself. 

Following is a subset of the J-format instructions implemented in thi s research. The syntax and operation fo r 

each instruction is shown (the opcode is underlined fo r emphasis) along with a brief description and a figure 

ill ustrat ing its encoding layout. 

• J (Unconditional Jump) 

Detailed elaboration on the special functionality of the J instruction is found in [47, 48]. This instruction 

causes the instruction execution flow to jump uncondi tiona ll y to a spec ific target address. This address 

va lue is supplied within the instruction itse lf and is a 26-bit value (2 's comp lement). Figure 5. 16 

illustrates the encoding for thi s instruction . 

Syntax: l. address 

Operation: go to target add ress 
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6 bits 26 bits 

2 address 

Bits: 31-26 25-0 

Figure 5. / 6 J /ustructiouformat /4 7] 

Elaboration [4 7, pl 50]: 

The 26-bit fi eld in jump instructions is also a word address, which means that it represents a 28-bit 

byte address. Since the PC (Program Coun ter) is 32 bits , 4 bits must come from someplace else . 

The MIPS jump instruction replaces only the lower 28 bits of the PC whi le leav ing the upper 4 bits 

of the PC unchanged. The loader and linker must be carefu l to avo id placing a program across an 

address boundary of 256 MB (=64 million instructions) . Otherwise, a jump must be replaced by a 

jump register instruction preceded by other instructi ons to load the full 32-bit address into a 

register. 

However, in the case of the author's implementati on fo r this thes is, a PC of size 8 bits onl y has 

been imp lemented (due to hardware resource restric tions on the FPGA chip). Therefore, the iss ue 

of concatenat ion does not apply to thi s spec ific implementat ion. 

5.5 Summary and Conclusions 

Thi s chapter prese nted a rev iew of the MIPS R2000 instruction set architec ture. The underl ying princip les of 

MIPS hardware design were hi ghlighted, comp lemented by an ou tline of the nomenclature implemented in 

thi s thes is. The bas ic and most commonly used MIPS instruction fo rmats were di scussed. 

This paves the way for the next chapter, which builds upon the material rev iewed here, and elaborates on my 

research results in the hardware imp lementation of the finali zed MI PS R2000 microprocessor. 
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CHAPTER SIX 

VHDL DESCRIPTION AND SYNTHESIS OF 

MIPS R2000 MICROPROCESSOR 

6-1 

This chapter presents a brief review of the Register Transfer Level (RTL) description olthe MIPS 

R2000 microprocessorfollowed by my own work on implementing this description in VHDL. This 

V!IDL description (also called RTL Model) of the MIPS R2000 microprocessor includes ,,ynthesis 

onto the target Xilinx Virtex-11 FPGA chip jcJllowed by simulating a machine language code 

running on this microprocessor. Again, this appendix is based on and complements the material 

presented in [47} and [48} and is annotated with my comments and tailored adaptation }<Jr the 

context of this research. The details are covered in Appendices A to C. 
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6.1 Introduction 

This chapter presents the YHDL description, synthesis and simu lation of the MIPS R2000 microprocessor 

hardware implementation of the MIPS instruction subset presented in the previous chapter (Ch.5 ; section 

5.4). This MIPS hardware implementat ion is built from combining together the bas ic building blocks and 

datapath functional components to first build the large r datapath sections then the complete datapath (all of 

which is described in detail in Appendices A and B). Then, thi s complete datapath is combined with the 

control unit (described in detail in Appendix C) to make up the final MIPS R2000 microprocessor hardware 

implementation, which is covered in this chapter. 

The format for presentation of the material in thi s chapter is the same as that in Appendices A to C, where 

the author takes each unit and briefly rev iews its RTL description as described in [47) and [48), then fo ll ows 

it with hi s own work implementing thi s unit in VHDL, along with its synthesis and simulation . This process 

follows the design cycle (described in chapter 4) and comprised of the following steps: RTL Desc ription, 

Des ign Entry and Synthesis, Synthes is Results, FPGA Device Synthesis Summary, and Simulat ion Results. 

Also, the log ic conventions and clocking methodology fo ll owed in thi s chapter are deta iled in Appendi x A 

(secti on A.2). 

It is worth noting here that some of the figures presented in this chap ter are at a lower leve l of clarity, detail , 

and reso lution, due to their complex ity. However, at various points in the body of this chapter, refe rence wi ll 

be made to higher reso lution versions of these fi gures (allowing zoom in functionality) are fo und in 

Appendix D on the Companion CD acco mpanying this di sse rtati on. 

This chapter starts with an overview of the MIPS hardware impl ementation in secti on 6.2 , thereby setti ng 

the scene for the materi a l to follow, which is covered in section 6.3 . Section 6.3 presents the VHDL 

description, synthesis and simulation of the MIPS R2000 microprocessor hardware implementat ion . Section 

6.4 concludes the chapter with a summary. 

6.2 An Overview of the MIPS Hardware Implementation 

For the MIPS instruction subset reviewed in the previous chapter (Ch5 ; section 5.4) to be implemented in 

hardware, much of what needs to be done is similar, regardless of the actual instruction class [47) . 

For all M !PS instructions, the first two steps of execution are identical [4 7) : 
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O The program counter (PC) sends the instruct ion address to the instruction memory that 

contains the code (instructions) and , as a result, the required instruction is fetched from that 

memory location spec ified by the PC [ 4 7]. 

O Decoding the field s of the fetched instruction in order to se lect which registers (inside the 

Register File) to read. Then, one or two registers (depending on the class of the instruct ion) are 

read [47]. 

"After these two steps, the actions required to complete the inst ructi on execution depend on the instructi on 

class . Fortunately, fo r each of the three instruction c lasses (memory-reference, arithmeti c-log ica l, and 

branches), the actions are largely the sa me, independent of the instructi on opcode" [47, p.33 9]. 

There ex ist some similarities even across the different instructi on classes [47]. For example, all instruction 

classes utili se the Arithmetic Log ica l Unit (ALU) aft er reading the registers [47]. After using the ALU. the 

operations needed to comp lete execu ti ng the different instruction classes vary significantly [4 7]. More 

e laboration on th is matter is fo und on pages 339 and 340 of [47]. Figure 6.1 below shows the high-leve l 

abstraction view of the MIPS R2000 microprocesso r hard ware implementation. 

