
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

MICRO-THREADING

AND

FPGA IMPLEMENTATION

OF A RISC MICROPROCESSOR

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

m

Computer Science

at Massey University, Palmerston North,

New Zealand.

FIRAS AL-ALI

2007

In loving memory of my mother, the late Zahra Ridha Witwit

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

MICRO-THREADING

AND

FPGA IMPLEMENTATION

OF A RISC MICROPROCESSOR

Firas Al-Ali

Institute of Information Sciences and Technology

Massey University, Palmerston North

NEW ZEALAND

Submitted:

June 2007

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

__ M~I---C~R'-"'0--T~H'-'-Rc.=cEA-'-D-'-I'"""N--'G __ A'-=-N=D--F __ P __ G=A~l~M=P---L ___ E ___ M=E=N~T~A~T-'-10---'-N--O--F--A~R"""l=S C--M--=I=C=R=0-"-P=R-"-0---C=E=SS"'"'0'-'R--------------ll

Abstract

This thesis is the outcome of research in two areas of computer technology: microprocessor and multi-processor

architectures (specifica lly from the perspective of how differently they tolerate highly-latent and non-deterministic

events), and hardware design of complex digital systems containing both datapath and control (particularly

microprocessors).

This thesis starts by pointing out that in order to achieve high processing speeds, current popular superscalar

microprocessors (e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of specu lating the outcome of

instruction flow in order to predict the behaviour of non-deterministic computing operations (as in loading operands

from high-latency memory into the processor). This is fine only if the specu lation is correct. But, what if it isn ' t? If

the speculation fails , this would mean that the processor has to abandon its current decision (which now proved to be

the wrong one) for the instruction flow path taken and to start al l over again with the other path (the actual correct

one). This is a waste of valuable processing time and hardware resources and a reduction of performance when

specu lation fai ls. Therefore, these processors can ach ieve high performance on ly when the majority of specu lations

are successful (being able to predict the right path).

In an attempt to overcome the above shortcomings, the first part of this thesis is an in vestigation of the novel vector

micro-threading architecture as an alternative approach to the current superscalar-based speculative microprocessor

designs . Micro-threading is based on the not-so-novel multithreading technique, which avoids speculation altogether

and instead, starts running a different thread of instructions while waiting for the non-determinism to be resolved.

This utilizes the chip resources more efficient ly without waste of any processing power.

The rest of this thesis focuses on the baseline RISC processor platform, the MIPS R2000, which is reviewed first then

partially synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested .

This is conducted in order for future research to build upon and add the micro-threading architectural add-ons and

modifications.

Keywords:

Micro-threading, Latency Tolerance, FPGA Synthesis, RISC Architecture, MIPS R2000 processor, VHDL.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

"-M=. I--=C"'-'R=0--T"'-H=R=EA"""D"-'-'-IN--=G""A~N=D--=F--=P;_G;::;.:..:A:....:l:.:.;M.:.:P--=L=-=E:.:.;M.:.:E=N..;..T::.:.A.:.:T:...al=0.:...:N....:Oa..:F:....:.:;A--=R..::;l:..:::S:..:C::.....:..;.M.::..:I""'C.:.:Rc:a:0..:..P.:..:R""0-"'Cc:::Ec:::.SS""0::..::R"-----------lll

Acknowledgements

This thesis is the final result of the research efforts and considerable time investment of seemingly only one person;

that would be myself! However, this thesis (and its preceding background research work) would not have been

completed (or even started) without the help of the following very special people in my research career and my life:

D First and foremost, my enormously wonderful supervisor, Dr. Roger Browne. His technical knowledge,

sound advice, and endless patience were all paramount factors in helping me successfully complete this

project. However, his role in this research and thesis was far more than just being a supervisor to me, but

more of a father figure too with his warm kindness and sincere sympathy towards the personal

circumstances I endured during the course of this project.

D My co-supervisor, Mr. Chris Norrie, has been extremely helpful with valuable applied and practical hints

and tips from his years of experience in the microprocessor design industry. His thorough insight into this

exciting field along with his relentless passion in his career designing microprocessors and VLSI chips, have

both spilled over into my research and thereby positively triggering my inspiration, excitement, and

technical mastery over the obstacles I encountered during the course of my research.

D During the course of this project, the Institute of Information Sciences and Technology, where I work, lived

through the eras of two consecutive heads of institute. Prof. Bob Hodgson was head of institute when I

started this research and also started my academic career at Massey University. He provided me with the

needed momentum to start this project and continued to support me throughout. Also, his adorable wit and

memorable light heartedness and enjoyable sense of humour have all helped me through many a dark day.

Now, Prof. Janina Mazierska is head of institute and she provided me with considerable support and help to

finish it 1 I owe it to both of these extremely incredible role models that I had the inspiration to start , and then

successfully complete this undertaking!

D The support and guidance I received from A/P Ray Kemp and A/P Elizabeth Kemp was phenomenal. They

both had a huge impact on the successful completion of this research and thesis.

o Completing a research thesis is also a personal effort involving one's family as well. Special thanks, with

love, goes out to all of them: my loving father Dr. Muneer Al-Ali and my beloved late mother Zahra Witwit,

without both of whom, this thesis never would've started in the first place. However, now that my mom is

no longer with us, her loving and caring sister Widad Witwit, now my step mom (and second mom as I like

to call her), alongside my father, are both witnessing this successful completion at the end.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

"'""M""I"""C"'-R"""0_-T=~=•=R=EA=D"-l"'"N-'1G""'A'-=-'N"'"D"""F--"P'-G~A~l~~=1P-'L=E~M=E=N_T~A-'T~I~0~N-'O""'F'-A~R~l-'S-'C"-"'-'M=l-'-C=R~0~P-R~0~C~E~SS~O'-R __________ lV

o The support and love from my sweet brother Wisam Al-Ali , my cute sister Asil Al-Ali, and my loving step

brother Ammar Al-Eid , were catalyst factors in helping me through this period .

• And last but not least, not to forget all those wonderful people in my life who are my very good and close

friends . They were all of great support and help during this period.

To all those special and wonderful people I mentioned above, I say from the bottom of my heart: Thank you. Thank

you very much. I'm very proud to dedicate this thesis to all of you, with appreciation and love.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

.:..:.M.:...:1..:::C .:..:R""-0-...:Tc:,;11:..:.;R:.:aEc:.:A .:a:cD.:..:.IN.:..oG"""'A:..:.:.;.N D::a....:...F.:..P..:::G :..:..A::..l::..:;Mc:..:P:....:La:..::E:..:..:M.:..:Ee:..N:....:T.:.:Ac.:..T=-->I0c.:.N'-'' O"'-'-F.:....:Ac..:.R.:.:lc:::S ..:::C :...,M.:..:..:..:ICa::R.:..:0::..:.P.:;R:..:a0:..:::C:.:eE::a::SS""O:..:.R:.._ ________ V

Table Of Contents

o Pa rt One --

Cltapter 1:
Introduction 1-1

C!tapter 2:
Survey of High-Latency Tolerance in Contemporary and Future Processor
Architectures .. 2- 1

C!tapter 3:
Introducing Micro-threading as a Solution to the Problem of High-Latency... 3-1

o Part Two--

Cit apter 4:
Hardware Design Methodology and EDA Tools.. 4-1

C!tapter 5:
Review of MIPS R2000 Architecture 5-1

C!tapter 6:
VHDL Description and Synthesis of MIPS R2000 Microprocessor........... 6-1

C/,apter 7:
AssembledLoader for the Synthesi::ed MIPS R2000 Microprocessor.. 7-1

o Pa rt Three --

Cltapter 8:
VHDL Description of the Micro-threading Multi-processor...... 8-1

Cltapter 9:
Conclusions and Future Work................ 9-1

References........ R- 1

Glossarv.. G-1

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

"-'-M=I=C=R0-"---'T-=-H=-=-R=E""A-"-D=IN.;..aG:....:A..;;.;N""'D::;....::..F.::..P-=G..:.;A::...:l:.:.;M..:.:P~L=E=M=E:.:...N-=-T.:.:;A T..:..;I:..a:0..:.;N;...;O::...;F'-'A:..::...::.R=l=SC=-=-M;...::..a.alC=R=0""-P-=-=R=0=C=ES=S=0..:.:R'-----------Vl

• Com pa ni on CD --

A ppendix A :
VHDL Description and Synthesis of MIPS R2000 Datapath Basic Building Blocks.... A-I

A ppendix B:
VHDL Description and Synthesis of MIPS R2000 Complete Datapath 8- 1

A ppendix C:
VHDL Description and Synthesis of MIPS R2000 Control Unit C- 1

A ppendixD:
Supplementary Material for Chapter Six... D-1

A ppendix E:
Papers Published in Conference Proceedings. E- 1

159.899 M .Sc. Computer Science Firas Al-Ali 99203447

""M.:..:l:..:aC:..:;R:._:a0:....-T..:...:.:H.:..:R..::::E:.::.A.:::.D,o:.IN..:..;G"-'-'A"-'N""D--'F'-'P'-G:a:..:...;A:....:l:..:.;M.:..:P:....:Le.::Ee:.;M.:..:E:e..:N..:..T:..,A.:..:T:....:l..::::0..:..;Nc..,:O~F.:....:A:....:R;.:.l:..::S::.,aC::....:..:M.:..:l,.:::C:..:;R,.:::0;.:_P.:..:R"'0c,:aC:,::E:.::a:S::a:;S0""R,.,__ _________ vu

Publications

Publications prepared during the course of the research for this thesis are as follows:

I. F M Al-Ali and C R Jesshope, 2000, Survey of High-latency Tolerance in Contempora,y

Microprocessor Architectures, Proc. 7th Annual New Zealand Engineering and Technology

Postgraduate Conference, pp339-346, ISBN 0-473-07224-6, Massey Un iversity, Palmerston North,

New Zealand, 23 rd & 24th Nov.

2. F M Al-Ali and C R Jesshope, 200 I, Survey of High-latency Tolerance in Future Microprocessor

Architectures, Proc. New Zealand Computer Science research Students' Conference (NZCSRSC

200 I), pp86-97, TR-COSC 02/01, University of Canterbury, Christchurch, New Zealand, I 9th &

20th April.

3. F M Al-Ali and R F Browne, Behavioural VHDL Model of a Vector Micro-threading Chip

multiprocessor, Proceedings of the 6th Internat ional Conference/Exhibition on High Performance

Computing in Asia-Pacific Region (HPC Asia 2002), Bangalore, 16- 19 December 2002, Vol.2 , pp

518-52 1, Tata McGraw-Hill Publishing Company Ltd. , New Delhi , India, ISB 0-07-049992-6.

4. F. M. Al-Ali and R. F. Browne, An FPGA Implementation of a RISC Microprocessor, Proceedings

of the I Ith Electronics New Zealand Confere nce (ENZCon'04), 15-16 Nov, 2004, p 106-111 , ISBN

0-476-01106-X, Massey University, Palmerston North , New Zealand.

5. F. M. Al-Ali and R. F. Browne, VHDL Modelling of a RISC Microprocessor: Synthesis, Assembler,

loader, and Testing, Proceedings of the I t h Electronics New Zealand Conference (ENZCon '05),

14-15 Nov, 2005 , pp 63-68, ISBN 0-473-10634-5, Manukau Institute of Technology, Manukau

City, Auckland, New Zealand.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

11

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-1
Part One - Ch.] - Introduction

CHAPTER ONE

INTRODUCTION

This chapter outlines the motivation behind this thesis, followed by the scope and logical

structure of the research work undertaken. The key ideas to be presented in the body of the thesis

are introduced and the contents of the chapters and appendices are briefly outlined.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-2
Part One - Ch. I - Introduction

11 1.1 How It All Started

So~ why did I decide to do my MSc? And~ why did I choose this

particularly challenging yet equally inspiring subject of Microprocessor

Design?

It all started back in Christmas of 1991; only a few months after I graduated with a B.Sc. degree in

Electronics Engineering and Communications. It was the subject of microprocessor design, which really

mesmerized my imagination! It was the idea of how powerful the human spirit is, how creative the minds of

scientists are, and how today's technology is so developed to the point of conceiving such powerful

inventions while keeping them tamed to the point of advancing our lives .

So, I wanted to design microprocessors! I wanted to sit in front of the screen and design the internal

interconnections, components, and wiring diagram of the microprocessor. Although back then in 1991 it

seemed to me no more than a dream, but the following 15 years led to the successful fruition of this MSc

thesis in the FPGA implementation of a RISC microprocessor.

Embarking on this 15-year quest towards achieving my dream, my first job after graduation was as a PC

Repair Technician. I did not know what exactly I had to do in the short term (with PCs), but I knew exactly

where I am headed to in the long run (with designing microprocessors) . Coming from an engineering

background was the main drive behind my involvement in the hardware aspects of PCs as the starting point.

Being involved with PCs, I learned of Intel's line of the then-popular microprocessors (8086/8088, 80286,

80386, 80486 . ..).

The main events behind turning my dream of designing microprocessors into an actual MSc dissertation

took place between 1991 and 1996. That was the time when I started to take notice of the fact that a great

percentage of Intel's microprocessors were actually fab ricated in Malaysia, where Intel has the largest chip

manufacturing facility in the world, located on the industrial island of Penang in the northern part of

Malaysia. Therefore, my dream of designing microprocessors became then synonymous with another one :

working as a chip design engineer at Intel Malaysia. So, it was time to pay Malaysia a visit!

So, I arrived in Malaysia in October 1996. A few days later, I paid Intel Penang' s office a visit. That was a

historic event! I could not believe that I was finally walking into the offices of the Holy Grail of the

microprocessor industry and the largest chip designer and manufacturer in the world! I asked the receptionist

for a job application form. Instead, she got the human resources manager to come down and see me. He told

me that Intel would not hire me unless I have, at the least, a Masters in VLSI/Chip/Microprocessor Design .

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-3
Part One - Ch. I - introduction

THAT was the moment when my dream became even more focused: to have a Masters in Microprocessor

Design!

Of course, I did not end up getting any job at Intel back then but I continued to look out for any

opportunities to pursue my MSc studies in this field . This opportunity did finally arise in 2000 at Massey

University. It brings me so much pride now that this MSc dissertation is the end of that 15-year quest.

Now that the story behind this research has been told, the next section elaborates on the scope of this

research and thesis overview.

Scope of This Research: Thesis Overview

This thesis is the outcome of research in two areas of the computer technology: microprocessor and multi

processor architectures (specifically from the perspective of how differently they tolerate highly-latent and

non-deterministic events), and hardware design of complex digital systems containing both datapath and

control (particularly microprocessors).

As a result, the key achievements of this work are based on the three key areas of research investigated and

covered in thi s thesis. These are:

• The problems assoc iated with tolerating highly latent and non-deterministic events 111 ex isting

microprocessor and multi-processor architectures.

• The high level behavioural VHDL (Very High Speed Integrated Circuit Hardware Description

Language) description of the novel vector micro-threading chip multi-processor architecture, which

is proposed to efficient ly tolerate such high latency and non-determinism. The starting point for the

design of this micro-threading architecture is the popular MIPS RISC (Reduced Instruction Set

Computing) processor architecture.

• The hardware implementation involving the VHDL description, synthesis and simulation of the

MIPS R2000 RISC microprocessor onto an FPGA (Field Programmable Gate Array) chip . The

MIPS microprocessor is an existing architecture and is implemented in this research to provide the

baseline processor platform for the future micro-threading architectural add-ons and modifications.

This thesis shows that in order to achieve high processing speeds, current popular superscalar

microprocessors (e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of speculating the

outcome of instruction flow in order to predict the behaviour of non-deterministic computing operations (as

in loading operands from high-latency memory into the processor). This is fine only if the speculation is

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-4
Part One - Ch. I - Introduction

correct. But, what if it isn't? If the speculation fails, this would mean that the processor has to abandon its

current decision (which now proved to be the wrong one) for the instruction flow path taken and to start all

over again with the other path (the actual correct one). This is a waste of valuable processing time and

hardware resources and a reduction of performance when speculation fails. Therefore, these processors can

achieve high performance only when the majority of speculations are successful (being able to predict the

right path).

A part of the focus of this research is an investigation of the novel vector micro-threading architecture as an

alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is

based on the not-so-novel multithreading technique, which avoids speculation altogether and instead, starts

running a different thread of instructions while waiting for the non-deterministic outcome of the instruction

execution to be resolved. This utilises the chip resources more efficiently without waste of any processing

power.

As this research progressed, the baseline RISC processor platform, the MIPS R2000, was reviewed first then

synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested.

This was conducted in order for future research to build upon and add the micro-threading architectural add

ons and modifications.

One outcome of this research is the publication of a total of five papers (refereed and non-refereed) in five

different conference proceedings within New Zealand [2, 4, 5, 6] and abroad [3]. It is worth mentioning here

that [3] was a refereed publication in the conference proceedings of an international conference of high

standing.

The next section briefly looks at the contents of the rest of the chapters in this thesis .

IJ 1.3 Contents of the Chapters

Chapter Two:

Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

This chapter provides the necessary background and motivation for this research work by addressing the first

of the three key areas of research investigated and covered in this thesis. Therefore, in this chapter, existing

material and literature is surveyed in order to shed the necessary light on the problem at hand: the

shortcomings of existing and future processor architectures in terms of their tolerance for high-latency and

non-determinism. The architectures surveyed are the Superscalar, VLIW (Very Long Instruction Word) ,

EPIC (Explicitly Parallel Instruction Computing), Dataflow, and the different Multi-threading variants.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-5
Part One - Ch. I - Introduction

Consequently, this sets the scene for the introduction of the micro-threading architecture (which will be

introduced in chapter three).

Chapter Three:

Introducing Micro-threading as a Solution to the Problem of High-Latency

In this chapter, the Micro-threading architecture as a proposed solution to the problems of high-latency and

non-determinism, is formally introduced and described. The material presented here is based mainly on

research work carried out by Jesshope [13, 32] and Jesshope and Luo [34, 39, 33] and then surveyed by the

author [5, 6].

Chapter Four:

Hardware Design Methodology and EDA Design Tools

This chapter outlines the hardware design methodology, processes, challenges, CAD/EDA design tools, and

lessons learnt from synthesizing a MIPS R2000 RISC microprocessor onto an FPGA VLSI chip. The

chapter starts with an overview of the design process and hierarchical partitioning. Then, the issues of

implementing the datapath (combinational logic) and memory (sequential logic) components onto the

chosen Xilinx Virtex-II FPGA, are discussed. This determines the efficiency with which a design can be

implemented on an FPGA chip.

Chapter Five:

Review of MIPS R2000 Architecture

This chapter presents a brief review of the basics of the MIPS R2000 microprocessor Instruction Set

Architecture (ISA), or simply, Architecture. This is the interface between the highest layer of the

microprocessor hardware and the lowest layer of the software. The basics outlined in this chapter constitute

the foundation on top of which the rest of the chapters are based. This chapter is extracted mainly from

excerpts from [47]. Wherever necessary and possible, reference to the relevant page numbers will a lso be

made. This chapter is annotated with the author' s comments and tailored adaptation for the context of this

research.

Chapter Six:

VHDL Description and Synthesis of MIPS R2000 Microprocessor

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-6
Part One - Ch. l - Introduction

This chapter presents a brief review of the Register Transfer Level (RTL) description of the MIPS R2000

microprocessor followed by the author's own work on implementing this description in VHDL. This VHDL

description (also called RTL Model) of the MIPS R2000 microprocessor includes synthesis onto the target

Xilinx Virtex-11 FPGA chip followed by simulating a machine language code running on this

microprocessor. Again, this chapter is based on and complements the material presented in [47] and [48] and

is annotated with the author's comments and tailored adaptation for the context of this research . The details

are covered in Appendices A to C (on the Companion CD).

Chapter Seven:

Assembler/Loader for the Synthesised MIPS R2000 Microprocessor

This chapter presents a novel and unconventional way of writing an assembler/loader for the MIPS R2000

microprocessor synthesized in chapter six, using the VHDL language. This was simulated in Model

Technology Inc. (MTI) ModelSim XE.

Chapter Eight:

VHDL Description of the Micro-threading Chip Multi-processor

This chapter briefly describes how the micro-threading architectural add-ons and components are added to

the standard MI PS architecture to build the micro-threading microprocessor and also the chip

multiprocessor. The micro-threading VHDL description presented in this chapter is at a high level of

abstraction as it is a behavioural description augmented with algorithms. Some VHDL pseudo-code is also

included. As elaborated in chapter four, this is the first step of the hardware design process for the micro

threading microprocessor/multiprocessor and, therefore, paves the way for future research in which these

algorithms and high level descriptions are utilized in designing the final micro-threading microprocessor

and/or chip multiprocessor.

Chapter Nine:

Conclusions and Future Work

This chapter concludes this thesis by reviewing the summaries of the key points from the previous chapters

along with the important areas of research covered by the thesis . Conclusions are drawn and further areas of

enhancement and future research work are listed.

A glossary is also provided following the list of references. The next section briefly looks at the contents of the

appendices found on the accompanying Companion CD.

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-7
Part One - Ch. 1 - Introduction

11 t.4 Contents of the Appendices (on the Companion CD)

Appendix A:

VHDL Description and Synthesis of MIPS R2000 Datapat!, Basic Building Blocks

This appendix presents a brief review of the Register Transfer Level (RTL) description of the basic building

blocks for the datapath of the MIPS R2000 microprocessor followed by the author's own work on

implementing this description in VHDL. This VHDL description (also called RTL Model) of these datapath

basic building blocks includes simulation and synthesis onto the target Xilinx Virtex-11 FPGA chip. Again,

this appendix is based on and complements the material presented in [47) and [48) and is annotated with the

author's comments and tailored adaptation for the context of this research. This appendix is the basis on

which Appendix B builds upon to create the VHDL description and synthesis of the finalized full MIPS

R2000 microprocessor in chapter 6.

Appendix B:

VHDL Description and Synt'1esis of MIPS R2000 Complete Datapath

This appendix presents the development of the Register Transfer Level (RTL) description of the complete

datapath (without the control unit yet) of the MIPS R2000 microprocessor. The datapath concepts are first

reviewed and then followed by the author's own work on implementing this description in VHDL. This

VHDL description (also called RTL Model) of this complete datapath includes simulation and synthesis

onto the target Xilinx Virtex-11 FPGA chip. Again, this appendix is based on and complements the material

presented in [47) and [48) and is annotated with the author's comments and tailored adaptation for the

context of this research. This appendix is the basis on which Appendix C builds upon to create the VHDL

description and synthesis of the finalized full MIPS R2000 microprocessor in chapter 6.

Appendix C:

VHDL Description and Synthesis of MIPS R2000 Control Unit

This appendix presents the development of the Register Transfer Level (RTL) description of the control unit

of the MIPS R2000 microprocessor. The control unit concepts are first reviewed and then followed by the

author's own work on implementing this description in VHDL. This VHDL description (also called RTL

Model) of this control unit includes simulation and synthesis onto the target Xilinx Virtex-11 FPGA chip.

Again, this appendix is based on and complements the material presented in [4 7) and [48) and is annotated

with the author's comments and tailored adaptation for the context of this research. This appendix is the last

I 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-TI-IREADI G AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 1-8
Part One - Ch. I - introduction

piece of the big picture used to create the VHDL description and synthesis of the finalised full MIPS R2000

microprocessor in chapter 6.

Appendix D:

Supplementary Material for Chapter Six

This appendix covers the supplementary material for Chapter Six. This includes, higher resolution figures ,

diagrams, and detailed VHDL code.

Appendix E:

Published Conference Proceedings

This appendix is a collection of the five papers generated by this research and published in conference

proceedings. These papers are:

• Survey of High-latency Tolerance in Contempora,y Microprocessor Architectures [5}

• Survey of High-latency Tolerance in Future Microprocessor Architectures [6}

• An FPGA Implementation of a RISC Microprocessor [2]

• VHDL Modelling of a RISC Microprocessor: Synthesis, Assembler, Loader, and Testing [./}

• Behavioural VH DL Model of a Vector Micro-threading Chip Multi-processor [3 J

1.5 Summary and Conclusions

This chapter outlined the motivation behind this thesis, along with the scope and structure of the research

work undertaken. The key ideas to be presented in the body of the thesis were introduced and the content of

each chapter was briefly outlined.

The next chapter surveys high-latency tolerance in contemporary and future microprocessor architectures

and the problems associated with that.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADrNG AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-1
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

CHAPTER Two

SURVEY OF HIGH- LATENCY TOLERANCE IN

CONTEMPORARY AND FUTURE PROCESSOR

ARCHITECTURES

This chapter provides the necessary background and motivation for this research work. This is

achieved by surveying existing material and literature to shed the necessary light on the problem

at hand, i.e. , the shortcomings of existing and future processor architectures in terms of their

tolerance for high-latency and non-determinism. The architectures surveyed are the Superscalar,

VLIW (Very Long Instruction Word), EPIC (Explicitly Parallel Instruction Computing),

Datajlow, and the different Multi-threading variants. Consequently, this sets the scene for the

introduction of the micro-threading architecture, which is introduced in chapter three.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-2
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

11 2.1 Introduction

This chapter presents a survey of contemporary and future microprocessor architectures from the viewpoint

of their different techniques used in tolerating highly latent and non-deterministic events. This is a key factor

in determining the microprocessor's performance. Each architecture is presented with a brief review and an

example commercial implementation or at least a proposed one.

