Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Controlling Biofilm Development on Ultrafiltration and Reverse Osmosis Membranes Used in Dairy Plants

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Food Technology

at Massey University, Manawatu New Zealand.

Xuemei Tang

2011

ABSTRACT

This study aimed to develop improved cleaning strategies for controlling biofilms on the surfaces of membranes used in dairy ultrafiltration (UF) and reverse osmosis (RO) plants.

Eleven UF / RO membrane modules from 7 different New Zealand dairy membrane processing plants were received after typical cleaning-in-place (CIP) procedures. Microorganisms were isolated from both the retentate and permeate sides of these membrane surfaces and from the liquids collected from a UF membrane plant. Also some foulants scraped from a RO membrane were tested. The routine CIP currently used in the dairy plants was not adequate to completely remove organic material, including microbial cells, proteins and carbohydrates from the membrane surfaces. These residues may influence the surface characteristics and interactions between microorganisms and membranes and thus affect biofilm formation. Thirteen isolates including both bacteria and yeast were identified using biochemical techniques. Klebsiella oxytoca were isolated from 3 different membrane plant sites. This is, so far as we know, the first report of K. oxytoca being isolated from dairy membrane surfaces. The ability of the 13 strains to attach to negatively charged polystyrene surfaces was tested using a microtitre plate assay. Three K. oxytoca strains demonstrated higher ability to adhere than the other strains, suggesting that these strains might play an important role in developing biofilms on dairy membrane surfaces. Two K. oxytoca strains (K. B006 from plant A, UF and K. TR002 from plant C, RO) that performed best in the microtitre screening assay with respect to attachment capabilities were chosen for the remainder of the study.

The cell surface hydrophobicity of all isolates was determined using the microbial adhesion to hydrocarbon assay (MATH) and the cell surface charge was determined by measuring the surface zeta potential. These two characteristics did not show a clear relationship with the adherence of the isolated strains. However, it was found that bacterial attachment was enhanced in the presence of whey or mixed strains.

ABSTRACT

A commercial biofilm reactor CBR 90 was modified for developing biofilms on membranes and investigating strategies for biofilm removal. Biofilms of single and dual *K. oxytoca* strains were developed under a continuous flow of whey. The saturated biofilm was approximately 8 \log_{10} CFU cm⁻². The results of our study suggested that the whey protein concentration, membrane type including membrane material (polyethersulfone (PES) and polyvinylidene fluoride (PVDF)), membrane age (used and new), bacterial strain and the interactions between different microorganisms are all significant factors for biofilm development on membrane surfaces.

Three enzymatic cleaners and four sanitisers, including sodium hypochlorite (pH 6.5, 200 ppm free available chlorine (FAC)), Perform[®] (peracetic acid/hydrogen peroxide, 2% v/v), ozonated water (pH 7.0, 0.5 ppm free available ozone (FAO)) and anolyte of MIOX[®] electrolysed water (EW) (pH 6.8, 120 ppm FAC) were tested for their efficacies in killing culturable cells from biofilms formed by single or dual *K. oxytoca* strains on used PES membrane surfaces. With no sanitation applied, two of three enzymatic cleaners performed better than sodium hypochlorite (pH 10.8-11, 200 ppm FAC) commonly used for CIP of UF membranes in the dairy industry. The four sanitisers were used to treat the membranes after a CIP wash regime. The results indicated that if a dairy processor were to use a standard CIP on membrane systems, then a further flush with MIOX[®] EW anolyte would reduce residual attached microbial populations further. In addition, using protease followed by a sanitation (sodium hypochlorite, Perform[®] or anolyte of MIOX[®] EW) produced the best clean based on a greater than 2 log reduction in residual cells and left no culturable and viable cells at a detection limit of 0.1 log₁₀ CFU cm⁻².

Keywords: biofilm, dairy, ultrafiltration, reverse osmosis, membrane, *Klebsiella*, attachment, surface hydrophobicity, surface charge, CIP, electrolysed water, enzymatic cleaner

2

LIST OF PUBLICATIONS

This work has been published in part in the following papers:

- Tang, X., Flint, S.H., Brooks, J.D., & Bennett, R.J. (2010). The efficacy of different cleaners and sanitisers in cleaning biofilms on UF membranes used in the dairy industry. *Journal of Membrane Science*, 352(1-2), 71-75.
- Tang, X., Flint, S.H., Brooks, J.D., Bennett, R.J., & Morton, R.H. (2009). Biofilm growth of individual and dual strains of *Klebsiella oxytoca* from the dairy industry on ultrafiltration membranes. *Journal of Industrial Microbiology and Biotechnology*, 36(12), 1491-1497.
- Tang, X., Flint, S.H., Brooks, J.D., & Bennett, R.J. (2009). Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants. *Journal of Applied Microbiology*, 107(2), 443-451.

