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Abstract

The main objective of this thesis is to explain, from the quantum-mechanical point

of view, the nature of dark solitons in one-dimensional cold-atom systems. Models

of bosons and fermions with contact interactions on a ring are exactly solvable via

the Bethe ansatz, and support so-called type-II elementary excitations. These have

long been associated with dark solitons of the Gross-Pitaevskii equation due to

the similarity of the dispersion relation, despite the completely different physical

properties of the states. Fully understanding this connection is our primary aim.

We begin by reviewing the Gross-Pitaevskii equation and its dark soliton so-

lutions. Next, we solve the mean-field problem of two coupled one-dimensional

Bose-Einstein condensates, with special emphasis on Josephson vortices and their

dispersion relation. Predictions are given for possible experimental detection. Then

we give a derivation that justifies a method for the extraction of the so-called missing

particle number from the dispersion relation of solitonic excitations.

A derivation of the finite Bethe ansatz equations for the Lieb-Liniger and Yang-

Gaudin models follows. These describe a single species of bosons and two component

fermions, respectively. We review the elementary excitations of the Lieb-Linger

model, and carry out a comprehensive study of the (much richer) excitations of

the Yang-Gaudin model. The thermodynamic limit Bethe ansatz equations for all

states of interest in both models are derived, and the missing particle number and

the closely-related phase-step are extracted from the dispersion relations. Next, we

develop a method for approximating the finite-system dispersion relation of solitonic

excitations from the thermodynamic limit results.

Finally, we show that the single particle density and phase profiles of appropriately-

formed superpositions of type-II states with different momenta exhibit solitonic fea-

tures. Through this idea, the missing particle number and phase step extracted from

the dispersion relation gain physical meaning. Moreover, we use a convolution model

to extract the fundamental quantum dark soliton length scale across the range of

interactions and momenta. The insight gained in the bosonic case is used to make

inferences about dark solitons in the fermionic case. Furthermore, we study the

Hess-Fairbank effect in the repulsive Yang-Gaudin model and the fermionic super

Tonks-Girardeau regime.
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Chapter 1

Introduction

The purpose of this chapter is to give a very broad overview of the field and an

outline of the thesis. More specific introductions are to be found at the start of each

chapter to come.

A Gentle Introduction

This thesis belongs to the field of ultra-cold atom physics, which is concerned with

what happens to atoms when they are cooled down so much that thermal fluctu-

ations are essentially suppressed and zero-temperature quantum mechanics chiefly

determines the behaviour. In particular, under such circumstances one usually wit-

nesses condensation – the gas of atoms falls down into the lowest energy state

available to it, which is a single, coherent quantum state involving a macroscopic

number of atoms. The total spin of the atoms determines their quantum statis-

tics – the particles can either be bosons (integer spin, symmetric wavefunctions) or

fermions (half-integer spin, anti-symmetric wavefunctions). These two types of par-

ticles behave fundamentally differently: bosons can all occupy one quantum state,

and therefore a non-interacting Bose-Einstein condensate sees all the atoms in the

zero-momentum mode, while no two identical fermions can occupy the same quan-

tum state, so fermionic condensates are limited by Fermi pressure, a term referring

to the Pauli exclusion principle.

Condensation in cold atomic gases is extremely closely-linked to superfluidity and

superconductivity, dissipationless flow quantum phenomena that largely dominated

twentieth-century condensed matter physics. Leading scientists from all over the

world participated in the quest to explain these fascinating phenomena, building up

our current understanding of interacting quantum fluids. The astounding properties

of superfluid Helium-4, easily visible with the naked eye, continue to capture the

imagination to this day. More recently, cold atom physics has allowed us to take the

exploration of such effects further than was possible in condensed matter physics, be-

cause the experimental setting is so highly controllable. One has direct control over

the dimensionality of the system, the number of particles (and spin-components)

present, the strength of interaction, and many other parameters. Precision metrol-

ogy, which has now reached the single-atom level [1], makes detection incredibly

1



accurate.

Returning to the question of dimensionality, it is possible to produce quasi-one-

dimensional systems with cold atoms by using trapping potentials of different “as-

pect ratios” (traps of different widths along the different directions). In practice,

the resulting gas cloud is cigar-shaped, but its radial width can be tuned relative to

its length, so an effective one-dimensional regime can certainly be reached. Many-

body physics in one dimension is fundamentally different compared to two- and

three-dimensions, because quantum fluctuations are stronger. Intuitively, particles

cannot pass each other without interacting – they cannot go “around” each other,

as a one-dimensional line has zero width. For example, it is well-known that a true

Bose-Einstein condensate is not possible in one dimension even at zero tempera-

ture [2], as we do not have true off-diagonal long range order1. On the other hand,

one-dimensional systems are advantageous because they are clearly easier to treat

theoretically. Moreover, the full many-body problems are often exactly-solvable – a

luxury which is almost non-existent in higher dimensions.

Whenever a model is not exactly-solvable, one always seeks approximate ap-

proaches to extract useful information about the physics. One such method is

mean-field theory, which reduces the many-body quantum problem to an effective

classical field model. Often, this model is in the form of nonlinear differential equa-

tions that (hopefully) capture the leading order physics in the weakly interacting

regime. The solutions to these differential equations describe the behaviour of the

entire fluid, and can therefore be considered “collective”, in the sense that they in-

volve all the individual particles. Nonlinear wave solutions are particularly curious,

since the interplay between nonlinear interactions and dispersion can produce very

stable, localized objects that retain their shape as a function of time and only trans-

late at some speed. The most basic example of such excitations are solitons, which

often arise as solutions to weakly nonlinear dispersive partial differential equations.

The key feature is a localized density peak (for bright solitons) or a trough (for dark

solitons) which moves at constant velocity without changing shape. Moreover, when

two solitons collide, they pass through each other, unaffected by their interaction

apart from a phase shift. Solitons can exist in one- and higher-dimensional systems.

The other common type of collective nonlinear excitation is a vortex. Vortices

exist in many exciting forms, some of which are encountered in nature very often.

Tornadoes and waterspouts are funnel-shaped vortices, as are ocean maelstroms and

the smaller whirlpools created in our coffee cups after stirring. Dolphins and whales

create and play with ring vortices under water, in the same way as some people

are able to blow smoke rings (curiously, vortex ring guns and cannons also exist).

1Off-diagonal long range order means that the largest eigenvalue of the single particle density
matrix scales as the number of particles in the system.
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The novel aspect in vortices compared to solitons is the rotation – the angular

momentum. In order to rotate, one usually needs more than one dimension, so

conventional vortices usually exist in two or more dimensions2.

Now, in one-dimensional bosonic systems (with contact interactions) both an

exact solution and the mean-field one are easily available. The mean-field equations

support dark solitons, which have even been repeatedly observed experimentally, but

such solutions are absent in the exact quantum model. Instead, the exact quantum

system has a low-energy excitation branch which resembles dark solitons in some

ways, and yet is distinctly different in others. Understanding the connection between

these two types of excitations, and explaining the nature of these nonlinear waves

from the quantum-mechanical point of view, is our primary goal.

Landmark Theories and Experiments

In 1924-1925, Bose and Einstein [3, 4] worked out the theory of non-interacting quan-

tum particles with Bose statistics. They predicted the condensed state of matter

such particles fall into when they are cooled (so that they are all in the ground state

of the system), known today as the Bose-Einstein condensate. The first experimen-

tal observation of this new state of matter came in 1938 with superfluid Helium-4

[5, 6], and in 1941 was phenomenologically explained by Landau’s two-fluid model

[7]. A closely-related phenomenon to superfluidity (usually observed with bosons)

is superconductivity (occurs in systems of electrons, which are fermions). Super-

conductivity was experimentally discovered in 1911 by Onnes (see [8] and references

therein) and phenomenologically described in 1950 by Ginzburg and Landau [9],

with the seminal Bardeen-Cooper-Schrieffer microscopic theory following closely af-

ter in 1957 [10, 11].

More recently, in 1995, experimentalists have succeeded for the first time to cre-

ate a Bose-Einstein condensate of cold atoms [12, 13] (fermionic condensation was

achieved in 2004 [14, 15]). This was a huge breakthrough as it allowed for very precise

experiments with high levels of control. In 1999 the first quasi-one-dimensional Bose-

Einstein condensate was created in the laboratory [16]. These thin cigar-shaped

clouds can be approximately described by the one-dimensional Gross-Pitaevskii

equation [17, 18], which is a mean-field description of the problem. However, for

truly one-dimensional systems, mean-field theories are questionable (as mentioned

above), motivating the need for more sophisticated techniques. Thus, the theoret-

ical description of a one-dimensional strongly-interacting gas is non-trivial, much

like its experimental realisation. Nevertheless, the Gross-Pitaevskii equation sup-

ports dark soliton solutions [19, 20], which were observed in quasi-one-dimensional

2However, we will see that a special kind of vortex can exist in a system of two parallel, linear
Bose-Einstein condensate strands, in which case “rotation” becomes a flow of matter between these
two one-dimensional lines.
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Bose-Einstein condensates at the turn of the 21st century [16, 21, 22]. Explaining

the existence of these “classical” collective excitations from the perspective of the

fully-quantized exact models is therefore both interesting and challenging.

Likewise, quantum vortices in three dimensions – originally predicted by Onsager

in 1947 [23], theoretically explained by Feynman in 1955 [24], and extended to

superconductors by Abrikosov in 1957 [25] – have been experimentally detected in

cold-atom systems [26–28]. Such quantum vortices have originally been observed in

superfluid Helium-4 [29] and in type-II superconductors [30–32]. Josephson vortices

[33] (which will be of particular interest to us) have been first studied in the context

of a superconducting Josephson junction [34]. Currently, they are on the verge of

being observed in Bose-Einstein condensates [35], with many theoretical proposals

(e.g. [36]) to complement the experimental progress.

Historically, bright solitons were discovered experimentally by J.S. Russell in 1844

when he saw a soliton in a water canal in Scotland and then reproduced it in a water

tank [37]. The Korteweg-de Vries equation describing the phenomenon was derived

in 1895 [38], in 1965 the first computer simulations were performed [39], and in 1967

an analytical solution to the water-ways equation was obtained [40]. Over the last

two decades, the utilisation of solitons for optocommunication [41] – using them to

send light pulses in optical fibres – has been a major research theme because solitons

are intrinsically stable against dispersion. However, today this method is only used

sparingly for transmitting data because of the narrow bandwidth associated with

solitons, which limits the transmission capacity severely.

As for exactly solvable one-dimensional quantum many-body systems, we shall be

making extensive use of the so-called Bethe ansatz technique to go well beyond mean-

field predictions, applicable to integrable models where the many-body interaction

is equivalent to a sequence of two-body scattering events. It was introduced in 1931

by Bethe [42] to solve the antiferromagnetic Heisenberg model. Rapid progress of

direct relevance to our work has been made in the 1960’s, aided by the pioneering

work of Girardeau at the turn of that decade [43]. He showed that infinitely-repulsive

bosons with contact interactions, known as the Tonks-Girardeau gas, were mappable

on to free fermions. The Bethe ansatz was then first applied to continuous systems

by McGuire in 1964-1965 when he considered the attractive bosonic case [44] and

repulsive spin-1/2 fermionic case with a single spin-down particle [45].

In parallel, Lieb and Liniger solved the repulsive Bose gas with arbitrary contact

interactions in 1964 [46, 47], which has come to be known as the Lieb-Liniger model.

They were soon followed by Yang [48] and Gaudin [49, 50] in 1967 who solved

the general spin-1/2 fermion system with contact interactions by the nested Bethe

ansatz, a somewhat more difficult task. Similarly, this model is referred to as the

Yang-Gaudin model. Only a year later, Sutherland [51] generalized the solution to
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an arbitrary number of spin-components of either symmetry. Other important steps

in the development of the coordinate Bethe ansatz, as the original formulation came

to be known later, are outlined in [52], section 1.7.

The quantum inverse scattering method was initiated in 1978 (see the introduc-

tion to chapter two of [53]), and starting from 1989, it was applied to one-dimensional

integrable models, creating the algebraic Bethe ansatz [54]. The algebraic Bethe

ansatz reproduces all the results of the coordinate Bethe ansatz using an alternative

method, but it can go much further – it allows for the calculation of correlation

functions. Except for very special cases, this involves very heavy and complicated

numerical procedures [55].

Our Objective

We will be primarily concerned with the Lieb-Liniger and Yang-Gaudin models,

describing spin-0 bosons and spin-1/2 fermions with contact interactions on a ring.

These models are presently within reach of experimental realization in cold-atom

systems (e.g. [56, 57]), which has naturally renewed interest in them.

In the weakly-interacting regime with many particles (i.e. the mean-field regime),

the one-dimensional Gross-Pitaevskii equation captures the physics of the full Lieb-

Liniger model correctly [58]. Now, the Gross-Pitaevskii equation has dark soliton

solutions [59], which are the lowest energy excitations at given momentum and are

dynamically stable. The Lieb-Liniger model, on the other hand, clearly cannot

have dark soliton solutions since it is a linear quantum system. The lowest energy

excitations at a given value of the momentum of the Lieb-Liniger model are so-

called type-II states [47], which happen to resemble dark solitons in certain ways

while strongly differing from them in other important aspects. In particular, the

dispersion relation (the excitation energy versus momentum) is strikingly similar

[60], while the single-particle density profile is completely different (the soliton has

a density dip while type-II states are uniform).

Our goal is to understand the connection between dark solitons and type-II states

in the Lieb-Liniger model. Where are the solitons in the Lieb-Liniger model in the

Gross-Pitaevskii regime? What happens to the solitons as we increase interactions

and enter the Tonks-Girardeau limit? Note that there have been no experimental

studies of dark solitons in one dimension outside of the mean-field regime (i.e. with

few particles and/or strong interactions), so little is known about quantum dark soli-

tons experimentally. Considerable theoretical work has been done on this question

(see the introduction to chapter 12), but most studies are inconclusive, providing

only indirect evidence. One group of papers [61–66], however, contains some very

insightful work and we will see that our ideas and results are completely consistent

with these articles, the two approaches complimenting each other.
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As for solitons in a one-dimensional Fermi gas, since there is no adequate mean-

field description of this system (see discussion in [67]), even though some predictions

are available from such an approach [68], they are unreliable. Furthermore, solitons

in one-dimensional fermionic condensates have not been observed experimentally

to date, so very little is known about them. On the other hand, considering that

we will show in great detail which properties of the bosonic Bethe ansatz type-II

excitations are shared by the dark solitons they relate to, we will be able to use the

Bethe ansatz to predict the properties of dark solitons in the Fermi gas.

Experimental Relevance

The theoretical questions posed above are more relevant now then ever before due to

the fact that in recent years, the Lieb-Liniger & Yang-Gaudin models have become

experimentally accessible, as they can be directly realized in the laboratory with

cold-atom systems. Bose-Einstein condensates [12, 13] and fermionic condensates

[14, 15] are prepared routinely and have a remarkably low noise level and fine control

over many parameters in a wide range. Moreover, quasi-one-dimensional conden-

sates can be prepared [69], perhaps soon in ring geometry, made possible by toroidal

traps [70, 71]. In addition, the contact potential is a good first order approximation

to the interaction between the atoms [59], and the interaction strength is widely

tunable through a Feshbach resonance [72, 73].

Now, condensates with weak interactions and a large number of atoms have been

experimentally accessible for some time, but recently, experiments have begun work

on the few-particle and strongly-interacting gases, preparing the Tonks-Girardeau

limit of the Lieb-Liniger model [74, 75], probing elementary excitations of the Lieb-

Liniger gas [56], realizing the few-fermion Yang-Gaudin model [57, 76–78], and even

a generalized model with several spin components [79].

Therefore, understanding the nature and predicting the properties of the lowest

energy excitations in one-dimensional Bose and Fermi gases across the range of

interactions is of vital importance.

1.1 Thesis Overview

The thesis opens with an exposition on the Gross-Pitaevskii equation, the work-horse

of theoretical cold-atom physics. In chapter 2, we briefly review condensation and

the importance of dimensionality. Next, we show how the Gross-Pitaevskii equation

may be obtained in one dimension from the Hartree-Fock method, and discuss the

regime of its applicability. Then we present the exact dark soliton solutions on an

infinite (and finite) ring, which we will use in chapters 3, 5, 11 & 12, as dark solitons

are a central theme in our work. Practically all key mean-field concepts encountered

throughout the thesis are introduced in this chapter, using the dark soliton as an

6



example. Most-importantly, we familiarize ourselves with the dispersion relation of

dark solitons, as well as the missing particle number – the number of particles that

had to be removed from the uniform background to create the solitonic density dip,

and the phase step across the soliton.

In chapter 3 we consider the slightly more complicated case of two coupled Gross-

Pitaevskii equations, modelling two strands of one-dimensional Bose-Einstein con-

densates that are coherently coupled. In addition to dark solitons, this system

supports Josephson vortex solutions, which in general cannot be written down an-

alytically – the exception is a stationary vortex. Therefore, we numerically extend

the zero-velocity Josephson vortex to non-zero velocities, thus obtaining the full

dispersion relation. We find that there is a special tunnelling strength at which the

dispersion relation changes concavity at its central point, which causes the inertial

mass to diverge3. This implies that by tuning the coupling strength about this crit-

ical point, a large range of inertial masses is accessible. Moreover, we compare the

full Gross-Pitaevskii equations at small coupling to the analytically-solvable sine-

Gordon model, as it is often claimed that the former reduces to the latter in this

regime. We show that while the two models do have the same limit, there exist

significant differences at finite tunnelling. Finally, in a certain parameter regime,

we find a new excitation branch which is always dynamically unstable while, in its

presence, dark solitons and Josephson vortices are bistable.

Apart from discovering interesting physics, the motivation for solving this prob-

lem is to gain “hands-on” experience with the Gross-Pitaevskii equation (both time-

independent and time-dependent – see chapter 4) and the mean-field formalism.

Moreover, the solutions we find here will be used in chapter 5 as a test-case for a

particular formula.

In chapter 4 we consider two possible experiments via which Josephson vortices

of the coupled Bose-Einstein condensates system may be detected and show ex-

plicit simulations of the expected observations. In particular, we demonstrate that

Josephson vortices may be identified from the fringe pattern which results upon re-

combination of the two atomic Bose-Einstein condensate strands. Furthermore, we

solve the time-dependent Gross-Pitaevskii equations for the harmonically-trapped

system and predict an exotic trajectory for the Josephson vortex, arising from the

rich structure of its dispersion relation. This behaviour is explained in the framework

of the local density approximation, which only requires the uniformly-translating,

untrapped results of chapter 3. Needless to say, we use the solutions found in the

previous chapter to initiate the time-dependent simulations, as well as to predict

the fringe-pattern.

3The inertial mass can be expressed as a derivative of the dispersion relation, and quantifies
the resistance of the quasi-particle to being moved by applied forces.
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In the course of reviewing the quasi-particle equation of motion under the local

density approximation in chapter 2, we find an expression for the so-called phys-

ical mass of the solitonic excitation which, in the hydrodynamic analogy, would

correspond to the mass of an air bubble under water, giving rise to the buoyancy

force. For two years it was believed that this expression gave the actual physical

mass of a solitonic excitation, that is, the missing particle number times the mass

of each particle. However, soon a competing formula for the missing particle num-

ber appeared in the literature, but its origins were somewhat obscure. In chapter

5 we derive this second formula for a superfluid, Lagrangian system based on the

Hellmann-Feynman theorem for functionals in a clear and transparent manner. We

will apply this formula later in chapter 10 to compute the missing particle number

for various excitation branches in the Lieb-Liniger & Yang-Gaudin models.

Moreover, we compare and discuss the relation between the actual missing particle

number (as defined above) and the “effective” one, which is proportional to the

physical mass, relevant for the motion of the solitonic excitation in a harmonic trap.

In general, these two quantities are different and only become equal for stationary

excitations, but in many cases they are equivalent at all velocities – we give several

simple examples of both possibilities (using results from chapters 2 and 3, among

others). Furthermore, in chapter 4 we confirm that it is in fact the effective, and

not the actual, missing particle number that enters the quasi-particle equation of

motion, by explicitly computing the exact Gross-Pitaevskii trajectory and the local

density approximation trajectories with both options in turn.

Next, in chapter 6 we provide a derivation of the Bethe ansatz equations for the

Lieb-Liniger & Yang-Gaudin models. The spatial part of the ansatz is independent

of the number and type of the spin-components, which only influence the spin part.

There exist several approaches to handle the latter – we choose the Bethe-Yang

hypothesis, also known as the nested Bethe ansatz. The advantage of this method

is that it is quite explicit and conceptually clear. The disadvantage is that a general

proof of the final results is very hard, and usually one simply demonstrates that

everything is consistent in the two simplest cases, as shall we. The equations derived

here will be solved in chapters 7 & 8, and some of the details of the derivation will

illuminate interesting questions considered in chapter 13.

Thus, chapter 7 reviews the Lieb-Liniger model for a finite number of particles,

examining the ground state and the elementary type-I (particle) and type-II (hole)

excitations. The similarity of the (finite-system) type-II dispersion relation to that

of dark solitons (chapter 2) is highlighted and tested quantitatively. We also briefly

discuss the attractive regime and the super Tonks-Girardeau gas.

The well-understood Lieb-Liniger case helps to develop intuition for such sys-

tems, which is then applied to the Yang-Gaudin model in chapter 8, where we

8



study the ground state and three type-II excitation branches across the full range

of interactions, from infinitely-attractive to infinitely-repulsive. These excitations

are classified according to their nature in the free system: a single fermion hole, a

double fermion hole and a spin-flip. We find that in the infinitely-attractive and

infinitely-repulsive regimes (respectively) the three branches (in the order listed)

become: a single dimer hole and a system translation, a double dimer hole and a

single fermion hole, a spin-flip and a system translation. We solve the exact ex-

ponential Bethe ansatz equations where-ever possible. In the strongly-attractive

regime and for the single fermion holes in the strongly-repulsive regime, we derive

approximate, string-hypothesis equations, appropriate when some of the variables

become complex and the interaction is sufficiently strong. In addition, we show that

the infinitely-repulsive system is not a true Tonks-Girardeau gas, in the sense that a

lower energy excitation is possible than a one fermion hole: the classical translation

parabola is accessible for all values of the quantized total momentum of the system.

The finite-system results of chapters 7 & 8 are then used in chapter 9 to derive the

thermodynamic limit equations describing the same states. We take the opportunity

to compare the dispersion relations of Lieb-Liniger type-II states and dark solitons in

the thermodynamic limit and find good agreement in the weakly-interacting regime.

Results on the finite Lieb-Liniger model (chapter 7) are also directly used later in

chapters 11 & 12 in relation to dark solitons. Our understanding of the finite and

infinite Yang-Gaudin model directly contributes to the discussion of the physics

predicted in the system (chapter 13). The thermodynamic limit results of chapter

9 also come in useful for explaining some of the properties of the quantum dark

soliton (chapter 12) and are simply vital for chapters 10 & 11.

Chapter 10 is dedicated to computing the missing particle number and the phase

step from the thermodynamic limit dispersion relations of chapter 9 according to

the formula derived in chapter 5. The physical meaning of the results is discussed,

relating to both the nature of the excitations in finite systems in various limits

and the solitonic interpretation of type-II excitations. In fact, we show that in the

Gross-Pitaevskii regime of the Lieb-Liniger model, not only the thermodynamic limit

dispersion relation but also the missing particle number and phase step of type-II

excitations match those of Gross-Pitaevskii dark solitons. Finally, we extract the

physical and inertial masses of the quasi-particles associated with each branch as a

function of coupling strength and compute the ratio of the two, which determines

the dynamics of such excitations in harmonic traps.

Knowledge of the missing particle number and phase step of type-II excitations

for the Lieb-Liniger model contributes strongly to the arguments of chapter 12, and

is a key component in the calculation of chapter 11. The corresponding quantities for

the Yang-Gaudin model are likewise helpful for interpreting the physics in chapter
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13.

Next, in chapter 11 we derive an approximation to the dispersion relation of

soliton-like excitations in finite systems based on thermodynamic limit results. The

derivation is performed for a superfluid gas in one dimension, and hinges upon

Galilean invariance and the assumption that the excitation is well localized in the

system. In the course of the derivation, we pass through three different stages of

approximate expressions for the dispersion relation, each building further on the

previous one. We illustrate the various approximations using two examples: dark

solitons in the one-dimensional Gross-Pitaevskii equation (chapter 2), and type-II

excitations in the Lieb-Liniger model (chapters 7, 9 & 10). The quality of the

approximation can tell us about the validity of the assumptions, and as such, con-

stitutes a useful tool for characterizing the various type-II excitations, both of the

Lieb-Liniger model (in chapter 12) and the Yang-Gaudin model (in chapter 13).

Finally, in chapter 12 we tackle the main research question of this dissertation.

We show that with weak repulsion, dark solitons can be constructed as appropriate

superpositions of type-II eigenstates, and explicitly compute the expansion coeffi-

cients. The algebraic form of the Bethe ansatz allows us to obtain the single particle

density of any superposition state, as well as a quantity which may be associated

with the phase of the order parameter in mean-field theory. Next we perform a

numerical survey of various Gaussian superpositions (across the range of interac-

tions) and explore their properties, in the course of which we are able to physically

interpret the missing particle number and phase step of type-II states (which can be

calculated starting from the dispersion relation) as the limiting values in the case of

an infinitesimally thin Gaussian superposition.

Then, we hypothesise that the single-particle density of Gaussian superpositions

of type-II states is given by a convolution of a fundamental quantum solitonic density

with a Gaussian center-of-mass of the missing particles density. Such a model implies

that the variance of the single-particle density is the sum of the variances of the

convolutants. This allows us to predict a simple formula for the total variance,

where the center-of-mass variance obeys single-particle dynamics. We find that the

numerical data follows the hypothesised equations very well. From this, the length

scale of the underlining fundamental quantum dark soliton is readily extracted and

analysed.

The understanding of the connection between type-II excitations and dark soli-

tons in the Lieb-Liniger model is directly applicable to two of the excitation branches

in the attractive Yang-Gaudin model and one in the repulsive. The solitonic inter-

pretation of these branches is discussed in chapter 13. A non-trivial result is that

our calculations predict dark-soliton like excitations in the repulsive Fermi gas as

well, where pairing and superfluidity are at best hypothesized. Largely, the rest of
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that chapter is dedicated to understanding spin-waves in the Yang-Gaudin model.

We begin by considering the physical nature of the translatory excitations in the

infinitely-repulsive Yang-Gaudin model (found in chapter 8). We confirm that these

exist in the bosonic counter-part of the Yang-Gaudin model also, and analyse the

effect of boundary conditions. We point out the connection of the translatory exci-

tations to the Luttinger-Liquid theory prediction that the spin-sector becomes soft

– that is, the speed of sound vanishes. According to Luttinger liquid theory, a two-

component gas has two decoupled excitation sectors, charge and spin, corresponding

to waves travelling at different speeds in the total and relative (bosonized) densities,

respectively. Thus, spin-flips and single fermion holes correspond to spin-waves,

while the double fermion holes are charge excitations.

Next, we simulate the Hess-Fairbank experiment, where the ring trap is exter-

nally rotated and the angular momentum of the ground state of the rotating gas is

measured. Since superfluids have a non-classical rotational inertia, the fluid does not

rotate with the container, allowing one to witness the quantization of circulation.

This is particularly interesting for the repulsive Yang-Gaudin model where the low-

est energy excitations change from the convex-up solitonic shape to the concave-up

translation parabola. We find several distinct phases in the Hess-Fairbank diagrams,

separated by linear phase boundaries. At weak to intermediate repulsion, a half-

vortex ground state circulation becomes accessible. The length of the corresponding

plateau in the Hess-Fairbank diagram is carefully analysed: the number of particles

can be effectively scaled out and analytical formulae are given to capture the limiting

behaviour in the weak and strong interaction regimes. The next phase is a discontin-

uous rotation regime, where some, but not all, fractional values of the unit angular

momentum are possible in rotational equilibrium. For stronger repulsion, the sys-

tem enters the continuous non-classical rotation phase, where previously-forbidden

angular momentum fractions are now accessible. Eventually, at infinite repulsion,

classical rotation is recovered.

Finally, we venture out of the repulsive regime: when the interaction strength

is taken to infinity, the Lieb-Liniger and Yang-Gaudin systems can be smoothly

followed in one-over the coupling strength to negative infinity – this regime is called

the super Tonks-Girardeau gas. We follow the ground state of the Yang-Gaudin

model to the super Tonks-Girardeau regime and beyond: we track it from +∞ to

−∞, then to 0−, crossing over to 0+, then back to +∞, and find exotic states where

the momentum distribution of the particles has empty slots, or holes.

A summary of all the research presented in the thesis is given in chapter 14, as

well as key conclusions and some possible directions for future work.
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Chapter 2

Gross-Pitaevskii Dark Solitons

In this chapter we will briefly review three-dimensional Bose-Einstein condensates

and derive the three-dimensional Gross-Pitaevskii equation from the second-quantized

Hamiltonian. Next, we will heuristically motivate the fact that condensation does

not occur in lower than three dimensions, deriving the one-dimensional Gross-

Pitaevskii equation from the Hartree-Fock ansatz instead. Finally, we discuss the

fact that the one-dimensional Gross-Pitaevskii equation provides the correct mean-

field description of the system and review the analytically-known dark soliton solu-

tions.

2.1 Bose-Einstein Condensation

We begin this chapter with an introductory discussion of Bose-Einstein condensates

[59, 80]. First consider a non-interacting three-dimensional Bose gas at some finite

temperature. Clearly the many-body Hamiltonian is a sum of all the single-particle

Hamiltonians (as there is no interaction). A many-body state can then be described

by the occupation numbers nj, indicating how many bosons are in each of the single-

particle states with energies Ej. The Bose-Einstein distribution then gives us the

average (over all the possible states) occupation numbers as

n̄j =

[
exp

(
Ej − μ

kBT

)
− 1

]−1

, (2.1)

where μ is the chemical potential, determined from
∑

j n̄j = N , and N is the number

of particles. The chemical potential is large and negative at high temperatures. Let

E0 be the single-particle ground state energy. As T decreases, if there exists a

Tc at which μ → E0 from below, then at that critical temperature, n̄0 → N0,

where N0 is some number of order N . This is the critical temperature at which

N0 bosons condense into the ground state (while the rest, NT = N − N0, remain

thermal); below Tc, the chemical potential vanishes. Conceptually, condensation

occurs when the mean interparticle distance becomes comparable to the thermal

de-Broglie wavelength.

At zero temperature, the existence of a Bose-Einstein condensate is directly con-
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ditioned on the existence of off-diagonal long range order. The single-particle density

matrix is given by

n(1)(r, r′) =
〈
Ψ̂†(r)Ψ̂(r′)

〉
= N

∫
dr2 . . . rNΨ

∗(r, r2, . . . , rN)Ψ(r′, r2, . . . , rN)

=
∑
j

njφ
∗
j(r)φj(r

′), (2.2)

where Ψ̂(r) is the bosonic field operator, Ψ(r1, r2, . . . , rN) the many-body wave-

function, φj(r) the eigenfunctions of the single-particle density matrix, known as

the natural orbitals, and nj the eigenvalues, or the natural occupations. Clearly∑
j nj = N . Off-diagonal long range order exists when n0 = N0 = O(N) is the

largest eigenvalue and the rest are independent of system size1. The order parame-

ter (the condensate wavefunction) is then simply ψ =
√
Nφ0.

Next, let us include weak interactions between the particles. The Hamiltonian in

second quantization and in the grand canonical ensemble takes the form

Ĥ =

∫
dr Ψ̂†(r)

[
− �

2

2m
∇2 + V0(r)− μ

]
Ψ̂(r)

+
1

2

∫
dr

∫
dr′ Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r). (2.3)

The first term is simply the kinetic energy and the second is some external potential

to which all particles are subject. μ is the chemical potential which is included to

constrain the number of particles. The last term represents two-body interactions.

If the gas is very dilute, collisions are rare2, elastic, and low-energy. Any potential

V can then be replaced by g3Dδ(r − r′), with g3D = 4π�2a3D
m

where m is the mass

of the particles and a3D is the three-dimensional scattering length, which can be

both measured experimentally and calculated theoretically. In fact, collisions can

be pictured as hard-sphere, and a3D is twice the radius of the hard-sphere.

Writing out the Heisenberg equation of motion for the field operator, i�∂tΨ̂(r, t) =[
Ψ̂(r, t), Ĥ

]
, and using the bosonic commutation relations,

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r−r′)

and
[
Ψ̂(r), Ψ̂(r′)

]
= 0, we arrive at

i�∂tΨ̂(r, t) =

[
− �

2

2m
∇2 + V0(r)− μ+ g3DΨ̂

†(r, t)Ψ̂(r, t)

]
Ψ̂(r, t). (2.4)

We can now replace the field operator by its expectation value, Ψ̂(r, t) →
〈
Ψ̂(r, t)

〉
=

1If two or more natural occupations are O(N), the Bose-Einstein condensate is said to be
“fragmented”.

2Three-body collisions are therefore highly unlikely, which prevents the gas from forming a
solid.
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ψ(r, t), the mean-field order parameter, and immediately arrive at the three- dimen-

sional Gross-Pitaevskii equation. In doing so, we neglect the quantum fluctuations

of the field operator, and break the symmetry of the Hamiltonian: all the terms in

Ĥ are invariant under global transformations of the phase of the field operator, but

we select a single complex field with a well-defined phase. This phase symmetry

breaking inevitably leads to non-conservation of the particle number, as the two are

canonically-conjugate variables. This is permissible if the number of particles in the

condensate is sufficiently large, so that N0 + 1 ≈ N0 [81]. The condition for the va-

lidity of the Gross-Pitaevskii equation is N
V
|a3D|3 � 1 (where V is the volume of the

system), i.e. the range of interactions is much smaller than the average interparticle

distance.

We remark that in the ultra-cold atom experimental realization of this system,

the scattering length a3D can be positive or negative (corresponding to repulsive or

attractive interactions) and is widely tunable via Feshbach resonances [80].

In the case when the gas is confined in a three-dimensional harmonic trap with

ωx = ωy ≡ ωr, and ωz/ωr � 1, we enter the quasi-one-dimensional regime [80].

Define ar =
√
�/mωr, the length-scale associated with the transverse confinement,

and the healing length of the condensate, ξ3D =
√
8πa3DN/V , the length-scale over

which deformations of the density “heal”. The quasi-one-dimensional regime is at-

tained when ar < ξ3D. Under this condition, we can factorize the order parameter

into a transverse component times a longitudinal component. The former satisfies

the linear Schrödinger equation with a harmonic potential, and is assumed to re-

main in the Gaussian ground state. Knowing the radial wavefunction, the transverse

directions can be integrated out, yielding a Gross-Pitaevskii equation for the longitu-

dinal component with a new, effective interaction strength: g1D = g3D
2πa2r

= 2a3D�ωr,

which can be tuned via a so-called confinement-induced resonance [82].

2.1.1 No Condensation in One Dimension

It is well known that there cannot be true condensation in two dimensions (unless

T = 0) and in one dimension (even at T = 0). To see why, let us consider the

following two arguments [83] (section 16.7).

The first is based on testing the stability of the system against long-wavelength

fluctuations, i.e. Goldstone excitations. Briefly, macroscopic systems lose a sym-

metry when the temperature is decreased – this is known as symmetry breaking.

There are many equivalent ground states, transformable into one another by some

symmetry operation. For example, when we associate an order parameter with a

Bose-Einstein condensate, it is only defined up to some arbitrary constant phase fac-

tor, amounting to U(1) symmetry. When the gas/fluid is cooled below Tc, one phase

is chosen at random, and the inherent mathematical symmetry of the system is not
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reflected in the ground state. Nature chooses one particular realization because it

cannot use a quantum superposition of all the equivalent ground states, since they

belong to isolated sub-Hilbert spaces. An operator which would transform one state

into the other would need to act on all particles at once, and in the thermodynamic

limit, such an operator does not exist. A Goldstone mode is an excited state where

the local ground state changes very gradually over space. Such a state is orthogo-

nal to all the uniform ground states and its excitation energy tends to zero as the

wavelength tends to infinity.

Let our system be translationally-invariant in d-dimensions with volume V → ∞,

and u(x) denote the deviation of the particles from their equilibrium position at

x. Assume we are in a symmetry-broken ground state, and decompose u(x) as

a superposition over all the normal modes of the system. The energy content of

each mode can be written down assuming we know its dispersion relation. Using

the equipartition theorem of statistical mechanics, the mean-square of u(x) can be

found. Among the normal modes there will be a Goldstone mode, the energy of

which vanishes as the wavevector k vanishes, presumably linearly. It will be the

primary contributor to 〈u(x)〉2 in the short-wavelength regime. In fact, the final

result shows that the mean-square of the displacement goes as
∫
dk kd−3, which is

divergent for d ≤ 2.

The second approach tests the stability of off-diagonal long range order against

domain walls – these are phase boundaries, separating regions in space where the

order parameter has a different value. The Helmholtz free energy is defined as

A = U − TS, where U is the internal energy and S the entropy; it is minimized at

equilibrium for systems at constant T & V . To minimize A, we must minimize U

and maximize S. Since entropy is a measure of disorder, it grows with the number

of domains – the question is how much does the creation of these domains cost in

energy.

Consider an otherwise-uniform system with one domain of volume 
d. The two

ground states only interact on the surface of the domain (which increases the energy),

the area of which scales as 
d−1. Thus in d ≤ 1, the energy is independent of the

domain size. Creating N domains costs O(N ) energy but S ∝ log(N !), which

grows faster than N . Therefore, minimizing A favours the creation of domains, and

off-diagonal long range order will be destroyed.

In higher dimensions, the argument goes as follows. A domain wall will have some

characteristic length-scale over which the order parameter changes, say 
. The con-

tribution of the domain to the kinetic energy can be estimated from
∫

domain

dx
∣∣∣�∇ψ(x)∣∣∣2,

but
∣∣∣�∇ψ(x)∣∣∣ ∼ 1/
 as it is the only relevant length scale, so after integrating over

the volume of the domain, the energy is proportional to 
d−2. Therefore, domains
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will be favoured in d ≤ 2 dimensions.

The arguments above are simply meant to give one intuition as to why condensa-

tion does not occur in lower dimensions at T > 0. The original rigorous proofs are

due to Mermin & Wagner [84], Hohenberg [85], and Kane & Kadanoff [86], with the

works of Coleman [87] and Schwartz [88] coming a few years later. Following closely

after, Haldane [89] used his one-dimensional fluid theory to predict the power-law

behaviour of the single-particle density matrix. In parallel to the general rigorous

proofs, Lenard [90] specifically addressed the Tonks-Girardeau gas while Yang &

Yang [91] showed that all thermodynamic properties of the Lieb-Liniger model at

arbitrary coupling (and T > 0) are analytic, and therefore a phase transition is

impossible.

Moreover, it has been established on a general basis that at T = 0 no condensation

takes place in one dimension [2, 92], as well as being specifically shown analytically

for the Tonks-Girardeau gas [93–95], and numerically for the Lieb-Liniger model

[96–99].

Note that all of the above studies focus on uniform systems (the case of direct

relevance to us), as opposed to harmonically trapped, where much work has also

been done, e.g. [100–102].

2.2 Hartree-Fock in One Dimension

In the previous section, we have seen that there cannot be a true Bose-Einstein

condensate in one dimension, only a so-called quasi-condensate. Nevertheless, the

Gross-Pitaevskii equation is the correct weak-coupling limit of the Lieb-Liniger

model, as can be seen by solving the Lieb-Liniger thermodynamic limit equations

directly (chapter 9). In fact, it can be derived without assuming a Bose-Einstein

condensate with a symmetry-broken order parameter in the following way. The

Hamiltonian in first quantisation (and in the grand canonical ensemble) is give by

H = − �
2

2m

N∑
j=1

d2

dx2j
+

N∑
j=1

V0(xj)− μN + g
∑
〈i,j〉

δ (xi − xj) , (2.5)

where the sum in the last term runs over all pairs counted once. The interaction

strength g (we drop the “1D” subscript from now on) can be written as g = �2

m
c

where c = − 2
a1D

and a1D is the one-dimensional scattering length [103, 104]. Also,

introduce the dimensionless interaction parameter

γ =
c

n0

=
mg

�2n0

, (2.6)

where n0 = N/L is the one-dimensional density and L is the length of the system.
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If the interactions are weak (γ � 1), we may employ the Hartree-Fock ansatz

(see [59], section 5.1) whereby one assumes that all the particles are in the same

single-particle state and the many-body wavefunction is simply a product of these.

Thus, we expand the many-body wavefunction as

Ψ({xj}, t) =
N∏
j=1

φ(xj, t), (2.7)

with ||Ψ||2 = ||φ||2 = 1. Next, calculate the expectation value of the Hamiltonian

in this state

W =

∫
dx1 . . . dxNΨ

∗({xj}, t)HΨ({xj}, t). (2.8)

The first three terms in H only involve single-body operators, so their contribution

to W is trivial:

N

∫
dx φ∗(x)

[
− �

2

2m

d2

dx2
+ V0(x)− μ

]
φ(x). (2.9)

As for the interaction term, it is easy to verify that the number of δ-functions in the

double sum is
(
N
2

)
= N(N−1)

2
, so the contribution to W is

N(N − 1)

2

∫
dxi dxj gδ(xi−xj)|φ(xi)|2|φ(xj)|2 = N(N − 1)

2

∫
dx g|φ(x)|4. (2.10)

If N � 1, N−1 ≈ N , so we may define the order parameter as ψ(x, t) =
√
Nφ(x, t),

and rewrite the energy functional as

W =

∫
dx ψ∗(x, t)

[
− �

2

2m

d2

dx2
+ V0(x)− μ+

g

2
|ψ(x, t)|2

]
ψ(x, t). (2.11)

Using the product rule on the first term on the right-hand side, and the assumption

that either the wavefunction or its first derivative vanish at the boundary, we arrive

at

W =

∫
dx

�
2

2m
|∂xψ(x, t)|2 + V0(x)|ψ(x, t)|2 − μ|ψ(x, t)|2 + g

2
|ψ(x, t)|4. (2.12)

The Lagrangian density is then given by

L =
i�

2
[ψ∗(x, t)∂tψ(x, t)− ψ(x, t)∂tψ

∗(x, t)]

−
[
�
2

2m
|∂xψ(x, t)|2 + V0(x)|ψ(x, t)|2 − μ|ψ(x, t)|2 + g

2
|ψ(x, t)|4

]
, (2.13)

the Lagrangian is L =
∫
dx L and the action is S =

∫
dx
∫
dt L. According to the

action principle, the system will follow the path that minimizes S, i.e. variations of
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S need to vanish. The Euler-Lagrange equations then read

δS

δψ
=
∂L
∂ψ

− ∂

∂x

∂L
∂ (∂xψ)

− ∂

∂t

∂L
∂ (∂tψ)

= 0, (2.14)

and similarly for ψ∗. Performing the functional derivatives, we arrive at the Gross-

Pitaevskii equation

i�∂tψ(x, t) =

[
− �

2

2m
∂xx + V0(x)− μ+ g |ψ(x, t)|2

]
ψ(x, t). (2.15)

As mentioned previously, this mean-field description is valid in the limit of weak

interactions, when the Hartree-Fock method is justifiable. It is also possible to

directly confirm that the Gross-Pitaevskii equation correctly describes the physics

of the full quantum model in this regime. If we work in the canonical ensemble

(that is, remove the μ term from the Hamiltonian), and consider an untrapped gas

(so V0 = 0), the Hamiltonian reduces to that of the Lieb-Liniger model [46, 47],

which is solvable exactly by the Bethe ansatz. In their original papers, the authors

have demonstrated that the γ → 0 limit recovers Gross-Pitaevskii results. When an

external potential is added, translational symmetry is broken and the Bethe ansatz

fails. Nevertheless, Lieb et al. have carefully considered the more general case of a

trapped gas in a series of recent papers which are reviewed in [58] (see chapter 8),

and have succeeded in rigorously showing that the Gross-Pitaevskii equation is still

applicable in the appropriate regime.

2.2.1 Dark Soliton Solutions

In the homogeneous case of V0 = 0, and in the thermodynamic limit when N,L→ ∞
with n0 remaining finite, several analytical solutions of the one-dimensional Gross-

Pitaevskii equation are known. First, we search for a constant solution, independent

of x and t – we shall refer to this as the background solution. Clearly, it must satisfy

μ = g |ψ|2 = gn0, with the phase of the background state some arbitrary constant.

Second, the Gross-Pitaevskii equation supports dark soliton solutions. Recall that

dark solitons are nonlinear waves that travel at constant speed without changing

shape. Let vs denote the speed of the soliton, then we can transform to a co-moving

frame by defining z = x− vst, and rewrite the Gross-Pitaevskii equation as

−i�vs∂zψ(z) =
[
− �

2

2m
∂zz − μ+ g |ψ(z)|2

]
ψ(z). (2.16)

The dark soliton solution is then given by

ψs(z) =
√
n0

[
is+

√
1− s2 tanh

(√
γn0

√
1− s2z

)]
, (2.17)
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where s =
√

m
μ
vs is the velocity scaled by the speed of sound, vc =

√
γn0�/m.

Notice that we have substituted μ = gn0 = γ�2n2
0/m and expressed everything in

terms of γ, n0, � and m, to facilitate comparison to the Lieb-Liniger model later on.

Examples of the density and phase profiles are shown in Fig. 2.1, demonstrating that

a dark soliton is characterised by a localized density dip and a phase step across

it. For a stationary soliton, the density vanishes at the soliton’s position, and the

phase step is exactly π. For moving solitons, the minimum of the density is non-

zero and the phase step is smaller than π. When the soliton moves at the speed of

sound (s = 1), the density dip and phase step disappear and we are left with the

background solution.
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Figure 2.1: The density (top panel) and phase (bottom panel) profiles of a Gross-
Pitaevskii dark soliton with open boundary conditions, in an infinite system with
γ = 0.01, and s = 0 (blue solid line), s = 0.5 (red dashed line), s = 0.75 (black
dash-dotted line).

Notice that the wavefunction (2.17) has open boundary conditions, meaning that

the solution must stop changing far from the position of the soliton. Indeed, while

the density in the soliton state tends to the same value (n0) as z → ±∞, the phase

certainly does not: there is a phase jump of Δφ = φ(−∞) − φ(∞) = 2 cos−1(s)

across the soliton. In practice, one is often interested in solutions with periodic

boundary conditions. The dark soliton solution above can be multiplied by a factor

of exp[iΔφz/L] which serves to linearly connect the phase in any given finite system,

as illustrated in Fig. 2.2. Physically, it corresponds to inducing a so-called “coun-

terflow” (or “backflow”): the entire gas flows at velocity vcf = �Δφ
mL

. As L → ∞,

the counterflow velocity clearly vanishes, but the momentum associated with this

flow does not, as the mass of the entire fluid is mN and N/L remains finite in the

19



thermodynamic limit. It is simple to check, however, that this prefactor does not

give a finite contribution to the energy of the state in the thermodynamic limit.
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Figure 2.2: The phase profiles of the Gross-Pitaevskii dark soliton with periodic
boundary conditions, in a finite system with N = 200, γ = 0.01, and s = 0 (blue
solid line), s = 0.5 (red dashed line), s = 0.75 (black dash-dotted line).

Thus, defining the momentum operator as

P =

∫
dz − i�

2
[ψ∗(z)∂zψ(z)− ψ(z)∂zψ

∗(z)] , (2.18)

the excitation energy and the total (also known as the “canonical”) momentum of

the dark soliton are

Es =
4

3

√
γ
�
2n2

0

m

(
1− s2

)3/2
, (2.19)

Pc = 2�n0

[
cos−1(s)− s

√
1− s2

]
= Pcf + Ps. (2.20)

In the expression for Pc, the first term arises from the counterflow and is thus

denoted Pcf , while the second term is the contribution of the soliton, Ps. The

dispersion relation – that is, the excitation energy versus momentum – is depicted

in the top panel of Fig. 2.3, featuring the typical concave-down shape associated

with dark solitons.

We can also define the missing particle number as

Nd =

∫
dz ns(z)− n0, (2.21)

where ns(z) = |ψs(z)|2 is the density of the dark soliton. Thus, the missing particle

number is the number of particles that had to be removed from the background
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Figure 2.3: The dispersion relation (top panel) and missing particle number (bottom
panel) of a Gross-Pitaevskii dark soliton with γ = 0.01.

state to produce the soliton. For the Gross-Pitaevskii dark soliton, it is given by

Nd = − 2√
γ

√
1− s2, (2.22)

plotted in the bottom panel of Fig. 2.3. It is clear that the missing particle number is

always negative, as is to be expected for a dark soliton. It is minimal for a stationary

soliton and vanishes at the edges of the dispersion relation where s = ±1. The mass

of the missing particles is then simply mNd. On the other hand, the inertial mass

which determines the response of the quasi-particle to applied forces is given by

mI =
dPc
dvs

= 2
dEs
d(v2s)

=

(
d2Es
dP 2

c

)−1

, (2.23)

where the derivatives should be evaluated at the extrema of the dispersion relation.

For the dark soliton, there is only one global maximum in the dispersion relation,

corresponding to a stationary soliton, and we find

mI = − 4m√
γ

√
1− s2

∣∣∣∣
vs=0

= −4m√
γ
. (2.24)

Exact analytical dark soliton solutions on finite rings are also known [105–108],

and one of the two equivalent formulations described in these articles is reviewed in

appendix 2.A. Using the exact solutions, we can plot the dispersion relation of a

dark soliton on a finite ring, as shown in Fig. 2.4. The dispersion relation consists

of smooth segments (“wings”) that connect to each other at undifferentiable cusps.
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Each wing of the dispersion relation represents dark solitons with velocity in the

range s ∈ [−1, 1]. At the cusps, the soliton disappears as it reaches the speed

of sound, and the non-zero excitation energy is due only to the backflow of the

superfluid. Thus, the cusps are simply quantized supercurrent states, and as such,

they fall on the system translation parabola, E = P 2/2mN , also shown on Fig. 2.4.