Th is survey starts with section 2.2 where the problem of high-latency tolerance is identified first. Then, a

brief review of how the different microprocessor architectures are classified base on the von Neumann

comput ing model is covered in section 2.3 . The sections that follow review the different architectures and

how they tolerate high-latency. The Data/low architecture is reviewed in section 2.4. This exploits the finest

grained parallelism available in a program, using dataflow graphs. The Supersca/ar approach is reviewed in

section 2.5, where one sequence of instructions is issued out of order on multiple datapaths. The VL!W and

EPIC architectures are reviewed in section 2.6. They utili se sequentia l streams of wide instruction words,

again executed on multiple datapaths. Finally, Mu/tithreaded processors are reviewed in section 2.7.

Multithreading provides coarse-grained parallelism through context switching between multiple threads of

instructions. This chapter ends with a summary and conclusions in section 2.8.

2.2 The Problem of High Latency Tolerance

Pushing microprocessor designs to the extreme limits of high performance has led to different approaches in

this field of design, in order to meet evolving and increasingly high, computational demands. This trend is

reinforced by Jesshope and Luo [34] in the fo llowing extract:

The transition from the earlier CISC, to RISC, and now to the post-RISC era has been driven by the demand to

achieve good efficiency, optimising the common case to make it as fast as possible, obtaining a larger !PC

(Instructions Per Cycle) , and extracting the best of !LP (Instruction-level Parallelism) while executing

sequential legacy code [34].

One main obstacle facing microprocessor designers in their quest towards achieving higher performance is

that of tolerating high latency and non-determinism in instruction execution, such as the latency in the

access to main or remote memory, responding to branches in control, or performing a floating-point

division. Another example of non-determinism is the result of statically scheduling concurrent operations

and the need for synchronisation between these operations. It is worth mentioning here that scheduling is the

process of assigning specific instructions and their operand values to designated hardware resources at

designated times [17].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-3
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

In the following sections of this chapter, current and future micro-architectures (microprocessor

architectures) are reviewed along with a description of how they differently address the above issues.

2.3 Review of Microprocessor Architectures Classification

At least four possible classes of micro-architectures can be recognized [53 , 54] some of which continue in the

ongoing evolution path of the von Neumann computer [53 , 54] while others follow a totally different path:

• Microprocessors that retain the von Neumann architectural principle of Result Serialisation (where the order

in which the instruction flows as observed from the outside by the compiler sti ll retains the original

sequential program order), despite the inherent use of out-of-order execution technique within the

microprocessor [53]. Micro-architectures that belong to this class are today 's Superscalar architectures.

There is still a considerable effort being directed towards improving such architectures, e.g.

Superspeculative [36, 35, 37], Multiscalar [18, 57, 58], Trace [50, 56, 68], Datascalar [14], and

Superthreaded [53, 66]. All these approaches fall into the same category because the result seria lisation

must be preserved [53]. A reordering of results is performed in a Retirement or Commitment stage in order to

fulfil this requirement. These architectures are reviewed in this paper.

• Microprocessors that modestly deviate from the von Neumann architecture principle while allowing the use

of sequential von Neumann languages by compiling programs to the new instruction set principles [53].

Examples of such approach are the Very Long Instruction Word (Vl/W), Single Instruction Multiple Data

(SIMD), and Vector architectures. VLIW is reviewed in this chapter. While the SIMD and vector

architectures are not covered in this architecture, the vector instruction set is implemented in the proposed

Micro-threading architecture discussed later (chapters 3 and 9).

• Microprocessors that optimise the throughput of a multi-programming workload by executing multiple

threads of control at the same time [53]. In this case, each thread of contro l is a sequential thread of

instructions executable on a separate von Neumann computer [53]. Two example architectures are the Multi

threaded approach and the Chip Mult i-Processor (CMP). Multi-threaded architectures are discussed in this

chapter. CMP is not discussed explicitly, but rather implicitly as it is tightly coupled with multi-threading

and micro-threading as discussed in chapters 3 and 9.

• Microprocessor architectures that deviate totally from the standard von Neumann architecture and that need

to use new languages, such as Dataflow with Datajlow Single-Assignment languages (SALs) [53]. These are

discussed in this chapter.

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-4
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

One of the many motivations for this diversity of approaches is that of tolerating high latency and non

determinism, as explained earlier. In the remaining sections of this chapter, these micro-architectures are

reviewed along with a description of how they differently address the above issues of latency tolerance.

II 2.4 Dataflow Architectures

The dataflow architecture exploits all the finest-grained parallelism available in a program [53]. In this

architecture, there is no need at all for a program counter since program execution is driven only by the

availability of operands at the inputs to the functional units. This is why this architecture is also known as

being data driven, and hence the name "dataflow", as opposed to the standard von Neumann control-flow

principle. Thus, in dataflow the parallelism is limited only by the actual data dependencies in the application

program. Dataflow architectures are not classified as RISC and they represent a truly radical alternative to

the von Neumann control-flow architecture because they use datajlow graphs as their machine language.

Dataflow graphs specify on ly a partial order for the execution of instructions and thus provide opportunities

for parallel and pipelined execution at the level of individual instructions. A program for a dataflow

architecture is usually written in a SAL (Single-Assignment Language), then compiled into a data flow graph

which is a directed graph consisting of named nodes, which represent instructions, and arcs, which represent

data dependencies among instructions . When a program executes, data "propagates" along the arcs as data

packets, called tokens . This flow of tokens enables an instruction when all its input arcs have been

traversed . The arcs in the graph are represented dynamically as unique tags in the tokens and the firing

mechanism uses special memories called matching stores to match operands to instructions.

While a single thread of contro l in other microprocessor architectures often does not incorporate enough

fine-grained parallelism to feed multiple functional units of today 's microprocessors, the data flow approach

resolves any threads of control into separate instructions that are ready to execute as soon as all required

operands become available. Therefore, the fine-grained parallelism potentially utilised by a dataflow

computer is much greater than the parallelism availab le for today's conventiona l microprocessors [53]. The

massive parallelism generated in a dataflow computer is controllable through the implementation of

techniques such as K-bounded loops, which are used to introduce false dependencies into the dataflow graph

to limit and throttle concurrency [12, 5] . Thus, dataflow processors not only support a dynamic schedule but

also dynamic parallelism, which is not required in compiling most imperative programming languages [13] .

Consequently, code must be recompiled for a dataflow processor, and single-assignment languages produce

much more parallelism than is usually required for good performance.

The dataflow concept offers the potential of high performance and was thought by many to provide the

answer to the scheduling problem, but the solution it provides is far too general and the overheads are high .

This is because the performance of an actual datatlow implementation can be restricted by two main

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-5
Part One - Ch.2 - Survey of High-latency Tolerance in Contemporary and Future Processor Architectures

limitations; firstly, the need for deep pipelines and a resulting high ratio of non-productive instructions,

secondly, the need for expensive matching logic required for matching pending operations with operands

generated by other instructions.

Since the early 1970s, there has been significant research and practical realisations of dataflow computers

[53]. These dataflow computers can be based on either a Pure Datajlow [64 , 59, 19, 52] or an Augmented

Datajlow with Control-flow. Examples of the pure dataflow model are the MIT Stat ic Datajlow Machine

(based on static data flow) [15] , MIT Tagged-Token Datajlow Architecture (based on dynamic dataflow) [9 ,

I 0, 21], and the Monsoon Multiprocessor (based on explicit token-store dataflow) [43 , 45 , 46 , 44].

On the other hand , there has been active research and development in the field of augmenting dataflow with

control-flow [53] . Examples are:

• Threaded Datajlow (multithreaded architectures which have evolved from the dataflow model), eg.

Epsilon-I and Epsilon-2 processors [22] and, again, the Monsoon Multiprocessor [43, 45, 46, 44].

• Large-Grain Datajlow, an example of which is the MIT and Motorola joint venture StarT processor

[41].

• Datajlmv with Complex Machine Operations, an example of which is the ASTOR architecture [76].

These developments have also had a certain impact on the conception of high-performance processor

architectures in the "post-RISC" era. For example, dataflow is used in Tomasulo 's Algorithm (an example of

Datajlow Scheduling), which is a hardware-dependent resolution scheme that allows for dynamic scheduling

out-of-order execution of instructions in the presence of hazards. This technique was first introduced in the

IBM 360 Model 9 I [62] and is now used in today' s popular superscalar microprocessors, as we will be

covered in the next section .

As noted above, the Monsoon multiprocessor features both explicit token-store dataflow and threaded

dataflow. This is one solution in dataflow research to address the problems associated with dataflow

architectures, as raised earlier (the need for deep pipelines, . .. etc.) . Two main features are introduced in the

Monsoon Multiprocessor which are of direct relation to this research and are discussed below in a little more

detail:

• Explicit Token-Store (ETS) Datajlow

This is an evolution from the tagged-token dynamic dataflow principles [28]. ETS was the result of

Papadopoulos' work [46 , 44] and was later incorporated in the Monsoon multiprocessor, the latter being

the product of a joint effort of the MIT Computation Structures Group, and the Motorola company [45,

46] after ETS was developed. The earlier tagged-token dataflow architectures used an associative

matching store to determine when instructions are ready for execution. For a two-operand instruction to

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-6
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

become enabled, tokens carrying the two-operand values must be received. The first token to arrive is

held in the matching store until its associate companion has arrived . Two tokens provide a pair of

operands to the instruction if they have the same tag. In ETS, the associative search for matching tokens

is replaced by establishing a memory location where each synchronization takes place. This location is

within an Activation Frame associated with each function activation. Therefore, the memory where the

token is waiting is directly addressed, without the need for associative matching which is slow and

expensive [27] . Every location that corresponds to an activation of a two-input operation is augmented

with a Presence Bit that is initially in the "empty" state. When the first token arrives it notices the

"empty" state and writes its value into the location. Then, the presence bit is set into the "present" state.

The second token notices the "present" state and reads the location, and then resets the presence bit back

to "empty". The operation defined by the instruction (from the tag) is performed on the incoming

token's value and the value read , and a new token is generated with the resulting value. Details of how

ETS works are found in [43 , 44]. This ETS model is what is implemented in Monsoon. The benefit of

eliminating the associative search is obtained, generally, by reducing the cost of dynamically allocating

storage for an activation frame for each function initiation (pre-allocation is can occur when a static

analysis of the program demonstrates that this is feasible [28]). Another innovation in the Monsoon is

its support for I-structures, which refer to arrays of data in which reads of an element are made to wait

until the element is defined by a write operation . Actually, as will be described later, the registers in the

Micro-threaded architecture are in fact I-structures.

• Threaded Datajlow (Augme11ti11g Datajlow with Co11trol-jlow)

Evolving from the dataflow model , is the Monsoon multithreaded architecture [27]. The maximum

configuration build consists of 8 processors and 8 I-structure memory modules using an 8x8 crossbar

network, and became operational in 1991. The Monsoon is a cycle-by-cycle-interleaving, multithreaded

computer due to its capability of Direct Token Recycling [46]. Direct token recycling allows a particular

thread to occupy only one pipeline frame slot in the 8-stage pipeline, which implies that at least 8

threads must be active to achieve full pipeline utilisation [53]. Figure 2.1 shows the Monsoon execution

pipeline. The question that arises here is how are threads tracked and scheduled in this threaded

dataflow architecture since there are no program counters involved to refer to? The answer is that

massively parallel processors operate in an asynchronous manner in a network environment, where

asynchrony is used to solve the two fundamental latency problems: Remote Loads and Synchronization

Loads [27]. One solution to this problem is Threaded dataflow, by multiplexing between many threads

(when one thread issues a remote-load request, the processor switches to another thread) where

"full /empty" bits present in memory words are used to synchronize remote loads associated with

different threads [27]. In threaded datatlow, the threads are tracked and scheduled by associating each

remote load and response with a thread identifier (referred to as a "continuation on a message") for the

appropriate thread, so it could be re-enabled upon arrival of a response. A large hardware-implemented

Continuation Name Space is provided to store an adequate number of threads for remote responses [27] .

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-7
Part One - Ch.2 - Survey of High-latency Tolerance in Contemporary and Future Processor Architectures

Threads in Monsoon are short instruction sequences that access the local variables of its function

initiation from its activation frame , and pass intermediate results using a small register file, thereby

eliminating the need for dataflow synchronization during each instruction ofa program [28].

Execute
Operation

&
Compute

Token

Store

Interconnection

Network

Frame

Memory

Presence Bit
Memo

Instruction
Memo

Figure 2.1 Monsoon multiprocessor execution pipeline [53/.

2.5 Superscalar Architectures

Token
Queue

Superscalar microprocessors are implicit multiple-issue processors [53]. The principal motivation behind

the superscalar architecture was to overcome the single-issue of uni-scalar (single pipeline) RISC processors

by providing the facility to fetch, decode, issue, execute, retire, and write back results of more than one

instruction per clock cycle. The instructions are scheduled dynamically by the hardware. In other words, a

conventional serial instruction stream is split dynamically into concurrent instruction sequences by an

instruction window during execute time inside the processor [17] .

159 .899 M.Sc. Computer Science Firas Al -Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-8
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

The superscalar trend is based on replicating the internal datapath components of the microprocessor so that

it can launch multiple instructions in every pipeline stage. This a llows for the instruction execution rate to

exceed the clock rate and for the CPI (Cycles Per Instruction) to be less than I [47]. The superscalar

pipeline (as shown in Figure 2.2) features several independent Functional Units (FUs) that execute

instructions independently.

FUl

Inst. FU2
Win- Issue

IF
dow

FU3

FU4

Figure 2.2 A quad-issue superscafar pipeline /53/.

The problem of tolerating high latency in superscalar processors is addressed with the use of Out-of Order

Execution hardware that invokes different techniques such as Dynamic Branch Prediction, and Control

Speculation to solve the problems of control and data conflicts and hazards [53 , 5]. A point worth

mentioning here is that out-of-order execution is an example of dynamic scheduling which implements

Tomasulo 's algorithm mentioned earlier in section 2.4. The performance of branch prediction depends on

the prediction accuracy and the cost of misprediction. Although static branch prediction techniques can be

used here, implementing the alternative dynamic branch prediction usually delivers better performance. The

high penalty of misprediction, on the other hand, could be no less than 2 cycles, and sometimes up to I I or

more cycles in the Pentium II or the Alpha 21264 processors [53]. This is a high misprediction penalty,

especially as these processors execute many instructions in each cycle. Another severe problem with the

superscalar approach is keeping its pipelines full. This problem is well understood and so lved using

speculation . But speculative instruction issue generates write-after-read and write-after-write hazards, which

would severely reduce instruction issue rates when not using register renaming [34]. That, again , adds

complexity and cost to the design.

By now, it is clear that superscalar execution increases instruction throughput. Wider superscalar issue puts

even more pressure on the compiler to deliver on the performance potential of the hardware. But data and

control dependencies in programs, together with instruction latencies, offer an upper limit on delivered

performance because the processor must sometimes wait for a dependency to be resolved, such as with a

mispredicted branch. Furthermore, the techniques of out-of-order execution and dynamic branch prediction,

as shown above, attempt to predict the non-determinism in the areas of cache accesses and branching, or try

to counteract the effects of mis prediction [I 3]. These techniques do increase the processing power of

superscalar processors, but rarely by a factor proportional to the width of the pipeline used. Even with 4- or

8-way superscalar pipelines, it is difficult to obtain an IPC count of much more than 2 [34]. Moreover,

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-9
Part One - Ch. 2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

speculation makes a computer's performance dependent on the application and large penalties are paid for

misprediction both in terms of execution time and, perhaps more importantly, in silicon chip area as much

digital logic is used for the prediction mechanisms and for misprediction clean-up (34] .

It is, thus, concluded that some tolerance of high latency is achieved in superscalar architectures. With wider

issue pipelines, the performance depends critically on branch prediction accuracy and dynamic scheduling,

as there is always a limit on the window in the instruction stream.

Most of current microprocessors utilize /LP (Instruction Level parallelism) by implementing a deep

processor pipeline (more than five pipeline stages) and superscalar instruction issue techniques [5]. Future

VLSI technologies will allow future generations of microprocessors to exploit aggressively ILP of up to 16

or even 32 IPC. Due to technological advances, gate-delay will be replaced by an on-chip wire-delay as the

main obstacle to increase chip complexity and cycle rate [53 , 54].

Superscalar processors began to dominate the microprocessor market at the beginning of the 1990s with

dual-issue processors (53]. Today ' s superscalar microprocessors try to find six or more instructions to

execute in every pipeline stage [4 7]. Examples of the most successful and popular commercial superscalar

processors are:

• Intel i960 RISC processor, Pentium, Pentium Pro, Pentium II, Celeron, Klamath, and Pentium Ill [53 ,

47, 25].

• DEC Alpha 21064, 21164 , and 21264 [53 , 47, 25].

• IBM Power PC 60 1, 603 , 604, 620, and 750 (the G3) (53 , 47, 25].

• MIPS RlOOOO and Rl2000 (53 , 47, 25].

Following is a review of the current trends in superscalar architecture developments (53]:

2.5.1 Advanced Superscalar Processor Architecture

Although this architecture still focuses on using !LP together with speculation, these processors are wide

issue superscalars with an IPC of up to 32 [42]. This is achieved through the use of features such as; a large

sophisticated trace cache for providing a contiguous instruction stream (more details on this approach are

covered in subsection 2.5 .3 shortly), a multi-hybrid branch predictor, a large number of reservation stations

to accommodate approximately 2000 instructions, and 24 to 48 pipelined functional units. Figure 2.3 shows

the internal architecture for such a processor (53, 54] .

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-10
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

Fill Unit

Two-level
Trace Cache

Multi
hybrid
Branch
Predictor

I
Cachel-_.M

Reserva-
tion
Stations

L2 Caches

Figure 2.3 An advanced superscalar architecture [53].

2.5.2 Superspeculative Processor Architecture

Functional
Unit

•
•
•

Functional
Unit

Functional
Unit

D-
• Cache
•
•

Functional
Unit

These are also wide-issue superscalar microprocessors that use speculation techniques 53 , 36, 35 , 37] . This

approach is based on the observation that in real programs, instructions generate many highly predictable

result values. Therefore, consumer instructions can frequently and successfully speculate on their source

operand values and begin execution without actual results from their producer instructions, thus removing

the serialization constraints between producer and consumer instructions. As a result, it is claimed that the

performance of a superspeculative program can exceed the classical datatlow limit which where even with

unlimited machine resources, a program counter cannot execute any faster than the execution of the longest

dependent instruction chain introduced by the program's actual data dependencies [53, 54]. It is further

claimed that the dataflow limit is huge and unmatchable by any other architecture, and that the problems are

in managing the dependencies. Superspeculative processors speculate on data dependencies, instruction

flow, register datatlow, and memory datatlow in addition to branch prediction [25] . This is all possible by

using the Weak-Dependency Model [47,43, 35], which states that dependencies can be temporarily violated

during instruction execution as along as recovery can be guaranteed before affecting the permanent machine

state. If a significant percentage of speculations are correct, the machine can exceed the performance limit

imposed by the traditional, Strong-Dependency Model.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-11
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

2.5.3 Trace Processor Architecture

The Trace processor is derived from the Mu/tiscalar processor. The main features of this processor

architecture are presented in [53, 50, 56, 68]. The trace processor extends the instruction window size to a

trace, where traces are dynamic instruction sequences constructed and cached by the hardware. Thus, the

trace cache stores dynamic instruction traces contiguously and fetches instructions from the trace cache

rather than from the instruction cache. Since a dynamic trace of instructions may contain multiple taken

branches, there is no need to fetch from multiple targets, as would be necessary when predicting multiple

branches and fetching 16 or 32 instructions from the instruction cache. Trace processors also distribute the

instruction window and register file to solve the instruction issue and register complexity problems (found in

other designs such as Simultaneous Mu/tithreading) by breaking up the processor into several Processing

Elements - PEs (similar to Multiscalar - see next subsection 2.5.4) and the program into severa l traces so

that the current trace is executed on one PE while the future traces are speculatively executed on other PEs.

Because traces are neither scheduled by the compiler, nor guaranteed to be parallel , they still rely on control

speculation and memory dependency speculation. The main difference between the trace processor and the

multiscalar processor is that the traces in a trace processor are built as the program is executed, whereas the

tasks in the multiscalar processor require explicit compiler support.

2.5.4 Multiscalar Processor Architecture

The Mu/tisca/ar model [53 , 18, 57, 58] represents another architecture in which large amounts of inherent

paralle lism are extracted from a sequential instruction flow . Multiscalar and trace processors define several

parallel processing cores, or PEs, that speculative ly execute different parts of a sequential program in

parallel. Multiscalar uses a compiler to partition the program segments, whereas a trace processor uses a

trace cache to generate dynamically trace segments for the processing cores.

2.5.5 Datascalar Processor Architecture

Datasca/ar processors run the same sequentia l instruction stream redundantly across multiple processors

using distributed datasets [53 , 14]. Loads and stores are only performed locally by the processor that owns

the data, but a local load broadcasts the loaded value to all other processors . Figure 2.4 demonstrates the

execution of load and store operations for replicated and communicated memory. Assume that both

processors execute a sequence of load-/ , store-/, load-2, and store-2. Operations load-I and store-/ are

issued to the replicated memory and can therefore complete loca lly on both processors . Operations load-2

and store-2 are issued to the communicated memory of the first processor. The load-2 of this processor is

deferred until the value is broadcast from it. Since all processors are running the same program, they all

generate the same store value, which is stored only in the communicated memory of the processor that owns

the address. Therefore, store-2 is completed by the first processor, but is aborted on the second processor. It

is quite clear here that the datascalar approach emphasises redundancy rather than performance. The increase

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-12
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

in speed here is not from the increased ILP, but rather from increased data locality that is hiding the latency

to some degree [53] .

Memory

Load-1
~

--., Store - 1 Replicated -
Processor 1 .

Load- 2 -- Store - 2 /_ Communicated ;·
frnadcrust

Lor:.1/ Memory

~ Load-1
~ Store - 1 Replicated -

Processor 2 -
Store - 2

~
Communicated

Figure 2.4 Datascalar processors access to replicated and co1111111111icated memory /53/.

2.5.6 Superthreaded Processor Architecture

This is a concurrent multiple-threaded architecture for exploiting thread-level parallelism (TLP) on a

processor [53 , 66]. This architectural model adopts a thread pipelining execution model that allows threads

with data dependencies and control dependencies to be executed in parallel , thereby enforcing data

dependencies between concurrent threads . The basic idea of thread pipelining is to compute and forward

recurrence data and possible dependent store addresses to the next thread as soon as possible, so the next

thread can start execution and perform run-time data dependence checking on its own thread processing unit.

Thread pipelining also forces contiguous threads to perform their memory write-backs in order, which

enables the compiler to fork threads with control speculation.

The superthreaded architectural model can exploit loop-level parallelism from a broad range of applications

through run-time support for data dependence checking and control speculation [53, 66]. The memory

buffering and the in-order thread completion schemes a llow control dependent threads to be executed

concurrently with control speculation. Unlike the instruction pipelining mechanism in a supersca lar

processor, where instruction sequencing and data dependence checking and forwarding are performed by the

processor hardware automatically, the superthreaded architecture performs thread initiation and data

forwarding through explicit thread management and communication instructions. The execution of a thread

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-13
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

is partitioned into several pipeline stages, each of them performing a specific function. The first pipeline

stage is the Continuation Stage where a thread starts after being initiated by its predecessor thread. The next

stage is the Target-Store-address-Generation (TSA G) stage, which performs the address computation for

Target Stores (TSs) . Target stores are performed by a thread, and are store operations on which later

concurrent threads could be data-dependent. To facilitate run-time data dependence checking, the addresses

of these target stores are calculated as soon as possible in the TSAG stage. The following computation stage

performs the main computation of a thread. The last stage is the Write-Back (WB). Because all of the stores

are committed, thread-by-thread, write-after-read (anti -dependence) and write-after-write (output

dependence) hazards cannot occur during run time [53 , 66] . Figure 2.5 depicts the organisation of the

superthreaded processor.