LIST OF PRESENTATIONS

This work has been presented in part in the following presentations:

Oral Presentations:

- Tang X., Flint S. H., Brooks J. D., & Bennett R. J., (2010). Controlling development of biofilm in membrane plants. Fonterra Microbiologists Seminar. Palmerston North, New Zealand
- Tang X., Flint S. H., Brooks J. D., & Bennett R. J., (2009). Controlling development of biofilm in membrane plants. Fonterra PhD Day. Palmerston North, New Zealand
- Tang X., Flint S. H., Brooks J. D., & Bennett R. J., (2007). Biofilm formation of cultures isolated from dairy membrane plants and some of their cell surface characteristics. *Joint New Zealand Microbiological Society (NZMS)-New Zealand Society for Biochemistry and Molecular Biology (NZSBMB) Annual Conference* (pp. 37), Wellington, New Zealand
- Tang X., Flint S. H., & Brooks J. D., (2007). Controlling biofilm development in membrane plants. *New Zealand Institute of Food Science and Technology* (*NZIFST*) 2007 Conference (pp. 53), Wellington, New Zealand
- Tang X., Flint S. H., & Brooks J. D., (2006). Controlling biofilm development in membrane plants. *New Zealand Microbiological Society (NZMS) Annual Conference*, Hamilton, New Zealand
- Tang X., Flint S. H., & Brooks J. D., (2006). Controlling biofilm development in membrane plants. Fonterra PhD Day. Hamilton, New Zealand

Poster Presentations:

- Tang X., Flint S. H., & Brooks J. D., (2007). Controlling biofilm development in membrane plants. *New Zealand's Biotech Industry Organisation (NZBio) 2007 Conference*, Auckland, New Zealand
- Tang X., Flint S. H., & Brooks J. D., (2007). Controlling biofilm development in membrane plants. *American Society of Microbiology Conference: Biofilms 2007* (pp. 167-168), Quebec, Canada

ACKNOWLEDGEMENTS

I owe many thanks to my supervisors: Chief supervisor, Mr. Rod Bennett, Senior Lecturer, Institute of Food, Nutrition and Human Health, Massey University; Cosupervisor, Professor John Brooks, who was my chief supervisor before moving to Auckland University of Technology in 2007; Co-supervisor, Associate Professor Steve Flint, Institute of Food, Nutrition and Human Health, Massey University, who was my previous mentor before moving from the Fonterra Co-operative Group Ltd to Massey University in 2007. They were always keen to meet, discuss and encourage questioning in the project. They also provided important information helping me design and plan for this project. Special thanks to them for their understanding and support during my maternity periods and their contributions in paper publishing.

Thanks to Bruce Hill, Microbiologist at Food Microbiology & Safety, Fonterra Cooperative Group Ltd, for agreeing to be my industrial mentor, meeting and sharing scientific knowledge.

I am indebted to the Foundation of Research, Science and Technology for providing research funding and Fonterra Co-operative Group for providing supplemental funding, membrane samples and a study course for this project.

Special thanks to Dr. Hugh Morton for help in part of the experimental design and statistical analysis.

I gratefully acknowledge the Institute of Food, Nutrition and Human Health, Massey University, for providing the laboratory and the fantastic support of technicians Ann-Marie Jackson, Judy Collins and Weiping Liu.

Thanks to Jon Palmer, microbiology lecturer, for advice on laboratory techniques.

Thanks to Linley Fray, Human Nutrition Lab, Massey University, for helping with the microtitre plate reader.

Many thanks to Geoffrey Stevens and Dr. Lillian Ferreira working in Fonterra Cooperative Group Ltd for sharing knowledge with me.

I am indebted to Jeff Yeh and Synder Filtration Ltd for providing fresh membrane sheets and Steve Warne for providing MIOX[®] BPS equipment for this project.

Thanks to staff at the workshop of the School of Engineering and Advanced Technology and pilot plant of the Institute of Food Nutrition and Human Health for help and support. They are Bryon McKillop, Garry Radford, Michelle Tamehana, Bruce Collins, John Edwards and Matthew Levin.

