Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

AN EVALUATION OF CHATHAM RISE PHOSPHORITE
AS A DIRECT-APPLICATION PHOSPHATIC FERTILIZER

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science
at Massey University

Alec Donald Mackay
1982
ज5810.s?

ABSTRACT

Chatham Rise phosphorite (CRP) occurs as nodules on the sea floor some 800 km to the east of the South Island of New Zealand. The phosphate component is a carbonate fluorapatite and the material contains approximately 9% phosphorus (P) and $25 \% \mathrm{CaCO}_{3}$. Several lines of evidence suggest that CRP has potential as a direct-application phosphatic fertilizer for pasture.

In an initial evaluation in the glasshouse, CRP was found to be an effective source of P for ryegrass when compared to superphosphate over six harvests with four soils. The form (powdered or pelletised) and method (surface applied or incorporated) of application of CRP were found to have a marked effect on the agronomic effectiveness of this P source in the glasshouse. The effectiveness of CRP, when compared at 90% of the yield maxima obtained with superphosphate, which was assigned a value of 100, decreased in the order of powdered and incorporated (100 to 106) > powdered and surface applied (96 to 100) > pelletised and surface applied (85 to 104) > pelletised and incorporated (83 to 90).

Results from a comprehensive, long-term field evaluation of CRP at four contrasting sites under permanent pasture over 3 years confirmed and extended the findings of the preliminary glasshouse study with CRP. Apart from some initial differences, pelletised CRP was as effective as superphosphate at all four sites and at two of the hill-country sites (Ballantrae and Wanganui) it showed a marked residual effect in the third year. This was particularly pronounced in the clover component of the sward at these two sites. In fact at these two sites a single, initial application of $70 \mathrm{kgP} \mathrm{ha}^{-1}$ as CRP was agronomically as effective in the
third year as three annual applications of $35 \mathrm{kgP} \mathrm{ha}^{-1}$ as superphosphate. This finding has implications to the strategy of fertilizer use. The origin of the marked residual effect shown by CRP at Ballantrae and Wanganui in the third year appears to result from the effect of CaCO_{3} on the rate of release of P from CRP.

The findings that pelletised CRP was almost always as effective as both powdered CRP and superphosphate in the field contrasts with the results of the preliminary glasshouse study with four soils. This discrepancy probably results from the fact that in glasshouse studies a number of factors which can operate in the field and which may contribute to an increased effectiveness of a surface-applied, pelletised phosphate rock ($P R$) material are excluded (e.g. earthworms).

In a glasshouse study, earthworms increased the effectiveness of CRP as a source of P to ryegrass by 15 to 30% over seven harvests. Subsequent studies showed that both the burrowing and casting activity of earthworms indirectly increased the availability to ryegrass of P in the $P R$ by improving the physical distribution and degree of contact of the PR particles with the soil. Interestingly, good agreement was found between the agronomic effectiveness of pelletised CRP in the field and in the glasshouse when earthworms were included as a treatment in the glasshouse. Consequently, care must be taken in extrapolating to the field situation, the results obtained with pelletised PR materials in the glasshouse in the absence of biological mixing.

In a comparison in the glasshouse, using six soils and both ryegrass and white clover as indicator species, CRP was as effective as North Carolina phosphate rock (NCPR) and Sechura phosphate rock (SPR), both of which are reactive PR materials. The agronomic data from this glasshouse study were used to evaluate a number of conventional, single chemical-
extraction procedures used for assessing the likely agronomic effectiveness of $P R$ materials. Of these, 2% formic acid appears to offer the most promise. However, sequential extraction appears to be necessary with PR materials which contain appreciable amounts of CaCO_{3}.

A procedure involving a single extraction with 0.5 M NaOH was developed for measuring the extent of dissolution of a PR in soil. Because apatite minerals are largely insoluble in dilute NaOH and because this reagent extracts sorbed inorganic P, increases in 0.5 M NaOH -extractable P in a soil to which a PR is added, provide a good estimate of the amount of P dissolved and retained on sorption sites. The extent of dissolution of SPR, measured by NaOH extraction, was found to vary from 22% of added P on the low P-sorbing Tokomaru soil to 48% on the high P-sorbing Egmont soil during incubation at $15^{\circ} \mathrm{C}$ for 90 days. A high correlation ($\mathrm{r}=0.935$ **) was obtained for the relationship between the dissolution of SPR, measured by NaOH extraction, and the P -sorption capacity of the six soils used.

Whereas increasing the P status of the Wainui soil, by the addition of $\mathrm{KH}_{2} \mathrm{PO}_{4}$, had no measurable effect on the extent of dissolution of SPR, increasing addition of $\mathrm{Ca}(\mathrm{OH})_{2}$ markedly decreased the dissolution of SPR in this soil. Of the decrease measured in the dissolution of SPR on liming the Wainui soil from pH 5.2 to $6.9,75-79 \%$ of the decrease could be accounted for by the effect of $C a$, which also increases on liming. Results with the Egmont soil indicate that a PR can dissolve at pH 6.5 . This suggests that the effect of a higher pH on dissolution is decreased in a soil of high P-sorption capacity.

