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Abstract

The fundamental group of a link L is a group-valued link invariant that can
be defined by assigning a generator to each arc of a link diagram of L, and
introducing a relation between them at each crossing. Wada studied what
he called shift representations to look for other crossing relations that might
define group-valued link invariants. He found seven shift representations, two
of which he noted do not define group-valued link invariants. One of the seven
defines an infinite family Gm of invariants that includes the fundamental
group as G1, and these have since been shown to distinguish knots up to
reflection for m ≥ 2. Wada showed that three of the remaining four give
no new information, leaving just his type seven invariant, which we call W7.
Sakuma showed that the seventh of Wada’s shift representations is isomorphic
to the free product of Z and the fundamental group of the double branched
cover of L, π1(L̃2), that is W7(L) ∼= π1(L̃2) ∗ Z. We will use graph theoretic
methods to give a new proof of Sakuma’s result.
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Chapter 1

Introduction

The fundamental group is a well-known and important group-valued invariant
of links and knots. It can be defined using a diagram of the link by introduc-
ing a generator for each strand of the link, and a relation at each crossing,
which is discussed more in Section 2. However, although the fundamental
group carries a lot of information about the link, it is unable to distinguish
between composite knots that differ by replacing a summand with its reflec-
tion. For instance, the granny knot GK and the square knot SK are both
connected sums of two trefoil knots. The granny knot GK is the connected
sum of a trefoil knot and its reflection, while the square knot SK is the
connected sum of two identical trefoil knots, and their fundamental groups
are isomorphic. This provides motivation to look for new group-valued link
invariants that might carry more information about the link.

With this aim in mind, Wada [11] studied shift representations to look for
group-valued link invariants. He started by introducing a generator for each
arc (rather than strand) of the link diagram. Then he looked for words u, v in
the free group F2 = 〈a, b〉 such that a 7→ u, b 7→ v, defines an automorphism
of F2, and the crossing relations shown in Figure 1.1 define a group-valued
link invariant. Wada used a computer to test all pairs of words (u, v) with
|u + v| < 10. Up to two natural symmetries, Wada found seven types of
shift representations, five of which define link invariants, which we will call
Wn for 3 ≤ n ≤ 7. It was later shown by Ito [4] that Wada’s list of shift
representations is complete.

First we will briefly look at each of the shift presentations.
Wada showed that the third type of shift representation, W3(L) is iso-

morphic to the free group Fr, where r is the number of components of the
link L, and thus it is not a new invariant.

The fourth type of shift representation, W4, defines an infinite family
of invariants with crossing relations z = xmyx−m for the left crossing, and
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(a) z = u(x, y), w = v(x, y).

z

x

w

y

(b) x = u(z, w), y = v(z, w).

Figure 1.1: Left and right crossings with Wirtinger generators.

z = x−myxm for the right crossing, as in Figure 1.2. The value m = 1
gives the fundamental group. For a link L the values m > 1 define new
invariants called the generalised link groups Gm(L), which were introduced
independently by Kelly [5]. Tuffley [10] showed that for m > 1 Gm(GK) and
Gm(SK) are not isomorphic by counting homomorphisms into a suitably
chosen finite group, confirming a conjecture of Lin and Nelson [6]. Nelson
and Neumann [8] subsequently showed that the generalised knot groups in
fact distinguish knots up to reflection. Al Fran and Tuffley [1] extended [8] to
show that the difference between the generalised knot groups of certain square
and granny knot analogues can be detected by counting homomorphisms into
a finite group.

Wada [11] also showed that for a link L

W5(L) ∼= π1(L̃2) ∗ Z, (1.1)

where π1(L̃2) is the fundamental group of the double branched cover of L.
Hence W5(L) provides no new invariant. Wada also showed that W6 reduces
to W5 by conjugation in Fn, and is therefore not a new invariant either. Wada
showed that W6 and W7 have the same abelianisation, which led Wada to
wonder if the above relation is true for W7(L) as well. However, he reports
having done some calculations that indicated they were different. Sakuma [9]
showed that in fact the relation does hold for W7(L) too:

Theorem 1.1 (Sakuma [9]). Wada’s type 7 link invariant is determined by
the double branched cover:

W7(L) ∼= π1(L̃2) ∗ Z. (1.2)

Sakuma proved the theorem by working directly with the shift represen-
tation, and used the π-orbifold [2] of the link with an additional unlinked and
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unknotted component added. We will work with a Wirtinger presentation
for W7(L) and use graph theoretic methods to give a new proof of the result.

z

x
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y

(a) z = xmyx−m.

x

y

z

x

(b) z = x−myxm.

Figure 1.2: Wirtinger generators and crossing relations for W4(L).



Chapter 2

Background

We will start with some basic definitions concerning links and knots. For
further reading see [7].

Definition 2.1. (Knot) A knot K is a finite simple closed polygonal curve
in R3.

Definition 2.2. (Link) A link L is a union of one or more disjoint finite
simple closed polygonal curves in R3.

The disjoint curves of a link L are called components. Thus a knot is a
link with one component. Two links are considered equivalent if space can
be continuously deformed in such a way as to carry one link to the other.
This is known as ambient isotopy. The components of the link being finite
polygonal curves restricts us to a class of links called tame links, and excludes
the class of links called wild links, which can have pathological behaviour.
For the remainder of this work tame links will simply be called links, and
components of links will be assumed to be tame.

Links can also have an orientation, where there is a direction of travel
specified around each component of the link. A link with an orientation
specified on each component or a knot with orientation specified is called
oriented.

A way to study links and to differentiate between links is to project them
onto a plane. A projection of a link onto a plane gives a link diagram as a
representation of the link. In order to not lose information when projecting
onto the plane, we will use regular projections.

Definition 2.3. (Regular projection) A link projection is regular if no three
points on the link project to the same point, and no vertex projects to the
same point as any other point on the link.

4
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A link crossing is a point of the regular projection where the projection
of the link crosses itself. Every crossing of a link diagram is the intersection
of two edges, and which edge of the link is on top and which is underneath
is indicated in the link diagram, as in Figure 2.2. The edge that passes over
is shown normally in the link diagram, while the edge that passes under is
broken at the crossing, to signify it passes under the other edge. The part
of the link that passes underneath is the undercrossing, while the part of the
link passing over the top is the overcrossing.

Definition 2.4. (Strand) A strand of a link projection is a section of the
link from one undercrossing to another.

Definition 2.5. (Arc) An arc of a link projection is a section of the link
from one crossing to another.

With these definitions each strand of the link can be split at a crossing
into two arcs, as in Figure 2.1, where the strand labelled x is split into the
two arcs x1 and x2.

z

x

x

y

(a) Strand labelled left crossing.

z

x1

x2

y

(b) Arc labelled left crossing.

Figure 2.1: Left crossing with strands and arcs labelled.

With an oriented link the crossings also have an orientation. Consider
Figure 2.2, a figure-eight knot with two left and two right crossings. Crossings
are labelled as left or right depending on which strand of the crossing is the
over-strand. When oriented with both strands travelling downward, for the
left crossing the strand that comes from the left is the overcrossing, while for
the right crossing the strand that comes from the right is the overcrossing.

Next we will introduce the concept of faces of a link diagram.

Definition 2.6. (Faces of a link diagram.) Let L be a link with diagram D.
Consider the regular projection of D onto the surface of a sphere. The faces
of D are the areas of the surface of the sphere bounded by D.
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R1 R2

L1

L2

Figure 2.2: A directed figure-eight knot with labelled left and right crossings.

With this definition the outer area of the link diagram is also a face.
Figure 2.3 shows the faces of a trefoil knot.

We will also make use of a type of colouring of a link diagram called the
checkerboard colouring, which we will now define.

Definition 2.7. (Checkerboard colouring.) The checkerboard colouring is a
two colouring of a link diagram where faces of the link diagram that meet
opposite each other at a crossing are the same colour, and faces that are
adjacent at a crossing are opposite colours.

The existence of the checkerboard colouring can be proved by considering
the parity of the sum of the winding numbers of the components around a
point in the face. Then faces adjacent at a crossing have opposite parities
and faces opposite at crossings have the same parities. Figure 2.4 shows how
the colours of faces that meet at a crossing relate. For the faces of Figure
2.3, faces two and five would be one colour, and faces one, three and four the
other colour.

Now we will introduce the concept of link invariants. A link invariaint is a
mathematical object such as a number, polynomial or group that is associated
with the link in such a way that the value depends only on the equivalence
class of the link. Many link invariants are defined using the link diagram,
and for such definitions we need to ensure that the value of the invariant
doesn’t depend on the choice of diagram used to calculate it. This can be
done using the Reidemeister moves. These are three types of deformations
that can be done to a diagram that do not change the associated link, shown
in Figure 2.5 on page 9. These moves affect an isolated part of the link, and
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1

2

3 4

5

Figure 2.3: A trefoil knot with numbered faces.

Colour 1

Colour 2

Colour 1

Colour 2

Figure 2.4: The checkerboard colouring of faces at a crossing.

leave the rest of the link unchanged. By Theorem 2.8 these Reidemeister
moves are sufficient to change any diagram of a link into any other diagram
of the same link, so they be used to check that a given definition of a link
invariant doesn’t depend on the diagram used.

Theorem 2.8. Any two link diagrams D1 and D2 for a link L are related by
a sequence of Reidemeister moves.

Next we will define the fundamental group.

Definition 2.9. (Fundamental group) The fundamental group of a link L is
the fundamental group of the link complement R3−L, written as π1(R3−L).
The elements are homotopy classes of paths in the complement, where paths
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are considered up to deformation fixing the basepoint, where the operation
for the group is concatenation.