Thanks to Grant Taylor and Orica New Zealand Ltd, for providing chemical samples for this project.

I would like to thank my lab-mates who made me feel life in New Zealand was not lonely.

My last and special thanks to my families, my mother, Shuhui Cui, father, Hai Tang, mother-in-law Huizhen Cai, father-in law, Yonglong Ke, my husband, Peisheng Ke and two lovely daughters, Chelsea and Esme. Without their understanding and support, this project would not have succeeded.

LIST OF CONTENTS

ABSTRACT 1 LIST OF PUBLICATIONS 3 LIST OF PRESENTATIONS 5 **ACKNOWLEDGEMENTS** 7 LIST OF CONTENTS 9 **ABBREVIATIONS** 17 LIST OF FIGURES 19 LIST OF TABLES 23 CHAPTER 1 **INTRODUCTION** 25 CHAPTER 2 **BIOFILMS ON ULTRAFILTRATION AND** 27 **REVERSE OSMOSIS MEMBRANES IN DAIRY** PLANT – LITERATURE REVIEW **2.1** Introduction 27 2.2 UF and RO membranes 27 2.2.1 UF membrane 27 2.2.2 RO membrane 28 29 **2.3** Cross-flow and biofouling 2.4 Membrane configuration and materials 30

2.5	Biofilm development	3	1
	210 mm av veropment		1

Page

	2.5.1	Concern	ns regarding biofilm in dairy manufacturing plants	31
	2.5.2	Mechan	ism of biofilm formation	31
	2.5.3	Conditio	oning and biofilm formation	32
	2.5.4	Charact	eristics of microorganisms and biofilm formation	34
		2.5.4.1	Cell surface hydrophobicity	34
		2.5.4.2	Cell surface charge	35
		2.5.4.3	Cell motility	35
		2.5.4.4	Quorum sensing	36
	2.5.5	Membra	ane surface characteristics and biofilm formation	37
		2.5.5.1	Surface roughness	37
		2.5.5.2	Surface hydrophobicity	38
		2.5.5.3	Surface charge	39
	2.5.6	Other fa	ictors	39
2.6	Techn	iques for	studying biofilms on membranes	40
	2.6.1	Isolation	n and Identification	40
	2.6.2	Characte	erisation of microorganisms	41
		2.6.2.1	Microtitre plate assay	41
		2.6.2.2	Cell surface hydrophobicity and charge	41
		2.6.2.3	Cell motility	41
	2.6.3	Characte	erisation of membrane surface	42
		2.6.3.1	Membrane surface hydrophobicity	42
		2.6.3.2	Membrane surface charge	42
		2.6.3.3	Membrane surface topography	43
	2.6.4	Biofilm	structure	43

LIST OF CONTENTS

	2.6.5	Models and bioreactors for biofilm study	43
2.7	Contro	ol of biofilm on membranes	46
	2.7.1	Physical methods	46
	2.7.2	Chemical methods	46
	2.7.3	Biological methods	48
	2.7.4	Membrane modification	48
2.8	Concl	usions	49

CHAPTER 3	ISOLATION AND IDENTIFICATION OF	51
	MICRO-ORGANISMS AND THE	
	MEASURMENT OF PROTEIN AND	
	CARBOHYDRATE ON MEMBRANE	
	SURFACES	

3.1	Introd	uction	51
3.2	Mater	ials and methods	52
	3.2.1	Source of samples	52
	3.2.2	Isolation and identification	54
	3.2.3	Quantification of membrane surface protein and carbohydrates	54
3.3	Result	S	55
	3.3.1	Examination of the membranes and isolation of micro-	55
		organisms	
	3.3.2	Membrane surface protein and carbohydrates	58
3.4	Discus	ssion	59
3.5	Concl	usions	61

CHAPTER 4		4 CELL SURFACE CHARACTERISTICS AND	63
		ADHESION	
4.1	Introd	uction	63
4.2	Mater	ials and methods	64
	4.2.1	Source of strains	64
	4.2.2	Preparation of inocula	64
	4.2.3	Microtitre plate assay	65
	4.2.4	Attachment to the membrane	66
	4.2.5	Microbial adhesion to hydrocarbon assay	67
	4.2.6	Zeta potential	68
	4.2.7	Statistical analysis	68
4.3	Result	S	68
	4.3.1	Attachment of strains suspended in different media	68
	4.3.2	Attachment of mixed strains	70
	4.3.3	Attachment to the membranes and validation of method	71
	4.3.4	Attachment in presence of components of whey	72
	4.3.5	Cell surface hydrophobicity	73
	4.3.6	Cell surface charge	74
	4.3.7	Impact of cell surface hydrophobicity and charge on attachment	75
		4.3.7.1 Impact of cell surface hydrophobicity	75
		4.3.7.2 Impact of cell surface charge	77
4.4	Discus	ssion	79
4.5	Concl	usions	81