Although the extent of dissolution of SPR increased as the P-sorption capacity of the soils increased, the amounts of water-, Bray-, and bicarbonate-extractable P in the same soils decreased. Of these three estimates of plant-available P, both the Bray and bicarbonate procedures
were found to be useful indicators of short-term, plant-available P when SPR and CRP were added to three contrasting soils. Of the two procedures, the Bray procedure accounted for more of the variability, possibly reflecting the difference in the mechanisms by which these two extractants remove P from soil. In contrast, a single waterextraction procedure grossly underestimated the amount of short-term, plant-available P in the soil to which a $P R$ was added.

A simple model, based on a modified Mitscherlich equation, was developed to describe and predict the dissolution of SPR in soil. The model, which was developed and evaluated using contrasting soils, appears to have good practical application and should prove useful in future studies of the reactions of $P R$ materials in soils.

Although not yet commercially available, CRP appears to have very good potential as a direct-application P fertilizer for pasture and, of particular relevance to hill country farming, it shows a good residual effect. A possible disadvantage is the relatively low P content.

ACKNOWLEDGEMENTS

I am extremely grateful to:
Professor J. Keith Syers for supervision, unending enthusiasm and encouragement during my studies.

Dr. P.E.H. Gregg for supervision and friendship during my studies.
Dr. J.A. Springett and Mr. R.W. Tillman for assistance and helpful discussion with several aspects of the study.

Other members of the Department of Soil Science, particularly Lance Currie and Martin Lewis.

Mr. R. Harrison and Mr. H.M. Speed for allowing trials to be sited on their farms and whose interest in the project has been much appreciated.

Dr. R.W. Brougham (Director, DSIR Grasslands Division, Palmerston North) for making land available at the Ballantrae Hill Country Research Station and Mr. M.G. Lambert (also DSIR Grasslands Division) for useful comments on the field study at Ballantrae.

Messrs. D.H. Hopcroft and R. Bennett (DSIR, Palmerston North) for assistance in preparing the scanning electron micrographs.

Dianne, for creating order out of disorder.
Massey University for Helen E. Akers and Johannes August Anderson scholarships.

Lastly, but most important, to my family.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES xi
LIST OF TABLES xxi
LIST OF PLATES xxvii
CHAPTER 1
INTRODUCTION 1
CHAPTER 2
REVIEW OF LITERATURE 4
2.1 Forms of Phosphorus in Phosphate Rock Materials 4
2.2 Origin of Phosphate Rock Materials 6
2.2.1 Apatite deposits of igneous origin 6
2.2.2 Marine phosphorites 6
2.2.3 Phosphatized rocks derived from guano 8
2.3 Composition of Apatite in Phosphate Rock Materials 9
2.4 Effect of Apatite Composition on the Potential Agronomic Effectiveness of Phosphate Rock Materials 11
CHAPTER 3
A PRELIMINARY EVALUATION OF CHATHAM RISE PHOSPHORITE AS A DIRECT-APPLICATION PHOSPHATIC FERTILIZER 12
3.1 Introduction 12
3.2 Materials and Method 14
3.2.1 Phosphate sources 14
3.2.2 Soils used in glasshouse study 19
3.2.3 Conduct of glasshouse study 20
Page
3.3 Results and Discussion 22
3.3.1 Effectiveness of powdered Chatham Rise phosphorite when compared to superphosphate 22
3.3.2 Effectiveness of pelletised Chatham Rise phosphorite when compared to superphosphate 28
3.4 General Discussion 32
CHAPTER 4
FIELD EVALUATION OF CHATHAM RISE PHOSPHORITE 36
4.1 Introduction 36
4.2 Materials and Methods 39
4.2.1 Field-trial selection and description 39
4.2.2 Phosphate sources used 39
4.2.3 Fertilizer treatments 44
4.2.4 Field-trial design and establishment 44
4.2.5 Sampling techniques 47
4.2.5.1 Assessment of pasture production 47
4.2.5.2 Assessment of botanical composition 48
4.2.5.3 Earthworm populations 49
4.2.5.4 Soil sampling 49
4.2.6 Soil and plant analysis 49
4.2.6.1 Soil analysis 49
4.2.6.2 Plant analysis 50
4.3 Results and Discussion 50
4.3.1 Sulphur and phosphorus responses 50
4.3.1.1 Pasture production 50
4.3.1.2 Clover production 53
4.3.2 Effect of pelletising Chatham Rise phosphorite 55
4.3.2.1 Pasture and clover production 55
4.3.2.2 Phosphorus concentration in pasture and phosphorus uptake by pasture 57
4.3.3 Initial effectiveness of Chatham Rise phosphorite 60
4.3.3.1 Pasture production 60
4.3.3.2 Botanical composition of the sward and clover production 62
4.3.3.3 Phosphorus concentration in pasture and phosphorus uptake by pasture 64
4.3.3.4 Estimates of plant-available phosphorus in soil 67