Instruction Cache

Thread Pr cessing Unit Thread Pr cessing Unit

Data Cache

Figure 2.5 Superthreaded processor architecture /53/.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC M ICROPROCESSOR 2-14
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

JI 2.6 VLIW and EPIC Architectures

2.6.1 VLIW Processor Architecture

VLIW (Very long instruction Word) microprocessors are, essentially, programmed multiple-issue processors

[53]. They are predecessors to their superscalar counterparts but not as flexible. Therefore, they have been

confined to signal processors during the last two decades, due to their fixed static schedule, which can easily

be destroyed by non-determinism. This previously-not-very-successful VLIW technique has come into focus

again recently with the introduction of the EPIC design style (covered in the next subsection), and its

adoption by Intel for its 64-bit architecture.

VLIW processors use a sequential stream of long instruction words (called instruction tuples) that normally

contain a fixed number of operations that are fetched , decoded, issued, and executed synchronously. All

operations specified within a VLIW instruction must be independent of one another and , also , independent

of previous instructions that may still be executing in the pipeline. Thus, VLIW is characterised by a static

issue whereby a fixed number of instructions are issued each cycle, which are statically scheduled by the

compiler. These instructions, as previously mentioned, can be organized as one large instruction or as a

fixed instruction packet (instruction tuple) [53]. To summarise, dynamic (superscalar) issue utilising

dynamic (out-of-order) scheduling is in contrast to static (VLIW) issue utilising static (in-order) scheduling

[25] .

VLIW microprocessors , including the Intel Merced architecture [29, 31] use concurrency detected by the

compiler to perform Aggressive Static Code Scheduling. However, this solution also requires speculation, as

static schedules do not work in the presence of non-determinism (conditional branch direction and memory

access latency). The result is that misprediction may now require an interrupt and software intervention, and

although non-computational hardware overhead is reduced, performance in the event of speculation failure

is significantly impaired. VLIW usually implements speculation through the use of Predication or Guard

Bits, and usually executes both branches of a condition until it is resolved. This still does not solve the basic

problem however, which is that some operations are inherently non-deterministic. This situation performs

more work than is strictly necessary in order to maintain a schedule in the presence of non-determinism.

Only with hardware-based, asynchronous scheduling can the use of explicit concurrency overcome non

deterministic instruction execution. This approach is addressed in chapter 3, where Micro-threading is

proposed as a solution. To conclude this discussion of VLI W, some commercial implementations are listed

below:

• TI TMS320C6x family [61].

• Sun MAJC-5200 Chip Multi-processor [65, 60] (which also features multithreading).

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-15
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

• Transmeta Crusoe TM3200, 5400 and 5600 processors [63, 20].

2.6.2 EPIC Processor Architecture

Generally, the VLIW style of architecture addresses the issue of achieving high levels of ILP with reduced

hardware complexity. However, it is specialised for numerical computing and has shortcomings when

executing branch-intensive and pointer-based scalar applications. These were some of the reasons behind the

evolution of VLIW, which led to the introduction of its successor, EPJC (Explicitly Parallel Instruction

Computing). The EPIC architecture is the result of the joint R&D project between Hewlett-Packard and

Intel announced back in June 1994, aimed at developing the 64-bit instruction set and compiler optimisation,

leading to the EPIC design style. This design philosophy seeks to further simplify hardware complexity

while still extracting even more ILP from programs than either VLIW or superscalar strategies.

Actually, EPIC is a broad concept, as defined by HPl-PD (Hewlett-Packard laboratories - Play Doh)

architecture, which defines a large number of possible EPIC instruction set architectures [51]. The first

commercia lly avai lable EP IC ISA is Intel 's IA-64 (64-bit Intel Architecture) [29, 31], also jointly developed

by HP and Intel and introduced in 1999.

One of the main goa ls for EPIC is to retain VLIW' s philosophy of statically constructing the POE (Plan Of

Execution). This is how the processor will execute the code. However, augmenting it wi th features (akin to

those in a superscalar processor) would permit it to better cope with dynamic factors , which traditionally

limited VLIW-style para llelism . To accomplish these goals, the EPIC philosophy is based on three main

princip les. Firstly, designing the des ired PO E at compile time, and the architecture should provide

successful support for it. Secondly, the architecture should provide features that assist the compi ler in

exploiting static ILP. Thirdly, the POE must be conveyed to the hardware [51]. The architectural techniques

that EPIC uses to support the above philosophy are Static Scheduling, Branch Unbundling, Predicated

execution, Control Speculation, Predicated Code Motion [51 , 29], and Scalability [53] .

The EPIC architecture addresses the problem of memory latency with two techniques. The first is the use of

Cache Specifiers [51], where load instructions are provided with a source cache specifier that the compiler

utili ses to inform the hardware of the cache location it can expect to find the referenced datum and,

implicitly, the assumed latency. The second technique is Data Speculation, or sometimes called Speculative

l oading [53 , 51], where the processor will load data from memory we ll before the program needs it, and

thus to effic iently minimise the impact of memory latency. This technique, just like predication, also is a

combination of compile-time and run-time optimisations.

EPIC benefits from advanced compiler techniques that are closely coupled with the micro-architecture.

EPIC exploits compiler ability, and enhances interactivity between the compiler and architecture. EPIC also

uses double branch execution, code movement, and other techniques, but still relies heavily on speculation to

overcome non-determinism. Finally, An example commercial processor of the EPIC architecture, and the

IA-64 instruction set, is the Intel Itani um Processor [31].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-16
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

2. 7 Multithreading Architectures

We can conclude now that the superscalar, VLIW and EPIC architectures discussed so far, although they

seem different in the way they address the scheduling and latency-tolerance problems, all introduce the

potential for severely impaired performance when speculation fa il s. We have seen how superscalar, VLIW

and EPIC either attempt to predict the non-determinism in the areas of cache accesses and branching, or try

to mitigate aga inst the effects of misprediction (by executing both branches of control concurrently),

prefetching, and speculative loading. Often however, these techniques introduce further speculation, which

can have an even more detrimental effect on performance in the event of misprediction.

According to Bolchevsky, Jesshope, and Muchnick [13] , microprocessor architects are looking in the wrong

direction. They are designing processors that try to prejudge and predict a program 's data accesses or

branches, when instead; they shou ld simply look at tolerating the latencies involved. The proposed

alternative approach is Mullithreading genera ll y, with Micro-threading being one of its numerous variants .

The multithreaded architecture is used as a solution to the problem of limited ILP in a conventional

instruction stream. A multithreaded processor is based on the concept of additional utilisation of more fine

grained to medium-grained parallelism [6] . It optimises the throughput of a multiprogramming workload

rather than just single-thread performance. This is done by executing multiple threads of control

simultaneously. Each thread of control is a sequential program, and exists within a context of its own.

Therefore the terms thread and context can be used interchangeably. Actually, a thread is a lightweight

process (a few instructions) comp lete with minimal context [I 3] , such as stack and registers . Thus,

multithreaded processors are also known as Multiple-context processors, as they are based on the idea of

switching the processor to another context (or thread) when a long-latency event occurs . This is poss ible

because the multithreaded processor generally has several register files and maintains several PCs (Program

Counters) along with related program states. Each register file and PC holds the program state for a separate

parallel thread (or context). The functional units (FUs) are multiplexed between the threads in the register

sets [6].

When long-latency or non-deterministic events are encountered, such as branches and loads, the processor

switches to another thread, executing instructions from this new thread while the non-deterministic event is

being handled [6]. This is called Context Switching and must be very fast for this to be effective [6].

Still, one problem with multithreaded architectures, in general, is that context switching might cause

problems of loss of cache locality [6]. One proposed solution is the Micro-threading approach, introduced in

the next chapter.

The different multithreading architectural approaches are discussed below.

159 .899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-17
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

2.7.1 Cycle-by-Cycle Interleaving

In this model , the processor switches to a different thread after each instruction fetch [53] . Some example

implementations of this multithreaded architecture are:

• Burton Smith's Delencor HEP

The Heterogeneous Element Processor (HEP) [53 , 55, 28 , 27, 26] is a MIMD (Multiple Instruction

Multiple Data) shared-memory multiprocessor system. Switching occurs between two queues of

processes: one queue controls program memory, register memory, and the functional memory while the

other queue controls data memory. The main processor pipeline has eight stages. Consequently, at least

eight threads must be in cycle-by-cycle interleaving execution concurrently within a single HEP

processor to give maximum performance. All threads within a HEP processor share the same register

set. Multiple processors and data memories are interconnected using a pipelined switch. Any register

memory or data-memory location could be used to synchronize two processes on a producer-consumer

basis via a "full /empty" bit synchronizat ion on a data memory word [53 , 32, 26]. Figure 2.6 illustrates

the control loop for a single HEP pipeline. The 8-stage execution pipeline is shown, where IF denotes

Instruction Fetch, DF for Data Fetch, INC for Increment, PSW for Process Status Word, and SFU for

the shared memory. The pipeline is controlled by a queue of Process Tags (one for each thread

representing an instruction stream). These process tags (or threads) rotate around the control loop,

which executes one instruction from each thread every clock cycle. When an instruction accesses

memory, it is removed from this loop and waits on memory in another queue (SFU queue) . This is

similar to Vertical Micro-threading (VT) as will be discussed in chapter 3, but with one main difference,

being that the threads in HEP are stored in the memory queue, while in micro-threading, the micro

threads are stored in the registers. The problem with HEP is that to tolerate long memory access

latencies, a large number of threads and non-blocking memory accesses are necessary .

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA [MPLEMENTATION OF A Rrsc MICROPROCESSOR

Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

1 Mword
Program Memory

Process Tags

,sW)

INC
PSW

1--------,

DF
Exec
Exec
Exec
Exec
Exec
Store

Figure 2.6 Coutrol loop of a HEP pipeline /53/.

• Tera MT A Processor

SFU
Queue

• •

2-18

The Tera Multi-Threaded Architecture (MTA) computer features a VLIW instruction set, a three

dimensional toroidal interconnection mesh network of pipelined packet-switching nodes, uniform

access time from any processor to any memory location, and zero-cost synchronization and swapping

between threads of control (53 , 8, 28, 27, 7]. The uniform access time is accomplished through

distributing the resources (i.e., processors, data memory units, 1/0 processors , and 1/0 cache units)

uniformly throughout the network, instead of locating the processors on one side of the network and

memories on the other. This allows data to be placed in memory units adjacent to the appropriate

processor when that is possible and otherwise, generally, maximizes the distance between potentially

interfering resources (8]. The Tera MTA exp loits parallelism at all leve ls, from fine-grained !LP within

a single processor to parallel programming across processors, to multi-programming among several

applications simultaneously. As a consequence, processor scheduling occurs at multiple levels, and

managing these levels introduces some unique and challenging scheduling problems [7]. The Tera MTA

contains 128 thread contexts and register sets per processor node to mask remote memory access

latencies effectively. This is considered too much overhead in order to tolerate such latencies, as a 128-

register set is expensive to implement in logic. Figure 2.7 shows the Tera MTA 256 multiprocessor

where the interconnection network is a I 6x l 6x 16 three-dimensional sparsely populated torus

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-19
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

architecture, with 4096 pipelined packet-switching nodes. Every processor posseses a clock register

which synchronizes exactly with its counterparts in the other processors and counts up once per clock

cycle [53]. The average latency in the Tera is about 70 clock cycles. This means that when a latency

happens, this requires 70 different instruction streams to be running on each processor in order to

tolerate such latency. The Explicit-Dependence lookahead technique detailed in [8] allows streams to

issue multiple instructions in parallel, which reduces the number of streams needed to achieve peak

performance.

3D Toroidal Mesh (l 6xl 6xl 6)

Figure 2.6 The Tera MTA 256 Computer System /53/.

2.7.2 Block Interleaving

In this approach, a sing le thread continues to execute unti I it encounters a situat ion that triggers a context

switch to another thread [53]. Such a situation could be a long-latency operation, which usual ly causes the

pipeline to be flushed and a new register set is used . Examp le implementations of this multithreaded

architecture are:

• Sun MAJC-5200 Chip Multi-processor

The Microprocessor Architecture for Java Computing (MAJC) processor architecture [65 ,60] from Sun

Microsystems is based on a variable-length VLIW instruction set. Each Processing Unit (PU) contains

I to 4 Functional Units (FUs). Each FU is viewed as a RISC processor in itself and is the basic building

block of a PU. Individual instructions are issued to these FUs. Also, a new technique referred to as

Space Time Computing (STC), is used to enable speculative threads (future instruction streams) to

execute across separate processor units, which substantially improves performance of many single

threaded and multithreaded applications. For example, if we have two processors on a chip, then two

threads (Head and Speculative) execute on separate processors. They operate in a different space

(speculative heap) and in a different time [60] . Also supported is Vertical Multithreading (VMT), where

the CPU switches to a new instruction stream (thread) whenever there is a cache miss . Each processor

can switch between four different threads. The large register file maintains these four thread references.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-20
Part One - Ch.2 - Survey of High-Latency Tolerance in Contemporary and Future Processor Architectures

• Nanothreading

Nanothreading [53 , 24] proposed for the Dansoft processor breaks away from full multithreading by

introducing a nanothread that executes in the same register set as the main thread. The DanSoft

nanothread requires only a 9-bit PC, some simple control logic, and it resides in the same page as the

main thread. Whenever the processor stalls on the main thread, it automatically begins fetching

instructions from the nanothread . Only one register set is available, so the two threads must share that

register set. Typically, the nanothread will focus on a simple task, such as prefetching data into a buffer,

which can be done asynchronously to the main thread.

In the DanSoft processor, nanothreading is used to implement a new branch strategy that fetches both

sides of a branch. A static branch prediction scheme is used, where branch instructions include 3 bits to

direct the instruction stream. The bits specify eight levels of branch direction. For the middle four cases,

denoting low confidence on the branch prediction, the processor fetches from both the branch target and

the fall-through path. If the branch is miss-predicted in the main thread, the back-up path executed in

the nanothread generates a misprediction penalty of only I to 2 cycles.

The Dansoft processor proposal is a dual-processor CMP, called Dan 2./33, each processor featuring a

VLIW instruction set and the nanothreading technique. Each processor is an integer processor, but the 2

processor cores share a floati ng point unit as well as the system interface.

However, the nanothread technique might also be used to fill the instruction issue slots of a wide

superscalar approach as in simultaneous multithreading. Finally, nanothreading is proposed in the

context ofa block-inter leaving multithreading technique.

2.7.3 Other Multithreading Architectures

• Simultaneous Speculation Scheduling (S3)

The architectu re of Simultaneous Speculation Scheduling (SJ) is a combined compi ler and hardware

technique to control multiple path execution [53, 67]. The S3 technique can be applied to dual path

branch speculation in case of unpredictable branches and to multiple path speculative execution of loop

iterations. In this approach, separate threads are generated by the compiler that harnesses thread-level

speculation by speculating on the outcome of branches executing in parallel on a multithreaded

microprocessor. Loop-carried memory dependencies that cannot be disproven by the compiler are

handled by data dependence speculation. The architectural requirements are the ability to run two or

more threads in parallel and three new instructions (fork, sync, wait) to control threads. This technique

is targeted at simultaneous multithreaded, nanothreaded, and micro-threaded processors, but can also be

modified for implementation in multiscalar, datascalar, and trace processors [6]. Applying the S3

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 2-21
Part One - Ch.2 - Survey of High-latency Tolerance in Contemporary and Future Processor Architectures

technique to branches in kernel sections of SPECint95 benchmark programs shows a performance

increase of up to 40% compared to purely static scheduling techniques [53].

• Simultaneous Multi-threading (SMT)

The SMT processor [34, 16, 3 8] which is the result of combining the multithreading and superscalar

architectures together. This leads to having all hardware contexts active simultaneously and competing

each cycle for all available hardware resources [53]. This is why SMT is also known as the

Multithreaded Superscalar approach. SMT architecture implements a rather large register tile in which

each thread can address 32 dedicated integer (and floating point) registers, and there are another

additional I 00 integer and floating-point renaming registers. Due to the longer access time of the larger

register file , the SMT pipeline must be extended by using a two-cycle register read and a two-cycle

register write [34]. The first commercial implementation of the SMT processor is the Intel Xeon

implementing Hyper-Threading, which is the commercial name chosen by Intel for its SMT architecture

[30].

• Dynamic Multi-threading (OMT)

The DMT processor [34, I] also uses an SMT pipeline to increase processor utilisation, except that the

threads are created dynamically from the same program. The hardware breaks up a program

automatically into loops and procedure threads that execute simultaneously on the superscalar

processor.

JI 2.8 Summary and Conclusions

Th is chapter presented a survey of different microprocessor architectures and how they tolerate high latency

and non-determinism in instruction execution.

It was then shown that the solution to the latency-tolerance problem by each one of these architectures is

both offset and compromised by the high overheads of the dataflow approach, the speculation involved in

the superscalar approach, and the long context switch time introduced by the multithreading architecture.

This is where Micro-threading proposes a solution as a new approach towards highly efficient latency

tolerance and elimination of non-determinism through the use of micro-threads drawn from the same

context. This is covered in the next chapter.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part One - Ch. 3 - Introducing Micro-threading as a Solution to the Problem of High-Latency

CHAPTER THREE

INTRODUCING MICRO-THREADING AS A

SOLUTION TO THE PROBLEM OF

HIGH-LATENCY

3-1

In this chapter, the Micro-threading architecture as a proposed solution to the problems of high

latency and non-determinism, is formally introduced and described. The material presented here

is based mainly on research work carried out by Jesshope [J 3, 32} and Jesshope and Luo [34, 39,

33} and then surveyed by the author [5,6}.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 3-2
Part One - Ch.3 - Introducing Micro-threading as a Solution to the Problem of High-latency

3.1 Introduction

It is was shown in the previous chapter (Ch.2) that the so lution to the latency-tolerance problem by each one

of the different microprocessor architecture families is offset by the high overheads of the data flow approach,

the speculation involved in the superscalar and VLI W approaches, and the context switch time introduced by

the multithreading architecture. This is where Micro-threading is proposed as a solution to provide a new

approach towards highly efficient latency-tolerance and elimination of non-determinism through the use of

micro-threads drawn from within the same thread context.

This chapter starts with section 3 .2 where micro-threading is first introduced. Then, a brief review of how

micro-threading handles the issue of contro l transfer is covered in section 3.3. Section 3.4 introduces the

basics of implementing micro-threading on a multi-CPU chip, wh ile section 3.5 reviews the micro-threading

vector instruction set architecture. This chapter ends with summary and conclusions in section 3.6.

11 3.2 What Is Micro-threading?

Micro-threading was introduced in [I 3, 34, 5, 6]. Simply put, micro-threading is multithreading within a

single thread context [13] . In the micro-threading architecture, a thread (also known as micro-thread) is just

a reference to a program counter. Non-deterministic events, such as branches and synchronisations, which

may fail , will cause a new thread (program counter) to be executed, which may happen on every cycle.

Thus, micro-threading combines the best of both block and cycle-by-cycle thread interleaving techniques.

With the expectation that such threads will be rather small, maybe only a few instructions long, it is

imperative that the overheads for fork, join and synchronisation are extremely low [13].

While existing multithreaded architectures are implicitly based on the assumption that latency tolerance

requires massive parallelism, which must be found from diverse contexts, the quantitative analysis carried

out for the efficiency of multithreaded execution as a function of the number of threads, shows that there are

fundamental reasons for the efficiency to grow very rapidly with the number of threads [I 3] . This has been

verified in [39] and, therefore, justifies the micro-threading approach, where the original goal of latency

tolerance is achieved with only relatively few threads; these can easi ly be drawn from within the same

referential context and do not, therefore, require the heavy weight hardware solutions of conventional

multithreading [I 3]. This approach attempts to overcome the limitations of RISC instruction control (branch,

loop, etc.) and data control (data miss, etc.) by providing such a low context switch time that it can be used

not only to tolerate high latency memory, but also to avoid speculation in instruction execution [34]. It is,

therefore, able to provide a more efficient approach to instruction pipelining [34].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 3-3
Part One - Ch.3 - introducing Micro-threading as a Solution to the Problem of High-Latency

II 3.3 Micro-threaded Control Transfer

Micro-threading performs true dynamic scheduling of several instruction streams by introducing the explicit

notion of independent points of control (i .e. the manipulation of multiple program counters by the processor)

113, 5, 61 . Generally, a PC represents the minimum possible context information that can be kept for a given

micro-thread, and it is the main reference to a micro-thread in the suggested micro-threading architecture

113, 5, 61. Since several micro-threads can be act ive simultaneously, an explicit storage for their PCs, called

the Continuation Queue, must be provided. This is associated with the instruction fetch logic at the entry

point of the pipeline as shown in Figure 3. I below 113, 5, 6 I.

Next address .. deterministic
Horizontal Transfer (HT)

(PC=PC+ 1)
block interleaving

Instruction
Fetch Logic further pipeline stages

PCl
PC2
PC3

ready
threads

Next address .. non-detem1inistic
Vertical Transfer (VT)

(PC=head of CQ)
cycle-by-cycle interleaving

Figure 3. 1 Micro-threaded Control Transfer/ 13, 5, 6].

In a normal RISC pipeline, the next address is transferred from the first stage of the pipeline in order to

allow the next instruction to follow without delay. Branch instructions will normally involve speculation to

predict the branch to be taken. If this prediction fails , any subsequent change of state must be "cleaned- up".

This conventional mechanism of transferring control is called Horizontal Transfer (HT), and the alternative

mechanism proposed by micro-threading, which utilises the continuation queue, is called Vertical Transfer

(VT) . In a vertical transfer, the next instruction is fetched from the PC at the head of the continuation queue.

This is performed on non-deterministic operations 113, 5, 61,

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

11

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 3-4
Part One - Ch.3 - Introducing Micro-threading as a Solution to the Problem of High-Latency

3.4 Micro-threading on a Multi-CPU

There are a number of different problems in designing a multi-threaded multi-CPU, with all CPUs sharing

the same L2 cache. The major principle decision is whether a single or multiple register files shou ld be

implemented . Using a single register file means a potentially slow register access and possibly two pipeline

cycles for an access, as demonstrated previously in the SMT architecture [34,5, 16,38] . Additionally, there

will be a large area overhead for multiple read ports to support all of the CPUs. On the other hand, there are

also difficulties in the implementation of multiple register files , one per CPU . Firstly, there is a requirement

for inter-CPU synchronisation and possibly data transfer. However, this is not so difficult to implement [5].

What poses the greater problem is the requirement to statically allocate resources, where register identifiers

are allocated by the compiler for different threads that are executing a loop body, for examp le. This means

that the compiler would effectively have to make a decision regarding thread allocation to each CPU,

without any regard to the resolution of non-determinism and, hence, issues of load balancing. Clearly, this is

not a good so lution [5].

The proposed micro-threading solution to this problem is to effectively have multiple instances of exactly

the same loop being executed (expecting the register resources not to be shared by the parallel threads).

Ideally, one parametric loop body is written and then instanced as many times as the compiler thought

necessary (i.e . depending on the number of CPUs) [5]. This situation is similar to register renaming, where

additional registers are used to remove write-after-read and write-after-write hazards. Thus, a two-level CQ

(Continuation Queue) is proposed. The first level holds ready threads that have not yet been allocated to any

CPU. The register requirements for these ready threads are generic and subject to the limit of registers in any

CPU 's register file. This first level CQ is called the Global Continuation Queue (GCQ). From the GCQ,

threads are allocated to a CPU but only when that CPU has resources availab le. Once allocated, the thread

runs to completion on that CPU and is held in the CPU's own CQ, the second level, called the Local

Continuation Queue (LCQ). Hence, there is a pool of unallocated threads in the GCQ, and a pool of

allocated threads being held in the LCQ for each CPU. The allocation mechanism must ensure that register

resources are available on the CPU where the threads are to be executed, and must rename the thread ' s local

registers from their generic form to the actua l registers allocated [5].

The proposed architecture for a single micro-threaded CPU is shown in figure 3.2, while figure 3.3 shows

the multiple-CPU organization. For more details, see [32].

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING A ND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part One - Ch. 3 - Introducing Micro-threading as a Solution to the Problem of High-Latency

L2 Cache Ll D Cache

Global
Registers

GCQ

Ll I Cach e Int.
Unit

Int.
Registers

LIS
Unit

Vertical transfer bus

Figure 3.2 Micro-threaded Processing Unit /5, 6/.

RAM L2 Cache

H H

1'

Ll I Ll I
Cache

...
Cache

1 n

PU-1 J l J lPU-n

H H
Global

Registers - -
tu-pipe u-pipe

1
...

~
n

GCQ -
!
T -

Figure 3.3 Micro-threaded Multiprocessing CPU /5, 6/.

I

F.P.
Unit

F.P.
Registers

H H

..

u H

Switch

H H

...... .