As we approach the thermodynamic limit, the mass of the system diverges, and all

the cusps fall down to zero energy. In the thermodynamic limit, we recover fully

periodic and symmetric wings, the first of which is shown in Fig. 2.3. Moreover,

all the information about dark solitons is fully contained in each wing (which differ

only in the counterflow), which justifies restricting our attention to the first wing.
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Figure 2.4: The dispersion relation of a Gross-Pitaevskii dark soliton (blue solid
line) on a finite ring with γ = 0.01, N = 100, showing six cycles, each corresponding
to a different quantized supercurrent (backflow) state. The red dashed line shows
the translation parabola of the entire gas, E = P 2/2mN .

2.2.1.1 Local Density Approximation

Finally, we note that dark solitons have been observed experimentally in quasi-one-

dimensional Bose gases [16, 21, 22] and the results are in agreement with Gross-

Pitaevskii predictions. However, most experimental realisations feature a harmonic

trapping potential for the quasi-condensate, and therefore the theory presented

above for a dark soliton on an otherwise-uniform infinite ring must be modified

in order to account for the observations. One way to approach the modelling is to

solve the time-dependent Gross-Pitaevskii equation numerically, explicitly including

the trapping potential. Alternatively, if the soliton is fairly small compared to the

trapped gas cloud, one can think of the dynamics in the trap as of a free soliton

moving on a landscape with a changing chemical potential – this is the so-called
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local density approximation.

In fact, a simple equation of motion for the quasi-particle can be derived [67, 109,

110]). The argument proceeds as follows. We assume that the dark soliton does not

radiate energy, so that Es is conserved. Es can be thought of as a function of two

parameters: μ and vs
3, where μ must now be replaced by μ(X) = μ0 − 1

2
mω2X2,

X being the position coordinate of the excitation. If the energy is a constant of the

motion,
dEs
dt

=
dEs
dμ

dμ

dX

dX

dt
+
dEs
dvs

dvs
dX

dX

dt
= 0. (2.25)

Since
dvs
dX

=
dt

dX

dvs
dt

=
1

vs

dvs
dt

=
1

vs

d2X

dt2
, (2.26)

the right-hand side of (2.25) can be replaced by

(
dEs
dμ

dμ

dX
+
dEs
dvs

1

vs

d2X

dt2

)
dX

dt
, (2.27)

and the terms in the brackets must then cancel. We further notice that

1

vs

dEs
dvs

= 2
dEs
dvs

1

2vs
= 2

dEs
dvs

dvs
d(v2s)

= 2
dEs
d(v2s)

= mI , (2.28)

and that
dμ

dX
= −mω2X, (2.29)

which leads to the requirement

−mω2X
dEs
dμ

+mI
d2X

dt2
= 0. (2.30)

Define the physical mass as

mP = −m dEs
dμ

∣∣∣∣
vs

≡ mNs, (2.31)

where we have introduced Ns, the effective missing particle number, defined as the

ratio of the physical mass mP to the mass of a single particle m, in analogy to the

buoyancy force on an air bubble in liquid. The resultant equation of motion reads

mIẌ = −mPω
2X. (2.32)

For small amplitude oscillations about an extremum of the dispersion relation, one

may approximately take the inertial and physical masses as constant throughout

the motion, and compute them at the extremum. Furthermore, if mI and mP have

3In the equations that follow, derivatives with respect to μ keep vs constant and vice versa.
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the same sign, the quasi-particle will oscillate in simple harmonic motion about the

trap center. For the Gross-Pitaevskii dark soliton, it so happens that Ns = Nd at

all velocities (see chapter 5), so

mp = −m 2√
γ
, (2.33)

and so one expects to see the soliton oscillating in the trap, as was indeed observed

experimentally [111, 112]. Moreover, expressing the oscillation period of the soliton

Ts in terms of the parameters in the equation of motion, we find

mI

mP

=

(
Ts
Tt

)2

, (2.34)

where Tt = 2π/ω is the trap period.

Thus, by computing mI and mP it is possible to predict the dynamics of dark

solitons in a harmonic trap. In fact, the theory is equally applicable to other kinds

of collective nonlinear excitations that involve a localized density depletion.
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Appendix

2.A Exact Dark Solitons on Finite Rings

The first exact solutions of the one-dimensional Gross-Pitaevskii equation in a finite

system (with box and periodic boundary conditions) were found by Carr et al. [113].

Subsequently, more detailed results for dark soliton solutions on a finite ring were

presented by Ueda et al. [107, 108] and Jackson et al. [105, 106]. We have imple-

mented both of these formulations and checked that they are equivalent, so here we

shall only review the first version.

Define

λ =
2M

�2

gNL

4π2
, (2.35)

the relevant dimensionless interaction strength. Note that in this appendix only,

M is used for the mass (instead of m). Now, the approach taken by Ueda et al. is

to search for dark solitons of various momenta by externally rotating the system

and looking for the ground state at every value of the rotation frequency. This is a

valid procedure because dark solitons are the lowest energy excitations at any given

momentum value, so if we specify the momentum and look for the lowest energy

state we indeed find the dark soliton.

Thus, in addition to the usual parameters of the Hamiltonian, we have the driving

frequency of the system, Ω. There is a quantum number associated with Ω: if

Ω < 1/2, J = 1 and if Ω ≥ 1/2, J = 0. The bounds for Ω at any given λ value are:

Ωmax =
√

λ+1/2
2

, Ωmin = 1− Ωmax.

For each Ω value we must do the following calculations. Define S = 1 if Ω ≥ J and

S = −1 if Ω < J . Now we must solve a highly non-linear equation. Let m ∈ [0, 1]

be the elliptic module, related to the elliptic modulus k by m = k2. Let K(m) and

E(m) be the complete elliptic integrals of the first and second kind, respectively.

We may now drop the explicit m dependence of K, E, with the understanding that

it is implied. Define three useful functions:

f = π2λ− 2K2 + 2KE, (2.36)

g = f + 2K2, (2.37)

h = f + 2mK2. (2.38)
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Further, define

ε = sin−1
(√

f/h
)
. (2.39)

Solving the equation mentioned above amounts to minimizing the absolute value

of A(m) with respect to m, where

A = 2(1−m)K2

√
2f

gh
+

√
2fh

g
+ π (1− Λ0(ε,m))− 2π |Ω− J | . (2.40)

The function Λ0 involves complete and incomplete elliptic integrals. To avoid con-

fusion, K(m) and E(m) continue to denote the complete integrals, F (φ,m) and

E(φ,m) are the incomplete elliptic integrals of the 1st and 2nd kinds (φ is the inte-

gral bound and can in general be complex). So, with these definitions,

Λ0(ε,m) =
2

π
{K(m)E(ε, 1−m)− [K(m)− E(m)]F (ε, 1−m)} . (2.41)

If a minimum of |A| exists form ∈ [0, 1], then a soliton solution exists. The search for

the minimum is performed in Matlab, using the fminbnd.m function (implementing

a golden section search algorithm), setting the absolute and relative tolerances to

10−10.

Thus, for each Ω value in our range, we find the m that minimizes |A|, and

calculate the functions f(m), g(m), h(m) defined above. Then we calculate the

dimensionless momentum and energy of the excited soliton state (in the rotating

frame):

P̃ = N

{
Ω− S

λπ3

√
fgh

2

}
, (2.42)

Ẽ = N

{
λ+

1

π2

(
3KE − (2−m)K2

)
+

2K2

3λπ4

[
3E2 − 2(2−m)KE + (1−m)K2

]}
. (2.43)

Once this is done for all Ω’s, we can transform the energy into a frame which is

stationary:

Ē = Ẽ + 2ΩP̃ − Ω2N. (2.44)

Note that the momentum does not need to be transformed, i.e. P̄ = P̃ . Finally, we

must rescale P̄ and Ē (reinstating full units):

P = �
2π

L
P̄ , (2.45)

E =
�
2

2M

(
2π

L

)2

Ē. (2.46)
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It remains to calculate the ground state (homogeneous background) energy and

momentum to be subtracted (Es and Pc are respectively the difference in energy and

momentum between the soliton and background states). The plane-wave solution

with J = 0 (for any Ω) plays the part of the ground state. For the plane wave

solutions, the dimensionless momentum and energy in the rotating frame are

P̃ = NJ, (2.47)

Ẽ = N

{
(Ω− J)2 +

λ

2

}
. (2.48)

Again we must transform to the stationary frame: Ē = Ẽ + 2ΩP̃ − Ω2N , P̄ = P̃ ,

and rescale: P = �
2π
L
P̄ and E = �2

2M

(
2π
L

)2
Ē.

At any given Ω value, having solved for the correctm, we can calculate the density

as a function of z. Define

η = −2K2(m)/g(m), (2.49)

N =
K(m)

K + ηE
, (2.50)

and introduce the Jacobi dn(U,m) function: the first argument is the phase and the

second the elliptic module. The density is given by

n(z) = N
[
1 + η dn2

(
2K(m)z

L
,m

)]
. (2.51)

To calculate the phase, we need to know Ω & S, solve for the correct m value,

calculate the functions f(m), g(m), h(m) and from these find

ξ = −2mK(m)2

f(m)
. (2.52)

We also need the Jacobi amplitude, am(U,m), with the first argument being the

phase and the second the elliptic module, as before, and the incomplete elliptic

integral of the third kind: Π (U,m, t), where U and m have the same meaning, and

t is the additional parameter required by this function. The phase is given by

φ(z) = Ω
2π

L
z − S

K(m)

√
g(m)h(m)

2f(m)
Π

[
am

(
2K(m)z

L
,m

)
,m, ξ

]
. (2.53)
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Chapter 3

The Coupled Bose-Einstein Conden-

sates System

Having understood the spinless one-dimensional Bose gas with contact repulsion in

the mean-field regime, we proceed to the next level of complexity: two coherently-

coupled one-dimensional Bose-Einstein condensate strands, modelled by two cou-

pled, time-independent Gross-Pitaevskii equations. While not directly relevant to

the objective of the thesis, this problem provides us with practical experience with

mean-field collective excitations and their properties. The solutions we find will also

be used later as test-cases in chapter 5.

3.1 Introduction

As briefly mentioned at the end of the previous chapter, the concept of effective (or

inertial) mass [59] is commonly used in condensed matter physics: it captures the

response of a collective excitation in an interacting system to an applied force, as if

it were a classical particle obeying Newton’s second law. Atomic Bose-Einstein con-

densates [12, 13] provide a platform for the realization of many quantum-mechanical

systems in highly controllable conditions (e.g. see [80, 114]). The possibility of ad-

justing the effective mass of localized excitations in Bose-Einstein condensates by

tuning experimental parameters could potentially open the way to many interesting

applications. Quasi-one-dimensional Bose-Einstein condensates have been prepared

experimentally almost two decades ago [16], and more recently, two coherently-

coupled one-dimensional Bose-Einstein condensates have been demonstrated [115–

118]. Dark solitons [59] have been created and observed in one-dimensional Bose-

Einstein condensate systems [16, 21, 22], as have been vortices [26–28]. Josephson

vortices in particular [33] (which have all the properties of solitons plus a supercur-

rent circulation between the two Bose-Einstein condensate strands), usually studied

in the context of Josephson junctions [34], will also hopefully be soon realized in a

cold atoms setting [119].

The model studied here comprises two long, linear, parallel, coupled Bose-Einstein

condensates. It describes two different physical realizations: a spinor Bose-Einstein
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condensate with two spin components and coherent coupling achieved through radio-

frequency or microwave radiation driving a hyperfine transition [120], or a single-

component Bose-Einstein condensate in a double-well potential [121–125]. Both

options are illustrated in Fig. 3.1. Previous theoretical considerations ranged from

testing the Kibble-Zurek mechanism in a ring geometry [125], to modelling the

decay of an unstable vacuum to a universe with structure [124, 126], to metastable

domain walls [120, 121], to dynamical response to periodic modulation [122] and

tunnelling quenches leading to breather modes forming out of quantum fluctuations

[123]. Out of these studies, Refs. [120, 122–124] reduced the model to the integrable

sine-Gordon case (applicable in the small tunnelling limit) in order to obtain their

main results. Testing the validity of this approximation is part of the work presented

in the current chapter.

(a) (b)

Figure 3.1: A conceptual illustration of two possible realizations of the system
studied. (a) Two elongated, cigar-shaped Bose-Einstein condensates, confined in
a double-well potential (shown as a red line), with atom tunnelling yielding the co-
herent coupling between the strands (shown as a purple arrow). In this case, there
is no cross non-linear interaction. (b) An atomic condensate in two different pseudo-
spin states in a cigar-shaped trap. The two components are slightly off-shifted for
clarity. They are coherently coupled by radio-frequency radiation, shown as blue
incoming waves. In this case, the cross-non-linearity is of the same order as the
self-non-linearity.

The model of interest was first introduced in [120], where the authors studied

domain walls of the relative phase. Later, it was solved by Kaurov and Kuklov

in [127, 128], who found analytical stationary Josephson vortex and dark soliton

solutions and discussed the bifurcation of one from the other. Qadir et al. [129] then

expanded on the stability analysis of [127, 128], demonstrating that dark solitons

are unstable whenever Josephson vortices and dark solitons coexist. They also gave

approximate expressions for slow-moving Josephson vortices, as did [128].

Thus, the model has two kinds of known solutions: dark solitons and Josephson

vortices. Exact analytical solutions have been found for translating dark solitons
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[59] and for stationary Josephson vortices [127]. Exact moving Josephson vortex

solutions have not been obtained to date, though some approximate results were

derived in [129]. Here we present numerical solutions of the model (used in [130] to

simulate collisions of Josephson vortices), with particular emphasis on the inertial

mass of the Josephson vortex excitation in the center of the dispersion relation, the

relativistic behaviour of Josephson vortices in the small tunnelling limit, and the

existence of a bistable region for dark solitons and Josephson vortices.

We show that there exists a critical tunnelling value at which the Josephson vortex

dispersion relation changes from having a single maximum to having three (local)

extrema: maximum, minimum and another maximum. At this point the inertial

mass of the Josephson vortex at the center of the dispersion relation changes sign

and diverges to ±∞ on either side of the bifurcation.

In the small coupling limit, we test whether the Gross-Pitaevskii Josephson vor-

tex dispersion relation around the center of the dispersion relation approaches the

sine-Gordon dispersion relation. The latter can be described by only two param-

eters – the “mass” and the “speed of light”. The inertial mass of the Josephson

vortex approaches the sine-Gordon mass parameter smoothly1 as the tunnelling is

decreased, but the speed of light does not – the approach to the common value at

zero tunnelling occurs at completely different rates.

We extend the stability analysis of [129] to all excitation branches and velocities,

finding that for zero cross non-linearity, dark solitons are unstable whenever they

co-exist with Josephson vortices, which are, in turn, stable. When the two Bose-

Einstein condensate components have a finite non-linear interaction, we discover a

new excitation branch with energy between the dark soliton and Josephson vortex

dispersion relations which, like dark solitons, has zero angular momentum. These

new excited states replace dark solitons as the transition states from left-handed

Josephson vortices to right-handed ones (and vice versa). In the region where these

new excitations exist, dark solitons and Josephson vortices are both stable, separated

(in energy) by these new unstable excitations.

The chapter is structured as follows. Section 3.2 introduces the equations, 3.3

summarizes known analytical solutions, 3.4 defines useful observables for character-

izing the solutions, 3.5 explains how we numerically obtain solutions, and 3.6 allows

one to visualize them. Section 3.7 presents plots of some useful, characteristic quan-

tities for the solutions, which are described (including a discussion of the region of

bistability) in section 3.8. Next, section 3.9 addresses the inertial mass and missing

particle number of Josephson vortices (identifying the critical point), 3.10 summa-

rizes some key results regarding the sine-Gordon equation, and 3.11 examines the

validity of approximating the Gross-Pitaevskii model with the sine-Gordon model.

1Meaning that the first derivatives, as well as the masses themselves, tend to the same values.
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Discussion and conclusions are given in 3.12. Appendix 3.A gives details of how we

perform the stability calculation and appendix 3.B derives the sine-Gordon equation

from the Gross-Pitaevskii model, thus enabling a direct comparison of the two.

3.2 The Model

Consider two coupled quasi-one-dimensional Bose gases, with linear coupling achieved

either via a double-well potential for a scalar Bose-Einstein condensate, or a pseudo

spin-1/2 Bose-Einstein condensate with radio-frequency coupling of the spin compo-

nents [126]. In quasi-one-dimensional geometry (when the ratio of chemical potential

to transverse trap energy is small, μ
�ωr

� 1), and when γ of equation (2.6) is small,

the physical system of interest can be modelled by two coupled Gross-Pitaevskii

equations:

i�∂tΨ1 = − �
2

2m
∂xxΨ1 − μΨ1 + g |Ψ1|2 Ψ1 + gc |Ψ2|2 Ψ1 − JΨ2,

i�∂tΨ2 = − �
2

2m
∂xxΨ2 − μΨ2 + g |Ψ2|2 Ψ2 + gc |Ψ1|2 Ψ2 − JΨ1, (3.1)

where μ is the chemical potential, g and gc are self- and cross- non-linearity strengths

and J > 0 is the tunnelling/coupling strength (in general, if J is complex, its

phase can be absorbed into the definitions of the wavefunctions). We can define

dimensionless quantities:

ξ =

√
mμ

�
x, τ =

μ

�
t, vs =

√
m

μ
Vs, z = ξ − vsτ,

ψ =

√
g + gc
μ

Ψ, ν =
J

μ
, Γ =

g − gc
g + gc

, (3.2)

where we have introduced Vs, the translation velocity of localized solutions (such

as dark solitons and Josephson vortices). Here we shall only be interested in such

uniformly translating solutions that depend only on z. Ultimately, we will compute

properties of solutions with periodic boundary conditions by first solving the problem

with open boundary conditions and then accounting for the counterflow, present in

a ring geometry. Thus, the dimensionless equations in a frame moving at vs are

−ivs∂zψ1 = −1

2
∂zzψ1 − ψ1 +

1

2
(1 + Γ) |ψ1|2 ψ1 +

1

2
(1− Γ) |ψ2|2 ψ1 − νψ2,

−ivs∂zψ2 = −1

2
∂zzψ2 − ψ2 +

1

2
(1 + Γ) |ψ2|2 ψ2 +

1

2
(1− Γ) |ψ1|2 ψ2 − νψ1. (3.3)
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3.3 Analytical Solutions

Several exact solutions of (3.3) are known. The lowest-energy constant solution is

ψ1 = ψ2 =
√
1 + ν, which we shall refer to as the background. Dark-soliton solutions

satisfy ψ = ψ1 = ψ2 and are given by [59]

ψ =
√
1 + ν − v2s tanh

[√
1 + ν − v2sz

]
+ ivs. (3.4)

This corresponds to an identical soliton in each of the strands. The maximal velocity

at which a dark soliton can travel is the Bogoliubov speed of sound, vB =
√
1 + ν.

Zero-velocity Josephson vortices exist for 0 < ν < 1/3 and satisfy ψ1 = ψ∗
2 = ψ,

where

ψ =
√
1 + ν tanh

(
2
√
νz
)
+ i

√
1− 3ν sech

(
2
√
νz
)
. (3.5)

At ν = 1/3 the Josephson vortex bifurcates from the dark soliton excitation. The an-

tivortex, possessing opposite circulation to (3.5), is obtained by taking the complex-

conjugate of ψ.

The vortex nature of this solution can be seen by examining the phase pro-

files along the two strands (for convenience, we will imagine the two components

separated in space, as in the double-well potential scenario of Fig. 3.1). Defining

ψk =
√
nk(z) exp iφk(z), if one traces a closed loop around the center of the system

(lying at z = 0 and half way between the two strands), at the position of the vortex

core, the phase continuously changes from 0 to 2π, as can be seen in Fig. 3.2 (b).

Nevertheless, the phases of both strands are equal far away from the excitation. The

distinctive features of this stationary vortex are an equal dip in the density and an

equal-but-opposite phase step in each component.

Note that both the analytical dark soliton & Josephson vortex solutions given

above are independent of Γ.

3.3.1 The Manakov Case

In the case when Γ = 0, one can transform the Gross-Pitaevskii equations to an

integrable model known as the Manakov system. In this limit, a whole family of

solutions can be found analytically [131] – we shall refer to these as the Manakov

solutions, as they are related to Manakov’s, but are somewhat different due to a

non-zero ν. This is achieved as follows. Defining χ1,2 = 1√
2
(ψ2 ± ψ1), we rewrite

equations (3.3) for the new variables:

−ivs∂zχk = −1

2
∂zzχk − (1± ν)χk +

1

2

(|χ1|2 + |χ2|2
)
χk, (3.6)
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where the two different signs in front of ν are to be taken with the two different

indices, k = 1, 2. We take a trial solution of the form found in [131] (all parameters

are assumed to be real),

χ1 = αi+ β tanh(ηz), χ2 = δsech(ηz)eiεz, (3.7)

substitute it into (3.6) and solve the resulting non-linear equations for the unknown

parameters:

α =

√
1 + ν

2ν
vs,

β =

√
(4ν − v2s)(1 + ν)

2ν
,

η =
√
4ν − v2s ,

δ =

√
(4ν − v2s)(1− 3ν)

2ν
,

ε = vs. (3.8)

In fact, χ2 may be multiplied by an arbitrary phase factor, eiθ, and the resulting

solution still satisfies the differential equations. Transforming back to the ψ-variables

gives

ψ1,2 =
1√
2

(
αi+ β tanh(ηz)± eiθδsech(ηz)eiεz

)
. (3.9)

Notice that for the parameters in (3.8) to be real (and the solution to be non-trivial)

we need ν < 1/3 and v2s < 4ν.

All three analytical solutions presented above are illustrated in Fig. 3.2.

3.4 Useful Observables

Let us now define several useful quantities that shall be evaluated later on for the

numerical solutions. Energy (scaled by �μ2√
μm(g+gc)

in our dimensionless units) is given

by

E =

L∫
−L

dz
∑
k=1,2

{
1

2
|∂zψk|2 − |ψk|2 − νψ∗

kψ3−k +
1

4
(1 + Γ) |ψk|4

}

+
1

2
(1− Γ) |ψ1|2 |ψ2|2 . (3.10)

The excitation energy is then Es = Ex − E0, where Ex is the energy of the excited

state and E0 = −2L(1+ν)2 is the background energy. Momentum is scaled by �μ
g+gc

,
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(a) (b)

(c)

Figure 3.2: The density (related to the width of the tubes) and phase (encoded as a
colour map) of three analytical solutions with various parameters. The two densities

n1,2 are taken to be functions of z, and we define Nk = nk(z) exp[− (ỹ±0.15)2+x̃2

0.12
]. The

plots show isosurfaces of Nk at the function value of 0.3. (a) stationary dark soliton:
Γ = 1, ν = 0.15, Pc = 2π(1 + ν), (b) stationary Josephson vortex: Γ = 1, ν =
0.15, Pc = 2π(1 + ν), (c) stationary Manakov solution: Γ = 0, ν = 0.15, Pc =
2π(1 + ν), with θ = −π/4.

and

ΔP =

L∫
−L

(p1 − p2) dz,

Ps =

L∫
−L

(p1 + p2) dz,

pk = − i

2

[
ψ∗
k

dψk
dz

− ψk
dψ∗

k

dz

]
,

Δφ = φ1(−L)− φ1(L) = φ2(−L)− φ2(L),

Pcf = 2(1 + ν)Δφ,

Pc = Ps + Pcf , (3.11)
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where ΔP is the angular momentum, Ps is the physical momentum of the soliton

(or vortex), pk is the momentum density of each field, Δφ is the phase step across

the excitation, Pcf is the counter-flow momentum (present because we are interested

in the periodic boundary condition case), and Pc is the canonical momentum. In

addition, the missing particle number (scaled by �μ√
μm(g+gc)

) in the excitation is

Nd =

L∫
−L

n1(z) + n2(z) dz − 4(1 + ν)L, (3.12)

where nk(z) = |ψk(z)|2 are the particle densities in the two Bose-Einstein condensate

strands. Another property of quasi-particles that can be defined at extrema of the

dispersion relation is the inertial mass, given by equation (2.23).

3.4.1 Analytical Expressions for Dark Solitons

We can calculate the defined observables for dark solitons analytically: the excitation

energy, angular momentum, phase step, canonical momentum, and missing particle

number are

Es =
8

3

(
1 + ν − v2s

)3/2
,

Δφ = π − 2 tan−1

[
vs√

1 + ν − v2s

]
,

Pc = 2π(1 + ν)− 4vs
√

1 + ν − v2s − 4(1 + ν) tan−1

(
vs√

1 + ν − v2s

)
,

Nd = −4
√
1 + ν − v2s . (3.13)

The excitation energy and missing particle number vanish when the soliton reaches

the Bogoliubov speed vB. The phase step is π for a stationary dark soliton and

reaches the extremal values of 0, 2π at vs = ±vB. The limits of Pc are Pc = 0, 4π(1+

ν). Clearly, the angular momentum is zero, and the inertial mass is found to be

mI = −8
√
1 + ν.

3.4.2 Analytical Expressions for Manakov Solutions

Likewise, it is possible to calculate all the quantities of interest for the Γ = 0 ana-

lytical Manakov solutions: the excitation energy, phase step, canonical momentum,
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and missing particle number are

Es = 4
√

4ν − v2s

[
2

3
(4ν − v2s)− (3ν − 1)

]
,

ΔP = 2π
√
1 + ν

√
1− 3ν sech

(
πvs

2
√
4ν − v2s

)
sin θ,

Δφ = π − 2 tan−1

[
vs√

4ν − v2s

]
,

Pc = 2π(1 + ν)− 4

{
vs
√

4ν − v2s + (1 + ν) tan−1

[
vs√

4ν − v2s

]}
,

Nd = −4
√
4ν − v2s . (3.14)

The inertial mass evaluates to mI = −25ν+1√
ν
. Note that the limits of Pc are Pc =

0, 4π(1 + ν), the same as for dark solitons.

3.4.3 Variational Calculation for Josephson Vortices

It is possible to find a variational approximation for Josephson vortices near vs =

0, Pc = 2π(1 + ν), i.e. in the immediate vicinity of the known analytical solution

(3.5). We take the variational ansatz

ψ1,2 =
√
1 + ν

{
i sin(α) + cos(α) tanh(Az)± iB1,2 sech(Az)e

izε
}
, (3.15)

a form general enough to capture dark solitons, zero-velocity Josephson vortices

and Manakov solitons. One then has to evaluate L = Es− vsPc for this variational

guess and take away L for the background state, resulting in the difference, ΔL .

Differentiating ΔL with respect to all five variational parameters (A,α,B1, B2, ε)

and setting the resulting expressions to zero, we obtain a system of five coupled non-

linear equations. These are quite complicated, and a direct solution is impractical.

Instead, we linearise the equations in vs: we set A = A0 + vsÃ, ε = ε0 + vsε̃, α =

α0 + vsα̃, B1,2 = B0 + vsB̃1,2, where the zeroth order parameters are chosen to

correspond with the solution (3.5): A0 = 2
√
ν, B0 =

√
1−3ν
1+ν

, ε0 = α0 = 0. The

zeroth-order terms in the linearised equations thus cancel, and it remains to set the

first order terms (in vs) to zero. Introducing B̃± = B̃1±B̃2, we replace the equations

resulting from dΔL /dB1,2 = 0 by the sum and difference of these two equations.

The five equations we must now solve decouple into two sets: two- and three-coupled
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equations. The solutions are: Ã = B̃+ = 0, and

Ω = −48
{−Γ2 + 2(Γ− 2)Γν + ν2 [24 + Γ(44 + 3Γ)]

}
[3ν + Γ(6ν − 2)]

− 4π2 [2ν + Γ(3ν − 1)]
[
3Γν(7− 29ν)− 54ν2 + 5Γ2(1 + ν)(3ν − 1)

]
+ 3Γπ4(1 + ν)(Γ− 2ν − 3Γν)2, (3.16)

α̃ =
√
ν
{
216ν2(π2 − 8) + 6Γν

[
168− 888ν + 4π2(19ν − 5) + π4(1 + ν)

]
+ Γ2(3ν − 1)

[−96(1 + 13ν) + 4π2(13ν − 5) + 3(1 + ν)π4
]}
/Ω, (3.17)

ε̃ = 72(1 + 2Γ)ν2
[
6ν(π2 − 8) + Γ(3ν − 1)(3π2 − 32)

]
/Ω, (3.18)

B̃− = 144Γ(1 + 2Γ)ν3/2π(3ν − 1)/Ω. (3.19)

Linearising the variational equations in vs is an approximation that is of the same

order as keeping terms up to O(v2s) in Es (the excitation energy) and O(vs) in Pc

(the total momentum). Making such an expansion we can calculate the inertial mass

mI = 2 dEs

d(v2s)
, to obtain

mI = 8
√
ν
{
48
[
Γ + 2ν(3 + Γ) + ν2(30 + 49Γ)

]
[3ν + Γ(6ν − 2)]

−3Γ(1 + ν)2π4(2ν + Γπ4(3ν − 1))− 4π2
[
27ν2(1 + 5ν) + 3Γν (ν(137ν − 14)− 7)

+ Γ2 (5 + ν(ν(309ν − 133)− 5))
]}
/Ω, (3.20)

which is plotted in Fig. 3.11 alongside the numerical results. Using the zero-velocity

solution (3.5), we can compute the excitation energy and the missing particle number

at vs = 0 as Es =
8
3
(3− ν)

√
ν and Nd = −8

√
ν, and extract the speed of light (see

later) as c =
√

Es

mI
; Nd/mI from this calculation is added to Fig. 3.13 and c to

Figs. 3.15 and 3.16. Note that Ref. [129] predicted Nd/mI = (5ν−1)/(1+ν), which

is also added to Fig. 3.13 for comparison.

3.5 Numerical Methods

We work in the MATLAB environment, making use of the boundary value problem

solver bvp5c.m (a finite difference algorithm). We would like to numerically solve

the case of open boundary conditions where z ∈ (−∞,∞). Necessarily, the system

is truncated to a finite size, z ∈ [−L,L], where L is large enough for the solutions to

settle in to the constant background. The equations are written as a first order sys-

tem, separating out the real and complex parts. As boundary conditions, we require

zero first derivatives at ±L for both fields. The absolute and relative tolerances of

the solver are set to 10−8; if this accuracy cannot be reached with the chosen system

size, L is increased. After a solution is obtained, we check that the densities nk at

±L are within 0.01 of the background density and that the phases of the two fields

satisfy |φk(±L)−φ3−k(±L)| ≤ 0.01. If either condition is not fulfilled, L is increased
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and the solver is called again.

In order to find a solution, one needs to provide the solver with a guess for the

wavefunctions. An obvious way to find translating Josephson vortices is to start

from the known zero velocity Josephson vortices and slowly increase velocity, using

each subsequent solution as a guess for the next (so-called continuation in velocity).

Although this method works in general, below the critical coupling (in the region

where the dispersion relation has three extrema) we find that numerically, the solver

is unable to follow the solution past the maxima of the dispersion relation, located on

either side of the zero-velocity minimum. The rest of the dispersion relation can be

found by first continuing the stationary solution in velocity at some tunnelling value

above the critical point (to obtain a full dispersion relation), and then continuing

each point on this dispersion relation down in coupling strength. This process is

explained further in section 3.6. Except for this particular case, solutions can be

followed in any parameter with no difficulty, as described in detail below.

In addition, we found that out of the entire θ-spectrum of analytic Manakov

solutions at Γ = 0, only the θ = 0,±π and θ = ±π/2 solutions extend to positive,

finite Γ. When Γ = 0, the stationary Manakov solution is identical to the zero-

velocity Josephson vortex solution if θ = −π/2. Indeed, following the θ = −π/2
solution from Γ = 0 to Γ > 0 yields the Josephson vortex branch obtained by

following Josephson vortices from Γ = 1 to Γ < 1. On the other hand, following

the θ = 0 solution from Γ = 0 to Γ > 0 gives an entirely new branch, which we

shall refer to as staggered solitons, due to the fact that the density minima (and the

associated positions of the phase jumps) are off-shifted from each other along the

strands (see Fig. 3.3 (e)).

3.6 Visual Inspection of Numerical Solutions

In order to visualize the solutions, we show surface plots similar to those of Fig. 3.2,

where the width of the two cylinders is related to the density of the two fields (see

the caption of Fig. 3.3) and the phase is encoded as a colour map. We choose

representative examples that illustrate the different solutions in all distinct regions

of parameter space.

Figure 3.3 (a) shows a moving Josephson vortex for Γ = 1, ν = 0.15. In all cases

for Γ = 1, ν ≥ 0.15 the solutions were obtained by starting from the known zero-

velocity Josephson vortices (3.5) and increasing velocity at a fixed ν. With reference

to Fig. 3.5, we followed the corresponding Josephson vortex solution (blue dashed

lines) from the origin out to positive velocities until the branch terminated.

Figure 3.3 (b) shows a stationary Josephson vortex at the maximum of the disper-

sion relation for Γ = 1, ν = 0.005 and panel (c) shows a moving Josephson vortex for
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The density (related to the width of the tubes) and phase (encoded as a
colour map) of six numerical solutions with various parameters. The two densities

n1,2 are taken to be functions of z, and we define Nk = nk(z) exp[− (ỹ±0.1)2+x̃2

0.12
]. The

plots show isosurfaces of Nk at the function value of 0.6. (a) moving Josephson
vortex: Γ = 1, ν = 0.15, Pc = 1.34π, (b) stationary Josephson vortex maximum:
Γ = 1, ν = 0.005, Pc = 1.05π, (c) moving Josephson vortex: Γ = 1, ν = 0.005, Pc =
2.17π, (d) moving Josephson vortex: Γ = 0.5, ν = 0.005, Pc = 0.49π, (e) stationary
staggered soliton: Γ = 0.5, ν = 0.005, Pc = 2π(1 + ν), (f) moving staggered soliton:
Γ = 0.5, ν = 0.005, Pc = 0.86π.
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the same Γ and ν. The solutions for Γ = 1, ν < 0.15 were obtained by starting from

the previously-calculated wavefunctions at ν = 0.15, and at each velocity gradually

decreasing ν. With reference to Fig. 3.6, the relevant Josephson vortex curves are

plotted as dashed lines. Continuing the Josephson vortex branch down in ν from

ν = 0.15 gave us the sections plotted in blue. Then, at a given ν, we continued the

blue Josephson vortex segment to negative vs, thus obtaining the black parts of the

curves. Separately, at a fixed ν, we also started from the zero-velocity Josephson

vortex (3.5) and increased vs, which yielded the green segments of the curves.

Note that, as shown in Fig. 3.4 (a), as ν goes to zero, the Josephson vortex dis-

persion relation is “split in half” as Es(Pc = 2π(1 + ν)) drops to zero. At ν = 0

each “wing” of the dispersion relation corresponds to a dark soliton in one of the two

Bose-Einstein condensate strands and the uniform background solution in the other.

This can be seen clearly in Fig. 3.3 (b) where the density of one condensate is prac-

tically flat and the other has a strong dip. We therefore refer to the quasi-particles

around the maxima of the Josephson vortex dispersion relation as “Josephson vortex

maxima”, and interpret them as single-strand dark solitons. Conversely, the dark

soliton dispersion relation consists of a dark soliton in each of the Bose-Einstein

condensate strands and the Josephson vortex dispersion relation merges with it as

ν → 1/3.

Physically, at the maxima of the dispersion relation, the vortex core can be

thought of as exactly crossing one of the Bose-Einstein condensate strands as it

moves out (perpendicularly to the Bose-Einstein condensates) from in between the

two strands.

Figure 3.3 (d) shows an example of a moving Josephson vortex for Γ = 0.5, ν =

0.005. The solutions for ν = 0.005,Γ < 1 were obtained by starting from the

previously-calculated wavefunctions at ν = 0.005,Γ = 1, and at each velocity grad-

ually decreasing Γ. Once part of the dispersion relation was available at each Γ

value, if necessary, we could complete it by following in vs. In Fig. 3.7, the relevant

Josephson vortex curves are plotted as dashed lines.

Figure 3.3 (e) shows a stationary staggered soliton for Γ = 0.5, ν = 0.005 and

panel (f) shows a moving staggered soliton for the same Γ and ν. These solu-

tions were obtained by starting from the analytical Manakov wavefunctions at

ν = 0.005,Γ = 0, and at each velocity gradually increasing Γ. This gave us the

central part of the dispersion relation at all Γ values, which we then extended in vs

at each constant Γ. In Fig. 3.7, the relevant curves are plotted as dash-dotted lines.
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3.7 Dispersion Relation and Other Observables

Figure 3.4 panels (a), (c), (e) show the dispersion relations of dark solitons, Joseph-

son vortices and of the staggered solitons, the latter only for Γ < 1. This is be-

cause the staggered solitons branch completely merges with dark solitons at about

Γ = 0.975. Likewise, the Josephson vortex dispersion relation overlaps with the

dark soliton dispersion relation at ν = 1/3. From panel (a) it is clear that for Γ = 1,

the Josephson vortex dispersion relation changes concavity at Pc = 2π(1 + ν) at

around ν ≈ 0.14 − 0.15. The same process is observed in reverse as Γ → 0+ with

ν ≤ 0.14, as we move from panel (c) to (e). At Γ = 0, the equations reduce to the

Manakov case, which is solved analytically in sections 3.3.1 and 3.4.2, and indeed

the Manakov solitons have a dispersion relation with a single central maximum.

In Fig. 3.4 panels (b), (d), (f) we compare the energy of dark solitons, Josephson

vortices, Josephson vortex maxima and staggered solitons at the extrema of the

dispersion relations (which necessarily implies at zero velocity) as a function of ν.

In (b), for Γ = 1, the Josephson vortex and Josephson vortex maximum lines merge

at around ν ≈ 0.14− 0.15. It may be expected that this bifurcation point depends

on Γ, and this is indeed found to be the case. Panel (d) shows that at Γ = 0.5,

the bifurcation point has now moved from ν = 0.1413 to around ν = 0.1. Finally,

at Γ = 0 in panel (f), only the dark soliton-Josephson vortex bifurcation remains:

Josephson vortices join the dark soliton line at ν = 1/3, which is independent of Γ.

Note that in (d), both the Josephson vortex and the Josephson vortex maximum

solutions are stable, but the Josephson vortex maxima have Pc �= 2π(1 + ν), unlike

all other solutions shown. The staggered soliton solutions only exist below about

ν = 0.125 where they are unstable, while the higher energy dark solitons are stable.

For ν > 0.125, staggered solitons disappear and dark solitons become unstable.

The energy, missing particle number, angular momentum and phase step are

plotted as a function of velocity in Figs. 3.5-3.7 for the three parameter sets that

were used in Fig. 3.3. The colour code refers to how the solutions were obtained (also

see section 3.6): segments in blue, black, light-green and dark-green were calculated

from solutions found by the solver, and segments in cyan, red, magenta and purple

are reflections of the first four data sets. Note that we assumed the dispersion

relation was symmetric, as in the thermodynamic limit there is nothing to break

left-right symmetry, and thus the same excitation translating in either direction

would cost the same amount of energy. The change in concavity of the Josephson

vortex branch as ν goes down through ν ≈ 0.14− 0.15 in Fig. 3.4 (a) is seen as the

development of a loop in velocity-energy plots (compare panels (a) of Figs. 3.5 and

3.6).
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Figure 3.4: Dispersion relations showing all found solutions (a, c, e) and energy at the
extrema of the dispersion relations as a function of ν (b, d, f). The green curve is the dark
soliton (labelled “DS”) branch, Josephson vortex (labelled “JV”) solutions are plotted in
red, Josephson vortex maximum (labelled “JV(M)”) in blue and the staggered solitons
(labelled “SS”) branch in black. Solid lines indicate stable solutions and dashed lines
indicate unstable. Circular markers show the extreme points of the dispersion relations
while square markers indicate bifurcation points. (a) Γ = 1. The three red lines show
the Josephson vortex branch for different ν values, as indicated next to each curve. (b)
Γ = 1, vs = 0. (c) Γ = 0.5, ν = 0.005. (d) Γ = 0.5, vs = 0. (e) Γ = 0, ν = 0.005. (f)
Γ = 0, vs = 0. In the last two panels, the red line is the analytical Manakov branch
(numerical Josephson vortices and staggered solitons at Γ = 0 overlap with this curve).
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Figure 3.5: Energy (a), missing particle number (b), angular momentum (c) and
phase step (d) as a function of velocity for Γ = 1, ν = 0.15. Dashed line – Josephson
vortices (numerical), solid line – dark solitons (analytical). The segment in blue was
calculated from solutions found by the solver, and the segment in cyan is a reflection
of the first data set (assuming symmetry). This parameter set is the same as was
used in Fig. 3.3 (a).

3.8 Parameter Regimes, Types of Excitations and

Their Stability

Dark soliton solutions are analytically known for all parameter values. We have

numerically obtained all translating Josephson vortex solutions in two parameter

regimes: Γ = 1, 0.005 ≤ ν ≤ 0.33 and ν = 0.005, 0 ≤ Γ ≤ 1. Staggered solitons

were found in the second regime; this branch always has zero angular momentum and

energy higher than Josephson vortices but lower than dark solitons. It is understood

to be a transitory state through which Josephson vortices are able to reverse their

circulation. Wherever the staggered soliton branch does not exist, dark solitons

perform the role of the transitory state.
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Figure 3.6: Energy (a), missing particle number (b), angular momentum (c) and
phase step (d) as a function of velocity for Γ = 1, ν = 0.005. Dashed line – Josephson
vortices (numerical), solid line – dark solitons (analytical). Segments in blue, black
and green were calculated from solutions found by the solver, and segments in cyan,
red and magenta are reflections of the first three data sets (assuming symmetry).
This parameter set is the same as was used in Fig. 3.3 (b) and (c).

When Γ = 1, Kaurov and Kuklov [127] found that zero-velocity Josephson vortex

solutions only exist for ν < 1/3, at which point Josephson vortices merge into dark

solitons. In fact, this happens at all velocities, but the merging point depends on

vs. A more natural point of view for us will be to say that at any given tunnelling

value, the Josephson vortex and dark soliton dispersion relations merge smoothly

at some critical momentum (associated with some critical velocity), and for larger

momenta, the Josephson vortex branch does not exist. This is illustrated in Fig. 3.8

(a) where we plot the maximal velocity reached by the Josephson vortex branch (the

critical velocity) as a function of ν. We found that, with Γ = 1, whenever Josephson

vortices and dark solitons coexist, Josephson vortices are stable and dark solitons are

unstable and when Josephson vortices cease to exist, dark solitons become stable.

This fact was exploited in Ref. [129] where the authors present a similar plot to
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Figure 3.7: Energy (a), missing particle number (b), angular momentum (c) and
phase step (d) as a function of velocity for Γ = 0.5, ν = 0.005. Dashed line –
Josephson vortices (numerical), dash-dotted line – staggered solitons (numerical),
solid line: dark solitons (analytical). Segments in blue, black, light-green and dark-
green were calculated from solutions found by the solver, and segments in cyan, red,
magenta and purple are reflections of the first four data sets (assuming symmetry).
This parameter set is the same as was used in Figs. 3.3 (d)-(f).

Fig. 3.8 (a) based on a stability calculation for dark solitons. An outline of the

stability calculation is presented in appendix 3.A.

When Γ < 1 we see that once again there exists a critical momentum beyond

which the Josephson vortex solutions do not exist, but the Josephson vortex dis-

persion relation now terminates by touching the dark soliton dispersion relation

non-tangentially (i.e. the slopes of the curves are different). The critical velocity is

plotted as a function of Γ in Fig. 3.8 (b). The staggered soliton branch terminates

at the exact same critical momentum and velocity as the Josephson vortex branch.

In the Γ < 1 regime, Josephson vortices are again always stable, but the situa-

tion for dark solitons is quite different. Figure 3.9 shows a numerically-determined

boundary line (plotted in blue circles) in the Pc-Γ plane such that above this curve,
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Figure 3.8: The numerical critical velocity for Josephson vortices (labelled “JV’s”)
plotted as a function of ν with Γ = 1 (a) and as a function of Γ with ν = 0.005 (b).
These curves separate regions of parameter space where Josephson vortex solutions
exit from those where they do not. The red square is the analytical Manakov result.
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dark solitons are unstable and below it they are stable. As soon as dark solitons

become stable, staggered solitons appear. These are always unstable except for ex-

actly at Γ = 0 (the entire Manakov family of solutions is always stable). There exist

small regions of stability in Fig. 3.9, bounded by the almost vertical sections of the

stability-flip curve and 0 & 4π(1 + ν), the limits of Pc. These are regions where

staggered solitons and Josephson vortices do not exist and dark solitons are stable

(as in the regime Γ = 1). The development of these slivers of stability is seen in

Fig. 3.8 (b) as a dip of the critical velocity, starting at about Γ = 0.86.

For zero-velocity dark solitons, we can analytically compute the points in parame-

ter space where the stability changes – this is done in appendix 3.A.1. For ν = 0.005

as in Fig. 3.9, the result is Γ = 0.975, in agreement with numerical calculations (this

point has been added to Fig. 3.9 as a red square). In fact, the analytical calculation

also allows one to see that this stability-flip point starts at Γ = 1 when ν = 0,

smoothly decreases and reaches Γ = 0 at ν = 1/3, so that outside of 0 < ν < 1/3,

neither Josephson vortices nor staggered solitons exist.

Thus, there is a region of bistability for Γ < 1 where Josephson vortices (lowest

energy) and dark solitons (highest energy) are both stable, with the unstable stag-

gered soliton branch (intermediate energy) between them. An illustration is given

in Fig. 3.10 where we fix ν = 0.005, vs = 0, Pc = 2π(1 + ν) and plot the energy as

a function of Γ. The energies of dark solitons and Josephson vortices are constant

since the solutions (3.4) and (3.5) are independent of Γ, as is the energy functional

(3.10) when |ψ1|2 = |ψ2|2. Overall, this has the familiar shape of a bistability dia-

gram with an S-shaped fold, in the sense that the two extreme solutions are stable

and the intermediate solution is not. The unusual features are that the upper branch

continues to the right past the fold and that the three lines do not make a single,

smooth S-shaped curve.

3.9 Inertial Mass and Missing Particle Number

In this section we focus on the first parameter range (Γ = 1) and examine some key

properties of the Josephson vortex quasi-particles. To start with, we can calculate

the inertial mass of Josephson vortices and Josephson vortex maxima (evaluating

the derivatives in (2.23) at the minimum and maximum of the dispersion relation,

respectively) as a function of ν, which yields Fig. 3.11. The blue and red solid

curves were obtained from the numerical Josephson vortex solutions. We define

the bifurcation point at which the central part of the Josephson vortex dispersion

relation changes concavity by the ν value at which the 1/mI curve (red solid line in

Fig. 3.11) crosses zero. This happens at ν = 0.1413. The magenta dash-dotted line

shows the variational approximation for Josephson vortices.
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Figure 3.11: One over the inertial mass for Josephson vortices (labelled “JV”) and
Josephson vortex maxima (labelled “JV(M)”) as a function of tunnelling strength
with Γ = 1. The blue (lower) and red (upper) solid curves were obtained from the
numerical Josephson vortex solutions. The magenta dash-dotted line is an approxi-
mate result obtained from a variational calculation for Josephson vortices (labelled
“var JV”), equation (3.20). The black dashed line is a plot of 1/mSG from (3.34),
discussed is section 3.11.

The inertial mass is a useful characteristic of an excitation, but experimentally, it

is more common to measure mI/Nd, the ratio of the inertial mass to the number of

particles in the excitation. With this in mind, Fig. 3.12 shows Nd at the extrema of

the Josephson vortex dispersion relation as a function of ν, and Fig. 3.13 shows the

ratio Nd/mI obtained by combining the data from Figs. 3.11 and 3.12. In chapter 5,

we will show that Nd = Ns at zero velocity, so Nd(vs = 0) is proportional to mp and

thus the ratio Nd/mI relates to the oscillation frequency in a trap. It is clear that

the red curve certainly crosses zero, which means that mI/Nd → ±∞ on either side

of the critical point. This implies that essentially, the Josephson vortices become

infinitely heavy.

3.10 The Sine-Gordon Equation

The second parameter regime that we have investigated (ν = 0.005) is particularly

interesting in terms of how it compares to the analytically solvable sine-Gordon

model. In order to carry out such a comparison, we first give a brief review of the

sine-Gordon equation.

In appendix 3.B we derive the sine-Gordon equation from the model of section 3.2

by assuming that the densities of the two fields are practically equal to each other
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and are almost constant. In addition, many terms are dropped from the Lagrangian

density based on the fact that the remaining terms yield the sine-Gordon equation

(this selection is partly justified a posteriori by the success of the analysis we perform

in section 3.11). This derivation allows one to express the sine-Gordon parameters

through the Gross-Pitaevskii model parameters, thus enabling a direct comparison

of the two models. In this section we will present some analytical results for the

sine-Gordon equation [132], written with parameters determined by the procedure

in appendix 3.B.