The fundamental group as defined in Definition 2.9 is clearly a link in-
variant. However, for practical purposes we need to be able to calculate it
from the link diagram. This is done using the Wirtinger presentation. We
associate a Wirtinger generator to each strand of the link L, and associate a
movement with the generator, as shown in Figure 2.6 on page 10. Each gener-
ator represents a path starting from the observer, passing through the plane
and around behind a strand before returning out through the plane back
towards the observer. The direction of the movement behind the strand is
determined by the right hand rule, where the thumb of the right hand is
in the direction of the strand and the fingers of the right hand are in the
direction of the movement behind the strand, with the palm facing out of
the plane.

The relations will come from the crossings, as shown in Figure 2.7 on page
10. The two paths shown at each crossing can be deformed into each other,
and thus a relation is formed between their associated Wirtinger generators.
The relation for the left crossing with the crossings labelled as in Figure 2.7
is yi = ykyjy

−1
k , and the relation for the right crossing is yi = y−1k yjyk. These

are the only relations between the Wirtinger generators.

Theorem 2.10. The Wirtinger presentation of a link complement is a group
presentation of the fundamental group of the link complement.

Thus, the fundamental group has a presentation consisting of a generator
for each strand of the link, and a relation for each crossing. The Wirtinger
presentation depends on the link diagram, and the Reidemeister moves can
be used to give an independent proof that the group defined by the Wirtinger
presentation is a link invariant.
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Figure 2.5: Type I - III Reidemeister moves.
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yk

yj

(a) Left crossing.

yk

yj

yi

yk

(b) Right crossing.

Figure 2.6: Crossings with Wirtinger generators and movements.
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(a) Left crossing.
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yi

yk

(b) Right crossing.

Figure 2.7: Crossings with Wirtinger generators and equivalent movements.



Chapter 3

Definition and presentation of
W7(L)

3.1 Introduction

We will begin by defining W7(L). Recall that an arc of a link diagram is a
section of the link from one crossing to another

Definition 3.1. (W7(L)) Let L be an oriented link with diagram D. Intro-
duce a Wirtinger generator ai for each arc of D. Then W7(L) is the group
generated by the ai, with crossing relations c = a2b, d = (ab)−1b for the left
crossing and a = c2d, b = (cd)−1d for the right crossing, with the crossings
labelled as in Figure 3.1.

In contrast to the fundamental group, W7(L) has a generator for each
arc of the diagram, rather than each strand. It can be shown using the
Reidemeister moves that W7(L) is well defined.

c

a

d

b

(a) Left crossing.

c

a

d

b

(b) Right crossing.

Figure 3.1: Crossings with Wirtinger generators.
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Note that for the left crossing we have

cd = a2b(ab)−1b = ab, (3.1)

and for the right crossing we have

ab = c2d(cd)−1d = cd. (3.2)

At each crossing we introduce the crossing generator x = ab = cd. This
allows the relations to be rewritten as c = ax, d = x−1b for the left crossing
and a = cx, b = x−1d for the right crossing.

The relations at a crossing can be considered as equivalent to move-
ments along the crossing from a Wirtinger generator on one of the arcs to a
Wirtinger generator on the other arc. For example, with the labellings as in
Figure 3.2, the relation d = x−1b can be viewed as moving along the crossing
from b to d, where b and d are Wirtinger generators on two different arcs
connected at a crossing with generator x.

x

x−1

x−1

xc

a

d

b

(a) Left crossing with clockwise
movement.

x−1

x−1

x

xc

a

d

b

(b) Right crossing with clockwise
movement.

Figure 3.2: Crossings with crossing generator signs for the indicated move-
ments.

For consistency, expressions will be written so the right hand side contains
the crossing generator and the Wirtinger generator started at, while the
left hand side contains the Wirtinger generator ended at. The exponent of
each Wirtinger generator is determined by the direction travelled around the
crossing, relative to the direction of the arc containing that generator. If the
movement is in the same direction as an arc, the exponent of the Wirtinger
generator for that arc is +1. If the movement is opposite the direction of
an arc, the exponent of the Wirtinger generator for that arc is −1. For the
left crossing relation d = x−1b, moving from b to d is moving in the same
direction as the arc containing b and then moving in the same direction as
the arc containing d, hence their exponents are both +1.
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With the manner of writing the expressions as stated above, and the
centre of the clock in the centre of the crossing, travelling clockwise puts the
crossing generator on the left of the Wirtinger generator in the right hand
side expression. Travelling anticlockwise puts the crossing generator on the
right of the Wirtinger generator in the right hand side expression. With the
labellings as in Figure 3.2, the relations between the Wirtinger generators at
the crossing are:

Left crossing:

Clockwise:

d = x−1b, b−1 = x−1a, a−1 = xc−1, c = xd−1.

Anticlockwise:

b−1 = d−1x−1, a−1 = bx−1, c = ax, d = c−1x.

Right crossing:

Clockwise:

d = xb, b−1 = x−1a, a−1 = x−1c−1, c =xd−1.

Anticlockwise:

b−1 = d−1x, a−1 = bx−1, c = ax−1, d = c−1x.

3.2 Graphical representation of the presenta-

tion

The idea of movement around a crossing and movement along the link dia-
gram motivates building a properly defined graphical representation for the
link to understand the relations coming from the link. In fact we can define
a planar graph representation of the link directly from a link diagram, and
apply graph theory knowledge to derive some results about relations coming
from the link.

Definition 3.2. (Graph of W7(L)) Let L be an oriented link with a given
link diagram D. We can then associate an edge labelled directed graph with
D, called G(D), in the following way. For each arc of D we place a vertex
on each side of the arc, such that if ai is the Wirtinger generator for the arc,
a vertex labelled ai is on the left of the arc relative to the direction of the
arc in the link diagram and a vertex labelled a−1i is on the right of the arc.
These will be the vertices of the graph, with two types of edges:
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x

x

x−1

x−1

c−1

c

a−1

a

d−1

d

b−1

b

(a) Left crossing with graph ver-
tices, edges and crossing genera-
tors.

x

x−1

x−1

x

c−1

c

a−1

a

d−1

d

b−1

b

(b) Right crossing with graph
vertices, edges and crossing gen-
erators.

Figure 3.3: Graph expression of a left and right crossing.

1. an edge from a−1i to ai for all i,

2. a directed edge joining each pair of vertices in the same quadrant of
each crossing, for all crossings in D. The direction of these edges is
clockwise, where the centre of the clock is the centre of the crossing.

The two types of edges, with αi, αj, ε ∈ ±1, encode relations in the fol-
lowing way:

1. Edges from aαi
i to a−αi

i have the trivial relation a−αi
i = (aαi

i )−1 for each
i.

2. Edges from aαi
i to a

αj

j for i 6= j encode a relation of the form aαi
j =

xεaαi
i , where x is the crossing generator of the crossing where the arc

containing ai and the arc containing aj meet.

Figure 3.3 shows the graph representation of the left and right crossings
from Figure 3.2, with labelled vertices and the signed crossing generator
associated with each edge.

Figure 3.4 shows the graph representation for the trefoil knot, with ver-
tices labelled in black and crossing generators labelled in purple.
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a1

a2

a3 a4
a5 a6

(a) Trefoil knot with Wirtinger
generators.

x1

x1
x−11

x−11 x2
x2

x−12

x−12

x3

x3

x−13

x−13

a4

a−11

a1

a−12

a2

a3a−13 a−14

a−15

a5 a−16

a6

(b) Graph representation of tre-
foil knot.

Figure 3.4: Graphical expression of trefoil knot.

3.3 Words and relations from walks in G(D)

Now we have defined a graphical representation of a link diagram for W7(L),
we will consider the relations that arise from walks in G(D). Let L be a link
with connected diagram D. Then walks in G(D) will form relations involving
the Wirtinger generators associated with the beginning and ending vertices,
and the signed crossing generators associated with each of the edges in the
walks.

By construction of G(D), ai and a−1i are on opposite coloured faces of
the checkerboard colouring of D for all i, so moving from one coloured face
to another will invert the current relation, and the crossing generators that
were on the left of the Wirtinger generator in the relation will move to the
right of it. This means the crossing generators associated with the edges
of a walk in G(D) can appear on both the right and left of the Wirtinger
generator in the right hand side expression. If the signed crossing generator
associated with the directed edge from vertex ai to vertex aj is xk, the relation
associated with the edge walk from ai to aj is aj = xkai. Then the relation
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associated with travelling in the opposite direction along this edge from aj
to ai is ai = x−1k aj. This means the sequence of signed crossing generators
associated with a walk in G(D) accounts for the direction travelled along
each edge, as well as the order of crossing generators encountered.

Lemma 3.3 shows the relation formed from a walk in G(D).

Lemma 3.3. Let L be a link, and let W be a walk in G(D) from aαi
i to

a
αj

j where αi, αj ∈ {1,−1}. Let xε1l1 , x
ε2
l2
, . . . , xεsls be the sequence of signed

crossing generators encountered along W on faces of the same checkerboard
colouring colour as aαi

i , and xη1r1 , x
η2
r2
, . . . , xηtrt the sequence of signed crossing

generators encountered along W on faces of the opposite colour to aαi
i , where

εk, ηk ∈ {1,−1} for each k. Then the relation formed from the walk W is

a
αj

j = [xεsls · · ·x
ε2
l2
xε1l1 a

αi
i x
−η1
r1

x−η2r2
· · ·x−ηtrt ]β, (3.3)

where β = +1 if a
αj

j is on a face of the same colour as aαi
i , and β = −1 if

a
αj

j is on a face of the opposite colour.