Page

4.3.4 Residual effect of Chatham Rise phosphorite 72
4.3.4.1 Pasture production 72
4.3.4.2 Botanical composition of the sward and clover production 77
4.3.4.3 Phosphorus concentration in pasture and phosphorus uptake by pasture 81
4.3.4.4 Extractable phosphorus in soil 89
4.3.5 Effectiveness of superphosphate and Chatham Rise phosphorite as phosphatic fertilizers 96
4.4 General Discussion 100
CHAPTER 5
THE EFFECT OF EARTHWORMS ON THE AVAILABILITY OF PHOS PHORUS IN A PHOSPHATE ROCK 111
5.1 Introduction 111
5.2 Materials and Methods 113
5.2.1 Soil used in experiments 114
5.2.2 Glasshouse experiment involving earthworms 114
5.2.3 Incorporation experiment involving tillage 116
5.2.4 Incubation study with earthworms 121
5.2.5 Soil ingestion trials with earthworms 122
5.3 Results and Discussion 123
5.3.1 Effect of earthworms on the plant availability of phosphorus in superphosphate and Chatham Rise phosphorite 123
5.3.1.1 Changes in earthworms population 123
5.3.1.2 Effectiveness of superphosphate 126
5.3.1.3 Effectiveness of Chatham Rise phosphorite 128
5.3.2 Possible mechanisms of incorporation and the possible effect of ingestion of phosphate rock particles by earthworms 132
5.3.2.1 Incorporation experiment involving tillage 132
5.3.2.2 Incubation studies with earthworms 134
5.3.2.3 Soil ingestion trials with earthworms 144
5.4 General Discussion 148

Page

CHAPTER 6

METHODS FOR ASSESSING AND PREDICTING THE AGRONOMIC EFFECTIVENESS OF PHOSPHATE ROCK MATERIALS 157
6.1 Introduction 157
6.2 Materials and Methods 160
6.2.1 Phosphate sources used 160
6.2.2 Conduct of glasshouse study 160
6.2.3 Assessment of chemical extraction procedures 164
6.2.4 Outline of new approaches 165
6.2.4.1 Studies with hydrous ferric oxide gel 165
6.2.4.2 Electro-ultrafiltration 166
6.3 Results and Discussion 168
6.3.1 Agronomic evaluation of phosphate rock materials in the glasshouse 168
6.3.1.1 Response of perennial ryegrass 168
6.3.1.2 Response of white clover 176
6.3.2 Comparison of chemical extraction procedures for predicting agronomic effectiveness of phosphate rock materials 182
6.3.2.1 Relationships for perennial ryegrass 184
6.3.2.2 Relationships for white clover 191
6.3.3 Two new approaches for assessing the agronomic effectiveness of phosphate rock materials 195
$6: 3: 3.1$ Hydrous ferric oxide gel 195
6.3.3.2 Electro-ultrafiltration 201
6.4 General Disficuş̨ion 207
CHAPTTER 7
REACTIONS OF PHOSPHATE ROCK MATERIALS IN SOILS 214
7.1 Introduction 214
7.2 Materials and Methods 217
7.2.1 Phosphate sources and soils 217
7.2.2 Preliminary incubation studies on the effect of phosphate rock materials on extractable phosphorus in soil 220
7.2.3 An evaluation of laboratory estimates of plant-available phosphorus in soil 220
7.2.4 Effect of soils of contrasting phosphorus characteristics on the reactions of phosphate rock and superphosphate in soils 222
7.2.5 Evaluation of the effect of soil pH and exchangeable calcium on the reactions of phosphate rock and superphosphate in soils 224
7.3 Results and Discussion 225
7.3.1 Changes in extractable phosphorus in soil to which a phosphate rock and superphosphate were added 225
7.3.1.1 Effect of phosphate rock solubility on water-extractable phosphorus in soil 225
7.3.1.2 Effect of rate of application of superphosphate and a phosphate rock on water- and bicarbonate-extractable phosphorus in soil 228
7.3.2 Relationship between extractable phosphorus in soil and uptake of phosphorus by plants 235
7.3.3 Reactions of superphosphate and a phosphate rock in soils of contrasting phosphorus characteristics 245
7.3.3.1 Effect of phosphate-sorption capacity on the reactions of superphosphate and a phosphate rock in soils 248
7.3.3.2 Influence of soil phosphate status on the reactions of superphosphate and a phosphate rock in a soil 264
7.3.4 Effect of soil pH and exchangeable calcium on the reactions of superphosphate and a phosphate rock in soil 270
7.3.5 Initial development of a simple model to describe the dissolution of phosphate rock materials in soils. 276
7.4 General Discussion 287
SUMMARY AND CONCLUSIONS 298
BIBLIOGRAPHY 304