PC Address Instruction 

Instruction 
memory 

Data 

Register# 
Registers 

Register# 

Register# 

ALU Address 

Data 

Data 
memory 

Figure 6.1 A bstract view of th e hardware i111p !e111e11t{ltio11 of the MIPS instruction subset sh owing the major 
f u11ctio11a / units {l 11t/ th e 11/(/jor co1111ections between them /4 7, p .340/ . 

In secti on 6.3 that fo llows, th is abstract view in fi gure 6.1 is refin ed to fi ll in all the details (to generate the 

comp lete datapath) and add the contro l unit, to form the final MIPS R2000 microp rocesso r. 

It is worth noting that the MIPS hardware implementation in thi s research is based on the simple 

implementation detailed in [47] that uses one s ingle clock cycle for the execution of each instruction. Th is 

means that each instruction begins execution on one ri s ing clock edge and completes execution before the 

next ri sing clock edge [47] . However, in the context of this research, instruction execution is spread over a 

fe w clock cycles due to the read/write nature of the memory elements (register fi le, instruction memory, data 

memory) imp lemented on the FPGA ch ip. 
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.3 Putting It All Together: The MIPS R2000 Microprocessor 

• RTL Description 

Figure 6.2 shows the RTL diagram fo r the fina lised MI PS R2000 microprocessor hardware implementation 

of the abstract view shown ea rli er in Figure 6.1 and based on the MIPS instructi on subse t rev iewed in 

Chapter 5. The detail s of thi s hardware implementation are di scussed in [47] and [2] and elaborated in 

Appendices A to Con the Companion CD acco mpanying this di sse rtation. 

The fo llowing ten MIP S instructi ons are implemented and tested on thi s MIPS R2000 microprocesso r: 

• A D (Logica l AN D) 

• OR (Logica l OR) 

• ADD (Arithm eti c Addition) 

• SU B (Arithmetic Subtracti on) 

. SLT (Set on Less Than) 

• LW (Load Word) 

• SW (S tore Word) 

• BEQ (Branch on Equa l) 

• B E (Branch on Not Equal) 

• (U nconditional Jump) 

In Figure 6.2 , the bl ack and grey compo nents and lines are all datapath units and their assoc iated datpath 

signals, whereas the blue blocks and lines are all cont ro l related. 
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Instruction (25-0] Trun• Jump address (7-0] --~------+-------- - -------~ 
26 Cator 8 -() 

PC+ 1 [7-0] ~----- ~ 
Add 

____ .. 
• 1.1 

u 
X 

1 ~ Arid 
A. 

~ RegDst 
Jump 
Branch 
MemRead 

Instruction (31-26] MemtoReg 
Control ALUOp 

MemWnte 
ALUSrc 
RegWnte 

Ir I ,, • "" [. 

PC Read 
address 

• Zero J 
Instruction 

(31-0] 11 
J - 11 • Instruction . 

I, t ; , 

ALU .. 
l' 

memory • 
11 Rec 1sters 0d!J 

rr n ry 

• l 
control 

M 
u 
X 

r• 
lJ 
X 

Figure 6.2 RTL Diagram for the finalized MIPS R2000 microprocessor (adapted from /4 7]) 

• Design Entry and Synthesis 

The Xilinx Schematic Editor was used to create the design entry for the finali zed MIPS R2000 

microprocessor shown in figure 6.2. Figure 6.3 shows the final schematic diagram. Two important notes 

relating to figure 6.3 are worth mentioning here: 

D All the datapath components (all the components shown in grey or black in figure 6 .2) are 

combined and synthesized into one entity block called Complete_ Datapath _ w _DCM_ Div _5 (which 

is described in detail in Appendix B). 

D The Main Control and ALU Control units (both shown in blue in figure 6.2 and are described in 

detail in Appendix C) and other supporting digital logic and design components make up the rest of 

figure 6.3. 
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CJ.LI ----t,:.,--~·-"-
c=~"'~-------1~-'"~'· 

Figure 6.3 Schematic diagram design entry in Schematic Editor for the finalized /1,1/PS R2000 microprocessor 
(Note: Magnified portions of this.figure are shown infigures 6.3A to 6.3D that follow) 
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•---------------

Figure 6.3A ilJagn(/ied top-left portion of Figure 6.3 
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Figure 6.3B Magnified bottom-left portion of Figure 6.3 
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Figure 6.JC Magnified top-right portion of Figure 6.3 
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Figure 6.JD Magnified bottom-right portion t~f Figure 6.3 
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After synthesis of the schematic diagram in figure 6.3 using XST, the VI IDL code was generated. This is 

found in Appendix D (section D.4). 

',, Synthesis Results 

Using the Xilinx !SE synthesis tools, the hardware implementation for the finalized MIPS R2000 

microprocessor, was generated. Figure 6.4 shows the resulting top level RTL symbol while figure 6.5 shows 

the resulting top level RTL schematic diagram. However, there is no need for delving into deeper levels of 

the hierarchy as these are already covered in detail in Appendices A to C. 
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Figure 6.4 Resulting top level RTL symbol for tile finalized MIPS R2000 microprocessor (Note: Magnified 
portions of this figure are shown in figures 6.4A to 6.4B tlwtfollow)) 
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data_in_preload <3 1 :0 > 

dmem_ra _preload <7 :O > 

dmem _ wa _yreload <7 :0 > 

instriJi::ti(•n_in _ _prelo a1j <31 :0 > 

inst_ram _OJJ me_addr _preload <7:(1 > 

memt ore!~_inrt < 1 :0 > 

regdst _in rr <l :O> 

ri _,nme _din_prelc,ad <3 1 :0 > 

ri _1JJme_num_preload <4:0 > 

Figure 6.4A Magnified top portion of Figure 6.4 

addr _from_p c<7:0 > 

addr _ 15brrs < 15 :0 > 

addr _ 16to8brrs <7 :0 > 

addr _ 16t o32brrs <31 :0 > 

addr _26brrs <25 :0 > 
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alu_re s <31 :O> 

a_in <31 :O > 

branch_tar>Jet <7 :0 > 

b_in <31 :O> 
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dmem_din <31 :0 > 
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dram_out <31 :0 > 
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rd <4:0> 

regdst < 1 :0 > 

ri_data_b <31 :O> 

ri _lume_data <31 :D> 

ri_1JJme_reg <4:0> 

rs<4:0 > 

rt <4:0> 

add8 _i 1 _ carryout 
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v alue _of_zero <31 :O> 

v alue_of _ 1 <7 :O > 

elk 

dmemdinsrc _inrt: 

dmemrasrc _init 

dmemluasrc _init 

inrt_e:,:e 

rest_dcm 

Figure 6.4B Magnified bottom portion of Figure 6.4 
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Figure 6.5 Resulting top level RTL schematic for the finalized MIPS R2000 microprocessor ((Note: Magnified 
portions ofthisfigure are shown infigures 6.5A to 6.5D tlwtfollow)) 
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Figure 6.5A Magn(fied top-left portion<~{ Figure 6.5 
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Figure 6.5B Magnified bottom-left portion of Figure 6.5 
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Figure 6. 5D Magnified bottom-right portion of Figure 6.5 