Proof. Consider a walk W of length n from aαi
i to a

αj

j . For n = 0, the walk
is trivial, j = i, no crossing generators are encountered and the relation is
aαi
i = aαi

i . Assume the hypothesis is true for walks of length n = 0, 1, 2, . . . , k.
Consider a walk W of length n = k + 1 from aαi

i to a
αj

j . Let W ′ be the walk
of length k obtained from W by excluding the last edge. Let aαu

u be the last
vertex of W ′. Let xε1l1 , x

ε2
l2
, . . . , x

εt′
lt′

be the sequence of signed crossing gen-

erators encountered on faces of the same colour as aαi
i and xη1r1 , x

η2
r2
, . . . , x

ηs′
rs′

the sequence of signed crossing generators encountered on faces of the oppo-
site colour to aαi

i , where s′ = s or s − 1, t′ = t or t − 1. By the inductive
hypothesis:

aαu
u = [x

εs′
ls′
· · · xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · ·x−ηt′rt′

]γ, (3.4)

where γ = +1 if aαu
u is on a face of the same colour as aαi

i , and γ = −1 if aαu
u

is on a face of the opposite colour to aαi
i . There are two cases for the last

edge.

1. The last edge of the walk is from aαu
u to a−αu

u , where a−αu
u is on an

opposite coloured face to aαu
u by construction of the graph of the link.

Then a
αj

j = a−αu
u , β = −γ, s = s′, t = t′ and

a
αj

j = a−αu
u = [x

εs′
ls′
· · · xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · · x−ηt′rt′

]−γ

= [xεsls · · ·x
ε2
l2
xε1l1 a

αi
i x
−η1
r1

x−η2r2
· · ·x−ηtrt ]β,

(3.5)

as required.
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2. The last edge is not from aαu
u to a−αu

u , so the expression for the last edge
is of the form a

αj

j = xδma
αu
u and a

αj

j is on the same face as aαu
u . It follows

that β = γ, and xδm is the next crossing generator in the sequence of
signed crossing generators encountered on faces of the same colour as
a
αj

j . The expression for W is

a
αj

j = xδm[x
εs′
ls′
· · ·xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · ·x−ηt′rt′

]γ. (3.6)

If γ = +1 then aαu
u and consequently a

αj

j are on a face of the same
colour as aαi

i . Then β = +1, t = t′, s = s′ + 1, ls = m and εs = δ. The
expression for W is

a
αj

j = [xδmx
εs′
ls′
· · ·xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · ·x−ηt′rt′

]1

= [xεsls · · ·x
ε2
l2
xε1l1 a

αi
i x
−η1
r1

x−η2r2
· · ·x−ηtrt ]β.

(3.7)

If γ = −1 then aαu
u and consequently a

αj

j are on a face of the opposite

colour to aαi
i . Then xδm is the next crossing generator in the sequence of

signed crossing generators encountered on faces of the opposite colour
to aαi

i , β = −1, s = s′, t = t′ + 1, rt = m and ηt = δ. The expression
for W is

a
αj

j = xδm[x
εs′
ls′
· · ·xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · ·x−ηt′rt′

]−1

= [x
εs′
ls′
· · ·xε2l2 x

ε1
l1
aαi
i x
−η1
r1

x−η2r2
· · ·x−ηt′rt′

x−δm ]−1

= [xεsls · · ·x
ε2
l2
xε1l1 a

αi
i x
−η1
r1

x−η2r2
· · ·x−ηtrt ]β.

(3.8)

Since we can form a walk from a single Wirtinger generator in G(D) to
any other Wirtinger generator on the same component of D, Lemma 3.3 tells
us we can express the Wirtinger generators of a component in terms of a
single Wirtinger generator in that component, and the crossing generators
that appear in that component. Then if the diagram D for L is connected
we can reduce to a single Wirtinger generator. Lemma 3.4 shows us we can
always form a connected diagram for a link L.

Lemma 3.4. Every link L has a connected diagram D.

Proof. Let L be link, and D a diagram for L with as few connected compo-
nents as possible. If D is connected we are done. If D is not connected, it
has at least two components, D1 and D2. We then perform a type 2 Reide-
meister on an arc of each of D1 andD2 to connect them, as in Figure 3.5.
Now D1 and D2 are a single component, and this new diagram D′ has fewer
components then D. This contradicts the choice of D, so D must in fact be
connected.
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D1 D2 D1 D2

Figure 3.5: Two components joined by a type 2 Reidemeister move.

Since we can form a connected diagram D for a given link L, we can ex-
press every Wirtinger generator in W7(L) in terms of the crossing generators
and a single Wirtinger generator aαi

i . This gives the following corollary:

Corollary 3.5. Let L be a link and let D be a connected diagram for L.
Then W7(L) has a presentation that is generated by any single Wirtinger
generator and the crossing generators.

3.4 Faces and their relations in G(D)

We will begin by introducing the notion of a face walk:

Definition 3.6. (Face walk) Let L be a link with diagram D. A face walk
is a non-trivial simple closed walk in G(D) that involves no edge from aαi

i to
a−αi
i for any i. Such a walk necessarily travels around a face F of the link

diagram.

Figure 3.6 shows the five face walks of the trefoil knot in red.

1

2

3 4

5

Figure 3.6: Trefoil knot with numbered faces.
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Every face walk is a walk from some aα1
j1

to aα1
j1

which by Lemma 3.3 will
give a relation of the form

aα1
j1

= xεsis · · ·x
ε2
i2
xε1i1 a

α1
j1
, (3.9)

where the crossing generators all appear on the left of the Wirtinger generator
since all edges in the walk are on the same face. This relation can be simplified
to

xεsis · · ·x
ε2
i2
xε1i1 = 1, (3.10)

or fj = 1, where the word fj is a product of crossing generators,

fj = xεsis · · ·x
ε2
i2
xε1i1 . (3.11)

We call the relation fj = 1, the face relation associated with the face Fj of
the link diagram.

What vertex is chosen for the start and hence end of a face walk does
not provide a different face relation for any face walk. Instead, it produces a
cyclic permutation of the crossing generators and thus a cyclic permutation
of fj = 1.

Lemma 3.7. Let W be a simple walk around a face F , in a given direction,
starting and ending at aα1

j1
, with relation

aα1
j1

= xεsis · · ·x
ε2
i2
xε1i1 a

α1
j1
. (3.12)

Then
f = xεsis · · ·x

ε2
i2
xε1i1 = 1 (3.13)

is the face relation for F . Let W ′ be a walk on F , in the same direction
around F as W , with face relation f ′, starting at aα2

j2
, where aα2

j2
is r steps

around W from aα1
j1

. Then f ′ is a cyclic permutation of f , so f ′ = 1 follows
from f = 1.

Proof. As aα2
j2

is r edges from aα1
j1

around W , we have

aα2
j2

= xεrir · · ·x
ε2
i2
xε1i1 a

α1
j1

= vaα1
j1
,

(3.14)

where v = xεrir · · · x
ε2
i2
xε1i1 . Then W ′ encounters the sequence of signed crossing

generators
x
εr+1

ir+1
, . . . , xεsis , x

ε1
i1
, xε2i2 , . . . , x

εr
ir
, (3.15)

so the relation for W ′ is

aα2
j2

= xεrir · · ·x
ε2
i2
xε1i1 x

εs
is
· · ·xεr+2

ir+2
x
εr+1

ir+1
aα2
j2
. (3.16)
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And the word related to f ′ is

f ′ = xεrir · · ·x
ε2
i2
xε1i1 x

εs
is
· · ·xεr+2

ir+2
x
εr+1

ir+1
. (3.17)

Since f ′ is a cyclic permutation of f , f ′ is conjugate to f . We see

vfv−1 = xεrir · · ·x
ε2
i2
xε1i1 (xεsis · · ·x

εr+1

ir+1
xεrir · · · x

ε2
i2
xε1i1 )(xεrir · · ·x

ε2
i2
xε1i1 )−1

= xεrir · · ·x
ε2
i2
xε1i1 x

εs
is
· · ·xεr+2

ir+2
x
εr+1

ir+1
= f ′.

(3.18)

Then since f = 1, it follows that f ′ = 1.

If the face walk is done in the opposite direction the relation formed will
be aα1

j1
= f−1aα1

j1
which reduces to f−1 = 1. Thus, changing the direction of

the face walk does not provide a new relation.

Lemma 3.8. Let W be a simple walk around a face F , in a given direction,
starting and ending at aα1

j1
with relation

aα1
j1

= xεsis · · ·x
ε2
i2
xε1i1 a

α1
j1
. (3.19)

Let
f = xεsis · · ·x

ε2
i2
xε1i1 = 1. (3.20)

Let W ′ be the simple walk around F starting and ending at aα1
j1

, in the opposite
direction to W . Then the relation for W ′ is

aα1
j1

= x−ε1i1
x−ε2i2
· · ·x−εs+1

s+1 x−εss aαi
i . (3.21)

Let
f ′ = x−ε1i1

x−ε2i2
· · · x−εs+1

s+1 x−εss . (3.22)

Then f ′ = f−1, and since f = 1, f ′ = 1 follows from f = 1 and does not
provide a new relation.

Proof. Let W ′ be the simple walk around F starting and ending at aαi
i , in

the opposite direction to W . The walk W ′ encounters the same crossing
generators as W but in the opposite order, and since W ′ crosses the edges in
the opposite direction the signs of the crossing generators will be reversed.
Therefore the relation for W ′ is

aα1
j1

= x−ε1i1
x−ε2i2
· · ·x−εs+1

is+1
x−εsis

aα1
j1

= f ′aα1
j1
, (3.23)

so

f ′ = x−ε1i1
x−ε2i2
· · ·x−εs+1

is+1
x−εss

= (xεsis · · · x
ε2
i2
xε1i1 )−1 = f−1.

