The 13th International Conference Computational Structures Technology 2018, 4-6 September 2018, Sitges, Barcelona, Spain

Natural frequency modelling to identify material properties of crush damaged corrugated fibreboard

Celia S. L. **Kueh**¹, M. A. Jamsari¹, K. Dahm², S. Ilanko³, J. E. Bronlund¹

¹ School of Engineering and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand

² Callaghan Innovation, PO Box 31 310, Lower Hutt 5040, New Zealand.

³ School of Engineering, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Corresponding Email: c.s.l.kueh@massey.ac.nz

MASSEY UNIVERSITY TE KUNENGA KI PŪREHUROA UNIVERSITY OF NEW ZEALAND

CallaghanInnovation

New Zealand's Innovation Agency

Introduction

- Part of project on corrugated fibreboard (CFB) packaging with Centre for Postharvest and Refrigeration Research (CPRR) at Massey University
- Particular focus: Modelling to optimise design of packaging for compression loading

The 13th International Conference Computational Structures Technology 2018, 4-6 September 2018, Sitges, Barcelona, Spain

Aim

- Investigate the detection of crush damage on CFB, using natural frequency analysis to determine changes to material properties relative to undamaged CFB
- Potential application for quality assurance

Overview Flat crush CFB 0.5, 1.0, 1.5 mm 100 x 100 mm² Mass, Acoustic CFB specimens Laser cut CFB Dimensions, Material Vibration tests Natural properties frequencies 1 mm thin strips Generation of Iterative Image 3D shell processing CFB CFB profile **Rayleigh-Ritz** 1 mm strips geometry model geometry CFB 3D shell Mass, geometry Dimensions, Natural Tensile tests on **CFB FE natural** frequencies Material properties of paperboard frequency paperboard constituents model constituents

Specimen Preparation

- CFB obtained after box conversion flat crushed to varying levels {0.5, 1.0, 1.5, 2.0} mm
- CFB laser cut 100 x 100 mm² vibration specimens and 1 mm thin strips

Geometry of Crushed Board

- Image processing of thin strips images in *Matlab* to generate profile of crushed CFB as in Jamsari et al. (2018)
- Profile used to generate CFB 3D shell geometry in SolidWorks

FE Natural Frequency Model

- CFB shell geometry
- Elastic lamina input material properties based on constituent paperboard tensile tests
- Half model
- Mesh: quadratic quadrilateral elements type S8R

*≩*s simulia ABAQUS

Natural Frequency Modes

Half model natural vibration modes (a) '+' twist, (b) bending in cross–direction (CD), (c) bending in machine-direction (MD), (d) 'X' mode and (e) ring mode

Results - Natural Frequencies

	Model Natural Frequencies					
	<i>f</i> ₊ Twist mode	$f_{\rm b1}$ Bending	f _{b2} Bending	f _x Χ mode	∫ _o Ring mode	
	(Hz)	mode in	mode in	(Hz)	(Hz)	
		CD (Hz)	MD (Hz)			
Uncrushed	820.5	1248.0	1572.9	1528.0	1653.3	
Crushed 0.5 mm	798.1	1237.2	1470.5	1458.8	1594.1	
Crushed 1.0 mm	747.7	1187.7	1296.9	1262.2	1364.1	
Crushed 1.5 mm	703.5	1195.2	1127.4	1161.2	1237.9	

Rayleigh-Ritz Iterative program

- Developed by McIntyre & Woodhouse (1988) for orthotropic materials, later used by Sato, Hutchings, & Woodhouse (2008) for CFB
- Input specimen mass, dimensions and natural frequencies
- Approximate bending stiffness, Young's modulus and shear modulus obtained from input, used to calculate eigen-frequencies
- Trial function $w(x, y) = \sum_{n=1}^{N} \sum_{m=1}^{M} a_{nm} x^n y^m$
- Iterations minimise the difference between predicted and measured frequencies

Results – CFB Material Properties

Material Properties	Uncrushed	Crushed 0.5 mm	Crushed 1.0 mm	Crushed 1.5 mm
<i>D</i> ₁₁ (Nm)	13.21	11.42	8.67	7.61
<i>D</i> ₁₂ (Nm)	2.46	2.70	1.91	1.35
D ₂₂ (Nm)	8.56	8.56	8.03	6.97
<i>D</i> ₆₆ (Nm)	14.00	13.25	11.66	10.34
E _{MD} (GPa)	1.87	1.70	1.52	1.48
E _{CD} (GPa)	1.21	1.27	1.41	1.35
G ₁₂ (GPa)	2.10	2.13	2.15	2.08

For comparison, static testing on uncrushed CFB: Four-point bending $D_{11} = 16.2\pm0.6$ Nm; $D_{22} = 7.9\pm0.3$ Nm Edge compression testing (ECT) $E_{CD} = 1.09\pm0.07$ GPa

Vibration Testing

Uncrushed

Crushed 0.5 mm

Future Directions

- Further vibration tests finding other modes
- Compare material properties of CFB obtained from natural frequencies with static tests – edge crush and bending tests
- Investigate the expected difference between static and dynamic material properties as paper is a viscoelastic material

Conclusion

- Modelling of crush damage CFB using FE to find natural frequencies was achieved
- Natural frequencies used to predict change in material properties using Rayleigh-Ritz iterative model
- Further vibration tests to be carried out

Acknowledgements

 Funding by Ministry of Business, Innovation and Employment through BITR Biological Industries - Targeted Research 2013 fund CONT-34346-BITR-MAU MAUX1302-CR-1

References

- Jamsari, M. A., Kueh, C., Gray-Stuart, E., Martínez-Hermosilla, G. A., Dahm, K., & Bronlund, J. E. (2018). A technique to quantify morphological damage of the flute profile in the midplane of corrugated fibreboard.
- McIntyre, M. E., & Woodhouse, J. (1988). On measuring the elastic and damping constants of orthotropic sheet materials. *Acta Metallurgica*, *36*(6), 1397–1416.
- Sato, J., Hutchings, I. M., & Woodhouse, J. (2008).
 Determination of the dynamic elastic properties of paper and paperboard from the low-frequency vibration modes of rectangular plates. *Appita Journal*, 61(4), 291–296.