The Lagrangian density of the sine-Gordon model is

L =
�
2

4(g − gc)
(∂tφa)

2 − �
2

4m

μ+ J

g + gc
(∂xφa)

2 + 2J
μ+ J

g + gc
cos(φa), (3.21)

where

φa = φ1 − φ2. (3.22)

The Hamiltonian density can be obtained in the usual way:

Pφ =
∂L

∂(∂tφa)
,

H = Pφ(∂tφa)− L, (3.23)

where Pφ is the canonical conjugate coordinate to φa. The Euler-Lagrange equation

∂L
∂φa

− ∂x
∂L

∂(∂xφa)
− ∂t

∂L
∂(∂tφa)

= 0 (3.24)

yields the sine-Gordon equation:

∂ttφa − Γ

m
(μ+ J)∂xxφa = −4JΓ(μ+ J)

�2
sin(φa). (3.25)

Rewriting in dimensionless form (see (3.2)) and in a frame moving at vs, the sine-

Gordon equation becomes

[
v2s − Γ(1 + ν)

]
∂zzφa + 4νΓ(1 + ν) sin(φa) = 0. (3.26)

The solution is given by

ζ =

√
4νΓ(1 + ν)

Γ(1 + ν)− v2s
,

φa = 4 tan−1
(
eζz
)
. (3.27)
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The Hamiltonian density is

H =
1

4

[
v2s
Γ

+ 1 + ν

]
(∂zφa)

2 − 2ν(1 + ν) cos(φa), (3.28)

and the excitation energy is

Es =
8ν(1 + ν)

ζ
+ 2ζ

(
1 + ν +

v2s
Γ

)
. (3.29)

Next, using

Pc(vs) =

vs∫
0

dv̄s
1

v̄s

dEs
dv̄s

, (3.30)

we get the canonical momentum as

Pc =
4vs
Γ
ζ. (3.31)

We can eliminate vs to get the dispersion relation:

E2
s = (1 + ν)

[
ΓP 2

c + 64ν(1 + ν)
]
, (3.32)

or if we choose to write (in analogy to a relativistic particle)

E2
s = m2

SGc
4
SG + c2SGP

2
c , (3.33)

then we identify

mSG =
8
√
ν

Γ
, cSG =

√
Γ(1 + ν). (3.34)

3.11 Relativistic Behaviour

We have seen that at Γ = 1 and small ν, the Gross-Pitaevskii Josephson vortex

dispersion relation develops a dip about Pc = 2π(1 + ν) (see Fig. 3.4), similar in

shape to the central part of the dispersion relation of the sine-Gordon equation.

The equivalence of the two models in this regime has been suggested before [128],

and now that we have the sine-Gordon dispersion relation expressed through the

Gross-Pitaevskii model parameters, we are in a position to check this statement.

First, we can compare the dispersion relations visually. This is shown in Fig. 3.14,

and the Josephson vortex dispersion relation indeed seems to be very close to the

sine-Gordon curve. Next, we would like to compare the sine-Gordon parameters

mSG and cSG to their equivalents in the Gross-Pitaevskii model as a function of ν.

A sensible way of extracting these parameters from the Josephson vortex dispersion
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relation is to first obtain cJV from

cJV =

√
max

(
dE2

s

dP 2
c

)
, (3.35)

using data about Pc = 2π(1 + ν), and then obtain mJV as

mJV =

√
E2
s (Pc = 2π(1 + ν))

c4JV
. (3.36)

mJV calculated this way (for ν ≤ 0.14) is indistinguishable from mI plotted in

Fig. 3.11 as a red solid line. Comparing the red line to the black dashed line (mSG)

in Fig. 3.11, it appears that the Josephson vortex bare mass mJV indeed approaches

the sine-Gordon result smoothly. Note that we are unable to compute numerical

Josephson vortex solutions at smaller ν because the length-scale of the excitation

diverges in the limit ν → 0.

As for the speed of light, cJV , Fig. 3.15 shows that the functional dependence

on ν is completely different for the Gross-Pitaevskii and sine-Gordon models, and

it is clear that the two only become equal at ν = 0 but the slopes remain different.

We therefore conclude that the Gross-Pitaevskii model approaches the sine-Gordon

model, but exhibits considerable differences at finite ν.

There are two fundamental speeds in the Gross-Pitaevskii model, which can be

found by computing linearised excitations about the vacuum state, as was done in

[124]. The authors find two elementary excitation branches: gapless Bogoliubov

phonons (subscript “B”) and gapped relative-phase excitations (subscript “RP”).

A standard Bogoliubov calculation (such as the one in appendix 3.A) leads to the

dimensionless oscillation frequencies

ωB =
√
1 + ν

√
1

2
k2
(

1

2(1 + ν)
k2 + 2

)
, (3.37)

ωRP =

√(
1

2
k2 + 2ν

)(
1

2
k2 + 2Γ(1 + ν) + 2ν

)
, (3.38)

where k is a dimensionless wavenumber. If for some sufficiently small k ω becomes

imaginary, the vacuum state is unstable. Thus, the vacuum can become unstable if

Γ < 0. Incidentally, Γ = 0 (the Manakov case) separates the miscible (Γ > 0) and

immiscible (Γ < 0) phases of the system. The speeds associated with each branch

are the speed of sound, cB =
√
1 + ν, and cRP =

√
Γ(1 + ν) + 2ν, which can be

interpreted as a speed of light. Both the elementary speeds are added to Figs. 3.15

and 3.16 for comparison with sine-Gordon and Josephson vortex results. Notice that
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cRP is never equal to (the variational) cJV for Γ > 0.

00
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π 2π 3π 4π

Figure 3.14: Dispersion relation of the Gross-Pitaevskii model and the sine-Gordon
equation with Γ = 1, ν = 0.005. Green dashed line – dark solitons (labelled “DS”),
red solid line – Josephson vortices (labelled “JV”), black dash-dotted line – sine-
Gordon solutions (labelled “SG”). Note that the sine-Gordon dispersion relation is
artificially shifted to Pc = 2π(1 + ν). The Josephson vortex dispersion relation is
very close to the sine-Gordon dispersion relation about Pc = 2π(1 + ν).

Figure 3.16 finally ventures in to the Γ < 1 regime. Here we compare the sine-

Gordon speed of light cSG to its equivalent from the Gross-Pitaevskii model cJV

(showing both a numerical calculation and a variational approximation), and to the

elementary speeds cB and cRP . We can see that the difference between cSG and

cJV remains constant as a function of Γ (it only depends on ν) and that both the

Josephson vortex and sine-Gordon speeds of light exhibit a square-root dependence

on Γ (recall that cSG =
√
Γ(1 + ν)) while cB is independent of Γ. Thus, by decreas-

ing Γ at a small ν we can decouple two fundamental speeds in the Gross-Pitaevskii

model dispersion relation.

3.12 Discussion and Conclusions

We have carried out a numerical investigation (complemented by some analytical

results) of a model of two linear, parallel, long coupled Bose-Einstein condensates.

The model has three distinct, dimensionless parameters: ν (representing coupling

between the condensates), Γ (which carries information about self- and cross- non-

linearities of the fields), and vs (the uniform translation speed of localized excita-

tions). This model has three types of solutions: dark solitons, Josephson vortices

and a new set of solutions which we have labelled staggered solitons. Analytical
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Figure 3.15: “Speed of light” from a relativistic dispersion relation for the sine-
Gordon (blacked, dashed line, labelled “SG”) and Gross-Pitaevskii problems (red,
solid line, labelled “JV”) at Γ = 1. The magenta dash-dotted line is an approximate
result obtained from a variational calculation for Josephson vortices (labelled “var
JV”). Note that for Γ = 1, cSG = cB, the speed of sound, and the elementary speed
of light cRP is added as a solid cyan line (upper).
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Figure 3.16: A comparison of the numerical cJV from the Gross-Pitaevskii model
(labelled “JV”, red lower solid line), the variational cJV (labelled “var JV”, dash-
dotted magenta line), cSG of the sine-Gordon equation (labelled “SG”, black dashed
line), the speed of sound cB (labelled “B”, green upper solid line) and the elementary
speed of light cRP (labelled “RP”, cyan intermediate solid line). For all curves,
ν = 0.005.
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expressions are available for dark solitons (for arbitrary parameters), zero-velocity

Josephson vortices (but not Josephson vortex maxima), and the Manakov solutions

for Γ = 0. Numerically we have found full dispersion relations for all solutions in

the parameter regimes Γ = 1, 0 < ν < 1/3 and ν = 0.005, 0 ≤ Γ ≤ 1.

We saw that with Γ = 1, there was a critical point at ν ≈ 0.1413 where the

central part of the Josephson vortex dispersion relation changed concavity. This

corresponded to the inertial mass changing sign, going through ±∞. Thus, very

“heavy” Josephson vortices can be created by tuning the coupling strength in this

range. The heavy solitonic vortices observed experimentally in [72, 73] are closely

related, but there it is not possible to change the sign of mI by tuning a parameter.

We compared the Gross-Pitaevskii Josephson vortex dispersion relation at small

ν and Γ = 1 to the integrable sine-Gordon dispersion relation. We expressed the

sine-Gordon parameters through the Gross-Pitaevskii model parameters by deriving

the sine-Gordon model from the Gross-Pitaevskii model in the small ν limit. We

found that the Josephson vortex dispersion relation about Pc = 2π(1 + ν) became

equivalent to the sine-Gordon one exactly at ν = 0 but that the approach was slow.

This challenges the widely-used approximation, or at least suggests some caution

in its application. However, by working in the small ν regime, Josephson vortices

may open the possibility for experimental study of “relativistic particles” (to a good

approximation) using collective excitations of ultra-cold atoms.

When Γ < 1, we found that there exists a Γ- and ν- dependent region where dark

solitons and Josephson vortices are both stable, separated (in energy) by the unstable

staggered solitons. For Γ = 1, dark solitons are always unstable and Josephson

vortices are stable. Therefore, observing dark solitons in such a coupled Bose-

Einstein condensates system could be difficult because they would quickly decay into

two opposite-circulation Josephson vortices. If one worked in the bistable region,

however, since dark solitons are stable they would not decay. This could potentially

enable one to observe dynamics and interaction of Josephson vortices with dark

solitons experimentally.

After this work was completed, I became aware of a closely-related article [133]

that has considerable overlap with the results presented in this chapter.
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Appendix

3.A Stability Calculation

This appendix gives details of how the stability of a solution to equations (3.3) is

determined. We start from the Gross-Pitaevskii equations in dimensionless form,

allowing for additional time dependence, other than mere translation at vs:

i∂τψk = −1

2
∂zzψk + ivs∂zψk − ψk +

1

2
(1 + Γ) |ψk|2 ψk + 1

2
(1− Γ) |ψ3−k|2 ψk − νψ3−k.

(3.39)

To find out whether a solution is stable we must add a variation to the wavefunction:

ψk(z) → ψk(z) + δψk(z, τ). (3.40)

The right-hand side of (3.40) is substituted into (3.39); zeroth-order terms in δψk

give the unperturbed equations (3.39), terms of second order in δψk and higher are

discarded, and the first order terms give two linear equations for δψk:

i∂τδψk = −1

2
∂zzδψk + ivs∂zδψk − δψk − νδψ3−k +

1

2
(1 + Γ)

[
2 |ψk|2 δψk + ψ2

kδψ
∗
k

]
+
1

2
(1− Γ)× [|ψ3−k|2 δψk + ψ3−kψkδψ∗

3−k + ψ∗
3−kψkδψ3−k

]
. (3.41)

We then make the ansatz

δψk(z, τ) = ak(z)e
−iλτ + b∗k(z)e

iλ∗τ . (3.42)

Substituting (3.42) into (3.41) and separating out terms proportional to e−iλτ from

those proportional to eiλ
∗τ (in light of orthogonality), we obtain four equations:

0 = (Dk − λ)ak +

[
1

2
(1− Γ)ψ∗

3−kψk − ν

]
a3−k

+
1

2
(1 + Γ)ψ2

kbk +
1

2
(1− Γ)ψ3−kψkb3−k,

0 = (−D∗
k − λ)bk +

[
ν − 1

2
(1− Γ)ψ3−kψ∗

k

]
b3−k

−1

2
(1 + Γ)ψ∗2

k ak −
1

2
(1− Γ)ψ∗

3−kψ
∗
ka3−k, (3.43)
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where

Dk = −1

2
∂zz + (1 + Γ) |ψk|2 − 1 + ivs∂z +

1

2
(1− Γ) |ψ3−k|2 . (3.44)

When these equations are written in matrix form (in the basis a1, b1, a2, b2), it be-

comes clear that solving for the λ’s reduces to diagonalizing the following matrix:

M =

⎛
⎜⎜⎜⎜⎝

D1
1
2
(1 + Γ)ψ2

1
1
2
(1− Γ)ψ∗

2ψ1 − ν 1
2
(1− Γ)ψ2ψ1

−1
2
(1 + Γ)ψ∗2

1 −D∗
1 −1

2
(1− Γ)ψ∗

2ψ
∗
1 ν − 1

2
(1− Γ)ψ2ψ

∗
1

1
2
(1− Γ)ψ2ψ

∗
1 − ν 1

2
(1− Γ)ψ2ψ1 D2

1
2
(1 + Γ)ψ2

2

−1
2
(1− Γ)ψ∗

2ψ
∗
1 ν − 1

2
(1− Γ)ψ1ψ

∗
2 −1

2
(1 + Γ)ψ∗2

2 −D∗
2

⎞
⎟⎟⎟⎟⎠ .

(3.45)

M is a matrix of operators, each of which must also be represented by a matrix. Let

us consider these constituent operators first. These operate on the spatial dimension,

discretized in steps of h. If the interval [−L,L] is discretized in to N grid points,

then ν appearing in M is in fact ν multiplied by the N × N identity matrix. The

wavefunctions, in turn, are represented by N × N matrices with ψ on the main

diagonal. Products of ψ’s are achieved by multiplying the appropriate ψ matrices

together.

To construct ∂z and ∂zz we use a five-point stencil. In particular, if f(x) is some

function and x is discretized in steps of h, then the first and second derivatives are

approximated as

f ′(x) =
−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
,

f ′′(x) =
−f(x+ 2h) + 16f(x+ h)− 30f(x)

12h2
+

16f(x− h)− f(x− 2h)

12h2
. (3.46)

Thus, the matrices representing the first and second derivative operators only have

5 non-zero diagonals (symmetrically about the main diagonal) which contain the

numbers (going from upper-most to lowest diagonal) {−1, 8, 0,−8, 1} /(12h) for the
first- and {−1, 16,−30, 16,−1} /(12h2) for the second- derivatives. In order to avoid

boundary effects, on the second and pre-last rows we use a three point stencil:

f ′(x) =
f(x+ h)− f(x− h)

2h
,

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
. (3.47)

On the first and last rows, we also use the three point stencil but with additional

assumptions. For the first derivative, we are forced to take a one-sided derivative,

and for the second derivative, assume that f(x + h) = f(x − h). This is because

only one of x± h is part of the discrete grid when x is the first or the last point.

To find out whether a solution is stable or not, we need to know if there are any
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complex eigenvalues. The accuracy of the calculation is limited by h, and in our case,

h = L/100 where 2L is the size of the system. h is usually 0.01, but for the largest

systems can get up to 0.05 or 0.06. Note that the coupled Gross-Pitaevskii equations

in this discrete representation are satisfied to order h2: the norm of the residuals is

of order 10−4. In light of this, the cut-off for deciding whether the complex part of an

eigenvalue is spurious or real is set to 0.01. Then, for each complex eigenvalue, the

mod-squared eigenvector is inspected. If it is peaked in [−L/2, L/2], it is assumed to

be an actual unstable mode. If it peaks outside this range, the complex eigenvalue

is assumed to be spurious.

In the Γ < 1 parameter regime, some extra care has to be taken when com-

puting stability. For dark solitons, spurious unstable modes sometimes satisfy our

conditions for true instability defined in the paragraph above. To distinguish them

from real unstable modes, we required the eigenvector mod-squared at ±L to have

decayed to one hundredth of the maximum value or more. The spurious modes

have undamped oscillations beyond the region where the dark soliton is localized

and are therefore ruled out by this extra condition. The next issue occurs for both

dark solitons and staggered solitons: when the eigenvalue of a true unstable mode

goes to zero as a function of some parameter, at some point it inevitably crosses our

threshold of 0.01 (set in the paragraph above). This was suspected to occur in the

high velocity limits. Therefore we checked that the pure imaginary eigenvalue be-

longing to the only potentially unstable eigenvector decayed smoothly as a function

of velocity to zero. This confirmed that the mode in question was indeed unstable,

even though its imaginary eigenvalue was less than 0.01.

3.A.1 Analytical Stability Calculation for Dark Solitons

We are able to analytically determine the boundary between the stable and unstable

regions in parameter space for the known dark soliton solutions. This calculation

is not completely general, as in order for it to work, we are forced to assume that

the dark solitons are stationary, thus fixing one of the parameters; ν and Γ remain

arbitrary, though.

We recall that for dark solitons, ψ = ψ1 = ψ2 given by (3.4). Numerically, one

finds that the variations of the wavefunctions from (3.40) always satisfy δψ = δψ1 =

−δψ2, or equivalently, a = a1 = −a2 and b = b1 = −b2 (see (3.42)). Using this

knowledge, we can reduce the 4 × 4 matrix (3.45) to a 2 × 2 matrix operating on
�
 = [a, b]T :

M =

(
D̄ Γψ2

−Γψ∗2 −D̄∗

)
, (3.48)
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where

D̄ = −1

2
∂zz + ivs∂z + (1 + Γ) |ψ|2 − 1 + ν. (3.49)

Numerically we observe that the unstable eigenvector for dark solitons always has

zero real part, and therefore, when dark solitons change stability (i.e. when the

imaginary part of the eigenvalue goes through zero), the entire eigenvalue is zero.

We are thus interested in solving M�
 = �0. Defining the change of basis matrix

U =

(
1 1

1 −1

)
, (3.50)

we transform our matrix equation into the new basis: UMU−1U�
 = U�0, where

UMU−1 =
1

2

(
D̄ − D̄∗ + Γψ2 − Γψ∗2 D̄ + D̄∗ − Γψ2 − Γψ∗2

D̄ + D̄∗ + Γψ2 + Γψ∗2 D̄ − D̄∗ − Γψ2 + Γψ∗2

)
, (3.51)

and we will denote U�
 = [ã, b̃]T . The choice vs = 0 guarantees that ψ2 = ψ∗2 and

D̄ = D̄∗, and hence the diagonal elements of (3.51) vanish. The resulting equations

read

0 =

[
−1

2
∂zz + (1 + 2Γ)ψ2 − 1 + ν

]
ã,

0 =

[
−1

2
∂zz + ψ2 − 1 + ν

]
b̃,

ψ =
√
1 + ν tanh

(√
1 + νz

)
. (3.52)

These equations have the same form as the (time-independent) Schrödinger equa-

tion, i.e. the eigen-problem for the Hamiltonian. In addition to the usual kinetic

term we have a sech2 potential – known as the Rosen-Morse potential after the au-

thors who first solved this problem analytically [134], and a constant term which

can be interpreted as the eigenvalue. The energy spectrum consists of a few discrete

bound states (localized and square-integrable), followed by a continuum of higher-

energy, unbound states (delocalized). When the parameters are just right for the

bound energy eigenvalues of the Hamiltonians to match the eigenvalue terms in the

equations, the two equations (3.52) are satisfied with localized solutions. In other

words, for such parameter values a zero eigenvalue of (3.48) exists and dark solitons

switch stability.

Reference [134] derives the following results: the equation

[
∂zz + κ sech2(z)

]
ψ = εψ (3.53)
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has discrete, bound eigenvalues

εn =

(√
κ+

1

4
− n− 1

2

)2

, (3.54)

where n = 0 or n ∈ N, n ≤
√
κ+ 1

4
− 1

2
.

For direct comparison of (3.52) with this result, we must rewrite the potential

terms through sech2 and change to the scaled position coordinate z̃ =
√
1 + νz.

This procedure yields

4 [ν + Γ(1 + ν)]

1 + ν
ã =

[
∂z̃z̃ + 2(1 + 2Γ) sech2(z̃)

]
ã,

4ν

1 + ν
b̃ =

[
∂z̃z̃ + 2 sech2(z̃)

]
b̃. (3.55)

Examining the equation for b̃ and comparing to the Rosen-Morse results, n can only

be 0 or 1. Moreover, we easily compute ε0 = 1 and ε1 = 0. Next we set each εn

equal to the eigenvalue 4ν
1+ν

and see what conditions this imposes on our parameters.

Doing this for ε1 leads to ν = 0 and for ε0 leads to ν = 1/3. These are well-known

points at which dark solitons do change stability: at ν = 0 Josephson vortices appear

and dark solitons change from stable to unstable while the reverse process occurs at

ν = 1/3.

Now let us compare the equation for ã to the Rosen-Morse results: n can be 0, 1

or 2, the latter only if Γ ≥ 5/8. Setting εn equal to the eigenvalue of the ã equation

gives

εn =

(√
2(1 + 2Γ) +

1

4
− n− 1

2

)2

=
4 [ν + Γ(1 + ν)]

1 + ν
. (3.56)

We can use this condition to check our numerical results. Setting ν = 0.005, and

taking n = 0, 1, 2 in turn, we plot the left- and right-hand sides of (3.56) as a function

of Γ, looking for the intersection point. For n = 0 (3.56) is satisfied at Γ ≈ 0.975, for

n = 1 the lines do not cross and for n = 2 they cross at Γ ≈ 0.1565 < 5/8, so n = 2

is not actually possible at this point in parameter space. Thus, this calculation

predicts that stationary dark solitons at ν = 0.005 will change stability once, at

Γ ≈ 0.975. This point is added to Fig. 3.9 (red square) and fits perfectly on the

numerical curve (blue circles).

3.B Derivation of the Sine-Gordon Equation

In this appendix we show how one can obtain the sine-Gordon equation from the

Gross-Pitaevskii model of section 3.2. The Lagrangian density of the coupled Bose-
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Einstein condensates system is given by

L = LB − w, (3.57)

where the energy density (also see (3.10)) is

w =
∑
k

{
�
2

2m
|∂xΨk|2 − μ |Ψk|2 − JΨ∗

kΨ3−k +
1

2
g |Ψk|4

}
+ gc |Ψ1|2 |Ψ2|2 , (3.58)

and

LB =
i�

2

∑
k

(Ψ∗
k∂tΨk −Ψk∂tΨ

∗
k) . (3.59)

The Gross-Pitaevskii equations (3.1) can be recovered from the Euler-Lagrange equa-

tions for the fields Ψk and Ψ∗
k. To proceed, we take the following ansatz for the

wavefunctions:

Ψ1(x, t) = u(x, t) cos [Θ(x, t)] e
i
2
[φs(x,t)+φa(x,t)],

Ψ2(x, t) = u(x, t) sin [Θ(x, t)] e
i
2
[φs(x,t)−φa(x,t)]. (3.60)

In terms of the new fields, (3.57) becomes

L = −�

2
u2 [∂tφs + cos(2Θ)∂tφa]− �

2

2m

{
(∂xu)

2 + u2(∂xΘ)2

+
u2

4

[
(∂xφs)

2 + (∂xφa)
2
]
+
u2

2
cos(2Θ)∂xφs∂xφa

}

+μu2 + Ju2 sin(2Θ) cos(φa)− g

2
u4
[
cos4(Θ) + sin4(Θ)

]
−gcu4 cos2(Θ) sin2(Θ). (3.61)

We now assume that the densities of the two wavefunctions are almost the same,

i.e., we take

Θ(x, t) =
π

4
+ y(x, t), (3.62)

where y is a field of small magnitude. We expand L to second order in y:

L = −�

2
u2 [∂tφs − 2y∂tφa]− �

2

2m

{
(∂xu)

2 + u2(∂xy)
2

+
u2

4

[
(∂xφs)

2 + (∂xφa)
2
]− yu2∂xφs∂xφa

}

+μu2 + Ju2(1− 2y2) cos(φa)− g

4
u4(1 + 4y2)

−gc
4
u4(1− 4y2). (3.63)
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Expanding out all the brackets in (3.63), we keep only the 2nd, 6th, 9th, 12th, and

14th terms. This selection is based upon whether or not the term is needed in the

reduced Lagrange density in order for it to yield the sine-Gordon equation. The

reduced Lagrangian reads

L = �yu2∂tφa − �
2

2m

u2

4
(∂xφa)

2 + Ju2 cos(φa)− u4(g − gc)y
2. (3.64)

We write down the Euler-Lagrange equations for y and φa, make the approximation

that u is a constant, eliminate y between the two equations and get

∂ttφa − Γ

m
(μ+ J)∂xxφa = −4Γ(μ+ J)

�2
sin(φa), (3.65)

where u was set to the background value,

u =

√
2
μ+ J

g + gc
. (3.66)

Equation (3.25) is identical to (3.65).
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Chapter 4

Detecting Josephson Vortices

Let us continue our study of the model of the previous chapter, adding an external

trapping potential, which necessarily implies that time-dependence in the Gross-

Pitaevskii equations can no longer be trivially eliminated. Similarly to chapter 3,

this chapter does not directly contribute to the resolution of the central question of

the thesis, but it serves to introduce and illustrate some concepts that are prevalent

throughout, and in particular, logically leads to the question addressed in chapter

5.

4.1 Introduction

Recall that in superconductivity, a Josephson vortex is a dissipationless flow across

a (long) Josephson junction [33, 135, 136]. As we have seen in the previous chapter,

it has a direct analogue in cold atom physics in the form of a superflow between two

linearly-coupled one-dimensional Bose-Einstein condensate strands [127, 128]. Many

theoretical studies have explored this model and its excitations [119–126, 129, 130],

culminating in a direct calculation of the properties of Josephson vortices across a

large range of parameter regimes (chapter 3). The physical system in question has

already been realised, first with three-dimensional condensates [117, 118, 137] and

later with one-dimensional strands by the Vienna Atomchip group [115, 116, 138].

Thus, experimental observation of bosonic Josephson vortices is imminent. However,

it is not immediately obvious how the theoretical calculations of chapter 3 are to

be linked to potential experiments – providing that connection is the purpose of the

current chapter. In particular, we focus on two types of experiments: observation of

the interference fringes resulting from recombination of the two strands [139], and

oscillatory dynamics of quasi-particle excitations in a harmonic trap [72, 73, 111].

First, we simulate the following experiment: two coherently-coupled quasi-one-

dimensional Bose-Einstein condensates are initially prepared in harmonic traps (with

tight transverse confinement), where the system is either in the ground or some

excited state. The traps are suddenly removed, allowing the condensates to expand

and spatially overlap, falling under gravity, until eventually the intensity pattern

is detected on a screen. Note that this procedure is routinely carried out in the
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Vienna Atomchip laboratory [139]. We show that the resulting fringe pattern carries

clear signatures of the initial state, allowing one to easily differentiate between the

ground state, a dark soliton, a Josephson vortex and a single-strand dark soliton or

a Josephson vortex maximum – a quasi-particle which combines dark soliton and

Josephson vortex properties.

Second, we solve the time-dependent Gross-Pitaevskii equations to simulate the

evolution and motion of a Josephson vortex seeded in the center of a harmonic

trap. This type of experiment has become ubiquitous (e.g. [72, 73, 111]), and has

stimulated much progress in recent years. We find a non-trivial trajectory, where the

vortex oscillates from trap center to each end of the trap twice before crossing zero

and going over to the other side. This curious trajectory can be intuitively explained

in the context of the local density approximation, which only requires knowledge of

the time-independent, untrapped solutions – precisely the case considered in chapter

3. In passing, we also take the opportunity to test the validity of one of the terms

in the quasi-particle equation of motion [109], and confirm that the physical mass is

indeed proportional to the effective missing particle number Ns and not the actual,

Nd, where the two are generally not equal (see chapter 5).

4.2 The Model

The physical system under consideration can be described by the following coupled

Gross-Pitaevskii equations:

i�∂tΨ1,2 = − �
2

2m
∂xxΨ1,2−μΨ1,2+

1

2
mω2x2Ψ1,2+g |Ψ1,2|2 Ψ1,2+gc |Ψ2,1|2 Ψ1,2−JΨ2,1.

(4.1)

The case of ω = 0, i.e. an infinite system with open boundary conditions, was con-

sidered in chapter 3, where we further assumed that the only time-dependence is

translation at constant velocity. Recall the key features of some of the solutions

studied therein: the ground state has a homogeneous density profile (with an arbi-

trary constant phase) in both strands. As for dark solitons, the order parameter of

the two condensates is equal and is characterised by a localized density dip with a

phase-step across it (note that there is no flow between the two strands).

The stationary Josephson vortex wavefunctions for the two components are complex-

conjugate scalar fields. While we still have a density dip and a phase step (as for

the dark soliton), the distinctive feature is a superflow circulating around the vor-

tex core, situated half-way between the two strands. Finally, the single-strand dark

soliton, as the name suggests, essentially consists of a dark soliton in one strand

while the second condensate is in its ground state. This stationary excitation lies

at the maximum of the Josephson vortex dispersion relation with non-zero total
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momentum, motivating the nomenclature Josephson vortex maximum.

As a reminder, the dark soliton and Josephson vortex dispersion relations are il-

lustrated in Fig. 4.1. Dark solitons always have higher energy and a single-maximum

dispersion relation. Josephson vortices, on the other hand, exhibit a rich structure

where at the center of the dispersion relation we have a local minimum (correspond-

ing to a stationary Josephson vortex) and two local maxima on either side of the

origin (corresponding to stationary single-strand dark solitons). For future reference,

we also highlight the inflection points of the dispersion relation, where the inertial

and physical masses diverge (see chapter 3). We emphasize that as long as gc = 0,

if Josephson vortex solutions exist, then dark solitons are dynamically unstable and

will decay to vortices (see chapter 3). This implies that in an experiment, one can

obtain Josephson vortices by creating dark solitons via phase imprinting [16, 21] and

simply waiting for them to decay.
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Figure 4.1: The dispersion relation (excitation energy Es as a function of total mo-
mentum Pc) of dark solitons (green dashed line) and Josephson vortices (red solid
line) with gc = 0 and J/μ = 0.005. The labels highlight the stationary excitations of
interest: dark soliton (labelled “DS”), Josephson vortex (labelled “JV”) & Joseph-
son vortex maximum (labelled “JV(M)”). The inflection points are also explicitly
labelled.

4.3 The Fringe Pattern

One of the most curious observations made in the early days of cold atom physics

was that if a Bose-Einstein condensate is split into two clouds by the creation of

a potential barrier in a previously harmonic trap, and the clouds are released and

allowed to interfere, a fringe pattern results [139, 140]. Moreover, if the condensates
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were well separated in the double-well potential, individual experimental runs pro-

duced fringes with a random relative phase, so that the fringes washed-out in the

ensemble average. Following these experiments, several insightful theoretical papers

explained this non-trivial observation from fundamental quantum-mechanical prin-

ciples [141–145], starting from number-states, with no assumptions made about the

phase of the wavefunction. On the other hand, if the potential barrier is not too high

and there is significant overlap between the clouds with non-negligible tunnelling,

the system may still be described coherently by the Gross-Pitaevskii equations, so

that the relative phase is unique [145].

Given solutions of the one-dimensional equations (4.1), one can approximate the

three-dimensional wavefunctions for a gas confined very tightly in the y and z di-

rections (trap frequency ωr), and very weakly in x (trap frequency ω). Due to the

fact that ω � ωr, we may safely assume that we remain in the ground state of the

transverse motional degrees of freedom. Moreover, we will choose to separate the

condensates in y so that they are centred at ±y0 and project the intensity pattern

onto the x − y plane, so that the z coordinate may be left out of our considera-

tions. In addition, when the trap is released, the gas will expand, but since ω � ωr,

the expansion in x will be much slower than in y, suggesting one may neglect the

trapping potential along x. Under this approximation, the time-evolution of the

x-component of the wavefunction is not influenced by the release of the trap.

Thus, we take the wavefunction in the y-direction to be the Gaussian ground

state of the trap, evolved with the linear Schrödinger equation to time t:

φ1,2(y, t) =

√
σ√

π(σ2 + i�t/m)
exp

[
−1

2

(y ± y0)
2

σ2 + i�t/m

]
, (4.2)

with σ =
√

�/mωr. The intensity pattern detected at time t is simply I =

|Ψ1(x, t)φ1(y, t) + Ψ2(x, t)φ2(y, t)|2. Example fringe patterns are shown in Fig. 4.2.

The ground state features fringes with a Gaussian envelope along the y-direction,

with no structure along x as Ψ1,2(x) are constant. The y-fringes arise from φ1,2(y, t)

and are thus present in all patterns, but can show additional structure for various

solutions of (4.1). For instance, in Fig. 4.2 we depict three stationary excitations: a

dark soliton possesses an additional dark fringe at x = 0, a Josephson vortex is char-

acterised by a distortion of the fringes so that the nth fringe at negative x connects

to the (n + 1)st fringe at positive x in a tanh-like curve, while a single-strand dark

soliton combines a dark central fringe with distortion of the horizontal pattern, as

might be expected. Our predictions thus enable direct identification of excitations

created in the coupled-Bose-Einstein condensates system, and are consistent with

an earlier simulation [128].
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Figure 4.2: Interference fringe patterns for the ground state (top left), a dark soliton
(top right), Josephson vortex (bottom left) and a single-strand dark soliton (bottom
right). All excitations are stationary and are centred at x = 0. The parameters used
are y0 = 5σ, t = 10/ωr, gc = 0, J/μ = 0.005. The colour map provides values of
σ g+gc

μ
I as a function of the scaled x and y position coordinates.

4.4 Trajectory in a Trap

Since the first experimental observation of dark solitons oscillating in a harmonic

trap [111, 112], this technique of probing non-linear collective excitations has become

routine in several state-of-the-art laboratories (e.g. [72, 73]). It has gained popularity

due to the fact that observable quantities – usually the period – can be directly

linked to intrinsic properties of the excitation [109, 146]. Theoretical studies often

endeavour to predict this oscillation period to facilitate experimental testing of their

results [67, 147–151], but the trajectory is usually assumed to be roughly sinusoidal.

We will now demonstrate that the trajectory of a Josephson vortex is much more

complex, due to the rich structure of the dispersion relation (see Fig.4.1). We

make use of the Matlab function pdepe.m (a finite difference method in space, with

variable-method & variable-step time integration), with the absolute and relative

tolerances set to 10−8. We solve the time-dependent Gross-Pitaevskii equations (4.1)

with gc = 0, μ = 200J and �ω = 2J . The total system size is 2L = 21.2132�/
√
mJ ,

discretized with 601 points, and the time step is Δt = 0.01�/J . The boundary

conditions require the wavefunctions to vanish at ±L. The Thomas-Fermi profile,

obtained by ignoring the derivative terms in (4.1), is used as a guess to converge to

the exact background solution. As for the initial conditions, we use various moving

numerically-found Josephson vortices centred at the origin times the Thomas-Fermi
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profile of the trap. This generates far less noise (phonons) than initializing shifted

stationary excitations. This is sufficient as an initial condition for time propagation.

Thus, we start the trajectory from a nearly stationary Josephson vortex (very

close to the dispersion relation minimum) initially placed at the trap center. Fol-

lowing an exponential transient, the vortex begins oscillating in a pattern where

each side of the trap is traversed twice before crossing zero, as shown in Fig. 4.3.

This exciting behaviour can be intuitively explained based on properties of the

untrapped Josephson vortex dispersion relation. If the size of the vortex is fairly

small compared to the size of the cloud, then the local density approximation may be

applied (see chapter 2). Thus, as the vortex oscillates in the trap, accelerating and

decelerating, it must continuously move along the dispersion relation. In fact, the

dispersion relation changes with μ, and so depends on the position of the excitation

in the trap, but we have confirmed that for the entire range of motion shown in

Fig. 4.3, qualitatively the dispersion relation retains the shape shown in Fig. 4.1.
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Figure 4.3: The trajectory of a Josephson vortex in a harmonic trap with gc = 0,
μ = 200J and �ω = 2J . The blue solid line is extracted from the solution of the
time-dependent Gross-Pitaevskii equations (labelled “t-GPE”), tracking the max-
imal slope of the relative phase. We initialize the simulation by placing a vortex

solution with velocity Vs =
√
2

10

√
J
m

(very near the minimum of the dispersion rela-

tion) at the trap center. The spatial grid consists of 601 points and ranges between
±10.6066 �√

mJ
. Time is discretized in steps of 0.01�/J . The red dashed line (labelled

“LDA”) is an approximate trajectory for the same initial condition, computed as
described in section 4.5.

Recall that Vs = dEs/dPc, where Es is the excitation energy and Pc the total
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momentum1. This allows us to easily determine the sign of Vs along the dispersion

relation by inspection. The trajectory begins with a near-stationary Josephson

vortex at the dispersion relation minimum, with the vortex in the trap center. The

velocity is nevertheless positive, and so it moves to the right along the trap as we

climb up from the dispersion relation minimum to the right-hand maximum. Here

the velocity is zero, and the vortex stops, reaching the amplitude of its oscillation at

the right-hand edge of the trap. We then keep moving along the dispersion relation

to the right, past the right maximum, where the velocity is negative. Consequently,

the vortex begins moving to the left along the trap.

Eventually we stop descending the dispersion relation, having reached some max-

imal negative velocity as the vortex crosses the trap center, and begin climbing back

up toward the right maximum. Here the velocity is still negative, so the vortex

keeps moving left along the trap. As we reach the right dispersion relation maxi-

mum, Vs = 0 and the vortex stops, having attained maximal negative displacement

– i.e. at the amplitude of the oscillation at the left edge of the trap. Now we de-

scend the dispersion relation from the right maximum towards the central minimum,

where Vs > 0, so the vortex moves to the right, towards the trap center. When we

arrive at the minimum, Vs = 0 and the vortex stops, not having quite reached trap

center. Crossing the minimum to the left, Vs < 0, and the vortex moves left once

more.

We have now explained the first half of the unusual trajectory predicted for a

Josephson vortex, Fig. 4.3. The same arguments can be applied to deduce the motion

of the vortex as we continue across to the left “wing” of the dispersion relation and

back to the central minimum, then over to the right wing of the dispersion relation

etc.

4.5 Local Density Approximation

Our qualitative explanation of the trajectory shown in Fig. 4.3 can be made quanti-

tative with the help of a simple equation of motion for the quasi-particle, derived in

[109] (also see [67, 110] and chapter 2), mIẌ = −mPω
2X, where X is the position

coordinate of the excitation, and

mP = mNs = −m dEs
dμ

∣∣∣∣
vs

, (4.3)

mI =

(
d2Es
dP 2

c

)−1

. (4.4)

1Here Es and Pc are dimensionful quantities (in contrast to chapter 3).
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For small amplitude oscillations about an extremum of the dispersion relation, one

may approximately take the inertial and physical masses (mI and mP , respectively)

as constant throughout the motion, and compute them at the extremum. Further-

more, if mI and mP have the same sign, the quasi-particle will oscillate in simple

harmonic motion about the trap center, and if the masses have different signs, it

will get exponentially expelled from the trap.

It is also possible to let mI and mP change along the trajectory, which allows one

to lift the restriction of “small-amplitude” oscillations. The approximate trajectory

may be calculated in the following way. In (4.1), we replace 1
2
mω2x2 by 1

2
mω2X2,

thereby removing the inhomogeneous term at the expense of modifying the effective

chemical potential to that seen by the excitation at position X. Next, explicit time-

dependence is removed by transforming to a frame moving with the excitation at

velocity Vs, so that the term i�∂tΨ1,2 is replaced by −i�Vs∂zΨ1,2, where z = x−Vst.
To complete the transformation we must also replace ∂xx by ∂zz, which yields two

coupled differential equations where Ψ1,2 now depend only on one variable, z.

The trajectory is started from some initial condition, Ψ1,2(z) – for example, the

same Josephson vortex used to generate Fig. 4.3, at some X(t = 0). We calculatemI

and mP , which requires varying Pc and μ, re-solving the boundary value problem,

and taking numerical derivatives. We then solve for X(Δt), taking one step forward

in time (using 4th order Runga-Kutta with time-step Δt = 0.01�/J), which also

yields the new value of Vs = Ẋ. X and Vs are inserted into the Gross-Pitaevskii

equations for Ψ1,2(z), which are subsequently solved (as described in chapter 3).

The process continues in this manner, boot-strapping the two sets of equations,

obtaining new parameter values from one for the other at each iteration.

The advantage of this approximate method is that space and time are essentially

decoupled. It performs very well as long as all the parameters remain finite, as is

shown in Fig. 4.3. Unfortunately, it is not able to reproduce the full trajectory of

Fig. 4.3 because when we cross the inflection points of the dispersion relation (see

Fig. 4.1), both mI and mP diverge and the numerics break down.

Nonetheless, the machinery described in this section can be used to answer an

interesting fundamental question regarding the physical mass appearing in the equa-

tion of motion. The derivation of this equation is based on the assumption that the

energy of the quasi-particle is a constant of the motion, and leads to (4.3) where Ns

is the effective missing particle number. However, intuitively, one would expect the

physical mass to be given by mNd, where Nd is the actual missing particle number,

in analogy to the buoyancy force on an air bubble in liquid.

We are therefore in a position to explicitly test which missing particle number, Ns

or Nd, should appear in the physical mass. As shown later in chapter 5, Ns and Nd

are unequal for Josephson vortices (except for the stationary cases, when Ns = Nd
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in general). We can compute the trajectory using the local density approximation

recipe, first using mP = mNs, then with mP = mNd, and compare the results to

the exact, time-dependent Gross-Pitaevskii problem. Initiating simulations close

to the inflection point (where the difference between Ns and Nd is maximal), we

obtain Fig. 4.4, indicating that the correct physical mass is given by mP = mNs,

in agreement with energy-conservation principles. Note that we have repeated the

comparison using several different points along the dispersion relation to initiate

simulations, and in all other cases the differences between the two approximate

trajectories were far smaller, with the exact Gross-Pitaevskii result usually lying

between them. Whenever the exact Gross-Pitaevskii result was visibly closer to one

or the other, however, it always favoured mP = mNs.
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Figure 4.4: Comparison of the trajectories obtained from the full time-dependent
simulations (labelled “t-GPE”, blue solid line), the local density approximation with
mP = mNs (labelled “LDA, Ns”, red dashed line) and with mP = mNd (labelled
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In conclusion, we have computed fringe patterns for interference experiments

which allow for unambiguous identification of Josephson vortices, predicted a com-

plex oscillatory trajectory for these excitations in a harmonic trap, and numerically

confirmed a previously-derived but unintuitive term in the local density approxima-

tion equation of motion.

After this work was completed, I became aware of a closely-related article [133],

significantly overlapping with the results of the current chapter.
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Chapter 5

Missing Particle Number

In chapter 2, we have met the concept of the effective missing particle number which

was defined through the derivative of the excitation energy with respect to chemical

potential. In this chapter we will be concerned with deriving a similar formula

for the actual missing particle number: an equation that allows one to extract the

missing particle number (and then the phase step) of a solitonic excitation from the

dispersion relation. This equation will later be applied to obtain the missing particle

number and phase step of excitations in the Lieb-Liniger and Yang-Gaudin models

(chapter 10).

5.1 Introduction

In addition to exploring ground state properties of atomic condensates [12–14], non-

linear collective excited states are accessible and have been extensively studied [80].

The common feature of such solitonic excitations is a localized, moving depletion

cloud in the superfluid, with or without an impurity particle at its core [152] (a

common illustrative example is the dark soliton, reviewed in chapter 2.) Recall the

definition of the missing particle number associated with the excitation: it is the

number of particles removed in the creation of the density dip in the otherwise uni-

form background. On the other hand, as we have seen in the previous chapter, the

physical mass is a constant in the equation of motion of such an excitation when it is

treated as a Landau quasi-particle and dynamics in a harmonic trap are considered

[109]. One can then define the effective missing particle number as simply the ratio

of the physical mass and the mass of a single superfluid particle. Intuitively, one

would expect the actual and effective missing particle numbers to be equal, however,

as we will show, that is not generally the case (it is only so at zero velocity).

The simplest way of obtaining the missing particle number is by direct integra-

tion of the density profile. When a mean-field description of the system is easily

accessible, this is a simple and fast approach. However, it is not always the case:

for example, mean-field theory is inapplicable in the strong-interaction regime, or

there may be no density dip in the state of interest and a solitonic interpretation

of the excitation is only hypothesized (e.g. chapter 12). In such cases, one needs
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a different approach to extracting the missing particle number. Fortunately, it is

possible to do so if we know the dispersion relation of the excitation [109, 152], that

is, the excitation energy as a function of the canonical momentum.

The idea was first introduced by Scott et al. [109] where a very simple formula

was obtained for the effective missing particle number:

Ns = − dEs
dμ

∣∣∣∣
vs

(5.1)

where Es is the excitation energy in the grand canonical ensemble, μ the chemical

potential and vs the propagation speed of the excitation. This expression can be

derived by considering a solitonic excitation in a trapped superfluid in the local

density approximation, and requiring its energy to be a constant of the motion (see

chapter 2). In particular, this definition of Ns is simply the physical mass divided by

the mass of a single superfluid particle. We will refer to this formula as the “SDPS”

equation, after the authors. This definition was then successfully applied by others

(e.g. [147]), leading to reasonable and self-consistent results. More recently, Schecter

et al. [152] have derived a far more involved equation for the actual missing particle

number, in particular:

Nd = − dΩ′
d

dμ′

∣∣∣∣
j′
= − d(E ′

d − μ′Nd)

dμ′

∣∣∣∣
j′
= − d(Es − vsPc)

dμ′

∣∣∣∣
j′

(5.2)

where

j′ = −n0vs, (5.3)

μ′ = μ+
1

2
mv2s (5.4)

are the super-current and chemical potential of the uniform background state with

one-dimensional density n0 and chemical potential μ, in a moving frame of reference

at velocity vs. Further, in the above, E ′
d is the canonical excitation energy (in the

notation of [152]), Pc is the canonical momentum, n0 is the constant background

density in the excited state far away from the localized density dip, and m is the

mass of the particles making up the superfluid. Thus, Ω′
d is essentially the excitation

energy of the soliton in the grand canonical ensemble in a moving reference frame

at velocity vs. In turn, this equation will be coined the “SGR” formula, also after

the authors. These two definitions are certainly not equivalent.

Whereas the derivation of equation (5.1) is quite straight-forward [67, 109], (5.2)

is obtained in [152] based on general principles laid out in the textbook by Popov

[153]. Popov’s formalism, however, is perhaps not sufficiently well-known to the

ultra-cold-atom community for the average reader to confidently follow all the steps
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in the derivation. Thus, there is some ambiguity about the two formulae and whether

the actual and effective missing particle number are truly distinct quantities. This

uncertainty is further compounded by the fact that in many cases the two defini-

tions give the same result (which is known to be correct from the density-integral

calculation).

It is our purpose to give an alternative derivation of the formula for extracting

the actual missing particle number from the dispersion relation. We begin in section

5.2 by rewriting the SGR formula directly through the physical quantities appearing

in the model, so that it can be more easily applied. Then in section 5.3 we develop a

simple argument based on the Hellmann-Feynman theorem for functionals (appendix

5.A) that leads us to the SGR formula as the correct equation for the actual missing

particle number. Next, we consider the necessary conditions for the SDPS and

SGR definitions to become equivalent (section 5.4), presenting several analytical

and numerical examples where the effective and actual missing particle number

are the same (sections 5.4.1 & 5.4.2), followed by numerical examples where the

effective missing particle number is distinctly different to the actual (section 5.4.2).

We conclude in section 5.5.

5.2 The SGR Formula

Let us begin by rewriting the SGR Nd: we must express everything in terms of the

physical quantities in the laboratory frame, that is, eliminate μ′ and j′ from equation

(5.2). Thus, we would like to change from the SGR variables μ′, j′ to the two natural

free parameters (apart from the coupling strength) on which the dispersion relation

depends: n0 and vs. The chemical potential μ, which is a property of the ground

state, depends on n0 and the coupling strength. The total differentials of the SGR

free variables written through our free variables are

dj′ = −n0dvs − vsdn0, (5.5)

dμ′ =
dμ

dn0

∣∣∣∣
vs

dn0 +mvsdvs. (5.6)

We will also need the total differential of Ω′
d written through dn0 and dvs. It is

dΩ′
d = d(Es − vsPc) =

dEs
dn0

∣∣∣∣
vs

dn0 +
dEs
dvs

∣∣∣∣
n0

dvs

− vs
dPc
dn0

∣∣∣∣
vs

dn0 − Pcdvs − vs
dPc
dvs

∣∣∣∣
n0

dvs. (5.7)
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Since j′ must be kept constant for the derivative with respect to μ′ we set dj′ = 0,

which immediately yields

dvs = − vs
n0

dn0. (5.8)

This means dvs is no longer free, it is directly linked to dn0. To calculate Nd we

need to take −dΩ′
d from (5.7), divide by dμ′ from (5.6) and substitute dvs from (5.8)

into the resulting expression. This will impose the constraint that j′ is to be kept

constant. This gives

Nd =
− dEs

dn0

∣∣∣
vs
− vsPc

n0
+ vs

n0

dEs

dvs

∣∣∣
n0

+ vs
dPc

dn0

∣∣∣
vs
− v2s

n0

dPc

dvs

∣∣∣
n0

dμ
dn0

∣∣∣
vs
− mv2s

n0

. (5.9)

Considering that
dEs
dPc

∣∣∣∣
μ

= vs, (5.10)

it is clear that
dEs
dvs

∣∣∣∣
μ

= vs
dPc
dvs

∣∣∣∣
μ

, (5.11)

which makes two out of the three final terms in the numerator cancel:

vs
n0

dEs
dvs

∣∣∣∣
n0

+ vs
dPc
dn0

∣∣∣∣
vs

− v2s
n0

dPc
dvs

∣∣∣∣
n0

= vs
dPc
dn0

∣∣∣∣
vs

. (5.12)

Thus, we can simplify Nd to

Nd =
− dEs

dn0

∣∣∣
vs
− vsPc

n0
+ vs

dPc

dn0

∣∣∣
vs

dμ
dn0

∣∣∣
vs
− mv2s

n0

, (5.13)

and multiplying both top and bottom by dn0/dμ, we arrive at the final form of the

SGR formula:

Nd =
− dEs

dμ

∣∣∣
vs
+ vs

dPc

dμ

∣∣∣
vs
− vs

n0

dn0

dμ
Pc

1− mv2s
n0

dn0

dμ

. (5.14)

5.3 Main Derivation

Consider some general one-dimensional superfluid system described in mean-field

theory, obeying some non-linear Schrödinger equation. Assume we are interested

in solutions whose only time dependence is translation at constant velocity and

introduce z = x−vst, the position coordinate in the moving frame. We can construct

a functional such that setting its functional derivative to zero yields the non-linear
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Schrödinger equation. This functional will be of the form L = LB −W where

W [ψ] =

∫
dz

�
2

2m
|∂zψ|2 − μ |ψ|2 + u[ψ], (5.15)

LB[ψ] =

∫
dz − i�vs

2
(ψ∗∂zψ − ψ∂zψ

∗) . (5.16)

Note that L is essentially the Lagrangian in the special case when time-dependence

is pure translation and x, t can be replaced by a single coordinate, z. The equation

arising from setting the functional derivative of L to zero is

0 = −i�vs∂zψ +
�
2

2m
∂zzψ + μψ − g

(|ψ|2)ψ, (5.17)

with the last term coming from the functional derivative of U [ψ] in L [ψ]. Thus the

only difference between the case considered here and the Gross-Pitaevskii equation

is that we do not specify the interaction term. The functional derivative is taken

according to
δL

δψ∗ =
∂L
∂ψ∗ − d

dz

∂L
∂ (∂zψ∗)

. (5.18)

Let us say we have some solution ψs to equation (5.17), featuring a localized exci-

tation in the form of a density kink and a phase drop across it. Furthermore, ψs

obeys open boundary conditions, not periodic boundary conditions, as we assume

the phase at ±∞ is generally not the same. There is also a constant, uniform solu-

tion ψ0 which is assumed to solve the exact same equation as ψs (i.e. at the same

chemical potential).