(3.24)

Then since f = 1, f ′ = 1 does not provide any new information.
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There are faces of G(D) that are not faces of D. These are faces that
surround a crossing of the link diagram, as in Figure 3.7. These faces have
associated simple closed walks that are not face walks, but do not provide
new relations, as shown in Lemma 3.9 below:

Lemma 3.9. (Cross face walk) The relation from a walk around a crossing,
a cross face walk relation, is trivial, and so provides no new information.

Proof. Consider the crossings as in Figure 3.7. There are two cases, according
to whether the crossing is a left or right crossing.

1. The walk W = a, b−1, b, d, d−1, c, c−1, a−1, a around the left crossing is a
simple closed walk around a face of G(D) that is not a face walk. The
relations for each edge of this walk are:

b−1 = x−1a, d = x−1b, c = xd−1, a−1 = xc−1.

Substitution gives:

b−1 = x−1(cx−1) = x−1(xd−1)x−1 = x−1x(b−1x)x−1 = (x−1x)b−1(xx−1) = b−1,

and the relation from W provides no new informationl.

2. The walk W ′ = a, b−1, b, d, d−1, c, c−1, a−1, a around the right crossing
is a simple closed walk around a face of G(D) that is not a face walk.
The relations for each edge of this walk are:

b−1 = x−1a, d = xb, c = xd−1, a−1 = x−1c−1.

Substitution gives

b−1 = x−1(cx) = x−1(xd−1)x = x−1x(b−1x−1)x = (x−1x)b−1(xx−1) = b−1,

and the relation from W ′ provides no new information.

Corollary 3.5 tells us that we only need one Wirtinger generator and
the crossing generators for a presentation of W7(L). The next step will be
to prove that we can reduce the relations of the presentation to the face
relations, fi = 1 for all i. This will give us Theorem 3.10:

Theorem 3.10. Let L be a link with connected diagram D. Then

W7(L) ∼= 〈ap, x1, x2, . . . , xk|f1, f2, . . . ft〉, (3.25)

where ap is the single Wirtinger generator, x1, x2, . . . , xk are the crossing
generators and f1, f2, . . . ft the face relations.
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x

x

x−1

x−1

c−1

c

a−1

a

d−1

d

b−1

b

(a) Left crossing with graph ver-
tices, edges and crossing genera-
tors.

x

x−1

x−1

x

c−1

c

a−1

a

d−1

d

b−1

b

(b) Right crossing with graph
vertices, edges and crossing gen-
erators.

Figure 3.7: Graph expression of a left and right crossing.



Chapter 4

Graph theory preliminaries

We need a way to decompose more complex walks to show that their relations
can be derived from the face relations. We will start by defining a type of
walk that we will use in our decomposition.

Definition 4.1. (Lollipop) Let G be a graph drawn on a plane. A lollipop
is a walk on G that consists of a simple walk, called the stick, followed by
a simple closed walk, called the head, followed by the reverse of the initial
simple walk.

A simple lollipop is a lollipop where the head is a walk around a face
of the graph. Figure 4.1 shows an example of a non-simple lollipop and its
simple lollipop decomposition.

Figure 4.2 shows an example of a lollipop and a simple lollipop on the
trefoil knot. Lollipops will provide a way to decompose large closed walks
into simpler walks to understand their relations.

We will decompose walks into simpler ones using the notion of homotopy,
which we define as follows:

Definition 4.2. (Homotopic) Two walks W and W ′ on a graph G are homo-
topic if one can be obtained from the other by a series of insertions and/or
deletions of cancelling edge pairs.

Definition 4.3. (Homotopically decomposed) A closed walk on a graph G
can be homotopically decomposed if it is homotopic to a product of lollipops.

Definition 4.4. (Reduced) A walk on a planar graph G is reduced if it
contains no cancelling edge pairs.

Then from the definition of homotopic, any non-reduced walk is homo-
topic to a reduced walk.

23
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Figure 4.1: Non-simple lollipop and its simple lollipop decomposition, with
the sticks of the lollipops shown in blue and the heads of the lollipops shown
in purple.

Lemma 4.5. Every closed walk in a planar graph G can be decomposed
homotopically into a product of lollipops.

Proof. Let T be a spanning tree for a planar graph G. Let W be a closed
walk on G, and let n be the number of edges in W not in T . For n = 1, we
can write W as UeV , where U is the walk in T from the start of W to the
first vertex of e, and V is the walk in T from the second vertex of e back to
the start of W . U and V can be split up as U = gU ′, V = V ′g−1, where g
is the walk in T from the start of W to the first point at which V meets U .
It’s possible that g might be empty. Then g will be the stick of the lollipop,
and U ′eV ′ is the head.

Assume the hypothesis is true for n = 1, 2, 3, . . . , k. Let n = k+ 1. Then
we can decompose W into lollipops in the following way: walk W until we
reach the first edge e of W not in T . Walk e, then follow the spanning tree
back to the beginning of W . Then retrace back to the second vertex of e and
resume W . This inserts a cancelling path in W , so the new walk is homotopic
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aα2
i2

aα1
i1

(a) A non-simple lollipop with
stick from aα1

i1
to aα2

i2
.

aα3
i3

aα1
i1

(b) A simple lollipop with stick
from aα1

i1
to aα3

i3
.

Figure 4.2: A simple and non-simple lollipop walk on the trefoil knot, where
the sticks are shown in blue and the heads are shown in purple.

to W , and it can be split up as w1w2, where w1 has one edge not in T , and w2

has k edges not in T . By the inductive hypothesis, w1, w2 and consequently
w1w2 can be homotopically decomposed into a product of lollipops, and thus
so can W , since it is homotopic to w1w2.

Lemma 4.6. Any lollipop on a planar graph G can be homotopically decom-
posed into the product of simple lollipops.

Proof. Let G be a planar graph. Consider a lollipop P on G whose head is
made up of n faces of G. If n = 1, P is a simple lollipop and is decomposed.
Assume the hypothsis is true for n = 1, 2, 3, . . . , k . Let P have n = k + 1
faces of G. Then there is a walk W that connects two vertices on the head of
P , and divides the region enclosed by the head of P into two regions, H1 and
H2. Let g be the walk for the stick of P , and let W be from a

αj

j to aαl
l . Let

aαi
i be the vertex where the stick of P meets the head of P . Let P1 be the

walk on P from aαi
i to a

αj

j , P2 the walk from a
αj

j to aαl
l on P , and P3 the walk

on P from aαl
l to aαi

i , as shown in Figure 4.3. P is homotopic to the walk
gP1WP3g

−1gP−13 W−1P2P3g
−1. This walk is the product of two lollipops,

gP1WP3g
−1 and gP−13 W−1P2P3g

−1, so P can be homotopically decomposed
into a product of two lollipops.
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Let d1 be the number of faces of G in H1, and d2 the number of faces of
G in H2. Then d1 + d2 = k + 1, and d1, d2 ≥ 1, so d1, d2 < k + 1 and by the
inductive hypothesis the two new lollipops can be decomposed into simple
lollipops, and hence the lollipop with k + 1 faces of G can be homotopically
decomposed into simple lollipops.

g W

P

H2
H1

P3

P1

P2

aαi
i

a
αj

j

aαl
l

Figure 4.3: Lollipop decomposition, see proof of Lemma 4.6
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Proof of Theorem 3.10

We will begin with a lemma that relates the relations from homotopic walks
in G(D).

Lemma 5.1. Let L be a link with link diagram D, and let W and W ′ be
walks in G(D) such that W ′ is obtained from W by inserting a cancelling
edge pair. Then W and W ′ have the same relation.

Proof. Let W be a walk in G(D) such that W = w1w2, and W ′ the walk in
G(D) such that W ′ = w1ee

−1w2, where e is an edge in G(D). Let W be from
aαi
i to a

αj

j , and let w1 be from aαi
i to aαm

m . Then by Lemma 3.3 w1 has a
relation of the form

aαm
m = (l1a

αi
i r1)

β1 , (5.1)

where l1 is the product of signed crossing generators from faces of the same
colour as aαi

i , and r1 is the product of signed crossing generators from faces
of the opposite colour to aαi

i . By Lemma 3.3 w2 has a relation of the form

a
αj

j = (l2a
αm
m r2)

β2 , (5.2)

where l2 is the product of signed crossing generators from faces of the same
colour as aαm

m , and r2 is the product of signed crossing generators from faces
of the opposite colour to aαm

m .
The edge e can be one of two types.

1. The edge e is from aαm
m to a−αm

m . Then the walk w1ee
−1 has relation

aαm
m = (l1a

αi
i r1)

(−1)2β1 = (l1a
αi
i r1)

β1 , (5.3)

the same relation as the walk w1.

27
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2. The edge e is from aαm
m to aαn

n with relation aαn
n = xδea

αm
m . Then the

relation for w1ee
−1 is

aαm
m = x−δe xδe(l1a

αi
i r1)

β1 , (5.4)

which reduces to the relation for w1.

Then in both cases since w1ee
−1 has the same relation as w1, W and W ′ have

the same relation.

This gives us the following corollary:

Corollary 5.2. Let L be a link with diagram D. Then homotopic walks in
G(D) have the same relation.

Next we will look at the relation for a simple lollipop, and how it can be
reduced to its associated face relation or the trivial relation 1 = 1.

Lemma 5.3. Let L be a link with link diagram D. The relation for a simple
lollipop P in G(D) reduces to the face relation fj = 1 when the head of P is
the face walk fj, and is trivial when the head of P is a cross face walk.

Proof. Let aαi
i be the starting vertex for the lollipop. Let gl be the product

of crossing generators associated with edges of the stick on faces of the same
colour to aαi

i , and let gr be the product of crossing generators associated with
edges of the stick on faces of the opposite colour to aαi

i .