LIST OF FIGURES

3.1 Relative cumulative yield data for six harvests with
the four soils as influenced by phosphate source and
placement (surface-applied superphosphate $=100$).
$\mathrm{a}=$ Wainui silt loam, $b=$ Ramiha silt loam,
$c=$ Kumeroa silt loam, and $d=$ Tokomaru silt loam 26
3.2 Relative cumulative herbage phosphorus uptake for
six harvests with the four soils as influenced by
phosphate source and placement (surface-applied
superphosphate $=100$) $\quad a=$ Wainui silt loam,
b $=$ Ramiha silt loam, $c=$ Kumeroa silt loam, and
d $=$ Tokomaru silt loam 29
3.3 Changes in the particle-size distribution of pelletised Chatham Rise phosphorite as a function of time of storage at 80% relative humidity and $20^{\circ} \mathrm{C} . \quad \mathrm{A}=<125-\mu \mathrm{m}$ fraction, $\mathrm{B}=250-125-\mu \mathrm{m}$ fraction, and $C=500-250-\mu \mathrm{m}$ fraction. 31
4.1 Clover and pasture production in the first (a) and second (b) year at the three hill-country sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5% level. 56
4.2 Phosphorus uptake by pasture in the first (a) and second (b) year at the three hill-country sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5\% level 61
4.3 Clover and pasture production in the first year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5\% level . 63
4.4 Phosphorus uptake by pasture in the first year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5\% 1eve1 .68
4.5 Clover and pasture production in the second year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5% leve1 75
4.6 Clover and pasture production in the third year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5\% level76
4.7 Changes in the phosphorus concentration in pasture over three years at the three hill-country sites as influenced by phosphate source. $A=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as Chatham Rise phosphorite, $B=$ annual application of 35 kgP ha as superphosphate, $C=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as superphosphate, and $\mathrm{D}=$ control. $\mathrm{a}=\mathrm{Ballantrae}, \mathrm{b}=$ Wanganui, and $\mathrm{c}=$ Pahiatua . .82
4.8 Changes in the phosphorus concentration in pasture over three years at Tokomaru as influenced by phosphate source. $A=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as Chatham Rise phosphorite, $B=$ single initial application of 70 kgP ha superphosphate, $C=$ annual application of 35 kgP ha as superphosphate, $D=$ annual application of 35 kgP $h a^{-1}$ as Chatham Rise phosphorite, and $E=$ control. $\mathrm{a}=$ single initial application of 70 kgP ha $\mathrm{b}=$ annual application of 35 kgP ha84
4.9 Phosphorus uptake by pasture in the second year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5% level
4.10 Phosphorus uptake by pasture in the third year at the four sites as influenced by phosphate source. Least significant difference (LSD) at the 1% and 5\% level87
4.11 Changes in bicarbonate-extractable phosphorus in soil over the three years at the three hill-country sites as influenced by phosphate source. $\mathrm{A}=$ annual application of $35 \mathrm{kgP} \mathrm{ha}^{-1}$ as superphosphate, $B=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as Chatham Rise phosphorite, $\mathrm{C}=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as superphosphate, and $\mathrm{D}=$ control. $\quad \mathrm{a}=$ Ballantrae, $\mathrm{b}=$ Wanganui, and $c=$ Pahiatua90
4.12 Changes in bicarbonate-extractable phosphorus in soil over the three years at Tokomaru as influenced by phosphate source. $A=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}^{-1}$ as superphosphate, $\mathrm{B}=$ single initial application of 70 kgP ha as Chatham Rise phosphorite, $\mathrm{C}=$ annual application of $35 \mathrm{kgP} \mathrm{ha}^{-1}$ as superphosphate, $\mathrm{D}=$ annual application of $35 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as Chatham Rise phosphorite, $E=$ control. $\quad a=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$, and $\mathrm{b}=$ annual application of 35 kgP ha91
4.13 Changes in phosphorus concentration in pasture over three years at Ballantrae as influenced by phosphate source and topdressing strategy. $A=$ single initial application of $70 \mathrm{kgP} \mathrm{ha}{ }^{-1}$ as Chatham Rise phosphorite, $B=$ single initial application of 70 kgP ha superphosphate, $\mathrm{C}=$ annual application of 35 kgP ha as superphosphate, and $D=$ control. $a=$ single initial application and b = single versus annual application . . . 101
5.1 Yield of ryegrass (a) and phosphorus uptake by ryegrass (b) over seven harvests as influenced by earthworms and the source and method and rate of application of phosphate124
5.2 Relative cumulative yield of ryegrass (a) and
phosphorus uptake by ryegrass (b) for seven
harvests with superphosphate in the presence
and absence of earthworms (surface-applied
superphosphate in the absence of earthworms = 100).
A $=$ surface-applied superphosphate,
B $=$ superphosphate incorporated and $C=$ control. 127
5.3 Amounts of water-extractable phosphorus in the soil from three depths as influenced by earthworms and the source and method of application of phosphate $\mathrm{a}=0-2 \mathrm{~cm}, \quad \mathrm{~b}=2-4 \mathrm{~cm}, \quad \mathrm{c}=4-6 \mathrm{~cm}$. 129
5.4 Relative cumulative yield of ryegrass (a) and phosphorus uptake by ryegrass (b) for seven harvests with pelletised Chatham Rise phosphorite in the presence and absence of earthworms (surface-applied superphosphate in the absence of earthworms $=100$). D = pelletised Chatham Rise phosphorite, $E=$ pelletised Chatham Rise phosphorite incorporated, and $\mathrm{C}=$ control131