CHAPTER 5 GROWTH OF BIOFILM ON MEMBRANES 83

5.1	Introd	uction	83
5.2	Mater	ials and methods	85
	5.2.1	Sources of strains	85
	5.2.2	Preparation of medium	85
	5.2.3	Preparation of inocula	86
	5.2.4	Description of the CBR 90 and the target membrane surface	86
	5.2.5	Biofilm development	87
	5.2.6	CIP procedures	90
	5.2.7	Experimental design	91
	5.2.8	Scanning electron microscopy (SEM)	92
	5.2.9	Statistical analysis	92
5.3	Result	ts	93
	5.3.1	Biofilm growth	93
	5.3.2	Validation of time for sonication	95
	5.3.3	Impact of whey protein concentration, membrane type and	95
		strains	
	5.3.4	Scanning electron microscopy	101
5.4	Discus	ssion	102
5.5	Concl	usions	105
CHA	APTER	R 6 REMOVAL OF BIOFILMS FROM MEMBRANES	107
6.1		Introduction	107

6.2	Mater	ials and methods	109
	6.2.1	Sources of strains	109
	6.2.2	Preparation of medium	109
	6.2.3	Preparation of inocula	109
	6.2.4	Membranes	109
	6.2.5	Biofilm development	109
	6.2.6	Cleaners and sanitisers	110
	6.2.7	Sanitiser screening test	113
	6.2.8	Validation of centrifugation for recovering cells	113
	6.2.9	Statistical analysis	113
6.3	Result	S	114
	6.3.1	Validation of centrifugation for recovering cells	114
	6.3.2	The efficacy of standard CIP	114
	6.3.3	The efficacy of cleaners	114
	6.3.4	The efficacy of sanitisers	116
6.4	Discus	ssion	120
6.5	Concl	usions	122
CHA	APTER	7 FINAL DISCUSSION	123
REI	REFERENCES		
APP	PENDI	CES	151

APPENDIX I	A full factorial experimental design for testing the	151
	responses of three factors (whey protein	
	concentration, membrane type and strain) to growth	
	of Klebsiella biofilm in a CDC biofilm reactor	

APPENDIX II	Information on ingredients of some chemicals	152
-------------	--	-----

ABBREVIATIONS

Atomic Force Microscopy	AFM
Attenuated Total Reflection – Fourier Transform Infrared spectroscopy	ATR-FTIR
Autoinducer-2	AI-2
Bovine Albumin	BA
Bovine Serum Ablumin	BSA
Cellulose Acetate	CA
Cholerae Autoinducer 1	CAI-1
Clean-in place	CIP
Commercial Biofilm Reactor	CBR
Confocal Laser Scanning Microscopy	CLSM
3, 5-dinitrosalicylic acid	DNS
Electrolysed Water	EW
Extracellular Polymeric Substances	EPS
Free Available Chlorine	FAC
Free Available Ozone	FAO
Glycomacropeptides	GMP
Hydrophobic Interaction Chromotography	HIC
Microbial Adhesion to Hydrocarbon Assay	MATH
Microfiltration	MF
Milk Permeate	MP
Milk Protein Concentrate	MPC
Molecular Weight Cut-Off	MWCO
N-acylhomoserine Lactones	AHLs

Nanofiltration	NF
N-nonanoyl-cyclopentylamide	C ₉ -CPA
New Zealand's Biotech	NZBio
NEW Zealand Institute of Food Science and Technology	NZIFST
New Zealand Microbiological Society	NZMS
New Zealand Society for Biochemistry and Molecular Biology	NZSBMB
Optical Density	OD
Peracetic Acid	PAA
Phosphate Buffer Saline	PBS
Polyamide	PA
Polyethersulfone	PES
Polymerase Chain Reaction	PCR
Polysulphone	PS
Polyvinylidence Fluoride	PVDF
Reverse Osmosis	RO
Scanning Electron Microscopy	SEM
Skim Milk Agar	SMA
Standard Deviation	SD
Standard Plate Count Agar	SPCA
Thin Film Composites	TFC
Trans-membrane Pressure	TMP
Tryptocase Soy Broth	TSB
Ultrafiltration	UF
Whey Permeate	WP
Whey Protein Concentrate	WPC