It is our intention to eventually use the Hellmann-Feynman theorem of appendix

5.A. The conditions of applicability require that the wavefunctions involved obey

periodic boundary conditions and extremize the functional of interest. With this in

mind, introduce the periodic wavefunction corresponding to ψs with a phase factor

to make the phase continuous and smooth at the boundaries:

ψpbc = exp(iΔφz/L)ψs, (5.19)

where Δφ = −arg [ψs(+∞)] + arg [ψs(−∞)] and L is the size of the system – at

the moment finite, but we will be taking the limit as L → ∞ at the end of the

derivation, and so we shall work to order O ( 1
L

)
.

In addition, introduce L̃ [ψ], a functional just like L [ψ] except that the param-
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eters μ and vs are replaced by μ̃ and ṽs, where

μ̃ = μ−mvsvcf , (5.20)

ṽs = vs + vcf , (5.21)

vcf =
�Δφ

mL
, (5.22)

and vcf is the counter-flow velocity of the superfluid, induced by the periodic bound-

ary conditions. These parameters are chosen by requiring L̃ [ψpbc] to be extremized

by ψpbc, neglecting termsO ( 1
L2

)
. We also need to define a uniform, constant solution

ψ̃0, which solves (5.17) with μ→ μ̃.

In order to proceed, we need the result of the Hellmann-Feynman theorem for

functionals presented in appendix 5.A. Applying the Hellmann-Feynman theorem,

we can write

d

dμ̃

∣∣∣∣
ṽs

(
L̃ [ψpbc]− L̃ [ψ̃0]

)
=

∫
dz |ψpbc|2 −

∣∣∣ψ̃0

∣∣∣2 . (5.23)

Note that both ψpbc and ψ̃0 obey periodic boundary conditions and so the boundary

term is zero in both cases, and also that both wavefunctions extremize L̃ (up to

terms O ( 1
L2

)
) so the functional derivative terms will not contribute (see appendix

5.A for details).

We would now like to write the number of particles in the ψ̃0 state, 〈N〉μ̃, through
the number of particles in the ψ0 state, 〈N〉μ, plus some correction. Thus we do a

first order Taylor expansion:

〈N〉μ̃ ≈ 〈N〉μ +
∂ 〈N〉
∂μ

∣∣∣∣
〈N〉μ

(μ̃− μ) . (5.24)

Now, using the notation n0 = |ψ0|2 for the density of the uniform background state,

the derivative featuring in the Taylor expansion is just L× dn0/dμ. Substituting it

in and writing out vcf , the correction to the particle number (i.e. the second term

on the right-hand side of (5.24)) is

−�Δφvs
dn0

dμ
. (5.25)

Therefore, the right-hand side of (5.23) is none other than

Nd + �Δφvs
dn0

dμ
, (5.26)
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where

Nd =

∫
dz |ψs|2 − |ψ0|2 , (5.27)

is the usual integral of the density difference calculation of the actual missing particle

number.

We now turn to the left-hand side of (5.23). As can be readily shown, L̃ [ψpbc] =

L [ψs], up to terms O ( 1
L2

)
. On the other hand, −L̃ [ψ̃0] can be expanded as a first

order Taylor series, similar to what we have done for the particle number in (5.24).

We should note that −L [ψ0] is actually W [ψ0] and is not the same as the ground

state energy (EGS), because W includes the chemical potential term and is thus the

grand canonical ensemble energy. By definition, dEGS

dN
= μ but the derivative of W

needs to be calculated:

dW

dN
=

d

dN
(EGS − μN) = − dμ

dN
N = − dμ

dn0

dn0

dN
N = −n0

dμ

dn0

. (5.28)

Therefore, doing the Taylor expansion:

−L̃ [ψ̃0] ≈ −L [ψ0] + vsn0�Δφ. (5.29)

If Es retains its definition as W [ψs]−W [ψ0] and Ps is such that vsPs = LB[ψs], then

equation (5.23) becomes

d

dμ

∣∣∣∣
vs

(vsPs − Es + vsn0�Δφ) = Nd + vs
dn0

dμ
�Δφ, (5.30)

where we have finally taken the limit as L→ ∞ and so μ̃, ṽs → μ, vs.

Now, for a system of bosons we use the relations

Ps = mvsNd, (5.31)

Pc = Ps + �n0Δφ, (5.32)

express Δφ through Nd and Pc, substitute into (5.30), and rearranging for Nd we

arrive at the SGR formula:

Nd =
−dEs

dμ
+ vs

dPc

dμ
− vs

n0

dn0

dμ
Pc

1− mv2s
n0

dn0

dμ

. (5.33)

For fermions, we assume that the boson equation (5.30) holds, but all the quantities

describe bosonic pairs. We need to rewrite it through fermionic quantities. The

relations are as follows:

NB
d =

1

2
NF
d , n

B
0 =

1

2
nF0 , μB = 2μF ,

d

dμB
=

1

2

d

dμF
, mB = 2mF . (5.34)
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Note that Ps = mBvsN
B
d = mFvsN

F
d and Es are the same regardless of whether

we look at the excitation as being made up of bosonic or fermionic particles. Thus,

equation (5.30) for bosons

NB
d + �Δφvs

dnB0
dμB

=
d

dμB

∣∣∣∣
vs

(
vsPs − Es + nB0 �Δφvs

)
, (5.35)

becomes

NF
d +

1

2
�Δφvs

dnF0
dμF

=
d

dμF

∣∣∣∣
vs

(
vsPs − Es +

1

2
nF0 �Δφvs

)
. (5.36)

Now then, for Fermions we have

Ps = mFvsN
F
d , (5.37)

Pc = Ps +
1

2
�nF0 Δφ, (5.38)

and expressing Δφ through Nd and Pc as before, we once again arrive at the SGR

formula where all quantities are fermionic:

NF
d =

− dEs

dμF
+ vs

dPc

dμF
− vs

nF
0

dnF
0

dμF
Pc

1− mF v2s
nF
0

dnF
0

dμF

. (5.39)

5.3.1 Canonical Ensemble

We will now show that equation (5.30), and therefore the final SGR formula, still

holds if Es – the grand canonical energy difference between the excited and homo-

geneous states at the same chemical potential – is replaced by Ec,N , the difference of

the canonical energy between the excited and homogeneous states at the same par-

ticle number. This is highlighted with the foresight that one may wish to apply the

equation we derive to systems more naturally described in the canonical ensemble,

as in chapter 10.

We must account for the fact that in the grand canonical ensemble we are com-

paring the excited state to a background state with the same μ (denoted below by

the subscript BG, μ), and in the canonical ensemble, to a ground state with the

same N (denoted by the subscript BG,N). The soliton state will be marked by

subscript s. We will use W as the energy operator in the grand canonical ensemble;

its connection to the canonical ensemble energy is W = H − μN .

Thus we want to construct Ec,N = 〈H〉s − 〈H〉BG,N starting from Es = 〈W 〉s −
〈W 〉BG,μ = 〈H〉s − μ 〈N〉s − 〈H〉BG,μ + μ 〈N〉BG,μ = 〈H〉s − 〈H〉BG,μ − μNd. Recall

that Nd is defined as Nd = 〈N〉s − 〈N〉BG,μ. Hence we simply have

Ec,N = Es + 〈H〉BG,μ − 〈H〉BG,N + μNd. (5.40)
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Let us see what the last three terms on the right-hand side above evaluate to.

〈H〉BG,N has N particles and a uniform density of N
L
while 〈H〉BG,μ has N −Nd par-

ticles and a uniform density of N−Nd

L
. Since Nd/L goes to zero in the thermodynamic

limit, we can evaluate the energy difference using a first order Taylor expansion in

the density:

〈H〉BG,μ − 〈H〉BG,N = EGS

(
N −Nd

L

)
− EGS

(
N

L

)

≈ EGS

(
N

L

)
+
dEGS
dn0

×
(−Nd

L

)
− EGS

(
N

L

)

=
dEGS
dN

L

(−Nd

L

)
= −μNd. (5.41)

Therefore the last three terms on the right-hand side of (5.40) cancel to first order,

which is sufficient since we are taking L→ ∞ at the end. This implies that as long

as we are in the thermodynamic limit, it does not matter whether we use the grand

canonical ensemble and keep μ constant, or use the canonical ensemble and keep N

constant when calculating the excitation energy.

5.4 SDPS-SGR Equivalence

Our derivation has thus led us to the SGR formula as the correct method of ex-

tracting the actual missing particle number from the dispersion relation. We notice

that if the soliton is stationary (vs = 0), the SGR formula trivially simplifies to the

SDPS one. Remarkably, in some cases, the two formulae give the same result at

all velocities. By setting the two expressions equal (Ns = Nd), we easily arrive at

the necessary condition to ensure the two formulae are equivalent for all velocities.

Below we list all three forms of this condition:

mvs
dNd

dμ
+ �n0

dΔφ

dμ
= 0, (5.42)

dPc
dn0

= �Δφ, (5.43)

mvs
dEs
dμ

∣∣∣∣
vs

=

[
n0

dμ

dn0

d

dμ

∣∣∣∣
vs

− 1

] vs∫
−c

1

v′s

dEs
dv′s

∣∣∣∣
μ

dv′s. (5.44)

The last version, equation (5.44), is arguably the most general because it does not

assume the existence of a phase step (or, indeed, a coherent phase at all). On the

other hand, as an integro-differential equation, it is fairly difficult to use in practice.

We can differentiate both sides with respect to vs, turning (5.44) into a partial
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differential equation for Es(μ, vs):

mvs
dEs
dμ

+
dEs
dvs

−m(v2c − v2s)
d2Es
dμdvs

= 0, (5.45)

where vc =
√

n0

m
dμ
dn0

is the speed of sound, with the boundary conditions Es(μ, vs =

±vc) = 0 and initial condition Es(μ = 0, vs) = 0. Thus the SDPS (effective) and

SGR (actual) formulae for the missing particle number will coincide for any solitonic

excitation whose excitation energy satisfies the above differential equation.

Next, we test the equivalence on several examples. The derivation of section 5.3

can be generalised as described in section 5.5, which justifies the application of the

SGR formula to all but the last two analytical examples presented.

5.4.1 Analytical Examples

We are aware of several analytical solutions in a number of systems that possess the

property of SDPS-SGR equivalence. Here we list the relevant physical quantities

for each example, so that both formulae can be explicitly evaluated and compared.

The first three of the examples are treated in mean-field theory, and so a direct

calculation of the missing particle number is also possible.

(1) Dark solitons in the one-dimensional Gross-Pitaevskii equation on the infinite

line (chapter 2):

Es =
4�μ3/2

3g
√
m
(1− s2)3/2, (5.46)

dEs
dμ

=
2�

g

√
μ

m

√
1− s2, (5.47)

Pc =
2μ�

g

[
cos−1(s)− s

√
1− s2

]
, (5.48)

dPc
dμ

=
2�

g
cos−1(s), (5.49)

n0 = μ/g, (5.50)

dn0

dμ
= 1/g, (5.51)

where

s =

√
m

μ
vs. (5.52)

Both equations (5.1) and (5.14), as well as the direct density integral calculation

give

Ns = Nd = −2�

g

√
μ

m

√
1− s2. (5.53)
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(2) Dark solitons in the two coupled one-dimensional Bose-Einstein condensates

model (chapter 3):

Es =
�μ3/2

√
m(g + gc)

8

3

(
1 + ν − s2

)3/2
, (5.54)

dEs
dμ

=
4�

g + gc

√
μ

m

√
1 + ν − s2, (5.55)

Pc = − 4�μ

g + gc

{
s
√
1 + ν − s2 − π(1 + ν)

+ (1 + ν) tan−1

(
s√

1 + ν − s2

)}
, (5.56)

dPc
dμ

=
4�

g + gc

[
π − tan−1

(
s√

1 + ν − s2

)]
, (5.57)

n0 = 2
μ+ J

g + gc
, (5.58)

dn0

dμ
=

2

g + gc
. (5.59)

where

s =

√
m

μ
vs, ν =

J

μ
. (5.60)

Both equations (5.1) and (5.14), as well as the direct density integral calculation

give

Ns = Nd = − 4�

g + gc

√
μ

m

√
1 + ν − s2. (5.61)

(3) Manakov solutions in the two coupled one-dimensional Bose-Einstein conden-

sates model (chapter 3):

Es =
4�μ3/2

√
4ν − s2√

m(g + gc)

[
2

3
(4ν − s2)− (3ν − 1)

]
, (5.62)

dEs
dμ

=
4�

g + gc

√
μ

m

√
4ν − s2, (5.63)

Pc = − 4�μ

g + gc

{
s
√
4ν − s2 − π(1 + ν)

+ (1 + ν) tan−1

(
s√

4ν − s2

)}
, (5.64)

dPc
dμ

=
4�

g + gc

[
π − tan−1

(
s√

4ν − s2

)]
, (5.65)

n0 = 2
μ+ J

g + gc
, (5.66)

dn0

dμ
=

2

g + gc
. (5.67)
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where

s =

√
m

μ
vs, ν =

J

μ
. (5.68)

Both equations (5.1) and (5.14), as well as the direct density integral calculation

give

Ns = Nd = − 4�

g + gc

√
μ

m

√
4ν − s2. (5.69)

(4) Hole excitations in the Tonks-Girardeau gas of hard-core bosons [47]:

Es = μ− mv2s
2
, (5.70)

dEs
dμ

= 1, (5.71)

Pc =
√
2mμ−mvs, (5.72)

dPc
dμ

=

√
m

2μ
, (5.73)

n0 =

√
2mμ

π�
, (5.74)

dn0

dμ
=

√
m

2μ

1

π�
. (5.75)

Both equations (5.1) and (5.14) give

Ns = Nd = −1. (5.76)

(5) Dark solitons in the unitary Fermi gas [147] (this is an analytical approximation

that showed spectacular agreement with Bogoliubov-de Gennes theory):

Es =
Amμ2

(1 + β)3/2�2
33/2

4π

(
1

3
− mv2s

2μ

)2

, (5.77)

dEs
dμ

=

√
3Amμ

2π(1 + β)3/2�2

(
1

3
− mv2s

2μ

)
, (5.78)

Pc = −
√
3Aμm2vs

2π�2(1 + β)3/2

(
1− mv2s

2μ

)
, (5.79)

dPc
dμ

= −
√
3Am2vs

2π�2(1 + β)3/2
, (5.80)

n0 =
A

3π2

(
2mμ

�2(1 + β)

)3/2

, (5.81)

dn0

dμ
=

Am

π2

(2mμ)1/2

(�2(1 + β))3/2
. (5.82)
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Both equations (5.1) and (5.14) give

Ns = Nd = −
√
3Amμ

2π(1 + β)3/2�2

(
1

3
− mv2s

2μ

)
. (5.83)

5.4.2 Numerical Examples

In addition to the examples above, we have tested SDPS-SGR equivalence numer-

ically for solutions that are not known analytically. Firstly, recall that the system

of two coupled one-dimensional Bose-Einstein condensates studied in chapter 3 has

Josephson vortex and staggered-soliton solutions. We work with dimensionless quan-

tities similar to those specified by equation (3.2) but use J instead of μ in all of the

scaling factors. For the staggered solitons, we take θ = 0, vs = 1, Γ = 1/2 and

continue the solution by varying μ/J , keeping all other parameters fixed. Then we

compute Nd according to the direct integral-of-the-density definition and the SGR

formula, and Ns from the SDPS formula. The results are shown in Fig. 5.1 (a) where

it is evident that all three calculation agree very closely.

For the Josephson vortices, we take vs = 1 and Γ = 1 in our simulations. With

reference to Fig. 3.6 (a), since there is a loop in the plot of excitation energy as

a function of velocity, there are three distinct Josephson vortex solutions at the

point in parameter space we have specified – we test all three. Panel (b) of Fig. 5.1

corresponds to a continuation of a point on the blue dashed-line segment in Fig. 3.6

(a) (not part of the loop), (c) to the green dashed-line segment in Fig. 3.6 (a) (lower

section of the loop), and (d) to the red dashed-line segment in Fig. 3.6 (a) (upper

section of the loop). In all three cases, it is clear that only the SGR Nd coincides

with the true missing particle number.

Next, we test the equivalence in a three-dimensional Bose-Einstein condensate

with cylindrical geometry, explored in the last section of [154] and in [110]1. There,

one solves the three-dimensional Gross-Pitaevskii equation, looking for solutions

translating at ṽs (the velocity of the excitation on a ring with periodic boundary

conditions), z being the co-moving axial coordinate in a cylindrical set of coordinates

(r, θ, z):

−i�ṽs∂zψ =

[
− �

2

2m
∇2 +

1

2
mω2

rr
2 + g3DN |ψ|2 − μ̃

]
ψ. (5.84)

Note the transverse trapping potential, which confines the three-dimensional gas to

a cylindrical geometry. Moreover, for numerical purposes, ψ is normalized to one, so

the number of particles in the system only scales the non-linearity. We numerically

impose periodic boundary conditions in z and solve the finite (but large) system case,

1Please note that all the simulations for this example were performed by our collaborator,
Dr. Antonio Muñoz Mateo, who then kindly sent me the data and a detailed description of the
calculations.
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Figure 5.1: Missing particle number (labelled “MPN”, in units of �J√
mJ(g+gc)

) for

staggered solitons (a) and Josephson vortices (b)-(d) found numerically in chapter
3. The equations are numerically integrated with vs = 1 for all panels. For (a),
θ = 0,Γ = 1/2 and for (b)-(d), Γ = 1. The last three panels correspond to three
distinct Josephson vortex solutions at the given parameter values. In each case, the
initial point was taken from computations performed in chapter 3 and then continued
in chemical potential, while keeping all other parameters fixed (notably, the veloc-
ity). Then, the missing particle number is calculated according to three methods:
density integral (blue solid lines), the SDPS (red dash-dotted lines) and SGR (green
dashed lines) formulae. In (a), for the staggered solitons, all three calculations are
equivalent, but in (b)-(d), the SDPS formula clearly gives results inconsistent with
the other two methods, which agree spectacularly among themselves.
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then extracting the relevant quantities in the infinite system with open boundary

conditions by transforming away the counter-flow, so that vs = ṽs− vcf . The Gross-

Pitaevskii equation is solved numerically by the Newton-Raphson method, with ψ

expanded as a product of harmonic modes of the trapping potential in the transverse

plane, and plane-waves in z.

To obtain dark solitons, the initial guess for the solver is the Gross-Pitaevskii

dark soliton in the thermodynamic limit (see first example in section 5.4.1). As

discussed in [110, 154], a whole family of solutions exists in this system, referred to

as Chladni solitons, which bifurcate from the dark solitons. To find other Chladni

excitations, we add a small weight of the unstable dark solitons of the Bogoliubov

de-Gennes equation [155] to the numerical dark soliton already found, which seeds

a dark soliton that decays into various Chladni excitations.

During this procedure, μ̃ is specified and N is adjusted until the Gross-Pitaevskii

equation is satisfied. Now, in order to find the corresponding background state,

we must first compute the chemical potential associated with the open boundary

conditions solitonic solution, μ. The μ̃ entering the Gross-Pitaevskii equation (5.84)

is essentially that of equation (5.20),

μ̃ = μ−mvsvcf − 1

2
mv2cf , (5.85)

where we have now kept the last term which was dropped previously since we were

working to first order in 1/L. Thus the relevant chemical potential μ is extracted

from the value set in the Gross-Pitaevskii equation μ̃ by adding mvsvcf +
1
2
mv2cf .

Once the correct chemical potential is determined, we search for a constant solution

(constant in z – clearly the solution is not homogeneous in the radial direction due

to the trap) using the same system size, L.

The parameters used are as follows. The transverse potential frequency is ωr =

2π×71.3 Hz, the (bosonic) interaction strength is g3D = 4π�2a3D
m

with a3D = 0.06 μm,

and the mass is that of two Lithium-6 atoms (Ref. [154] considered a fermionic

condensate). The system length is taken as L = 2π × 8.547467 μm.

The energy of a given state is evaluated using a three-dimensional analogue of

the functional W of equation (5.15). Since the wavefunction has periodic boundary

conditions, we need to subtract the counterflow energy, which amounts to adding the

following correction to the excitation energy 1
2
mNxv

2
cf−vcfPc (see chapter 11), where

Nx is the number of particles in the excited state, and Pc is the total momentum

in the excited state with periodic boundary conditions, computed from a three-

dimensional analogue of (5.16) without the factor of vs. Finally, the SGR formula

requires Pc of the infinite system, which must be obtained from Pc = Ps+Pcf , where

Ps = mNdvs (with Nd given by the density definition) and Pcf = �n0Δφ = mNxvcf .
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We have evaluated all three formulae for the missing particle number for four

Chladni solitons: a dark soliton, a vortex ring, a solitonic vortex and a double

solitonic vortex, plotted respectively in Fig. 5.2 (a)-(d). Once again, we see that the

SGR formula always agrees with the density definition, while the SDPS equation

only agrees with the other two for dark solitons.

5.5 Discussion and Conclusions

We have presented a clear derivation of the SGR formula for extracting the actual

missing particle number of solitonic excitations from the dispersion relation for a

superfluid one-dimensional system in the thermodynamic limit. The argument is

largely based on the Hellmann-Feynman theorem for functionals. Moreover, we have

investigated when the SGR formula for the actual missing particle number becomes

equivalent to the SDPS effective one for all velocities, giving general conditions and

both analytical and numerical mean-field examples.

We remark that it is easy to generalize our derivation from one dimension to a

three-dimensional system in a quasi-one-dimensional geometry, with the constrain-

ing potential depending on the radial (r) and azimuthal-angle (θ) coordinates. One

can even include several components (say Nc) of condensate atoms, interacting via

nearest-neighbour tunnelling, as long as the non-linearity depends purely on the

modulus-squares of the wavefunction components. Each component wavefunction

must vanish as r → ∞ and be continuous in θ across 0, 2π. As z → ±∞, each

component may tend to a different background density nk(r, θ). Given the non-zero

tunnelling between the different components, all components of the condensate must

have the same phase-step, Δφ. Under these conditions, the derivation of the SGR

formula proceeds in an exactly analogous way and the final result is identical, with

the understanding that the one-dimensional density n0 is replaced by a (total) linear

density

n0 =
Nc∑
k=1

2π∫
0

∞∫
0

rnk(r, θ)drdθ. (5.86)

This more general version of the derivation [156] is somewhat more cumbersome

(mostly in terms of notation and the need for vector calculus when presenting the

Hellmann-Feynman theorem of appendix 5.A), so here we have chosen to present

the pure one-dimensional case for clarity of argument and readability.

Furthermore, one may question whether the derivation of section 5.3 is truly

limited to systems obeying a non-linear Schrödinger equation, as in (5.17). In fact,

it is possible to proceed with the same arguments assuming the following general

points.
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Figure 5.2: Missing particle number (labelled “MPN”) for a dark soliton with

vs = −0.28
√

�ωr

m
(a), vortex ring with vs = 0.8

√
�ωr

m
(b), solitonic vortex with

vs = −0.32
√

�ωr

m
(c) and double solitonic vortex with vs = −0.36

√
�ωr

m
(d) found

numerically in [154]. The Gross-Pitaevskii equation is numerically integrated, as

described in the text. The parameters are ωr = 2π × 71.3 Hz, g3D = 4π�2a3D
m

with
a3D = 0.06μm, m = 2.3052 × 10−26 kg [154], L = 2π × 8.547467μm. In each case,
the missing particle number is calculated according to three methods: density in-
tegral (blue solid line), the SDPS (red dash-dotted line) and SGR (green dashed
line) formulae. In (a), for the dark solitons, all three calculations are equivalent,
but in (b)-(d), the SDPS formula clearly gives results inconsistent with the other
two methods, which agree well among themselves. The visible scatter in the data is
numerical noise.
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The system must be Lagrangian and superfluid2, so that the order parameter has

a coherent phase, the spatial derivative of which gives rise to super-currents. The

geometry is elongated, with translational invariance along the longitudinal direction,

ensuring Galilean invariance. The number of particles must be sufficiently large so

that a continuous description of the problem is appropriate. As always, we are

concerned with solitonic excitations maintaining their shape as they translate at

constant velocity. These solitary waves must have both a density depletion and

a phase step. Conversely, the state of the system must be fully describable by the

density and phase profiles – there must be no other quantity (such as charge or spin)

which may change upon introduction of the impurity to a uniform background.

With these assumptions, using a Galilean transformation to a moving frame at

vs, we can show that the lab-frame Lagrangian with open boundary conditions L

is the negative of the grand canonical ensemble energy in the moving frame at vs,

WM , i.e.

WM = HM − μMN = H − vsP − μN = −L , (5.87)

where the subscript M indicates a moving-frame quantity and no subscript a lab-

frame one. Moreover, in the above, H is the canonical energy, μ the chemical

potential, N the number of particles, vs the speed of the soliton and P the total

momentum (in this case equal to Ps, the momentum of the soliton).

Likewise, the lab-frame Lagrangian with periodic boundary conditions is the neg-

ative of the grand canonical ensemble energy in the moving frame at ṽs:

WM = HM − μMN = H − ṽsP − (μ−mvsvcf −mv2cf )N

= H − ṽsP − μ̃N = −L̃ , (5.88)

to O(1/L), where μ̃, ṽs, vcf are defined by (5.20)-(5.22). This time, the total mo-

mentum P is Pc, which includes both the solitonic and backflow contributions.

Thus, it is possible to deduce the functional to be extremized without reference

to a specific equation of motion, or the assumption of particular expressions for the

energy and momentum.

Finally, we introduce abstract state vectors �X, which carry all the essential in-

formation necessary to uniquely specify the states. This includes, but is not limited

to the order parameter. In particular, �X is such that extremizing the Lagrangian

with respect to all the elements of �X yields the equations of motion for the system.

Finally, invoking the principle of least action, the derivation proceeds as before.

After this work was completed, I became aware of a very similar article [158] that

closely parallels the arguments presented here.

2Although if the system approximately obeys equations usually applicable to superfluids for fi-
nite time intervals, the derivation is approximately applicable during those time intervals, e.g. [157].
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Appendix

5.A Hellmann-Feynman Theorem

In this appendix we derive the Hellmann-Feynman theorem for functionals. Consider

a simplified case when the Lagrangian L only depends on one real function ψ(z)

and on one parameter μ:

L [ψ] =

∫
dz L [ψ, ∂zψ, μ] . (5.89)

We can take the derivative of L with respect to μ using the chain rule:

dL

dμ
=

∫
dz

∂L
∂ψ

dψ

dμ
+

∂L
∂ (∂zψ)

d (∂zψ)

dμ
+
∂L
∂μ

. (5.90)

Recall the definition of the functional derivative

δL

δψ
=
∂L
∂ψ

− d

dz

∂L
∂ (∂zψ)

, (5.91)

and use it to express ∂L
∂ψ

through δL
δψ

, then substituting back into (5.90):

dL

dμ
=

∫
dz

δL

δψ

dψ

dμ
+ ∂z

[
∂L

∂ (∂zψ)

]
dψ

dμ

+
∂L

∂ (∂zψ)

d (∂zψ)

dμ
+
∂L
∂μ

. (5.92)

The two middle terms on the right-hand side of the above equation can be combined

via the product rule to one term:

∫
dz ∂z

[
∂L

∂ (∂zψ)

dψ

dμ

]

and by the fundamental theorem of calculus, we get

dL

dμ
=

∫
δL

δψ

dψ

dμ
+
∂L
∂μ

dz +

[
∂L

∂ (∂zψ)

dψ

dμ

]∞
−∞

. (5.93)

The first term on the right-hand side is the “functional derivative” term and the last

the “boundary” term. The Hellmann-Feynman theorem is satisfied if both vanish.

This is guaranteed if ψ extremizes L and has periodic boundary conditions.
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Chapter 6

The Bethe Ansatz

The preceding chapters were all concerned with mean-field one-dimensional bosonic

systems, applicable in the weakly-interacting regime. When the interactions are

stronger, however, the mean-field description breaks down. Fortunately, in one di-

mension, particles with contact interactions (of any symmetry and with an arbitrary

number of spin states) can be solved via the Bethe ansatz [51]. In this chapter we

will present the derivation of the (finite) Bethe ansatz equations for the Lieb-Liniger

model (spinless bosons) and the Yang-Gaudin model (spin-1/2 fermions) with peri-

odic boundary conditions. These are then solved in chapters 7 & 8.

6.1 The Bethe Ansatz Wavefunction

The Lieb-Liniger model is the simplest of all of the δ-function interacting models

in one dimension as it describes one species of identical bosons. It was the first

to be solved in the seminal papers [46, 47], followed by the Yang-Gaudin model,

describing two spin-components of fermions [48, 49], which is the next sensible level

of complexity. The derivations for both models can be done in parallel up to the stage

of the spin wavefunction – thus, for the spatial part of the solution we follow appendix

A1 of [159] which repeats the arguments of Yang [48], but providing sufficient details

to be comprehensible. For the spin wavefunction of the Yang-Gaudin model we

follow [160], which once again comprehensibly elaborates on the original approach

of [48].

The Hamiltonian for both models reads

H = − �
2

2m

N∑
j=1

d2

dx2j
+

�
2

m
c
∑
〈i,j〉

δ (xi − xj) , (6.1)

where in the second term the sum is over all distinct pairs. The particles are confined

to a ring with circumference L and have mass m. It is customary to set � = 1 and

2m = 1 in the course of the derivation for simplicity, but we will restore full units
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once it is complete. Thus the Hamiltonian becomes

H = −
N∑
j=1

d2

dx2j
+ 2c

∑
〈i,j〉

δ (xi − xj) . (6.2)

For the Lieb-Liniger model, all N particles are spinless bosons, while for the

Yang-Gaudin model, M ≤ N/2 are spin-down fermions and the other N −M are

spin-up. Since the Hamiltonian is spin-independent, it commutes with S2 and Sz,

the magnitude and z-component of the total spin angular momentum operator. This

implies that the total wavefunction factorizes into a spatial component times a spin

component. Next, recall that the total wavefunction for identical1 bosons (fermions)

is totally (anti-) symmetric under particle exchange. This total (anti-) symmetry

holds if we swap the position coordinates and spin labels of any two particles.

Of course, for bosons (fermions) this means that the spatial and spin wavefunc-

tions must have the same (opposite) symmetry under the exchange of particles i

and j. This statement is equivalent to saying that the Young tableaux for the two

components of the wavefunction must be the same shape for bosons and conjugates

for fermions2 (see Fig. 6.1 (a) for an illustration of Young tableaux conjugation). For

the spin wavefunction we will choose a single-row tableau for bosons and a two-row

tableau for fermions. In the latter case, the rows are N −M and M long, each row

full of one type of spin label. An example of these tableaux is shown in Fig. 6.1 (b).

Note that for the Yang-Gaudin model this is not the only possible choice. For

SU(2) objects, the spin wavefunction can only have a Young tableau of two rows or

less. This is because we cannot have a column that is 3 boxes long (or longer), as

numbers must strictly increase down each column (in our case the available numbers

are 1 & 2) and either stay constant or grow along rows. Starting from the two-row

tableau (N −M and M long), we can then move a box with label “2” from the

end of the second row and attach it to the end of the top row, which gives another

valid Young tableau. This can be repeated for all the boxes in the second row, as

demonstrated in Fig. 6.1 (c) for a particular example. The resulting states all have

Sz = 0, but different S values.

In fact, for SU(2) objects only, the total spin of the many-particle state can be

inferred from the structure of the Young tableau. All columns that are 2 boxes

long have S = 0, so we need only consider the excess, unpaired boxes. If there is

one unpaired box, then that is an S = 1/2 (doublet) state. Two unpaired boxes

have S = 1/2 + 1/2 = 1, a spin-triplet. The S value is labelled on Fig. 6.1 (c)

1Identical means that all the properties of the atoms are the same, up to the spin state, which
can be arbitrary.

2For an exposition on Young tableaux, see [161], section 6.5.
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(a) (b)

(c)

Figure 6.1: (a) An example of conjugate Young tableaux (rows become columns and
vice versa). (b) The Young tableaux chosen for the spin wavefunction for the Lieb-
Liniger model (left, illustration uses N = 4) and the Yang-Gaudin model (right,
schematic shown for N = 5, M = 2). The spin state associated with the Yang-
Gaudin tableau has S = Sz = N/2 − M . (c) All valid Young tableaux for the
case N = 5, M = 2 in the Yang-Gaudin model. All three tableaux have the same
Sz = N/2 −M , but different S values, determined from 1/2 times the number of
unpaired boxes.
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for each possible tableau as an illustration of the process. Thus the shape of the

tableau determines the total spin S. Since we choose one particular tableau for the

Yang-Gaudin model, the states described by the Bethe ansatz equations which we

shall derive all have S = N/2−M and Sz = N/2−M .

The ansatz for the total wavefunction reads

ψ(�x, �σ) =
∑
P

A�σ(P |Q) exp(i�kP · �xQ). (6.3)

There are N particles, so �x and �k are N -component vectors. All the entries of �k

are assumed to be distinct. P and Q are permutations of the ordered set of integers

{1, . . . , N} which specify the labels on the x’s and k’s, and in particular which x is

paired with which k. The sum is over all N ! possible permutations P . Q is such

that the elements of �xQ are strictly increasingly ordered.

�σ is a vector of spin labels (or coordinates), one for each particle. For a single

component (either one type of bosons or fermions), all particles have the same spin

so �σ can be dropped. For two spin components (as an example), each σj is a variable

that can take on labels “1” or “2”. If M is unspecified, there are (number of spin

components)N possible �σ vectors.

6.2 Spatial Part of the Bethe Ansatz

Let Pij be the total permutation operator (spin labels and spatial coordinates) which

acts on the expansion coefficients in the following way:

[Pij]
�σ′
�σ A�σ′(P |Q) = A�σ(P |Q′), (6.4)

where

• σi = σ′
j and σj = σ′

i, and all the other entries of �σ & �σ′ are identical,

• Q′ only differs from Q in two entries: Qa = i and Qb = j while Q′
a = j and

Q′
b = i.

Moreover, we use the index contraction notation for inner products of tensors to

account for spin-label changes.

Now let us consider continuity when any two particles pass through each other.

Assume we have a permutation Q with Qa = i and Qb = j such that xi < xj. What

is the condition on the wavefunction so that it is continuous as the particles pass

through to give xj < xi? Recall the �kP · �xQ inner product in the exponent: Qa

and Qb are paired with Pa and Pb (for any given permutation P ). However, when

xi < xj Q reads . . . , a, b, . . . and when xj < xi, Q
′ reads . . . , b, a, . . .. Moreover,
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there is a sum over P in the ansatz, so there will be a different permutation of the

k’s, P ′, where Pa and Pb are swapped, and this is true on both sides of xi = xj. The

relevant terms on the left- and right-hand sides respectively are then

A�σ(P |Q) exp(i�kP · �xQ) + A�σ(P
′|Q) exp(i�kP ′ · �xQ), (6.5)

A�σ(P |Q′) exp(i�kP · �xQ′) + A�σ(P
′|Q′) exp(i�kP ′ · �xQ′). (6.6)

Seeing as the N -particle plane waves are orthogonal unless all the x’s are paired

up with exactly the same k’s, and realizing that as the particles pass through each

other, xi = xj (which allows us to cancel the exponentials), we see that we must

have the relation

A�σ(P |Q) + A�σ(P
′|Q) = A�σ(P |Q′) + A�σ(P

′|Q′). (6.7)

We can go further: we can obtain an additional relation between these coefficients

based on the δ-function interaction of the Hamiltonian (which they experience as

they pass through each other). It is possible to replace the δ-function interaction

term in the Hamiltonian by additional boundary conditions: a jump in the deriva-

tives as two particles exchange positions, given by [46]

(
∂

∂xj
− ∂

∂xi

)
ψ

∣∣∣∣
xj=x

+
i

−
(

∂

∂xj
− ∂

∂xi

)
ψ

∣∣∣∣
xj=x

−
i

= 2c ψ|xj=xi . (6.8)

We can see this by integrating the time-independent Schrödinger equation with

respect to xi and xj, assumed to be infinitesimally close to each other, with xi < xj.

The integral over xi is to be done over [xi− εi, xi+ εi] and that over xj in the range

[xj − εj, xj + εj]. Taking the limit as εi,j → 0, one arrives at (6.8).

Now, the only terms in the wavefunction that matter when evaluating (6.8) are

the ones we have singled out for the continuity equation, (6.5) & (6.6). When

applying the derivative step condition, we use the terms in (6.5), applicable when

xj > xi, and the terms in (6.6) when xi > xj. Differentiation of the exponentials

brings down factors of ikPa and ikPb
. After cancelling the exponentials, the left-hand

side of the δ-function interaction equation (6.8) then becomes

i(kPb
− kPa) [A�σ(P |Q) + A�σ(P |Q′)− A�σ(P

′|Q)− A�σ(P
′|Q′)] . (6.9)

The middle two terms in the square brackets can be rewritten through the first and

last terms by making use of (6.7), which makes the left-hand side of (6.8)

2i(kPb
− kPa) [A�σ(P |Q)− A�σ(P

′|Q′)] , (6.10)
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while the right-hand side can be taken directly from (6.7). All together, we have

i(kPb
− kPa) [A�σ(P |Q)− A�σ(P

′|Q′)] = c [A�σ(P |Q) + A�σ(P
′|Q)] . (6.11)

Rearranging this equation yields

[i(kPb
− kPa)− c]A�σ(P |Q) = cA�σ(P

′|Q) + i(kPb
− kPa)A�σ(P

′|Q′) =

cA�σ(P
′|Q) + i(kPb

− kPa)[Pij]
�σ′
�σ A�σ′(P ′|Q), (6.12)

where in the last line we have used (6.4) to ensure that on the right-hand side we have

terms with the same Q and �σ as on the left-hand side but a different P -permutation

(P ′ instead of P ). We can therefore define the operator that permutes two entries

of P (and the corresponding ones in �σ) as

A�σ(P |Q) =
(
i(kPb

− kPa)Pij + c

i(kPb
− kPa)− c

)�σ′

�σ

A�σ′(P ′|Q) = [Yij(kPb
− kPa)]

�σ′
�σ A�σ′(P ′|Q).

(6.13)

Note that in the middle expression above Pij lacks spin indices, and is implied to

only operate on Q, while the spin permutation operation is instead carried by the

entire fraction. Furthermore, we can also define an operator which permutes two

entries in P , the corresponding ones in Q, and leaves the spin labels unaltered:

Xij(u) := [Yij(u)]
�σ
�σ′ [Pij]

�σ′
�σ , (6.14)

which acts on the expansion coefficients as

A�σ(P |Q) = Xij(kPb
− kPa)A�σ(P

′|Q′). (6.15)

It is now time to impose periodic boundary conditions. Due to our choice to have

Q such that the x’s are increasingly ordered, periodic boundary conditions can be

imposed with reference only to the first entry of P and Q. In particular, periodic

boundary conditions require that ψ|xQ1
=0 = ψ|xQ1

=L. Recalling our ansatz (6.3), the

plane waves took the form exp(i�kP · �xQ). So when xQ1 = 0 the inner product in the

exponential reads 0+kP2xQ2 + . . .+kPN
xQN

. When xQ1 = L this x coordinate is the

largest out of the N and needs to be permuted to the end of Q. In order for all the

other x’s to have the same k coefficients (linear independence of the different plane

waves in the expansion implies that only this term matters), we need to consider the

P permutation where P1 is also permuted to the end of P . The inner product then

reads kP2xQ2 + . . .+ kPN
xQN

+ kP1L. Now, exp(ikP1L) is a number, independent of

the x-coordinates, so it needs to be absorbed into the expansion coefficient. In other

words, we have permuted the first entry of both P and Q to the end which brought
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out an additional exponential factor:

A�σ(P |Q) = A�σ(P2, . . . , PN , P1|Q2, . . . , QN , Q1) exp(ikP1L). (6.16)

Of course, this equation can be generalized: permuting any jth element of P and

Q from the beginning to the end of the chain will yield an additional factor of

exp(ikPj
L) to the A coefficient. This can be written in a concise manner using a chain

of the X operators. Assume that P and Q are originally the identity permutation of

the ordered set {1, . . . , N}. Therefore, in the equation that follows, when we need

to write Xij(kPb
− kPa) we can suppress the (kPb

− kPa) argument of X since it will

always be simply ki−kj. This way, the periodic boundary conditions can be written

as a set of N equations:

A�σ(1, . . . , j − 1, j + 1, . . . , N, j|1, . . . , j − 1, j + 1, . . . , N, j) exp(ikjL) =

X1,j . . . Xj−1,jXj+1,j . . . XN,j

A�σ(1, . . . , j − 1, j + 1, . . . , N, j|1, . . . , j − 1, j + 1, . . . , N, j). (6.17)

Let us think about what happens on the right-hand side: we begin from P,Q which

are identities except that the jth particle is moved to the end. Then we permute

the jth particle through each and every one of the particles on the left of it in turn,

and we do this both in P and in Q. Finally, we get to the first particle in the chain

and permute through it too, which puts the jth particle at the start of the chain.

The periodic boundary conditions equation states that this chain of permutations

is equivalent to multiplying the expansion coefficient by exp(ikjL).

Now, for a single component of either bosons or fermions, the �σ label can be

dropped and the eigenvalue of Pij is ±1, respectively. Then the product of the Xmn

operators (upper sign for bosons, lower for fermions),

Xmn(km − kn) =
i(km − kn) + cPmn
i(km − kn)− c

=
i(km − kn)± c

i(km − kn)− c
(6.18)

immediately gives the Bethe ansatz equations. For the Lieb-Liniger model, these

read

exp(ikjL) =
∏
m �=j

i(km − kj) + c

i(km − kj)− c
= −

N∏
m=1

kj − km + ic

kj − km − ic
, (6.19)

and for one spin component of fermions, they reduce to

exp(ikjL) = 1, (6.20)

as expected.
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For two-component fermions, more work is needed. Let us first rewrite (6.17)

such that the P,Q permutations appearing in A are the identity, using

A�σ(1, . . . , j − 1, j + 1, . . . , N, j|1, . . . , j − 1, j + 1, . . . , N, j) = (6.21)

Xj,N . . . Xj,j+1A�σ(1, 2, . . . , N |1, 2, . . . , N).

Upon substitution into (6.17), we need to use the first of the identities involving the

X-operators (these can be verified by simple permutation of indices):

XijXji = 1,

XijXkl = XklXij,

XjkXikXijXkjXkiXji = 1. (6.22)

From the first identity, it is clear that the inverse of Xj,N . . . Xj,j+1 is Xj+1,j . . . XN,j.

Applying this inverse operator from the left on both side of (6.17), on the left-hand

side we are left with A�σ(1, 2, . . . , N |1, 2, . . . , N) exp(ikjL), while on the right, we

have the following chain of X operators:

Xj+1,j . . . XN,jX1,j . . . Xj−1,j [Xj+1,j . . . XN,jXj,N . . . Xj,j+1] , (6.23)

acting on the same A. Now, the term in the brackets is one, by the first X identity.

We arrive at the N equations

A�σ(1, 2, . . . , N |1, 2, . . . , N) exp(ikjL) = (6.24)

Xj+1,j . . . XN,jX1,j . . . Xj−1,jA�σ(1, 2, . . . , N |1, 2, . . . , N).

The beauty of writing the equations this way is that now the A coefficient does

not carry a j label, and it becomes clear that there exists a common eigenvector A

of N operators (the products of the X’s, which do carry a j label), with different

eigenvalues (also j-dependent). This completes the work on the spatial component

of the wavefunction. We may now drop the (Q|P ) arguments of A as they are always

the identity permutations.

6.3 Spin Part of the Bethe Ansatz

The next step is the diagonalization of these N operators in spin-space. If we

constrain the problem to have M ≤ N/2 spin-down particles, then there are
(
N
M

)
product basis states spanning the spin Hilbert space. The common eigenvector we

are after can then be thought of as a linear combination of these basis states. Call

this common eigenvector A (i.e. drop the spin label, as we are now working fully in
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spin-space).

In order to proceed, we write the overall permutation operator [Pij]
�σ′
�σ as a product

of a permutation operator on Q, Pij(Q), and a permutation operator on �σ, Pij(�σ).

Note that each of these permutation operators is its own inverse. Thus,

Xij(ki − kj) = [Yij(ki − kj)]
�σ
�σ′ [Pij]

�σ′
�σ =

(
i(ki − kj)[Pij]

�σ
�σ′ + cPij(�σ)

i(ki − kj)− c

)
[Pij]

�σ′
�σ

=
i(ki − kj) + cPij(Q)

i(ki − kj)− c
. (6.25)

Now, the eigenvalue of [Pij]
�σ′
�σ is -1 (for fermions), so Pij(Q)Pij(�σ) = −1 and multi-

plying both sides by Pij(Q) we find Pij(Q) = −Pij(�σ). Therefore,

Xmn(km − kn) =
i(km − kn)− cPmn(�σ)

i(km − kn)− c
. (6.26)

We may now drop the explicit �σ argument of Pij, with the understanding that the

remaining permutation operators appearing in the chain of X’s act only on the spin

part of the wavefunction.

Next we specify an ansatz for A (hence this approach is known as the nested Bethe

ansatz): let {y1, y2, . . . , yM} beM distinct integers drawn from the set {1, 2, . . . , N}
– these will be the particles we will give spin-down labels to. Moreover, let there

be some M distinct numbers αm, and P,Q denote permutations of the ordered set

{1, 2, . . . ,M}. Then we take

Φ =
∑
P

a(P )F (αP1 , yQ1) . . . F (αPM
, yQM

), (6.27)

where

F (α, y) =

y−1∏
j=1

ikj − iα− c/2

ikj+1 − iα + c/2
, (6.28)

and Q is such that the y’s are increasingly ordered. Φ satisfies cyclic boundary

conditions (details are given later). A, the common eigenvector we are after, is

given by

|A〉 =
∑
�σ

Φ(�σ) |�σ〉 , (6.29)

a linear combination of all the possible spin product basis states, with Φ as the

expansion coefficients.

6.3.1 Statement of Results

First let us give an overview of the final results without proof. The Bethe ansatz

equations for the Yang-Gaudin model are in the form of two sets of inter-coupled
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equations, referred to as first- and second-level equations. If we denote the chain of

X operators in (6.24) Ωj, i.e.

Ωj = Xj+1,j . . . XN,jX1,j . . . Xj−1,j, (6.30)

then (6.29) is an eigenvector of the operators Ωj with eigenvalue

μj =
M∏
m=1

ikj − iαm − c/2

ikj − iαm + c/2
. (6.31)

The first level Bethe ansatz equations come from equation (6.24), with the eigen-

value given by μj of (6.31):

exp(ikjL) |A〉 = Ωj |A〉 = μj |A〉 , (6.32)

exp(ikjL) =
M∏
m=1

ikj − iαm − c/2

ikj − iαm + c/2
. (6.33)

One side of the second level equations comes from the application of the cyclic

boundary condition to Φ (as described in the next subsection), the expansion coef-

ficients of the spin basis states in A. The other side of the second level equations

comes about as a requirement for the eigenvalue problem above to be satisfied with

eigenvalue μj. The links between the two sides of the second level equations are the

ratios of the expansion coefficients a(P ) in the expansion of Φ in terms of products

of F -functions of equation (6.28).

The second level equations take the form

−
N∏
j=1

ikj − iαm − c/2

ikj − iαm + c/2
=

M∏
n=1

iαm − iαn + c

iαm − iαn − c
. (6.34)

Now in equation (6.33), multiply the top and bottom of the fraction by −i. Mean-

while, consider the one-over version of equation (6.34), and multiply the top and

bottom of the left-hand side fraction by i and of the right-hand side fraction by −i.
This leads to the standard form of the Yang-Gaudin Bethe ansatz equations:

exp(ikjL) =
M∏
n=1

kj − αn + ic/2

kj − αn − ic/2
, (6.35)

N∏
j=1

αm − kj + ic/2

αm − kj − ic/2
= −

M∏
n=1

αm − αn + ic

αm − αn − ic
. (6.36)

101



6.3.2 Outline of Proof

We will now give a sketch of the steps necessary to prove the statements made in

the previous subsection. First, a few observations: note that in the F -functions, if

the product runs from 1 to 0, the result is by definition unity. Furthermore, defining

kN+1 = k1, when the product runs from 1 to N we can just replace the j + 1 index

in the denominator by j and denote the resultant by F (α) := F (α,N + 1).