5.5 Amounts of water-extractable soil phosphorus at three
depths ($0-2,2-4$, and $4-6 \mathrm{~cm}$) after the first and fourth
harvests as influenced by tillage and the form of
application of phosphate. Pelletised Sechura phosphate
rock (SPR) treatments were surface-applied and powdered
Sechura phosphate rock was incorporated (0-4 cm).
5.6 Amounts of Bray-extractable phosphorus as influenced by the addition of Sechura phosphate rock (SPR) in the presence and absence of earthworms over 70 days.
Control $=$ no added Sechura phosphate rock
5.7 Amounts of 0.5 M NaOH -extractable phosphorus in soil and casts (collected after 7 days) as influenced by the addition of Sechura phosphate rock (SPR) in the presence and absence of earthworms over 70 days. Control = no added Sechura phosphate rock 136
5.8 Percentage of soil affected by the activity of
L. rubellus and $\underline{\text { A. caliginosa as measured by }}$ casts (a), burrows (b), and casts and burrows (c)
on an area basis . 145
5.9 Schematic representation of the origin of the effect of earthworms on the availability of phosphorus in a phosphate rock (PR) 156
6.1 Relative cumulative ryegrass yield data for four harvests as influenced by phosphate source (superphosphate $=100$). $\mathrm{a}=$ Ramiha, $\mathrm{b}=$ Konini, and $c=$ Wainui 173
6.2 Relative cumulative white clover yield data for four harvests as influenced by phosphate source (superphosphate $=100$). $\quad \mathrm{a}=$ Ramiha, $\mathrm{b}=$ Konini, and $c=$ Wainui. 178
6.3 Relative agronomic effectiveness of the five phosphate rock materials using yield of ryegrass (a) and phosphorus uptake by ryegrass (b) over individual and combined harvests at both rates of application on six soils 185
6.4 Relative agronomic effectiveness of the three phosphate rock materials using yield of white clover(a) and phosphorus uptake by white clover (b) overindividual and combined harvests at both rates ofapplication on three soils193
6.5 Release of phosphorus to hydrous ferric oxide gel (pH 6.0) as influenced by phosphate source during 17 days 196
6.6 Effect of pH of hydrous ferric oxide gel on the dissolution of Sechura phosphate rock (SPR) and Tennessee phosphate rock (TPR) during 17 days of dialysis. $A=p H 3, B=p H 4, C=p H 5$, and $D=p H 6 . \quad .199$
6.7 Effect of pH of hydrous ferric oxide gel (Fe gel) and the presence of a cation exchange resin (CER) on the dissolution of Sechura phosphate rock during 17 days of dialysis. $A=p H 4, B=p H 5$, $\mathrm{C}=\mathrm{pH} 6$ and $\mathrm{D}=$ deionized water 200
6.8 Release of phosphorus to hydrous ferric oxide gel (pH 4.0) containing a cation exchange resin, as influenced by phosphate source during 17 days202
6.9 Release of phosphorus from Sechura phosphate rock during electro-ultrafiltration in the automatic mode as influenced by solution:solid ratio.
$A=40: 1, B=100: 1, C=250: 1, D=500: 1$, $\mathrm{E}=750: 1$, and $\mathrm{F}=1000: 1$. 203
6.10 Cumulative amount of phosphorus released from Sechura phosphate rock during electro-ultrafiltration in the manual mode, with 10 , $5-m i n$ extractions at 400 V at a solution:solid ratio of $250: 1$, as influenced by solution conductivity. $A=1.25 \mu \mathrm{~S}, \mathrm{~B}=12 \mu \mathrm{~S}$, $C=31 \mu \mathrm{~S}, \mathrm{D}=55 \mu \mathrm{~S}$, and $\mathrm{E}=72 \mu \mathrm{~S}$. 205
6.11 Cumulative amount of phosphorus released during electro-ultrafiltration in the manual mode, with 10 , 5-min extractions at 400 V at a solution, deionized water (a) and $0.03 \mathrm{mg} \mathrm{NaCl} \mathrm{ml}^{-1}$ solution: solid ratio of $250: 1$, as influenced by the phosphate source 206
7.1 Change in water-extractable phosphorus in the soil over 90 days following Sechura phosphate rock (SPR) or Tennessee phosphate rock (TPR) addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to three contrasting soils. $a=$ Wainui, $b=$ Konini, and $c=$ Ramiha 226
7.2 Change (Δ) in water- and bicarbonate-extractable phosphorus in soil over 300 days following superphosphate addition at three rates to two soils. $a=$ Wainui and b = Ramiha229