Face walk head: By Lemma 3.3 the relation for a simple lollipop with head
fj can have two forms:

1. The face walk fj associated with the head of the lollipop is on a
face of the same colour to aαi

i . Then the relation for P is

aαi
i = [g−1l fjgla

αi
i g
−1
r gr]

β, (5.5)

where β = +1 since the starting and ending vertex is the same,
and thus they are on the same face. This relation reduces to
fj = 1.

2. The face walk fj associated with the head of the lollipop is on a
face of the opposite colour to aαi

i . Then the relation for P is

aαi
i = [g−1l gla

αi
i g
−1
r f−1j gr]

β, (5.6)

where β = +1 since the starting and ending vertex is the same,
and thus they are on the same face. This relation also reduces to
fj = 1.
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Cross face walk head: If the head of P is a cross face walk, by Lemmas
3.3 and 3.9 the relation for P becomes:

aαi
i = [g−1l gla

αi
i g
−1
r gr]

β, (5.7)

where β = +1 since the starting and ending vertex is the same, and
thus they are on the same face. This relation reduces to aαi

i = aαi
i .

Now since any closed walk in G(D) is homotopic to a product of simple
lollipops, and the relation for a simple lollipop reduces to the face relation
fj = 1 associated with the face of the lollipop, the relations from closed walks
in G(D) are consequences of the face relations. This establishes Theorem 3.10



Chapter 6

Examples of presentations for
W7(L)

We will now find presentations for W7(L) in three examples: the knot 63 and
two infinite families, the (2, k) torus knots and the k-twist knots with odd
numbers of twists.

6.1 The knot 63

We will start with finding the presentation for W7(63). Figure 6.1 on page
35 shows the graph representation for the 63 knot with labelled vertices,
crossings and faces.

Travelling anticlockwise around each face, with the center of the clock
being in the middle of the face, the next crossing generator will appear on
the left of the current product. The relations for each of the eight faces are
as follows:

1. Starting at a2, the relation for F1 is:

f1 = x−11 x−13 x−12 = 1. (6.1)

2. Starting at a3, the relation for F2 is:

f2 = x1x
−1
2 = 1. (6.2)

3. Starting at a−15 , the relation for F3 is:

f3 = x1x2x
−1
4 x5 = 1. (6.3)

30
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4. Starting at a7, the relation for F4 is:

f4 = x2x
−1
3 x4 = 1. (6.4)

5. Starting at a−19 , the relation for F5 is:

f5 = x−15 x−14 x−16 = 1. (6.5)

6. Starting at a−111 , the relation for F6 is:

f6 = x−16 x4x3 = 1. (6.6)

7. Starting at a−112 , the relation for F7 is:

f7 = x−15 x6 = 1. (6.7)

8. Starting at a11, the relation for F8 is:

f8 = x3x
−1
1 x5x6 = 1. (6.8)

Each of the face relations equates a product of crossing generators to
one. We can form a group presentation of the knot from these face relations.
From Equation (6.2) we get the relation x1 = x2. Substituting this into
Equation (6.1) gives:

x−11 x−13 x−12 = x−11 x−13 x−11 = 1, x−13 = x21, x3 = x−21 .

Next from Equation (6.4) we get:

x2x
−1
3 x4 = x1x

2
1x4 = 1, x4 = x−31 .

Then Equation (6.3) becomes:

x1x2x
−1
4 x5 = x1x1x

3
1x5, x5 = x−51 .

Then from Equation (6.7), x6 = x5 = x−51 . Now from Equation (6.8):

x3x
−1
1 x5x6 = x−21 x−11 x−51 x−51 = 1, x131 = 1,

Now substituting into Equation (6.6):

x−16 x4x3 = 1

x51x
−3
1 x−21 = 1,
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which reduces to 1 = 1. Lastly we check Equation (6.5):

x−15 x−14 x−16 = 1

x51x
3
1x

5
1 = x131 = 1,

which provides no new information. We see that x1 is a cyclic generator for
the set of crossing generators, and the relations reduce to the relation x131 =1.
Then we can express every Wirtinger generator in terms of a1 and x1, and
we conclude:

W7(63) ∼= 〈a1, x1|x131 = 1〉 ∼= Z ∗ Z13. (6.9)

6.2 The (2, k) torus knot

Figure 6.2 on page 36 shows the graph representation for the (2, k) torus
knot.

We consider what happens at a section of the torus knot to form a pre-
sentation for the torus knot with k crossings. Consider the section of the
torus knot as in Figure 6.3 on page 37.

Each of the faces F1 through Fk−1 have relations of the form

x−1i xi+1 = 1

xi = xi+1.
(6.10)

The face Fk has the relation:

x−1k x1 = 1

x1 = xk.
(6.11)

Then the middle face Fk+1 of the knot has the relation

x−11 x−12 · · ·x−1k = 1. (6.12)

Then with the relations F1 through Fk−1 we have

x−11 x−11 · · ·x−11 = 1

xk1 = 1.
(6.13)

The outer face has the relation

x1x2 · · ·xk = 1. (6.14)

Then with the relations F1 through Fk−1 we have

x1x1 · · · x1 = 1

xk1 = 1,
(6.15)
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so the outer face provides no new information.
We conclude that:

W7((2, k) torus) ∼= 〈a1, x1|xk1 = 1〉 ∼= Z ∗ Zk. (6.16)

6.3 The k-twist knot

Next we look at the k-twist knot with an odd number of twists, as in Figure
6.4 on page 38. It can be shown that the k-twist with an even number of
twists has the same group presentation.

To form a presentation we will look at a section and the clasp of the
k-twist knot as in Figure 6.5 on page 39. Note that the strands of the twist
section travel in opposite directions for the k-twist knot, while they travelled
in the same direction for the (2, k) torus knot.

The section of the twist shows the relations for the faces F1 through Fk−1
alternate

x−1i x−1i+1 = 1, xi+1xi+2 = 1,

which give

x−1i = xi+1 xi+1 = x−1i+2,

for i = 1, 2, . . . , k − 2. The relation from the face Fk+1 is

xk+2x
−1
k+1 = 1, (6.17)

which rearranges to
xk+2 = xk+1. (6.18)

Then the face Fk has relation

xkxk+1xk+2 = 1. (6.19)

In terms of xk+1 we have
xk = x−2k+1. (6.20)

The large central face Fk+3 has relation

x−11 x2x
−1
3 · · · xk−1x−1k xk+1 = 1, (6.21)

and with the other face relations we get

x2k+1x
2
k+1x

2
k+1 · · ·x2k+1x

2
k+1xk+1 = 1

x2k+1
k+1 = 1.

(6.22)
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Next we check the remaining two faces. From Fk+2 we get:

x1xk+1xk+2 = 1. (6.23)

In terms of xk+1 we have
x1 = x−2k+1 (6.24)

which does not provide new information. From the outer face Fk+4 we get:

x1x
−1
2 x3 · · ·x−1k−1xkx

−1
k+2 = 1. (6.25)

Then with the other face relations we get

x−2k+1x
−2
k+1x

−2
k+1 · · ·x

−2
k+1x

−2
k+1x

−1
k+1 = 1

x
−(2k+1)
k+1 = 1

x2k+1
k+1 = 1,

(6.26)

and the outer face provides no new information.
We conclude that:

W7(k-twist) ∼= 〈a1, x1|x2k+1
1 = 1〉 ∼= Z ∗ Z2k+1. (6.27)
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F1

F2

F3
F4

F5
F6

F7

F8

x−11

x1

x1

x−11

x−12x−12

x2 x2

x3
x−13

x−13

x3

x4
x−14

x−14 x4

x5

x5

x−15

x−15

x6

x−16x−16

x6

a−11

a1

a5 a−15

a2

a−12

a3

a−13

a6

a−16

a−19

a9

a−112

a12

a−17
a7

a−110
a10

a4

a−14

a8
a−18

a−111

a11

Figure 6.1: Graph representation of the 63 knot.
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x1
x1x−11

x−11

F1

x2
x2x−12

x−12

F2

x3
x3x−13

x−13

xk−1
xk−1x−1k−1

x−1k−1
Fk−1
xk

xkx−1k
x−1k

Fk Fk+1 Fk+2

Figure 6.2: (2, k) torus knot.
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Fi

Fk+1

xi

x−1i

Fi+1

xi+1
xi+1

x−1i+1

xi

xi+2
xi+2

x−1i+2

x−1i

x−1i+1

x−1i+2

Figure 6.3: A section of the torus knot from Figure 6.2.
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x1
x1x−11

x−11

F1

x−12

x−12
x2

x2

F2

x3
x3x−13

x−13

x−1k−1
x−1k−1xk−1

xk−1

Fk−1
xk

xkx−1k
x−1k

Fk

Fk+2

Fk+1

Fk+3 Fk+4

x−1k+2 xk+1

Figure 6.4: k-twist knot.
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Fi

xi

x−1i

Fi+1

x−1i+1

x−1i+1xi+1

xi

xi+2
xi+2

x−1i+2

x−1i

xi+1

x−1i+2

(a) A section of the twist knot.

Fk+1

Fk

Fk+2

x−1k+2

xk+2

x−1k+2

xk+2 xk+1x−1k+1

x−1k+1

xk+1

(b) The clasp of the twist knot.

Figure 6.5: A section of the twist knot and the clasp of the twist knot from
Figure 6.4.



Chapter 7

Presentation for the
fundamental group of the
double branched cover

7.1 Introduction

We will be starting with the fundamental group of an oriented link L, π1(R3−
L). There is a homomorphism from π1(R3 −L) to Z, where every Wirtinger
generator yi ∈ π1(R3−L) maps to 1 for all i. There is also a homomorphism
from Z to Z2. Then let φ be the composition of these homomorphisms,
mapping π1(R3 − L) to Z2. We are interested in a quotient of kerφ. Let yi,
for i = 1, 2, . . . , l be the generators for π1(R3−L), then let N be the normal
subgroup of π1(R3 − L) generated by y2i for all i; then the group we want is
(kerφ)/N . This group is the fundamental group of a space associated with L,
its double branched cover L̃2 . We wish to find a presentation for this group.

