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Abstract 

The problem of self-heating in spherical and spherically annular 

domains is addressed in this thesis. In particular, the Frank-Kamenetskii 

model is used to investigate the multiplicity of steady state solutions in these 

geometries. The differential equations describing this model depend crucially 

on a parameter, the "Frank-Kamenetskii" parameter; for spherical geometries 

it is known that: (a) a unique solution exists for sufficiently small 

parameter values, (b) there is a value of the parameter such that an 

infinite number of solutions exist. A convergent infinite series solution is 

developed for the problem in a spherical domain. The multiplicity of 

solutions when the problem is posed in spherically annular domains is then 

explored. It is shown, in contrast to (b), that multiple solutions exist for 

arbitrarily small parameter values and that no value of the parameter 

produces infinite multiplicity. 
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Chapter 1 
Introduction 

1.1 The theory of thermal ignition 

The theory of thermal ignition addresses the question of what happens to 

a combustible substance when it is placed in a vessel, the walls of which 

are maintained at a prescribed temperature T O (usually constant). Under 

certain conditions, one observes a rapid rise in the temperature of the 

substance to a high value near the theoretical maximum temperature of 

explosion. Under other conditions, in contrast, only a small rise to a 

stationary level is observed. This small temperature rise remains constant 

until a large portion of the material has reacted. The conditions under which 

the transition occurs from one range to the other, for a small change in the 

external parameters, are termed the critical conditions of ignition. 

When investigating the problem of thermal ignition, we consider the 

equation of heat conduction with continuously distributed sources of heat, 

dT 
cp-='v .(A'vT)+q, at ( 1 . 1 ) 

where T is the temperature, c the heat capacity, p the density of the 

substance, A the thermal conductivity, and q the density of the sources of 

heat, that is, the quantity of heat evolved as a result of chemical reactions 

in a unit volume per unit time. 

Solving this equation under the boundary conditions involving a given 

temperature To at the surface of the wall gives the temperature distribution 
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in the vessel as a function of time. The nature of this dependence changes 

sharply at the critical conditions, where there is an abrupt transition from 

a small constant temperature rise to a large and rapid rise. Owing to the 

formidable mathematical difficulties involved in integrating the partial 

differential equation (1.1) one normally resorts to one of two 

approximations which are well known in the nonstationary and stationary 

theories of thermal explosion. 

In the stationary theory, the spatial temperature is not taken into 

consideration; instead, a mean temperature is introduced and assumed to be 

equal at all points of the reaction vessel. This assumption is admittedly not 

valid in the conduction range where the temperature is by no means localised 

at the wall. This approach, however, does allow the temperature dependence 

on time to be examined; consequently, one can also determine the induction 

period, that is, the time within which an explosion occurs. Although the 

nonstationary theory is an integral part of the theory of thermal ignition, 

we will not deal with it any further. Instead, we will examine the stationary 

theory of thermal ignition in symmetrical regions. 

In the stationary theory, only the temperature distribution over the 

vessel is considered and its change in time is not taken into account. The 

conditions under which the stationary temperature distribution becomes 

highly sensitive or even discontinuous due to changes in the external 

parameters are termed the critical conditions of ignition. 

The stationary form of the heat conduction equation (1.1) is 

( i . 2) 

In most cases, however, the temperature dependence of the heat conductivity 

is neglected and the above equation reduces to 



3 

2 
"AV T+q=O. ( 1 . 3) 

If the rate of reaction depends on the temperature in accordance with 

Arrhenius' Law then it can be represented by 

Z 
_ -E/RT 

,-Ze ( 1 . 4) 

where Z is the rate of reaction, T the absolute temperature, R the gas 

constant, and E and z are parameters characteristic of the given chemical 

reaction. The quantity E is termed the activation energy and represents the 

amount of energy required for a mole of the substance to react. The factor z 

depends on the pressure and composition of the substance, but not on the 

temperature in a first approximation. In this approximation one also assumes 

that the rate of reaction is independent of the loss of reactant. The density 

of the sources of heat can thus be expressed as 

-E/RT 
q=Qze , 

where Q is the thermal effect of the reaction per unit volume. Equations 

(1.3) can now be written in the form 

n2 + Q -E/R T _ Q 
v T -ze - · 

A 
( 1 . 5) 

We can rewrite this equation in terms of a dimensionless temperature and 

spatial coordinate by taking 

U=RT/E ( 1 . 6) 

as the dimensionless temperature and 
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as the dimensionless spatial coordinates, where, x are the dimensional spatial 

coordinates and ,e is a typical length such as the radius or half-width of the 

vessel such that, on the surface llyll=1, the boundary condition is 

u=uo =RT 0 /E. 