Now, we mentioned that Φ has cyclic boundary conditions. What this actually

means is that Φ with yQ1 = 1 is equal to Φ with yQM
= N + 1 (with the definition

kN+1 = k1). In more detail, we write out Φ as in (6.27) twice, on both sides of an

equality. On the left-hand side set yQ1 = 1. On the right-hand side permute the y’s

cyclically so that yQ1 goes to the back of the chain and becomes yQM
= N +1, while

all the other y’s simply move one step to the left. In other words, on the right-hand

side set yQM
= N + 1, and replace Q1...M−1 by Q1...M−1 + 1. The resulting equation

is the cyclic boundary condition.

From the cyclic boundary condition, we can obtain one side of the second-level

equations: we match up terms on the left-hand side that have F (αm, 1) to those

on right-hand side that have F (αm, N + 1) with all the other M − 1 F -functions

in the product identical (that is with the same α and y arguments). Each of the

M ! matched-up pairs constitutes an equation. We cancel all the identical F (α, y)

terms, which gives us M ! equations of the form F (αm) = a(m, . . .)/a(. . . ,m) where

the dots denote the same sequence of all the other integers (except for m) in the

interval [1,M ].

There are redundancies in these M ! equations: in fact, the essential information

can be distilled to M equations where the dots denote the same sequence of all the

other integers (except for m) in the interval [1,M ] in increasing order 3. Separately,

we will be able to express the right-hand side of these equations only through the

α’s as part of the eigenvalue problem.

As for the eigenvalue problem, we must demonstrate that A from (6.29) is an

eigenvector of the operators Ωj with eigenvalue μj for all j. However, it is sufficient

to verify it for any one j value, since all the particles are equivalent in the sense

that we are on a ring and by cyclic permutations can shift the particles around until

they become the jth one.

In principle, our task is to apply Ωj to each of the |�σ〉 basis states and compute

the result (in general, it is a combination of all the basis states). Then we use that

information to construct the result of applying Ωj to A. Finally, we inspect each

3This is in direct analogy to the step where we apply periodic boundary conditions to the spatial
wavefunction, first assuming that P & Q are the identity permutations, and then writing down
the effect on the expansion coefficient of moving the jth particle from the start of the chain to the
end, with all other particles increasingly ordered by their label, as in equation (6.17).

102



basis state individually: we compare its coefficient in ΩjA to that in μjA. If the

coefficients match, the eigenvalue problem is satisfied as stated. If the coefficients are

not trivially equal, we must set them equal, thereby demanding that the eigenvalue

problem holds. This gives us the necessary relations between the coefficients a(P )

to complete the second level Bethe ansatz equations.

Now, the general problem for an arbitrary M,N is incredibly difficult and cum-

bersome. With the nested Bethe ansatz, one usually proves theM = 1, 2 cases only,

which is of course not a rigorous, complete proof, but it serves to provide the reader

with intuition for how this calculation unfolds. This is done in appendices 6.A &

6.B. A general proof is in principle possible through the algebraic Bethe ansatz [54]

or using Gaudin’s technique [50], although conceptually these approaches are more

complicated.

6.4 Exponential to Logarithmic Form

Finally, it is possible to transform the exponential Bethe ansatz equations to a

logarithmic form which is often easier to solve numerically. We will need the identity

tan−1(x) =
i

2
ln

(
1− ix

1 + ix

)
, (6.37)

where x can be complex. Inverting this formula for the argument of the logarithm,

we cast the fractions in the exponential equations in to the same form. This produces

a minus sign to a power that in general depends on N and/or M . In particular, for

the Lieb-Liniger model, we obtain

exp(ikjL) = (−1)N+1
∏
n

exp [iθ(kj − kn)] , (6.38)

where

θ(k) = −2 tan−1

(
k

c

)
. (6.39)

Taking the logarithm, we find

kjL = 2πnj +
N∑
�=1

θ(kj − k�), (6.40)

where the nj’s are quantum numbers that specify the state. The power on the (−1)

then gives constraints for the quantum numbers: for odd (even) N , the nj’s are

(1/2-)integers.
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For the Yang-Gaudin model, the first level equation becomes

exp(ikjL) = (−1)M
M∏
n=1

exp {iθ[2(kj − αn)]} , (6.41)

and taking the logarithm,

kjL = 2πnj +
M∑
m=1

θ[2(kj − αm)], (6.42)

where the nj’s are (1/2-)integers for even (odd) M . The second level equation reads

(−1)N
N∏
j=1

exp {iθ[2(αm − kj)]} = (−1)M+1

M∏
n=1

exp {iθ[αm − αn)]} , (6.43)

and taking the logarithm, it becomes

0 = 2π
m −
M∑
n=1

θ(αm − αn) +
N∑
j=1

θ[2(αm − kj)], (6.44)

where the 
m’s are (1/2-)integers for even (odd) N −M − 1.

6.4.1 Final Remarks

It is a requirement of the Bethe ansatz that the kj’s must be distinct within a given

solution, as must be the αm’s [46, 48]. Moreover, for the Lieb-Liniger model it has

been proven that for a given set of quantum numbers, the solution is unique [54, 58].

Note that since we have replaced the δ-interaction term in the Hamiltonian by

additional boundary conditions (6.8), the remaining Hamiltonian is that of N free

particles. Since our ansatz is a superposition of plane waves, it is clear that the

energy and momentum of the wavefunction are given by

P = �

N∑
j=1

kj, (6.45)

E =
�
2

2m

N∑
j=1

k2j . (6.46)

Furthermore, we emphasize that for a given M , the Yang-Gaudin Bethe ansatz

equations listed above are limited to one (spin) Young tableau. Thus there are

physical spin-states that are excluded from the mathematical description of these

equations. However, because the Hamiltonian is spin-independent, states with the

same S but different Sz are degenerate in energy. Furthermore, note that for the
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Lieb-Liniger model there exists a valid solution for an arbitrary choice of the quan-

tum numbers. In contrast, in the Yang-Gaudin model, given an arbitrary set of nj’s,

there is only one set of 
m’s that produces valid solutions.

Now, we have essentially claimed that the guessed spin wavefunction (6.27) has

the symmetry of a two-row Young tableau (N − M & M long), however we did

not demonstrate this explicitly. It is trivial to confirm that Φ is symmetric under

exchange of any two like-spin particles, but the antisymmetry with respect to the

two different spins is more challenging. We may be certain, however, that Φ corre-

sponds to the claimed tableau because in his thesis [50], Gaudin bypasses making an

ansatz for Φ altogether. Instead, he arrives at the same Yang-Gaudin Bethe ansatz

equations simply by imposing the symmetry conditions associated with our chosen

tableau.

Finally, we may wonder whether it is at all possible to obtain Bethe ansatz

equations for the other Young tableaux – that is, the other spin states. To my

knowledge, these have never been presented or even mentioned in the literature.

Perhaps the symmetry associated with the more complicated tableaux makes an

ansatz too difficult to write down, or alternatively, from Gaudin’s point of view, the

“mixed” symmetry conditions may be too difficult to impose. We remark that in

his thesis [50] (chapter one), Gaudin mentions that the results for the other Young

tableaux can be obtained by permutation once you solve the problem for one spin

state. On the other hand, this statement is not repeated in his book [162], written

many years later, so perhaps the initial claim was not well-founded.
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Appendix

In the appendices that follow, we prove the claims made in section 6.3.1 for M = 1

& 2 with arbitrary N .

6.A M=1

Since we only need to prove that the eigenvalue problem holds for one particular

value of j, we will always choose j = 1, as it is the simplest. In this case, the

operator of interest is

Ω1 = X2,1X3,1 . . . XN,1. (6.47)

We need to introduce the spin basis states |{ym}〉, which specify the locations of the

spin-down fermions along the chain. For only one spin-down particle, there are N

basis states, written as |y〉, where y ∈ {1, 2, . . . , N}. We also define the short-hand

notation

Xmn =
i(km − kn)− cPmn
i(km − kn)− c

≡ amn + bmnPmn. (6.48)

Recall that we have specialized Xmn to fermions and that the permutation operators

Pij only act on the spin labels. Also note that an,n = 0 while bn,n = 1. Our first

goal is to calculate Ω1 |y〉. A separate computation is always required for y1 = 1 (of

course in this case we only have one y). It is possible to carefully track what happens

upon applying Ω1 to various spin kets. The key useful facts are: Pn,1 |n〉 = |1〉 and
Pn,1 |m �= n〉 = |m〉, so that Xn,1 |m �= n〉 = |m〉. Using this, we obtain

Ω1 |y �= 1〉 = ay,1 |y〉+
y−1∑
n=2

by,1

(
y−1∏

m=n+1

am,1

)
bn,1 |n〉+ by,1

(
y−1∏
m=2

am,1

)
|1〉 , (6.49)

Ω1 |1〉 = bN,1 |N〉+
N−1∑
n=2

(
N∏

m=n+1

am,1

)
bn,1 |n〉+

(
N∏
m=2

am,1

)
|1〉 . (6.50)

Notice that Ω1 |y �= 1〉 produces all basis states |n ≤ y〉, while Ω1 |1〉 gives all basis
states |n ≤ N〉. We now need to demonstrate that for all spin basis states,

μ1 〈y|A〉 = 〈y|Ω1|A〉 . (6.51)

Usually, the cases when y1 = 1 and yM = N are done separately, and the rest are

treated all together.
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We will need the cyclicity condition, which for M = 1 reads

F (α1, 1) = F (α1, N + 1), (6.52)

which means F (α1, N + 1) = 1 as F (α1, 1) ≡ 1, which is consistent with the second

level equations for M = 1. Recall also that for M = 1, μ1 =
ik1−iα1−c/2
ik1−iα1+c/2

.

We begin from y = N , as that is the simplest case. Collecting terms proportional

to |N〉 on both sides of (6.51), we need to show that

bN,1F (α1, 1) + aN,1F (α1, N) =
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, N). (6.53)

On the left-hand side we can use cyclicity for the first term, and get

bN,1F (α1, N + 1) + aN,1F (α1, N). (6.54)

This step will always be required – whenever we get a term involving F (α1, 1), we

will replace it with one involving F (α1, N +1) using the cyclic boundary condition.

Moreover,

F (α1, N + 1) = F (α1, N)
ikN − iα1 − c/2

ik1 − iα1 + c/2
, (6.55)

so we just need to show that

bN,1
ikN − iα1 − c/2

ik1 − iα1 + c/2
+ aN+1 =

ik1 − iα1 − c/2

ik1 − iα1 + c/2
. (6.56)

This can be done with a few lines of elementary algebra. Now let us move on to

|N − 1〉. Collecting terms proportional to this basis state

F (α1, N)bN,1bN−1 + F (α1, N − 1)aN−1,1 + F (α1, 1)aN,1bN−1,1

=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, N − 1), (6.57)

we then use cyclicity. Let us add the first and third terms on the left-hand side

together:

F (α1, N)bN,1bN−1 + F (α1, N + 1)aN,1bN−1,1

= F (α1, N)bN−1,1

(
bN,1 + aN,1

ikN − iα1 − c/2

ik1 − iα1 + c/2

)

= F (α1, N − 1)bN−1,1

[
ikN−1 − iα1 − c/2

ikN − iα1 + c/2

(
bN,1 + aN,1

ikN − iα1 − c/2

ik1 − iα1 + c/2

)]
. (6.58)

Now, the term in the round brackets is equal to ikN−iα1+c/2
ik1−iα1+c/2

, which can be easily
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shown. This means that the left-hand side of the eigenvalue problem now reads

F (α1, N − 1)bN−1,1
ikN−1 − iα1 − c/2

ik1 − iα1 + c/2
+ F (α1, N − 1)aN−1,1

=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, N − 1), (6.59)

where the sum to obtain the right-hand side requires only elementary algebra.

We now consider a general |y �= 1, N〉. Collecting terms, we need to show that

F (α1, y)ay,1 +
N∑

n=y+1

F (α1, n)bn,1

(
n−1∏

m=y+1

am,1

)
by,1 + F (α1, 1)

(
N∏

m=y+1

am,1

)
by,1

=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, y). (6.60)

In order to proceed, we will prove a general identity:

(
N∏

m=y+1

am,1

)
F (α1, N + 1) +

N∑
z=y+1

F (α1, z)bz,1

(
z−1∏

m=y+1

am,1

)

=
iky − iα1 − c/2

ik1 − iα1 + c/2
F (α1, y). (6.61)

We try a proof by induction, but the base case is y = N − 1 (which we have already

proved) and the induction assumes the statement is true for y and deduces it is also

true for y − 1. That is, in contrast to the conventional procedure, the induction

variable decreases from step to step. Writing out the equation for y−1, we separate

out all the new terms, trying to explicitly bring out the terms we had for the y case,

on both sides of the equation:

ay,1

(
N∏

m=y+1

am,1

)
F (α1, N + 1) + F (α1, y)by,1

(
y−1∏
m=y

am,1

)

+
N∑

z=y+1

F (α1, z)bz,1

(
z−1∏

m=y+1

am,1

)
ay,1

= F (α1, y − 1)
iky−1 − iα1 − c/2

ik1 − iα1 + c/2

iky − iα1 + c/2

iky − iα1 + c/2

= F (α1, y − 1)
iky−1 − iα1 − c/2

iky − iα1 + c/2

iky − iα1 + c/2

ik1 − iα1 + c/2

= F (α1, y)
iky − iα1 + c/2

ik1 − iα1 + c/2

iky − iα1 − c/2

ik1 − iα1 − c/2

= F (α1, y)
iky − iα1 − c/2

ik1 − iα1 + c/2

iky − iα1 + c/2

iky − iα1 − c/2
. (6.62)
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Notice that several times during the manipulation of the right-hand side we multi-

plied by convenient factors of one. If we briefly write down (6.61) using short-hand

notation as X + Y = Z, then the y − 1 case that we need to prove reads

ay,1X + by,1F (α1, y) + ay,1Y = Z
iky − iα1 + c/2

iky − iα1 − c/2
. (6.63)

The second and third terms can be combined through the inductive hypothesis to

give ay,1Z. Also, we notice that the second term features F (α1, y) = Z ik1−iα1+c/2
iky−iα1−c/2 .

This allows us to cancel Z through, and it remains to prove that

ay,1 + by,1
ik1 − iα1 + c/2

iky − iα1 − c/2
=
iky − iα1 + c/2

iky − iα1 − c/2
. (6.64)

This is a matter of trivial rearrangement, so (6.61) stands proved. It remains to

prove the general relation

iky − iα1 − c/2

ik1 − iα1 + c/2
by,1 + ay,1 =

ik1 − iα1 − c/2

ik1 − iα1 + c/2
, (6.65)

but we have already done that for y = N−1 in equation (6.59), and the label on the

k that fully cancels out is certainly irrelevant. Combining this result with (6.61),

we can write down the general identity

by,1

(
N∏

m=y+1

am,1

)
F (α1, N + 1) + by,1

N∑
z=y+1

F (α1, z)bz,1

(
z−1∏

m=y+1

am,1

)
+ ay,1F (α1, y)

=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, y). (6.66)

Examining the left-hand side of (6.60), we see that by (6.66) we immediately get the

right-hand side (of course, taking into account cyclic boundary conditions which in

this case are trivial).

In the special case of |1〉, collecting terms, we need to show that

N∑
y=2

F (α1, y)by,1

(
y−1∏
m=2

am,1

)
+ F (α1, 1)

(
N∏
m=2

am,1

)
=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, 1).

(6.67)

Identity (6.66) with y = 1 reduces to (6.61) with y = 1 and reads

(
N∏
m=2

am,1

)
F (α1, N + 1) +

N∑
z=2

F (α1, z)bz,1

(
z−1∏
m=2

am,1

)
=
ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, 1).

(6.68)

Again (6.68) immediately proves the eigenvalue problem for y = 1 (taking into
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account the cyclic boundary conditions, naturally). This completes the proof for

M = 1.

6.B M=2

In this case the cyclic boundary condition reads

a(1, 2)F (α1, 1)F (α2, y) + a(2, 1)F (α2, 1)F (α1, y)

= a(1, 2)F (α1, y)F (α2, N + 1) + a(2, 1)F (α2, y)F (α1, N + 1), (6.69)

and the general explanation given earlier means that a(1, 2)/a(2, 1) = F (α1) and

a(2, 1)/a(1, 2) = F (α2) – this gives us half of the second level Bethe ansatz equa-

tions. The other half will come into play later. Also, recall that for M = 2,

μ1 =
ik1−iα1−c/2
ik1−iα1+c/2

× ik1−iα2−c/2
ik1−iα2+c/2

.

The spin basis states are now of the form |x, y〉 as there are two spin down coordi-

nates. We need to determine the action of Ω1 on these, which is much more involved

this time. We carefully track the states resulting from successive permutations, and

find the following formulae:
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b y
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At first sight, these equations may look intimidating, but the sketches of Fig. 6.2

help us visualize them. The terms produced from Ω1 |x �= 1, y〉 have basis states

|1 ≤ n ≤ x, x ≤ m ≤ y〉 and those produced from Ω1 |1, y〉 have basis states

|1 ≤ n ≤ y, y ≤ m ≤ N〉. In these formulae, each row keeps the position of the

second spin-down particle fixed, and runs through all possible positions for the first

particle in decreasing order. The different rows then correspond to different positions

of the second particle, also listed in decreasing order.

Of course one notices immediately that the coefficients follow a pattern. Let us

refer to the y1 �= 1 case as “general” and y1 = 1 as “special”, and define the general

& special coefficients by those of the basis states from the M = 1 case formulae.

Then we observe that the external (outside the square brackets) coefficients of the

general formula for M = 2 follow the general pattern. The internal coefficients

(inside the square brackets) of all but the last row are general, while those of the

last row are special. For the special formula, external coefficients have special form,

while the internal coefficients are again general for all but the last row, and special

for the last.

We will prove the eigenvalue problem for all |α, β〉 by separating them into three

cases: |α �= 1, β �= N〉, |α,N〉 and |1, β〉. Notice that we are using α, β to specify

the basis state onto which we are projecting, and we shall be collecting terms from

all the possible x, y states that contribute. The first two cases will turn out to work

in an analogous way, but the last one will be quite unique and will not fit into the

general scheme that we will develop.

So, collecting terms very carefully, we get the following formulae to prove:
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(a) x �= 1, y

(b) 1, y

Figure 6.2: Sketches of the spin basis states resulting from applying Ω1 to |x �= 1, y〉
(a) and |1, y〉 (b). Each row in the picture corresponds to a row in the formula,
and they are listed in the same order. The blue/pink dots represent the position
of the first/second spin-down particle (hence the pink circles are on the far right of
each row). Within a row, each of the blue circles pairs up with the pink circle of
that row to give a produced basis state. This corresponds to the many terms inside
each of the square brackets in the formulae. Information about the coefficients is
not encoded in this picture.
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First of all, we use the cyclic boundary condition to replace all Φ(1, y) by Φ(y,N+

1). Now, each Φ is a sum over permutations of products of F -functions. For the

first few steps of what we need to do, it is possible to only explicitly keep track

of the terms with a(P = I) where I is the identity permutation, as the other

terms can be obtained at any stage by relabelling the αm’s according to the desired

permutation. Thus we go through and replace all Φ(x, y) by a(1, 2)F (α1, x)F (α2, y),

and then append +a(2, 1){α1 ↔ α2} which means add the same terms with a

different expansion prefactor and the αm’s swapped.

We will now use various identities to rewrite some of the terms appearing in the

above three equations. We begin from (6.72), where we use the general identity

(6.66). The 6th, 4th and 1st terms can be combined into

a(1, 2)aα,1F (α1, α)

[
bβ,1

(
N∏

j=β+1

aj,1

)
F (α2, N + 1)

+bβ,1

N∑
z=β+2

bz,1

(
z−1∏

j=β+1

aj,1

)
F (α2, z) + aβ,1F (α2, β)]

= a(1, 2)aα,1F (α1, α)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, β). (6.75)

The 8th, 5th and 2nd terms can be combined into

a(1, 2)

β−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

[
F (α2, N + 1)bβ,1

(
N∏

j=β+1

aj,1

)

+
N∑

y=β+1

F (α2, y)by,1

(
y−1∏

j=β+1

aj,1

)
bβ,1 + aβ,1F (α2, β)

]

= a(1, 2)

β−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, β). (6.76)

The 3rd and 7th terms are for the minute left unchanged. All together, at this stage

we have

〈α �= 1, β �= N |Ω1|A〉 = a(1, 2)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, β)[

aα,1F (α1, α) +

β−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

]

+
N∑

y=β+1

a(1, 2)F (α1, β)F (α2, y)by,1

(
y−1∏

j=β+1

aj,1

)(
β−1∏

m=α+1

am,1

)
bα,1
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+a(1, 2)F (α1, β)F (α2, N + 1)

(
N∏

j=β+1

aj,1

)(
β−1∏

m=α+1

am,1

)
bα,1

+a(2, 1){α1 ↔ α2} (6.77)

Now let us do the same for (6.73). Here we use the special identity that holds for

y = N (we proved it earlier – see (6.53))

bN,1F (α,N + 1) + aN,1F (α,N) =
ik1 − iα− c/2

ik1 − iα + c/2
F (α,N). (6.78)

The first four terms can be written as

a(1, 2) [bN,1F (α2, N + 1) + aN,1F (α2, N)][
F (α1, α)aα,1 +

N−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

]

= a(1, 2)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, N)[

F (α1, α)aα,1 +
N−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

]
. (6.79)

The 5th term is for now unmodified. All together, at this stage we have

〈α,N |Ω1|A〉 = a(1, 2)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, N)[

F (α1, α)aα,1 +
N−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

]

+a(1, 2)F (α1, N)F (α2, N + 1)

(
N−1∏

m=α+1

am,1

)
bα,1 + a(2, 1){α1 ↔ α2}. (6.80)

We will deal with (6.74) last, as none of these summation manipulations are of any

use there. For now we will go back to manipulating the other two matrix elements.

Once again, begin with (6.77). We can use (6.59) (with N − 1 replaced by a general

variable y) to rewrite the first term in the square brackets, which now reads

ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, α)− bα,1

ikα − iα1 − c/2

ik1 − iα1 + c/2
F (α1, α)

+

β−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1. (6.81)
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The second and third terms in the brackets can be combined to give

−bα,1 ikα − iα1 − c/2

ik1 − iα1 + c/2
F (α1, α) +

β−1∑
x=α+1

F (α1, x)bx,1

(
x−1∏

m=α+1

am,1

)
bα,1

= − ikβ−1 − iα1 − c/2

ik1 − iα1 + c/2

(
β−1∏

m=α+1

am,1

)
bα,1F (α1, β − 1). (6.82)

This can be shown by the following manipulations: cancel bα,1 through, the second

term on the left-hand side can be expanded using (6.61), combine the two sum-

mation terms which have the same structure, leaving a sum from β to N , cancel(
β−1∏

m=α+1

am,1

)
through, and the resulting equation is just (6.61), which is a true

identity.

Next, lines 3 and 4 of (6.77) can be combined by factoring out common factors

a(1, 2)bα,1F (α1, β)

(
β−1∏

m=α+1

am,1

)
[

N∑
y=β+1

F (α2, y)by,1

(
y−1∏

j=β+1

aj,1

)
+ F (α2, N + 1)

(
N∏

j=β+1

aj,1

)]
. (6.83)

By (6.61), the terms in the brackets are equal to
ikβ−iα2−c/2
ik1−iα2+c/2

F (α2, β). All together,

then, (6.77) becomes

〈α �= 1, β �= N |Ω1|A〉 = a(1, 2)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, β) (6.84)[

ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, α)− ikβ−1 − iα1 − c/2

ik1 − iα1 + c/2

(
β−1∏

m=α+1

am,1

)
bα,1F (α1, β − 1)

]

+a(1, 2)bα,1F (α1, β)

(
β−1∏

m=α+1

am,1

)
ikβ − iα2 − c/2

ik1 − iα2 + c/2
F (α2, β) + a(2, 1){α1 ↔ α2}.

We now turn to (6.80). Again use (6.59) on the first term in the brackets. Then

combine the second and third terms in the brackets using (6.82) with β replaced by

N . Thus (6.80) becomes

〈α,N |Ω1|A〉 = a(1, 2)
ik1 − iα2 − c/2

ik1 − iα2 + c/2
F (α2, N)[

ik1 − iα1 − c/2

ik1 − iα1 + c/2
F (α1, α)− ikN−1 − iα1 − c/2

ik1 − iα1 + c/2

(
N−1∏

m=α+1

am,1

)
bα,1F (α1, N − 1)

]

+a(1, 2)F (α1, N)F (α2, N + 1)

(
N−1∏

m=α+1

am,1

)
bα,1 + a(2, 1){α1 ↔ α2}. (6.85)
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As for (6.74), we can factor out some of the terms and write it as

〈1, β|Ω1|A〉 = a(1, 2)

[
F (α1, β)

(
β−1∏
m=2

am,1

)
+

β−1∑
x=2

F (α1, x)bβ,1

(
x−1∏
m=2

am,1

)
bx,1

]
[(

N∏
m=β+1

am,1

)
F (α2, N + 1) +

N∑
y=β+1

F (α2, y)

(
y−1∏

m=β+1

am,1

)
by,1

]

+a(1, 2)F (α2, β)aβ,1

β−1∑
x=2

F (α1, x)bx,1

(
x−1∏
m=2

am,1

)

+a(2, 1){α1 ↔ α2} = μ1Φ(1, β). (6.86)

The proof of (6.86) is left as an exercise for the enthusiastic reader.

Next, we need to prove that (6.84) is equal to the right-hand side of (6.72), and

(6.85) is equal to the right-hand side of (6.73). Begin with the former. It is clear that

upon expanding the bracket, the first term and its a(2, 1){α1 ↔ α2} partner give

the right-hand side of (6.72). Therefore, we must prove that the second and third

terms together with their a(2, 1){α1 ↔ α2} partners cancel. This can be proved by

following these steps. First, cancel the product over am,1 and bβ,1 through. Then we

replace F (α1,2, β − 1) by F (α1,2, β)
ikβ−iα1,2+c/2

ikβ−1−iα1,2−c/2 . Next we cancel F (α1, β)F (α2, β)

through, and obtain the following equation to prove:

−a(1, 2) ik1 − iα2 − c/2

ik1 − iα2 + c/2

ikβ − iα1 + c/2

ik1 − iα1 + c/2
+ a(1, 2)

ikβ − iα2 − c/2

ik1 − iα2 + c/2

−a(2, 1) ik1 − iα1 − c/2

ik1 − iα1 + c/2

ikβ − iα2 + c/2

ik1 − iα2 + c/2
+ a(2, 1)

ikβ − iα1 − c/2

ik1 − iα1 + c/2
= 0. (6.87)

Solving this equation for a(1, 2)/a(2, 1), after some simple algebra, we find that
a(1,2)
a(2,1)

= α1−α2−ic
α1−α2+ic

, which trivially implies that a(2,1)
a(1,2)

= α2−α1−ic
α2−α1+ic

. These are the right-

hand sides of the second level Bethe ansatz equations.

Now we move on to show that the second and third terms of (6.85) cancel with

their a(2, 1){α1 ↔ α2} partners. Noting that F (α2, N + 1) = F (α2, N) ikN−iα2−c/2
ik1−iα2+c/2

,

we immediately observe that we get the same exact equation to prove all over again,

except that β is replaced by N . Since kβ cancels, it certainly does not matter if we

rename it. Therefore, we again get the same ratios of the expansion coefficients.

In other words, for M = 2 we have proved that the original eigenvalue problem

for A (Ω1 |A〉 = μ1 |A〉) is satisfied with the eigenvalue given by μ1 if the second

level equations hold.
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Chapter 7

Lieb-Liniger Model

In this chapter we will review the basic properties of the finite Lieb-Liniger model,

focusing on the ground state and elementary excitations. Apart from the over-

whelming importance of the material covered here to our work in the rest of the

thesis, this chapter also introduces many key concepts in the framework of the sim-

pler Lieb-Liniger model, which we will encounter again when exploring the more

complex Yang-Gaudin model. The thermodynamic limit of the Lieb-Liniger model

is reviewed in chapter 9.

7.1 Introduction

The Lieb-Liniger model represents spin-0 bosons on a one-dimensional ring with

contact interactions. As such, it is the simplest of the family of Bethe ansatz-

solvable models described by the same Hamiltonian but with (in general) particles

of several spin components. It was first solved in [46, 47], then reviewed in the

literature by many authors, e.g. [163], who also provide a comprehensive list of

experimental realizations of the system (see table 1). Another notable experiment

is [56] where the elementary excitations were directly probed.

Due to its simplicity and the fact that the Bethe ansatz provides an exact solution,

the Lieb-Liniger model is quite heavily used to understand one-dimensional gases

and as a prototypical model for developing new theoretical machinery. For example,

[164, 165] use the Lieb-Liniger model to study superfluidity and drag forces in one

dimension, while [96, 97] apply the algebraic Bethe ansatz to the Lieb-Liniger model,

and in so doing, illustrate and explain the theory very clearly. New physics of the

Lieb-Liniger model continues to be discovered, exemplified by the relatively-recent

concept of the super Tonks-Girardeau gas [166, 167] (see section 7.5). A common

theme in contemporary theoretical work is the addition of a trap, harmonic or

otherwise: e.g., [168] studies the expansion of the one-dimensional gas after release

from a generalised trapping potential.

Fundamental research on the Bethe ansatz equations is also ongoing: [169] solve

the ground state Bethe ansatz equations for attractive and repulsive interactions,

while [170] also considers excited states. These articles solve the attractive Bethe
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ansatz equations exactly, without assuming so-called string-states (see section 7.5),

which is technically rather more involved. Finally, since the equations describing the

thermodynamics of the Lieb-Liniger model are well-known [91], finite-temperature

calculations for the Lieb-Liniger model can be used as a tool to understand the

finite-temperature one-dimensional Bose gas.

7.2 The Model

Recall that the Hamiltonian of the Lieb-Liniger model is given by (6.1) with all N

particles being spin-0 bosons confined to a one-dimensional ring. The dimensionless

interaction strength is γ = c/n0 with n0 = N/L. In this thesis we will predomi-

nantly focus on the repulsive regime where γ > 0. The Bethe ansatz equations in

exponential form are

exp(ikjL) = −
N∏
m=1

kj − km + ic

kj − km − ic
, (7.1)

or, recast into logarithmic form,

kjL = 2πnj +
N∑
�=1

θ(kj − k�), (7.2)

with the two-body phase shift function

θ(k) = −2 tan−1

(
k

c

)
, (7.3)

and the nj’s being quantum numbers that specify the state: for odd (even) N , the

nj’s are (1/2-) integers. The Bethe ansatz equations are solved for the N variables,

{kj}, known as “quasi-momenta” or “rapidities”.

Since the Bethe ansatz wavefunction (6.3) diagonalizes both the Hamiltonian and

the total momentum, the eigenvalues of these operators are easily extracted from

the Bethe ansatz: the momentum and energy of any given state are found from

P = �

N∑
j=1

kj, (7.4)

E =
�
2

2m

N∑
j=1

k2j . (7.5)

We note that the simplest limit is the case when c → ∞ (the Tonks-Girardeau

limit), as then θ(k) = 0 and the Bethe ansatz equations reduce to kjL = 2πnj, the

quasi-momenta associated with a single free spin component of fermions. In fact,

the Tonks-Girardeau limit of the Lieb-Liniger model is analytically mappable on to
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free fermions [43, 171], so it is often convenient to understand the physics in this

limit before considering the case of general interactions.

In order to numerically solve the Bethe ansatz equations, we make use of the

Matlab function fsolve.m (implementing the trust-region dogleg algorithm), with

absolute and relative tolerances set to 10−8. First, we obtain the roots in the Tonks-

Girardeau limit (where the guess kj = 2πnj/L is perfectly sufficient to converge to

the solution), and then follow the solutions down in γ to the desired value of the

interaction. In particular, we always initially solve at γ = 100 and follow with an

adaptive step of γ/10, always using the solutions found at the previous step as the

guess for the next.

7.3 Ground State

In the ground state, the quantum numbers are

nj = −N + 1

2
+ j, j = 1, 2, . . . , N, (7.6)

as illustrated in Fig. 7.1 (a). This implies that in the Tonks-Girardeau limit we

have a tightly-packed Fermi-sphere (in k-space), with the kj’s spaced by 2π/L, but

in contrast to free fermions, if N is even, the rapidities take on odd multiples of π/L

and are symmetrically arranged about zero. In fact, the ground state rapidities are

compactly and symmetrically arranged about zero at any γ. Thus, the momentum

of the ground state is always zero. As γ decreases, the range of the ground state

rapidities in k-space decreases, with the kj’s becoming very closely spaced.

The ground state energy as a function of γ is plotted in Fig. 7.2 for a system with

N = 10, while in the Tonks-Girardeau limit, it can be obtained analytically as:

Eg =
�
2n2

0

2m

π2

3N
(N2 − 1). (7.7)

7.4 Elementary Excitations

The simplest type of excitations one can make from the ground state are known

as type-I or particle excitations. Here, we take the highest nj of the ground state

quantum numbers, nN , and progressively add one to it, with each cycle yielding a

valid set of quantum numbers, representing a type-I excitation. This is illustrated

in Fig. 7.1 (b), and mathematically can be stated as

nN → nN + 
, 
 ∈ N. (7.8)
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Figure 7.1: An illustration of the quantum numbers in a system with seven bosons,
depicting various states and excitations. (a) Ground state quantum numbers. (b)
Type-I/particle excitations: the highest nj of the ground state is progressively in-
creased by one, with each resulting set of quantum numbers giving a type-I exci-
tation. (c) Type-II/hole excitations: each of the ground state nj’s in turn is set
to nN + 1, with each resulting set of quantum numbers giving a type-II excita-
tions. (d) A particular type-II excitation (when the smallest nj is moved) called
an “umklapp” excitation, which is special because the resulting quantum-number
distribution [shown in (e)] is simply the ground state quantum numbers, all shifted
up by one.
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Figure 7.2: The ground state energy of the Lieb-Liniger model as a function of
interaction strength in a system with ten particles.

The type-I dispersion relation (excitation energy versus momentum) for N = 10, γ =

1 is shown in Fig. 7.3 as blue diamonds. It is always concave up and the shape of

the curve is reminiscent of a free, classical particle – an approximately parabolic

dependence.

The other kind of elementary excitations are known as type-II or holes [see Fig. 7.1

(c)], whereby we set each of the ground state quantum numbers in turn to the highest

nj plus one, that is

nj → nN + 1, 1 ≤ j ≤ N. (7.9)

Note that for any given j, the other ground state quantum numbers are unmodified

in the excited state. For each j we have a valid set of quantum numbers which

corresponds to a type-II excitation. The type-II dispersion relation forN = 10, γ = 1

is shown in Fig. 7.3 as red circles; it is always concave down.

Note that in the Tonks-Girardeau limit the Lieb-Liniger model reduces to essen-

tially free fermions, and type-I & II excitations become literally particles and holes

(respectively) – single-particle excitations in the usual sense.

A special case of type-II excitations occurs when j = 1 [see Fig. 7.1 (d)], referred

to as an “umklapp” excitation. Notice that the resulting excited-state quantum

numbers [Fig. 7.1 (d)] are gapless – they have the same compact structure as the

ground state nj’s, with the only difference being that they are all larger by one.

Such a translation of the ground state quantum numbers corresponds to a boost

of the whole system: it is the ground state translated so that the moving state

has momentum 2π�n0. This explains the fact that the final point on the type-
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II dispersion relation, the umklapp point, falls on the system translation parabola

(shown as a black dashed line in Fig. 7.3), E = P 2/(2mN).

With reference to Fig. 7.3, we notice that type-I excitations are considerably

higher energy than type-II (this is true for all γ & N), and since we are interested in

low-energy excitations, we will not study type-I excitations in detail. Furthermore,

the nature of type-I excitations is understood as phonons (Bogoliubov excitations)

[47], so their quantum-mechanical interpretation is clear, allowing us to concentrate

on type-II excitations.
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Figure 7.3: Dispersion relations of elementary excitations in the Lieb-Liniger model
with γ = 1, N = 10. Blue diamonds – type-I, red circles – type-II, black dashed line
– system translation parabola, E = P 2/(2mN).

Now, after creating an umklapp excitation, it is perfectly possible to create type-II

excitations, this time starting from these shifted nj’s instead of the true ground state

quantum numbers. Thus, while the particle branch can be continued indefinitely

as 
 is unbounded, the type-II branch can be extended to arbitrary momenta by

“cycling through” the umklapp excitations. The dispersion relation for six such

cycles (or “wings”) is shown in Fig. 7.4. Each cusp in the dispersion relation is an

umklapp point, which inevitably falls on the system translation parabola.

Since each wing of the type-II dispersion relation contains all the information

about hole excitations (and the difference between the wings is simply how fast

the entire system is translating), we can limit our investigations to the first wing

only. Also, note that in the thermodynamic limit the mass of the system diverges

as O(N), and the energy of the system translation parabola vanishes. In this limit,

all the umklapp points touch the P -axis and the wings become fully periodic and

symmetric.
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Figure 7.4: The dispersion relation of type-II excitations (red circles), extended
to six cycles, or “wings”. The cusps are umklapp points that fall on the system
translation parabola (black dashed line). The parameters used are N = 10 and
γ = 100.

Finally, in Fig. 7.5 we demonstrate the dependence of the type-II dispersion

relation on γ. The excitation energy decreases as a function of γ and as interactions

vanish, the dispersion relation tends to a straight line connecting the origin and the

umklapp point. Note that for obvious reasons, the umklapp point is independent of

interactions.

In the strongly-interacting limit, since the rapidities associated with the ground

and type-II states are known, we can obtain an analytical expression for the type-II

dispersion relation:

E =
�
2n2

0

2m

[
− P 2

n2
0�

2
+

2Pπ(N + 1)

n0�N

]
. (7.10)

7.4.1 Comparison to Dark Solitons

In chapter 2 we have examined the dispersion relation of Gross-Pitaevskii dark soli-

tons and the qualitative similarity to the type-II dispersion relation is immediately

apparent. We are now in a position to make a quantitative comparison: Fig. 7.6

shows the dispersion relations of both types of excitation for three parameter sets.

The top panel corresponds to γ = 0.01, N = 100, i.e. weak interactions and a large

particle number, where the Gross-Pitaevskii mean-field picture is expected to be

applicable. In the middle panel, we decrease the particle number to 10 (leaving γ

small), and in the bottom panel we also increase γ to 1 (intermediate interactions).
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Figure 7.5: The dispersion relation of type-II excitations in a system with N = 10
at three values of the repulsion: γ = 100 (blue circles), γ = 1 (red squares) and
γ = 0.01 (green diamonds).

In all three cases – in the mean-field regime and out of it – the dispersion rela-

tions match very well, indicating a close connection between Gross-Pitaevskii dark

solitons and type-II Lieb-Liniger states.

7.5 Attractive Regime

Even though the attractive regime is not directly relevant to our work, we discuss

it briefly in this section for completeness. As γ smoothly passes from 0+ through 0

to 0−, the ground state fundamentally changes its nature. Since the particles obey

Bose statistics, attractive interactions favour bound states [172]. In the context of

the Bethe ansatz, a bound state is associated with complex rapidities: several kj’s

have the same real part, and different imaginary parts, such that the sum of the

imaginary parts vanishes (as the momentum eigenvalue must be real). Such states

are called string states. The ground state of the attractive system is a string state

of all N particles at zero momentum [169, 173]. Excitations can take the form

of boosting the N -body string, or breaking it up into smaller strings at different

momenta [170]. The physical interpretation of such bound states is bright solitons

[173–175].

Another way to access the attractive regime is by letting γ → ∞, so that 1/γ

passes through zero, and γ becomes large and negative. This regime is known as

the (bosonic) super Tonks-Girardeau gas, predicted theoretically in [166, 167] and

observed experimentally in [176]. In this scenario, first one creates the repulsive
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Figure 7.6: The dispersion relations of dark solitons (blue lines) and type-II excita-
tions (red circles). Top panel: γ = 0.01, N = 100, middle panel: γ = 0.01, N = 10,
bottom panel: γ = 1, N = 10.

Lieb-Liniger model and increases γ into the Tonks-Girardeau regime (as was done

in [74, 75]), so that the system is in the Tonks-Girardeau ground state with all

the rapidities spaced by 2π/L. Then the ground state is followed in 1/γ through

zero into the super Tonks-Girardeau regime. The Tonks-Girardeau ground state

remains a valid solution of the Bethe ansatz equations even in the super Tonks-

Girardeau regime because the θ functions vanish if c → ±∞. Of course it is no

longer the ground state (which, in this regime, is an unbreakable bound state of

all the particles), but rather a highly excited state. Interestingly, the super Tonks-

Girardeau “ground state” is quite stable, as it has kinetic energy which the system

cannot lose easily in order to decay into the real ground state.
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Chapter 8

Yang-Gaudin Model

In this chapter we analyse the ground state and low-energy type-II excitations of

the finite Yang-Gaudin model for both attractive and repulsive interactions. Due to

the presence of spin, the spectrum and structure of the excitations is richer than in

the Lieb-Liniger model. With the objective of searching for dark solitons in the one-

dimensional Fermi gas, we carefully study all three elementary type-II excitations

across the range of interactions (the thermodynamic limit is explored in chapter 9).

Here we report on the solutions of the Bethe ansatz equations (so this chapter is

quite technical), whereas the physical interpretation and observable implications are

discussed in chapter 13. There, we will identify dark soliton-like excitations for both

repulsive and attractive interactions, and explore low-energy spin excitations in the

repulsive regime. The understanding and any further analysis of these excitations

must begin with the solution of the finite Bethe ansatz equations.

A secondary motivating reason to perform such an exhaustive survey of all low-

energy type-II excitations of the Yang-Gaudin model is that a similar complete

record is unavailable in the literature (to the best of my knowledge).

8.1 Introduction

The Yang-Gaudin model was originally solved by Yang [48] for the repulsive regime

and Gaudin [49, 50] for the attractive, the first of the multicomponent models to

be solved by the Bethe ansatz [52], later generalized to an arbitrary number of

components [51] and extended to bosonic systems [177]. It describes the physics of

two spin components of fermions confined to one dimension with periodic boundary

conditions. The fermions interact with each other through a two-body contact

potential (a δ-function), which can be attractive or repulsive. Currently, the Yang-

Gaudin model can be directly realized in the laboratory with cold-atom systems

[57, 76–78] (also see [79]).

Despite the fact that the exact solution of the finite Yang-Gaudin model has

been known for almost half a century, theoretical studies are continuing to the

present day. In particular, analytical asymptotic results are being sought [178, 179],

the Yang-Gaudin model is used to describe (part-of) the Bose-Einstein condensate-
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Bardeen-Cooper-Schrieffer crossover [180, 181], and to investigate impurity effects

in one dimension related to Fulde-Ferrell-Larkin-Ovchinnikov states [182, 183].

Motivated by the possible interpretation of type-II (hole) excitations in the Lieb-

Liniger model [46, 47] as dark solitons (chapter 12), we perform a study of all

fundamental type-II excitations in the Yang-Gaudin model. Elementary excitations

of the Yang-Gaudin model have been studied previously, both in finite systems

(e.g. [178]) and in the thermodynamic limit (e.g. [184]), however to our knowledge

no complete and methodical study such as the one presented here is available in the

literature. Therefore, in the present chapter we address the finite-system case, while

the thermodynamic limit of all branches is studied in chapter 9.

The main result of the chapter consists of tracking the ground state and three

fundamental type-II branches of the free system to the infinitely-attractive and

infinitely-repulsive limits. With no interactions, these three branches are the single

fermion hole, the double fermion hole and the spin-flip. In the two limits listed above

(respectively), the physical nature of the excitations changes: the single fermion hole

becomes a dimer hole and a system translation, the double fermion hole becomes a

double dimer hole and a single fermion hole, and the spin-flip remains a spin-flip for

attractive interactions while becoming a system translation for strongly repulsive

interactions.

For all states of interest with attractive interactions, and for single fermion holes

with repulsive interactions, the exact Bethe ansatz equations can only be solved

in a limited range around zero interactions due to the particular structure of the

solutions. In these cases, in order to examine the limiting regimes, we derive approx-

imate equations that essentially assume for finite coupling strengths a result that is

only true for infinite interactions. We follow all excitation branches as far as possible

using the exact equations, then demonstrate continuity with the approximate equa-

tions (when applicable), and use the latter to track the solutions further. For the

single fermion holes, the use of the exact equations in the vicinity of vanishing in-

teractions is absolutely essential, as the structure of the solutions is different to that

assumed under the approximate equations. Solving the exact exponential equations

is somewhat more difficult, so our results and the technical details presented here

can be used as guidelines or a starting point for future research concerned with the

lowest-energy excitations of the Yang-Gaudin model. For example, [170] performs a

similar computation for the Lieb-Liniger model which was quite helpful to us during

our investigation.

Another interesting result that emerges from our work is that in the infinitely-

repulsive system, one can access the classical translation parabola of the entire

system at all values of the total quantized momentum. In this regard, the Yang-

Gaudin model does not become a true Tonks-Girardeau gas in this limit. This was
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realized to some degree in [185], but the implications for the excitation spectrum

were not considered. These excitations are made accessible purely due to the spin

degree of freedom, and would also be present in the two-component Bose gas. This

is explored further in chapter 13.

The chapter is structured in the following way: in section 8.2 we introduce the

model and give the Bethe ansatz equations to be solved. Then in sections 8.3,

8.4, 8.5, and 8.6 we track the ground state, single fermion holes, double fermion

holes and spin-flip excitations from the free system case to both limits of infinite

interaction. This is done by using the exact equations, followed by the approximate

(when applicable) in the strong-coupling limits. All the technical details related to

the numerical solution of the Bethe ansatz equations are found in appendix 8.A.

Finally, we conclude in section 8.7.

8.2 The Model

Recall that the Yang-Gaudin model describes spin-1/2 fermions, confined to a one-

dimensional ring and interacting via a two-body δ-function potential, with the

Hamiltonian given by (6.1). There are N fermions in total, M ≤ N/2 of which

are spin-down and the rest are spin-up. As always, the one-dimensional density is

n0 = N/L, and the dimensionless coupling parameter is γ = c/n0.

8.2.1 Free Case

Consider first the non-interacting case where γ = 0 and we have two spin components

of free fermions. If we chooseN = 2M (i.e. a balanced system), then the ground state

has a very simple structure: it consists of two overlapping Fermi spheres with the

fermion wavenumbers being integer multiples of 2π/L. IfM is odd, then the ground

state is non-degenerate, and if M is even, there are three possible configurations

that all have the same energy: one with zero total momentum, and two with P =

±M(2π/L)�n0.

It so happens that for even M , the zero-momentum configuration is the true

ground state for attractive interactions. This state has the structure of a “single

fermion hole” (see below), and can be solved for as described in section 8.4. Curi-

ously, for repulsive interactions, the non-zero momentum state has the lowest energy.

It can then be solved for in a similar way to the odd-M ground state, discussed in

section 8.3.

This complication with even M vanishes in the thermodynamic limit – it is a fi-

nite size effect – and only the odd M case directly generalizes to the infinite system.

In particular, in the thermodynamic limit, the ground state always has zero momen-

tum, and for weak interactions, smoothly connects to the fully-paired configuration.
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Therefore, in the rest of the chapter, we focus on the simpler and more relevant odd

M scenario.

Thus, starting from the free ground state, one can create three types of elementary

hole excitations:

(1) a single fermion hole: take one fermion of either spin component and place it in

the first available “slot” immediately outside of the occupied Fermi sphere,

(2) a double fermion hole: take two fermions (one of either spin component) with the

same wavenumber and place both in the first available “slot” immediately outside

of the occupied Fermi sphere,

(3) a spin-flip: flip the spin of one fermion of either spin component.

In the following sections, we track the ground state and these three fundamental

type-II branches across the entire coupling-strength range, −∞ < γ <∞.

8.2.2 Interacting Case

As mentioned previously, for any γ �= 0, the Yang-Gaudin model can be solved

exactly by the Bethe ansatz. The exact Bethe ansatz equations in exponential form

are [48, 49]:

exp(ikjL) =
M∏
n=1

kj − αn + ic/2

kj − αn − ic/2
, (8.1)

N∏
j=1

αm − kj + ic/2

αm − kj − ic/2
= −

M∏
n=1

αm − αn + ic

αm − αn − ic
. (8.2)

In these equations, the kj’s are so-called charge rapidities – the quasi-momenta of

the fermions, so that the total momentum and energy of the system are

P = �

N∑
j=1

kj, (8.3)

E =
�
2

2m

N∑
j=1

k2j . (8.4)

The αm’s are spin rapidities – auxiliary variables, present due to the spin degree

of freedom. The αm’s do not contribute to the energy or momentum but must be

solved for as they are coupled to the kj’s.

The exponential equations may be rewritten in a much more convenient logarith-
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mic form:

kjL = 2πnj +
M∑
m=1

θ[2(kj − αm)], (8.5)

0 = 2π
m −
M∑
n=1

θ(αm − αn) +
N∑
j=1

θ[2(αm − kj)], (8.6)

where

θ(k) = −2 tan−1

(
k

c

)
(8.7)

is the two-body phase-shift function of the δ-function potential. The nj’s and 
m’s

are distinct quantum numbers (within each set) that specify the state. In particular,

the nj’s (
m’s) are integers ifM (N−M−1) is even, and half-integers ifM (N−M−1)

is odd.

The Bethe ansatz equations can be solved numerically on a standard desktop

machine. All the technical details regarding the numerical solutions can be found

in appendix 8.A.

8.3 Ground State

8.3.1 Exact

Let us begin by exploring the ground state of the interacting system. In the range

where |γ| � 1, an analytical approximate result is available [50]: define the set of

integers qm as

qm = −M + 1

2
+m, m = 1, 2, . . . ,M, (8.8)

Then αm = 2π
L
qm and k2m,2m−1 = 2π

L
qm ±√ c

L
. An example is shown in Fig. 8.1,

illustrating the rapidities. When γ > 0, the kj’s are split along the real axis, so

one can use either the exponential or logarithmic equations to solve for the quasi-

momenta. For the exponential equations one simply begins from the approximate

expressions for the rapidities given above at some small γ value and then follows

the solution in γ. For the logarithmic equations we need to specify the quantum

numbers that determine the ground state. For the balanced ground state, these are


m = −M + 1

2
+m, m = 1, 2, . . . ,M, (8.9)

nj = −N + 1

2
+ j, j = 1, 2, . . . , N. (8.10)

For the logarithmic equations it is easier to start from the γ → ∞ limit (where it

suffices to guess kj =
2πnj

L
and αm = 2π�m

L
in order to converge to the solution) and
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follow down in γ.