I

3-5

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 3-6
Part One - Ch. 3 - Introducing Micro-threading as a Solution to the Problem of High-Latency

3.5 Micro-threaded Vector Instruction Set Architecture (ISA)

The following discussion is extracted from [32] where the micro-threaded vector instruction set architecture

is described in detail. This is a combination of two different techniques from quite different eras in terms of

computer architecture; one of which, using a vector instruction set has a long history dating back to

pipelined vector supercomputers, such as the Cray I and its successors. The other technique, multi

threading, is also well understood . The comb ination can exploit both loop- and instruction-level parallelism

without the need for specu lation [32, 6]. This is important in the design of efficient chip-multi-processors,

where large amounts of ILP are required . This novel approach proposed in [32, 6] combines both vertical

and horizontal micro-threading with vector instruction descriptors, where it was shown that a family of

threads can represent a vector instruction with dependencies between the instances of that family, the

iterations. This technique gives a very low overhead in implementing an n-way loop and is able to tolerate

high memory latency [32]. The use of micro-threading to handle dependencies between threads provides the

ab ility to trade off between instruction level paralle lism and loop para llelism [32, 6].

In a micro-threaded, vector architecture, threads are used to execute multiple loop bodies simu ltaneously,

which provides paralle lism to [3 2, 6]:

0 Support multiple processors

o Keep the pipelines full in the presence of both data and contro l dependencies, and

0 Tolerate high latency memory events .

To achieve parallelism on a large sca le, it is imperative that just one instance of the loop body be used fo r all

iterations. This is for reasons of code size and portability [32, 6] .

In pipeline vector architectures, such as the Cray I [32 , 6], vector instructions group single operations across

the iterations in a loop. Thus a loop is transformed from a sequential execution model, where each

instruction in the loop is executed for each iteration of the loop, to one where, each instruction in the loop is

executed for all iterations of the loop before the next is executed. This grouping of the multiple scalar

operations into vector operations allows the architecture to organise memory access and pipeline operation

to achieve the optimal throughput of one cycle per operation, even for chained operations [6, 26]. Because of

the parallel semantics of this execution methodology, there can be no dependencies between loop iterations

[32, 6] .

In a micro-threaded vector architecture, complete loop bodies can be executed in parallel for each loop

index. This allows instruction level parallelism as well as loop parallelism to be exploited [32 , 6]. Therefore

any loop generates parallelism, even one containing a dependency between successive iterations. Code-

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 3-7
Part One - Ch. 3 - Introducing Micro-threading as a Solution to the Problem of High-latency

generation techniques normally used to maximise ILP at compile time, such as loop unrolling and software

pipelining occur automatically at run time through dynamic thread creation. Thus the depth of unrolling is

determined by the resources available on the target processor rather than by the compiler, giving more

portable code [32, 6].

One problem faced , in devising a scheme to support the above execution model , is in the use of registers .

This problem is addressed in [32, 39], as well as the means by which instruction classes may be instanced as

independent parallel micro-threads along with an illustration of the speed-up that may be obtained compared

to using a conventional loop.

3.6 Summary and Conclusions

This chapter presented micro-threading as a proposed solution to the problem of tolerating high-latency and

non-determinism in existing and proposed microprocessor architecture.

The next chapter reviews the hardware des ign methodology and design tools used 111 designing and

implementing the baseline MIPS RISC microprocessor onto an FPGA chip.

I 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

M ICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

CHAPTER FOUR

HARDWARE DESIGN METHODOLOGY

AND

EDA DESIGN TOOLS

Good design doesn't j ust happen.

Good design is the end result of a search for inspiration [2] .

4-1

This chapter outlines the hardware design methodology, processes, challenges, CAD/EDA design

tools involved, and lessons learnt from synthesizing a MIPS R2000 RISC microprocessor onto an

FPGA VLSI chip. The chapter starts with an overview of the design process and hierarchy

partitioning. Then, the issues of implementing the datapath (combinational logic) and memory

(sequential logic) components onto the chosen Xilinx Virtex-II FPGA are discussed. This

determines the efficiency with which a design can be implemented on an FPGA chip.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-2
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

4.1 Introduction

A micro-threading processor is based on the conventional MIPS R2000 RISC architecture, which is

enhanced with the micro-threading architectural add-on components [13 ,34,32,39] . To be able to synthesize

a hardware implementation of a micro-threading microprocessor, the baseline MIPS R2000 RISC processor

has to be synthesized first [2].

In this chapter the author first addresses the issue of complex digital system design. This is covered in

section 4.2. Then, in section 4.3, the design tools and target FPGA chip used in this research are outlined ,

along with my design methodology. Following on from this, section 4.4 illustrates the process of performing

the design and synthesis. This is followed by the RTL description , synthesis, and simulation of a multiplexer

as an example design in section 4.5. Finally, section 4.6 concludes this chapter with a summary and

conclusions.

114.2 Complex Digital System Design

4.2.1 Design Project Workjlow

A modular, layered approach is taken in designing complex digital systems. As outlined in figure 4.1, this

process begins at the top with a specification of the requirements , and the final result is the description for

manufacture and tape out of the system, usually implemented on a VLSI chip.

Requirements

Functional Design

Register Transfer
Level (RTL) Design

Logic Design

Circuit Design

Physical Design

Description for Manufacture

Figure 4.1 Design Project Work.flow /75}.

159.899 M.Sc. Computer Science

Specifications

Behavioural Sirnulation

RTL Simulation
Validation

Logic Simulation
Verification
Fault Simulation

Timing Simulation
Circuit Analysis

Design Rule Checking

Tape-out

Firas Al-Ali 99203447

11

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-3
Part Two - Ch. 4 - Hardware Design Methodology and EDA Tools

4.2.2 Design Views and Abstraction Levels

Any digital system can be described in one or all of the three different design views and abstraction levels

represented by the Y-chart [75], which is outlined in figure 4.2 below. An example would be to describe a

microprocessor in terms of its algorithm and instruction set architecture (behavioural), or its gate layout

(phys ical), or in terms of an interconnection of its internal datapath and control units (structural).

BEHAVIOURAL

algorithms
register transfer
Boolean expressions

transfer functions

PHYSICAL

processor
registers

gates
transistors

cells

modules

chips

boards

STRUCTURAL

Figure 4.2 Y-Clrnrt Representation for Design views and Abstraction Levels /75/.

LESSONS LEARNT

The pros and cons for each of the above three design descriptions are listed below [2].

• Behavioural Description

• Pros. Ease of design at the highest leve l of abstraction without concern of the underlying hardware.

• Cons. Requires tremendous optimization effort (and very long synthesis time) for the synthesis

compiler to generate the hardware layout. This high dependence on the synthesis tools to ensure a

consistent result is also a concern.

• Structural Description

• Pros. Designer has best control over exactly what hardware to synthesize. Thus, less effort is

required from the synthesis compiler.

• Cons. More manual effort (and time) required from designer.

• Physical Description

• Pros. Best representation for actual chip/board final layout/tape-out.

• Cons. The most tedious and complicated style of design.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-4
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

4.2.3 Hierarchical Design Approach

The starting point for a hierarchical design approach is the structural representation (as per figure 4.2) .

Figure 4.3 shows an example design hierarchy for combining logic gates into 32 reusable blocks of I-bit

ALUs (Arithmetic Logic Units), which in turn are combined into one 32-bit ALU at the top of the design

hierarchy [40] .

1-bit
ALU

1-bit
ALU

No.1 No.2

Gates Gates

••••••••

Figure 4.3 Design Hierarchy and Reusable Blocks /40/.

LESSONS LEARN T

These are listed below [2].

1-bit
ALU

No.32

Gates

0 Tackle the design starting at the top of the hierarchy (Top-Down approach).

D Divide and conquer.

o The top design is repeatedly broken down (partitioned) into smaller blocks (modules, entities).

o Reusable blocks are instanced (used) again.

o Firstly, construct the smallest modules (at the bottom of the hierarchy), then combine them together

working your way up the hierarchy (Bottom-Up approach) .

SUMMARY

Break (partition) the design into smaller modules (Top-Down) then build it up from these smaller modules

(Bottom-Up).

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-5
Part Two - Ch. 4 - Hardware Design Methodology and EDA Tools

4.2.4 Module Design Entry

Most CAD/EDA (Computer-Aided Design/ Electronic Design Automation) tools would allow a module (the

smallest designab le and reusable block in your des ign hierarchy) to be described using one of the following

methods [2]:

• Schematic Editor

Here, the module is constructed from a hierarchy of smaller components. These could be gates, library

primitives, or smaller modules.

• Finite State Machine (FSM) Editor

The FSM editor is an HDL code generator used for creat ing, edi ting, and typically simulati ng FSMs.

This option is best for modules represented in the form of an FSM. Example modules wou ld be contro l

units.

• HDL Editor

This is used when describing a module in a text-based Hardware Description Language (HDL).

Examples of such languages are VHDL and Verilog.

4.2.5 Digital Design with VHDL

VHDL (Very High Speed Integrated Ci rcuit Hardware Description Language) is a text-based industry

standard (IEEE- I 076) language for describing hardware and digital systems at multiple leve ls of abstraction

(behav ioura l, RTL, structura l, logic, ..) [40]. VHDL is the language of cho ice fo r this research due to its

sui tabi lity for describing large complex digital systems like microprocessors [2] .

LESSON LEARN T

In VHDL, any module (block) which is ca lled Entity, must be associated with an Architecture describing its

behav iour [2 ,75].

4.2. 6 Best Design Practices: More Lessons Learnt

The final lessons and conclusions are summarized below [2].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

4-6
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

• Hierarchy and Structure

The design must be structurally broken down into smaller modules (blocks), each of which can be

comprised of other even smaller modules, and so on. This establishes a hierarchy of design modules.

• Behavioural Description

Never represent the whole design in one flat behavioural algorithm. Instead, break the design down into

a hierarchy of smaller modules.

4.3 CAD/EDA Tools and Target Device

Since Field Programmable Gate Arrays (FPGAs) and their associated CAD/EDA software design tools are

so popular nowadays for rapid prototyping, a very high-density FPGA has been chosen as the target device

for this research [2].

4.3.1 Field Programmable Gate Arrays (FPGAs)

First introduced in 1985 by Xilinx Inc., an FPGA is a general-purpose SRAM-based programmable logic

device (PLO) customised package. Figure 4.4 shows the structure of an FPGA, which comprises

Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), interconnections and other resources [8] .

The advantages ofFPGAs include Non-recurring Engineering (NRE) costs, shorter time-to-market, low risk ,

and hardware prototyping (H/ W Emulation) [2] .

Configurable
Logic Block

(CLB)

Figure 4.4 Structure of an FPGA chip /23/.

159.899 M.Sc. Computer Science

Interconnect
Resources

1/0 Block
(IOB)

Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-7
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

4.3.2 Xilinx Virtex-11 Platform FPGA

The Xilinx Yirtex-11 XC2V8000 is the chosen target device for prototyping this research design as it has 8

million re-configurable system gates. It also has a 420 MHz internal clock, 3 Mb of dual-port RAM in

multiples of 18 Kb block SelectRAM, up to 1.5 Mb of distributed SelectRAM, dedicated 18-bit x 18-bit

multiplier blocks, fast look-ahead carry logic chains, 12 DCM (Digital Clock Manager) modules, precise

clock de-skew with GCLK (Global Clock), 93 , 184 internal registers/latches with CE (Clock Enable), and

93 ,184 Look-Up Tables (LUTs) [69] . Figure 4.5 shows the internal structure of this FPGA. The XC2Y8000

has enough chip resources to implement the design outlined in this thesis .

IOB
/

Global Clock Mux--_,,..,.c....+-VW/

//.,,// BB~~BBBB~~BB ~--/_.,,~ •• •••• ••

\

Progmmrnable I/Os

\
\

\
\

Figure 4.5 Xilinx Virtex-11 Platform FPGA /69/.

•• •••• ••
•• ~••••~~•• •• •••• •• •• •••• •• • •••• ••
I I I I I I

CLB 8 locl< SflloctRAM Multiplic;.r

4.3.3 Xilinx /SE Design Tools for FPGAs

Figure 4.6 shows the design flow for FPGAs when using Xilinx ISE (Integrated Synthesis Environment)

design tools. ISE version 5.1 was used for this research. Following are the four main stages/steps involved in

the design flow process [72].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-8
Part Two - Ch. 4 - Hardware Design Methodology and EDA Tools

Design -.... Design Verification
Entry +

I
Functional

I , ,. Simulation

Design •
Synthesis

, , , , J Static Tuning I
Analysis

Design ...
Implementation r+j Back_ i ...

Tu11illg i .. ,
Annotalwn Si,rm/ation

,,
Download to a ... I In-Circuit

' Xilinx Device .. I Verification

Figure 4.6 Xilinx /SE Design Flow for FPGAs /72/.

• Design Entry

T he des ign is created using a schemati c editor, HDL editor, or state mac hine editor. This step 1s

perfo rmed in th is research.

• Design Synthesis

T he synthes is co mpiler in fe rs the ha rd ware components. T hi s step is perfo rmed in thi s resea rch.

• Design Implementation

Implementing to a specific FPGA architecture (Spartan, Virtex, ..) . Optiona lly program a PROM or

EPROM for subsequent programming of the FPGA chip. This step is beyo nd the scope of thi s research.

• Design Verification

Using a gate-level s imulator or download cable, to test and ensure that the des ign meets the timing

requirements and functions properly. This step is beyond the scope of thi s research.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-9
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

4.4 Performing The Design and Synthesis

4.4.1 Design Methodology

Figure 4.7 outlines in more detail the author's design methodology adopted for this research . This design

methodology is based on Xilinx technology [73].

Sche1r.a.-ci HDL S-cate

C Design r-~achines

ECS Entry StateCad

... +
Test~ench sirn.ulation

HDL . ~

r MXE -
B•encher

~,
Synthesis

Design Entry (XST)

CoolRunner Spartan
~,. XC9500 Virtex r

FitL-er Irr:oleir.en
CPLD Fitter 'C

I I

J..

I
Chip-

Viewer

?rograrr.
iMPACT

Figure 4. 7 The author's adopted design methodology [73[.

LESSONS LEARNT

These are listed below [2 ,72,73].

o Take each module separately, starting at the bottom of the hierarchy.

D Design it using VHDL, or schematics, or from an FSM diagram.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREAD! G AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-10
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

D Synthesize the logic hardware using XST (Xilinx Synthesis Technology).

D Check the synthesis report for percentage of FPGA resources utilized and any errors (if any) .

• Check the RTL diagram generated by XST for the resulting schematic of lower level modules used .

• Create a testbench with the input test vectors (input signals).

• Run the simulation to check that the functionality of the design is correct.

• If not correct, then:

• Repeat this process from the beginning by modifying the design.

• Re-synthesize.

• Re-simulate.

• This iterative process continues until the functionality is satisfied .

• Move on to design the next module in the same level of the hierarchy, then in the next level up.

4.4.2 VHDL Simulation vs. Synthesis: Lessons Learnt

• VHDL for Simulation

A simulatable VHDL model of a block is usually used for describing the behaviour/functionality at the

highest levels of abstraction. This is not necessarily synthesizable, as it is not necessarily bound to any

device architecture (FPGA, ASIC, ..). This is because only a subset rather than all of the YHDL

language is synthesizable [2].

• VHDL for Synthesis

This is the best sty le for writing VHDL and is guaranteed to generate hardware logic as it must be

bound to a specific device architecture. It is still not always optimal as the synthesis tools might

generate much more logic than originally intended and take a long time in inferring (synthesizing) it [2] .

• VHDL for Optimal Synthesis

Understanding the underlying device architecture allows for writing synthesizable VHDL code that

generates the exact amount of hardware logic that you want in the least amount of time [2].

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING A ND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-11
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

4.5 Example: Designing a Multiplexer

This section elaborates on the design process for a multiplexer, as an examp le of utilising the concepts

presented so far in the previous sections. This design process is the methodology of choice followed

throughout this research.

• RTL Description

One basic logic function that is used quite often in the MIPS hardware implementation is the

multiplexer. A multiplexer is a combinational logic component. The multiplexer is described in detail on

page B-9 of[47] .

• Design Enlty and Synthesis

Below is the VHDL code for synthesizing a I-bit 2-to-l multiplexer from the Xilinx ISE library using

Schematic Editor:

-- Vhdl model created from schematic C: \Xilinx\virtex2\data\drawing\m2_le . sch

LIBRARY ieee ;

USE ieee . std_logic 1164 . ALL ;

-- Vhdl model created from schematic C : \Xilinx\virtex2\data\drawing\m2_1 . sch

LIBRARY ieee ;

USE i eee . std_logic 1164 . ALL ;

US E ieee . numeric std .ALL ;

-- synopsys translate_off

LI BRARY UNISIM ;

USE UNI SIM . Vcomponents. ALL ;

-- syno ps ys translate o n

ENTITY M2 1 MXILINX IS

PORT (DO IN

Dl IN

so IN

0 OUT

end M2_1_MXIL I NX ;

STD_LOGIC ;

STD LOGI C;

STD_LOGIC ;

STD_LOGIC) ;

ARCH I TECTURE SCHEMAT I C OF M2 1 MXILINX IS

SIGNAL MO

SIGNAL Ml

159.899 M.Sc. Computer Science

STD_LOG I C;

STD_LOGIC;

Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

ATTRIBUTE BOX TYPE STRING ;

COMPONENT AND2

PORT (IO IN STD_LOGIC ;

Il IN STD LOGIC ;

0 OUT STD_LOGIC) ;

END COMPONENT ;

ATTRIBUTE BOX TYPE OF AND2 COMPONENT IS " BLACK_BOX ";

COMPONENT AND2Bl

PORT (IO

Il

0

END COMPONENT;

IN

IN

OUT

STD LOGIC;

STD LOGIC ;

STD_LOGIC) ;

ATTRIBUTE BOX TYPE OF AND2Bl COMPONENT IS " BLACK BOX";

COMPONENT OR2

PORT (IO

Il

0

END COMPONENT ;

IN

IN

OUT

STD LOGIC ;

STD_LOGIC;

STD_LOGIC);

ATTRIBUTE BOX TYPE OF OR2 COMPONENT IS " BLACK_BOX" ;

BEGIN

I 36 9 : AND2

PORT MAP (IO=>Dl , I l=>SO , O=>Ml) ;

I 36 7 : AND2Bl

PORT MAP (IO=>SO , Il=>DO, O=>MO) ;

I 36 8 : OR2

PORT MAP (IO=>Ml , Il=>MO , O=>O) ;

END SCHEMATIC;

4-12

The Xilinx ISE library schematic symbol for a I-bit 2-to-l multiplexor is shown in figure 4.8.

M2 .1
DO

M2 1 i1 0

01

so

Figure 4.8 RTL Schematic symbol for a I-bit 2-to-J multiplexer in Xilinx ISE library.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 4-13
Part Two - Ch.4 - Hardware Design Methodology and EDA Tools

• Synthesis Results

Using the Xilinx ISE synthesis tools, the hardware implementation for the above I-bit 2-to-l

multiplexer, was generated. Figure 4.9 shows the resulting top level RTL symbol for the synthesized

multiplexer while figure 4.10 shows the resulting top-level schematic diagram, which is also the gate

level schematic.

dO 0

d1

s0

Figure 4.9 Resulting top level RTL symbol for the synthesized I-bit 2-to-l multiplexer.

~>-~~~~~=======: ::_an_d.2_h_l __ _,o 1-----~.._:: ___ or_~ ___ o:1----[])

~-----< iO 0

and.2
oo--------;i1

Figure 4.10 Resulting top level (is also gate level) schematic diagram/or the synthesized I-bit 2-to-l multiplexer
of figure 4.9.

• FPGA Device Synthesis Summary

After the hardware implementation for the above I-bit 2-to- l multiplexer using the Xilinx !SE synthesis

tools, the Synthesis Report was generated. The most important FPGA Device Synthesis Statistics from

this report, are shown below:

Design Statistics:

!Os

Cel l Us age:

BELS

and2

and2bl

159.899 M.Sc. Computer Science

4

3

1

: 1

Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Two Ch.4 Hardware Design Methodology and EDA Tools

or2

IO Buffers

IBUF

OBUF

Device utilization summary:

Number of bonded IOBs:

Y Place-and-Route onto the FPGA

1

: 4

: 3

: 1

4 out of ll08 0%

4-14

In figure 4 .11, FPGA Editor shows the synthesized 1-bit 2-to- l multiplexer after place-and-route onto

the target Virtex-II FPGA chip. Notice that these are the small blue interconnections at the lower left

corner in the figure.

Figure 4.11 FPGA Editor showing the synthesized I-bit 2-to-1 multiplexer after place-and-route onto the target
Virtex-II FPGA chip.

• Simulation Results

Figure 4.12 shows the waveform results of simulating the I-bit 2-to-l multiplexer VHDL behavioural

model in Mentor Graphics Mode!Sim by accepting input test vectors from a suitable VHDL testbench.

All these waveforms are in binary format. It is clear that the resulting synthesized hardware functions

according to the specified behavior of the multiplexer. This concludes the design cycle for this

component.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADIJ\.G AND FPGA lMPLEME:'ITA TION OF A RISC MICROPROCESSOR 4-15
Part Two Ch.4 - Hardware Design Methodology and EDA Tools

Figure 4.12 Results of simulating the synthesized I-bit 2-to-1 multiplexer using Mode/Sim.

ummary and Conclusions

This chapter presented the concepts and design methodology followed throughout this research in designing

the hardware components and then the finalized MIPS R2000 microprocessor implementation on the Xilinx

Virtex-II FPGA chip.

The next chapter reviews the MIPS R2000 instruction set architecture (also known as just ·'architecture").

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA 11\IPLEMENTATION OF A RISC MICROPROCESSOR 5-1
Part Two Ch.5 Review of'M!PS R2000 Architecture

CHAPTER FIVE

REVIEW OF

MIPS R2000 ARCHITECTURE

This chapter presents a brief review of the basics of the MIPS R2000 microprocessor Instruction

Set Architecture (ISA), or simply just known as Architecture. This is the interface between the top

most layer of the microprocessor hardware and the lower-most layer of the sofiware. The basics

outlined in this chapter constitute the foundation on top c~f which the rest of the chapters are

based This chapter is extracted mainly from excerpts from {/.7]. This chapter is annotated with

the author's comments and tailored adaptation for the context of this research.

\ 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

M ICRO-THREAD ING AND F PGA IMPLEMENTATION OF A RISC M ICROPROCESSOR 5-2
Part Two - Ch.5 - Review of M IPS R2000 Architecture

5.1 Introduction

In today's computer systems, both the hardware and software consist of hierarchical layers, with each lower

layer hidi ng detai ls from the layer above. This princip le of abs1raction is the way both hardware designers

and software designers cope with the complexity of computer systems. One key interface between the level s

of abstraction is the inslrnction set archi1ecture (also known as !SA or simply just architecture): the interface

between the hardware and the lowest- level software. This abstract interface enables many i111plemen1ations

of varying cost and performance to run the same identical software [4 7, p 18].

This leads to the fact that the MIPS R2000 architecture described herein and in detai l in (47], can be

implemented either in a custom VLSI microprocessor chip, an embedded micro-controller, or in an FPGA

chip; the latter be ing the scope ofa major portion of this thesis work.

Any microprocessor can be programmed directly (exp licitly) by wr iting programs (code) direct ly in 111achi11e

language. The words of a machine 's language are cal led instructions, and its vocab ulary is cal led an

ins/ruction set. In thi s chapter, we wi II look at a subset of the MI PS R2000 instruction se t, both in the fo rm

written and understood by humans (mnem onics form - asse111bly language) and in the form recognised and

processed by the hardware (bina ,y form - machine language) (47, pp I 06-107] . This instruction set subset is

suffi cient enough to implement a basic functioning MIPS R2000 microprocessor, as will be covered in

forthcoming chapters.

This chapter starts the MIPS review with sec ti on 5.2 highl ighting the underlying principles of MIPS

hardware design , complemented by section 5.3 out lining the nomenclature implemented in th is thesis.

Section 5.4 fo llows with coverage of the ba ic MIPS instruction fo rmats. Section 5.5 concludes the chapter

with a su mmary.

5.2 Underlying Principles of MIPS Hardware Design

The MIPS R2000 is based on the RISC (Reduced Instruction Set Computer) principle, also known as the LIS

(load/Store) pr inc iple [17]. Th is is because the MIPS architecture does not work directly on operands that

are found in the main memory, but rather these operands must be loaded from the mai n memory into the

local reg ister file (within the microprocessor) before operating on them , whi le the resulting operand from the

operation can be stored back into the local register file , then into main memory.

This section covers the four under lying princip les that were adhered to when or igina lly design ing the

hardware for the MI PS microprocessor. These princip !es are [4 7]:

159.899 M.Sc. Computer Sc ience Firas Al-A li 99203447

II

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 5-3
Part Two - Ch.5 - Review of MIPS R2000 Architecture

Design Principle 1: Simplicity favours regularity

The MIPS architecture is ri g id in that each MIPS arithmetic instruction performs onl y one

operation and must always have exactly three operands: two source operands (to be operated upon)

and one destination operand [4 7, pp I 07-108) . Ari thmetic operations are covered in section 5.4.