• FPGA Device Synthesis Summary 

After the hardware implementation for the finalized MIPS R2000 microprocessor, using the Xilinx ISE 

synthesis tools, the Synthesis Report was generated. The most important FPGA Device Synthesis Statistics 

from this report, are shown below: 

Design Statistics : 

Ii IOs 695 

Macro Statistics: 

#RAM :4 

Ii 256x32 - bit dual - port block RAM: 1 

Ii 256x32 - bit single - port block RAM: 1 

Ii 32x32 -bit dual-port block RAM: 2 

Ii Registers : 1 

Ii 8 - bit register : 1 

Ii Tri states 23 

Ii 32 - bit tristate buffer : 9 

Ii 5 - bit tristate buffer : 4 

Ii 8 - bit tristate buffer 10 
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Cell Usage: 

# BELS 

and2 

# and2bl 

# and3 

# and3bl 

# and4 

# GND 

tl 

" 

1 

# LUT2 

# LU'I'2 L 

LUT3 

# LUT4 

LUTt; [) 

muxcy 
,, ~;uxcy d ,, 

l 

er 

or 

3 

XOiCj 

/Latches 

# l 6 36 

PJ\MB 16 SJ S36 

# Tri-States 

# BUF'T 

# Clock Buffers 

# bufg 

# Buffers 

# IBUF 

# ibufg 

jf OBlJF 

# OBlJFT 

# 
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# nor4 
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# fmap 36 

Device utilization summary : 

Number of Slices : 120 out of 4 6592 

Number of Slice Flip Flops : 11 out of 93184 

Number of 4 input LUTs : 207 out of 93184 

Number of bonded IOBs : 695 out of 1108 

Number of TBUFs : 356 out of 23296 

Number of BRAMs : 4 out of 168 

Number of GCLKs : 2 out of 16 

Number of DCMs : 1 out of 12 

Timing Summary : 

Minimum period : 24 . 522ns (Maximum Frequency : 40 . 780MHz) 

Minimum input arrival time before clock : 12 . 513ns 

Maximum output required time after clock : 51 . 674ns 

Maximum combinational path delay : 18 . 250ns 

,.. Si111ulatio11 Results 

0 % 

0% 

0 % 

62 % 

1% 

2 % 

12 % 

8 % 
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Figure 6.6 shows the simul ation wavefo rms fo r the test code simulated to run on th is mi croprocesso r. This 

code is as fo ll ows : 

Instruction Memory Instruction Loaded Com ments 
Location No. 

SLT $R7 , $RS , $R6 [SR5} = ( / 5) /{/ 
0 [SR6} = (/6)/() 

Assembles to (;46382Al,, ex [SR5} < [SR6} => [SR7} = I 

SW $R7 , 10 ($ RS) {Me111 01y [25}}= [S R7]= I 
I 

Assembles to (;4CA 7000Al,iex 

J IOO 
2 

Assembles to (80000641,, ex 

NOP Inserting a pipeline bubble 
3 

Assembles to (00000002,, ex 
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BNE $RS , $R6 , IO {$R5} = [SR6} = (15) 111 

=> Branch Taken 
100 

Assembles to (/4A6000A),, ex Next PC = Current PC + I + 10 
= IOI + I + JO = 112 

NOP Inserting a pipeline bubble 
IO I 

Assembles to [0000000),,ex 

LW $RS , 57 ($RS) [SR8} = [Mem o1y [25}} = I 
11 2 

Assembles to C8CA8000Al,,ex 

Th is is assemb led as fo llows: 

D SLT $R7 , $RS, $R6 

rd I'S rt 

The corresponding 32-bit assembly language instruction representation (d iscussed in Ch.5) is: 

000000 00101 001 IO 001 I I 00000 101010 

op=O rs=$ R5 rt=$ R6 rd=$R7 sha111t jimct=42 

In order to make debugg ing more manageab le, the corresponding hexadecim al represe ntati on fo r 

thi s 32-bi t instruction is: 

(00000000 IO I 00 I I 000 I I I 00000 IO IO I Oh = (A63 82A)hcx 

D SW $R7 , IO ($RS) 

rt offs et (rs) 

The corresponding 32-bit assembly language instruction representation (discussed in Ch.5) is: 

10101 I 00101 001 I I 0000000000001010 

op=43 rs=$R5 rt=$ R7 offset= ! 0 
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In order to make debugging more manageable, the correspond ing hexadecimal representation for 

this 32-bit instruction is: 

(IO IO I I 00 IO I 00 I 11 000000000000 IO I Oh = (/\CA 7000A)11" 

D J 100 

address 

The correspond ing 32-bit assembly language instruction representation (discussed in Ch.5) is: 

0000 1000000000000000000001100100 

op=2 address= I 00 

In order to make debugging more manageable, the corresponding hexadecimal representation for 

this 32-bit instruction is: 

coooo 10000000000000000000011001ooh = (8000064)~, 

The corresponding 32-bit assembly language instruction representation (d iscussed in Ch.5) is: 

000000 00000 00000 00000 00000 000000 

op=O rs=$RO rr=SRO rd=SRO sha1111 fimcr=O 

In order to make debugging more manageable, the corresponding hexadecimal representation for 

th is 32-bit instruction is: 

(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOh = (OOOOOOOO)~. 