When γ < 0 pairs of kj’s become complex conjugates and only the exponential

equations apply. In contrast to the repulsive case where either form of the Bethe

ansatz equations can be solved easily with any γ value, for γ < 0 there is a limited

range where the exponential equations can be solved in practice.

8.3.2 String Hypothesis for γ < 0

It is known that as γ → −∞ the real part of the kj pairs remains equal to αm while

the imaginary part becomes ±i c
2
, which causes divergent singularities in the exact

Bethe ansatz equations [50]. In order to deal with this problem, one can make the

so-called string hypothesis. Here one assumes that the imaginary parts of the paired

kj’s have already reached their γ → −∞ limits. In particular, in the general case of

M < N/2, we take 2M of the kj’s to be αm ± i c
2
, and the remaining N − 2M real

kj’s are left as unknown variables.

Substituting these expressions for the kj’s into the exponential Bethe ansatz equa-

tions, we arrive at simpler exponential equations where now all remaining variables

(the αm’s and the unpaired kj’s) are real and distinct. It is then possible to take

the logarithm, which leads to [52]:

kjL = 2πnj +
M∑
m=1

θ[2(kj − αm)], (8.11)

2αmL = 2π
m +
M∑
n=1

θ(αm − αn) +
N−2M∑
j=1

θ[2(αm − kj)], (8.12)

where the nj’s and 
m’s are again quantum numbers, as before. If M is even (odd),

the nj’s are (half-)integers, and if N − M + 1 is even (odd), the 
m’s are (half-)

integers. Since we know the relation between the αm’s and the kj’s associated with

them, it is easy to write the momentum and energy as

P = �

[
N−2M∑
j=1

kj +
M∑
m=1

2αm

]
, (8.13)

E =
�
2

2m

[
N−2M∑
j=1

k2j +
M∑
m=1

(
2α2

m − c2

2

)]
. (8.14)

Note the total binding energy of − �2

2m
M c2

2
. When there are no unpaired fermions,

the two string hypothesis Bethe ansatz equations reduce to (8.12) only, without the

last term on the right-hand side. The quantum numbers for the balanced ground

state are


m = −M + 1

2
+m, m = 1, 2, . . . ,M, (8.15)
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(a)

(b)

Figure 8.1: An example of the ground state rapidities for |γ| � 1. In (a), γ < 0 and
in (b), γ > 0. Here we used N = 10, M = 5. Red and blue circles show the kj’s
in the complex plane, with the colour differentiating spin types, while green squares
show the αm’s.
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In order to solve the logarithmic string hypothesis equations it is easier to start from

the γ → −∞ limit where it suffices to guess αm = π�m
L

in order to converge to the

solution.

8.3.3 Overview

Figure 8.2 shows the ground state energy as a function of coupling strength across

the entire range of interactions for a system with N = 14,M = 7. In particular, the

inset allows us to compare the performance of the string hypothesis equations to the

exact exponential equations in the region where γ < 0 and |γ| ≈ 1 or less. We see

that the energy of the ground state is captured very well indeed, which validates the

use of the string hypothesis in cases when all particles of opposite spins are paired

up into dimers.
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Figure 8.2: Ground state energy as a function of coupling strength γ for a system
with N = 14,M = 7. The inset zooms in around the region where exact results from
the exponential equations are available in the attractive regime, and demonstrates
that the string hypothesis (labelled “SH”) results compare well to the exact energy.

The structure of the ground state in the limiting cases γ → ±∞ is easily obtained

by taking the limit of the Bethe ansatz equations in logarithmic form. When γ →
−∞, the αm’s approach

π
L

m where the 
m’s are given by (8.15) (so the corresponding

charge rapidities approach π
L

m ± i c

2
), and when γ → ∞, the kj’s (of the ground

state) approach 2π
L
nj with the nj’s specified by (8.10). However, the latter is only

true as long as
∑

m of (8.9) vanishes – see section 8.6.4. An example of both limits

is shown in Fig. 8.3, illustrating the rapidities.

Analytical expressions can be derived for the ground state energy (with M odd)
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(a)

(b)

Figure 8.3: An example of the ground state rapidities in the limits γ → −∞ (a)
and γ → ∞ (b). For the case of divergent repulsive interactions, we do not have an
analytical approximation for the αm’s. However, we can certainly state that they
are real and symmetrically arranged about zero. Here we used N = 10, M = 5. Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s.
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in the limits |γ| � 1 and γ → ±∞:

Eg(|γ| � 1) =
�
2n2

0

2m

[
Mγ +

π2

3N
(M2 − 1)

]
, (8.16)

Eg(γ → +∞) =
�
2n2

0

2m

π2

3N
(N2 − 1), (8.17)

Eg(γ → −∞) =
�
2n2

0

2m

[
−γ

2N

4
+

π2

12N
(M2 − 1)

]
. (8.18)

8.4 Single Fermion Holes

We now move on to tracking the single fermion hole excitations of the free system

as a function of interaction strength. This branch is the most complicated out of

all three that are of interest to us, and requires the use of the exact exponential

equations in the vicinity of γ ≈ 0 for both signs of the interaction strength.

8.4.1 Exact

Recalling the known structure of the balanced ground state at |γ| � 1, when a single

kj is moved from 2π
L
qm ±√c/L out of the Fermi spheres to 2π

L
(qM + 1), its partner

moves from 2π
L
qm ∓√c/L to 2π

L
qm and αm shifts to half-way between its associated

kj’s. For half of the excitations, this means αm becomes a half-integer multiple

of 2π/L and for the other half, αm is expelled to a position already occupied by

another α. In the latter case, these two α’s split away from each other by ±i√c/L.

This description of the single fermion holes in the regime |γ| � 1 applies for both

attractive and repulsive interactions, so that splitting on the imaginary axis for

γ > 0 (by ±i√c/L) becomes splitting on the real line when γ < 0. An example of

all four scenarios is shown in Figs. 8.4 & 8.5, illustrating the rapidities.

Knowing the approximate rapidities outlined in the paragraph above, we can pick

up and follow the solutions using the exact exponential equations. Figure 8.6 shows

an example of the rapidities as a function of coupling strength for the specific case

of N = 6,M = 3 (we use a small system to ensure the diagrams are easily readable).

Since we have two spin components of fermions, at γ = 0 the one fermion hole can

be created by taking out either of the two fermions at kj =
2π
L
qm ±√c/L – either

option results in the exact same excited state (uniquely characterized by the set of

rapidities). We can make the following general observations regarding the behaviour

of the rapidities: in the attractive regime, the two kj’s that are separated to form

the single fermion hole at γ ≈ 0 always merge to once again form a dimer at some

smaller γ value.

For repulsive interactions, the single fermion hole state that is formed by sepa-

rating the two kj’s associated with αM (i.e. the highest α value in the ground state
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(a)

(b)

Figure 8.4: An example of the rapidities in two particular single-fermion hole exci-
tations for |γ| � 1, γ < 0. Here we used N = 10, M = 5. For (a), m = 2 (see the
mathematical description of the excitations in the text) and for (b), m = 3. Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s. Empty symbols show the ground
state rapidities, and filled symbols, those of the excited state.
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(a)

(b)

Figure 8.5: An example of the rapidities in two particular single-fermion hole exci-
tations for |γ| � 1, γ > 0. Here we used N = 10, M = 5. For (c), m = 2 (see the
mathematical description of the excitations in the text) and for (d), m = 3. Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s. Empty symbols show the ground
state rapidities, and filled symbols, those of the excited state.
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distribution) always has real rapidities for all γ > 0. In fact, this state coincides with

the first excited state of the double fermion hole branch (see later). All other states

on the single fermion hole dispersion relation alternate in behaviour: half begin at

|γ| � 1 with all αm’s being real and at some higher γ value witness the merging of

two α’s into a complex-conjugate pair. For the other half of the one fermion holes,

two of the αm’s are complex-conjugates directly from the onset of repulsion. In ei-

ther case, for all but the lowest-momentum excitation on this branch, at sufficiently

large γ, we always have one pair of complex-conjugate αm’s.

Once again, the exact exponential Bethe ansatz equations can only be solved

directly in a limited range about γ ≈ 0. Once the imaginary part of the complex

rapidities approaches its infinite-coupling limit sufficiently, we have divergent terms

and the numerical solution breaks down. In order to continue tracking the solutions

in γ, we need to use the string hypothesis.

8.4.2 String Hypothesis for γ < 0

In the attractive case, since at sufficiently small γ’s the single fermion hole states

regain the fully dimerized structure, we may use equation (8.12) without the last

term on the right-hand side to describe them. Using the logarithmic equations, it is

easier to pick up the solutions from the γ → −∞ limit where we can use αm = π�m
L

as an initial guess. The quantum numbers necessary to create these excitations are

obtained by starting from the ground state quantum numbers and for eachm, taking


m → 
M + 1, 1 ≤ m ≤M. (8.19)

In the strongly-attractive limit these excitations are single dimer holes, which is

directly reflected in the quantum number choice. As γ increases to zero, the nature

of the excitations changes and they smoothly connect to the single fermion holes

found using the exact equations.

8.4.3 String Hypothesis for γ > 0

For repulsive interactions, we need to derive a new set of string hypothesis equations

appropriate for the case when one has a single pair of complex conjugate αm’s. By

solving the exact exponential equations, we observe that the imaginary part of the

complex αm’s becomes ±c/2 as γ → ∞, just as in the attractive regime. Thus

we take αM−1 = A + ic/2 and αM = A − ic/2. Substituting these into the full

exponential Bethe ansatz equations, we get N equations for the kj’s, M − 2 for the

remaining αm’s, and one (obtained from the product of the equations for αM−1 and
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Figure 8.6: The real and imaginary parts of charge and spin rapidities for the single
fermion hole excitations in a system with N = 6,M = 3. In order to obtain these
solutions, we begin from the known approximate rapidities at |γ| � 1 (see text)
and follow these in coupling strength, solving the exact exponential Bethe ansatz
equations.
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αM) for A. These are

exp(ikjL) =
kj − A+ ic

kj − A− ic

M−2∏
n=1

kj − αn +
ic
2

kj − αn − ic
2

, (8.20)

N∏
j=1

αm − kj +
ic
2

αm − kj − ic
2

= −αm − A+ i3c
2

αm − A− i3c
2

× αm − A+ ic
2

αm − A− ic
2

M−2∏
n=1

αm − αn + ic

αm − αn − ic
, (8.21)

N∏
j=1

A− kj + ic

A− kj − ic
=

M−2∏
n=1

A− αn +
i3c
2

A− αn − i3c
2

× A− αn +
ic
2

A− αn − ic
2

. (8.22)

Since all variables are now real, the string hypothesis exponential equations are easily

solved numerically for any γ. Thus, we follow the one fermion hole excitations from

γ = 0 to a reasonably high γ where the string hypothesis is almost exact, and pick

up the solutions using the string hypothesis equations. We can then follow the

solutions to arbitrarily large γ values.

For completeness, we present the string hypothesis equations in logarithmic form

as well, since it is precisely this form that is necessary to go to the thermodynamic

limit, as is done in chapter 9:

kjL = 2πnj +
M−2∑
n=1

θ[2(kj − αn)] + θ(kj − A), (8.23)

0 = 2π
m −
M−2∑
n=1

θ(αm − αn) +
N∑
j=1

θ[2(αm − kj)]

−θ[2(αm − A)]− θ

[
2

3
(αm − A)

]
, (8.24)

0 = 2π
M−1 +
M−2∑
n=1

θ

[
2

3
(A− αn)

]
−

N∑
j=1

θ(A− kj) +
M−2∑
n=1

θ[2(A− αn)]. (8.25)

The quantum numbers corresponding to single fermion holes are: assuming N/2

is odd, the nj’s are integers, not symmetrically distributed about zero because N

is always even. We choose to put the extra nj at positive momentum. Thus, for

example, for N = 6 the nj’s would be -2,...,3. The nj’s are the same for all the

excited states.

Next, the quantum number 
M−1 is always zero, for all of these states. The

others, 
m for m = 1, ...,M − 2, are to be constructed as follows: given that M − 2

is odd, we start with integers symmetrically distributed about zero. This is one of

our excited states. The other excited states are obtained by subtracting one from

each of the 
m quantum numbers in turn, leaving the previous lm’s in the subtracted

form for each consecutive state. For example, for M = 5, we would have the 
m’s

given by {−1, 0, 1} as the starting point – this is already one of the excited states.
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The others would have {
m} = {−2, 0, 1}, {−2,−1, 1}, {−2,−1, 0}.

8.4.4 Overview

The single fermion hole at γ = 0 changes its nature drastically as γ → ±∞. As

already mentioned, in the infinitely-attractive regime the excitation becomes a single

dimer hole: for each m in turn, αm (and therefore, by the structure of the string

hypothesis for γ < 0, its two associated kj’s) move out from π
L

m to π

L
(
M + 1),

where the 
m’s refer to the ground state quantum numbers (8.15). In the opposite

limit (infinitely-repulsive), these excitations become a system translation with kj =
2π
L

(
nj +

m
N

)
where m = 1, ...,M and the nj’s are the ground state quantum numbers

(8.9). An example of both limits is shown in Fig. 8.7, illustrating the rapidities.

The changing nature of the excitation can be clearly seen in Fig. 8.8 (top panel)

where we show the dispersion relation for the case of N = 14,M = 7. As γ decreases

to −∞ the dispersion relation drops from the free-system position so that the umk-

lapp point (the highest-momentum point shown) falls from the half-system trans-

lation parabola to the full-system translation parabola, given by E = P 2/(2mM)

and E = P 2/(2mN), respectively. As γ increases to ∞, the entire excitation branch

drops, changes curvature, and eventually merges with the full-system translation

parabola. The fact that the γ → ∞ limit of the Yang-Gaudin model supports

translation excitations and how this can be seen from the Bethe ansatz equations is

further discussed in section 8.6.4.

The bottom panel of Fig. 8.8 compares the exact and string hypothesis dispersion

relations at γ = 1 and γ = −2, roughly the highest and lowest γ values that can

be tackled by the exact exponential equations at the given number of particles. We

see that the repulsive string hypothesis is absolutely excellent by this time while

the attractive string hypothesis energy is still visibly lower than the true energy.

This difference is due to two factors: firstly, in the attractive regime we have M

complex pairs, while in the repulsive only one, and second, in the attractive regime

the complex pairs are the kj’s which directly contribute to the energy, while in the

repulsive, the single α complex pair clearly does not.

Analytical expressions can be derived for the dispersion relation (with M odd)

in the limits |γ| � 1 and γ → ±∞:

E(|γ| � 1) =
�
2n2

0

2m

[
2π(M + 1)

N

P

n0�
− P 2

�2n2
0

− 2γ

N

]
, (8.26)

E(γ → +∞) =
P 2

2mN
, (8.27)

E(γ → −∞) =
�
2n2

0

2m

[
− P 2

2n2
0�

2
+
Pπ(M + 1)

n0�N

]
. (8.28)
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(a)

(b)

Figure 8.7: An example of the rapidities in a particular single-fermion hole excitation
for γ → −∞ (a) where it becomes a dimer hole and γ → ∞ (b) where the excitation
is a system translation. Here we used N = 10, M = 5 and m = 2 (see the
mathematical description of the excitations in the text). For the case of divergent
repulsive interactions, we do not have an analytical approximation for the αm’s.
However, we can certainly state that αm and αM of the ground state merge into a
complex conjugate pair, the real part of which is approximately the average of the
ground state αm and αM , and the imaginary part is ±c/2. In (b), the kj’s of the
excited state are shifted by 2π/L×m/N compared to their ground state values. Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s. Empty symbols show the ground
state rapidities, and filled symbols, those of the excited state.
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Figure 8.8: Dispersion relations for the single fermion hole branch at various
coupling-strengths in a system withN = 14,M = 7. On both panels, the dashed line
shows the full-system translation parabola (E = P 2/(2mN)) and the dash-dotted
line shows the half-system translation parabola (E = P 2/(2mM)). Top panel: black
circles: γ = 0 (free system), red squares: γ = −100 (using the string hypothesis,
labelled “SH”), blue diamonds: γ = 1000 (also using string hypothesis equations).
Thus in the strongly-attractive limit this branch becomes single dimer holes, and in
the strongly repulsive, a translation of the entire system. The bottom panel shows
continuity between the exact and string hypothesis equations at sufficiently large
|γ|. The cases shown are: blue circles: γ = 1, exact exponential equations, blue
crosses: γ = 1, string hypothesis equations, red squares: γ = −2, exact exponential
equations, red pluses: γ = −2, string hypothesis equations.

In the γ → +∞ limit the single fermion hole dispersion relation becomes identical

to that of the spin-flip branch, and the relevant calculation is found in section 8.6.4.

8.5 Double Fermion Holes

Although not the lowest energy branch, the double fermion hole of the free system

is particularly interesting because it can be interpreted as a simple hole excitation

in all limits (γ = 0 and γ → ±∞). It is also the only out of the three branches

studied here that has a fixed umklapp as a function of γ, and as such most-closely

resembles type-II excitations in the Lieb-Liniger model for bosons [47].

8.5.1 Exact

On the repulsive side (γ > 0), we may use the Bethe ansatz equations in logarithmic

form (8.5)-(8.6) as all rapidities are real and the quantum numbers are distinct.

Double fermion holes are obtained by starting from the balanced ground state, and
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setting each of the nj quantum numbers in turn to the highest nj plus one:

nj → nN + 1, 1 ≤ j ≤ N. (8.29)

In the strongly-repulsive regime, these excitations are single fermion holes from the

collective Fermi sphere of both spin components combined, which is reflected in the

quantum numbers. An example is shown in Fig. 8.9, illustrating the rapidities. As γ

is reduced to zero, the nature of the excitations changes and they smoothly become

double fermion holes in the free system.

Figure 8.9: An example of the rapidities in a particular double-fermion hole excita-
tion for γ → ∞ where it becomes a single fermion hole. Here we usedN = 10, M = 5
and j = 2 (see the mathematical description of the excitations in the text). For di-
vergent repulsive interactions, we do not have an analytical approximation for the
αm’s. However, we can certainly state that the spin rapidities are unshifted from
their ground state values. Red and blue circles show the kj’s in the complex plane,
with the colour differentiating spin types, while green squares show the αm’s. Empty
symbols show the ground state rapidities, and filled symbols, those of the excited
state.

In practice, using the logarithmic equations, it is easiest to pick up these solutions

in the γ → ∞ limit (where we can use an initial guess of kj =
2π
L
nj and αm = 2π

L

m)

and follow in γ down to vanishing interactions.

When |γ| � 1, the double fermion holes have the following rapidities (approxi-

mately): starting from the almost-free balanced ground state configuration, for each

m in turn, αm = 2π
L
(qM + 1) and k2m,2m−1 = 2π

L
(qM + 1) ±√c/L. An example is

shown in Fig. 8.10, illustrating the rapidities.

It is easy to see that the γ → 0 limit described in the previous paragraph only

captures M possible excitations. On the other hand, in the repulsive regime there

are certainly N points on this branch (one for each nj). The remaining points are

slightly different and will be henceforth referred to as the complimentary branch to

double fermion holes.
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(a)

(b)

Figure 8.10: An example of the rapidities in a particular double-fermion hole exci-
tation for |γ| � 1, γ < 0 (a) and γ > 0 (b). Here we used N = 10, M = 5 and
m = 2 (see the mathematical description of the excitations in the text). Red and
blue circles show the kj’s in the complex plane, with the colour differentiating spin
types, while green squares show the αm’s. Empty symbols show the ground state
rapidities, and filled symbols, those of the excited state.
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8.5.1.1 Compliment

The other M excited states on the double fermion hole dispersion relation resulting

from (8.29) in the repulsive regime have the following structure near γ = 0: the

lowest-momentum excitation is essentially a single fermion hole with k2M = 2π
L
(qM+

1), k2M−1 =
2π
L
qM and αm set to the average of these two newly unpaired fermions.

The other M − 1 excitations involve setting k2m = 2π
L
qm, k2(m+1) = 2π

L
qm+1,

αm to the average of k2m and k2(m+1), αm+1 = 2π
L
(qM + 1) and k2m−1,2(m+1)−1 =

2π
L
(qM + 1)±√c/L. An example is shown in Fig. 8.11, illustrating the rapidities.

Figure 8.11: An example of the rapidities in a particular complimentary double-
fermion hole excitation for |γ| � 1, γ < 0. Here we used N = 10, M = 5 and
m = 2 (see the mathematical description of the excitations in the text). Red and
blue circles show the kj’s in the complex plane, with the colour differentiating spin
types, while green squares show the αm’s. Empty symbols show the ground state
rapidities, and filled symbols, those of the excited state.

Knowing the form of the solutions in the vicinity of γ = 0, we can pick them

up and follow down in γ using the exact exponential equations. Thus, the exact

equations can be solved for some limited region of attractive interactions.

8.5.2 String Hypothesis for γ < 0

As γ decreases below 0 significantly, the exact exponential equations begin to fail and

we then resort to the string hypothesis for a description of the strongly-attractive

regime. Since the structure of the excited states is fully dimerized, we can use (8.12)

without the last term. The double fermion hole branch is obtained by starting from

the balanced ground state and setting two of the 
m quantum numbers in turn to
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the highest 
m plus one and two, respectively:


m → 
M + 1, 
m+1 → 
M + 2, 1 ≤ m ≤M − 1. (8.30)

This dispersion relation is completed by one last point: 
M → 
M +2. The solutions

can be picked up from the γ → −∞ limit with the usual guess of π
L

m. From the

quantum numbers, we can predict a priori that in the γ → −∞ limit this excitation

is a double dimer hole, which is indeed the case. As γ increases, the excitations

smoothly become double fermion holes at γ = 0 and single fermion holes at γ → ∞.

8.5.2.1 Compliment

The complementary branch certainly requires breaking dimers, so we must use the

general string hypothesis equations for attractive interactions, (8.11)-(8.12). We

start from the balanced ground state quantum numbers (a list of 
m’s), and for each

m, set 
m → 
M +1, shift all 
m’s by + 0.5, arrange the new list of 
m’s in increasing

order and delete the mth 
 in the new list. Also, take nj = [0 1] for odd M .

As always, it is best to pick up the solutions in the γ → −∞ limit, guessing

the roots as kj =
2π
L
nj and αm = π

L

m. Since the excited state has one dimer less

than the ground state, this branch will certainly have an energy gap, much like the

spin-flip excitations (see below).

8.5.3 Overview

The nature of the double fermion hole at γ = 0 also changes completely in the limits

γ → ±∞. In the infinitely-repulsive regime, both the double fermion holes and the

complimentary excitations identified at γ = 0 become single fermion holes out of the

joint Fermi sphere. In terms of the rapidities, for each j in turn, kj moves from the

ground state position of kj =
2π
L
nj [the nj’s are given by (8.9)] to kj =

2π
L
(nN + 1).

In the infinitely-attractive regime, the double fermion holes become double dimer

holes, such that for each m = 1, ...,M − 1, αm,m+1 (and by implication the kj’s they

represent) move out from π
L

m,m+1 to π

L
(
M + 1) and π

L
(
M + 2), completed by the

final state where αM moves from π
L

M to π

L
(
M+2). Here the 
m’s refer to the ground

state quantum numbers (8.15). An example is shown in Fig. 8.12 (a), illustrating

the rapidities.

The complimentary branch develops an energy gap as γ drops below zero, and

becomes a highly excited state. It is of no particular interest, so we will not explicitly

describe the limiting case solutions. However, these can be easily obtained from the

quantum numbers used in the string hypothesis Bethe ansatz equations (8.11)-(8.12).

An example is shown in Fig. 8.12 (b), illustrating the rapidities.

The evolution of the dispersion relation with coupling strength is shown in Fig. 8.13

(top panel) where we specifically choose N = 14,M = 7. At γ = 0 we see that the
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(a)

(b)

Figure 8.12: An example of the rapidities in a particular double-fermion hole exci-
tation (a) and its compliment (b) for γ → −∞ where the former becomes a dimer
hole and the latter a highly-excited gapped state. Here we used N = 10, M = 5
and m = 2 (see the mathematical description of the excitations in the text). Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s. Empty symbols show the ground
state rapidities, and filled symbols, those of the excited state.
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double fermion holes and complimentary excitations alternate, falling on the same

curve. As γ decreases to −∞ the vertical range of the double fermion hole dispersion

relation diminishes, but the umklapp point is fixed. The points that belong to the

complimentary branch develop a gap and rise far above the low energy excitations.

As γ increases from 0 to ∞, the height of the dispersion relation increases, but the

umklapp point remains fixed.

The bottom panel of Fig. 8.13 compares the exact and string hypothesis dis-

persion relations at γ = −1 for both double fermion holes and the complimentary

excitations. Both are in very good agreement, as one would expect because the

structure of these excitations fits the string hypothesis directly from the onset of

attraction between the particles.
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Figure 8.13: Dispersion relations for the double fermion hole branch at various
coupling-strengths in a system with N = 14,M = 7. On both panels, the dashed
line shows the full-system translation parabola (E = P 2/(2mN)) and the dash-
dotted line shows the half-system translation parabola (E = P 2/(2mM)). Top
panel: black circles: γ = 0, true double fermion holes, black pluses: γ = 0, compli-
mentary excitations, blue diamonds: γ = 100, red circles: γ = −100, true double
fermion holes (using the string hypothesis, labelled “SH”), red crosses: γ = −100,
complementary excitations using the string hypothesis (shifted down in energy by
4990). Thus in the strongly-attractive limit this branch becomes double dimer holes,
and in the strongly repulsive, a single fermion hole. The bottom panel shows con-
tinuity between the exact and string hypothesis equations at γ = −1. The cases
shown are: blue circles: complementary excitations, exact exponential equations,
blue crosses: complementary excitations, string hypothesis equations, red squares:
double fermion holes, exact exponential equations, red pluses: double fermion holes,
string hypothesis equations.

Analytical expressions can be derived for the dispersion relation (with M odd)
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in the limits |γ| � 1 and γ → ±∞:

E(|γ| � 1) =
�
2n2

0

2m

[
− P 2

2n2
0�

2
+

2Pπ(M + 1)

n0�N

]
, (8.31)

E(γ → +∞) =
�
2n2

0

2m

[
− P 2

n2
0�

2
+

2Pπ(N + 1)

n0�N

]
, (8.32)

E(γ → −∞) =
�
2n2

0

2m

[
− P 2

4n2
0�

2
+
Pπ(M + 2)

n0�N

]
. (8.33)

8.6 Spin-Flip Excitations

The spin-flip branch is interesting in that it develops an energy gap for attractive

interactions as a dimer must be broken to create it. In addition, in the γ → −∞
limit, a spin-flip can be considered as an introduction of two impurity particles

(single fermions) to a large system of strongly-bound dimers. In the opposite limit

of γ → ∞, we shall see that this branch provides the simplest way to access the

classical translation parabola.

8.6.1 Exact

For γ > 0, once again we can solve the logarithmic Bethe ansatz equations (8.5)-

(8.6). The spin-flip excitations are obtained by starting from the balanced ground

state, adding 1/2 to all the nj’s, subtracting 1/2 from all the 
m’s, and then simply

deleting each of the 
m’s on the list in turn, leavingM−1 αm’s. It is best to pick up

these excitations in the strongly repulsive limit (where we can use an initial guess

of kj =
2π
L
nj and αm = 2π

L

m) and then follow down in γ to γ = 0.

The operations performed on the quantum numbers directly reflect the fact that

the excitation is a spin-flip. However, as we approach the strongly-interacting limit,

the nature of the excitation changes continuously to a translation of the entire

system. This is shown analytically in section 8.6.4 below where we take the γ → ∞
limit of the logarithmic equations. An example is shown in Fig. 8.14, illustrating

the rapidities.

As γ → 0, the spin-flip solutions can be described as follows: starting from the

|γ| � 1 balanced ground state rapidities, delete each αm from the list of variables

in turn, set k2m = 2π
L
qm and k2m−1 =

2π
L
(qM +1). An example is shown in Fig. 8.15,

illustrating the rapidities.

Knowing the form of the solutions in the vicinity of γ = 0, we can pick them up

and follow down in γ using the exact exponential equations. Thus, for some limited

region of attractive interactions the exact equations can be solved.
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Figure 8.14: An example of the rapidities in a particular spin-flip excitation for
γ → ∞, where the excitation is a system translation. Here we used N = 10, M = 5
and m = 2 (see the mathematical description of the excitations in the text). For the
case of divergent repulsive interactions, we do not have an analytical approximation
for the αm’s. However, we can certainly state that the remaining M − 1 αm’s are
significantly shifted away from their ground state values (but remain real). The
kj’s of the excited state are shifted by 2π/L×m/N compared to their ground state
values. Red and blue circles show the kj’s in the complex plane, with the colour
differentiating spin types. Empty symbols show the ground state rapidities, and
filled symbols, those of the excited state.

8.6.2 String Hypothesis for γ < 0

As γ decreases below 0 significantly, the exact exponential equations begin to fail and

we then resort to the string hypothesis for a description of the strongly-attractive

regime. Since the spin-flip excitation requires breaking a dimer, we must use the

general string hypothesis equations for attractive interactions, (8.11)-(8.12). The

spin-flip dispersion relation is obtained by starting from the balanced ground state,

adding 0.5 to all the 
m’s and for each m in turn deleting 
m from the quantum

number list. Furthermore, assuming M is odd we take n1,2 = {0, 1}. An example

is shown in Fig. 8.16, illustrating the rapidities.

Once again we pick up the solutions in the γ → −∞ limit, guessing the rapidities

as kj =
2π
L
nj and αm = π

L

m. Since the creation of the excited state requires breaking

a dimer over the balanced ground state, this branch will have an energy gap that

roughly scales as the binding energy of each dimer.

8.6.3 Overview

The nature of the spin-flip excitations at γ = 0 is unaltered in the limit γ → −∞ but

changes significantly as γ → ∞. In the infinitely-repulsive limit, these excitations

become a system translation with kj’s exactly as for the single fermion branch.

The dispersion relation is shown in Fig. 8.17 (top panel) for several γ values

for the case of N = 14,M = 7. At γ = 0 the spin-flip dispersion relation is

identical to the single fermion holes, and the umklapp point lies on the half-system
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(a)

(b)

Figure 8.15: An example of the rapidities in a particular spin-flip excitation for
|γ| � 1, γ < 0 (a) and γ > 0 (b). Here we used N = 10, M = 5 and m = 2 (see
the mathematical description of the excitations in the text). Red and blue circles
show the kj’s in the complex plane, with the colour differentiating spin types, while
green squares show the αm’s. Empty symbols show the ground state rapidities, and
filled symbols, those of the excited state.
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Figure 8.16: An example of the rapidities in a particular spin-flip excitation for γ →
−∞ where it becomes a highly-excited gapped state. Here we used N = 10, M = 5
and m = 2 (see the mathematical description of the excitations in the text). Red
and blue circles show the kj’s in the complex plane, with the colour differentiating
spin types, while green squares show the αm’s. Empty symbols show the ground
state rapidities, and filled symbols, those of the excited state.

translation curve. As γ decreases to −∞ the dispersion relation develops a gap and

rises far above the low-lying excitations. As γ increases to ∞, the dispersion relation

falls and curves inwards, so that it eventually overlaps the full-system translation

parabola, the umklapp point having descended with the rest of the points. Again,

in the infinitely-repulsive limit the spin-flip excitations have an identical dispersion

relation to single fermion holes.

The bottom panel of Fig. 8.17 compares the exact and string hypothesis dispersion

relations at γ = −1. There is a constant small off-shift between the data sets, arising

from the fact that the binding energy added to this branch has not yet reached the

γ → ∞ limit, as assumed in the string hypothesis equations.

8.6.4 c→ ∞ limit

We have seen that in the γ → ∞ limit the Yang-Gaudin model supports translation

excitations where the kj’s do not take on integer multiples of 2π/L but can be shifted

away from these by a multiple of 2π/(LN). At first glance this is surprising because

the equivalent limit of the Lieb-Liniger model truly yields a Tonks-Girardeau gas,

equivalent to free fermions up to the fact that the bosons can occupy half-integer

multiples of 2π/L. In this section we will carefully take the strong-repulsion limit of
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Figure 8.17: Dispersion relations for the spin-flip branch at various coupling-
strengths in a system with N = 14,M = 7. On both panels, the dashed line
shows the full-system translation parabola (E = P 2/(2mN)) and the dash-dotted
line shows the half-system translation parabola (E = P 2/(2mM)). Top panel: black
circles: γ = 0, blue diamonds: γ = 1000, red squares: γ = −100 (using the string
hypothesis, labelled “SH”), shifted down in energy by 4996. Thus in the strongly-
attractive limit this branch remain a spin-flip, and in the strongly repulsive, becomes
a system translation. The bottom panel shows continuity between the exact and
string hypothesis equations at γ = −1. The cases shown are: red squares: exact
exponential equations, red pluses: string hypothesis equations.

the logarithmic Bethe ansatz equations and show that this result is indeed correct

and the translation parabola is truly accessible.

Thus, we take equations (8.5)-(8.6), and consider γ → ∞. If we work to zeroth

order in 1/c, we have to set all the θ functions to zero, but of course this makes it

impossible to satisfy (8.6). Therefore we work to first order in 1/c and expand all

the θ functions as a first order Taylor expansion about zero. We arrive at two sets

of equations that involve the quantum numbers nj and 
m, N,M,L, c and two sums∑
j kj and

∑
m 
m. Next, we rearrange for kj and αm:

kj =
2πnjc+ 4

∑
αm

cL+ 4M
, (8.34)

αm =
−2π
mc+ 2

∑
αm − 4

∑
kj

2M − 4N
. (8.35)

Taking the sum on both sides (in the first case over j, in the second over m), we

solve the resulting equations for the sums (at this point, these are two algebraic
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equations in two variables). This leads to

∑
kj =

2π(
∑

m +

∑
nj)

L
, (8.36)∑

αm =
π [cL

∑

m + 4M (

∑

m +

∑
nj)]

2LN
. (8.37)

These equations, when used with the quantum numbers of the spin-flip branch, give

the correct kj’s as returned by numerically solving the full Bethe ansatz equations.

On the other hand, they are completely insufficient to correctly predict the αm’s,

where higher orders need to be retained for even a rough level of approximation.

Now, these expressions are still not transparent enough to be able to easily see

the origin of the translational excitations. Since we know that 4M � cL for the

large-c regime considered here, we neglect terms of order 4M compared to terms of

order cL. This leads to

kj =
2π

L

(
nj +

∑

m
N

)
, (8.38)

which exactly reproduces the limiting behaviour of the spin-flip branch when the

appropriate 
m’s are used. The above expression, (8.38), has been found in [185] as

well, but the additional excitations possible in such a system were not studied.

Interestingly, if we express the excitation energy as a function of the excitation

momentum using the approximate rapidities (8.34)-(8.35), with the sums given by

(8.36)-(8.37), all first order corrections in 1/c cancel and we find the dispersion

relation E = P 2/(2mN), the full-system translation parabola.

We have performed the same calculation for the string hypothesis equations of the

single fermion holes branch, equations (8.23)-(8.25), and found the same classical

dispersion relation but with an additional energy gap that scales with N as O(1)

and with γ as O(1/γ). By comparing the approximate dispersion relation to exact

numerical solutions of the Bethe ansatz equations, we were able to show that this

gap is not physically significant – it is an artefact arising from the fact that we only

considered a first order expansion of the Bethe ansatz equations, and is most likely

cancelled by contributions from higher orders. Further supporting evidence for this

claim is the fact that we do not find a gap in the thermodynamic limit at any γ (see

chapter 9), whereas the energy gap obtained from this calculation does not vanish

as N → ∞ and would thus be expected to survive. Thus the single fermion hole

dispersion relation also approaches E = P 2/(2mN) as γ → ∞.

Finally, analytical expressions can be derived for the dispersion relation (with M
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odd) in the limits |γ| � 1 and γ → ±∞:

E(|γ| � 1) =
�
2n2

0

2m

[
−2γ

N
− P 2

n2
0�

2
+

2Pπ(M + 1)

n0�N

]
, (8.39)

E(γ → +∞) =
P 2

2mN
, (8.40)

E(γ → −∞) =
�
2n2

0π
2

2m

[
− P 2

2π2n2
0�

2
+

γ2

2π2
+

−3M + 4−M2

2N2
+
P (M + 2)

n0π�N

]
. (8.41)

8.7 Discussion and Conclusions

In this chapter we have followed the ground state and the three elementary type-II

excitations of the free system from zero interaction to γ → ±∞. In the process,

we derived string hypothesis equations that were used when the imaginary parts of

complex-conjugate rapidities became very close to c/2. We demonstrated continuity

between the exact and approximate equations for the ground state and all excited

states. Moreover, for the single fermion holes, we explicitly showed the evolution of

the rapidities as a function of γ in the region about γ = 0 where it is essential that

the direct exponential Bethe ansatz equations are used because the structure of the

state is different from that assumed under the string hypothesis.

We were able to identify the nature of the excitations in the extreme limits of

γ → ±∞: the single fermion holes become single dimer holes as γ → −∞ and a

system translation as γ → ∞, the double fermion holes turn into double dimer holes

as γ → −∞ and single fermion holes as γ → ∞, and finally, the spin-flip branch

retains its nature for γ < 0 and becomes a system translation as γ → ∞.

In the course of our study, we have shown that the strong-repulsion limit of

the Yang-Gaudin model is very different from the Tonks-Girardeau gas (the cor-

rect limit for the Lieb-Liniger model). In his thesis [185], Zvonarev has already

pointed out the correct limiting solutions, showing a clear contribution from the

spin degree of freedom, but has not investigated the consequences. Here we showed

that the two-component Fermi gas with periodic boundary conditions allows the

system translation excitations to be accessed at any momentum value (not just at

the umklapp points) in the infinitely-repulsive regime.

Finally, the elementary type-II excitations of the Yang-Gaudin model are of par-

ticular interest in light of the possible connection of these states to dark solitons. In

chapter 12, we will use the algebraic Bethe ansatz to show that dark solitons can

be interpreted as localized superpositions of type-II states of the Lieb-Liniger model

[46, 47]. Perhaps a similar calculation will be possible for the Yang-Gaudin model

in the near future, but for the present, one can transfer some of the finding to the

Yang-Gaudin model by analogy – this is expanded on in chapter 13.
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Appendix

8.A Technical Details

In this appendix we provide all the details on how the Bethe ansatz equations

were solved numerically. We used the Matlab environment, and in particular the

fsolve.m function (implementing the trust-region dogleg algorithm), included in the

optimization toolbox. Absolute and relative tolerances are set to 10−8.

In order to solve any of the logarithmic equations (where all variables are neces-

sarily real and distinct), we always begin from the strong-coupling limit, taken as

|γ| = 100. In this regime, one can use 2π/L-multiples of the quantum numbers as

an initial guess, and the solver easily picks up the correct solution. Now, usually

this guess is sufficient at any γ (with the logarithmic equations), but we find it is

better to follow the solutions from |γ| = 100 down to whatever value one needs.

This is done with an adapting step of γ/10, since in the strong-coupling regime the

solutions change very little and large steps can be taken, while in the weak-coupling

regime the converse is true. At each consecutive γ-step, the guess is taken as the

solution at the previous step. This following-in-γ procedure greatly improves effi-

ciency and accuracy for large systems (N ∼ 100 − 1000) but is optional for small

systems (N ∼ 10).

If one wishes to solve the exact exponential equations for the ground state of the

repulsive system where all rapidities are real and distinct, then one must start from

the known approximate solutions in the small |γ| limit as the guess (we always use

γ = ±0.01 in practice), and then follow in γ up to whatever value is needed, exactly

as above.

In order to solve the exponential string hypothesis equations (8.20)-(8.22), we

first solve the exact exponential Bethe ansatz equations for the single fermion hole

from |γ| � 1 to as high a value as we can (see below), and then use that solution

as a guess for the string hypothesis equations at the same γ. Having picked up the

solution, we then follow in γ with an adaptive step as before (γ/10), except that the

guess at each step is taken as a linear interpolation using the previous two γ-values.

Now, solving the exact exponential Bethe ansatz equations with complex rapidi-

ties is a somewhat more involved task. Here there are two possibilities: either the

structure of the solution changes with γ (for example, distinct real rapidities may

merge into a complex-conjugate pair), or it does not. In the latter case, the situation

is simpler, so we start there. The simplest of all cases is the ground state for γ < 0,

160



due to the symmetry of the solution. As such, we can track the solution somewhat

further than for excited states.

For the ground state with γ < 0 we begin from the known approximate solutions

at γ ≈ 0 and track in γ using a fixed step of 0.01. Once again, we use a linear

interpolation based on the previous two points as a guess for the next. Whenever

the solver fails to converge to a valid solution, we call the solver a maximum of

five times more, at each attempt adding a vector of (real) random numbers to the

initially-used guess of order 10−4n0. If all five attempts are exhausted unsuccessfully,

the program aborts.

As for excited states where the structure of the solution does not change, the list

includes double fermion holes, the complimentary excitations of section 8.5.1.1 and

spin-flips, all with attractive interactions. As always, we begin from the |γ| � 1

limit to pick up the solutions. Then we follow in γ using an adaptive step and linear

interpolation for predictive guessing. For each individual point on the dispersion

relation we begin with a step of γ/10, and whenever the solver fails, the step is

reduced by a factor of two. If the smaller step does not help converge to a valid

solution, the program is aborted.

Finally, consider the single fermion branch with γ > 0 and γ < 0, where the

structure of the solution changes as a function of γ. As always, we begin from

γ = ±0.01 where solutions are approximately known, use a fixed step of 0.01 (unless

we are in the vicinity of a merging – see below) and linear interpolation for predictive

guessing. At each step, the solver is called once and the solutions are inspected. The

Bethe ansatz equations must have distinct roots, so that no two kj’s and no two

αm’s are equal. At points where two real rapidities merge into a complex-conjugate

pair, the solver often fails to automatically split up these roots along the imaginary

axis, so this must be tested for and corrected.

Thus, having made an initial attempt to solve at a given γ value, we test whether

any of the kj’s (for γ < 0) or any of the αm’s (for γ > 0) have been returned equal (in

this case they will also necessarily be real). If so, we modify the guess by splitting

up these rapidities by ±0.1in0 (γ < 0) and by ±0.05in0 (γ > 0). Occasionally for

the repulsive system three αm’s may be initially returned as equal and real (not

two) – in this case, the guesses for two of these are split up into the complex plane,

while the third is left as real. Having modified the guess to help the solver pick up

the correct solution, we call it again and reduce step size to 0.001 in a γ-interval of

0.01 immediately following the merging point. The step is reduced because usually

variables change very rapidly in the vicinity of a merging and in order for our linear

guess to be effective, the γ-step must be smaller. Once we perform 10 of these

reduced steps, the step size is returned to normal.

Regardless of whether a merging takes place at any given γ value, if the solver
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fails to converge, we make a maximum of ten further attempts to solve by adding

small (real) random numbers of order 10−4n0 to the initial guess (which may have

already been “manually” modified due to a merging). If all ten attempts fail, the

program is aborted.
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Chapter 9

Thermodynamic Limit

In this chapter we will present the solutions of the Bethe ansatz equations for both

the Lieb-Liniger & Yang-Gaudin models in the thermodynamic limit, that is, when

N,L → ∞ with n0 = N/L held fixed. The finite-system Bethe ansatz algebraic

equations become integral equations for the densities of the rapidities in quasi-

momentum space. We solve these for the ground state and all type-II excitations

considered in the previous two chapters (so once again, this chapter provides tech-

nical details with physical discussions delegated to later chapters). The thermo-

dynamic limit solutions are required to compute the missing particle number and

phase step of the type-II states, as is done in the next chapter, as well as the physical

and inertial masses. These quantities will be invaluable in the study of quantum

dark solitons of the Lieb-Liniger model (chapter 12) and for the characterization

of the different Yang-Gaudin type-II excitations. In fact, we will identify type-II

branches which may be understood as dark solitons for both repulsive and attrac-

tive interactions (chapter 13). Moreover, from our work in chapter 12, it will become

apparent that the dispersion relation of the quantum dark solitons is that of the cor-

responding type-II states, so the dispersion relations computed in this chapter give

a direct prediction regarding solitonic excitations in the one-dimensional Bose and

Fermi-gases.

Another reason to present the thermodynamic limit equations for all the low-

energy type-II excitations of the Yang-Gaudin model is that there are some small

discrepancies and inaccuracies in the literature in this regard, while our work here

is fully self-consistent and follows directly from the finite system results.

9.1 Introduction

In addition to the introduction given in chapter 8, continuing our discussion of one-

dimensional Bethe ansatz-solvable models, previous theoretical work of direct rele-

vance to our results here can be divided into two main categories. First, the unified

picture of the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover in one

dimension [82, 186–188], which highlights the fact that both the Lieb-Liniger and

Yang-Gaudin models can be realized in a single physical system. Second, previous
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exploration of the elementary excitations in these models, notably [47] and chap-

ter 8 (and related works [180, 181, 184]). An excellent, more complete review of

the recent theoretical and experimental work on the Lieb-Liniger and Yang-Gaudin

models can be found in [163, 183].

In this chapter we present all the thermodynamic limit Bethe ansatz equations

that describe the ground and excited states in both the Lieb-Liniger and Yang-

Gaudin models, restricting ourselves to repulsive interactions in the first case but

not in the second. The relevant integral equations are given in section 9.2, subdivided

by model, the sign of the interaction and excitation branch. Note that the Yang-

Gaudin type-II excitations are referred to and classified as in chapter 8 (which deals

with the finite-system case). The method followed to derive these thermodynamic

limit equations is outlined in appendix 9.A. Approximate analytical solutions of

the thermodynamic limit Bethe ansatz equations in limiting cases and all relevant

system properties are summarized in appendix 10.A, given at the end of the next

chapter which introduces some further useful thermodynamic limit quantities.

9.2 Thermodynamic Limit Equations

The Hamiltonian for both the Lieb-Liniger and Yang-Gaudin models is identical

and is given by (6.1). The difference between the models is that the Lieb-Liniger

case considers N identical bosons and the Yang-Gaudin case N fermions, M ≤ N/2

of which are spin-down and the rest are spin-up. Furthermore, m is the mass of

each particle, and the particles are confined to a ring of circumference L. Recall

that γ = c
n0
, where n0 = N/L is the one-dimensional density. In fact, γ is the only

dimensionless parameter characterizing the ground state in the thermodynamic limit

(defined by N,L → ∞ with n0 remaining finite) of the Lieb-Liniger model. In the

Yang-Gaudin case, one additionally has the parameter M/N (we shall focus on the

balanced case of M/N = 1/2).

For finite N,L, Hamiltonian (6.1) can be diagonalized by the Bethe ansatz [52],

which leads to a set of coupled algebraic equations for the quasi-momenta: in the

case of a single spin component of particles (as in the Lieb-Liniger model), one only

has N so-called charge rapidities which contribute directly to the momentum and

energy of the state, while if a second spin component is present (as in the Yang-

Gaudin model), one also hasM spin rapidities which do not enter the expressions for

the momentum or energy but can rather be thought of as auxiliary variables. The

relevant finite-system equations for the Lieb-Liniger model can be found in chapter

7, alongside the quantum numbers necessary to obtain the ground state and type-II

excitations. As for the Yang-Gaudin model, in chapter 8 we performed a detailed

study of the ground state and all the type-II excited branches we are interested
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in here, so the finite-system Bethe ansatz equations and the quantum numbers are

found therein.

In the thermodynamic limit, the coupled algebraic equations of the Bethe ansatz

become Fredholm integral equations of the second kind. In appendix 9.A, we give a

brief description of how one can obtain the integral equations from the algebraic ones

for the ground state and type-II excitations. The ground state integral equations

can be found in [46] for the Lieb-Liniger model and in [189] for the Yang-Gaudin.

As for type-II excited states, [47] derives the equations for the Lieb-Liniger model,

but while some earlier works examining excitations in the Yang-Gaudin model do

exist [180, 181, 184], we believe our account here is the first complete and consistent

summary of elementary type-II excitations in the thermodynamic limit of the Yang-

Gaudin model.

In this chapter we present all the integral equations and related quantities that

characterize the ground and excited states of interest. We also illustrate by showing

dispersion relations for all relevant branches at several interaction-strength values.

These are computed by solving the integral equations numerically on Matlab, using

the “Fie” package [190], freely available online (together with a detailed descrip-

tion of the algorithms). For the Lieb-Liniger and attractive Yang-Gaudin models,

absolute tolerance is set to 10−8 and relative tolerance to 10−4. For the repulsive

Yang-Gaudin model, both tolerances are taken as 10−6.

9.2.1 Repulsive Lieb-Liniger

In the case of the repulsive Lieb-Liniger model, γ > 0 and all N particles are

identical bosons. The simplest limit is the γ → ∞ limit where the Lieb-Liniger

system becomes a Tonks-Girardeau gas, practically equivalent to a free fermion

system [46, 47]. In this limit, type-II excitations are simply hole-excitations: a

single particle taken out of the Fermi sphere.

In the opposite limit, γ → 0, the ground state sees all the particles “condensing”

into the zero-momentum mode [46] (of course no true condensation takes place). In

the attractive case (γ < 0), the ground state is a global “string-state” where all the

particles are bound together [170] in what can be understood as a bright soliton

[173]. The attractive case is not explored here.