In this way we have only the one dimensionless parameter 

'Y=QzRf2 /AE 

in the differential equation and a second dimensionless parameter 

uo =RTo /E 

in the boundary condition. The equation now has the form 

n2 -1/u O 
y u+re = . 

y 
( 1 . 7) 

If u is a solution to this equation and satisfies the boundary condition, then 

u = f (y ,'Y ,uo ) , ( 1 . 8) 

giving the temperature u as a function of y with the two parameters Y 

and uo. This represents the most general solution of the problem of thermal 

ignition in a purely conductive heat exchange. The condition under which a 

stationary temperature distribution is parametrically sensitive, that is, when 

a rapid rise in temperature occurs for a small change in the parameter Y , 

should be of the form 

"f = g (Uo}' ( 1 . 9) 
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as neither the equation nor the boundary condition contain any parameters 

other than uo and y. However, an empirical fact of great importance is that 

uo is small, i.e. 

uo =RTo /E<<l, 

and so it is reasonable to look for the limiting form of (1.9) corresponding 

to uo ~ O. Moreover, if we consider u 0 < < 1 , we not only obtain more 

tractable results, but also specific features proper to combustion stand out 

more distinctly [13]. In examining this limiting case, we must keep in mind 

that we are considering a stationary temperature distribution below the 

explosion limit where the temperature rises are small. 

Let U=T-To where it is assumed that u<<To: this is equivalent to 

uo << 1, a fact that will be established later. Now 

1) 
-E/RT_ -E/R(D+T 0 )_ -E/R'f,(1/(1+-)) 

e -e -e 

and since u <<To, the quantity 

1 

u 
1+-

To 

can be estimated using a binomial series expansion and neglecting all terms 

of order ( Tuo r thus, 

U 2 

-E/RT _ -E/RT0 (1--) _ -E/RTc EU/RTo 
e -e To -e e ( 1 . 1 0) 

Using the above approximation, equation (1.5) can be written 
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n2 +_g_ -E/RTo ED/RT~-Q 
v u 1cz e e - , (1.11) 

subject to the boundary condition U=O at the wall of the vessel. 

Let ( 1 . 1 2) 

Transforming (1 .11) into the dimensionless variables 0 and y we now have 

n20+~ n2 -E/RTo 0=0 
v 2 z.{. e e , 

y ART 
0 

( 1 . 1 3) 

and the boundary condition at the surface Jlyll=1 is 0= 0. The differential 

equation and boundary condition now contain only the one dimensionless 

parameter 

s: _ QE 2 -E/RTo 
u---zf e , 

RAT 2 
0 

(1.14) 

which, in this approximation, characterises the properties of the substance 

and the vessel shape. The problem of thermal ignition can therefore be 

represented by the non-linear differential equation 

(1.15} 

and the boundary condition at the surface of the vessel 0=0, Jlyll 1. This 

approach was first developed by Frank-Kamenetskii [13] and the parameter 

o is called the Frank-Kamenetskii parameter. 

If 0 is a solution to (1 .15) representing a stationary distribution then 
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e f(y,8). ( 1 . 1 6) 

The critical condition of ignition depends solely on 8 as neither the 

differential equation nor the boundary condition contain any parameters other 

than 8. Thus, there exists a 

8 = constant= Ber ( 1 . 1 7) 

such that a stationary temperature distribution becomes impossible. If the 

conditions of any experiments give a value of 8 less than the critical value 

Ber a stationary temperature distribution should establish itself; if not, an 

explosion or thermal runaway will occur (see figure 1 .1). 

The value of Ber depends crucially on the shape of the vessel, and the 

values are well known for simple geometric shapes. For a spherical vessel, 

8er=3.3219; for an infinitely long cylindrical vessel, 8cr=2.00; and for a 

vessel with two infinitely long parallel planar surfaces (the infinite slab ), 

bcr=0.878. These values calculated from the theory of thermal ignition are 

in close agreement with the experimental values obtained from substances 

whose kinetics are known [8]. 

From the solution (1 .16), we can see that the maximum temperature 

rise below the explosion limit is given by 

2 
RT 0 

Um.ax= (T-To) =--f(Q.Ocr), 
- max E 

( 1 . 1 8) 

where we have assumed that the vessel is symmetric, and consequently the 

2 
RT 0 

hottest point is at y= o. Since u = -- below the explosion limit R To<< E 
E ' 

and therefore u <<To. Thus the assumption u << TO made in the derivation 
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Figure 1.1 

The critical value of the parameter 8. 
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of (1.10) is equivalent to u 0 <<l · If, however, R T o is not small compared 

to E then we do not get the characteristic picture of the combustion 

phenomena; instead , we are dealing with the theory of the nonisothermal 

course of a chemical reaction, a limiting form of which is considered in the 

theory of combustion and thermal ignition. 

1.2 Formulating The Problem And Boundary 

Conditions. 