7.3 Change in water-extractable phosphorus in soil over
300 days following Sechura phosphate rock (SPR) and
Chatham Rise phosphorite (CRP) addition at three
rates to two soils. $a=$ Wainui and $b=$ Ramiha. 231
7.4 Change in bicarbonate-extractable phosphorus in soil over 300 days following Sechura phosphate rock (SPR) and Chatham Rise phosphorite (CRP) addition at three rates to two soils. $a=$ Wainui and $b=$ Ramiha . . 234
7.5 Recovery of phosphorus from three soils of contrasting phosphate-sorption capacity over 300 days following superphosphate addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil. $A=$ water-extractable phosphorus, $B=$ bicarbonateextractable phosphorus, $C=$ Bray-extractable phosphorus and $D=$ uptake of phosphorus by ryegrass.
$\mathrm{a}=$ Wainui, $\mathrm{b}=$ Konini and $\mathrm{c}=$ Ramiha 236
7.6 Relationship between uptake of phosphorus by ryegrass and amounts of (a) water-, (b) bicarbonate- and, (c) Bray-extractable phosphorus in three contrasting soils at various times following superphosphate addition at $500 \mu \mathrm{gP} \mathrm{g} \mathrm{g}^{-1}$ of soil 238
7.7 Recovery of phosphorus from three soils of contrasting phosphate-sorption capacity over 300 days following Sechura phosphate rock (SPR) addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil. $A=$ water-extractable phosphorus, $B=$ bicarbonate-extractable phosphorus, $C=B r a y-$ extractable phosphorus and $D=$ uptake of phosphorus by ryegrass. $a=$ Wainui, $B=$ Konini and $c=$ Ramiha 241
7.8 Recovery of phosphorus from three soils of contrasting phosphate-sorption capacity over 300 days following Chatham Rise phosphorite (CRP) addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil. $A=$ water-extractable phosphorus, $B=$ bicarbonate-extractable phosphorus, $C=B r a y-$ extractable phosphorus and $D=$ uptake of phosphorus by ryegrass. $\mathrm{a}=$ Wainui, $\mathrm{b}=$ Konini and $\mathrm{c}=$ Ramiha 243
7.9 Relationship between uptake of phosphorus by ryegrass and amounts of (a) water-, (b) bicarbonate-, and (c) Bray-extractable phosphorus in three contrasting soils at various times following either Sechura phosphate rock or Chatham Rise phosphorite addition at $500 \mathrm{gP} \mathrm{g}^{-1}$ of soil..246
7.10 Change (Δ) in (a) water- and (b) bicarbonate-extractable phosphorus in soil over 90 days following superphosphate addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to six soils of contrasting phosphate-sorption capacity 249
7.11 Change (Δ) in (a) bicarbonate- and (b) Bray-extractable phosphorus in soil over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to six soils of contrasting phosphate sorption capacity 250
7.12 Change (Δ) in NaOH-extractable phosphorus over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP}$ g^{-1} of soil to six soils of contrasting phosphatesorption capacity256
7.13 Relationship between dissolution of Sechura phosphate rock (SPR) or Tennessee phosphate rock (TPR) in soils, measured by increases (Δ) in $N a O H-e x t r a c t a b l e ~ p h o s p h o r u s, ~$ and phosphate-sorption capacity of the soils 257
7.14 Changes in NaOH -extractable phosphorus in soil over 90 days following Tennessee phosphate rock (TPR), Chatham Rise phosphorite (CRP), or Sechura phosphate rock (SPR) addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to three soils of contrasting phosphate-sorption capacity. $\mathrm{a}=$ Wainui, $\mathrm{b}=$ Konini and $\mathrm{c}=$ Ramiha 260
7.15 Relationship between organic carbon content and phosphate-sorption capacity of six soils. Data for Egmont soil not included in linear regression analysis . . . 262
7.16 Change in water-extractable phosphorus in the soil over 90 days following superphosphate addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to the Wainui soil with increasing initial phosphate status (PO, P1, P2, and P3). . 265
7.17 Change in bicarbonate-extractable phosphorus in soil over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to the Wainui soil with increasing initial phosphate status (P0, P1, P2, and P3). 266
7.18 Changes in Bray-extractable phosphorus in soil over 90 days following (a) Sechura phosphate rock (SPR) and (b) Tennessee phosphate rock (TPR) addition at $500 \mu \mathrm{gP} \mathrm{g}{ }^{-1}$ of soil to the Wainui soil with increasing initial phosphate status (PO, P1, P2, P3) 267
7.19 Changes in NaOH -extractable phosphorus in soil over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to the Wainui soil with increasing initial phosphate status (PO, P1, P2, and P3) 269
7.20 Change in bicarbonate-extractable phosphorus in soil over 90 days following superphosphate addition at $500 \mu \mathrm{gP} \mathrm{g} \mathrm{g}^{-1}$ of soil to the Wainui soil without (o) and with increasing pH and exchangeable Ca ($\mathrm{pH} 1, \mathrm{pH} 2$, and pH 3) or increasing exchangeable Ca ($\mathrm{Ca} 1, \mathrm{Ca} 2$, and Ca 3). Control is for no Sechura phosphate rock addition . 274
7.21 Change in (a) bicarbonate- and (b) Bray-extractable phosphorus in soil over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to the Wainui soil without (o) and with increasing pH and exchangeable $\mathrm{Ca}(\mathrm{pH} 1, \mathrm{pH} 2$, and pH 3$)$ or increasing exchangeable Ca ($\mathrm{Ca} 1, \mathrm{Ca}$ 3, and Ca 3). Control is for Sechura phosphate rock addition 275
7.22 Change in NaOH-extractable phosphorus in soil over 90 days following Sechura phosphate rock addition at $500 \mu \mathrm{gP} \mathrm{g}^{-1}$ of soil to the Wainui soil without (o) and with increasing pH and exchangeable Ca ($\mathrm{pH} 1, \mathrm{pH} 2$ and pH 3) or increasing exchangeable Ca ($\mathrm{Ca} 1, \mathrm{Ca} 2$, and Ca 3). Control is for no Sechura phosphate rock addition 277
7.23 Fitted curves, calculated from the modified Mitscherlich equation, for describing the dissolution of Sechura phosphate rock in four soils, expressed as $\Delta \mathrm{NaOH}$-extractable phosphorus values 279
7.24 Curves calculated from the modified Mitscherlich equation with a constant curvature coefficient ($c=0.137$) for describing the dissolution of Sechura phosphate rock in four soils, expressed as $\Delta \mathrm{NaOH}$-extractable phosphorus values. Actual data points indicated by *. 281
7.25 Relationship between asymptote (A) values obtained from a recalculated multiple regression equation (Predicted A) and A values calculated from the modified Mitscherlich equation using a constant curvature coefficient (Actual A) for the dissolution of Sechura phosphate rock in the thirteen soils 286