This NOP (also called a Pipeline Bubble) is inserted follow ing every control transfer instruction (in 

this case J). This extra ClkDv clock cycle during wh ich time the NOP is in the pipeline, is needed 

by the instruction fetch unit to correctly update the program cou nter with the value of the 

instruction memory address of the next instruction (after NOP). Without NO P, the pipeline would 

go into non-deterministic states during this extra ClkDv clock cycle causing the instruction fetch 

un it to update the program counter with an incorrect value leading to the premature termination of 

code execution. 
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$RS , $R6 , 10 

rs rt offset 

The corresponding 32-bit assembly language instruction representation (di cussed in Ch.5) is: 

000101 00101 00110 0000000000001010 

op=S rs=$R5 rt=$ R6 offset= I 0 

In order to make debugging more manageab le, the corresponding hexadecimal representat ion fo r 

thi s 32-b it instruction is: 

(000 IO I 00 IO I 00 I I 0000000000000 IO I O)c = ( I 4A6000A)1ic, 

The correspond ing 32-bit assembly language instruction representat ion (discussed in Ch.5) is: 

000000 00000 00000 00000 00000 000000 

op=0 rs=$R0 1·1=$RO rd=$R0 sha1111 f1111 ct=0 

In order to make debugg ing more manageab le, the corresponding hexadec imal rep resentatio n for 

thi s 32-b it instruction is: 

(00000000000000000000000000000000)" = (00000000)1icx 

This NO P (a lso ca ll ed a Pipeline Bubble) is inse rted fo ll owing every co ntro l tran sfer instruction (in 

thi s case BNE). This extra ClkDv clock cyc le during which time the NOP is in the pipeline, is 

needed by the instruction fetch unit to correctly update the program counter with the value of the 

instruction memory address of the next instruction (a fter NOP). Without NOP, the pipeline wo uld 

go into non-determini sti c states during thi s extra ClkDv clock cycle causing the instruction fe tch 

unit to update the program counter with an incorrect value leading to the premature termination of 

code execution. 

$RS , 57 ($RS) 

rt offset (rs) 
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The corresponding 32-b it assembly language instruction representation (discussed in Ch .5) is: 

100011 00101 01000 000000000 I I 1001 

op=35 rs=$ R5 rt=$ R6 ojfset=57 

In order to make debugg ing more manageable, the corresponding hexadecimal represe ntati on fo r 

this 32-bit instruction is: 

( I 000 I I 00IOIOI000000000000011100 I h = (8CA8003 9)hex 

An important note here fo r thi s LW instructi on as part of thi s test code, is that it should spec ify the 

same offset value of ( 10)10 as the one spec ified in the SW instructi on (2nd line in the test code 

above) so that when added to ( 15) 10 (the contents of $RS as the base reg ister) would yield the va lue 

of (25) 10 which is the target address in the data memory from which to load the data into the register 

fil e. Ideally, the co ntents of $RS as the base register are not to be modifi ed at all as part of running 

thi s test code. However, thi s is not the case here, and the o ffset va lue of (57) 10 had to be spec ified in 

thi s LW instruction to offset the incorrect value of (-3 2) 10 (the unwanted modified contents of $RS 

as the base register). This is caused by the fact that my design of the register fi le (Appendix A) 

implements only one co mbined signal fo r enabling both read and wri te to the RF at the same time. 

This is a des ign constraint imposed actuall y by the FPGA chip when the on-chip BlockRAM 

resources are to be used fo r synthes izing the register fil e. It is recogni zed that in an actual register 

fi le impl ementati on, there should be two separate control signals; one fo r reads, and th e other fo r 

writes, to prevent the reg ister fil e from being written with unwanted va lues during executing code. 

However, due to time constra ints and the need to submit this di sse rtati on by the req uired dead line, 

this des ign iss ue is recogni zed and noted, bu t the remedy of which would have to be part of future 

research work . 

D Conclusio ns: 

These resulting waveforms are in line with the expected functionality (desc ribed in detail in Appendices 

A to C) and prove that this fin alized MIPS R2000 microprocessor is functioning as expected for thi s test 

code. 
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Figure 6.6 Results of simulati11g thefi11alized MIPS R2000 microprocessor for the test code (Note: Refer also to 
Appe11dix D 011 the Compa11io11 CD for a higher resolution version of this figure) 
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Figure 6.6A Results of simulating thefi11a/ized MIPS R2000 microprocessor for the test code (Magnified Version 
of Figure 6. 6 - Part 1 of 2) (Note: Refer also to Appendix D on the Companion CD for a higher resolution 
version of this figure) 
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Figure 6.6B Results of simulating the finalized MIPS R2000 microprocessor for the test code (Magnified Version 
of Figure 6.6 - Part 2 of 2) (Note: Refer also to Appendix D on the Companion CD for a higher resolution 
version of this figure) 
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6.4 Summary and Conclusions 

This chapter presented the VI-IDL description, synthesis and simulation of a subset of the MIPS R2000 

microprocessor hardware implementation onto the Virtex-11 FPGA chip. It is concluded that this design 

easily fitted on the FPGA chip and did function according to the design specification, with the exception of a 

few design glitches. 

The next chapter presents the assembler/loader developed for this subset of the MIPS R2000 microprocessor 

synthesized in this chapter. 
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CHAPTER SEVEN 

ASSEMBLER/LOADER 

FOR THE SYNTHESIZED 

MIPS R2000 MICROPROCESSOR 

7-1 

This clwpter presents an unconventional way olwriting WI i/,1semhlcr!loaderfi1r the /vi/PS R20/JO 

microprocessor ,1ynthesi~ed in chapter six, using the VJ-JDL language. lhis 11us simulated in 

Model Technology Inc. (MT!) Mode/Sim XE. 

------------------ ---------

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7 



MICRO-THREADING AND FPGA II\IPLEMENTATION OF A RISC MICROPROCESSOR 7-2 
Part Two - Ch. 7 -Assembler/ Loader for the Synthesized MIPS R2000 Microprocessor 

7.1 Introduction 

Thi s chapter prese nts the Assembler/Loader for the synthes ized MIPS R2000 microprocesso r. VHDL was 

the language of cho ice for writing this Assembler/Loader. 