Requiring every arithmet ic instruction to have exactly three operands conforms to the phil osophy of

keeping the hardware simple: hard ware for a vari able number of operands is more co mpli cated than

hardware fo r a fi xed number [47, p108) . This same phi losophy applies to the instruction word

length in the MIPS R2000 machine language; it 's fixed to I word = 32 bits fo r all instructions.

Design Principle 2: Smaller is faster

An operand in a MIPS instruction can either be a constant/ literal/immediate va lue supplied in the

instruction itse lf, or a value stored in a reg ister in the local register fil e. These registers are visible

to the programmer. Each register in the MIPS architecture is 32 bits wide (= I word) . The size of

the register fil e in MIPS is 32 registers [47, pl 09).

The small er-is -fas ter des ign principle may have had some histori cal bas is and is the reason for the

limit to 32 registers. A very large number of reg isters would increase the cloc k cyc le time simply

because it takes the electro nic signals longer time when they mu st trave l farther [47, pl 10] . Also,

more registers simply means more complex instructi on decoding and higher instructi on latency.

Guidelines such as "smaller is fas ter" are not abso lutes; 3 1 reg isters may not be fa ster than 32. Yet,

the truth behind such obse rvations causes co mputer designers to take them se riously. In thi s case,

the des igner must balance the programs demand fo r more registers with the need to kee p the clock

cyc le fa st [47 , pl 10) .

Design Principle 3: Good design demands good compromises

A problem occurs when an instruction needs to be longer than the fixed 32 bits. This is usuall y the

case in instructions with a constant/literal/ immediate operand value supplied in the instruction

(refer to upcoming section 5.4), where the number of bits needed to represent the

constant/litera l/immediate is more than what can be accommodated [47, p 118) .

Hence, a conflict exists between the des ire to keep all instructions the same length (des ign principle

I: simplic ity favours regularity) and the des ire to have a single unified instruction form at. This

leads us to the third hardware design principle: Good design demands good compromises.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

M ICRO-T HREADING AND F PGA I MPLEMENTATION OF A RISC M ICROPROCESSOR 5-4
Part Two - Ch.5 - Review of MIPS R2000 Architecture

The compromise chosen by MIPS designers is, as mentioned earlier, to keep all instructions the

same length , thereby requiring different kinds of instruction fo rmats for different kinds/catego ries

o f instructions. These different instruction formats are described in section 5 .4 .

Design Principle 4: Make the common case fast

This des ign princ iple enta il s that common and frequently executed instructions are g iven more

emphas is when designing the underl y ing hardware.

An example would be the fact that the use of constant/ literal/immediate operands is quite co mmon

in almost any code (series of instructions) . It is much fa ster to access a constant va lue if it is

directly embedded within an instruction than if it is to be loaded from main memory [47, pl 46] .

This is described in section 5.4.2.

5.3 Nomenclature

This thes is will ad here to the fo llowing nomenclature when referring to reg isters, memory locati ons, and

their contents:

$Reg: Actua l physical num ber of the specified reg ister, also known as reg isler specifier.

{$Reg/ : Actual contents of register SReg.

Memory: Address referring to memory location Memory.

{Memory/: Actual contents of memory location Memory.

Memory/ $Regj : Transfer program contro l to the memory location spec ified by the contents of

reg ister $Reg.

Memory{Memj: Transfer program contro l to the memory location specified by the contents of

memory location Mem.

Now that thi s nomenclature clarifies the conventions used in this thes is, the next section elaborates on the

vari ous MI PS in struction fo rmats.

Another issue, which was dec ided upon within the context of thi s research, is to adopt a word-addressable

implementation as opposed to the original MIPS architecture, which implements a byte-addressable policy.

159.899 M.Sc. Computer Science Firas Al-A li 99203447

M ICRO-TH READ ING AND FPGA IMPLEMENTATION OF A RI SC MICROPROCESSOR 5-5
Part Two - Ch.5 - Review of MIPS R2000 Architecture

5.4 MIPS Instruction Formats

Building upon the four underlying principles of MIPS hardware design (from section 5.2), this section

describes the three main MIPS instruction formats . It is to be reiterated here that all instructions are of fi xed

length (32 bits). A MIPS instruction consists of di st inct fields. MIPS instruction fi elds are given unique

names to make them eas ier to discuss [47, pl 18]. Each fie ld has a va lue assigned to it. This value is in

binary fo rmat (in machine language). However, for human readab ility, these fields are usually represented

also in decimal format, which is the format I' ll be adopting throughout this chapter.

An issue worth mentioning here is that all the binary numer ic values stored in registers are 2 's co mplement

signed binary numbers [47, ch.4].

Following are the three main instruction fo rmats and their field layo uts.

5.4.1 R-format Instructions

The R-format instruction layo ut is used in arithmetic, and log ica l instructions. Figure 5.1 shows the generi c

instruction encoding fo r such fo rmat.

6 b its 5 bit s 5 bits 5 bits 5 b its 6 b its

op rs rt rd lshamt l funct

Bit s: 3 1 - 26 2 5-21 2 0 -16 15- 1 1 1 0 -6 5- 0

Figure 5.1 R-format Instruction Encoding/ 47, 4/

Here is the meaning of eac h name of the fields [I, p I 18]:

• op:

• rs:

• rt:

• rd:

Bas ic operation of the instruct ion, traditionally ca ll ed the opcode. This has a unique value for

each instruction as per the design of the ISA. Each in struction has a different set value fo r thi s

fi eld and is usually represented in decimal format.

The first so urce register spec ifier, usua ll y represented in decimal format.

The second source register spec ifier, usually represented in decimal format.

The register destination specifier, usually represented in decimal format. It receives the result of

the operat ion.

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 5-6
Part Two - Ch.5 - Review of Ml PS R2000 Architecture

• sham/: Shift amount. This is reserved for use in shift instructions only. All other instructions will have

this field set to the value zero (This is the case for all instructions implemented in this research).

• func t: Function. This field selects the specific variant of the operation in the op field , and is sometimes

called the fun ction code. This has a unique value for each instruction as per the des ign of the

IS A. Each instruction has a different set value for thi s field and is usually represented in dec imal

format.

Following is a subset of the R-format instructions implemented in this research . The syntax and operation

fo r each instruction is shown (the opcode is underlined for emphasis) along with a brief description and a

fi gure illustrating its encoding layout.

• ADD (A ddition)

Figure 5.2

This in struction adds the operand value found in the flrs t source reg ister $Src I Reg (=[$S rc I Reg]) to the

operand value found in the second source register $Src2Reg (=[$S rc2Reg]) and stores the result

operand value in the destination register $DestReg (=[$DestReg]). Figure 5.2 illustrates the encoding

for thi s instruction.

Syntax: ADD $Dest Reg, $S rc I Reg, $Src2Reg

Operation: [$Dest Reg] = [$Src I Reg] + [$S rc2 Reg]

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 srcl src2 dest 0 32 reg reg reg

Bits: 31-26 25-21 20-16 15- 11 10-6 5-0

ADD Instruction format /4 7/

• SUB (Subtraction)

This instruction subtracts the operand value found in the second source register $Src2Reg

(=[$Src2 Reg]) from the operand value found in the first source register $Src I Reg (=[$Src I Reg]) and

stores the result operand value in the destination register $DestReg (=[$DestReg]). Figure 5.3 illustrates

the encoding for this instruction.

Syntax: SUB $DestReg, $Src I Reg, $Src2Reg

Operation: [$DestReg] = ($Src 1 Reg] - [$Src2Reg]

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THR EA DI NG A ND FPG A IMPLEMENTATION O F A RISC MICROPROCESSO R 5-7
Part Two - Ch.5 - Review of MIPS R2000 Architecture

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 srcl src2 dest 0 3 4 reg reg reg

Bits: 31 - 26 25- 21 20- 16 15-11 10- 6 5-0

Figure 5.3 SUB Instruction fo rmat /4 7]

• SLT (Set on Less Than)

Thi s instruction sets the value in the destinat ion register $DestReg (=[$DestReg]) to I only if the

opera nd va lue fo und in the firs t source register $Src I Reg (=[$Src I Reg)) is less than the operand value

fo und in the second source register $Src2Reg (=[$Src2 Reg]). Otherwise, the va lue in the destination

register $DestReg (=[$DestReg]) is reset to O (zero). Figure 5.4 illustrates the encod ing fo r thi s

instruction.

Syntax: SL T $DestReg, $Src I Reg, $Src2 Reg

Operation:

6 bits

0

Bits: 31 -26

if [$Src I Reg] < [$Src2 Reg]

then

[$ Dest Reg] = I

else

[$DestReg] = 0

5 bits

srcl
reg

5 bits 5 bits

src2 dest
reg reg

25- 21 20- 16 15- 11

Figure 5.4 S L T Instruction format /47]

• JR (Jump Registe,-J

5 bits 6 bits

0 42

10 - 6 5 -0

This instruction causes the instruction execution fl ow of the program (specified by the contents of the

program counter register PC) to start fe tch ing the next instructi on from the memory location spec ified

by the value stored in the register $SrcReg (=[$SrcReg]) . Figure 5.5 illustrates the encoding fo r thi s

instruction.

Syntax. JR $SrcReg

Operation: go to Memory[$SrcReg]

159.899 M.Sc. Computer Sc ience Firas Al-A li 99203447

MICRO-T HR EA DI NG A ND FPGA IMP LEMENTATION OF A RISC MICROPROCESSOR 5-8
Part Two - Ch.5 - Review of MIPS R2000 Architecture

Figure 5.5

•

Figure 5.6

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 src 0 0 0 8 reg

Bits: 31 - 26 25- 21 20-16 15- 11 10 - 6 5-0

JR Instruction form at [4 7]

AND (Logical AND)

This instructi on perfo rms a logical/binary AND operat ion on the operand value fo und in the.first source

register $Src I Reg (=[$Src I Reg]) and the operand value found in the second source reg ister $Src2 Reg

(=[$Src2Reg]) and stores the result operand value in the destination register $DestReg (=[$DestReg]).

Figure 5.6 illustrates the encoding for this instruction.

Syntax: AND $DestReg, $Src I Reg, $Src2 Reg

Operation: [$Dest Reg] = [$Src I Reg] AND [$Src2Reg]

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 srcl src2 dest 0 36 reg reg reg

Bits: 31-26 2 5 - 21 20- 16 15- 11 10 - 6 5 -0

AND /11structio11 fo r111at /If

• OR (Logical OR)

Figure 5. 7

This instruction perfo rms a log ica l/binary OR operation on the operand value fo und in the firs t source

register $Src I Reg (=[$Src I Reg]) and the operand va lue fo und in the second source register $Src2 Reg

(=[$Src2Reg]) and stores the resul t operand value in the destination register $DestReg (=[$DestReg]).

Figure 5.7 illustrates the encoding fo r th is instruction.

Syntax: OR $DestReg, $Src l Reg, $Src2 Reg

Operation: [$DestReg] = [$Src 1 Reg] OR [$Src2Reg]

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0
srcl src2 dest 0 37 reg reg reg

Bits: 31 -26 25-21 20-16 15-11 10-6 5-0

OR /11structio11 format /4 7jj

159 .899 M.Sc . Computer Sc ience Firas Al-Ali 99203447

MICRO- THR EA DI NG A ND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 5-9
Part Two - C/1.5 - Review of MIPS R2000 Architecture

5.4.2 I-format Instructions

The I-format instruction layout is used in control transfer, branching, and immediate value instructions.

Figure 5.8 shows the generic instruction encoding for such form at.

6 bits 5 bits 5 bits 16 bits

op rs rt Offset/address/immv

Bits: 31-26 25-21 20-16 15-0

Figure 5.8 I-format Instruction Encoding [4 7, 4[

Here is the meaning of each name of the fi elds [4 7, p I 18] :

• op:

• rs:

• rt:

Bas ic operation of the instruction, traditionall y ca ll ed the opcode. This has a unique va lue

fo r each instructi on as per the des ign of the ISA. Each instruction has a different set value

fo r thi s fi eld and is usua ll y represented in dec imal fo rmat.

The first register source spec ifier, usuall y represented in dec imal fo rmat.

The second source reg ister spec ifi er, usually represented in dec imal fo rmat.

• ojfsetladdressl immv:

This is a 16-bit 2' s co mplement signed imm ediate va lue sup pli ed in the instruct ion itself.

Depending on the opcode of the instruction, it can represent either an add ress , an offset, or

simply an immedi ate va lue (litera l).

Following is a subset of the I-format instructions imp lemented in thi s research. The syntax and operati on fo r

each instruction is shown (the opcode is underlined fo r emphasis) along with a brief descript ion and a fi gure

ill ustrati ng its encoding layout.

• L W (Load Word)

This instruct ion loads the data from the memory locati on spec ified by sum of the address value

(suppl ied in the instruction) and the contents of the base register $ Base Reg (=[$8 aseReg]) into the

destination register $DestReg (=[$DestReg]). Figure 5.9 illustrates the encoding fo r this instruction.

Syntax: L W $ DestReg , address($ Base Reg)

Operation: [$DestReg] = [Memory [[$BaseReg] + address]]

159 .899 M.Sc. Compute r Science Firas Al-Ali 99203447

MICRO-T HREA DI NG A ND FPGA IMP LEMENTATION OF A RI SC MI C ROPROCESSO R

Part Two - Ch.5 - Review of MIPS R2000 Architecture

6 bits

35

Bits: 31-26

5 bits

base
reg

25-21

5 bits

dest
reg

20- 16

Figure 5.9 LW Justructio11 format (a dapted from /47/)

• SW (Store Word)

16 bits

address (offset)

15-0

5-10

Thi s instruction stores the data from source register $SrcReg (=[$Src Reg]) into the memory location

spec ified by sum of the address value (suppl ied in the instruction) and the contents of the base regisrer

$Base Reg (=($BaseReg]). fi gure 5. 10 illustrates the encoding fo r this instruction.

Sy ntax: SW $SrcReg , address($Base Reg)

Operation: (M emory [($Base Reg] + address]] = ($S rcReg]

6 bits 5 bits 5 bits 16 bits

43 base
reg

src ·
reg address (offset)

Bits: 31 -26 25 -21 20-16 15-0

Figure 5.10 SW /11structio 11 format / 4 7/

• BEQ (Branch on Equal)

Th is instruction tests the eq uality between the co ntents of the Jirsr source regisrer $Src I Reg

(=[$S rc I Reg]) and the contents of the second source register $Src I Reg (=($S rc I Reg]) and, if these

were equal, thi s causes the instruct ion executi on fl ow of the program to jump to the memory locati on

calcul ated by add ing the contents of the program counfer regisrer PC plus I (poin ting to the next

instruction a fter the current one) plus the address value supplied in the instr uction itse lf. Th is process is

referred to as branch taken. Otherwise, if the equality condition was not met, then the instruction

execution fl ow of the program resumes as normal by pointing to the next instruction directly fo llowing

the current one. Th is process is referred to as branch not taken.

An important note is that the value address is signed 2' s comp lement with values ranging from - i s to

+i s, which means that the BEQ instruction allows us to jump 32k locati ons in the pos itive or negati ve

direction relati ve to the program counter register. Figure 5.11 ill ustrates the encoding fo r this

instruction.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MI CRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MI CROPROCESSOR 5-11
Part Two - Ch.5 - Review of MIPS R2000 Architecture

Syntax:

Operation:

Bits:

BEQ $Src I Reg , $Src2Reg, address

if [$Src I Reg] = [$Src2Reg]

then

[PC] = [PC] + I + address

else

[PC] = [PC] + I

6 bits 5 bits 5 bits

4

31-26

srcl
reg

25-21

src2
reg

20-16

Figure 5.11 BEQ fllstr11 ctio11 format [4 7[

• BNE (Branch on Not Equal)

16 bits

address (offset)

15-0

This instruct ion tests the equality between the contents of the firs t source register $Src I Reg

(=[$S rc I Reg]) and the co ntents of the second source register $S rc I Reg (=[$S rc I Reg]) and , if these

were NOT equal, thi s causes the instruction execution fl ow of the program to jump to the memory

locati on ca lculated by addi ng the contents of the program counter register PC plus I (po inting to the

next instruction after the current one) plus the address value supp lied in the instruction itself. This

process is referred to as branch taken. Otherwise, if the eq uality condition was met , then the instruction

exec ution fl ow of the program resumes as normal by pointing to the next instruction directly fo ll owing

the curren t one . This process is referred to as branch not taken.

An important note is that the va lues address is signed 2's complement with values ranging from - 2' 5 to

+2' 5
, which means that the BEQ instruction a ll ows us to jump 32k locat ions in the positive or negative

direction relative to the program counter register. Figure 5.1 2 illustrates the encodi ng fo r this

instruction.

Syntax:

Operation:

BN E $Src I Reg, $Src2 Reg, address

if [$Src I Reg] /= [$Src2Reg]

then

[PC] = [PC] + I + address

else

[PC] = [PC] + I

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-TIIR EA DING A ND FPGA IMPL EMENTATION OF A RISC MI CROPROCESSO R 5-12
Part Two - Ch.5 - Review of MIPS R2000 Architecture

6 bits 5 bits 5 bits 16 bits

5 srcl
reg

src2
reg address (offset)

Bits: 31 -26 25-21 20- 16 15-0

Figure 5. 12 BNE Instruction fo rmat /4 7/

• A DDI (A dd immediate)

This instruction adds the operand value fo und in the source register $S rcReg (=[$S rcReg]) to the

operand value immediate fo und in the instruction itse lf and stores the result operand va lue in the

des tination register $DestReg (=[$DestReg]). This instruction is used for adding constants. Figure 5. 13

ill ustra tes the encoding fo r this instruction.

Sy ntax: ADDI $DestReg, $Src Reg, im media te

Operation · [$ DestReg] = [$SrcReg] + immediate

6 bits 5 bits 5 bits 16 bits

8
src
reg

dest
reg immediate

Bits: 31 -26 25-21 20- 16 15 - 0

Figure 5. 13 A DDI lmtructiou format /4 7/

• SL TI (Set on Less Than Immediate)

This instruction se ts the value in the destination register $DestReg (=[$DestReg]) to I only if the

operand va lue fo und in the source register $S rc I Reg (=[$Src I Reg]) is less than the operand va lue

immediate sup plied in the instructi on itse lf. Otherwise, the va lue in the destination reg ister $DestReg

(=[$DestReg]) is reset to O (zero). Figure 5. 14 illustra tes the encoding fo r thi s instructi on.

Syntax: SL T l $DestReg, $SrcReg, immediate

Operation:

159.899 M.Sc. Computer Sc ience

if [$SrcReg] < immediate

then

[$DestReg] = 1

e lse

[$DestReg] = 0

Firas Al-A li 99203447

MICRO-THREADING A ND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Tivo - Ch.5 - Review of MIPS R2000 Architecture

6 bits

10

Bits: 31 -26

5 bits

src
reg

25-21

Figure 5.14 SL Tl Jnstructio11 format [4 7/

5.4.3 J-format Instructions

5 bits

dest
reg

20-16

16 bits

immediate

15-0

5-13

The J-format instruction layout is used in control transfer th rough jumps. Figure 5. 15 shows the generi c

instruction encoding for such format.

6 bits 26 bits

op address

Bits: 31-26 25-0

Figure 5. 15 J-fo rmat Instruction Encoding [47, 4]

Here is the meaning of each name of the fields [47, pl 3 I]:

• op.· Basic operation of the instruction, traditiona ll y ca lled the opcode. This has a unique va lue

fo r each instruction as per the des ign of the ISA. Each instruction has a different set value

fo r thi s fi eld and is usually represented in decimal format.

• address:

This is a 26-bit 2's comp lement signed imm ediate value supplied in the in structi on itself.

Following is a subset of the J-format instructions implemented in thi s research. The syntax and operation fo r

each instruction is shown (the opcode is underlined fo r emphasis) along with a brief description and a figure

ill ustrat ing its encoding layout.

• J (Unconditional Jump)

Detailed elaboration on the special functionality of the J instruction is found in [47, 48]. This instruction

causes the instruction execution flow to jump uncondi tiona ll y to a spec ific target address. This address

va lue is supplied within the instruction itse lf and is a 26-bit value (2 's comp lement). Figure 5. 16

illustrates the encoding for thi s instruction .

Syntax: l. address

Operation: go to target add ress

159.899 M.Sc. Computer Science Firas Al-Al i 99203447

MICRO- T l-I REA DI NG A ND FPGA IMPLEMENTATION O F A RI S C MICROPROCESSOR 5-14
Part Two - Ch.5 - Review of MIPS R2000 Architecture

6 bits 26 bits

2 address

Bits: 31-26 25-0

Figure 5. / 6 J /ustructiouformat /4 7]

Elaboration [4 7, pl 50]:

The 26-bit fi eld in jump instructions is also a word address, which means that it represents a 28-bit

byte address. Since the PC (Program Coun ter) is 32 bits , 4 bits must come from someplace else .

The MIPS jump instruction replaces only the lower 28 bits of the PC whi le leav ing the upper 4 bits

of the PC unchanged. The loader and linker must be carefu l to avo id placing a program across an

address boundary of 256 MB (=64 million instructions) . Otherwise, a jump must be replaced by a

jump register instruction preceded by other instructi ons to load the full 32-bit address into a

register.

However, in the case of the author's implementati on fo r this thes is, a PC of size 8 bits onl y has

been imp lemented (due to hardware resource restric tions on the FPGA chip). Therefore, the iss ue

of concatenat ion does not apply to thi s spec ific implementat ion.

5.5 Summary and Conclusions

Thi s chapter prese nted a rev iew of the MIPS R2000 instruction set architec ture. The underl ying princip les of

MIPS hardware design were hi ghlighted, comp lemented by an ou tline of the nomenclature implemented in

thi s thes is. The bas ic and most commonly used MIPS instruction fo rmats were di scussed.

This paves the way for the next chapter, which builds upon the material rev iewed here, and elaborates on my

research results in the hardware imp lementation of the finali zed MI PS R2000 microprocessor.

159.899 M.Sc. Computer Science Firas A l-A li 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Two Ch.6 VHDL Description and Synthesis ofMIPS R2000 Microprocessor

CHAPTER SIX

VHDL DESCRIPTION AND SYNTHESIS OF

MIPS R2000 MICROPROCESSOR

6-1

This chapter presents a brief review of the Register Transfer Level (RTL) description olthe MIPS

R2000 microprocessorfollowed by my own work on implementing this description in VHDL. This

V!IDL description (also called RTL Model) of the MIPS R2000 microprocessor includes ,,ynthesis

onto the target Xilinx Virtex-11 FPGA chip jcJllowed by simulating a machine language code

running on this microprocessor. Again, this appendix is based on and complements the material

presented in [47} and [48} and is annotated with my comments and tailored adaptation }<Jr the

context of this research. The details are covered in Appendices A to C.

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

M ICRO-TH READ ING AND FPGA IMPLEME 'TATION OF A RI SC M ICROP ROCESSO R 6-2
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

6.1 Introduction

This chapter presents the YHDL description, synthesis and simu lation of the MIPS R2000 microprocessor

hardware implementation of the MIPS instruction subset presented in the previous chapter (Ch.5 ; section

5.4). This MIPS hardware implementat ion is built from combining together the bas ic building blocks and

datapath functional components to first build the large r datapath sections then the complete datapath (all of

which is described in detail in Appendices A and B). Then, thi s complete datapath is combined with the

control unit (described in detail in Appendix C) to make up the final MIPS R2000 microprocessor hardware

implementation, which is covered in this chapter.

The format for presentation of the material in thi s chapter is the same as that in Appendices A to C, where

the author takes each unit and briefly rev iews its RTL description as described in [47) and [48), then fo ll ows

it with hi s own work implementing thi s unit in VHDL, along with its synthesis and simulation . This process

follows the design cycle (described in chapter 4) and comprised of the following steps: RTL Desc ription,

Des ign Entry and Synthesis, Synthes is Results, FPGA Device Synthesis Summary, and Simulat ion Results.

Also, the log ic conventions and clocking methodology fo ll owed in thi s chapter are deta iled in Appendi x A

(secti on A.2).

It is worth noting here that some of the figures presented in this chap ter are at a lower leve l of clarity, detail ,

and reso lution, due to their complex ity. However, at various points in the body of this chapter, refe rence wi ll

be made to higher reso lution versions of these fi gures (allowing zoom in functionality) are fo und in

Appendix D on the Companion CD acco mpanying this di sse rtati on.

This chapter starts with an overview of the MIPS hardware impl ementation in secti on 6.2 , thereby setti ng

the scene for the materi a l to follow, which is covered in section 6.3 . Section 6.3 presents the VHDL

description, synthesis and simulation of the MIPS R2000 microprocessor hardware implementat ion . Section

6.4 concludes the chapter with a summary.

6.2 An Overview of the MIPS Hardware Implementation

For the MIPS instruction subset reviewed in the previous chapter (Ch5 ; section 5.4) to be implemented in

hardware, much of what needs to be done is similar, regardless of the actual instruction class [47) .