LIST OF TABLES

TablePage
3.1 Location and total phosphorus and calcium carbonate contents of Chatham Rise phosphorite samples from individual sites on the Chatham Rise 15
3.2 Particle-size distribution of powdered Chatham Rise phosphorite using the "end-point" method 17
3.3 Some physical and chemical characteristics of the phosphate sources 18
3.4 Some characteristics of the soils 21
3.5 Total yield (g) in six harvests of perennial ryegrass as influenced by phosphate source, rate, and placement. Treatments 3-11 surface applied, treatments 12-17 incorporated in upper 2 cm of soil 23
3.6 Total phosphorus uptake (mg) in six harvests by perennial ryegrass as influenced by phosphate source, rate, and placement. Treatments and Duncan's symbols as in Table 3.5. 24
3.7 Phosphorus concentration ($\mathrm{mg} \mathrm{g}^{-1}$) in perennial ryegrass as influenced by phosphate source and placement. Treatments as in Table 3.5 27
4.1 Location, farm type, and past fertilizer history of field trial sites 40
4.2 Several characteristics of the soils 43
4.3 Several physical and chemical characteristics of superphosphate, monocalcium phosphate (MCP), and Chatham Rise phosphorite (CRP) 45
4.4 Fertilizer treatments used at Ballantrae, Wanganui, and Pahiatua (1-9 in each case) and at Tokomaru (1-8 and 1-10). 46
4.5 Pasture production at the four sites in the first and second years as influenced by phosphorus and sulphur addition 51
4.6 Clover production at the four sites in the first and second years as influenced by phosphorus and sulphur addition 54
4.7 Numbers of L. rubellus and A. caligninosa at the four sites and in the surrounding pastures in the Autumn of 1981 58
4.8 Phosphorus concentration in pasture in initial harvests of the first year at the three hill- country sites as influenced by phosphate source 59
4.9 Nitrogen uptake by pasture in the first year at the four sites as influenced by phosphate source 65
4.10 Phosphorus concentration in pasture in initial harvests of the first year at the four sites as influenced by phosphate source 66
4.11 Bicarbonate- and Bray-extractable phosphorus in the soil five months after the addition of either super- phosphate or Chatham Rise phosphorite (CRP) at the four sites 69
4.12 Regression equations and correlation coefficients between phosphorus uptake by pasture in the first year and either Bray-, bicarbonate-, or water-extractable phosphorus in soil five months after the addition of either superphosphate or Chatham Rise phosphorite at the three hill country sites. . 71
4.13 Bicarbonate-extractable phosphorus in the soil at the end of the first year at the four sites as influenced by phosphate source 73
4.14 Average clover content of the sward in the spring and summer harvests of the second and third years at the four sites as influenced by phosphate source 78
4.15 Nitrogen uptake by pasture in the second and third year at the three hill-country sites as influenced by phosphate source 80
4.16 Apparent recovery of phosphorus by pasture over two and a half years at Pahiatua and three years at Ballantrae, Wanganui, and Tokomaru as influenced by phosphate source 88
4.17 Regression equations and correlation coefficients between phosphorus uptake by pasture in the second year and either Bray-, bicarbonate-, or water-extractable phosphorus in the soil at the beginning of the second year to which either superphosphate or Chatham Rise phosphorite was added as a single application in the first year. 934.18 Regression equations and correlation coefficientsbetween phosphorus uptake by pasture in the third yearand either Bray-, bicarbonate-, or water-extractablephosphorus in the soil at the beginning of the thirdyear to which either superphosphate or Chatham Risephosphorite was added as a single application in thefirst year94
4.19 Recovery of phosphorus by 0.5 M NaOH at the end of the third year and apparent recovery of phosphorus by pasture during the two and a half years at Pahiatua and three years at Ballantrae, Wanganui and Tokomaru as influenced by phosphate source 97
5.1 Some chemical characteristics of Tokomaru silt loam from three depths 115Table
5.2 Changes in field populations of earthworms under permanent pasture from July 1978 to February 1979 117
5.3 Some physical and chemical characteristics of Sechura phosphate rock (SPR) and superphosphate 119
5.4 Total yield of ryegrass and phosphorus uptake by ryegrass over four harvests as influenced by tillage and the source, form, method, and rate of application of phosphate 120
5.5 Number and weight of earthworms present at the start (July 1978) and at the end (February 1979) of the experiment 125
5.6 Bicarbonate-extractable soil phosphorus ($\mu \mathrm{g} \mathrm{g}^{-1}$) values at 70 days as influenced by the source of phosphate addition of organic matter, and earthworms. Treatments 1-3 earthworms absent; treatments 4-6 earthworms present 143