Although the use of VHDL fo r writing an Assembler/Loader might seem unconventional, the reason behind 

this approach is that VHDL is the language of cho ice for this research due firstly to its su itabi lity for 

describing large complex digital systems like microprocessors [4] and seco ndly to the fact that it can a lso be 

used, however, for simulating the so lution fo r practica ll y any problem Uust as any programming language) 

(4] . This is why VHDL is the language of choice fo r developing the asse mbler/loader too within the contex t 

of this research, giving ri se to a 100% VHDL fully-integrated hardware/software development environmen t. 

This chapter sta rts wi th an overview 111 section 7.2 , thereby setting the scene for the material to fo llow, 

wh ich is covered in section 7.3 . Section 7.3 out lines the methodology implemented in writ ing the VHDL 

Assembler, whi le sec ti on 7.4 presents the results of asse mbling sample code. Section 7.5 elaborates on the 

VHDL Loader, and secti on 7.6 conc ludes the chapter with a summary. 

7.2 Overview 

Figure 7.1 shows the rel ationship between the VHDL assembler/loader entity and the MIPS RTL model and 

VHDL testbench. This is the environment in which the testing is carri ed out for the RTL mode l of the MIPS 

R2000 microprocessor synthesized in chapter six. This test ing envi ronme nt follows the fol lowing wo rkflow 

(as shown in Figure 7. 1 ): 

• The VHDL RTL model fo r the MIPS R2000 microprocessor is created and synthes ized onto 

the target FPGA chip . A VHDL testbench is then used to st imulate and test thi s RTL model. 

This has been achieved in chapter six and appendices A to C. 

• The VHDL testbench accepts its input test vectors from the VHDL assemb ler/loader. This is 

di scussed in this chapter. 

An important note here is that all the components in fi gure 7.1 (assembler, loader, RTL model, and 

testbench) are implemented in software and simulate the actual finalised MIPS R2000 microprocessor 

system with its assembler and loader. 

Three mai n challenges (which have been reso lved, as part of thi s research) stemmed from this undertak ing: 
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• Applying the same programming mechanics for standard programming languages to VHDL 

(which is mainly for describing hardware). An important point is that VHDL is inherently 

·'parallel'" and ·'concurrent" since that is the way that hardware works, and hence YHDL is not 

well suited to sequential tasks (in particu lar a stream of instructions). 

D The VHDL loader is taking the place of external memory in an actual microprocessor system. 

• While in MIPS architecture, register specifiers are preceded by·'$" (eg. reg $13 ). this ·'$'. is 

reserved for internal use in VHDL, and cannot be used in the code (eg. reg 13). 

1--------- . --------- , 
1 

Bmary I signals to 
Instruction 

I 
assert Mnemonics I 

1 .-------, Stream .-----, 1 dat. apat.h 
(Text) 1 _ YHDL (32-bit) VHDL I and control_ 

Binary 

1 ~ Assembl er· • Loader I • 
I ._ ___ _, ,_ __ _, I 

1 Simulated in Simulat.ed in : 
1 MT/ Mode/Sim MT/ Mode/Sim 

1 •-- --- ------- - ----- -
Assembler /Loader· (VHDL Entity) 

MIPS VHDL 
RTL 

Model 

Synthesized in 
Xilinx /SE 

VHDL Testbench 

Figure 7.1 VIIDL Asse111blerl l oader/Testbe11clt for tlte .\)'lllltesi:et! M IPS R2000 RTL M odel /4/ 

7.3 The VHDL Assembler 

The VHDL assembler developed for the context of this research is based on the MIPS IS/\ (Instruction Set 

/\rchitecture) reviewed previously in chapter 5. The functionality of this assembler can be demonstrated by 

way of an example instruction. The example instruction format chosen is R-format and the example 

instruction chosen is ADD, and are both reviewed in chapter 5. However, for facilitat ing conven ience, the 

ADD instruction is shown again in Figure 7.2. 

6 bits 5 bi ts 5 bi ts 5 bits 5 bits 6 bits 

o p = O 
src l src2 d est 

s h amt=O funct= 32 r eg r eg r eg 

Bi ts: 3 1-26 25- 2 1 2 0 - 16 15-11 10-6 5-0 

Figu re 7.2 A DD i11s tructio11 e11cotli11g /47, 4/ 
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The VHDL representation for an R-format instruction packet in general is shown in fi gure 7.3 . For example, 

when the VHDL asse mbler rece ives the ADD instruction packet in mnemonics fo rm (human-readable form) , 

it checks the opcode field for the character string value of "ADD" and generates acco rdingl y a binary va lue 

of· '000000" in the output bits 3 1-26 (the opcode fo r ADD is the value zero) . Thi process is carried out over 

the rest of the fi e lds in the incomi ng instruction packet until it is completely conve rted to output binary 

forma t. 

Type R_ packet_ bin is record Type R_packet_ dec is record 
op: std_logi c_vector(S downto 0); 
rs: std_ logic_ vector(4 downto O); 
rt: std_logic_ vector(4 downto O); 
rd: std_ logi c_vector(4 downto O); 
shamt: std_ logic_ vector(4 downto O); 
funct: std_logic_ vec tor(4 downto O); 

Figure 7.3 R-format i11structio11 e11codi11g i11 VHDL /4/ 

7.4 Assembling Sample Code 

=> 

op: 
rs : 
rt: 
rd: 
shamt: 
funct: 

integer; 
integer; 
integer; 
integer; 
integer; 
integer; 

Below is a sample loop in C [47] that was used to test th e VHDL assemb ler (Ass ume $R 17=g, $R i S= h, 

$ R 19=i, $R20=j , $R2 I = Base[A]): 

Loop: g = g + A[ i]; 

i = i + j; 
if (i != h) goto Loop; 

Thi s loop trans lates to the fo llowing M 1 PS assembly code using ac tua l phys ica l reg ister specifiers [ 1,14]: 

Loop: add $R9, $R1 9, $R21 

lw $RS, 0($ R9) 

add $Rl7, $Rl 7, $RS 

add $Rl9, $Rl9, $R20 

bne $R19, $R18, -5 

# $R9= address of A[i] 

# Temp. reg $RS = A[ i] 

# g = g + A[ i] 

# i = i + j 

# go to Loop (go back 5 

# lines) if i not equal h. 

# This points to the first 

# "add" instruction line . 

The VHDL assemb ler assemb les the above 5-line code to the fo llow ing corresponding machine language 

code [14]: 

00000010011101010100100000100000 

10001101001010000000000000000000 

00000010001010001000100000100000 

00000010011101001001100000100000 

00010110011100101111111111111011 
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7.5 The VHDL Loader 

The VHDL loader receives I word (32 bits) from the assembler and, accordingly, performs the following 

functions (refer back to figure 7.1 ): 

• According ly sets the datapath and control signals for the synthesized VHDL RTL model. 