For all M !PS instructions, the first two steps of execution are identical [4 7) :

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

M ICRO-T HREADING AND F PGA I M PLEMENTATION OF A RI SC M ICROPROCESSOR 6-3
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

O The program counter (PC) sends the instruct ion address to the instruction memory that

contains the code (instructions) and , as a result, the required instruction is fetched from that

memory location spec ified by the PC [4 7].

O Decoding the field s of the fetched instruction in order to se lect which registers (inside the

Register File) to read. Then, one or two registers (depending on the class of the instruct ion) are

read [47].

"After these two steps, the actions required to complete the inst ructi on execution depend on the instructi on

class . Fortunately, fo r each of the three instruction c lasses (memory-reference, arithmeti c-log ica l, and

branches), the actions are largely the sa me, independent of the instructi on opcode" [47, p.33 9].

There ex ist some similarities even across the different instructi on classes [47]. For example, all instruction

classes utili se the Arithmetic Log ica l Unit (ALU) aft er reading the registers [47]. After using the ALU. the

operations needed to comp lete execu ti ng the different instruction classes vary significantly [4 7]. More

e laboration on th is matter is fo und on pages 339 and 340 of [47]. Figure 6.1 below shows the high-leve l

abstraction view of the MIPS R2000 microprocesso r hard ware implementation.

PC Address Instruction

Instruction
memory

Data

Register#
Registers

Register#

Register#

ALU Address

Data

Data
memory

Figure 6.1 A bstract view of th e hardware i111p !e111e11t{ltio11 of the MIPS instruction subset sh owing the major
f u11ctio11a / units {l 11t/ th e 11/(/jor co1111ections between them /4 7, p .340/ .

In secti on 6.3 that fo llows, th is abstract view in fi gure 6.1 is refin ed to fi ll in all the details (to generate the

comp lete datapath) and add the contro l unit, to form the final MIPS R2000 microp rocesso r.

It is worth noting that the MIPS hardware implementation in thi s research is based on the simple

implementation detailed in [47] that uses one s ingle clock cycle for the execution of each instruction. Th is

means that each instruction begins execution on one ri s ing clock edge and completes execution before the

next ri sing clock edge [47] . However, in the context of this research, instruction execution is spread over a

fe w clock cycles due to the read/write nature of the memory elements (register fi le, instruction memory, data

memory) imp lemented on the FPGA ch ip.

159 .899 M.Sc. Computer Science Firas Al-A li 99203447

M ICRO- THREAD ING AND FPGA IMPLEMENTAT ION OF A RISC MI CROPROCESSOR 6-4
Part Two - Ch. 6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

.3 Putting It All Together: The MIPS R2000 Microprocessor

• RTL Description

Figure 6.2 shows the RTL diagram fo r the fina lised MI PS R2000 microprocessor hardware implementation

of the abstract view shown ea rli er in Figure 6.1 and based on the MIPS instructi on subse t rev iewed in

Chapter 5. The detail s of thi s hardware implementation are di scussed in [47] and [2] and elaborated in

Appendices A to Con the Companion CD acco mpanying this di sse rtation.

The fo llowing ten MIP S instructi ons are implemented and tested on thi s MIPS R2000 microprocesso r:

• A D (Logica l AN D)

• OR (Logica l OR)

• ADD (Arithm eti c Addition)

• SU B (Arithmetic Subtracti on)

. SLT (Set on Less Than)

• LW (Load Word)

• SW (S tore Word)

• BEQ (Branch on Equa l)

• B E (Branch on Not Equal)

• (U nconditional Jump)

In Figure 6.2 , the bl ack and grey compo nents and lines are all datapath units and their assoc iated datpath

signals, whereas the blue blocks and lines are all cont ro l related.

159 .899 M.Sc. Computer Sc ience Firas Al-Ali 99203447

M ICRO-THREA DI NG AN D F PGA I MPLEMENTATION O F A RISC M ICROPROCESSOR 6-5
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

Instruction (25-0] Trun• Jump address (7-0] --~------+-------- - -------~
26 Cator 8 -()

PC+ 1 [7-0] ~----- ~
Add

____ ..
• 1.1

u
X

1 ~ Arid
A.

~ RegDst
Jump
Branch
MemRead

Instruction (31-26] MemtoReg
Control ALUOp

MemWnte
ALUSrc
RegWnte

Ir I ,, • "" [.

PC Read
address

• Zero J
Instruction

(31-0] 11
J - 11 • Instruction .

I, t ; ,

ALU ..
l'

memory •
11 Rec 1sters 0d!J

rr n ry

• l
control

M
u
X

r•
lJ
X

Figure 6.2 RTL Diagram for the finalized MIPS R2000 microprocessor (adapted from /4 7])

• Design Entry and Synthesis

The Xilinx Schematic Editor was used to create the design entry for the finali zed MIPS R2000

microprocessor shown in figure 6.2. Figure 6.3 shows the final schematic diagram. Two important notes

relating to figure 6.3 are worth mentioning here:

D All the datapath components (all the components shown in grey or black in figure 6 .2) are

combined and synthesized into one entity block called Complete_ Datapath _ w _DCM_ Div _5 (which

is described in detail in Appendix B).

D The Main Control and ALU Control units (both shown in blue in figure 6.2 and are described in

detail in Appendix C) and other supporting digital logic and design components make up the rest of

figure 6.3.

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREADING AND FPGA 11\IPLEMENTATION OF A RISC MICROPROCESSOR 6-6
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

CJ.LI ----t,:.,--~·-"-
c=~"'~-------1~-'"~'·

Figure 6.3 Schematic diagram design entry in Schematic Editor for the finalized /1,1/PS R2000 microprocessor
(Note: Magnified portions of this.figure are shown infigures 6.3A to 6.3D that follow)

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-7
Part Two Ch. 6 VHDL Description and Synthesis of MIPS R2000 Microprocessor

•---------------

Figure 6.3A ilJagn(/ied top-left portion of Figure 6.3

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-8
Part Two Ch. 6 VHDL Description and Synthesis of MIPS R2000 Microprocessor

Figure 6.3B Magnified bottom-left portion of Figure 6.3

l 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEI\IENTATION OF A RISC MICROPROCESSOR

Part Two - Ch.6- VHDL Description and Synthesis of Ml PS R2000 Microprocessor

Figure 6.JC Magnified top-right portion of Figure 6.3

159.899 M.Sc. Computer Science

6-9

t:,r,_Sfa!'-"""'-"°"171.;l~-~~-~

,,..,_ •.• ,,_,1·"'•-r~,~,o;:--~

~yo•ot--::-~

;,,.,._h1'0 / 0-~: ~

Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Two Ch.6 VHDL Description and Synthesis of Ml PS R2000 Microprocessor

=~=~----- ---,~,.,,_,,

Figure 6.JD Magnified bottom-right portion t~f Figure 6.3

.,,r_P•(lG;j~

,v;o,_2h>.sll1~f'tlJF-:;:_::;~

i<:r,:,-,_n.1,•llG;~-~~ .. ,, ··-•~ ~------~~:_.=:_~~=-
""-' "-" ~

6-10

After synthesis of the schematic diagram in figure 6.3 using XST, the VI IDL code was generated. This is

found in Appendix D (section D.4).

',, Synthesis Results

Using the Xilinx !SE synthesis tools, the hardware implementation for the finalized MIPS R2000

microprocessor, was generated. Figure 6.4 shows the resulting top level RTL symbol while figure 6.5 shows

the resulting top level RTL schematic diagram. However, there is no need for delving into deeper levels of

the hierarchy as these are already covered in detail in Appendices A to C.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEl\1ENTATIO:'I: OF A RISC MICROPROCESSOR 6-11
Part Two Ch. 6 VHDL Description and Synthesis of MIPS R2000 Microprocessor

Figure 6.4 Resulting top level RTL symbol for tile finalized MIPS R2000 microprocessor (Note: Magnified
portions of this figure are shown in figures 6.4A to 6.4B tlwtfollow))

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREA DI NG A ND FPGA li\lPLE IENTATION OF A RISC MI CROPROCESSOR

Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

data_in_preload <3 1 :0 >

dmem_ra _preload <7 :O >

dmem _ wa _yreload <7 :0 >

instriJi::ti(•n_in _ _prelo a1j <31 :0 >

inst_ram _OJJ me_addr _preload <7:(1 >

memt ore!~_inrt < 1 :0 >

regdst _in rr <l :O>

ri _,nme _din_prelc,ad <3 1 :0 >

ri _1JJme_num_preload <4:0 >

Figure 6.4A Magnified top portion of Figure 6.4

addr _from_p c<7:0 >

addr _ 15brrs < 15 :0 >

addr _ 16to8brrs <7 :0 >

addr _ 16t o32brrs <31 :0 >

addr _26brrs <25 :0 >

addr _2tito8br1:::: <7 :0 >

alu_operati on <2 :0 >

alu_re s <31 :O>

a_in <31 :O >

branch_tar>Jet <7 :0 >

b_in <31 :O>

data_ram_read_ad dr<7 :0 >

d3ta_ram_writi:::_addr<7 :0 >

dmem_din <31 :0 >

dmem_to_ri <31 :0 >

dram_out <31 :0 >

fun ct <5 :0 >

inst ruct ion_fr,jm_if <3 1 :0 >

ir,st_ram_addr<7 :0 >

memtoreg < 1 :(I >

mu:._ri_din_se\<1 :O>

mux_rf _num_sel <1 :O>

mu):2mu:.:_pcsrc <7 :0 >

ne):t_pc <7 :0 >

pc plus 1 _addr<7 :0 >

rd <4:0>

regdst < 1 :0 >

ri_data_b <31 :O>

ri _lume_data <31 :D>

ri_1JJme_reg <4:0>

rs<4:0 >

rt <4:0>

add8 _i 1 _ carryout

6-1 2

159.899 M.Sc. Computer Sc ience Firas Al -A li 992 03447

MICRO-THREADING A D FPGA IMPLEMENTAT ION OF A RISC MICROPROCESSOR

Par/ Two - Ch. 6 - VHDL Descrip tion and Synthesis of MIPS R2000 Microprocessor

v alue _of_zero <31 :O>

v alue_of _ 1 <7 :O >

elk

dmemdinsrc _inrt:

dmemrasrc _init

dmemluasrc _init

inrt_e:,:e

rest_dcm

Figure 6.4B Magnified bottom portion of Figure 6.4

add8 _i 1 _overflo1JJ

add8_i2 _carrvout

add8_i2_overflolU

alumu):en_regn.u

aluopO

aluc,p 1 _regdst 1

alusrc

alu_carn1out

alu_overflo1JJ

alu_zero _beq

alu _ 2e ro _ bne

beq_or _bne

branch_c:ontrol

brarich_ldelav

clkdv

clkO

dcm_lockt::d

init_e):e_ir,v _ 1 delay·

init_€::a:e_inv _2dt::lavs

jump

merntoregO _regdstO _mernread_dmemrasrc

memt,:ire!J 1

mernwrite_dmemdinsrc _dmemwasrc

mu:<_sel_pcsrc 1

mu:(_selJ• i:::s rc2

mux_to _im_clk

mux_to_pc_clk

rf _en_read _1JJrite

selbeqortme

se l_dmem_mux_di

sel_dmem_mux_ra

sel_dmem_mux_lUa

6-13

159.899 M.Sc. Computer Sc ience Firas Al-Ali 99203447

MICRO-TIJREADl:\'G AND FPGA 11\IPLEJ\IENTATION OF A RISC MICROPROCESSOR

Part Two Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

I
., •. ;,-.i•t-,r,"

=CJ

~
I•

f-f- r-

e.:,_ r-'------,,r~=r:

I

l---#--.. ii1__J

I !\
·+

I_ --', -!f---HIHfll
, Ii

.....
"·'

....

.,, .. _

I

=

----------------~.

6-14

,. ---------M--·+·-·t--+--~-~-r7'------.r,ir!IT::'--==:11 __ , ' -- -~ 1-LJ ar,- r+i ict-i"l!ttt-+t!fl,"ft---------------~,.-=--,

l ltf--~1--=-=-:i:::1===:i:t11_,IIIII ii

.

I- ii: I

Ii

I 1

Figure 6.5 Resulting top level RTL schematic for the finalized MIPS R2000 microprocessor ((Note: Magnified
portions ofthisfigure are shown infigures 6.5A to 6.5D tlwtfollow))

l 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEI\IENTATIO:\' OF A RISC MICROPROCESSOR 6-15
Part Two Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

Figure 6.5A Magn(fied top-left portion<~{ Figure 6.5

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-16
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

.... I

~ .. I, ·1 I

-·· I
1,: ·1

FD FD

rt =~ ·1 I, ·1=U I
r

- I - I
I .

·---l ff•a "II I ll .. -~·
V

Figure 6.5B Magnified bottom-left portion of Figure 6.5

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-17
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

opcode_bustap
EE•--11 _,_ -=r:·· -··1 a-··

-~--za,
,----1------.~·"'°'

,-++-------+--+--++---++----+---•_...,,.,_TO>

-·-++-------+-~F=~==~=i----+---i,..NCWl.,V•- •>• a -- '----+----<i+-----l+-+-----l---~.-•.-.--•?D
-t-•D -•D~---.-.!:::=i:;::==t~l::;---j---+...,._, __ ._, ,a,

------------'"" 1 "'· I 1--1--....... _,,_._ -- .,. ...
.++--+-----l~ •~•JIO,

--+-----~,+,+-----l+--+-----------+l---+>-++-+---+---1,,,.._,....,,._,a,
--+-----~f+,+-----l+--+-----------+i---+f-+l-+---+--~- -"'--l1D
--+-----~,+,+-----l+--+-----------+1------+>-++-+--+-- ~ .. ,.

--~----_ ,...,...,ni--

--- --~·--·

I
I l ,

.--+-++-++-+++++++-+t+++-.;.,.-.....,.

FD ~f--r7
,I

I
I

·1 I

I

Figure 6.5C Magnified top-right portion of Figure 6.5

159.899 M.Sc. Computer Science

..,...,10 ~=======================~~~g~iii!lD

_ _ ._,.,,a,t------------<J•-mJi•Ji!!iD

.. ~--ID

----··

,t,...i•----llll• ~=======================~~:~=:~!)

-..i• • ...,...t------------@rr~,;;-~-•
-.,c- t------------{!!!!:!!;,e!!!;;>
-.;;,,.....,....,f-------------{!!!:!~e,J:>

Firas Al-Ali 99203447

MICRO-THREADING A ND FPGA I M PLEMENTATION OF A RISC MICROPROCESSOR 6-18
Part Two - Ch.6- VHDL Description and Synthesis of MIPS R2000 Microprocessor

I I I I --•.>e....c:N<I ~

I ... ,,.IMI

I
·1

" ..
I

ooio.•n•
I,
I~

J -:=e=J MUM ·-- .
It•_, '

j I

,~ .. ,
'

N• •a:;i-• 1;11 11:

WJIKINIW

ill 141t

Figure 6. 5D Magnified bottom-right portion of Figure 6.5

• FPGA Device Synthesis Summary

After the hardware implementation for the finalized MIPS R2000 microprocessor, using the Xilinx ISE

synthesis tools, the Synthesis Report was generated. The most important FPGA Device Synthesis Statistics

from this report, are shown below:

Design Statistics :

Ii IOs 695

Macro Statistics:

#RAM :4

Ii 256x32 - bit dual - port block RAM: 1

Ii 256x32 - bit single - port block RAM: 1

Ii 32x32 -bit dual-port block RAM: 2

Ii Registers : 1

Ii 8 - bit register : 1

Ii Tri states 23

Ii 32 - bit tristate buffer : 9

Ii 5 - bit tristate buffer : 4

Ii 8 - bit tristate buffer 10

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING A,\'D FPGA li\IPLEMENTATION OFA RISC MICROPROCESSOR

Part Two Ch.6 VHDL Description and Synthesis of MIPS R2000 Microprocessor

Cell Usage:

BELS

and2

and2bl

and3

and3bl

and4

GND

tl

"

1

LUT2

LU'I'2 L

LUT3

LUT4

LUTt; [)

muxcy
,, ~;uxcy d ,,

l

er

or

3

XOiCj

/Latches

l 6 36

PJ\MB 16 SJ S36

Tri-States

BUF'T

Clock Buffers

bufg

Buffers

IBUF

ibufg

jf OBlJF

OBlJFT

dcm

Logical

nor4

Others

159.899 M.Sc. Computer Science

:

853

107

38

70

64

16

41

40

32

8

1

54

ll

10

30

,j

2

3;:

3

~}

l 1

3

8

4

6

356

2

l

488

32

1

8

8

36

6-19

Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Tiv o - Ch.6 - VHDL Descript ion and Sy nthesis of MIPS R2000 Microprocessor

fmap 36

Device utilization summary :

Number of Slices : 120 out of 4 6592

Number of Slice Flip Flops : 11 out of 93184

Number of 4 input LUTs : 207 out of 93184

Number of bonded IOBs : 695 out of 1108

Number of TBUFs : 356 out of 23296

Number of BRAMs : 4 out of 168

Number of GCLKs : 2 out of 16

Number of DCMs : 1 out of 12

Timing Summary :

Minimum period : 24 . 522ns (Maximum Frequency : 40 . 780MHz)

Minimum input arrival time before clock : 12 . 513ns

Maximum output required time after clock : 51 . 674ns

Maximum combinational path delay : 18 . 250ns

,.. Si111ulatio11 Results

0 %

0%

0 %

62 %

1%

2 %

12 %

8 %

6-20

Figure 6.6 shows the simul ation wavefo rms fo r the test code simulated to run on th is mi croprocesso r. This

code is as fo ll ows :

Instruction Memory Instruction Loaded Com ments
Location No.

SLT $R7 , $RS , $R6 [SR5} = (/ 5) /{/
0 [SR6} = (/6)/()

Assembles to (;46382Al,, ex [SR5} < [SR6} => [SR7} = I

SW $R7 , 10 ($ RS) {Me111 01y [25}}= [S R7]= I
I

Assembles to (;4CA 7000Al,iex

J IOO
2

Assembles to (80000641,, ex

NOP Inserting a pipeline bubble
3

Assembles to (00000002,, ex

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-TI-IREADING AND FPGA 11\IPLEi\IENTATION OF A RISC MICROPROCESSOR 6-21
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

BNE $RS , $R6 , IO {$R5} = [SR6} = (15) 111

=> Branch Taken
100

Assembles to (/4A6000A),, ex Next PC = Current PC + I + 10
= IOI + I + JO = 112

NOP Inserting a pipeline bubble
IO I

Assembles to [0000000),,ex

LW $RS , 57 ($RS) [SR8} = [Mem o1y [25}} = I
11 2

Assembles to C8CA8000Al,,ex

Th is is assemb led as fo llows:

D SLT $R7 , $RS, $R6

rd I'S rt

The corresponding 32-bit assembly language instruction representation (d iscussed in Ch.5) is:

000000 00101 001 IO 001 I I 00000 101010

op=O rs=$ R5 rt=$ R6 rd=$R7 sha111t jimct=42

In order to make debugg ing more manageab le, the corresponding hexadecim al represe ntati on fo r

thi s 32-bi t instruction is:

(00000000 IO I 00 I I 000 I I I 00000 IO IO I Oh = (A63 82A)hcx

D SW $R7 , IO ($RS)

rt offs et (rs)

The corresponding 32-bit assembly language instruction representation (discussed in Ch.5) is:

10101 I 00101 001 I I 0000000000001010

op=43 rs=$R5 rt=$ R7 offset= ! 0

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

M ICRO-THR EADING A ND FPGA l i\lP LEI\IENTATION OF A RISC M ICROPROCESSOR 6-22
Parr Two - Ch.6 - VHDL Description and Synthesis of M IPS R2000 Microprocessor

In order to make debugging more manageable, the correspond ing hexadecimal representation for

this 32-bit instruction is:

(IO IO I I 00 IO I 00 I 11 000000000000 IO I Oh = (/\CA 7000A)11"

D J 100

address

The correspond ing 32-bit assembly language instruction representation (discussed in Ch.5) is:

0000 1000000000000000000001100100

op=2 address= I 00

In order to make debugging more manageable, the corresponding hexadecimal representation for

this 32-bit instruction is:

coooo 10000000000000000000011001ooh = (8000064)~,

The corresponding 32-bit assembly language instruction representation (d iscussed in Ch.5) is:

000000 00000 00000 00000 00000 000000

op=O rs=$RO rr=SRO rd=SRO sha1111 fimcr=O

In order to make debugging more manageable, the corresponding hexadecimal representation for

th is 32-bit instruction is:

(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOh = (OOOOOOOO)~.

This NOP (also called a Pipeline Bubble) is inserted follow ing every control transfer instruction (in

this case J). This extra ClkDv clock cycle during wh ich time the NOP is in the pipeline, is needed

by the instruction fetch unit to correctly update the program cou nter with the value of the

instruction memory address of the next instruction (after NOP). Without NO P, the pipeline would

go into non-deterministic states during this extra ClkDv clock cycle causing the instruction fetch

un it to update the program counter with an incorrect value leading to the premature termination of

code execution.

159.899 M.Sc. Computer Sc ience Firas Al-A li 99203447

M ICRO-THREAD ING AND FPGA IMPLEMENTATION OF A RI SC MICROPROCESSOR 6-23
Part Two - Ch.6 - VHDL Description and Sy nthesis of MIPS R2000 Microprocessor

$RS , $R6 , 10

rs rt offset

The corresponding 32-bit assembly language instruction representation (di cussed in Ch.5) is:

000101 00101 00110 0000000000001010

op=S rs=$R5 rt=$ R6 offset= I 0

In order to make debugging more manageab le, the corresponding hexadecimal representat ion fo r

thi s 32-b it instruction is:

(000 IO I 00 IO I 00 I I 0000000000000 IO I O)c = (I 4A6000A)1ic,

The correspond ing 32-bit assembly language instruction representat ion (discussed in Ch.5) is:

000000 00000 00000 00000 00000 000000

op=0 rs=$R0 1·1=$RO rd=$R0 sha1111 f1111 ct=0

In order to make debugg ing more manageab le, the corresponding hexadec imal rep resentatio n for

thi s 32-b it instruction is:

(00000000000000000000000000000000)" = (00000000)1icx

This NO P (a lso ca ll ed a Pipeline Bubble) is inse rted fo ll owing every co ntro l tran sfer instruction (in

thi s case BNE). This extra ClkDv clock cyc le during which time the NOP is in the pipeline, is

needed by the instruction fetch unit to correctly update the program counter with the value of the

instruction memory address of the next instruction (a fter NOP). Without NOP, the pipeline wo uld

go into non-determini sti c states during thi s extra ClkDv clock cycle causing the instruction fe tch

unit to update the program counter with an incorrect value leading to the premature termination of

code execution.

$RS , 57 ($RS)

rt offset (rs)

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLE IENTATION OF A RISC MICROPROCESSOR 6-24
Part Two - Ch. 6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

The corresponding 32-b it assembly language instruction representation (discussed in Ch .5) is:

100011 00101 01000 000000000 I I 1001

op=35 rs=$ R5 rt=$ R6 ojfset=57

In order to make debugg ing more manageable, the corresponding hexadecimal represe ntati on fo r

this 32-bit instruction is:

(I 000 I I 00IOIOI000000000000011100 I h = (8CA8003 9)hex

An important note here fo r thi s LW instructi on as part of thi s test code, is that it should spec ify the

same offset value of (10)10 as the one spec ified in the SW instructi on (2nd line in the test code

above) so that when added to (15) 10 (the contents of $RS as the base reg ister) would yield the va lue

of (25) 10 which is the target address in the data memory from which to load the data into the register

fil e. Ideally, the co ntents of $RS as the base register are not to be modifi ed at all as part of running

thi s test code. However, thi s is not the case here, and the o ffset va lue of (57) 10 had to be spec ified in

thi s LW instruction to offset the incorrect value of (-3 2) 10 (the unwanted modified contents of $RS

as the base register). This is caused by the fact that my design of the register fi le (Appendix A)

implements only one co mbined signal fo r enabling both read and wri te to the RF at the same time.

This is a des ign constraint imposed actuall y by the FPGA chip when the on-chip BlockRAM

resources are to be used fo r synthes izing the register fil e. It is recogni zed that in an actual register

fi le impl ementati on, there should be two separate control signals; one fo r reads, and th e other fo r

writes, to prevent the reg ister fil e from being written with unwanted va lues during executing code.

However, due to time constra ints and the need to submit this di sse rtati on by the req uired dead line,

this des ign iss ue is recogni zed and noted, bu t the remedy of which would have to be part of future

research work .

D Conclusio ns:

These resulting waveforms are in line with the expected functionality (desc ribed in detail in Appendices

A to C) and prove that this fin alized MIPS R2000 microprocessor is functioning as expected for thi s test

code.