9.2.1.1 Ground State

Let us start from the ground state properties, which can be found upon solving the

following integral equation:

2c

K∫
−K

f(p)

c2 + (p− k)2
dp = 2πf(k)− 1. (9.1)
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Here, the rapidity density f(k) is such that

K∫
−K

f(k)dk = n0, (9.2)

and k is the continuous version of the charge rapidities of the bosons appearing in

the finite problem. The ground state energy and momentum can be found from

Eg =
�
2

2m
L

K∫
−K

k2f(k)dk, (9.3)

Pg = �L

K∫
−K

kf(k)dk = 0. (9.4)

In order to solve the integral equation numerically we introduce the following scaled

variables:

k = Kx, c = Kλ, f(k) = f (Kx) = g(x). (9.5)

The scaled integral equation becomes

1 + 2λ

1∫
−1

g(x)

λ2 + (x− y)2
dx = 2πg(y), (9.6)

and the normalization condition on f(k) reads

1∫
−1

Kg(x)dx = n0. (9.7)

The “Fermi momentum” K is calculated as

K =
n0γ

λ
, (9.8)

and λ in turn is found from

λ = γ

1∫
−1

g(x)dx. (9.9)

The ground state energy is written as

Eg =
�
2

2m
LK3

1∫
−1

x2g(x)dx, (9.10)
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and introducing e(γ) so that

Eg =
�
2

2m
Nn2

0e(γ), (9.11)

e is calculated as

e(γ) =
(γ
λ

)3 1∫
−1

x2g(x)dx. (9.12)

Finally, the chemical potential, defined as dEg/dN , is given by

μ =
�
2

2m
n2
0

(
3e− γ

de

dγ

)
. (9.13)

9.2.1.2 Single Boson Holes

First, let us recall the θ function (the two-body phase shift of the δ potential) that

will feature in all the sections below:

θ(k) = −2 tan−1

(
k

c

)
. (9.14)

The equation to be solved for type-II excitations is

2πJ(k) = 2c

K∫
−K

J(r)

c2 + (r − k)2
dr + θ (Q− k) + π, (9.15)

where |Q| ≤ K parametrizes the excitation momentum. The energy and momentum

of the excitation are found from

P = �

⎡
⎣−Q+

K∫
−K

J(k)dk

⎤
⎦ , (9.16)

E =
�
2

2m

⎡
⎣−Q2 + 2

K∫
−K

kJ(k)dk

⎤
⎦+ μ. (9.17)

To solve these equations numerically we need to introduce the following additional

scaled variables [also see (9.5)]:

r = Ky, Q = Kq, J(k) = J (Kx) = h(x). (9.18)
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The integral equation becomes

2πh(x) = 2λ

1∫
−1

h(y)

λ2 + (x− y)2
dy + π − 2 tan−1

(
q − x

λ

)
. (9.19)

Excitation energy and momentum are computed from

P = �K

⎡
⎣−q +

1∫
−1

h(x)dx

⎤
⎦ , (9.20)

E =
�
2

2m
K2

⎡
⎣−q2 + 2

1∫
−1

xh(x)dx

⎤
⎦+ μ. (9.21)

Figure 9.1 shows three example dispersion relations, spanning the weak-, intermediate-

and strong-coupling regimes.
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Figure 9.1: Dispersion relations for type-II excitations in the Lieb-Liniger model
(single boson holes in the γ → ∞ limit). Blue solid line: λ = 0.02, γ = 0.0015325,
red dashed line: λ = 1, γ = 1.7254, black dash-dotted line: λ = 50, γ = 155.08.

In Fig. 9.2 we compare the Lieb-Liniger type-II dispersion relation to that of the

Gross-Pitaevskii dark soliton on an infinite ring, both at weak and intermediate

interactions. While agreement is seen in both cases, it deteriorates visibly with in-

creasing γ. Nonetheless, the agreement in the mean-field regime for infinite systems

as well as finite (see chapter 7) implies a fundamental connection between these two

excitations. It is interesting that in the vanishing γ regime (the mean-field limit),

the type-II dispersion relation has been analytically shown to tend to that of the
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Gross-Pitaevskii dark soliton [60]. In fact, this limit of the Lieb-Liniger model is in

general captured well by mean-field Gross-Pitaevskii theory [46].
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Figure 9.2: Dispersion relations for Lieb-Liniger type-II excitations (blue solid lines)
and Gross-Pitaevskii dark solitons (red dashed lines). Top panel: λ = 0.02, γ =
0.0015325, bottom panel: λ = 0.7, γ = 1.003618.

9.2.2 Attractive Yang-Gaudin

When several spin components of fermions are present in the system with attractive

interactions, the ground state always takes the form of bound states, in our case

– dimers. However, the system need not be fully dimerized, even if it is balanced

(as in our case): excited states may well have unpaired fermions. In chapter 8,

we studied the finite-system case and showed that when |c|L � 1 the exact Bethe

ansatz equations can be replaced by the approximate, simpler ones that assume

the string hypothesis (see chapter 8 for details). Since in the thermodynamic limit

L→ ∞, it is perfectly valid to work under the string hypothesis for any c.

In the γ → 0 limit, the ground state is that of two spin components of free

fermions, and the elementary type-II excitations are a single fermion hole, a double

fermion hole, and a spin-flip. As γ → −∞, these branches become a single dimer

hole, a double dimer hole, and a spin-flip (respectively), as shown in chapter 8, and

the ground state becomes a Tonks-Girardeau gas of dimers.
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9.2.2.1 Ground State

The general (for an arbitrary M/N) ground state properties can be found upon

solving the following integral equations [189]:

1

2π
= ρ(k)− 2c

π

b∫
−b

r(α)

c2 + 4(k − α)2
dα, (9.22)

1

π
= r(α)− c

π

b∫
−b

r(α′)
c2 + (α− α′)2

dα′ − 2c

π

a∫
−a

ρ(k)

c2 + 4(α− k)2
dk. (9.23)

Here, ρ(k) and r(α) are such that

b∫
−b

r(α)dα =
M

L
, (9.24)

a∫
−a

ρ(k)dk =
N − 2M

L
, (9.25)

and α & k can be thought of as the dimer & single-fermion charge rapidities, re-

spectively. Now, it is common and convenient to set the reference point for energy

measurements at the binding energy of the total system, namely at − �2

2m
Mc2

2
. Clearly

whether the binding energy is included explicitly or not does not affect the disper-

sion relations (or the missing particle number – see chapter 10), so we proceed with

this convention. The ground state energy and momentum can be found from

Eg =
�
2

2m

⎡
⎣L

a∫
−a

k2ρ(k)dk + L

b∫
−b

2α2r(α)dα

⎤
⎦ , (9.26)

Pg = �

⎡
⎣L

a∫
−a

kρ(k)dk + 2L

b∫
−b

αr(α)dα

⎤
⎦ = 0. (9.27)

In the case whenM = N/2, the first equation drops out and the second is simplified

considerably, namely:

1

π
= r(α)− c

π

b∫
−b

r(α′)
c2 + (α− α′)2

dα′. (9.28)
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The normalization condition is

b∫
−b

r(α)dα =
M

L
, (9.29)

and the ground state energy and momentum are

Eg =
�
2

2m
L

b∫
−b

2α2r(α)dα, (9.30)

Pg = �2L

b∫
−b

αr(α)dα = 0. (9.31)

We shall proceed to give details only on the balanced ground state, as it is generally

the one of interest. In order to solve the integral equation numerically we introduce

the following scaled variables:

α = bx, c = bλ, r(α) = r(bx) = g(x). (9.32)

The scaled integral equation becomes

1 = πg(x)− λ

1∫
−1

g(x′)
λ2 + (x− x′)2

dx′, (9.33)

and the normalization condition reads

1∫
−1

bg(x)dx =
M

L
. (9.34)

The “Fermi momentum” b can be found from

b =
n0γ

λ
, (9.35)

and λ in turn is found from

λ = 2γ

1∫
−1

g(x)dx. (9.36)

The ground state energy becomes

Eg =
�
2

2m
2Lb3

1∫
−1

x2g(x)dx. (9.37)
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If e(γ) is once again defined by (9.11), then e(γ) is found according to (9.12) but

with an additional factor of two, and μ (defined the same way as for the Lieb-Liniger

model) is given by (9.13). Note that in the fully dimerized problem, the chemical

potential for dimers is twice that of single fermions.

9.2.2.2 Single and Double Fermion Holes

First, we will study the single and double fermion holes (at γ = 0) which become

the single and double dimer holes as γ → −∞. Under the string hypothesis in the

thermodynamic limit, these branches can be described with the system fully con-

sisting of dimers, so we only need one integral equation. In this section we will give

the equations for both a single dimer and two adjacent dimer holes simultaneously.

The differences in the description are so minute, that we will simply add factors of

two “2×” (with an explicit multiplication sign) where-ever they are needed in the

case of double-dimers.

The equation to be solved is

2πJ(α) = 2c

b∫
−b

J(α′)
c2 + (α− α′)2

dα′ + 2× [π − θ (α−Q)] , (9.38)

where |Q| ≤ b parametrizes the excitation momentum. The energy and momentum

of the excitation are found from

P = �

⎡
⎣−2× 2Q+ 2

b∫
−b

J(α)dα

⎤
⎦ , (9.39)

E =
�
2

2m

⎡
⎣−2× 2Q2 + 2× 2μ+ 4

b∫
−b

αJ(α)dα

⎤
⎦ . (9.40)

To solve these equations numerically we need to introduce the following scaled vari-

ables [in addition to (9.32)]:

Q = bq, J(α) = J (bx) = h(x). (9.41)

The integral equation becomes

πh(x) = λ

1∫
−1

h(x′)
λ2 + (x− x′)2

dx′ + 2×
[
π

2
− tan−1

(
q − x

λ

)]
. (9.42)
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Excitation energy and momentum are found from

P = �2b

⎡
⎣−2× q +

1∫
−1

h(x)dx

⎤
⎦ , (9.43)

E =
�
2

2m
2b2

⎡
⎣−2× q2 + 2

1∫
−1

xh(x)dx

⎤
⎦+ 2× 2μ. (9.44)

Figure 9.3 shows example dispersion relations for both branches. It is clear that the

double fermion branch is simply the single fermion branch scaled by a factor of two,

both in energy and momentum.

9.2.2.3 Spin-Flip Excitations

Next, we examine the spin-flip branch, where a dimer is broken and the spin of one

of the fermions is flipped. Since the binding energy of a dimer in the thermodynamic

limit is proportional to c2/2, the dispersion relation has an energy gap that grows

approximately as c2.

The equation to be solved is

2πJ(α) = 2c

b∫
−b

J(α′)
c2 + (α− α′)2

dα′−θ (α−Q)+θ [2(α + b)]+θ [2(α− b)]+π, (9.45)

where |Q| ≤ b parametrizes the excitation momentum. The energy and momentum

of the excitation are found from

P = �

⎡
⎣2

b∫
−b

J(α)dα− 2Q

⎤
⎦ , (9.46)

E =
�
2

2m

⎡
⎣4

b∫
−b

αJ(α)dα− 2Q2 + 2b2 +
c2

2

⎤
⎦ . (9.47)

To solve these equations numerically we use the scaled variables of (9.32) and (9.41),

so that the integral equation becomes

πh(x) = λ

1∫
−1

h(x′)
λ2 + (x− x′)2

dx′ + tan−1

(
x− q

λ

)

− tan−1

[
2(x+ 1)

λ

]
− tan−1

[
2(x− 1)

λ

]
+
π

2
. (9.48)
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Figure 9.3: Dispersion relations for single (a) and double (b) fermion holes (referring
to the excitations according to their nature in the γ → 0 limit), which become
single and double dimer holes in the γ → −∞ limit (respectively). Blue solid line:
λ = −0.02, γ = −0.030815, red dashed line: λ = −1, γ = −1.1363, black dash-
dotted line: λ = −50, γ = −39.770.
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Excitation energy and momentum are found from

P = �2b

⎡
⎣ 1∫
−1

h(x)dx− q

⎤
⎦ , (9.49)

E =
�
2

2m

⎧⎨
⎩2b2

⎡
⎣2

1∫
−1

xh(x)dx− q2 + 1

⎤
⎦+

c2

2

⎫⎬
⎭ . (9.50)

Figure 9.4 shows three example dispersion relations, with the strongest-coupling

case shifted down as indicated on the figure so that it is visible on the same scale.
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Figure 9.4: Dispersion relations for spin-flip excitations. Blue solid line: λ =
−0.02, γ = −0.030815, red dashed line: λ = −1, γ = −1.1363, black dash-dotted
line: λ = −50, γ = −39.770. In the last case, the dispersion relation is shifted by
788 due to the large gap.

9.2.3 Repulsive Yang-Gaudin

Having familiarized ourselves with the attractive regime, we now move on to the

repulsive. At weak coupling, the ground state is once again that of two spin compo-

nents of free fermions, while at strong interactions, the ground state has the structure

(in momentum space) of a single spin component of fermions with N particles. In

chapter 8, we followed the three elementary type-II excitation branches of the free

system to γ → ∞, and showed that the single fermion hole, double fermion hole, and

the spin-flip excitations become a global translation of the system, a single fermion

hole and global translation of the system, respectively. Moreover, in the finite-system

case, the single fermion hole features complex spin rapidities, and string hypothesis
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equations were derived which are again valid in the thermodynamic limit.

9.2.3.1 Ground State

The ground state properties can be found upon solving the following integral equa-

tions [189]:

1

2π
= ρ(k)− 2c

π

b∫
−b

r(α)

c2 + 4(k − α)2
dα, (9.51)

0 = r(α) +
c

π

b∫
−b

r(α′)
c2 + (α− α′)2

dα′ − 2c

π

a∫
−a

ρ(k)

c2 + 4(α− k)2
dk. (9.52)

Here, ρ(k) and r(α) are such that

a∫
−a

ρ(k)dk =
N

L
, (9.53)

b∫
−b

r(α)dα =
M

L
, (9.54)

where k & α represent charge & spin rapidities of the finite-system problem. The

ground state energy and momentum can be found from

Eg =
�
2

2m
L

a∫
−a

k2ρ(k)dk, (9.55)

Pg = �L

a∫
−a

kρ(k)dk = 0. (9.56)

In order to solve the integral equations numerically we introduce the following scaled

variables:

k = ay, α = ax, c = aλ,

ρ(k) = ρ(ay) = g(y), r(α) = r(ax) = f(x). (9.57)

Because absolute scaling is not possible here (with both a and b being unknown), at

each coupling strength b/a must be chosen so that the normalization conditions on

ρ(k) and r(α) are satisfied. For a balanced ground state with N = 2M the condition

reads
b/a∫

−b/a

f(x)

{
1− λ

π
A (λ, x)

}
dx =

1

2π
(9.58)
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with A (λ, x) defined below. The scaled integral equations become

g(y) =
1

2π
+

2λ

π

b/a∫
−b/a

f(x′)
λ2 + 4(y − x′)2

dx′, (9.59)

0 = f(x) +
λ

π

b/a∫
−b/a

f(x′)
λ2 + (x− x′)2

dx′ − λ

π2

1∫
−1

1

λ2 + 4(x− y)2
dy

−
(
2λ

π

)2
b/a∫

−b/a

f(x′)

1∫
−1

1

λ2 + 4(x− y)2
1

λ2 + 4(y − x′)2
dy dx′, (9.60)

where in the second equation, we have already substituted for g(y) from the first.

Some of the integrals with respect to y appearing in the main integral equation

(9.60) can be done analytically. Define and calculate

A(λ, x) =

1∫
−1

1

λ2 + 4(x− y)2
dy =

1

2λ
tan−1

(
2(y − x)

λ

)∣∣∣∣
y=1

y=−1

, (9.61)

and

B(λ, x, x′) =

1∫
−1

1

λ2 + 4(x− y)2
1

λ2 + 4(x′ − y)2
dy =

=
1

16λ(x− x′) [(x− x′)2 + λ2]

{
λ ln

[
4(x′ − y)2 + λ2

]− λ ln
[
4(x− y)2 + λ2

]
− 2(x− x′) tan−1

[
2

λ
(x− y)

]
− 2(x− x′) tan−1

[
2

λ
(x′ − y)

]}∣∣∣∣
y=1

y=−1

if x �= x′,

=
1

4λ3

{
2λ(y − x)

4(x− y)2 + λ2
+ tan−1

[
2

λ
(y − x)

]}∣∣∣∣
y=1

y=−1

if x = x′. (9.62)

With these definitions, equation (9.60) becomes

πf(x)− λ

b/a∫
−b/a

[
4λ

π
B(λ, x, x′)− 1

λ2 + (x− x′)2

]
f(x′)dx′ =

λ

π
A(λ, x). (9.63)

Once f(x) is solved for numerically, it must be reinserted into (9.59) and the integral

with respect to x′ must be computed numerically.
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The normalization condition on ρ(k) becomes

1∫
−1

ag(y)dy =
N

L
= n0. (9.64)

The “Fermi momentum” a can be found from

a =
n0γ

λ
, (9.65)

and λ in turn is found from

λ = γ

1∫
−1

g(y)dy. (9.66)

The ground state energy becomes

Eg =
�
2

2m
La3

1∫
−1

y2g(y)dy. (9.67)

If e(γ) is once again defined by (9.11), then e(γ) is found according to (9.12) but

with x replaced by y, and μ (defined the same way as for the Lieb-Liniger model)

is given by (9.13).

9.2.3.2 Single Fermion Holes

We begin from single fermion holes (in the γ = 0 limit), which in the γ → ∞ limit

become a global system translation excitation. The equations to be solved are

2πΩ(k) = 4c

b∫
−b

R(α)

c2 + 4(k − α)2
dα + θ(k − (b+Q)/2)

− θ[2(k − b)]− θ[2(k −Q)], (9.68)

2πR(α) = −2c

b∫
−b

R(α′)
c2 + (α− α′)2

dα′ + 4c

a∫
−a

Ω(k)

c2 + 4(α− k)2
dk + 2π + θ (α− b)

+ θ (α−Q)− θ[2(α− (b+Q)/2)]− θ[2/3(α− (b+Q)/2)], (9.69)

where |Q| ≤ b parametrizes the excitation momentum. To solve these equations

numerically we need to introduce the following scaled variables [in addition to (9.57)]:

Q = aq, Ω(k) = Ω (ay) = h(y), R(α) = R (ax) = f(x). (9.70)
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The scaled equations become

πh(y) = 2λ

b/a∫
−b/a

f(x′)
λ2 + 4(y − x′)2

dx′ − tan−1

[
y − (b/a+ q)/2

λ

]

+ tan−1

[
2(y − b/a)

λ

]
+ tan−1

[
2(y − q)

λ

]
, (9.71)

πf(x) = π + λ

b/a∫
−b/a

[
4λ

π
B(λ, x′, x)− 1

λ2 + (x− x′)2

]
f(x′)dx′

+
2λ

π
D (λ, x, q)− tan−1

[
x− b/a

λ

]
− tan−1

[
x− q

λ

]

+ tan−1

[
2[x− (q + b/a)/2]

λ

]
+ tan−1

[
2/3[x− (q + b/a)/2]

λ

]
,(9.72)

D (λ, x, q) =

1∫
−1

1

λ2 + 4(x− y)2

{
tan−1

[
y − (b/a+ q)/2

λ

]

+ tan−1

[
2(y − b/a)

λ

]
+ tan−1

[
2(y − q)

λ

]}
dy. (9.73)

The energy and momentum of the excitation are found from

P = �

a∫
−a

Ω(k)dk = �a

1∫
−1

h(y)dy, (9.74)

E =
�
2

2m
2

a∫
−a

kΩ(k)dk =
�
2

2m
2a2

1∫
−1

yh(y)dy. (9.75)

Figure 9.5 shows three example dispersion relations. We see that as γ → ∞, this

excitation branch vanishes because the system is infinitely heavy (as N → ∞ in the

thermodynamic limit).

9.2.3.3 Double Fermion Holes

The double fermion hole in the γ → 0 limit becomes a single fermion hole as γ → ∞.

The equations to be solved are

πΩ(k) = 2c

b∫
−b

R(α)

c2 + 4(k − α)2
dα, (9.76)

2πR(α) = −2c

b∫
−b

R(α′)
c2 + (α− α′)2

dα′ + 4c

a∫
−a

Ω(k)

c2 + 4(α− k)2
dk

− θ [2(α−Q)] + 2π, (9.77)

179



0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

P/h̄n0

2
m

h̄
2
n
2 0

E

λ=0.1
λ=1
λ=100

Figure 9.5: Dispersion relations for single fermion holes (referring to the excitations
according to their nature in the γ → 0 limit), which become a global system trans-
lation excitation in the γ → ∞ limit. Blue solid line: λ = 0.1, γ = 0.16886, red
dashed line: λ = 1, γ = 2.2491, black dash-dotted line: λ = 100, γ = 312.773. The
plots shown here are identical to those that are obtained for the spin-flip branch.

where |Q| ≤ a parametrizes the excitation momentum. The energy and momentum

of the excitation are found from

P = �

⎡
⎣−Q+

a∫
−a

Ω(k)dk

⎤
⎦ , (9.78)

E =
�
2

2m

⎡
⎣−Q2 + 2

a∫
−a

kΩ(k)dk

⎤
⎦+ μ. (9.79)

Recalling the scaled variables from (9.57) and (9.70), the scaled equations become

h(y) =
2λ

π

b/a∫
−b/a

f(x′)
λ2 + 4(y − x′)2

dx′, (9.80)

πf(x) = λ

b/a∫
−b/a

[
4λ

π
B(λ, x′, x)− 1

λ2 + (x− x′)2

]
f(x′)dx′

+ π + tan−1

(
2
x− q

λ

)
. (9.81)
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Excitation energy and momentum are found from

P = �a

⎡
⎣−q +

1∫
−1

h(y)dy

⎤
⎦ , (9.82)

E =
�
2

2m
a2

⎡
⎣−q2 + 2

1∫
−1

yh(y)dy

⎤
⎦+ μ. (9.83)

Figure 9.6 shows three example dispersion relations across the range of interactions.
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Figure 9.6: Dispersion relations for double fermion holes (referring to the excitations
according to their nature in the γ → 0 limit) which become one fermion holes
in the γ → ∞ limit. Blue solid line: λ = 0.1, γ = 0.16886, red dashed line:
λ = 1, γ = 2.2491, black dash-dotted line: λ = 100, γ = 312.773.

9.2.3.4 Spin-Flip Excitations

Once again we return to spin-flip excitations, which in the γ → ∞ limit become a

global system translation excitation. The equations to be solved are

πΩ(k) = 2c

b∫
−b

R(α)

c2 + 4(k − α)2
dα− 1

2
θ [2(k −Q)] , (9.84)
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2πR(α) = −2c

b∫
−b

R(α′)
c2 + (α− α′)2

dα′

+ 4c

a∫
−a

Ω(k)

c2 + 4(α− k)2
dk + θ (α−Q) + π, (9.85)

where |Q| ≤ b parametrizes the excitation momentum. The energy and momentum

of the excitation are found from

P = �

a∫
−a

Ω(k)dk, (9.86)

E =
�
2

2m
2

a∫
−a

kΩ(k)dk. (9.87)

Recalling the scaled variables from (9.57) and (9.70), the scaled equations become

h(y) =
2λ

π

b/a∫
−b/a

f(x′)
λ2 + 4(y − x′)2

dx′ +
1

π
tan−1

[
2(y − q)

λ

]
, (9.88)

πf(x) = λ

b/a∫
−b/a

[
4λ

π
B(λ, x′, x)− 1

λ2 + (x− x′)2

]
f(x′)dx′

+
π

2
− tan−1

(
x− q

λ

)
+

2λ

π
C (λ, x, q) , (9.89)

C (λ, x, q) =

1∫
−1

1

λ2 + 4(x− y)2
tan−1

[
2(y − q)

λ

]
dy. (9.90)

Excitation energy and momentum are found from

P = �a

1∫
−1

h(y)dy, (9.91)

E =
�
2

2m
2a2

1∫
−1

yh(y)dy. (9.92)

We find that for all interaction strengths, the spin-flip dispersion relations are iden-

tical to those of the single fermion hole branch, Fig. 9.5.
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Appendix

9.A Thermodynamic Limit Equations: Outline of

Derivation

The ground state thermodynamic limit equations can be obtained from the finite-

system equations in the following way: we take the difference of two Bethe ansatz

equations – that for kj+1 and that for kj (and likewise for αm+1 and αm when

applicable), two adjacent rapidities. Since the quantum numbers in the ground

state are always compactly and symmetrically distributed about zero, we know that

nj+1−nj = 1 (similarly, 
m+1−
m = 1). We do a first order Taylor expansion for the

θ-function featuring the higher-index rapidity, with the difference of the rapidities

as the small parameter. Next, define the rapidity density kj+1 − kj = 1
Lρ(k)

(and,

when applicable, αm+1 − αm = 1
Lr(α)

), and pass to the continuum limit with the

following replacements

∑
j

→ L

a∫
−a

ρ(k)dk, (9.93)

∑
m

→ L

b∫
−b

r(α)dα, (9.94)

where we have used the repulsive Yang-Gaudin model as an example. Note that both

the Lieb-Liniger and Yang-Gaudin thermodynamic limit ground state equations are

available in the literature (e.g. [46, 189]).

Next, we will indicate how one can obtain the excited-state equations starting

from the ground state, since we are not aware of a methodical account of all the

Yang-Gaudin branches studied here elsewhere. The reader is referred to chapters 7

& 8 for the finite-system equations.

Usually one has to choose the most convenient ground state to begin from: this

can either be the ground state with N particles (and M spin rapidities in the Yang-

Gaudin case), or it may have one less charge or spin rapidity, indicating one less

particle in the system or a spin-flip for one of the particles with respect to the

balanced ground state. This chosen initial ground state is then perturbed in a way

that reflects the nature of the excitation: for example, a rapidity may be explicitly

removed to create a hole excitation, or one rapidity is replaced by others (for example
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if a dimer is broken to create two free fermions).

This perturbation to the system shifts all other rapidities in our initial ground

state, and this shifted ground state will be denoted by an asterisk. The explicit

removal or addition of rapidities, together with the shift of all others, will yield

the excited state of interest. This excited state must be compared to the initial

ground state from which we constructed it, which may well not be the ground

state of interest. If that is the case, we must then correct for the “wrong” ground

state explicitly, which is usually much simpler then beginning from the correct but

inconvenient state.

Let us begin by examining the well-known example of the Lieb-Liniger type-II

excitations. In our notation, the equations are derived by following the recipe:

{[E∗(N + 1)− 1k]− E(N + 1)}+ {E(N + 1)− E(N)} . (9.95)

This means we must take the finite-system Bethe ansatz equations1 of N+1 bosons,

remove one charge rapidity (denoted here by k) with the other rapidities shifted from

their true ground state values (denoted by the asterisk) and compare the resulting

system to the true ground state of N + 1 particles. Finally, we add a ground state

correction that ensures that both the excited and the ground states have N particles

(in practice, the ground state correction simply contributes a μ term to the excitation

energy since the energy cost of adding a particle to the ground state is precisely μ).

Likewise, the recipe for all other branches in the Yang-Gaudin model are as follows

(as usual, we assume M = N/2):

• Attractive regime; single fermion holes as γ → 0, single dimer holes as γ →
−∞:

{[E∗(M + 1)− 1α]− E(M + 1)}+ {E(M + 1)− E(M)} . (9.96)

Recall that α denotes charge rapidities of dimers in the attractive Yang-Gaudin

model (under the string hypothesis). Since the system is fully dimerized, the

quantities in the parentheses immediately following E indicate the number of

dimers.

• Attractive regime; double fermion holes as γ → 0, double dimer holes as

γ → −∞:

{[E∗(M + 2)− 2α]− E(M + 2)}+ {E(M + 2)− E(M)} . (9.97)

1Note that one must use the equations in logarithmic form and if applicable, under the string
hypothesis.
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• Attractive regime; spin-flip:

[E∗(M, 0)− 1α + 2k]− E(M, 0). (9.98)

Recall that k denotes charge rapidities of single fermions in the attractive

Yang-Gaudin model (under the string hypothesis). Now that we also have free

fermions in the system, the second number in the brackets indicates how many

free fermions we have. The two added k’s (resulting from a broken dimer) are

placed at ±b, i.e. on the Fermi surface.

• Repulsive regime; single fermion holes as γ → 0, system translation as γ → ∞:

[E∗(N,M)− 2α + 1A]− E(N,M). (9.99)

In the repulsive Yang-Gaudin model, α denotes spin rapidities and A is the real

part of two complex-conjugate α’s under the string hypothesis in the approx-

imate equations derived in chapter 8 to describe this branch. The quantities

in brackets show the total number of fermions and the number of spin-up par-

ticles. One of the removed α’s is taken out from the Fermi edge at b and the

other at Q ∈ [−b, b]. The A that replaces these two complex-conjugate α’s is

placed at momentum (b+Q)/2.

• Repulsive regime; double fermion holes as γ → 0, single fermion holes as

γ → ∞:

{[E∗(N + 1,M)− 1k]− E(N + 1,M)}+ {E(N + 1,M)− E(N,M)} .
(9.100)

The numbers in parentheses have the same meaning as in the above case, and

k denotes charge rapidities of fermions.

• Repulsive regime; spin-flip as γ → 0, system translation as γ → ∞:

[E∗(N,M)− 1α]− E(N,M). (9.101)

Now let us outline in more detail how the equations are derived: the shift in

kj due to the perturbation is written as Lδkj (likewise for αm where the shift is

Lδαm). We write down the finite-system Bethe ansatz equations for the chosen

initial ground state, shifting all the rapidities. Then we explicitly subtract and/or

add any interaction terms that are associated with the rapidities that must be added

or removed, which are themselves not shifted. Next, we expand the interaction terms

[in the case of the δ-function potential, the two-body phase-shifts are given by the θ
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function of (9.14)] as a first order Taylor expansion about the unshifted rapidities,

with the first order terms proportional to the shifts.

We now subtract the Bethe ansatz equations of the unperturbed, conveniently-

chosen ground state. At this point we may pass to the continuous limit by using

the ground state quasi-momenta density function(s) that appear in the ground state

thermodynamic limit equations. In the repulsive Yang-Gaudin case, for example, we

would use equations (9.93)–(9.94). Some of the terms appearing under the integrals

in the equations can be simplified by substituting for them from the ground state

thermodynamic limit integral equations. Finally, we define new functions that are

products of L, the ground state distributions, and the shifts: in the repulsive Yang-

Gaudin model, for example, we have Ω(k) = L δk ρ(k) and R(α) = L δα r(α).

It remains to compute the energy and momentum. This is done according to our

recipes, by writing down the finite-system total P and E of the excited state (shifted

and with explicit rapidities added or removed), subtracting those of the convenient

ground state, and when necessary, adding the ground state correction. The resulting

quantities can be expressed through the “shift functions” of the integrals equations

(e.g. Ω(k) and R(α) for repulsive Yang-Gaudin), the explicit rapidities added or

removed and the chemical potential.
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Chapter 10

Extracting Solitonic Properties from

the Bethe Ansatz

In this chapter we apply the formulae derived in chapter 5, allowing for the compu-

tation of the missing particle number and phase step from the thermodynamic limit

dispersion relation, to all type-II excitations of the Lieb-Liniger and Yang-Gaudin

models. Of course, type-II Bethe ansatz states do not satisfy the assumptions of

the derivation (the solitonic nature of the excitation), but since we are considering

the relation of dark solitons to type-II states, we perform the computation with

investigative purposes: upon examining the results we will decide whether they are

reasonable, which will yield information about the nature of the excitations in either

scenario.

With the knowledge we have thus far, we can make an educated guess regarding

which of the type-II branches in the Yang-Gaudin model are soliton-like and which

are not. For example, any excitation involving the spin degree of freedom will

most certainly not be a (conventional) dark soliton1. What is the rationale, then,

for computing solitonic properties for these branches? As it were, in chapter 11,

we develop an approximation to the finite system dispersion relation of a solitonic

excitation, based on the thermodynamic limit results. This calculation is heavily

based on the missing particle number and phase step, and certainly assumes the

solitonic nature of the states. In chapter 13, we will apply this approximation

to all type-II branches of the Yang-Gaudin model studied, and find that it works

very well for the branches that are intuitively expected to be dark soliton-like, and

fails spectacularly for the others. This will serve to reassure that the success of the

finite-system approximation is not trivial – it carries physical implications about the

excitations studied, working well when the state is soliton-like, and failing otherwise.

For the Lieb-Liniger type-II excitations, the physical meaning of the missing

particle number and phase step is unveiled in chapter 12. This is then carried over

by analogy for the dark soliton-like type-II excitations of the Yang-Gaudin model in

chapter 13. It will become clear that the physical properties of all type-II excitations

that are associated with dark solitons are shared by the corresponding quantum dark

1Spin – or “magnetic” – dark solitons have also been studied [191].
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solitons, and as such, this chapter contains physical predictions of solitonic properties

across the range of interactions in one-dimensional Bose- and Fermi-gases. Thus,

while the chapter involves a significant amount of technical details, the calculations

will be invaluable to us later on.

10.1 Introduction

With the physical systems described by the Lieb-Liniger & Yang-Gaudin models

practically within reach, and the elementary excitations theoretically understood,

the next natural step would be to create and observe these excitations. Here we

are interested in type-II excitations [47], which have been associated with dark

solitons [59] for over 25 years [60], but since the concrete connection has proven

fairly difficult to establish, ongoing efforts to understand and clarify the issue are

continuing (e.g. [65, 66] and chapter 12). If type-II excitations can be interpreted

as solitons, then solitonic properties can be assigned to these excitation branches.

Furthermore, if direct measurement will reveal these properties [65, 66], then there

is merit in theoretically predicting these.

Two key characteristics of dark solitons are the missing particle number (the

number of particles removed from a uniform background density in order to pro-

duce the soliton density dip) and the phase step across the soliton. These quantities

cannot be directly computed for type-II states of the Lieb-Liniger or Yang-Gaudin

models because all Bethe ansatz eigenstates simultaneously diagonalize the Hamil-

tonian and total-momentum operators and are thus spatially uniform. In addition,

for an arbitrary coupling strength, a mean-field order parameter cannot be defined

and with it, the global coherent phase. As such, it is difficult to assign meaning to

the concept of a phase step. On the other hand, there exist formulae that allow one

to extract both the missing particle number and the phase step out of the dispersion

relation of the excitation in the thermodynamic limit (chapter 5), which is readily

available in the Bethe ansatz formalism.

In fact, an earlier publication [148] has already applied this idea to the Lieb-

Liniger model2, but the authors have computed the effective missing particle number,

not the actual, as shown in chapter 5. In the thesis [192], the SGR formula (see

chapter 5) from [152] for the actual missing particle number was applied to the

Lieb-Liniger model and a much simpler expression was derived, but no numerical

testing of the results was performed. Here we apply the actual missing particle

number SGR formula to all elementary type-II branches in the Lieb-Liniger and

Yang-Gaudin models (chapter 9), and compare to the simpler expression derived in

2Astrakharchik and Pitaevskii performed their calculation independently and in parallel to
ourselves.
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[192] (for ease of reference, we shall coin this simpler formula Campbell’s formula,

after the author). Thus, we present a complete overview of solitonic properties

for all elementary type-II branches, as derived from the dispersion relations, across

the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover, using the Lieb-

Liniger and Yang-Gaudin models.

Knowledge of the missing particle number and the dispersion relation itself allows

one to compute the physical and inertial masses of the soliton, and the ratio of the

two determines the oscillation frequency of the soliton in a harmonic trap ([109]

and chapter 4). We present the masses and the mass-ratio as a function of coupling

strength for all relevant branches in both models. This information serves as a

useful experimental prediction for the possible detection of these excitations in the

laboratory.

In section 10.2 we introduce the equations for the missing particle number and

phase step, presenting the general expressions from chapter 5 and briefly describing

Campbell’s formula for Lieb-Liniger type-II excitations which shall serve as a proto-

type for all other branches. The full details of the computation are provided for the

Lieb-Liniger case, while for all other branches we simply point out the differences,

with the majority of the calculation remaining unmodified.

Then, in section 10.3 we show the physical and inertial masses, as well as their

ratio, as a function of coupling strength for all branches. We discuss our findings and

conclude in section 10.4. Approximate analytical solutions of the thermodynamic

limit Bethe ansatz equations in limiting cases and all relevant system properties are

summarized in appendix 10.A.

10.2 Missing Particle Number and Phase Step

In the previous chapter, we saw that the Bethe ansatz provides us with means

to compute the thermodynamic limit dispersion relation for all type-II excitations

of interest, as well as ground state properties. In chapter 5, we rederived and

conveniently rewrote the SGR formula originally obtained in [152] for the missing

particle number of a solitonic excitation, assuming a Lagrangian, superfluid system.

This equation reads

Nd =
− dEs

dμ

∣∣∣
vs
+ vs

dPc

dμ

∣∣∣
vs
− vs

n0

dn0

dμ
Pc

1− mv2s
n0

dn0

dμ

, (10.1)

where Nd is the missing particle number, Es the excitation energy in the grand

canonical ensemble compared to a ground state at the same chemical potential (μ),

Pc the total momentum, vs the soliton speed and n0 is the density of the ground
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state at the same chemical potential as the soliton solution. Notice that during

differentiation with respect to μ, vs needs to be held constant. In the derivation of

chapter 5 it was also shown that, as long as we work in the thermodynamic limit,

the formula still applies if Es is replaced by the canonical excitation energy where

N (not μ) is held fixed.

It is clear that the results of chapter 9 furnish us with all the necessary information

to evaluate Nd for all the type-II branches (simply set Pc → P and Es → E), even if

the concept of the missing particle number is questionable, since type-II excitations

do not have a solitonic density profile. This section is dedicated to carefully applying

(10.1) to all type-II branches studied in chapter 9. This calculation is motivated

by the suspected connection between type-II excitations and dark solitons (chapter

12). Once Nd is computed, we will be able to examine the results and check for

consistency in light of the fact that the limiting behaviour (with coupling strength)

of all branches is well-understood and the physical nature of the excitations is known

(chapters 7 & 8).

Note that if one has already obtained the particle number Nd, one can calculate

the phase step across the excitations (Δφ) from Pc = Ps + �nBΔφ (chapter 5)

where nB is the density of bosonic particles, which is simply n0 for the Lieb-Liniger

model and n0/2 for the Yang-Gaudin. The total momentum Pc is made up of Ps =

mvsNd, the soliton momentum, and Pcf = �nBΔφ, the counter-flow momentum of

the superfluid background which must be present in a ring geometry to connect the

phase at x = ±L/2.
We emphasize that [148] has previously computed the effective missing parti-

cle number Ns (related to the dynamics of a quasi-particle in a trap) for type-II

excitations in the Lieb-Liniger model according to the SPDS formula,

Ns = − dEs
dμ

∣∣∣∣
vs

, (10.2)

which is only equivalent to (10.1), the actual missing particle number, at zero ve-

locity. In addition, Campbell’s formula from [192] allows one to indirectly evaluate

(10.1) for type-II excitations in the Lieb-Liniger model in a very simple way: one

only needs to solve the integral equations of the ground and excited states once, with

no need for differentiation of any kind. However, the dissertation [192] is highly theo-

retical with no numerical calculations presented. We will review Campbell’s formula

and compare it to the full derivative formula (10.1) for all type-II branches.

Since the form of the calculation is very similar for all branches, the full details

will only be provided for the Lieb-Liniger case, while for the others, we will only

point out the minor differences. The thermodynamic limit quantities relevant in each

case are to be found in the corresponding subsection of chapter 9. Our calculations

190



are illustrated by plotting Nd and Δφ as a function of momentum across the range

of interaction strengths.

10.2.1 Repulsive Lieb-Liniger

We shall see that in the weak-repulsion limit, Nd and Δφ tend to those of the

dark solitons in the one-dimensional Gross-Pitaevskii equation, and in the Tonks-

Girardeau limit, both become independent of the excitation momentum, taking on

the values Nd = −1 and Δφ = π, corresponding to a single boson hole. Both

the Gross-Pitaevskii-dark soliton and Tonks-Girardeau-hole excitations are treated

analytically in chapter 5, with the expressions for Nd explicitly given.

10.2.1.1 Single Boson Holes

We begin by evaluating (10.1) directly. Define

f1(γ) =

⎡
⎣ 1∫
−1

g(x)dx

⎤
⎦

2

, (10.3)

f2(γ, q) = 2

1∫
−1

xh(x)dx, (10.4)

f3(γ, q) =

1∫
−1

h(x)dx, (10.5)

and write the excitation energy and momentum through the scaled variables as

E =
�
2

2m

n2
0

f1(γ)

[−q2 + f2(γ, q)
]
+ μ, (10.6)

P = �
n0√
f1(γ)

[−q + f3(γ, q)] . (10.7)

The velocity is defined as

vs ≡ dE

dP
=
dE

dq

dq

dP
=

�

2m

n0√
f1

{−2q + df2
dq

−1 + df3
dq

}
. (10.8)

To begin with, we need to take the derivative of E with respect to μ:

dE

dn0

=
�
2

2m

2n0f1 − n2
0
df1
dn0

f 2
1

[−q2 + f2
]
+

�
2

2m

n2
0

f1

(
−2q

dq

dn0

+
df2
dn0

)
+

dμ

dn0

, (10.9)

dE

dμ
=

dE

dn0

dn0

dμ
. (10.10)
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Differentiating the chemical potential, we get

dμ

dn0

=
�
2

2m
[2n0α(γ)− cβ(γ)] , (10.11)

α(γ) = 3e(γ)− γ
de(γ)

dγ
, (10.12)

β(γ) = 2
de(γ)

dγ
− γ

d2e(γ)

dγ2
. (10.13)

The derivatives we need are

df1
dn0

=
df1
dγ

dγ

dn0

, (10.14)

df2
dn0

=
df2
dγ

dγ

dn0

+
df2
dq

dq

dn0

. (10.15)

Next, we need dq/dn0 keeping vs constant and we have no closed analytical expres-

sion for q. Still, this derivative can be done. Defining ṽs = vs/n0 and going back to

(10.8):

ṽs =
vs
n0

=
�

2m

1√
f1

{−2q + df2
dq

−1 + df3
dq

}
. (10.16)

The right-hand side only explicitly depends on q and γ. Therefore, there exists some

relation linking ṽs, q, γ which can in principle be solved to give q(ṽs, γ). In this case,

we have
dq

dn0

=
dq

dγ

dγ

dn0

+
dq

dṽs

dṽs
dn0

. (10.17)

The difficult derivative appearing here is dq
dγ

keeping vs constant. Since ṽs is only a

function of γ and q, we can write

dṽs =
∂ṽs
∂γ

dγ +
∂ṽs
∂q

dq. (10.18)

We want to keep ṽs constant, so dṽs must be zero, from which we get

dq

dγ
= −∂ṽs

∂γ

∂q

∂ṽs
. (10.19)

All together, we have
dq

dn0

=
1

n2
0

(
c
∂ṽs
∂γ

− vs

)
∂q

∂ṽs
. (10.20)

∂ṽs
∂q

and ∂ṽs
∂γ

are to be found numerically, but since ṽs is defined by the right-hand side

of (10.16), this can be done. We now have all the necessary equations to compute
dE
dμ

∣∣∣
vs
.
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Next, we need to compute dP
dμ

∣∣∣
vs
. Taking the derivative of (10.7):

dP

dn0

=
�√
f1

(f3 − q)− �
n0

2
f
−3/2
1

df1
dn0

(f3 − q) + �
n0√
f1

(
df3
dn0

− dq

dn0

)
, (10.21)

dP

dμ
=

dP

dn0

dn0

dμ
. (10.22)

The only new derivative appearing here is

df3(γ, q)

dn0

=
df3
dγ

dγ

dn0

+
df3
dq

dq

dn0

. (10.23)

We now have everything we need to calculate Nd from (10.1) directly.

In contrast, Campbell’s equations derived in [192] allow us to compute Nd and

Δφ in a much more efficient manner3:

Nd = −2πg(1) [h(1)− h(−1)]− 1, (10.24)

Δφ =
1

2g(1)
[h(1) + h(−1)] . (10.25)

Figure 10.1 shows Nd and Δφ calculated from (10.1) and from (10.24)-(10.25) for

several γ values across the range of interactions. In all cases the two formulae

agree very well, which validates the use of Campbell’s formulae. Any deviations

are caused by differences in numerical accuracy, since the direct evaluation of (10.1)

inevitably introduces additional inaccuracy through the many derivatives which are

done numerically.

In the limit γ → ∞ (bottom panels of Fig. 10.1), we may compare to the Tonks-

Girardeau gas, where Nd = −1, Δφ = π, independent of P (chapter 5). Clearly the

Lieb-Liniger calculation is approaching the Tonks-Girardeau limit. In the opposite

limit of γ → 0 (top panels of Fig. 10.1), we may compare to Gross-Pitaevskii dark

soliton results (chapter 5). There is practically no visible difference between the dark

soliton Nd and Δφ and the Lieb-Liniger results, except that at the end-points (at

P = 0, 2π�n0) the dark soliton missing particle number actually vanishes, while it

does not do so for Lieb-Liniger type-II excitations. The similarity of solitonic prop-

erties between dark solitons and type-II excitations in the Gross-Pitaevskii regime

reinforces the idea that the two are closely linked.

10.2.2 Yang-Gaudin Model

For each branch, we first give details of how the Lieb-Liniger calculation of (10.1)

and Campbell’s formulae (10.24)-(10.25) are to be modified, and then test the latter

3Note that the -1 on the right-hand side of (10.24) is missing in the thesis [192], which we
believe to be a simple typographical error.
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Figure 10.1: Missing particle number (a) and phase step (b) for type-II excitations
in the Lieb-Liniger model (single boson holes in the γ → ∞ limit). Top panels:
λ = 0.02, γ = 0.0015325, middle panels: λ = 1, γ = 1.7254, bottom panels: λ =
50, γ = 155.08. Direct evaluation of (10.1) yields the results plotted as solid blue
lines, while those from Campbell’s formula are shown as dashed red lines. The top
panels of each subfigure also show the missing particle number and phase step of
Gross-Pitaevskii dark solitons, plotted as black dash-dotted lines.
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against the former. Knowing the nature of the excitations in the limiting cases of

γ → 0 and γ → ±∞, and armed with our experience with the Tonks-Girardeau

limit of the Lieb-Liniger model, we expect Nd to be equal to negative the number of

fermions involved in the hole excitations in both Tonks-Girardeau limits, indepen-

dent of momentum. We shall see that this is exactly what the calculation returns.

Moreover, we will find that Campbell’s formulae are valid in all cases except for the

spin-flip branch in the attractive case where the structure of the excitation differs

from the Lieb-Liniger case in a non-trivial way.

The plots of Nd and Δφ are shown for all branches in Figs. 10.2–10.6. Indeed

we observe the correct limiting behaviour of Nd in both the non-interacting and

infinitely-strongly-interacting regimes, fully consistent with the nature of the exci-

tation.

10.2.2.1 Single Fermion Holes (Attractive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model. The

momentum is given by (10.7), while the energy is

E =
�
2

2m

n2
0

2f1(γ)

[−q2 + f2(γ, q)
]
+ 2μ. (10.26)

The velocity is given by (10.8), except that it is smaller by a factor of two. Since

the momentum expression is unchanged, the derivative dP/dn0 is also given directly

by (10.21), while

dE

dn0

=
�
2

2m

2n0f1 − n2
0
df1
dn0

2f 2
1

[−q2 + f2
]
+

�
2

2m

n2
0

2f1

(
−2q

dq

dn0

+
df2
dn0

)
+ 2

dμ

dn0

. (10.27)

The rest of the calculation is the same as in the Lieb-Liniger case, with the under-

standing that ṽs is to be modified the same way as vs.

Campbell’s formulae are unchanged except that the -1 on the right-hand side of

(10.24) is replaced by -2 and an additional factor of 2 is needed on the right-hand

side of (10.25). Nd and Δφ for this branch, evaluated from (10.1) and Campbell’s

formulae, are shown in Fig. 10.2. The two methods clearly agree for all interaction

strengths, and in the limiting cases the missing particle number reflects the nature

of the excitation: Nd = −1 as γ → 0 where it is a single fermion hole and Nd = −2

as γ → −∞ where it becomes a dimer hole.
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Figure 10.2: Missing particle number for single fermion holes in the attractive regime
(referring to the excitations according to their nature in the γ → 0 limit), which
become single dimer holes in the γ → −∞ limit. Top panels: λ = −0.02, γ =
−0.030815, middle panels: λ = −1, γ = −1.1363, bottom panels: λ = −50, γ =
−39.770. Direct evaluation of (10.1) yields the results plotted as solid blue lines,
while those from Campbell’s formula are shown as dashed red lines.

196



10.2.2.2 Double Fermion Holes (Attractive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model. We

write the excitation energy and momentum as

E =
�
2

2m

n2
0

2f1(γ)

[−2q2 + f2(γ, q)
]
+ 4μ, (10.28)

P = �
n0√
f1(γ)

[−2q + f3(γ, q)] . (10.29)

The velocity is

vs =
dE

dP
=

�

2m

n0

2
√
f1

{−4q + df2
dq

−2 + df3
dq

}
. (10.30)

Differentiating the energy and momentum, we find

dE

dn0

=
�
2

2m

2n0f1 − n2
0
df1
dn0

2f 2
1

[−2q2 + f2
]

+
�
2

2m

n2
0

2f1

(
−4q

dq

dn0

+
df2
dn0

)
+ 4

dμ

dn0

, (10.31)

dP

dn0

=
�√
f1

(f3 − 2q)− �n0

2
f
−3/2
1

df1
dn0

(f3 − 2q)

+
�n0√
f1

(
df3
dn0

− 2
dq

dn0

)
. (10.32)

The rest of the calculation is the same as in the Lieb-Liniger case, with the under-

standing that ṽs is to be modified the same way as vs.