D Assigns and asserts the specific memory locations w ithin the synthesized VHDL RTL model 

( loading into memory). 

For the sample code in the last section, the V HDL assembler/loader generates the binary sig nals (shown in 

figure 7.4) as input to the VHDL testbench. 

Fie Edit View Insert Format Tools Window 

Figure 7.4 Output Sig11als from tlte VHDL Assembler/Loader as /11put to the VHDL Testbe11ch 
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7 .6 Summary and Conclusions 

This chapter presented an unconventional way of writing an assembler/loader for the finalised MIPS R2000 

microprocessor, using the VHDL language. The results of assembling a sample loop written in C have been 

shown along with how that translates to the set of binary signals generated by the loader and to be input into 

the VHDL testbench. 

To summarise, figure 7.1 shows that the VHDL loader provides the VHDL testbench with the binary signals 

necessary to assert both the datapath and control accordingly. The actual MIPS VHDL RTL model is 

plugged into this testbench Gust like a microchip is plugged into its socket) and the testbench then provides 

input test vectors (signals) to the RTL model and also captures the output signals and records them into an 

output file for further analysis and debugging. 

The next chapter introduces the VHDL description of the behavioural model for the micro-threading chip 

multi-CPU. 
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CHAPTER EIGHT 

VHDL Description of the 
Micro-threading Chip Multi-processor 

This chapter briefly describes how the micro-threading architectural add-ons and components 

are added to the standard MIPS architecture to build the micro-threading microprocessor and 

also the chip multiprocessor. The micro-threading VHDL description presented in this chapter is 

at a high level of abstraction as it is a behavioural description augmented with algorithms. As 

elaborated in chapter four, this is the first step of the hardware design process for the micro

threading microprocessor/multiprocessor and, therefore, paves the way for future research in 

which these algorithms and high level descriptions are utilized in designing the final micro

threading microprocessor and/or chip multiprocessor. 
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8.1 Introduction 

Micro-threading was introduced in chapter three as a proposed architectural option for microprocessors to 

extract the maximum amount of instruction-level parallelism from sequential code while tolerating high 

memory latency and non-determinism. This chapter presents a diagrammatic description of a VHDL-based 

behavioural model for micro-threading applied to the five-stage MIPS pipeline. This model is the starting 

point for the hardware synthesis and simu lation of the micro-threaded architecture , to be undertaken in 

future research work. 

It is worth mentioning here that the contents of this chapter resulted in a refereed publication in the 

conference proceedings of an international conference (3] . 

In this chapter, the VHDL behavioural description for micro-threading is described in section 8.2. Section 

8.3 conc ludes the chapter with summary and conclusions. 

8.2 Behavioural Description in VHDL 

8.2.1 Micro-threading Chip Multi-processor (CMP) 

The VHDL model for the behavioural functiona lity of the micro-threading architecture is based on the idea 

of representing building blocks of the multi-processor chip as boxes (components) that communicate with 

each other via signals . These signals could either be of a standard VHDL type (eg. integer) (75 , 11], or 

enumerated user-defined ( eg. composite, record , packets) (75 , I I, 49]. This model is based on the Abstract 

Machine (ABM) pipeline model by Reese (49]. 

The micro-threading approach can be applied to any standard RISC architecture. In this case, it has been 

applied to the standard MIPS R2000 architecture described in detail in (47, 48] and synthesized and 

simulated in Part Two of this thesis. Figure 8.1 shows the top-level abstract view for an example micro

threading multi-processor chip accommodating two Processing Units (PU I and PU2). Actually, the micro

threading CMP is proposed to be quite scalable (33] and can host a large number of PUs. As shown in 

Figure 8.2, the PUs themselves are the modified MIPS pipelines. Three new components were added outside 

the pipelines and are shared across all PUs (as shown in Figure 8.1): 

❖ Global Continuation Queue (GCQ). This holds thread descriptors . There is one GCQ per CMP chip, 

thereby sharing the GCQ among all PUs. 
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❖ Register Allocation Unit (RAU) . This unit performs the dynamic register allocation. 

•!• Global Register File (GRF). This contains the registers shared among dependent micro-threads 

(whether for shared-parameter passing or for synchronisation) . 

8.2.2 Micro-threading Processing Unit (PU) 

Figure 8.2 depicts the internal components of each of the PUs referred to in Figure 8.1 , and shows how the 

micro-threading architecture is still based on the 5-stage generic RISC pipeline implemented in MIPS [47, 

48]. The ports interfacing this PU entity to the other components (which were shown in Figure 8.1) are 

displayed in italics. The new component added here is the Local Continuation Queue (LCQ) , which is local 

to every pipeline on the multi-processor chip. The LCQ holds the information and states relating to all the 

micro-threads scheduled to run (till completion) on that specific PU . The Local Register File (L RF) is also 

held locally within each PU. 

8.2.3 Micro-threading Dynamic Register Allocation 

For micro-threading to perform dynamic register allocation, four classes of registers are defined in this 

architecture [32]: 

❖ Global to all micro-threads. These are located in the GRF and are denoted by SGO, SCI, etc. Global 

registers are allocated statically by the compiler during subroutine invocation. 

❖ Local to one instance of a micro-thread. These are located in one PU's LRF and are denoted by $LO, 

SL/ , etc. Local regi sters are allocated when an instance of a family of micro-threads is dispatched 

dynamically to a PU. 

❖ Shared between two and only two micro-threads. These are located in the GRF and are denoted by SSO, 

$SI, etc. Shared registers are allocated when an instance of a family of micro-threads is dispatched 

dynamically to a PU. 

❖ Dependent on a prior micro-thread. These are located in the GRF and denoted by $DO, $DI, etc. 

Dependent registers are allocated to the micro-thread that this current micro-thread is dependent on. 