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-25
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

Figure 6.6 Results of simulati11g thefi11alized MIPS R2000 microprocessor for the test code (Note: Refer also to
Appe11dix D 011 the Compa11io11 CD for a higher resolution version of this figure)

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREAD! G AND FPGA IMPLEME TATION OF A RISC MICROPROCESSOR

Part Two - Ch.6 - VHDL Description and Synthesis of Ml PS R2000 Microprocessor

-NoOEII
-NoO~
No Oat
-NoOc'I
-NoOat 1

NoOar ~

-NoOd
•NoOa
-No Dal
-NoOal ~
-NoOII)
-NoCt.t I

~loOal :
-NoO.i
-Nooi 1

-NoOet j
-No Dal
-NoOal
.flloOal
-No Del
-NoO;,.
-No Dal
·NoO
-NoOal
-11ooii
.tloOal

-No Dal
-NoOal
-NoOel
-NoD~
-NoO.i
-NoOal
-NoOal
·NoD• I

-NoOal

6-26

_ ; •f,)4-IS~·'"· _____ _
;·r--_ ----·

-NoOOI it . _____ __ __ _ _ _ ·'1 n __ -------=-=r:=__
-NoOal
-NoOal
.floOal
-NoOal
-Nooj
-NoOal
-Noo:O
-NoOal ,

7 c -_---

L ________ -- '~·•-----

Il __ :~:i ,,- ----------,:c -- - ---

Figure 6.6A Results of simulating thefi11a/ized MIPS R2000 microprocessor for the test code (Magnified Version
of Figure 6. 6 - Part 1 of 2) (Note: Refer also to Appendix D on the Companion CD for a higher resolution
version of this figure)

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-27
Part Two - Ch.6 - VHDL Description and Synthesis of MIPS R2000 Microprocessor

Figure 6.6B Results of simulating the finalized MIPS R2000 microprocessor for the test code (Magnified Version
of Figure 6.6 - Part 2 of 2) (Note: Refer also to Appendix D on the Companion CD for a higher resolution
version of this figure)

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-TIIREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 6-28
Part Two Ch.6 VHDL Description and Synthesis o/M!PS R2000 Microprocessor

6.4 Summary and Conclusions

This chapter presented the VI-IDL description, synthesis and simulation of a subset of the MIPS R2000

microprocessor hardware implementation onto the Virtex-11 FPGA chip. It is concluded that this design

easily fitted on the FPGA chip and did function according to the design specification, with the exception of a

few design glitches.

The next chapter presents the assembler/loader developed for this subset of the MIPS R2000 microprocessor

synthesized in this chapter.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-TIIRL\lll~G A~D FPGA IMPLE\11:YL\TIO:S OF A RISC MICROPROCESSOR

Part Two - Ch. 7 -Assemhler!Loaderfor the Synthesi:::ed AI/PS R2000 Microprocessor

CHAPTER SEVEN

ASSEMBLER/LOADER

FOR THE SYNTHESIZED

MIPS R2000 MICROPROCESSOR

7-1

This clwpter presents an unconventional way olwriting WI i/,1semhlcr!loaderfi1r the /vi/PS R20/JO

microprocessor ,1ynthesi~ed in chapter six, using the VJ-JDL language. lhis 11us simulated in

Model Technology Inc. (MT!) Mode/Sim XE.

------------------ ---------

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREADING AND FPGA II\IPLEMENTATION OF A RISC MICROPROCESSOR 7-2
Part Two - Ch. 7 -Assembler/ Loader for the Synthesized MIPS R2000 Microprocessor

7.1 Introduction

Thi s chapter prese nts the Assembler/Loader for the synthes ized MIPS R2000 microprocesso r. VHDL was

the language of cho ice for writing this Assembler/Loader.

Although the use of VHDL fo r writing an Assembler/Loader might seem unconventional, the reason behind

this approach is that VHDL is the language of cho ice for this research due firstly to its su itabi lity for

describing large complex digital systems like microprocessors [4] and seco ndly to the fact that it can a lso be

used, however, for simulating the so lution fo r practica ll y any problem Uust as any programming language)

(4] . This is why VHDL is the language of choice fo r developing the asse mbler/loader too within the contex t

of this research, giving ri se to a 100% VHDL fully-integrated hardware/software development environmen t.

This chapter sta rts wi th an overview 111 section 7.2 , thereby setting the scene for the material to fo llow,

wh ich is covered in section 7.3 . Section 7.3 out lines the methodology implemented in writ ing the VHDL

Assembler, whi le sec ti on 7.4 presents the results of asse mbling sample code. Section 7.5 elaborates on the

VHDL Loader, and secti on 7.6 conc ludes the chapter with a summary.

7.2 Overview

Figure 7.1 shows the rel ationship between the VHDL assembler/loader entity and the MIPS RTL model and

VHDL testbench. This is the environment in which the testing is carri ed out for the RTL mode l of the MIPS

R2000 microprocessor synthesized in chapter six. This test ing envi ronme nt follows the fol lowing wo rkflow

(as shown in Figure 7. 1):

• The VHDL RTL model fo r the MIPS R2000 microprocessor is created and synthes ized onto

the target FPGA chip . A VHDL testbench is then used to st imulate and test thi s RTL model.

This has been achieved in chapter six and appendices A to C.

• The VHDL testbench accepts its input test vectors from the VHDL assemb ler/loader. This is

di scussed in this chapter.

An important note here is that all the components in fi gure 7.1 (assembler, loader, RTL model, and

testbench) are implemented in software and simulate the actual finalised MIPS R2000 microprocessor

system with its assembler and loader.

Three mai n challenges (which have been reso lved, as part of thi s research) stemmed from this undertak ing:

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

11

M ICRO-THREADING AND F P GA IMPLEi\lENTATION OF A RISC MICROPROCESSOR 7-3
Part Two - Ch. 7 - Assembler/loader for the Synthesized MIPS R2000 Microprocessor

• Applying the same programming mechanics for standard programming languages to VHDL

(which is mainly for describing hardware). An important point is that VHDL is inherently

·'parallel'" and ·'concurrent" since that is the way that hardware works, and hence YHDL is not

well suited to sequential tasks (in particu lar a stream of instructions).

D The VHDL loader is taking the place of external memory in an actual microprocessor system.

• While in MIPS architecture, register specifiers are preceded by·'$" (eg. reg $13). this ·'$'. is

reserved for internal use in VHDL, and cannot be used in the code (eg. reg 13).

1--------- . --------- ,
1

Bmary I signals to
Instruction

I
assert Mnemonics I

1 .-------, Stream .-----, 1 dat. apat.h
(Text) 1 _ YHDL (32-bit) VHDL I and control_

Binary

1 ~ Assembl er· • Loader I •
I ._ ___ _, ,_ __ _, I

1 Simulated in Simulat.ed in :
1 MT/ Mode/Sim MT/ Mode/Sim

1 •-- --- ------- - ----- -
Assembler /Loader· (VHDL Entity)

MIPS VHDL
RTL

Model

Synthesized in
Xilinx /SE

VHDL Testbench

Figure 7.1 VIIDL Asse111blerl l oader/Testbe11clt for tlte .\)'lllltesi:et! M IPS R2000 RTL M odel /4/

7.3 The VHDL Assembler

The VHDL assembler developed for the context of this research is based on the MIPS IS/\ (Instruction Set

/\rchitecture) reviewed previously in chapter 5. The functionality of this assembler can be demonstrated by

way of an example instruction. The example instruction format chosen is R-format and the example

instruction chosen is ADD, and are both reviewed in chapter 5. However, for facilitat ing conven ience, the

ADD instruction is shown again in Figure 7.2.

6 bits 5 bi ts 5 bi ts 5 bits 5 bits 6 bits

o p = O
src l src2 d est

s h amt=O funct= 32 r eg r eg r eg

Bi ts: 3 1-26 25- 2 1 2 0 - 16 15-11 10-6 5-0

Figu re 7.2 A DD i11s tructio11 e11cotli11g /47, 4/

159.899 M.Sc. Computer Science Firas A I-A Ii 9920344 7

MICRO-THREADING AND FPGA 11\IPLEI\IENTATION OF A RISC MICROPROCESSOR 7-4
Part Two - Ch. 7 - Assembler/ l oader for the Synthesized MIPS R2000 Microprocessor

The VHDL representation for an R-format instruction packet in general is shown in fi gure 7.3 . For example,

when the VHDL asse mbler rece ives the ADD instruction packet in mnemonics fo rm (human-readable form) ,

it checks the opcode field for the character string value of "ADD" and generates acco rdingl y a binary va lue

of· '000000" in the output bits 3 1-26 (the opcode fo r ADD is the value zero) . Thi process is carried out over

the rest of the fi e lds in the incomi ng instruction packet until it is completely conve rted to output binary

forma t.

Type R_ packet_ bin is record Type R_packet_ dec is record
op: std_logi c_vector(S downto 0);
rs: std_ logic_ vector(4 downto O);
rt: std_logic_ vector(4 downto O);
rd: std_ logi c_vector(4 downto O);
shamt: std_ logic_ vector(4 downto O);
funct: std_logic_ vec tor(4 downto O);

Figure 7.3 R-format i11structio11 e11codi11g i11 VHDL /4/

7.4 Assembling Sample Code

=>

op:
rs :
rt:
rd:
shamt:
funct:

integer;
integer;
integer;
integer;
integer;
integer;

Below is a sample loop in C [47] that was used to test th e VHDL assemb ler (Ass ume $R 17=g, $R i S= h,

$ R 19=i, $R20=j , $R2 I = Base[A]):

Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

Thi s loop trans lates to the fo llowing M 1 PS assembly code using ac tua l phys ica l reg ister specifiers [1,14]:

Loop: add $R9, $R1 9, $R21

lw $RS, 0($ R9)

add $Rl7, $Rl 7, $RS

add $Rl9, $Rl9, $R20

bne $R19, $R18, -5

$R9= address of A[i]

Temp. reg $RS = A[i]

g = g + A[i]

i = i + j

go to Loop (go back 5

lines) if i not equal h.

This points to the first

"add" instruction line .

The VHDL assemb ler assemb les the above 5-line code to the fo llow ing corresponding machine language

code [14]:

00000010011101010100100000100000

10001101001010000000000000000000

00000010001010001000100000100000

00000010011101001001100000100000

00010110011100101111111111111011

159.899 M.Sc. Computer Science Firas Al-A li 99203447

II

MIC RO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROC ESSOR 7-5
Part Two - Ch. 7 - Assembler/Loaderfor the Synthesized MIPS R2000 Microprocessor

7.5 The VHDL Loader

The VHDL loader receives I word (32 bits) from the assembler and, accordingly, performs the following

functions (refer back to figure 7.1):

• According ly sets the datapath and control signals for the synthesized VHDL RTL model.

D Assigns and asserts the specific memory locations w ithin the synthesized VHDL RTL model

(loading into memory).

For the sample code in the last section, the V HDL assembler/loader generates the binary sig nals (shown in

figure 7.4) as input to the VHDL testbench.

Fie Edit View Insert Format Tools Window

Figure 7.4 Output Sig11als from tlte VHDL Assembler/Loader as /11put to the VHDL Testbe11ch

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 7-6
Part Two - Ch. 7 -Assembler/Loader for the Synthesized MIPS R2000 Microprocessor

7 .6 Summary and Conclusions

This chapter presented an unconventional way of writing an assembler/loader for the finalised MIPS R2000

microprocessor, using the VHDL language. The results of assembling a sample loop written in C have been

shown along with how that translates to the set of binary signals generated by the loader and to be input into

the VHDL testbench.

To summarise, figure 7.1 shows that the VHDL loader provides the VHDL testbench with the binary signals

necessary to assert both the datapath and control accordingly. The actual MIPS VHDL RTL model is

plugged into this testbench Gust like a microchip is plugged into its socket) and the testbench then provides

input test vectors (signals) to the RTL model and also captures the output signals and records them into an

output file for further analysis and debugging.

The next chapter introduces the VHDL description of the behavioural model for the micro-threading chip

multi-CPU.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 8-1
Part Three - Ch. 8 - VHDL Description of the Micro-threading Chip Multi-processor

CHAPTER EIGHT

VHDL Description of the
Micro-threading Chip Multi-processor

This chapter briefly describes how the micro-threading architectural add-ons and components

are added to the standard MIPS architecture to build the micro-threading microprocessor and

also the chip multiprocessor. The micro-threading VHDL description presented in this chapter is

at a high level of abstraction as it is a behavioural description augmented with algorithms. As

elaborated in chapter four, this is the first step of the hardware design process for the micro

threading microprocessor/multiprocessor and, therefore, paves the way for future research in

which these algorithms and high level descriptions are utilized in designing the final micro

threading microprocessor and/or chip multiprocessor.

159.899 M .Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEME TATION OF A RISC MICROPROCESSOR 8-2
Part Three - Ch.8- VHDL Description of the Micro-threading Chip Multi-processor

8.1 Introduction

Micro-threading was introduced in chapter three as a proposed architectural option for microprocessors to

extract the maximum amount of instruction-level parallelism from sequential code while tolerating high

memory latency and non-determinism. This chapter presents a diagrammatic description of a VHDL-based

behavioural model for micro-threading applied to the five-stage MIPS pipeline. This model is the starting

point for the hardware synthesis and simu lation of the micro-threaded architecture , to be undertaken in

future research work.

It is worth mentioning here that the contents of this chapter resulted in a refereed publication in the

conference proceedings of an international conference (3] .

In this chapter, the VHDL behavioural description for micro-threading is described in section 8.2. Section

8.3 conc ludes the chapter with summary and conclusions.

8.2 Behavioural Description in VHDL

8.2.1 Micro-threading Chip Multi-processor (CMP)

The VHDL model for the behavioural functiona lity of the micro-threading architecture is based on the idea

of representing building blocks of the multi-processor chip as boxes (components) that communicate with

each other via signals . These signals could either be of a standard VHDL type (eg. integer) (75 , 11], or

enumerated user-defined (eg. composite, record , packets) (75 , I I, 49]. This model is based on the Abstract

Machine (ABM) pipeline model by Reese (49].

The micro-threading approach can be applied to any standard RISC architecture. In this case, it has been

applied to the standard MIPS R2000 architecture described in detail in (47, 48] and synthesized and

simulated in Part Two of this thesis. Figure 8.1 shows the top-level abstract view for an example micro

threading multi-processor chip accommodating two Processing Units (PU I and PU2). Actually, the micro

threading CMP is proposed to be quite scalable (33] and can host a large number of PUs. As shown in

Figure 8.2, the PUs themselves are the modified MIPS pipelines. Three new components were added outside

the pipelines and are shared across all PUs (as shown in Figure 8.1):

❖ Global Continuation Queue (GCQ). This holds thread descriptors . There is one GCQ per CMP chip,

thereby sharing the GCQ among all PUs.

I 59.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA [MPLEMENTATION OF A RISC MICROPROCESSOR 8-3
Part Three - Ch.8 - VHDL Description of the Micro-threading Chip Multi-processor

❖ Register Allocation Unit (RAU) . This unit performs the dynamic register allocation.

•!• Global Register File (GRF). This contains the registers shared among dependent micro-threads

(whether for shared-parameter passing or for synchronisation) .

8.2.2 Micro-threading Processing Unit (PU)

Figure 8.2 depicts the internal components of each of the PUs referred to in Figure 8.1 , and shows how the

micro-threading architecture is still based on the 5-stage generic RISC pipeline implemented in MIPS [47,

48]. The ports interfacing this PU entity to the other components (which were shown in Figure 8.1) are

displayed in italics. The new component added here is the Local Continuation Queue (LCQ) , which is local

to every pipeline on the multi-processor chip. The LCQ holds the information and states relating to all the

micro-threads scheduled to run (till completion) on that specific PU . The Local Register File (L RF) is also

held locally within each PU.

8.2.3 Micro-threading Dynamic Register Allocation

For micro-threading to perform dynamic register allocation, four classes of registers are defined in this

architecture [32]:

❖ Global to all micro-threads. These are located in the GRF and are denoted by SGO, SCI, etc. Global

registers are allocated statically by the compiler during subroutine invocation.

❖ Local to one instance of a micro-thread. These are located in one PU's LRF and are denoted by $LO,

SL/ , etc. Local regi sters are allocated when an instance of a family of micro-threads is dispatched

dynamically to a PU.

❖ Shared between two and only two micro-threads. These are located in the GRF and are denoted by SSO,

$SI, etc. Shared registers are allocated when an instance of a family of micro-threads is dispatched

dynamically to a PU.

❖ Dependent on a prior micro-thread. These are located in the GRF and denoted by $DO, $DI, etc.

Dependent registers are allocated to the micro-thread that this current micro-thread is dependent on.

In figures 8.1 and 8.2, source registers srcl and src2 and the destination registers dest are also composite

enumerated VHDL data types. They are of format record and consist of a register identifier reg_id (L, G, D,

S) and a register number reg_no.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 8-4
Part Three - Ch.8- VHDl Description of the Micro-threading Chip Multi-processor

8.2.4 Micro-threading Algorithm

The algorithm for the execution model has been described in detai l in [32, 33]. Suffice it to say, once

allocated to a given PU, a micro-thread instance (dispatched from the RAU) comprises a thread pointer tp

and a base register for the Local, Shared and Dependent registers (l-base, S-base and D-base). The thread

runs to completion on the PU that it is allocated to. This does not lead to load imbalance as micro-threads

are expected to be very short in length and not maintained as placeholders for repetitive computation. This is

possible, as micro-thread creation is so inexpensive [32].

8.2.5 VHDL Description of Micro-threading Components

The VHDL behavioural model described in this chapter specifies the functionality (in terms of behaviour

and specifications) for the main blocks in the VHDL behavioural diagrams (figures 8. 1 and 8.2) for the

micro-threading CMP. The model implements a distributed control concept, where signal packets

communicate both data and control between the different components.

• Global Continua/ion Queue (GCQ)

The GCQ, being global to all PUs, can receive create-thread (thread pointer) signals from multiple PUs

in the same clock cycle (figure 8.1).

• Register Allocation Unit (RAU)

The RAU performs the dynamic register allocation by receiving the thread allocation information from

the GCQ, checking its internal allocation tables for availabi lity of resources (registers to be allocated) as

shown in figure 8.1 .

• Local Continuation Queue (LCQ)

The LCQ local to each PU receives the descriptor for the thread scheduled to run on that pipeline (figure

8.2).

• Instruction Cache (!Cache)

The state of a micro-thread can be used to determine a pre-fetch and replacement strategy for the I Cache

[33]. Upon arrival into the LCQ, a micro-thread may be in the waiting state because its code is not in

!Cache (or because it is waiting on a register for synchronization). A request is then made to ICache to

159.899 M.Sc. Computer Science Firas Al-Al i 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 8-5
Part Three - Ch. 8 - VHDL Description of the Micro-threading Chip Multi-processor

pre-fetch instructions for that thread (figure 8.2). The request is acknowledged either immediately or

when it has been satisfied by a higher level of memory hierarchy. The !Cache acknowledge signal

changes the thread 's state to ready.

• Instructfon Fetch (IF)

At any time, there is only one micro-thread, which is in the running state (initially, this is the main

thread) [33]. This running threads ' s LCQSlot, program counter, and base addresses (!_base, s_base,

d_base) are all held in the pipeline's program counter (this is within the IF stage). As shown in figure

8.2, when the running micro-thread encounters an instruction tagged for a vertical transfer (VT) or kill,

the IF logic requests a context switch from the LCQ. As a result, one of the ready threads is selected as

running and its state is passed to the program counter.

• Inslructfon Decode & Register Read (JDRR)

The IDRR stage receives the modified instruction packet (tag, opcode, des/, src I, src2, immv, LCQS!ot)

from the IF stage (figure 8.2). Then, it sends out a request to the appropriate register file (LRF and/or

G RF) to retrieve the values of the register contents, i.e . reads in src I register and retrieves and provides

its contents; src I _ v to the next stage (Execute) .

• Global Register Fife (GRF)

The GRF fills in the missing register values from the instruction packet by receiving a request from the

IDRR stage to provide the values of the register contents (figure 8.1). GRF reads in src I register and

retrieves and sends its contents (src I _v) back to IDRR which in turn includes these retrieved values into

the execute packet which is sent to the next stage (EX). GRF also receives write-back values from WB

stage and writes these values into the specified registers . Additionally, GRF receives an initialise signal

from RAU to allocate registers. The register classes held in the GRF are the Global ($G) , Shared ($S),

and Dependent ($D) registers.

• Local Register File (LRF)

The LRF is similar in concept to the GRF, except for the fact that it does not receive the pu_id

(identifying the originating pipeline) as part of the data request, as it is local to that PU which initiated

the request (figure 8.2). Only local ($L) registers are held in the LRF.

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 8-6
Part Three- Ch. 8 - VHDL Description of the Micro-threading Chip Multi-processor

• Execute (EX)

The EX pipeline stage performs the necessary ALU ope rations on the incoming packet (tag, opcode,

dest, src l , src l_v, src2, src2_v, immv, LCQS!ot). The slot reference (LCQS!ot) is avai lab le at the EX

stage (as well as at a ll o ther stages in the pipeline). When a vertically transferred instruction is resolved

(i.e. a branch target is calculated), the LCQS!ot along with that target branch, are both passed back to the

LCQ as part of the wakeup signal [33].

GCQ

lllh?Qf-r

rf-o::_:1'11_"cr_Ft.'2 f--,.-•. -10<_•_1,-.-01-.,.,-,-1.-. 1-m-u,-. ,-,.-.-. d-. -•. -, -,,-n,----------------,

th:I_Mr_FL2 --- inl&g •i

<.r-,_:t,.::_=-•:?)•------------------ - ----~
lllltg•1

r~_:":t_r.::r_Fu I f--,1ou- ,-,.-o-1o_ba_lS_. -,,m- ,-,.-,.-•• -. _de_P_, .-,.,- ,-, -

lh:l_n:ir_FL1 !•-- ---------,
111le,oer

"J),~~ J l•: C ~e,.v ,'(,: <r:_:h-::_:.,_i•)•- -------~

1 ... ,."., 1 flo<:•I•. glob•I•. ,. 1, "·•· 11•1

lulol>.>ls g _b.lu)

~F.F _h: l--(,.-1oc- . 1-, .-1_-.. -.-.,-----+-+-+------------+--+-t-,-.. -(1-_Y-.-.,-e1-_,-.. -,.-.-.,-c,-_-Y.-,-rc-,_-.-,.-,.-, -
- ~F _In:_? ... :? l--,1_-b-.. -•. - • ...::_b-,-.. -. -.,_-,,-.. -. -• • -.,--+-!I-+---------- -, ($IC 1 SIC2. pu_,ct LCOS:101)

,..,j_,:~1cr i:t.:.1_FL~ l---'
111
'-
1
eg- e- ,....::. _ __::..__c__+--+-+----------,

RA U ;1:._ __ cvsc:_=-J: l• --i
11

-,.-
0
.-,-------+--+-+--------,

, .. 1_LCOS(:_::,J~ I• -------- -++-+-------,
11, IOC,llt. I_MH)

-~F _1n:_::>,.. 1 f------ ---,

l"'d_Ct"SC' S:ICI_F l. 1
tl_b ue, 1_b.lH, d_ b~U. tp)

mte,;ier

.1:~_-ccs,.-_=-J1 1• -,,-,,.-
0
-.,-----,

PU1
t::CJcM

'i-e_J~s· jrs:_n fi.,'. -

! l
IC:.(ht_
fi-1:_?,JI

mst_c-.. ~
_i:J1

~.,. ..
P.J'-

p' o:

:bi,: d. re:i_nsl

i l
en
P.,'i

do<.t_
FCI

CJcl"e
r,e,q_:,._.'}

L2Cache

PU2
_:C:l:r~

•m_ n ~" -

!
f"ls:_0...1

-PlJl
R'N_
:,l.2

cci.r.

d '
PU]

(dut. d-esl_V)

lt lC l_v. t rc1_Sl,Ht,
s,c2_v. ,rc2_st,He)

(SI(1. 1o1c2. pu_1d. LCOSlol)

(dtst. des1_ V)

e n

t
<>:ut -,.2

Figure 8.1 Top-level hierarchical VHDL representation of a dual-PU micro-threading CMP.

C·•F_ ni:

GRF

d_,,.,....f_ =~•·

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Part Three - Ch. 8- VHDL Description of the Micro-threading Chip Multi-processor

GCQ

H

p6 p l

....
Pc>_LCC~lef""

R.-\l.

... a
pl p::

LCQ

p3

GCQ GRF

a •~
p5 di11_GRF d_req

1src1_v YC1_sta:e src:?_v, src2_s:ate l

t~c 1 sr<:1. LCCSlc:1 ..

R.-\l"

p-1

,,
LRF

...,...--,---,-.-' :: rE:,_LL-us.o...,_-r----~f+- ~.__ __ __.
•~ ...