Let the Wirtinger generators for π1(R3 − L) be y1, y2, . . . , yl. Then kerφ
is generated by products of an even number of the y±1i . So elements of kerφ
have the form [yη1i1 y

η2
i2

][yη3i3 y
η4
i4

] · · · [yη2n−1

i2n−1
yη2ni2n

], where ηi ∈ ±1 for all i. Now

we introduce the relation yi = y−1i , or y2i = 1 for all i, and we will use ȳi to
express we are working with the added relation y2i = 1 for all i. Then we can
define zij = ȳiȳj for all i, j, so that the zij generate π1(L̃2).

Some of the zij will be associated with a crossing. We will call them
crossing generators. Consider Figures 7.1 and 7.2. Then define a crossing
generator to be a generator zab, such that zab = ȳaȳb for a, b ∈ {i, j, k} with
a 6= b and {a, b} 6= {i, j}, as in Figures 7.1 and 7.2.

Our initial presentation will have the Wirtinger generators and the rela-
tions from the crossings, ȳi = ȳkȳj ȳk, as well as the relations ȳ2i = 1. Then

40
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ȳi

ȳk

ȳk

ȳj

zkj

zki

(a) Left crossing.

ȳk

ȳj

ȳi

ȳk

zjk

zik

(b) Right crossing.

Figure 7.1: Crossings with crossing generators and horizontal movements.

ȳi

ȳk

ȳk

ȳj

zik zjk

(a) Left crossing.

ȳk

ȳj

ȳi

ȳk

zkj zki

(b) Right crossing.

Figure 7.2: Crossings with crossing generators and vertical movements.

we replace the Wirtinger generators with the zij. Then we have four families
of relations among the zij. Each relation either comes from our inital cross-
ing relations or the relation ȳ2i = 1; or from these relations and Wirtinger
generators associated with arcs that meet at a crossing. For the following
relations we will consider the left crossing and right crossing in Figures 7.1
and 7.2. With these labellings the relations for the left and right crossings
are the same.

1. Since ȳ2j = 1 we see ȳiȳj ȳj ȳk = ȳiȳk, so

zijzjk = zik, (7.1)

for all i, j, k.

2. From the relation ȳ2i = 1 for all i we see

zii = 1, (7.2)

for all i.
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3. At both a left and right crossing we see ȳi = ȳkȳj ȳk, or ȳiȳk = ȳkȳj.
Then since zik = ȳiȳk and zkj = ȳkȳj we have

zik = zkj, (7.3)

whenever strands i, j and k meet at a crossing as in Figures 7.1 and
7.2.

4. At both a left and right crossing ȳiȳk = ȳkȳj, and

ȳaȳiȳkȳb = ȳaȳkȳj ȳb

zaizkb = zakzjb,
(7.4)

whenever strands i, j and k meet at a crossing as in Figures 7.1 and
7.2.

Note that from relations 1 and 2 we get zijzji = zii = 1, and we see zij = z−1ji .
These four families of relations along with the generators zij will form our

initial presentation for π1(L̃2).

7.2 Definition of the graph for π1(L̃2)

First we will define a graph for π1(L̃2), as we did for W7(L). Let L be a
link with diagram D. We will now define a graph for π1(L̃2), by modifying
G(D) in the following way. Contract the edges from ai to a−1i for all i, and
label the new vertex ȳi. Each edge of this new graph will be from some ȳi to
some ȳj, and we will associate a crossing generator to each edge, such that
the directed edge from ȳi to ȳj will have crossing generator zij, as in Figure
7.3. Call this new graph Gπ(D).

Figure 7.3 below shows an example of a left and right crossing of Gπ(D),
where the directed red edges are the edges of Gπ(D).

With this construction any walk in Gπ(D) has an associated product of
crossing generators of the form

zi1i2zi2i3 · · · zimin , (7.5)

where the sequence of crossing generators encountered is

zi1i2 , zi2i3 , . . . , zimin , (7.6)

and the next crossing generator encountered appears on the right of the
product.
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ȳi

ȳk

ȳk

ȳj

zik

zkj

zjk

zki

(a) Left crossing.

ȳk

ȳj

ȳi

ȳk

zkj

zjk

zki

zik

(b) Right crossing.

Figure 7.3: Left and right crossing of Gπ(D) with crossing generators.

The directed edge from ȳi to ȳk will have associated generator zik. Then
traversing the edge in the opposite direction, from ȳk to ȳi, will have associ-
ated crossing generator z−1ik . Earlier we showed that z−1ik = zki, so traversing
the edge from ȳk to ȳi has associated generator zki, regardless of whether we
are travelling with or against the direction of the edge in Gπ(D). Figure 7.4
shows both graphs for the trefoil knot.

x1

x1
x−11

x−11 x2
x2

x−12

x−12

x3

x3

x−13

x−13

a4

a−11

a1

a−12

a2

a3a−13 a−14

a−15

a5 a−16

a6

(a) G(D) for the trefoil knot.

ȳ1

ȳ2

ȳ3 ȳ4

ȳ5 ȳ6

z51

z35

z23

z12
z16

z21

z64

z42

z65

z46

z34

z53

(b) Gπ(D) for the trefoil knot.

Figure 7.4: G(D) and Gπ(D) for the trefoil knot.

With our earlier graph theory work and the following lemma and corollary,
we see that the product associated with any closed walk in Gπ(D) is equal to
the product associated with a product of lollipops, as we did with the G(D).
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Lemma 7.1. Let L be a link with a connected diagram D, and let W and W ′

be walks in Gπ(D) such that W ′ is obtained from W by inserting a cancelling
edge pair. Then the products of crossing generators associated with W and
W ′ are equal in the free group on the crossing generators.

Proof. Let W be a walk in Gπ(D) such that W = W1W2, and W ′ a walk
in Gπ(D) such that W ′ = W1ee

−1W2, where e is an edge in Gπ(D). Let the
product associated with W1 be w1, let the product associated with W2 be
w2, and let the crossing generator associated with e be ze. Then W has
associated product w1w2, and W ′ has associated product w1zez

−1
e w2, and we

see the products of crossing generators associated with W and W ′ are equal
in the free group on the crossing generators.

Corollary 7.2. Let L be a link with a connected diagram D. Then homotopic
walks in Gπ(D) have equal associated products as elements of the free group
on the crossing generators.

7.3 The faces and their relations in Gπ(D)

We will start with introducing the concept of face relations in Gπ(D), for a
given link L with diagram D. As with G(D) we define a face walk in Gπ(D)
as a non-trivial closed walk that travels around a face Fj of the link diagram.
From Lemma 7.3 below we see that the product associated with Fj, which
we will call hj, the face relation for Fj in Gπ(D), is equal to 1.

Lemma 7.3. Let L be a link with diagram D. The product of crossing
generators associated with any closed walk in Gπ(D) is equal to 1 in π1(L̃2).

Proof. Let W be a closed walk of length n in Gπ(D). Let

zi1i2zi2i3zi3i4 · · · zin−1inzini1 (7.7)

be the product of crossing generators associated with W . Then using relation
1 from page 41 we can reduce this product in the following way. If the
expression for the closed walk has more than two terms left, we use the
relation zi1i2zi2i3 = zi1i3 from relation 1 to combine the first and second term
into a single term. Note that doing this will leave the last crossing generator
and first subscript of the first crossing generator unchanged:

zi1i2zi2i3zi3i4 · · · zin−1inzini1 (7.8)

becomes
zi1i3zi3i4 · · · zin−1inzini1 . (7.9)
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Continuing in this way we reduce the relation to

zi1inzini1 = zi1i1 = 1, (7.10)

by relations 1 and 2 from page 41.

Corollary 7.4. Let F be a face in Gπ(D) with associated product h. Then
h = 1 in π1(L̃2).

We will prove the following lemmas in the same way we did with W7 in
Lemmas 3.7 and 3.8 on pages 19 and 20.

We first show that what vertex is chosen for the start and hence end of
a face walk does not provide a different face relation for any face walk on
Gπ(D). Instead, it produces a cyclic permutation of the crossing generators
and thus a cyclic permutation of h = 1, where h is the product of crossing
generators associated with F in Gπ(D).

Lemma 7.5. Let L be a link with diagram D. Let F be a face of Gπ(D), and
let W be a simple walk around F starting at ȳi1, with associated product

h = zi1i2zi2i3 · · · zia−1iaziai1 = 1. (7.11)

Let W ′ be a walk around F , in the same direction as W , starting at ȳir , where
ȳir is r − 1 steps around W from ȳi1. Let the product associated with W ′ be
h′. Then h′ is a cyclic permutation of h, so h′ = 1 follows from h = 1.

Proof. As ȳir is r − 1 edges from ȳi1 around W , let the product of crossing
generators associated with the walk from ȳir to ȳi1 be

v = zirir+1 · · · zia−1iaziai1 . (7.12)

Then the product associated with W ′ is

h′ = zirir+1 · · · zia−1iaziai1zi1i2 · · · zir−1ir , (7.13)

which is a cyclic permutation of h. Since h′ is a cyclic permutation of h, h′

is conjugate to h. We see

vhv−1 = (zirir+1 · · · zia−1iaziai1)zi1i2zi2i3 · · · zia−1iaziai1(zirir+1 · · · zia−1iaziai1)
−1

= zirir+1 · · · zia−1iaziai1zi1i2 · · · zir−1ir = h′.