6.1 Total phosphorus and calcium carbonate contents of the phosphate sources 161
6.2 Some characteristics of the soils 162
6.3 Total yield (g) in four harvests of perennial ryegrass on six soils as influenced by phosphate source and rate of application 169
6.4 Total P uptake (mg) in four harvests by perennial ryegrass on six soils as influenced by phosphate source and rate of application 171
6.5 Total yield (g) in four harvests of white clover on three soils as influenced by phosphate source and rate of application 1776.6 Total phosphorus uptake (mg) in four harvests by whiteclover on four soils as influenced by phosphate sourceand rate of application181
6.7 The solubility of the phosphate sources (\% of total P) measured by the various chemical extraction procedures 183
6.8 Correlation coefficients between amounts of phosphorus extracted by the indicated extractant and yield of ryegrass at the first harvest on six soils 186
6.9 Correlation coefficients between amounts of phosphorus extracted by the indicated extractant and yield of ryegrass at the first, second, third, and fourth harvests on the Ramiha silt loam and Maharahara sandy loam. Calciphos is excluded from calculation 188
6.10 Correlation coefficients between amounts of phosphorus by the indicated extractant and phosphorus uptake by the ryegrass at the first harvest on six soils 190
6.11 Correlation coefficients between amounts of phosphorus extracted by the indicated extractant and phosphorus uptake by the ryegrass at the first, second, third, and fourth harvests on the Ramiha silt loam and Maharahara sandy loam. Calciphos is excluded from calculations 192
6.12 Correlation coefficients between amounts of phosphorus extracted by the indicated extractant and yield of white clover and phosphorus uptake by white clover at the first harvest on three soils 194
6.13 Effect of phosphate source on the pH of the hydrous ferric oxide gel suspension over 14 days of dialysis 198
7.1 Some physical and chemical characteristics of super- phosphate, Tennessee phosphate rock (TPR), Sechura phosphate rock (SPR), and Chatham Rise phosphorite (CRP) 218
7.2 Some chemical characteristics of the six soils 219
7.3 Total counts and specific activity of ${ }^{32} \mathrm{P}$ in bicarbonateand Bray extracts of four soils of contrasting phosphate-sorption capacity254
7.4 Dissolution of Tennessee phosphate rock (TPR), Sechura phosphate rock (SPR), and superphosphate, measured by NaOH extraction at 90 days, expressed as increases (\triangle) in 0.5 M NaOH -extractable phosphorus in soil and as a percentage of the total phosphorus added (500 $\mu \mathrm{gP} \mathrm{g} \mathrm{g}^{-1}$ of soil 258
7.5 Effect of adding increasing amounts of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ on the phosphate status of Wainui silt loam at 42 days 268
7.6 Effect of adding increasing amounts of $\mathrm{Ca}(\mathrm{OH})_{2}$ or CaCl_{2} on pH and exchangeable Ca of Wainui silt loam at 42 days 271
7.7 Dissolution of Tennessee phosphate rock (TPR), Sechura phosphate rock (SPR), and superphosphate, measured by NaOH extraction at 90 days, as influenced by pH and exchangeable Ca of Wainui silt loam, and expressed as increases (Δ) in $0.5 \mathrm{M} \mathrm{NaOH-extractable} \mathrm{phosphorus} \mathrm{in}$ soil and as a percentage of the total phosphorus added (500 $\mu \mathrm{gP} \mathrm{g}^{-1}$ of soil) 274
7.8 Values for asymptote (A) and curvature coefficient (c) calculated from the modified Mitscherlich equation describing the dissolution of Sechura phosphate rock in soils and an estimate (r^{2}) of the fit of the exponential curve to the experimental 280
7.9 Values for asymptote (A) calculated from the modified Mitscherlich equation with a constant curvature coefficient ($c=0.137$) describing the dissolution of Sechura phosphate rock in soils and an estimate (r^{2}) of the fit of the exponential curve to the experimental data 282
7. 10 Correlation coefficients (r^{2}) between the asymptote (A) and several properties of the thirteen soils 284

LIST OF PLATES

Plate Page
4.1 View of the Ballantrae field trial site 41
4.2 View of the Wanganui field trial site 42
5.1 Nature and extent of the contact between Sechura phosphate rock particles when mixed with sieved (<2 mm) Tokomaru silt loam (magnification $=80$) 138
5.2 Nature and extent of the contact between Sechura phosphate rock particles and soil material in casts after passage through the earthworm's digestive tract (magnification = 80) 139
5.3 Scanning electron micrograph of a Sechura phosphate rock particle after passage through the earthworm's digestive tract (magnification $=400$) 140
5.4 Scanning electron micrograph of a Sechura phosphate rock particle after incubation in sieved (<2 mm) Tokomaru silt loam (magnification $=400$) 141
5.5 Scanning electron micrograph of a Sechura phosphate rock particle prior to incubation (magnification = 400) 142