LIST OF FIGURES

Figure		Page
2.1	Permeability of membranes in dairy manufacturing	28
2.2	Cross-flow filtration	29
2.3	Spiral-wound configuration of filtration membranes	30
2.4	Biofilm formation: Attachment, colonization and growth	32
2.5	Schematic representation of the flow cell used in monitoring biofilm development	44
2.6	The CBR 90 biofilm reactor	45
3.1	Surfaces of a piece of UF membrane after being CIP treated	55
3.2	Gram stain images of the microorganisms on a PES RO membrane photographed using a light microscope	55
3.3	Different species grew on the retentate side and permeate side of the same membrane	56
3.4	Standard curve for Bovine Serum (Bradford Assay). (R ² =0.9993)	58

3.5	Standard curve for glucose (DNS Assay). (R ² =0.9966)	58
4.1	The attachment expressed as CV-OD at 595 nm of strains to microtitre plates in different media in 4 h	69
4.2	The attachment expressed as CV-OD at 595 nm of mixed strains to microtitre plates in PBS (pH 6.5) after incubation for 4 h	70
4.3	Attachments to microtitre plates expressed as CV-OD at 595 nm of 3 <i>Klebsiella</i> strains (TR002, B001 and B006) in whey and in its 4 individual components	72
4.4	Cell surface hydrophobicity in different media (pH 6.5)	73
4.5	Cell surface charge in PBS pH 6.5 and whey permeate pH 6.5	74
4.6	Cell surface hydrophobicity and attachment to microtitre plates	76-77
4.7	Cell surface charge and attachment to microtitre plates	78
5.1	The typical concentrations of whey components from the beginning (module 1) stage to the final (module 14) stage of the UF membrane plant in the dairy manufacturing industry	84
5.2	The whole laboratory scale biofilm growth system	89
5.3	Main effects of single factors on biofilm growth	97

LIST OF FIGURES

5.4	The effect of two-factor interaction of membrane type and strains on biofilm growth	98
5.5	The effect of two-factor interaction of whey protein concentrations and strains on biofilm growth	99
5.6	The effect of two-factor interaction of membrane type and whey protein concentrations on biofilm growth	100
5.7	SE Micrographs of biofilm of <i>K. oxytoca</i> B006 on used PES membranes after 24 h incubation with 5 % whey	101
5.8	SE Micrograph of biofilm of <i>K</i> TR002 on a new PVDF membrane after 24 h incubation with 5 % whey	102
6.1	The efficacies of cleaners and sanitisers on controlling <i>K. oxytoca</i> biofilms on used PES membranes	119

21

LIST OF TABLES

Tabl	Table	
3.1	Details of membrane samples from New Zealand dairy manufacturing plants	53
3.2	Strains isolated from the dairy membrane plants	57
3.3	Protein and carbohydrate content of solid material from a PES RO membrane before and after CIP treatment	59
4.1	Plate counts $(\log_{10} \text{ CFU cm}^{-2})$ of the cells attached to the polysulfone membranes	71
5.1	CIP procedure for new membranes, obtained from the membrane supplier (Synder Filtration, Vacaville, CA, USA)	90
5.2	CIP procedure for used membranes, obtained from a New Zealand dairy manufacturing plant	91
5.3	Factors in the experimental design	92
5.4	Biofilm log_{10} density of two strains and their combination in whey on UF membranes after 24 h incubation	94
5.5	Validation of time for sonication by comparing detectable biofilm densities $(\log_{10} \text{ CFU cm}^{-2})$ based on plate counts	95

96

- concentration and membrane type on biofilm growth 6.1 Standard CIP for dairy membrane processing plants 110 Cleaners used to compare with the control (Sodium hypochlorite at pH 111 6.2 10.8-11) 6.3 Sanitisers used following the CIP 112 6.4 The efficacy of different cleaners in reducing the culturable cells in K. 115 oxytoca biofilms on membrane surfaces 6.5 Analysis of variance for culturable cell reductions in *K. oxytoca* biofilms 116 cleaned by different cleaners in Table 6.4
- **6.6** Reduction of culturable cells in *K. oxytoca* biofilms on cleaned 117 membrane surfaces by different sanitisers
- 6.7 Analysis of variance for culturable cell reductions in *K. oxytoca* biofilms 118 removed by different sanitisers in Table 6.6

5.6