(7.14)

Then since h = 1, it follows that h′ = 1.
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If the face walk with relation h = 1 is done in the opposite direction the
relation formed will be h−1 = 1. Thus, changing the direction of the face
walk does not provide a new relation.

Lemma 7.6. Let W be a simple walk of length n around a face F , in a given
direction, starting and ending at ȳi, with associated product

zi1i2zi2i3 · · · zin−1inzini1 . (7.15)

Let W ′ be the simple walk around F starting and ending at ȳi, in the opposite
direction to W . Then W ′ has associated product

z−1ini1z
−1
in−1in

· · · z−1i3i2z
−1
i2i1

= h′. (7.16)

Then h′ = h−1, so h′ = 1 follows from h = 1 and does not provide a new
relation.

Proof. W ′ encounters the same crossing generators as W but in the opposite
order, and since W ′ crosses the edges in the opposite direction the crossing
generators will be inverted. Then the product associated with W ′ is

h′ = z−1ini1z
−1
in−1in

· · · z−1i3i2z
−1
i2i1

= (zi1i2zi2i3 · · · zin−1inzini1)
−1 = h−1.

(7.17)

Then since h = 1, h′ = 1 does not provide a new relation.

The purpose of the next section will be to prove the following theorem.

Theorem 7.7. Let L be a link with connected diagram D. Then

π1(L̃2) ∼= 〈z1, z2, . . . , zn|h1, h2, . . . , hs〉, (7.18)

where {z1, z2, . . . zn} is a set consisting of a single crossing generator from
each crossing, and h1, h2, . . . hs are the face relations expressed in terms of
z1, z2, . . . zn.

7.4 Proof of Theorem 7.7

First we will show that π1(L̃2) can be generated by only the crossing gener-
ators.

Lemma 7.8. Let D be a connected diagram for a link L. Let P be any
path from ȳi1 to ȳin in Gπ(D). Then zi1in is equal to the product of crossing
generators associated with P .
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Proof. If P is a path of length 1 in Gπ(D), then there is an edge connecting
ȳi1 and ȳin , and the edge has associated crossing generator zi1in . Thus the
lemma holds for paths of length 1. If P is a path of length greater than 1 in
Gπ(D) let the product of crossing generators associated with P be

zi1i2zi2i3 · · · zin−1in . (7.19)

Then by relation 2 from page 41 we can reduce this product as we did in
Lemma 7.3,

zi1i2zi2i3 · · · zin−1in = zi1in , (7.20)

and we have an expression for zi1in in terms of a product of crossing genera-
tors.

Now that we can express any product of an even number of the ȳim in
terms of crossing generators, we can reduce our generating set to only the
crossing generators.

Corollary 7.9. The generating set for the presentation of π1(L̃2) can be
reduced to the crossing generators.

Then with relation 3 from page 42 we can reduce the set of crossing
generators to a single crossing generator at each crossing. Let the crossing
be oriented downward, so that both strands are travelling downward, as in
Figure 7.3. Then we choose the generator related to the top edge as our
single generator for the crossing, for both left and right crossings. With the
labellings as in Figure 7.3, we would use zkj for the left crossing and zjk for
the right crossing. This will produce crossings as shown in Figure 7.5.

ȳi

ȳk

ȳk

ȳj

zkj

zkj

z−1kj

z−1kj

(a) Left crossing.

ȳk

ȳj

ȳi

ȳk

z−1jk

zjk

zjk

z−1jk

(b) Right crossing.

Figure 7.5: Left and right crossings of Gπ(D) with a single crossing generator.

Now we have shown that relations 1–4 from Section 7.1 can be used to
reduce our generating set to only one generator arising from each crossing,
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and to derive the face relations. Next we will show we can do the reverse
of this process, and derive relations 1–4 from the face relations and a single
crossing generator from each crossing.

First we show that the face relations imply Lemma 7.3.

Lemma 7.10. Let L be a link with connected diagram D. Then the face
relations hk = 1 imply that the product associated with any closed walk in
Gπ(D) is equal to 1 in π1(L̃2).

Proof. Let W be a closed walk in Gπ(D). From Corollary 7.2 we know that
homotopic walks in Gπ(D) have equal associated products in the free group
on the crossing generators. Then since every closed walk in Gπ(D) is ho-
motopic to a product of lollipops, we can write W ' P1P2 · · ·Pn, where
P1, P2, . . . , Pn are lollipops. Let the associated product for Pi be gihjig

−1
i .

Then the associated product for P1P2 · · ·Pn in Gπ(D) is

g1hj1g
−1
1 g2hj2g

−1
2 · · · gnhjng−1n = g1g

−1
1 g2g

−1
2 · · · gng−1n

= 1,
(7.21)

since hji = 1 in Gπ(D) for all j, i. From Corollary 7.2 we know that homotopic
walks in Gπ(D) have equal associated products in the free group on the
crossing generators, so the product associated with W is equal to 1.

We can now derive Lemma 7.8 from the face relations in the following
way. Let ȳa and ȳb be two vertices in Gπ(D) not connected by an edge. Then
we define zab as a product of crossing generators associated with a walk in
Gπ(D) from ȳa to ȳb.

Lemma 7.11. With this definition the product zab is well defined.

Proof. Consider two different walks from ȳa to ȳb, W1 and W2. Let the prod-
ucts associated with W1 and W2 be w1 and w2 respectively. Then W1W2

−1

is closed so by Lemma 7.3 w1w2
−1 = 1 and w1 = w2 in π1(L̃2).

Note that the walk zijzji is closed, so we have the relation zijzji = 1 by
Lemma 7.3, and so zij = z−1ji .

Now we are ready to prove that the four relations can be derived from
the face relations.

Lemma 7.12. The four relations from Section 7.1 can be derived from the
face relations, hi = 1 for all i.
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Proof. 1. We will start with deriving relation 1. Consider the product
associated with the closed walk WijWjkWki, where Wab is a walk from
ȳa to ȳb. By Lemma 7.10 this product is equal to 1 in π1(L̃2). By
Lemma 7.11 this product is equal to zijzjkzki = 1 in π1(L̃2). Then
zijzjk = z−1ki = zik in π1(L̃2).

2. For relation 2 we have shown already that zijzji = 1, and then from
relation 1 we know zijzji = zii = 1.

3. For relation 3 we introduce an extra crossing generator at each crossing,
and let it be equal to the generator we have for the crossing. With
both strands travelling downward, we let the new crossing generator
be associated with the left edge of the graph at the crossing, and label
it zab, where the left edge travels from ȳa to ȳb. Consider Figure 7.5.
Our new crossing generator would be zik, and we set zik=zkj.

4. To derive relation 4 we will use Lemma 7.11 and relation 3 as follows.

From Lemma 7.11 the product zaizkb can be calculated using any path
from ȳa to ȳi and any path from ȳk to ȳb. Let Pak be a path from ȳa to
ȳk, and Pib a path from ȳi to ȳb. Then Pakzki is a path in Gπ(D) from ȳa
to ȳi, and zkjPjb is a path from ȳk to ȳb. Then zaizkb = (Pakzki)(zkjPjb),
and since zkj = zik = z−1ki by relation 3, we have

zaizkb = (Pakzki)(zkjPjb)

= (Pakzki)(z
−1
ki Pjb)

= PakPjb

= zakzjb.

(7.22)

Now that we have one crossing generator per crossing for our presentation
of π1(L̃2), we will relabel our crossing generators to better match our crossing
generators for W7(L). Given a link L with connected diagram D, if the
crossing generator for a given crossing of G(D) is xi, we let the crossing
generator for the same crossing of Gπ(D) be zi. Thus our presentation for
π1(L̃2) for a link with k crossings and t faces is:

Lemma 7.13.

π1(L̃2) ∼= 〈z1, z2, . . . , zk|h1, h2, . . . , ht〉, (7.23)

where z1, z2, . . . , zk are the crossing generators and h1, h2, . . . , ht are the face
relations, expressed in terms of z1, z2, . . . , zk.
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Figure 7.6: Gπ(63).

Now as an example, we will work out the presentation for π1(L̃2) for the
63 knot with labellings as in Figure 7.6, as we did with W7(63).

Now we will find the face relations for each of the eight faces. We travel
anticlockwise around each face, with the center of the clock being in the
middle of the face. Then the next crossing generator appears on the right of
the current product. The eight face relations are:

1. Starting at ȳ2, the relation for F1 is:

h1 = z−12 z−13 z−11 = 1. (7.24)

2. Starting at ȳ3, the relation for F2 is:

h2 = z2z
−1
1 = 1. (7.25)
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3. Starting at ȳ5, the relation for F3 is:

h3 = z−15 z4z2z1 = 1. (7.26)

4. Starting at ȳ7, the relation for F4 is:

h4 = z4z3z
−1
2 = 1. (7.27)

5. Starting at ȳ9, the relation for F5 is:

h5 = z−16 z−14 z−15 = 1. (7.28)

6. Starting at ȳ11, the relation for F6 is:

h6 = z3z
−1
4 z6 = 1. (7.29)

7. Starting at ȳ12, the relation for F7 is:

h7 = z−16 z5 = 1. (7.30)

8. Starting at ȳ11, the relation for F8 is:

h8 = z6z5z1z
−1
3 = 1. (7.31)

Next we will reduce our face relations via substitution.

1. From h2 we get
z2 = z1. (7.32)

2. From h1 we get

h1 = z−11 z−13 z−11 = 1, z3 =z−21 .

3. From h4

h4 = z4z
−2
1 z−11 =1, z4 =z31 .

4. From h3

h3 = z−15 z31z1z1 = 1, z5 =z51 .