1::>C. l_t,ase.
S l!.;X
c(:oasE: .

I J cnt: ,t_swrtch
,\- n

rit>n_adc r .---'~'~__,

1_CO!.!til

cecrernent_ :i c)

~

IF

src 1, src~. ri, niv,

LCCSlo:1

,,

:rct_wa J..eu::.

!LCCsb:. ::,ranch_t.:.ri;;e,:1 '--+-+-+~I ,,
IDRR

(:31J. OOCOO&. d&S'.

src1 , Y c1 _ ,,c2.
src~_v. imrw. LCOSlotJ

EX

rmss_31Q'l31 ,,
DCachc

8-7

GRF

...
do11r_GRF

······· ·t·· ·

{dl=JSLi:1-?s:_.,_
.,,. LCCSIOfl
~

,,
\\'B .,...

...... . ···· ····· ····· ············· ··· ······· ······························· ······································ ·········· ···· ········· ··· ·· ···· ····· ······· ·········· ······ ······· ····· ·············· 1····
1mr_111 L.'Ci1chl' R rr dour

- ,, ,, din

L2C:ic hr U C:ichr

Figure 8.2 Top-level hierarchical VHDL representation of a micro-threading PU.

8.3 Summary and Conclusions

This chapter presented the last piece of research work ai med for this thesis by out lining the high level

VHDL behavioural model of the micro-threading arch itecture.

The next chapter concludes thi s thesis with the summary, conclusions, and future work .

159 .899 M.Sc. Computer Science Firas Al-Ali 99203447

MIC RO-THREADING AND FPGA IMPLEME TATION OF A RISC MICROPROCESSOR 9-1
Part Three - Ch.9 - Conclusions and Future Work

CHAPTER NINE

Conclusions And Future Work

This chapter concludes this thesis by reviewing the summaries of the key points from the previous

chapters along with the important areas of research covered by the thesis. Conclusions are drawn

and further areas of enhancement and future research work are listed.

159.899 M.Sc. Computer Science Firas Al-Ali 9920344 7

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 9-2
Part Three- Ch.9- Conclusions and Future Work

II 9.1 Thesis Summary

This thesis presented the outcome of research mainly into two areas of the computing technology:

microprocessor and multi-processor architectures (specifically from the perspective of how differently they

tolerate highly-latent and non-deterministic events), and the hardware design of complex digital systems

containing both datapath and control (particularly microprocessors).

As a result, the key achievements of this work are based on three important areas of research investigated

and covered in this thesis:

• The problems associated with tolerating highly latent and non-deterministic events in existing

microprocessor and multi-processor architectures have been recognized. This was surveyed in

chapter 2.

• The high level behavioural VHDL (Very High Speed Integrated Circuit Hardware Description

Language) description of the novel vector micro-threading chip multi-processor architecture, which

is proposed to efficiently tolerate such high latency and non-determinism. The starting point for the

design of this micro-threading architecture is the popular MIPS RISC (Reduced Instruction Set

Computing) processor architecture.

• The hardware implementation involving the VHDL description, synthesis and simulation of the

MIPS R2000 RISC microprocessor onto an FPGA (Field Programmable Gate Array) chip. The

MIPS microprocessor is an existing architecture and is implemented in this research to provide the

baseline processor platform for the future micro-threading architectural add-ons and modifications.

A part of the focus of this research is an investigation of the novel vector micro-threading architecture as an

alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is

based on the not-so-novel multithreading technique which avoids speculation altogether and instead, starts

running a different thread of instructions while waiting for the non-determinism to be resolved. This utilizes

the chip resources more efficiently without waste of any processing power. This was covered in chapters 3

and 8.

As this research progressed, the baseline RISC processor platform, the MIPS R2000, was first reviewed,

then synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and

tested. This was covered in chapters 5, 6, and 7. This was conducted in order for future research to build

upon and add the micro-threading architectural add-ons and modifications.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

II

MICRO-THREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR 9-3
Par/ Three - Ch. 9 - Conclusions and Future Work

One outcome of this research is the publ ication of a total of five papers (refereed and non-refereed) in five

different conference proceedings within New Zealand [2, 14, 36, 55] and abroad [76].

9.2 Thesis Conclusions

The fo llowing conclusions are drawn from this research:

• The baseline MIPS R2000 microprocessor has been synthesized onto the Yirtex-11 FPGA and

simulated successful ly. This 8-million-gate Yirtex-11 FPGA chip was much more than sufficient to

accommodate this design.

• It is also concluded that the ease of designing with FPGAs compared to AS I Cs j ustifies the process

of using FPGAs for design prototyping prior to fina l commercialization onto an ASIC chip.

D It is estimated that this 8-million-gate Yirtex-11 FPGA chip can accommodate a fu lly functional

micro-threaded microprocessor, at the least. There even ex ists the possibility that a micro-threaded

chip multiprocessor wi th 2-4 PUs can still be fitted onto this FPGA chip.

9.3 Suggested Future Work

This research can spawn future work in the following suggested areas:

D Re-design the register file to segregate the read signal separately from the write signal in order to

prevent the accidental and unwanted overwrite of the operands stored in the registers.

D Implement the rest of the MIPS instructions, especially the multiplication and division.

D Implement the fo llowing advanced techniques for the existing baseline MIPS R2000

microprocessor synthesized in this thesis:

o Pipelining with pipeline registers [I , ch.6].

o Bypass buses and data forwarding [I , ch.6].

o Branch prediction, out-of-order execution, and superscalar functionality [I , ch.6].

o Proper memory hierarchy system including cache memory [I, ch.7].

O Develop and synthesize the micro-threading VHDL model with all the micro-threading add-on

components and combine them with the existing baseline MIPS R2000 microprocessor synthesized

in this thesis to synthesize the finalised micro-threading microprocessor and chip multi-processor.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-1
References

REFERENCES

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-2
References

I. Akkary H. and Driscoll M., 1998, A Dynamic Multithreading Processor, 31 st Annual ACM/IEEE
International Symposium on Microarchitecture, Nov.30-Dec.2.

2. Al-Ali F.M. and Browne R.F, An FPGA Implementation of a RISC Microprocessor, Proceedings of the 11 th

Electronics New Zealand Conference (ENZCon'04), 15-16 Nov, 2004, p 106-111, ISBN 0-476-01106-X,
Massey University, Palmerston North , New Zealand

3. Al-Ali F.M . and Browne R.F , Behavioural VHDL Model of a Vector Micro-threading Chip-multiprocessor,
Proceedings of the 6th International Conference/Exhibition on High Performance Computing in Asia-Pacific
Region (HPC Asia 2002), Bangalore, 16-19 December 2002 , Vol.2, pp 518-521, Tata McGraw-Hill
Publishing Company Ltd ., New Delhi , India, ISBN 0-07-049992-6

4. Al-Ali F.M. and Browne R.F, VHDL Modelling of a RISC Microprocessor: Synthesis, Assembler, Loader,
and Testing, Proceedings of the Ith Electronics New Zealand Conference (ENZCon'05), 14-15 Nov, 2005,
pp 63-68, ISBN 0-473- I 0634-5, Manukau Institute of Technology, Manukau City, Auckland, New Zealand .

5. Al-Ali F.M.and Jesshope C.R, 2000, Survey of High-latency Tolerance in Contempora,y Microprocessor
Architectures, Proc. t h Annual New Zealand Engineering and Technology Postgraduate Conference, pp339-
346, ISBN 0-473-07224-6, Massey University, Palmerston North , New Zealand, 23 rd & 24th Nov

6. Al-Ali F.M. and Jesshope C.R, 200 I, Survey of High-latency Tolerance in Future Microprocessor
Architectures, Proc. New Zealand Computer Science research Students' Conference (NZCSRSC 200 I) ,
pp86-97, TR-COSC 02/0 I, University of Canterbury, Christchurch, New Zealand, 19th & 20th April.

7. Alverson G. , Kahan S. , Korry R., McCann C. and Smith J.B., 1995, Scheduling on the Tera MTA , Lecture
Notes in Computer Science, 949, Springer-Verlag, Berlin, pp 19-44.

8. Alverson R., Callahan D., Cummings D. Koblenz B. , Porterfield A. and Smith B, 1990, The Tera
computer System, Proceedings of the ACM international conference on Supercomputing, pp 1-6.

9. Arvind, Gostelow K.P. and Plouffe W., 1978, An Asynchronous Programming Language and Computing
Machine, Technical Report 114a, Dept. of Information and Computer Science, University of California at
Irvine, CA.

I 0. Arvind and Nikhil R.S., 1987, Executing a Program on the MIT Tagged-Token Datajlow Architecture,
Lecture Notes in Computer Science 259, Springer-Verlag, Berlin, pp 1-29.

11. Ashenden P.J., The Designer 's Guide to VHDL, 2nd Edition, Morgan Kaufmann Publishers, ISBN 1-55860-
674-2, 2002.

12. Bolchevsky A, I 995, The Fundamental Issues and Construction of a Data-parallel Datajlow Computer,
Technical Report CSRG95-0 I, Dept. of Engineering, University of Surrey.

13. Bolychevsky A., Jesshope C.R. and Muchnick V.B., Dynamic Scheduling in RISC Architectures, IEE Proc.
Comput. Digit. Tech., vol. 143 (5), Sept I 996.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-3
References

14. Burger D , Kaxiras S. and Goodman J .R., 1997, Datascalar Architectures, Proc. ISCA-24, Denver, CO,
pp338-349.

15. Dennis J.B . and Misunas D.P., 1975, A Preliminary Architecture for a Basic Datajlow Processor,
Proceedings of the 2nd Annual Symposium on Computer Architecture, Jan. , Houston, TX, pp126-132.

16 . Eggers S., Erner J., Levy H. , Lo J., Stamm R. and Tullsen D, 1997, Simultaneous Multithreading: A
Platform for Next-generation Processors, IEEE Micro, Sep/Oct, pp 12-18.

17 . Flynn M.J. , 1995, Computer Architecture: Pipelined and Parallel Processor Design, Jones and Bartlett
Publishers, Sudbury, MA, ISBN 0-86720-204-1.

18 . Franklin M. , 1993 , The Multiscalar Architecture, Computer Science Technical Report No. 1196, University
of Wisconsin-Madison , WI.

19. Gaudiot J.L. and Bic L. , 1991, Advanced Topics in Datajlow Computing, Prentice Hall, Englewood C li ffs,
NJ .

20. Geppert L. and Perry T.S., 2000, Transmeta 's Magic Show, IEEE Spectrum, May.

21. Gostelow K.P. and Arvind, 1982, The U-interpreter, Computer 15 , Feb. , pp42-49 .

22. Grafe V.G.and Hoch J.E., 1990, The Epsilon-2 Multiprocessor System, Journal of Parallel and Distributed
Computing I 0, pp309-3 I 8

23. Gribbon K. , An FPCA Implementation of a Network Co-Processor, 4th Year Engineering Project Report ,
Institute of Information Sciences and Technology, Massey University, Palmerston North , New Zealand,
2002.

24. Gwennap L. , 1997, DanSoft Develops VL/W Design, Microprocessor Report, 11(2), ppl8-22 , Feb . 17.

25. Hennessy J.L. and Patterson D.A., 1996, Computer Architecture: A Quantitative Approach, 2ed, Morgan
Kaufmann Publishers, San Francisco, CA, ISBN 1-55860-372-7.

26. Hockney R.W. and Jesshope C.R. , 1988, Parallel Computers 2: Architecture, Programming and
Algorithms, IOP Publishing Ltd ., Bristol, ISBN 0-85274-811-6.

27. Hwang K., 1993, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw
Hill Inc ., USA, ISBN 0-07031622-8.

28. Iannucci R.A., Gao G.R., Halstead Jr R.H .. and Smith B., 1994, Multithreaded Computer Architecture: A
Summary of the State of the Art, Kluwer Academic Publishers, USA, lSBN0-7923-94 77-1.

29. Intel Corporation, 1999, IA-64 Application Developer's Architecture Guide, May, Intel Corp.

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-4
References

30. Inte l, Hyper-Threading Technology (website), http://devcloper.intel.com/technology/hyperthread/

31. Intel ltanium Processor Family Home Page, 20th Oct 2000, developcr.intcl.com/des ign/ ia-64/

32. Jesshope C.R., Implementing an Efficient Vector Instruction Set in a Chip Multi-processor Using Micro
threaded Pipelines, Proc. Australian Computer Systems Architecture, Gold Coast, Australia, February 200 I.

33. Jesshope C.R. and Luo R(B)., A Microthreaded Chip Multiprocessor with a Vector Instruction Set, Chris
Jesshope's Homepage (downloaded 4th June, 2002): www2.dcs.hull.ac.uk/people/csscrj/index.html

34. Jesshope C.R. and Luo R(B)., Micro-threading: A New Approach to Future RISC. Proc. 2000 ACAC,
Canberra, IEEE Computer Society Press, ISBN 0-7695-0512-0, pp34-4 l , Jan 2000.

35. Lipasti M.H.and Shen J.P. , 1997, Superspeculative Microarchitecture for Beyond AD 2000, Computer, 30,
pp59-66, September.

36. Lipast i M.H. and Shen J.P., 1997, The Pe,formance Potential of Value and Dependence Prediction, Lecture
Notes in Computer Science, 1300, pp I 043-1052, Springer-Verlag, Berlin.

37. Lipasti M.H., Wilkerson C.B. and Shen J.P., 1996, Value l ocality and load ValuePrediction, Proc. of the
7•h Internat ional Conference on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, ppl 34-147, October

38. Lo J.L. , 1998, Exploiting thread-level parallelism on simultaneous multithreaded processors, Ph.D. Thesis,
Dept. of Computer Science and Engineering, University of Washington.

39. Luo R(B). and Jesshope C.R., Pe,formance Evaluation on a Microthreading Pipeline, Proc. 2002 ACAC,
Canberra, Jan. , IEEE Computer Society Press, 2002.

40 . Mano M. and Kime G., l ogic and Computer Design Fundamentals, 2nd Edition, Prentice Hall , 200 I.

41. Nikhil R.S., Papadopoulos G.M. and Arvind, 1992, *T: A Multithreaded Massively Parallel Architecture,
Proceed ings of the 19th Annual Symposium on Computer Architecture, May, Gold Coast, pp 156-167.

42. Patt Y .N., Patel S.J., Evers M., Friendly D.H. and Stark J ., 1997, One Billion Transistors, One
Uniprocessor, One Chip, Computer, 30, pp5 l-57, September.

43. Papadopoulos G.M., 1988, Implementation of a General-Purpose Datajlow Multiprocessor, Technical
Report TR-432, Laboratory For Computer Science, MIT, Cambridge, MA.

44. Papadopoulos G.M., 1991 , Implementation of a General-Purpose Datajlow Multiprocessor, Research
Monographs in Parallel and Distributed Computing, The MIT Press, Cambridge, Massachusetts, Pitman
Publishers, London, ISBN 0-273-08835- 1.

45. Papadopoulos G.M. and Culler D.E., I 990, Monsoon: An Explicit Token-Store Architecture, Proceedings of
the I 7'h Annual Symposium on Computer Architecture, May, Seattle, WA, pp82-9 1.

159.899 M.Sc. Computer Science Firas Al-Al i 99203447

MICROTHREAOING ANO FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-5
References

46. Papadopoulos G.M. and Traub K.R., I 991, Multithreading: A Revisionist View of Datajlow Architectures,
Proc. of the I 8th Annual International Symposium on Computer Architecture, Toronto, Ontario, pp342-351 ,
May.

47. Patterson D.A. and Hennessey J.L., Computer Organisation and Design: The Hardware/Software Inte,face,
2nd Edition, Morgan Kaufmann Publishers, San Francisco, 1998.

48 . Patterson D.A. and Hennessey J. L. , Computer Organisation and Design: The Hardware/Software Interface,
3rd Edition, Morgan Kaufmann Publishers (An Imprint of Elsevier), San Francisco, 2005

49. Reese R., ABM Pipeline VHDL Simulator, Robert (Bob) Reese's Homepage (downloaded October 2000):
www.erc.msstate.edu/-reese/

50. Rotenberg E., Jacobson Q., Sazeides Y. and Smith J.E., 1997, Trace Processors, Proc. of the MICRO-30,
Research Triangle Park, NC, pp 138-148.

51. Schlanker M.S. and Rau B.R., 2000, EPIC: Explicitly Parallel Instruction Computing, IEEE Computer,
Feb., pp37-45.

52. Sile J., Robie B. and Ungerer T., 1998, Asy nchrony in Parallel Computing: From Datajlow lo
Multilhreading, Parallel and Distributed Computing Practices I, pp57-83.

53. Sile J., Robie B. and Ungerer T., Processor Architecture: From Datajlow to Superscalar and Beyond.
Berlin Heidelberg, Germany: Springer-Verlag, 1999.

54. Si le J. , Ungerer T. and Robie B, 2000, A Survey of New Research Directions in Microprocessors.
Microprocessors and Microsystems, 24, pp 175-190.

55. Smith B.J., 1981 , Architecture and applications of the HEP multiprocessor computer system, Proc. SPIE,
298, pp24 l -248

56. Smith J.E. and Vajapeyam S., 1997, Trace Processors: Moving lo Fourth-Generation Microarchitectures,
Computer, 30, pp 68-74.

57. Sohi G.S., I 997, Multiscalar: Another Fourth-Generation Processor, Computer, 30, pp72

58. Sohi G.S., Breach S.E. and Yijaykumar T.N., 1995, Multiscalar Processors, Proc. ISCA-22, santa
Margherita Ligure, Italy, pp4 I 4-425.

59. Srini Y.P., 1986, An Architectural Comparison of Datajlow Systems, Computer 19, Mar., pp68-88.

60. Sun Microsystems, MAJC Architecture Tutorial (website),
http://www.sun.com/microelectronics/majc/documentation/docs/majctutorial.pdf

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR R-6
References

6 1. Texas Instruments, 1998, TMS320C620! Digital Signal Processor Advance Information, March, Texas
Instruments, Houston, TX.

62. Tomasulo R.M., 1967, An Efficient Algorithm for Exploiting Multiple Arithmetic Units, IBM Journal of
Research and Development, (January), Vol. 11 (I), pp25-33.

63. Transmeta Home Page, 29th Oct. 2000, www.transmcta.com/crusoc

64. Treleaven P.C., Brownbridge D.R. and Hopkins R.P., 1982, Data-Driven and Demand-Driven Computer
Architectures, ACM Computing Surveys 14, pp93-143.

65. Tremblay M., 1999, MAJC-5200: A VLIW Convergent MPSOC, Microprocessor Forum '99.

66. Tsai J.Y. and Yew P.C., 1996, The Superthreaded Architecture: Thread Pipelining with Run-Time Data
Dependence Checking and Control Speculation, Proc. 1996 Conference on Para I lei Architectures and
Compilation Techniques (PACT'96), pp35-46, Boston, MA, October

67. Unger A., Ungerer T. and Zehendner E., Website for Compiler Techniques/or Multithreaded Processors,
http://gocthc. ira.uka.dc/pcop lc/un gercr/m f-compi lcr/sss. htm I

68. Vajapeyam S. and Mitra T., 1997, Improving Supersca/ar Instruction Dispatch and Issue by Exploiting
Dynamic Code Sequences, Proc. of the ISCA 24, Denver, CO, pp 1-12.

69. Xilinx Inc. (website), Virlcx-/1 P/atfor111 FPGAs: h1trod11ctio11 a11d Ouen,iew, www.x ilinx.com, Downloaded Oct
2003.

70. Xilinx Inc. (website), Virtex-11 Platform FPGA User Guide, www.xilinx.com Down loaded Oct 2003

7 1. Xilinx Inc. (website), Xilinx/Google Search Engine, xgooglc.xilinx.com, Accessed June/July 2006.

72. Xilinx Inc. (website), Xilinx !SE 5 Software Manuals, www.xilinx.com, Downloaded Oct 2003.

73. Xilinx Inc. (website), Xilinx PLD Quick Start Handbook, 2nd Edition, www.xilinx.com, Jan 2002,
Downloaded 2003.

74. Xilinx Inc. (website), Xilinx Support Website, support.xilinx.com, Accessed June/July 2006.

75. Yalamanchili S., Introductory VHDL: From Simulation to Synthesis, Prentice Hall, 200 I.

76. Zehendner E. and Ungerer T., 1987, The ASTOR Architecture, Proceedings of the th International
Conference on Distributed Computing Systems, Sept., Berlin, pp424-430

159.899 M.Sc. Computer Science Firas Al-A li 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RJSC M ICROPROC ESSOR G-1
Glossary

GLOSSARY

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR G-2
Glossary

A ----------- --- ---------- ----------
ABM

ADDI

ALU

ASIC

B

ABstract Machine

ADD Immediate

Arithmetic and Logical Unit

Appl ication Specific Integrated Circuit

- - ----- ---------------------------
BEL

BEQ

ENE

BRAM

BUFG

BUFT

Basic Element

Branch on Equal

Branch on Not Equal

Block Random Access Memory

Global BUFfer

Tri-state BUFfer

c _____ _____ ______________________ _
CAD

CE

CISC

CLA

CLB

CMP

CPI

CPLD

CPU

CQ

Computer Aided Design

Clock Enable

Complex Instruction Set Computing

Carry Look Ahead

Configurable Logic Block

Chip Multi-Processor

Cyc les Per Instruction

Com plex Programmable Logic Device

Central Processing Unit

Continuation Queue

D _____________________ ___________ _

DCM

DF

DFG

DMT

Digital Clock Manager

Data Fetch

Data Flow Graph

Dynamic Multi-Threading

E ________________________________ _

EDA

EEPROM

Electronic Design Automation

Electrically Erasable Programmable Read Only Memory

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING A ND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR G-3
Glossary

EPIC Explicitly Parallel Instruction Computing

ETS Explicit Token Store

EX EXecute

F ------------------- ------------- --
FD C

FMAP

FP

FPGA

FSM

FU

Data Flip flop with Clear

Function MAPping

Floating Point

Field Programmable Gate Array

Finite State Machine

Functional Unit

G ___________ ______________ ______ _

GCLK

GCQ

GRF

H

Global CLocK

Global Continuation Queue

Global Register Fi le

HEP

HPL-PD

HT

HT

Heterogeneous Element Processor

Hewlett Packard Laboratories - Play Doh

Horizontal Transfer

Hyper-Threading

I _ _ ______________________________ _

IA

IBUF

ID

IDRR

IEEE

IF

!LP

JOB

IOC

!OP

!PC

Intel Architecture

Input BUFfer

Instruction Decode

Instruction Decode and Register Read

Institute of Electrical and Electronic Engineers

Instruction Fetch

Instruction-Level Parallel ism

Input/Output Block

Input/Output Cache unit

Input/Output Processor

Instructions Per Cycle

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR

Glossary

!SA

!SE

J

Instruction Set Architecture

Integrated Synthesis Environment

G-4

-------------- --------------------
] Jump

JR Jump Register

L ---------------- ------------------
LC Q

LRF

us
LUT

LW

M

Local Continuation Queue

Local Register File

Load/Store

Look Up Table

Load Word

MAJ C

MEMA

MIMD

MTA

MT!

MU

MXE

N

NOP

NRE

0

OBUF

p

PC

PE

PLD

POE

Microprocessor Architecture for Java Computing

MEMory Access

Multiple Instruction stream Multiple Data stream

Mu lti-Threaded Architecture

Mode l Technology Inc.

Memory Unit

Models im - Xilinx Edition

No OPeration

Non-Recurring Engineering cost

Output BUFfer

Program Counter

Processing Element

Programmable Logic Device

Plan Of Execution

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR G-5
Glossary

PSW

PU

R

RAU

RF

RISC

RR

RTL

s
SJ

SAL

SLT

SLTI

SMT

SRAM

STC

SW

T

Process Status Word

Processing Unit

Register Allocation Unit

Register File

Reduced Instruction Set Computing

Register Read

Register Transfer Level

Simultaneous Speculation Scheduling

Single Assignment Language

Set on Less Than

Set on Less Than Immediate

Simultaneous Multi-Threading

Static Random Access Memory

Space Time Computing

Store Word

T 2

TB UF

TP

TS

TSAG

Terminator 2

Tri-state BUFfer

Thread Po inter

Target Store

Target Store Address Generation

u ______________ __________________ _
u-T Micro-Threading

V __________ _ _ ____________________ _

VHDL

VLIW

VLSI

VMT

VT

Very high speed integrated circuit Hardware Description Language

Very Long Instruction Word

Very Large Scale Integration

Vertical Multi-Threading

Vertical Transfer

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

MICROTHREADING AND FPGA IMPLEMENTATION OF A RISC MICROPROCESSOR G-6
Glossary

w -----------------------------------
W B Write Back

X -----------------------------------
XS T Xilinx Synthesis Tools

159.899 M.Sc. Computer Science Firas Al-Ali 99203447