In figures 8.1 and 8.2, source registers srcl and src2 and the destination registers dest are also composite 

enumerated VHDL data types. They are of format record and consist of a register identifier reg_id (L, G, D, 

S) and a register number reg_no. 
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8.2.4 Micro-threading Algorithm 

The algorithm for the execution model has been described in detai l in [32, 33]. Suffice it to say, once 

allocated to a given PU, a micro-thread instance (dispatched from the RAU) comprises a thread pointer tp 

and a base register for the Local, Shared and Dependent registers (l-base, S-base and D-base). The thread 

runs to completion on the PU that it is allocated to. This does not lead to load imbalance as micro-threads 

are expected to be very short in length and not maintained as placeholders for repetitive computation. This is 

possible, as micro-thread creation is so inexpensive [32]. 

8.2.5 VHDL Description of Micro-threading Components 

The VHDL behavioural model described in this chapter specifies the functionality (in terms of behaviour 

and specifications) for the main blocks in the VHDL behavioural diagrams (figures 8. 1 and 8.2) for the 

micro-threading CMP. The model implements a distributed control concept, where signal packets 

communicate both data and control between the different components. 

• Global Continua/ion Queue (GCQ) 

The GCQ, being global to all PUs, can receive create-thread (thread pointer) signals from multiple PUs 

in the same clock cycle (figure 8.1). 

• Register Allocation Unit (RAU) 

The RAU performs the dynamic register allocation by receiving the thread allocation information from 

the GCQ, checking its internal allocation tables for availabi lity of resources (registers to be allocated) as 

shown in figure 8.1 . 

• Local Continuation Queue (LCQ) 

The LCQ local to each PU receives the descriptor for the thread scheduled to run on that pipeline (figure 

8.2). 

• Instruction Cache (!Cache) 

The state of a micro-thread can be used to determine a pre-fetch and replacement strategy for the I Cache 

[33]. Upon arrival into the LCQ, a micro-thread may be in the waiting state because its code is not in 

!Cache (or because it is waiting on a register for synchronization). A request is then made to ICache to 
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pre-fetch instructions for that thread (figure 8.2). The request is acknowledged either immediately or 

when it has been satisfied by a higher level of memory hierarchy. The !Cache acknowledge signal 

changes the thread 's state to ready. 

• Instructfon Fetch (IF) 

At any time, there is only one micro-thread, which is in the running state (initially, this is the main 

thread) [33]. This running threads ' s LCQSlot, program counter, and base addresses (!_base, s_base, 

d_base) are all held in the pipeline's program counter (this is within the IF stage). As shown in figure 

8.2, when the running micro-thread encounters an instruction tagged for a vertical transfer (VT) or kill, 

the IF logic requests a context switch from the LCQ. As a result, one of the ready threads is selected as 

running and its state is passed to the program counter. 

• Inslructfon Decode & Register Read (JDRR) 

The IDRR stage receives the modified instruction packet (tag, opcode, des/, src I, src2, immv, LCQS!ot) 

from the IF stage (figure 8.2). Then, it sends out a request to the appropriate register file (LRF and/or 

G RF) to retrieve the values of the register contents, i.e . reads in src I register and retrieves and provides 

its contents; src I _ v to the next stage (Execute) . 

• Global Register Fife (GRF) 

The GRF fills in the missing register values from the instruction packet by receiving a request from the 

IDRR stage to provide the values of the register contents (figure 8.1 ). GRF reads in src I register and 

retrieves and sends its contents (src I _v) back to IDRR which in turn includes these retrieved values into 

the execute packet which is sent to the next stage (EX). GRF also receives write-back values from WB 

stage and writes these values into the specified registers . Additionally, GRF receives an initialise signal 

from RAU to allocate registers. The register classes held in the GRF are the Global ($G) , Shared ($S), 

and Dependent ($D) registers. 

• Local Register File (LRF) 

The LRF is similar in concept to the GRF, except for the fact that it does not receive the pu_id 

(identifying the originating pipeline) as part of the data request, as it is local to that PU which initiated 

the request (figure 8.2). Only local ($L) registers are held in the LRF. 
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• Execute (EX) 

The EX pipeline stage performs the necessary ALU ope rations on the incoming packet (tag, opcode, 

dest, src l , src l_v, src2, src2_v, immv, LCQS!ot). The slot reference (LCQS!ot) is avai lab le at the EX 

stage (as well as at a ll o ther stages in the pipeline). When a vertically transferred instruction is resolved 

(i.e. a branch target is calculated), the LCQS!ot along with that target branch, are both passed back to the 

LCQ as part of the wakeup signal [33]. 
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Figure 8.2 Top-level hierarchical VHDL representation of a micro-threading PU. 

8.3 Summary and Conclusions 

This chapter presented the last piece of research work ai med for this thesis by out lining the high level 

VHDL behavioural model of the micro-threading arch itecture. 

The next chapter concludes thi s thesis with the summary, conclusions, and future work . 
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CHAPTER NINE 

Conclusions And Future Work 

This chapter concludes this thesis by reviewing the summaries of the key points from the previous 

chapters along with the important areas of research covered by the thesis. Conclusions are drawn 

and further areas of enhancement and future research work are listed. 
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II 9.1 Thesis Summary 

This thesis presented the outcome of research mainly into two areas of the computing technology: 

microprocessor and multi-processor architectures (specifically from the perspective of how differently they 

tolerate highly-latent and non-deterministic events), and the hardware design of complex digital systems 

containing both datapath and control (particularly microprocessors). 

As a result, the key achievements of this work are based on three important areas of research investigated 

and covered in this thesis: 

• The problems associated with tolerating highly latent and non-deterministic events in existing 

microprocessor and multi-processor architectures have been recognized. This was surveyed in 

chapter 2. 

• The high level behavioural VHDL (Very High Speed Integrated Circuit Hardware Description 

Language) description of the novel vector micro-threading chip multi-processor architecture, which 

is proposed to efficiently tolerate such high latency and non-determinism. The starting point for the 

design of this micro-threading architecture is the popular MIPS RISC (Reduced Instruction Set 

Computing) processor architecture. 

• The hardware implementation involving the VHDL description, synthesis and simulation of the 

MIPS R2000 RISC microprocessor onto an FPGA (Field Programmable Gate Array) chip. The 

MIPS microprocessor is an existing architecture and is implemented in this research to provide the 

baseline processor platform for the future micro-threading architectural add-ons and modifications. 