5. From h7

z6 = z5, z6 = z51 .
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6. Then substituting into h8

h8 = z51z
5
1z1z

2
1 = z131 = 1. (7.33)

Now checking the remaining two face relations:

h6 = z−21 z−31 z51 = 1, (7.34)

and
h5 = z−51 z−31 z−51 = z−131 = 1, (7.35)

which provide no new information. Thus our presentation for π1(L̃2) with
L = 63 is:

〈z1|z131 = 1〉 ∼= Z13. (7.36)

Comparing (7.36) with the result (6.9) of Section 6.1 we see that for
L = 63 we have

W7(L) ∼= π1(L̃2) ∗ Z. (7.37)

We will prove that this is always the case in Theorem 8.3 in Chapter 8.



Chapter 8

Proof of the main theorem,
Theorem 1.1

The purpose of this chapter is to complete our proof of the main theorem,
Theorem 1.1.

First we will restate our presentations for W7(L) and π1(L̃2) for an ori-
ented link L with connected diagram D.

1. Our presentation for W7(L) for a link L with k crossings and t faces is

W7(L) ∼= 〈ap, x1, x2, . . . , xk|f1, f2, . . . , ft〉, (8.1)

where ap is a Wirtinger generator, x1, x2, . . . , xk are the crossing gen-
erators and f1, f2, . . . , ft the face relations. A face relation fn is of the
form

fn = xεlil · · ·x
ε2
i2
xε1i1 , (8.2)

where the x
εp
ip

are the signed crossing generators encountered by trav-
elling the face Fn in G(D) anticlockwise, by Lemma 3.3.

2. Our presentation for π1(L̃2) for a link L with k crossings and t faces is

π1(L̃2) ∼= 〈z1, z2, . . . , zk|h1, h2, . . . , ht〉, (8.3)

where z1, z2, . . . , zk are the crossing generators and h1, h2, . . . , ht the
face relations. A face relation hb is of the form

hb = zα1
j1
zα2
j2
· · · zαr

jr
, (8.4)

where
zα1
j1
, zα2
j2
, . . . , zαr

jr
(8.5)

is the sequence of signed crossing generators encountered by travelling
the face Fb in Gπ(D) anticlockwise, by Lemma 7.13.

53
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We can see that the relations for both presentations are the corresponding
face relations, so if we can determine how the crossing generators relate we
can find an isomorphism between the presentations.

In Figures 8.1 and 8.2 we show our chosen crossing generators for W7(L)
and π1(L̃2) at a crossing of a link L with connected diagram D.

xs

xs

x−1s

x−1s

a−1t4
at4

a−1t1

at1

a−1t3

at3

a−1t2

at2

(a) Left crossing.

xs

x−1s

x−1s

xs

a−1t4
at4

a−1t1

at1

a−1t3

at3

a−1t2

at2

(b) Right crossing.

Figure 8.1: Left and right crossing of G(D) with a single crossing generator.

ȳi

ȳk

ȳk

ȳj

zs

zs

z−1s

z−1s

(a) Left crossing.

ȳk

ȳj

ȳi

ȳk

z−1s

zs

zs

z−1s

(b) Right crossing.

Figure 8.2: Left and right crossing of Gπ(D) with a single crossing generator.

We want an isomorphism between the two groups, so we will look at how
the crossing generator at a given crossing for W7(L) compares to the crossing
generator for π1(L̃2) for the same crossing.

First we note that by Lemma 3.3 for a face relation for W7(L), the next
crossing generator appears on the left, while as discussed in Section 7.2 for a



CHAPTER 8. PROOF OF THEOREM 1.1 55

face relation for π1(L̃2) the next crossing generator appears on the right. To
compensate for this we will be inverting our relation for π1(L̃2), so that the
orders of crossing generators for the relations match. Then if we want the
face relations to be identical once inverted we need the sign of the crossing
generator for a crossing in π1(L̃2) to be the negative of the sign of the crossing
generator for the same crossing in W7(L).

As an example, consider the relation for the fourth face of the 63 knot,
with labellings as in Figures 6.1 and 7.6. G(63) and Gπ(63) for this face are
shown in Figure 8.3 below.

a−17
a7

a4

a−14

a−18

a8

x2

x4

x−13

(a) Face 4 of G(63).

ȳ7

ȳ4

ȳ8

z−12

z4

z3

(b) Face 4 of Gπ(63).

Figure 8.3: Face 4 of the 63 knot from Figures 6.1 and 7.6.

Starting and ending at a7 and travelling anticlockwise in G(63), the se-
quence of signed crossing generators encountered is x4, x

−1
3 , x2. The face

relation for W7(63) is
x2x

−1
3 x4 = 1. (8.6)

Then starting and ending at ȳ7 and travelling anticlockwise for Gπ(63), the
sequence of signed crossing generators encountered is z4, z3, z

−1
2 . Then the

face relation for π1((6̃3)2) is

z4z3z
−1
2 = 1, (8.7)

or equivalently
z2z
−1
3 z−14 = 1. (8.8)

We take the inverse of the relation so that the order of the crossing gen-
erators in the products match. Since we will be inverting our relation for
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π1(L̃2), we want the sign of the crossing generator in each quadrant of a
crossing for π1(L̃2) to be the negative of the sign of the crossing generator
for each quadrant of the corresponding crossing for W7(L).

From Figures 8.1 and 8.2 we can see that the exponent of the crossing
generator in the bottom quadrant of the left crossing of Gπ(D) is the negative
of the exponent in the same quadrant of the left crossing of G(D), as required.
However, the sign of the exponent of the crossing generator for the right
quadrant of the left crossing of Gπ(D) is not the negative of the exponent
of the crossing generator of the same quadrant for the left crossing of G(D).
Thus the face relations will not hold under a map between them. However, we
can see that the exponent of the crossing generator at each of the quadrants
of the left crossing for Gπ(D) is the negative of the exponent of the crossing
generator at each of the quadrants of the right crossing of G(D). Likewise,
the exponent of the crossing generator at each of the quadrants of the right
crossing for Gπ(D) is the negative of the exponent of the crossing generator
at each of the quadrants of the left crossing for Gπ(L). Thus, if we switch all
the left crossings to right crossings and the right crossings to left crossings
for Gπ(D), the face relations will hold under our map, and we will have
an isomorphism, once we account for the extra Wirtinger generator in the
presentation for W7(L).

We can switch the left and right crossings in the following way. Given a
link L, we can place a mirror behind the link L, and the reflection of L in
the mirror will have its crossings switched, so that left crossings will become
right crossings and right crossings will become left crossings.

We will introduce a theorem to show how we can switch the left and right
crossings without changing the associated fundamental group for a link L.
For further reading see [3].

Theorem 8.1. Homotopy equivalent spaces have the same fundamental group.

Since a reflection is a homeomorphism, and homeomorphic spaces are
homotopy equivalent, the fundamental group of a link L and the fundamental
group of its reflection L′ are isomorphic. The fundamental group of the
double branched cover, π1(L̃2), depends only on the fundamental group of
the link, π1(L). Then since the fundamental group of the double branched
cover constructed from the link, π1(L̃2), is isomorphic to the fundamental
group of the double branched cover constructed from the reflection, π1(L̃′2),
we have the following corollary:

Corollary 8.2. Let L be a link, and let L′ be the reflection of L found by
placing a mirror behind L. Then π1(L̃2) ∼= π1(L̃′2).
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Now we need to account for the extra Wirtinger generator present in the
presentation for W7(L) that does not appear in π1(L̃2). We do this by taking
the free product of π1(L̃2) and Z, and our presentation for this product is

〈b, z1, z2, . . . , zk|h1, h2, . . . , ht〉, (8.9)

and so our isomorphism is:

W7(L) ∼= π1(L̃2) ∗ Z. (8.10)

Now we will restate our conclusion as a theorem and recap the discussion
as the proof.

Theorem 8.3. Let L be a link, then

W7(L) ∼= π1(L̃2) ∗ Z. (8.11)

Proof. Let D be a connected diagram for L. By Theorem 3.10 our presenta-
tion for W7(L) is

〈ap, x1, x2, . . . , xk|f1, f2, . . . , ft〉. (8.12)

Let L′ be the reflection of L made by placing a mirror behind L. By Lemma
7.13 our presentation for π1(L̃′2) ∗ Z is

〈b, z1, z2, . . . , zk|h1, h2, . . . , ht〉. (8.13)

Consider the face Fs of G(D), and let the sequence of signed crossing
generators associated with Fs in G(D) be

xε1i1 , x
ε2
i2
, . . . , xεrir . (8.14)

Then by Lemma 3.3,
fs = xεrir · · ·x

ε2
i2
xε1i1 . (8.15)

Then since the sign of the exponent of the crossing generator in each quadrant
of the left and right crossings of Gπ(D) is the negative of those of G(D), and
zi is at the same crossing as xi, the sequence of signed crossing generators
associated with Fs in Gπ(D) is

z−ε1i1
, z−ε2i2

, . . . , z−εrir
, (8.16)

and the relation for hs is

hs = z−ε1i1
z−ε2i2
· · · z−εrir

. (8.17)
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Equivalently, by Corollary 7.4, hs = 1 and

hs = zεrir · · · z
ε2
i2
zε1i1 . (8.18)

Then we can show that with a relabeling of the zj the face relations are
identical. We relabel zj to xj, then

hs = xεrir · · ·x
ε2
i2
xε1i1 = fs, (8.19)

and we conclude that

〈b, z1, z2, . . . , zk|h1, h2, . . . , ht〉 = 〈ap, x1, x2, . . . , xk|f1, f2, . . . , ft〉. (8.20)

Thus
W7(L) ∼= π1(L̃′2) ∗ Z. (8.21)

Then by Corollary 8.2,
W7(L) ∼= π1(L̃2) ∗ Z. (8.22)
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