Thus far we have considered only vessels whose walls were held at a 

fixed temperature equal to that of the surrounding medium. We now consider 

the case when heat released in the reaction warms the vessel walls and the 

surrounding medium , whose temperature typically changes if the heat 

exchange between the two mediums is not too rapid . Any steady-state theory 

of thermal explosion that includes this effect must begin with the complicated 

manner in which heat is exchanged between the reactive medium and the 

vessel walls. This problem is not addressed here but has been discussed by 

Borzykin and Marzhanov [9] and by Thomas [1 OJ . The temperature 

distribution inside such a wall rapidly becomes quasistationary and the 

temperature on the inner surface of the wall is given by the Newtonian heat 

exchange equation [7], 

dT 
A an = - a ( T - To ), ( 1 . 1 9) 

where the heat flux on the left is calculated for the reacting substance next 

to the vessel surface (n is a unit outward normal to the wall) and the heat 

flux on the right is calculated from the conditions of heat exchange between 

the wall and the surroundings . Here T o is the temperature of the 
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surroundings far from the vessel surface, 'A the heat conductivity, a the heat 

transfer coefficient depending on the nature of the heat transfer between the 

vessel and the surroundings and £ a measure of length. Equation (1.12) can 

be rearranged as 

RT 2 

(T-T0 )= --0 0. 
E 

Differentiating the above equation yields 

2 
aT 1 ARTo ae 

A-=---­an f E an' 

and substituting this into (1.19) gives 

which in turn yields 

2 2 
1 ART 0 ae RT 0 ----=-a--8 
f E an E ' 

ae + a£8=0. 
an A 

The Biot number is defined as 

. af 
Bi=-

"A' 

giving the so called arbitrary Biot number condition on the boundary 

ae +Bi.B=o. 
an ( 1 . 2 0) 
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When Bi-'> oo equation (1.20) becomes the Frank-Kamenetskii boundary 

condition 8=0. When Bi-'> o there is no heat exchange and an adiabatic 

thermal explosion occurs. Our problem can thus be stated 

The sphere. 

ae +B iB = o 
an 

in region, 

( 1 . 2 1 ) 

on boundary. 

In the next chapter we consider a sphere of reactive material with 

radius R. Neglecting reactant consumption and using the Frank-Kamenetskii 

truncation along with the dimensionless variables 0 and r, the dimensionless 

form of the radius, the governing system of equations is (1 .21) where 

s: _ QE 2 -E/RTo 
u---zl!. e 

RAT 2 

0 

is the Frank-Kamenetskii parameter. The symmetry of the reactive medium 

implies that there is no heat flux at the centre of the sphere therefore we 

have the condition 

d0 
dr 

=o 

=O 

It is known [2], that the non-linear heat conduction equation in a 

spherical region with sources depending on the temperature, admits only 

spherically symmetric solutions (provided the boundary conditions are also 
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spherically symmetric). Thus for spherical geometries, system (i .2i) is 

equivalent to 

ct2 0 2 d0 e -+--+8e =O 
dr2 rdr ' 

cte (1 ) + B if) U ) = 0 , 
dr 

d0 (0 ) = 0' 
dr 

( i . 2 2) 

This is the Frank-Kamenetskii model for steady state thermal regimes in a 

spherical region, and it is known [i], to have a gross multiplicity of steady 

state solutions for an arbitrary Biot number. The analytic condition for 
-2 

infinite multiplicity is 8
00 

= 2 elli. In chapter two we find an infinite series 

solution to the system (i .22). We then generalise some results found in [i] 

to spheres in n dimensions. Finally, we apply the infinite series solution to 

n-dimensional spheres. 

The spherical annulus. 

In chapter 3 we consider spherically annular geometries. The problem 

consists of a sphere of inert material completely enclosed by a spherical 

annulus of reactive material. We define this problem by considering the 

inert core to have radius a' and the outer radius of the reactive sphere to 

be R. Neglecting reactant consumption, using the Frank-Kamenetskii 

truncation, and by choosing the dimensionless variables 0 and r, the 

governing system of equations is 

ct
2 0 2 d0 e --+--+8e = 0 a<r:::::i, 

ctr2 rdr ' 



where CT= a,'/R and 

dS ( 1 ) + B iB (1 ) = 0 , 
ctr 

s: _ QE 2 -E/RTo 
u---zf e 

RAT 2 
0 

is the Frank-Kamenetskii parameter. 

i 3 

In spherically annular geometries, heat transfer occurs at the inner 

surface. Dust explosions with laser optics give the linear boundary condition 

d8 
-(CT)=A<O, 
ctr 

where A is the heat flux at the inner surface of the reactive medium. Using 

phase plane analysis we investigate the multiplicity of steady state solutions. 

In spherical geometries it is known that: 

(i) for o small enough there is only one steady state solution; 

-2 

(2) when 8=8= = 2elli there is an infinite multiplicity of steady state 

solutions. 

We show in chapters three and four the above results are not valid for 

spherically annular geometries . Specifically, we find, that for small values 

of o there are two steady state solutions, and, although arbitrarily large 

multiplicity is obtainable given suitable values for c-1. and A, we do not get 

infinite multiplicity. 