A part of the focus of this research is an investigation of the novel vector micro-threading architecture as an 

alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is 

based on the not-so-novel multithreading technique which avoids speculation altogether and instead, starts 

running a different thread of instructions while waiting for the non-determinism to be resolved. This utilizes 

the chip resources more efficiently without waste of any processing power. This was covered in chapters 3 

and 8. 

As this research progressed, the baseline RISC processor platform, the MIPS R2000, was first reviewed, 

then synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and 

tested. This was covered in chapters 5, 6, and 7. This was conducted in order for future research to build 

upon and add the micro-threading architectural add-ons and modifications. 
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One outcome of this research is the publ ication of a total of five papers (refereed and non-refereed) in five 

different conference proceedings within New Zealand [2, 14, 36, 55] and abroad [76]. 

9.2 Thesis Conclusions 

The fo llowing conclusions are drawn from this research: 

• The baseline MIPS R2000 microprocessor has been synthesized onto the Yirtex-11 FPGA and 

simulated successful ly. This 8-million-gate Yirtex-11 FPGA chip was much more than sufficient to 

accommodate this design. 

• It is also concluded that the ease of designing with FPGAs compared to AS I Cs j ustifies the process 

of using FPGAs for design prototyping prior to fina l commercialization onto an ASIC chip. 

D It is estimated that this 8-million-gate Yirtex-11 FPGA chip can accommodate a fu lly functional 

micro-threaded microprocessor, at the least. There even ex ists the possibility that a micro-threaded 

chip multiprocessor wi th 2-4 PUs can still be fitted onto this FPGA chip. 

9.3 Suggested Future Work 

This research can spawn future work in the following suggested areas: 

D Re-design the register file to segregate the read signal separately from the write signal in order to 

prevent the accidental and unwanted overwrite of the operands stored in the registers. 

D Implement the rest of the MIPS instructions, especially the multiplication and division. 

D Implement the fo llowing advanced techniques for the existing baseline MIPS R2000 

microprocessor synthesized in this thesis: 

o Pipelining with pipeline registers [I , ch.6]. 

o Bypass buses and data forwarding [I , ch.6]. 

o Branch prediction, out-of-order execution, and superscalar functionality [I , ch.6]. 

o Proper memory hierarchy system including cache memory [I, ch.7]. 

O Develop and synthesize the micro-threading VHDL model with all the micro-threading add-on 

components and combine them with the existing baseline MIPS R2000 microprocessor synthesized 

in this thesis to synthesize the finalised micro-threading microprocessor and chip multi-processor. 
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Continuation Queue 

D _____________________ ___________ _ 

DCM 

DF 

DFG 

DMT 

Digital Clock Manager 

Data Fetch 

Data Flow Graph 

Dynamic Multi-Threading 

E ________________________________ _ 

EDA 

EEPROM 

Electronic Design Automation 

Electrically Erasable Programmable Read Only Memory 
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EPIC Explicitly Parallel Instruction Computing 

ETS Explicit Token Store 

EX EXecute 

F ------------------- ------------- --
FD C 

FMAP 

FP 

FPGA 

FSM 

FU 

Data Flip flop with Clear 

Function MAPping 

Floating Point 

Field Programmable Gate Array 

Finite State Machine 

Functional Unit 

G ___________ ______________ ______ _ 

GCLK 

GCQ 

GRF 

H 

Global CLocK 

Global Continuation Queue 

Global Register Fi le 

----------------------------------
HEP 

HPL-PD 

HT 

HT 

Heterogeneous Element Processor 

Hewlett Packard Laboratories - Play Doh 

Horizontal Transfer 

Hyper-Threading 

I _ _ ______________________________ _ 

IA 

IBUF 

ID 

IDRR 

IEEE 

IF 

!LP 

JOB 

IOC 

!OP 

!PC 

Intel Architecture 

Input BUFfer 

Instruction Decode 

Instruction Decode and Register Read 

Institute of Electrical and Electronic Engineers 

Instruction Fetch 

Instruction-Level Parallel ism 

Input/Output Block 

Input/Output Cache unit 

Input/Output Processor 

Instructions Per Cycle 
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!SA 

!SE 

J 

Instruction Set Architecture 

Integrated Synthesis Environment 

G-4 

-------------- --------------------
] Jump 

JR Jump Register 

L ---------------- ------------------
LC Q 

LRF 

us 
LUT 

LW 

M 

Local Continuation Queue 

Local Register File 

Load/Store 

Look Up Table 

Load Word 

----------------------------------
MAJ C 

MEMA 

MIMD 

MTA 

MT! 

MU 

MXE 

N 

NOP 

NRE 

0 

OBUF 

p 

PC 

PE 

PLD 

POE 

Microprocessor Architecture for Java Computing 

MEMory Access 

Multiple Instruction stream Multiple Data stream 

Mu lti-Threaded Architecture 

Mode l Technology Inc. 

Memory Unit 

Models im - Xilinx Edition 

No OPeration 

Non-Recurring Engineering cost 

Output BUFfer 

Program Counter 

Processing Element 

Programmable Logic Device 

Plan Of Execution 
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PSW 

PU 

R 

RAU 

RF 

RISC 

RR 

RTL 

s 
SJ 

SAL 

SLT 

SLTI 

SMT 

SRAM 

STC 

SW 

T 

Process Status Word 

Processing Unit 

Register Allocation Unit 

Register File 

Reduced Instruction Set Computing 

Register Read 

Register Transfer Level 

Simultaneous Speculation Scheduling 

Single Assignment Language 

Set on Less Than 

Set on Less Than Immediate 

Simultaneous Multi-Threading 

Static Random Access Memory 

Space Time Computing 

Store Word 

-----------------------------------
T 2 

TB UF 

TP 

TS 

TSAG 

Terminator 2 

Tri-state BUFfer 

Thread Po inter 

Target Store 

Target Store Address Generation 

u ______________ __________________ _ 
u-T Micro-Threading 

V __________ _ _ ____________________ _ 

VHDL 

VLIW 

VLSI 

VMT 

VT 

Very high speed integrated circuit Hardware Description Language 

Very Long Instruction Word 

Very Large Scale Integration 

Vertical Multi-Threading 

Vertical Transfer 
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w -----------------------------------
W B Write Back 

X -----------------------------------
XS T Xilinx Synthesis Tools 
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