Campbell’s formulae are unchanged except that the -1 on the right-hand side of

(10.24) is replaced by -4 and an additional factor of 2 is needed on the right-hand

side of (10.25). Nd and Δφ for this branch, evaluated from (10.1) and Campbell’s

formulae, are shown in Fig. 10.3. The two methods clearly agree for all interaction

strengths, and in the limiting cases the missing particle number reflects the nature

of the excitation: Nd = −2 as γ → 0 where it is a double fermion hole and Nd = −4

as γ → −∞ where it becomes a double dimer hole.

10.2.2.3 Spin-Flip Excitations (Attractive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model. The

momentum is given by (10.7), while the energy is

E =
�
2

2m

n2
0

2f1(γ)

[−q2 + f2(γ, q) + 1
]
+

�
2

2m

c2

2
. (10.33)

The velocity is given by (10.8), except that it is smaller by a factor of two. Since

the momentum expression is unchanged, the derivative dP/dn0 is also given directly
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Figure 10.3: Missing particle number for double fermion holes in the attractive
regime (referring to the excitations according to their nature in the γ → 0 limit),
which become double dimer holes in the γ → −∞ limit. Top panels: λ = −0.02, γ =
−0.030815, middle panels: λ = −1, γ = −1.1363, bottom panels: λ = −50, γ =
−39.770. Direct evaluation of (10.1) yields the results plotted as solid blue lines,
while those from Campbell’s formula are shown as dashed red lines.
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by (10.21), while

dE

dn0

=
�
2

2m

2n0f1 − n2
0
df1
dn0

2f 2
1

[−q2 + f2 + 1
]
+

�
2

2m

n2
0

2f1

(
−2q

dq

dn0

+
df2
dn0

)
. (10.34)

The rest of the calculation is the same as in the Lieb-Liniger case, with the under-

standing that ṽs is to be modified the same way as vs.

Campbell’s formulae are unchanged except that the -1 on the right-hand side of

(10.24) is removed and an additional factor of 2 is needed on the right-hand side of

(10.25). Nd and Δφ for this branch, evaluated from (10.1) and Campbell’s formulae,

are shown in Fig. 10.4. The two methods clearly disagree for all interaction strengths.

In the limiting cases, only the full calculation of the missing particle number from

(10.1) reflects the nature of the excitation: Nd = −1 as γ → 0 where a spin-flip

is equivalent to a single fermion hole (due to the Pauli exclusion principle) and

Nd = −2 as γ → −∞ which may be sensible if we consider the broken dimer as a

hole in the dimer rapidity distribution.

10.2.2.4 Single Fermion Holes (Repulsive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model,

except that x is replaced by y. We write the excitation energy and momentum as

E =
�
2

2m

n2
0

f1(γ)
f2(γ, q), (10.35)

P = �
n0√
f1(γ)

f3(γ, q). (10.36)

The velocity is

vs =
dE

dP
=

�

2m

n0√
f1

{
df2
dq

df3
dq

}
. (10.37)

Next, differentiating the energy and momentum, we obtain

dE

dn0

=
�
2

2m

2n0f1 − n2
0
df1
dn0

f 2
1

f2 +
�
2

2m

n2
0

f1

df2
dn0

, (10.38)

dP

dn0

=
�√
f1
f3 − �n0

2
f
−3/2
1

df1
dn0

f3 +
�n0√
f1

df3
dn0

. (10.39)

The rest of the calculation is the same as in the Lieb-Liniger case, with the under-

standing that ṽs is to be modified the same way as vs.

Campbell’s formulae are unchanged except that the -1 on the right-hand side

of (10.24) is removed and an additional factor of 2 is needed on the right-hand

side of (10.25). Nd and Δφ for this branch, evaluated from (10.1) and Campbell’s

formulae, are shown in Fig. 10.5. The two methods clearly agree for all interaction
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Figure 10.4: Missing particle number for for spin-flip excitations (attractive regime).
Top panels: λ = −0.02, γ = −0.030815, middle panels: λ = −1, γ = −1.1363,
bottom panels: λ = −50, γ = −39.770. Direct evaluation of (10.1) yields the results
plotted as solid blue lines, while those from Campbell’s formula are shown as dashed
red lines.
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strengths, and in the limiting cases the missing particle number reflects the nature

of the excitation: Nd = −1 as γ → 0 where it is a single fermion hole and Nd = 0

as γ → ∞ where it becomes a system translation.

10.2.2.5 Double Fermion Holes (Repulsive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model,

except that x is replaced by y. The energy, momentum and velocity written through

these functions are identical to the Lieb-Liniger case. Since the momentum and

energy expressions are unchanged, the derivatives dE/dn0 and dP/dn0 are also given

directly by (10.9) and (10.21). The rest of the calculation is the same as in the Lieb-

Liniger case.

Campbell’s formulae are unchanged except that an additional factor of 2 is needed

on the right-hand side of (10.25). Nd and Δφ for this branch, evaluated from (10.1)

and Campbell’s formulae, are shown in Fig. 10.6. The two methods clearly agree

for all interaction strengths, and in the limiting cases the missing particle number

reflects the nature of the excitation: Nd = −2 as γ → 0 where it is a double fermion

hole and Nd = −1 as γ → ∞ where it becomes a single fermion hole.

10.2.2.6 Spin-Flip Excitations (Repulsive)

The f -functions (10.3)-(10.5) are defined exactly as for the Lieb-Liniger model,

except that x is replaced by y. The energy, momentum and velocity written through

these functions are identical to the single fermion holes case in section 10.2.2.4, as are

dE/dn0 and dP/dn0. The rest of the calculation is the same as in the Lieb-Liniger

case, with the understanding that ṽs is to be modified the same way as vs.

Campbell’s formulae are unchanged except that the -1 on the right-hand side of

(10.24) is removed and an additional factor of 2 is needed on the right-hand side of

(10.25). Nd and Δφ, evaluated from (10.1) and Campbell’s formulae are identical

to those of the single fermion branch shown in Fig. 10.5.

10.3 Physical and Inertial Masses

Having both the dispersion relation and the missing particle number at our disposal,

we can easily compute the “physical mass” associated with the missing particle

number (which is simply mP = mNs = mNd at zero velocity) and the “inertial

mass”, which captures the response of the quasi-particles to applied forces. Recall

that the inertial mass is given by

mI =
dP

dvs
= 2

dE

d(v2s)
=

(
d2E

dP 2

)−1

, (10.40)
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Figure 10.5: Missing particle number for single fermion holes in the repulsive regime
(referring to the excitations according to their nature in the γ → 0 limit), which
become a global system translation excitation in the γ → ∞ limit. Top panels:
λ = 0.1, γ = 0.16886, middle panels: λ = 1, γ = 2.2491, bottom panels: λ =
100, γ = 312.773. Direct evaluation of (10.1) yields the results plotted as solid blue
lines, while those from Campbell’s formula are shown as dashed red lines. The plots
shown here are identical to those that are obtained for the spin-flip branch.
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Figure 10.6: Missing particle number for double fermion holes in the repulsive regime
(referring to the excitations according to their nature in the γ → 0 limit) which
become one fermion holes in the γ → ∞ limit. Top panels: λ = 0.1, γ = 0.16886,
middle panels: λ = 1, γ = 2.2491, bottom panels: λ = 100, γ = 312.773. Direct
evaluation of (10.1) yields the results plotted as solid blue lines, while those from
Campbell’s formula are shown as dashed red lines.
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where the derivatives should be evaluated at the extrema of the dispersion relation

(i.e. at zero velocity).

Moreover, in [109], it is shown that mI

mP
=
(
Ts
Tt

)2
, where Ts is the oscillation period

of a solitonic excitation in a harmonic trap with period Tt (for small amplitude

oscillations under the local density approximation), so the ratio of the inertial-to-

physical masses has direct relevance to experiments. In this section we compute

mI ,mP and mI/mP at the center of the dispersion relation for all branches as a

function of coupling strength.

Figures 10.7–10.12 show the physical and inertial masses and their ratio as a

function of interaction strength. Once again, the plots for the repulsive spin-flip

branch are identical to those for the single fermion hole branch (Fig. 10.11) and

are thus not shown separately. For the Lieb-Liniger model, in the weak-coupling

regime the type-II masses are in agreement with those of the Gross-Pitaevskii dark

soliton (chapter 2), which is hardly surprising as both the dispersion relation and the

missing particle number coincide in this regime. For arbitrary coupling, we recover

the results found in [148] as Ns = Nd at vs = 0.

With the exception of the Lieb-Liniger type-II excitations at small coupling, mP

for all branches remains of order unity (or less) for all interaction strengths. The

same is true for mI , except for single fermion holes and spin-flip excitations in the

repulsive Yang-Gaudin system, where mI diverges to −∞ as γ → ∞ since the

dispersion relation becomes a flat line at zero energy. Seeing that for these last two

branches mP → 0 and mI → −∞ as γ → ∞, the ratio mI/mP diverges to ∞ in

this limit very quickly indeed.

Moreover, we notice that for repulsive interactions in both the Lieb-Liniger and

Yang-Gaudin models, mI/mP > 1, implying that the soliton (if it exists) would

oscillate slower than the trap frequency. On the other hand, for attractive inter-

actions, the Yang-Gaudin type-II branches have mI/mP < 1, so the hypothesized

solitons would oscillate faster than the trap frequency.

10.4 Discussion and Conclusions

The main result of our work here is the application of the formula (10.1), which

allows one to extract the missing particle number from the dispersion relation of a

solitonic excitation, to type-II elementary excitations in the Lieb-Liniger and Yang-

Gaudin models. Apart from illustrating the general formalism, we have also tested

and confirmed Campbell’s formulae as equivalent (and much simpler) in all cases

except for spin-flip excitations in the attractive Yang-Gaudin model. We saw that

the missing particle number reflected perfectly the previously-known nature of all

type-II branches in the limiting cases of weak and strong interactions.
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However, despite some clear indications that the calculation returned reasonable

results, we must question the precise physical meaning of a missing particle number

for eigenstates that are spatially uniform and a phase step for an uncondensed gas.

This matter is resolved in chapter 12.

We also point out that in chapter 11 we will develop an approximation to the dis-

persion relation of a solitonic excitation in a finite-system based fully on thermody-

namic limit results. We will successfully apply the derived formulae to Lieb-Liniger

type-II excitations, heavily using Nd and Δφ as calculated in the present chapter.

This suggests that the missing particle number, the phase step, and the solitonic

interpretation of type-II states are physically-sound concepts.

In fact, if these excitations were to be created in the laboratory, it is possible

that measurements would reveal a dark soliton profile [65, 66]. According to our

calculations, however, the physical mass of all elementary type-II excitations in the

Yang-Gaudin model remains of order unity or less for −∞ < γ <∞. It is likely that

detecting such a small missing particle number will be experimentally problematic,

so a different method – perhaps based on the phase profile instead of the density –

will need to be developed.

208



Appendix

10.A Approximate Analytical Solutions

In this appendix we give a summary of analytical results in the limits of γ → ±∞
and γ → 0. All results for the Yang-Gaudin model specifically assume N = 2M .

The mathematical description of excitations in the Yang-Gaudin model is quite

complicated, with the exception of the limit γ → −∞ which is the only case for

which we will present explicit results. In the two remaining limits, γ → +∞ and

γ → 0, there are no currently-known methods to obtain approximate solutions for

excitations.

10.A.1 Repulsive Lieb-Liniger Model

For the Lieb-Liniger model, all limits can be successfully tackled. We begin from

the strong-coupling limit, where for the ground state equation, we neglect (x− x′)2

compared to λ2 in the kernel. This immediately leads to a constant solution, g =
1
2
(π − 2/λ)−1. It is then simple to derive the ground state properties

K = n0
πλ− 2

λ
, (10.41)

γ = 2

(
πλ

2
− 1

)
, (10.42)

e =
1

3

(
π − 2

λ

)2

, (10.43)

μ =
�
2n2

0

2m

[
π2 − 16π

3λ

]
. (10.44)

For the single boson hole excitations, expanding the inhomogeneous term in the

integral equation to first order about zero, naturally leads to a linear ansatz: h(x) =

α(λ, q) + β(λ, q)x. Upon substitution, we find α(λ, q) = πλ−2q
2(πλ−2)

and β(λ) = 1
πλ
.

The excitation energy and momentum can then be computed, and eliminating q,

the dispersion relation can be expressed as

E =
Pπ

m�n0

(
1− P

2�πn0

)(
γ

2 + γ

)2

. (10.45)
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From Campbell’s formulae, we further obtain

Nd = −1− 2

γ
, (10.46)

Δφ = π

[
1 +

(
P

π�n0

− 1

)
(1 + γ/2)−1

]
. (10.47)

Finally, the masses and their ratio are given by

mP = −mγ + 2

γ
, (10.48)

mI = −m
(
γ + 2

γ

)2

, (10.49)

mI

mP

=
γ + 2

γ
. (10.50)

In the weak coupling limit, the integral equations are much harder to solve. Lieb

and Liniger [46] suggest the leading order term in the ground state solution as a

semi-circle (which compares quite well indeed to the exact numerical result):

g(x) =
1

2πλ

√
1− x2, (10.51)

K = 2n0
√
γ, (10.52)

γ = (2λ)2, (10.53)

e = γ, (10.54)

μ =
�
2n2

0

m
γ. (10.55)

As for single boson holes, a solution is suggested in [60]:

h(x) =
1

λ

{
1

2π
(x− q) ln

(
1− qx+

√
1− q2

√
1− x2

1− qx−√1− q2
√
1− x2

)

+

(
1

2
− 1

π
sin−1(q)

)√
1− x2

}
. (10.56)

Using the above solution h(x) and the Lieb-Liniger expressions for E and P , we get:

E =
�
2n2

0

2m
16λ2

[
−q2 + 1

3λ
(1− q2)3/2

]
+

�
2n2

0

m
4λ2, (10.57)

P = 4�n0λ

[
−q − 1

2λ
q
√
1− q2 +

π

4λ
− 1

2λ
sin−1(q)

]
. (10.58)

Now, we can find vs and vc (the speed of sound) in the small λ limit, both from

the ground state and from the dispersion relation. From the ground state we obtain

vc =
√
μ/m. From the dispersion relation we get the same vc (if we use λ� 1 first,
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and then take q → 1), and

vs ≈ �

2m
4λρq, (10.59)

so q = s ≡ vs/vc. Now, the Gross-Pitaevskii expressions for energy and momentum

are (chapter 2)

EGP =
4μ3/2

√
m

3�c
(1− s2)3/2, (10.60)

PGP =
2mμ

�c

[
cos−1(s)− s

√
1− s2

]
, (10.61)

and the full expressions for the Lieb-Liniger quantities can then be written as

E = EGP + μ− 2mv2s , (10.62)

P = PGP − 2mvs. (10.63)

However, comparing to exact numerical results we find that the Gross-Pitaevskii

expressions alone perform much better. Therefore, we proceed with the Gross-

Pitaevskii energy and momentum.

Next, computing Nd and Δφ from Campbell’s formulae returns identically zero (a

limits issue), so we must use the derivative formula (10.1). Since both the ground and

excited state properties are best described by Gross-Pitaevskii results, the outcome

of the calculation is the Gross-Pitaevskii missing particle number (chapter 2):

Nd = −2
√
mμ

�c

√
1− s2. (10.64)

Computing the phase step, we again obviously recover the Gross-Pitaevskii result

Δφ = 2 cos−1(s). (10.65)

Note that since the relation between momentum and velocity is not linear, it is not

possible to eliminate s and express everything in terms of P . For the masses, we

find

mP = −m2
√
mμ

�c
, (10.66)

mI = −4
√
μm3/2

�c
, (10.67)

mI

mP

= 2. (10.68)

Thus in the limit γ → 0, the Lieb-Liniger ground state is best described by the Gross-

Pitaevskii background solution, while single boson holes have the same properties

as dark solitons of the Gross-Pitaevskii equation [148].
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10.A.2 Attractive Yang-Gaudin Model

Once again, the simplest limit is γ → −∞, where exactly the same approach as for

the Lieb-Liniger model yields the following ground state properties:

g = (π − 2/λ)−1, (10.69)

b = n0
πλ− 2

4λ
, (10.70)

γ =
1

2

(
πλ

2
− 1

)
, (10.71)

e =
1

48

(
π − 2

λ

)2

, (10.72)

μ =
�
2n2

0

2m

[
π2

16
− π

3λ

]
. (10.73)

Single fermion hole excitations have h(x) = α(λ, q)+β(λ, q)x with α(λ, q) = πλ−2q
2(πλ−2)

and β(λ) = 1
πλ
, the dispersion relation

E =
Pπ

4m�n0

(
1− P

�πn0

)(
2γ

1 + 2γ

)2

, (10.74)

missing particle number and phase step

Nd = −2− 1

γ
, (10.75)

Δφ = π

[
1 +

(
2P

π�n0

− 1

)
(1 + 2γ)−1

]
, (10.76)

and masses

mP = −2m
2γ + 1

2γ
, (10.77)

mI = −2m

(
2γ + 1

2γ

)2

, (10.78)

mI

mP

=
2γ + 1

2γ
. (10.79)

Double fermion holes have h(x) = α(λ, q) + β(λ, q)x with α(λ, q) = 2 πλ−2q
2(πλ−2)

and

β(λ) = 2
πλ
. The other properties are

E =
Pπ

4m�n0

(
1− P

2�πn0

)(
2γ

1 + 2γ

)2

, (10.80)

Nd = −4− 2

γ
, (10.81)

(10.82)
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Δφ = 2π

[
1 +

(
P

π�n0

− 1

)
(1 + 2γ)−1

]
, (10.83)

mP = −2m
2γ + 1

γ
, (10.84)

mI = −4m

(
2γ + 1

2γ

)2

, (10.85)

mI

mP

=
2γ + 1

2γ
. (10.86)

Finally, spin-flip excitations have h(x) = α(λ, q) + β(λ, q)x with α(λ, q) = πλ−2q
2(πλ−2)

and β(λ) = − 3
πλ+2

, and dispersion relation

E =
�
2n2

0γ
2

4m

{
π2

(1 + 2γ)2

[
− 1

1 + γ
+

4P

�n0π
− 4P 2

�2n2
0π

2

]
+ 1

}
. (10.87)

The missing particle number must be computed from (10.1) as Campbell’s formulae

fail in this case. We get

Nd =
− γ2

(1+2γ)2

{
− γ(5+6γ)

4(1+2γ)(1+γ)2
+ 1

1+2γ

[
P (2γ−1)
π�n0

+ 2P 2

(�n0π)2

]
+ P

π�n0

(
1− 2P

π�n0

)}
1
16

− 1
6(1+2γ)

− γ4

(1+2γ)4

[
1− 2P

π�n0

]2 , (10.88)

vs =
�n0πγ

2

m(1 + 2γ)2

(
1− 2P

�n0π

)
, (10.89)

Δφ =
2(P −mNdvs)

�n0

. (10.90)

The masses read

mP =
− mγ3

(1+2γ)3

(
1− 5+6γ

4(1+γ)2

)
1
16

− 1
6(1+2γ)

, (10.91)

mI = −m(1 + 2γ)2

2γ2
, (10.92)

mI

mP

=
(1 + 2γ)5

2γ5

1
16

− 1
6(1+2γ)

1− 5+6γ
4(1+γ)2

. (10.93)

In the opposite limit of γ → 0, only the ground state solution is known [189]. Its

properties are

g(x) =
1

π
+

1

2π2

[
tan−1

(
2(x+ 1)

λ

)
− tan−1

(
2(x− 1)

λ

)]
, (10.94)

b =
2π2n0

8π + 8 tan−1(4/λ) + λ ln( λ2

16+λ2
)
, (10.95)
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γ =
2π2λ

8π + 8 tan−1(4/λ) + λ ln( λ2

16+λ2
)
, (10.96)

e =
π2

12
+
γ

2
, (10.97)

μ =
�
2n2

0

2m

(
π2

4
+ γ

)
. (10.98)

No results are available to date on excited state equations.

10.A.3 Repulsive Yang-Gaudin Model

The ground state properties in the limit γ → ∞ have been derived in [189]:

g(y) =
λ

2πλ− 4 ln(2)
, (10.99)

a =
n0

2g
, (10.100)

γ =
λ

2g
, (10.101)

e =
1

3(2g)2
, (10.102)

μ =
�
2n2

0

2m

1

g2

(
1

4
− ln(2)

6πγg

)
. (10.103)

As for excited states, the problem is no simpler than in the weak-coupling limit

(where no solutions are available). We note that the integral bounds in the integral

equations for f(x) diverge in this limit, i.e., b/a → ∞ [189]. This implies that

(x − x′)2 [or (x − y)2 etc.] cannot be considered small compared to λ2 since x ∈
[−b/a, b/a] and b/a grows even faster than λ. Thus, no useful approximations can

be made.

In the limit γ → 0, only ground state results are known [189]:

g(y) =
1

π
− 1

2π2

[
tan−1

(
λ

y + 1

)
+ tan−1

(
λ

1− y

)]
, (10.104)

a =
2π2n0

3π + 2 tan−1( 2
λ
)− 2 tan−1(λ

2
)− λ ln

(
1 + 4

λ2

) , (10.105)

γ =
2π2λ

3π + 2 tan−1( 2
λ
)− 2 tan−1(λ

2
)− λ ln

(
1 + 4

λ2

) , (10.106)

e =
π2

12
+
γ

2
, (10.107)

μ =
�
2n2

0

2m

(
π2

4
+ γ

)
. (10.108)

No approach has been proposed to tackle the excited state equations.
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Chapter 11

Finite-System Approximation

In this chapter we will use concepts appropriate for dark solitons to obtain a simple

approximation of the finite-system dispersion relation from the thermodynamic limit

one. We test the derived formulae on Gross-Pitaevskii dark solitons and on Lieb-

Liniger type-II excitations, finding excellent agreement in both cases. This serves

as further evidence for the solitonic interpretation of type-II states. In the process,

we also find an approximate Gross-Pitaevskii wavefunction for a dark soliton on a

finite ring which is very accurate as long as the soliton is well-localised and much

simpler mathematically than the exact result. Furthermore, the ability to correct

thermodynamic limit quantities (such as the missing particle number) for finite-size

effects will be invaluable to our work in chapter 12.

11.1 Introduction

Solitons and other nonlinear collective excitations in (quasi-)one-dimensional sys-

tems have been of rising interest over the recent years, particularly in cold-atom

systems which provide an excellent platform to study such excitations because of the

high precision and control that they offer [80]. The number of condensed atoms in the

trap and the trap length (along the axial direction) in experiments are usually quite

large, so that a thermodynamic limit description is appropriate [16, 21, 22, 72, 73].

Finite-size effects can be non-negligible, though (as smaller systems are beginning

to be explored [56, 79]) and one may wish to account for them in some quick and

easy way, without necessarily solving the full many-body system or the finite-size

mean-field problem (as appropriate).

A key characteristic of any excitation is its dispersion relation, the excitation

energy as a function of excitation momentum, which allows one to make various

experimental predictions and extract useful information (such as the inertial mass

[109]). Here we use simple arguments, starting from translational invariance, to

derive an approximation to the finite-system dispersion relation based fully on ther-

modynamic limit results. We assume that the excitation is solitonic in nature,

i.e. that it has a localized dip in the density profile and a phase step across the exci-

tation. Furthermore, we assume that the soliton feature is well-localized and heals
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to the constant background density to a reasonable degree within the constraints of

the finite system.

Our derivation yields three different levels of approximation: the first produces an

excellent approximation of both the dispersion relation and other properties of the

excited state but requires more computational effort than the others. The second

is the poorest approximation and has no advantages over the other two, while the

third, being considerably simpler to evaluate than the first, performs just as well as

the first for the dispersion relation approximation but is unable to correctly capture

any other properties of the soliton.

The chapter is organized as follows: in section 11.2 we present the main derivation,

while in sections 11.3 and 11.4 we apply the derived equations to Gross-Pitaevskii

dark soliton and type-II hole excitations in the Lieb-Liniger model, respectively. In

these sections we compare and contrast the three levels of approximation in a pa-

rameter regime where small differences between them can be seen. We also compare

to the exact finite-system results which are available for both models. Finally, in

section 11.5, we summarize the results.

11.2 The Derivation

We wish to find an approximation to the dispersion relation of a solitonic excitation

in a finite system with N particles on a one-dimensional ring (i.e. with periodic

boundary conditions) of length L. The formalism here is quite similar to that used

in chapter 5. Consider a mean-field system described by a non-linear Schrödinger

equation such as

0 = −i�vs∂zψ +
�
2

2m
∂zzψ + μψ − g

[|ψ|2]ψ, (11.1)

where the only time-dependence of the solution is assumed to be translation at a

constant speed vs and the equation is written in the co-moving frame with z = x−vst.
Furthermore, m is the mass of the constituent particles, μ the chemical potential,

and g
[|ψ|2] is some arbitrary function of the order parameter mod-squared (the

non-linearity in the model stems from this term).

The grand canonical energy associated with this non-linear Schrödinger equation

is

W [ψ] =

∫
�
2

2m
|∂zψ|2 − μ |ψ|2 + u[ψ] dz, (11.2)

where u[ψ] is such that the functional-derivative of
∫
u[ψ] dz is g

[|ψ|2]ψ. W is

linked to the canonical ensemble energy operator H through W = H − μN .

Let us assume we have some non-uniform, exact solution to this equation with

open boundary conditions, ψs(z). This solution is assumed to be solitonic in nature,
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and in particular, it translates at constant velocity without changing shape, exhibits

a localized dip in the density profile and has a phase step across the excitation.

It is possible to construct a periodic boundary condition wavefunction, ψpbc(z),

from ψs(z) at the expense of the solution becoming only accurate to order 1/L:

ψpbc = exp(iΔφz/L)ψs, (11.3)

where Δφ = −arg [ψs(+∞)] + arg [ψs(−∞)] is the phase step across the excitation.

The additional phase factor guarantees that the phase is continuous and smooth

across the boundaries.

When ψs is replaced by ψpbc in the energy functional of equation (11.2), W [ψpbc]

gains two new terms not present in W [ψs]: vcfPs and
1
2
mv2cf 〈N〉s, where Ps is the

momentum in the state ψs, vcf =
�Δφ
mL

is the counter-flow velocity of the background

superfluid, and 〈N〉s is the number of particles in the state ψs. In fact, these are

precisely the terms one would obtain by simply Galilean-boosting the system by vcf .

For a soliton in an infinite system, the momentum functional,

P [ψ] =

∫
− i�

2
(ψ∗∂zψ − ψ∂zψ

∗) dz, (11.4)

evaluated at ψpbc, yields Pc = Ps + �n0Δφ where n0 is the background density to

which the soliton density heals far from the excitation.

Now, in the grand canonical ensemble one compares excited states (denoted below

by subscript s) to a background state (subscript BG) at the same μ (subscript μ),

and in the canonical ensemble, to a ground state with the same N (subscript N).

We now turn to consider a finite system of length L with N particles.

Thus we want to construct 〈H〉s,N − 〈H〉BG,N (the canonical energy difference of

an excited state and the ground state, both with N particles) starting from Es =

〈W 〉s,μ− 〈W 〉BG,μ = 〈H〉s,μ− μ 〈N〉s,μ− 〈H〉BG,μ+ μ 〈N〉BG,μ = 〈H〉s,μ− 〈H〉BG,μ−
μNd. Here, Es is the grand canonical energy difference between an excited state and

a background state, both at the same chemical potential μ. Meantime, Nd is defined

as the difference in particle number keeping μ constant: Nd = 〈N〉s,μ − 〈N〉BG,μ.
Note that we assume L is large enough for the density dip to heal to the background

density to a reasonable degree, i.e. our solitonic excitation is well-localized in the

finite system.

We associate 〈H〉s,μ + vcfPs +
1
2
mv2cf 〈N〉s,μ with 〈H〉s,N . By virtue of this as-

sociation, the excited state in the infinite system must have N particles when cut

down to size L, so when μ is kept constant, it is compared to a background state of

density N−Nd

L
. This means that when we evaluate Es, vcf , Ps and Nd for our energy

approximation [see (11.5)], we need to calculate these four thermodynamic limit
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quantities at a density which consistently solves ρ = N−Nd(ρ)
L

where ρ is the required

density, in general different from n0 = N/L. Furthermore, ρ will be different at each

point along the dispersion relation because Nd depends on the momentum.

Thus, we can write the finite-system energy approximation as

EF ≡ 〈H〉s,N − 〈H〉BG,N ≈ Es(ρ) + vcf (ρ)Ps(ρ)

+
1

2
mv2cf (ρ)N + 〈H〉BG,μ − 〈H〉BG,N + μ(ρ)Nd(ρ). (11.5)

Let us see what the last three terms on the right-hand side above evaluate to.

〈H〉BG,N has N particles and a uniform density of N
L
while 〈H〉BG,μ has N −Nd(ρ)

particles and a uniform density of N−Nd(ρ)
L

. Furthermore, in the last term μ(ρ)Nd(ρ),

μ is the chemical potential at the background density ρ = N−Nd(ρ)
L

.

SinceNd(ρ)/L goes to zero in the thermodynamic limit, we can expand the ground

state energy and chemical potential at density ρ as a Taylor expansion in the density

about n0. The energy needs to be expanded to second order while the chemical

potential, to first.

We start from the energy:

〈H〉BG,μ − 〈H〉BG,N = EGS(ρ)− EGS(n0)

≈ EGS(n0) +
dEGS
dn0

∣∣∣∣
n0

×
(−Nd(ρ)

L

)
+

1

2

d2EGS
dn2

0

∣∣∣∣
n0

×
(
−Nd(ρ)

L

)2

− EGS(n0)

=
dEGS
dN

∣∣∣∣
n0

L

(−Nd(ρ)

L

)
+

1

2
L
dμ

dn0

∣∣∣∣
n0

(
−Nd(ρ)

L

)2

= −μ(n0)Nd(ρ) +
N2
d (ρ)

2L

dμ

dn0

∣∣∣∣
n0

. (11.6)

In the last two lines we use the definitions dEGS

dN
= μ and n0 = N/L, which allows us

to obtain dEGS

dn0
= Lμ and d2EGS

dn2
0

= L dμ
dn0

, where during such derivatives with respect

to n0, N is varied while L is held fixed.

Meantime, expanding the chemical potential:

μ(ρ)Nd(ρ) ≈ μ(n0)Nd(ρ)− dμ

dn0

∣∣∣∣
n0

N2
d (ρ)

L
. (11.7)

Combining the results of our Taylor expansions (11.6) and (11.7), the last three

terms on the right-hand side of (11.5) are simply −N2
d (ρ)

2L
dμ
dn0

∣∣∣
n0

. This allows us to

write (11.5) as

EF ≈ Es(ρ) + vcf (ρ)Ps(ρ) +
1

2
mv2cf (ρ)N − N2

d (ρ)

2L

dμ

dn0

∣∣∣∣
n0

. (11.8)
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As for the total momentum, we compute

PF ≈ mvs(ρ)Nd(ρ) + n0�Δφ(ρ). (11.9)

Notice that the density in the second (counterflow) term is n0 and not ρ, because it

is the momentum of the superflow in the excited state with N particles, mNvcf .

Equations (11.8) and (11.9) constitute an approximation to the dispersion re-

lation of the finite system which is fully based on thermodynamic limit results.

However, in order to evaluate these expressions, one has to solve the consistency

equation ρ = N−Nd(ρ)
L

at each point along the dispersion relation. If simple, ana-

lytical thermodynamic limit results are available, ρ can be readily determined, but

that is rarely the case. If the thermodynamic limit equations need to be solved

numerically, solving for ρ introduces extra computational effort which, as we shall

see, can be avoided.

On the other hand, the current level of approximation captures the real finite

excited state quite well and such quantities as Nd and Δφ (and even the density

and phase profiles of the soliton, ns(z) and φs(z)), are approximated well. In what

follows, we find a simpler approximation for the dispersion relation, but not for the

other properties of the excitation, for which one should turn to the full ρ-dependent

quantities, as above.

Seeking a simpler expression for the dispersion relation, since we only need our

approximation to be accurate to O ( 1
L

)
, we can expand all the thermodynamic limit

quantities that are evaluated at ρ to first order about n0. Firstly, the last three

terms on the right-hand side of (11.8) are all O ( 1
L

)
, so only zeroth order terms in

the expansions are kept, simply yielding vcf (n0)Ps(n0)+
1
2
mv2cf (n0)N− N2

d (n0)

2L
dμ
dn0

∣∣∣
n0

.

We start by expanding all the terms in the expression for the finite-system mo-

mentum:

PF ≈ mvs(n0)Nd(n0) + n0�Δφ(n0)− Nd(n0)

L
x(n0)

= Pc(n0)− Nd(n0)

L
x(n0) (11.10)

where Nd(ρ) is already replaced by Nd(n0) since this term is proportional to 1/L

and

x(n0) = mNd(n0)
dvs
dn0

∣∣∣∣
n0

+mvs(n0)
dNd

dn0

∣∣∣∣
n0

+ �n0
dΔφ

dn0

∣∣∣∣
n0

. (11.11)

Note that x can be more concisely written as

x(n0) =
dPc
dn0

∣∣∣∣
n0

− �Δφ(n0). (11.12)
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In order to proceed, we also require a result obtained in chapter 5, which states

that

Nd =
− dEs

dμ

∣∣∣
vs
+ vs

dPc

dμ

∣∣∣
vs
− vs

n0

dn0

dμ
Pc

1− mv2s
n0

dn0

dμ

. (11.13)

The subscripts on the right of the derivatives now indicate which variables are to

be held constant during differentiation. This equation can be rearranged for dEs

dμ

∣∣∣
vs
,

which we now need. Moreover, we point out that since dEs

dPc

∣∣∣
n0

= vs, it is clear that

dEs

dvs

∣∣∣
n0

= vs
dPc

dvs

∣∣∣
n0

. Expanding Es we find

Es(ρ) ≈ Es(n0)− Nd(n0)

L

{
−Nd

dμ

dn0

+
mv2sNd

n0

+ vs
dPc
dn0

∣∣∣∣
vs

− vsPc
n0

+ vs
dPc
dvs

∣∣∣∣
n0

dvs
dn0

}

= Es(n0) +
N2
d (n0)

L

dμ

dn0

− Nd(n0)

L
vsx(n0). (11.14)

Inserting this into (11.8) gives the finite-system energy as

EF ≈ Es(n0) + vcf (n0)Ps(n0) +
1

2
mv2cf (n0)N +

N2
d (n0)

2L

dμ

dn0

∣∣∣∣
n0

− Nd(n0)

L
vsx(n0).

(11.15)

Since absolutely everything in (11.10) and (11.15) is now evaluated at n0, we may

drop the explicit dependence on n0 of all terms and define vx = −x/(mL) so that

PF , EF become

PF ≈ Pc +mvxNd, (11.16)

EF ≈ Es + vxPs + vcfPs +
1

2
mv2cfN +

N2
d

2L

dμ

dn0

. (11.17)

In the current form, PF and EF only differ from their ρ-dependent counterparts in

terms of order 1/L2. We have succeeded in removing the need to compute ρ along

the dispersion relation, but the current form still features vx, a combination of rather

cumbersome derivatives. In fact, it is possible to avoid the computation of vx all

together.

It is clear that the vx-terms are O(1/L) and as such, cannot be neglected on the

basis of the accuracy of the expansion. Indeed, vx itself is generally non-zero, neither

is it always negligibly small. The vx-terms make a non-negligible contribution to

each of PF and EF . However, remarkably, EF (PF ) is affected very little by the

inclusion or exclusion of the x-terms. We now demonstrate how this comes about.

We notice that all the terms on the right-hand sides of (11.16) & (11.17) can be
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thought of as functions of Pc, the thermodynamic limit momentum. We wish to

eliminate the parameter Pc and directly express the finite-system dispersion relation

as EF (PF ). Knowing that Pc = PF −mvxNd, we can expand Es(Pc) in momentum

about Es(PF ):

Es(Pc) ≈ Es(PF ) +
dEs
dPc

∣∣∣∣
Pc

(−mvxNd), (11.18)

where the derivative is already evaluated at Pc seeing as vx ∝ 1/L. In this manner

we find

Es(Pc) ≈ Es(PF )− vsmvxNd = Es(PF )− vxPs. (11.19)

Substituting this into EF leads to

EF (PF ) ≈ Es(PF ) + vcf (PF )Ps(PF ) +
1

2
mv2cf (PF )N +

N2
d (PF )

2L

dμ

dn0

. (11.20)

The last three terms in EF are O(1/L), so we may freely change from evaluating

them at Pc to evaluating them at PF , since the differences are O(1/L2).

Equation (11.20) shows that the energy of the finite system as a function of the to-

tal momentum does not feature the vx-term. Now, since physically, the finite-system

momentum must be confined to the same range as Pc in the thermodynamic limit,

for convenience we may parametrize PF as Pc, the thermodynamic limit momentum.

This means that the finite-system approximate dispersion relation, EF (PF ), can

be found by computing

PF ≈ Pc, (11.21)

EF ≈ Es + vcfPs +
1

2
mv2cfN +

N2
d

2L

dμ

dn0

, (11.22)

where Pc, Es, vcf , Ps, Nd are to be calculated in the thermodynamic limit at a fixed

density n0, and
dμ
dn0

is found for the ground state of the thermodynamic limit system,

also at n0.

This final result is an enormous simplification compared both to the approxima-

tion of equations (11.8) & (11.9), and to that of equations (11.16) & (11.17). It

merely requires the thermodynamic limit equation of state [that is, μ(n0)] and the

thermodynamic limit excited-state properties Pc, Es,Δφ and Nd.

11.3 Gross-Pitaevskii Dark Solitons

An excellent test-case for the derived approximation is the Gross-Pitaevskii dark

soliton, because an exact analytical solution of both the infinite case with open

boundary conditions (keeping μ constant) [59] and the finite case with periodic

boundary conditions (keeping N constant) [105–108] is available. As such, we can

221



use the thermodynamic limit results to compute the approximation to the finite-

system dark soliton dispersion relation and explicitly compare it to the exact result.

Moreover, we can calculate the approximate dispersion relation at all three levels

of approximation – at each stage of the general derivation of the previous section.

This demonstration will serve to clarify the procedure and illustrate the success of

the final result.

Dark solitons of the one-dimensional Gross-Pitaevskii equation [i.e. equation

(11.1) with g
(|ψ|2) = g |ψ|2] on the infinite line have the following properties (chap-

ter 2):

Es =
4�μ3/2

3g
√
m
(1− s2)3/2, (11.23)

Nd = −2�

g

√
μ

m

√
1− s2, (11.24)

Ps = mvsNd = −2μ�

g
s
√
1− s2, (11.25)

Δφ = 2 cos−1(s), (11.26)

vcf =
�Δφ

mL
=

�

mL
2 cos−1(s), (11.27)

vs =

√
μ

m
s, (11.28)

μ = n0g, (11.29)

dμ

dn0

= g. (11.30)

First, we wish to use equations (11.8) & (11.9), where Es, vcf , Ps, Nd are evaluated

at ρ. Writing out the self-consistent condition for ρ,

ρ =
N + 2�

g

√
ρg
m

√
1− s2

L
, (11.31)

leads to the solution (choosing the positive sign in the quadratic formula)

√
ρ =

y +
√
y2 + LN

L
, (11.32)

y =
�
√
1− s2√
gm

. (11.33)

The thermodynamic limit quantities necessary for (11.8) & (11.9) are found by

replacing μ(n0) in (11.23)-(11.28) by μ(ρ) = gρ.

We remark that the approximate finite momentum of equation (11.9) necessarily

begins at 0 (s = 1) and ends at 2π�n0 (s = −1). This is guaranteed because Nd

vanishes at s = ±1, and so ρ(s = ±1) = n0. However, PF is not restricted to this
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range: it “overshoots” the end points (at some |s| < 1) and then returns to the

correct end points at s = ±1. This manifests as “folding” of the dispersion relation

near the edges, and the affected region can be estimated by studying the zero-

crossing of PF . We find that the dispersion relation is approximated well (without

unphysical folding) for

3

N
√
γ
< cos−1(s) < π − 3

N
√
γ
, (11.34)

where the soliton is localized sufficiently well. Here, γ = mg/�2n0 is the Lieb-

Liniger dimensionless interaction constant. The folding of the dispersion relation

occurs over such a small momentum range for the parameters used in Fig. 11.1 that

it is completely unresolvable on the scale of the plot.

Next, we will utilize expressions (11.16) & (11.17) which do not require the use of

ρ but do involve the vx-terms. For the dark soliton, x evaluates to x = −2�s
√
1− s2.

Finally, we can apply (11.21) & (11.22), the simplest formulae for which we only

need the direct thermodynamic limit quantities listed in (11.23)-(11.28).

All three levels of approximation are plotted in Fig. 11.1 (a) (numbered consecu-

tively from one to three in the order of derivation) for a specific set of parameters.

We choose mg/n0�
2 = 2 and N = 10 because with these parameters, the soliton is

fairly well-localized in the finite system, but not so small compared to the system

size so that no difference between the three stages of approximation is visible.

The exact finite-system dispersion relation is also plotted in Fig. 11.1 according

to the prescription of Refs. [107, 108] and [105, 106] (see appendix 2.A).

With reference to Fig. 11.1 (a), we see that the dispersion relation at the first –

and thus most exact, as it involves the smallest number of approximations – level

of approximation is indistinguishable from the exact result. The third level – the

simplest to compute – is also excellent, only slightly under-estimating the exact

energy. The second level is by far the worst, although increasing mg/n0�
2 to 20 or

N to 20 makes all three approximations overlap, so it is simply a question of degree

of localization. It is remarkable that the third level approximation reproduces the

correct shape of the dispersion relation better than the second.

In panel (b), we compare the exact dispersion relation to the approximation

derived in section IV B of [105], starting from the general exact result and taking

the limit of large rings. It is clear that this approximation is far less accurate

when compared to ours: while it reproduces the central region of the dispersion

relation well, towards the edges it merges with the system translation parabola and

curves away from the true dispersion relation. Moreover, it is far more complicated

to compute than our formulae (at either level). It is also numerically less robust:

at the modest parameters of mg/n0�
2 = 2, N = 10, for a significant number of the
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points that are meant to lie on the soliton dispersion relation, the procedure actually

returns excited states of the uniform background – simple superflow, a translation

of the constant density solution – resulting in points that lie on the translation

parabola and not on the dark soliton dispersion relation.

To conclude the section, we emphasize that the first level approximation can be

used to approximate all other properties of the excited state, not just the dispersion

relation. For example, the density and phase profiles of the solution can be well

approximated, again based on the thermodynamic limit results. The thermodynamic

limit dark soliton solution is ψs(x) =
√
ns(z)e

iφs(z) where

ns(z) = n2
0

[
s2 + (1− s2) tanh2

(
a
√
1− s2z

)]
(11.35)

with a =
√
mgn0

�
, while the phase is given by

φs(z) = tan−1

{
s√

1− s2 tanh(a
√
1− s2z)

}
. (11.36)

The finite-system approximation of the profiles is obtained by replacing n0 by ρ and

adding the counter-flow term to the phase: Δφz
L

[recall that ψpbc = exp(iΔφz/L)ψs].

These approximate equations compare well to the exact profiles, all along the

dispersion relation. This is shown in Fig. 11.2, where we give two examples: one

close at the edge, at Pc = 0.5�n0, and the other close to the center, at Pc = 4�n0.

In both cases, the approximation is superb. Consequently, if we define the missing

particle number Nd in a finite system with N particles as N − nmaxL where nmax

is the maximal density in the soliton state, then we would expect Nd(ρ) from the

first level approximation to match extremely closely with the exact result. A direct

comparison is shown in Fig. 11.3: we see that the approximate Nd is indeed close,

but lies lower (at more negative values) than the exact result near the edges of the

dispersion relation. This occurs because the finite soliton density does not fully heal

to the background – L is not large enough. This leads to nmax < n0 and causes the

visible difference in Fig. 11.3, while the density profile itself is reproduced perfectly.

As a final note, we point out that this approximation of the finite dark soliton

wavefunction is used in chapter 12 to perform an analytical calculation which would

be impractical using the exact solution.

11.4 Lieb-Liniger Type-II Excitations

The second example we present is type-II excitations in the Lieb-Liniger model

[46, 47]. As we have seen, it is exactly solvable by the Bethe ansatz, both for finite

systems and in the thermodynamic limit. Type-II states have long been associated
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Figure 11.1: Dispersion relation for dark solitons in the one-dimensional Gross-
Pitaevskii equation withmg/n0�

2 = 2, N = 10. Plotted as a black solid line (on both
panels) is the exact result, calculated according to Refs. [107, 108] and [105, 106].
In (a), we show all three levels of approximation as derived in section 11.2: using
(11.8) & (11.9) – red dashed line, using (11.16) & (11.17) – green dash-dotted line,
and using (11.21) & (11.22) – blue dashed line. The first level of approximation is
the most accurate and is indistinguishable from the exact result. The third level is
very close to the exact dispersion relation and has the correct shape, only slightly
under-estimating the energy. The second level is furthest from the true dispersion
relation, and has a visibly incorrect shape. This is alleviated at higher values of
mg/n0�

2 & N where no difference between the three levels of approximation can be
seen. In (b), we compare the exact result to a previously published approximation of
the dark soliton finite-system dispersion relation in the limit of large rings (see [105],
section IV B). This recipe performs well near the middle of the dispersion relation
but near the edges, deviates from the exact result considerably, instead merging into
the system translation parabola – a translated uniform superfluid state.
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Figure 11.2: Density and phase profiles for dark solitons in the one-dimensional
Gross-Pitaevskii equation with mg/n0�

2 = 2, N = 10. (a) & (b) are plotted at Pc =
0.5�n0, while (c) & (d) at Pc = 4�n0. The blue solid line shows the approximation,
while the red dashed line shows the exact result, calculated according to Refs. [107,
108] and [105, 106]. The agreement is essentially perfect in both cases.

226



0 1 2 3 4 5 6−2.5

−2

−1.5

−1

−0.5

0

Pc/h̄n0

N
d

Approx. 1
exact

Figure 11.3: The missing particle numberNd for dark solitons in the one-dimensional
Gross-Pitaevskii equation with mg/n0�

2 = 2, N = 10. Nd(ρ) is plotted as a blue
solid line, while the red dashed line shows the “exact result” [105–108], defined in a
finite system as N − nmaxL where nmax is the maximal density in the soliton state.
The small discrepancy visible on either side of the center point is fully due to the
fact that in a finite system of length L, the dark soliton density does not heal all
the way to n0 at ±L/2, and therefore, nmax < n0.

with dark solitons, and have an extremely similar dispersion relation [60]. This mo-

tivates us to apply our finite-system approximation to these excitations and examine

how closely the finite-system dispersion relation is reproduced. After all, the deriva-

tion of section 11.2 is strongly based on the solitonic nature of the excited state,

so a successful approximation would indicate that the assumptions are, at least to

some degree, justified. In a way, this complements our work in chapter 12.

The finite Bethe ansatz equations and quantum numbers for the ground state

and type-II excitations can be found in chapter 7 while the thermodynamic limit is

reviewed in chapter 9. Moreover, in chapter 10, details are also given as to how one

can compute Nd and Δφ (all at a constant background density, n0). Armed with

these key quantities, we can find Ps = mvsNd and vcf =
�Δφ
mL

and easily evaluate the

third level of approximation, equations (11.21) & (11.22).

To obtain the second level of approximation, we simply need to calculate vx,

necessary for (11.16) & (11.17). In the Lieb-Liniger model the natural dimensionless

parameter that parametrizes the excitation is q – see chapter 9 for details. In the

notation of chapter 10, x can be calculated as

x =
dPc
dn0

− �Δφ =
1√
f1
(f3 − q)

(
1 +

γ

2f1

df1
dγ

)
− γ√

f1

df3
dγ

− �Δφ. (11.37)
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Finally, to compute the first level of approximation with a changing background

density ρ, the following is done: we choose c and n0 and find the appropriate λ

that yields γ = c/n0. This is achieved with the Matlab function fminsearch.m (an

implementation of the simplex search algorithm), which is used for optimization

throughout the first level approximation procedure. At this λ(n0), we calculate
dμ
dn0

.

Then at each q ∈ [−1, 1], we use functional minimization to calculate the λ that

gives ρ(λ) which solves the consistency condition for ρ. During this optimization,

Nd is calculated using Campbell’s formula, which only requires the ground- and

excited-state integral equations to be solved once for each iteration over λ.

Once the optimal λ(ρ) is found at a given fixed q, we solve the ground- and

excited-state integral equations at this λ(ρ) and q, and calculate P,E,Nd,Δφ, (the

latter two according to Campbell’s formulae, which are far more numerically effi-

cient). The velocity is evaluated as

vs =
n0√
f1

{−2q + df2
dq

−1 + df3
dq

}
, (11.38)

which requires the excited-state to be solved for twice more, on either side of q, to

allow for the numerical evaluation of the derivatives with respect to q (during which

λ is clearly held constant).

This procedure yields all the necessary quantities for equations (11.8) & (11.9),

with the association Es = E the thermodynamic limit excitation energy of the type-

II state in the canonical ensemble1. Numerically, such a calculation is fairly efficient

on a standard desktop machine, taking perhaps 30 seconds to compute.

The comparison of our approximations to the exact dispersion relation is shown

in Fig. 11.4 for γ = 1, N = 10 and the result is very encouraging indeed. The

close agreement suggests that our approximation is not restricted to truly superfluid

systems, and is further evidence that type-II excitations can be interpreted as dark

solitons (see chapter 12 for details). The simplest, third level approximation under-

estimates the energy somewhat, while the first over-estimates it (in contrast to the

Gross-Pitaevskii dark soliton example above where it yields perfect agreement). The

intermediate, second level approximation is once again the worst, with deviations in

the form of the curve very similar to what we have seen for the dark soliton.

It is immediately obvious that the momentum range at level one (with a varying

background density ρ) and two (with the x-terms included) is incorrect. The approx-

imate finite-system momentum of (11.9) & (11.16) extends to either side beyond the

physical range of [0, 2π]�n0. This occurs because Nd of type-II excitations does not

vanish at the edges of the dispersion relation (see chapter 10) and so we do not get

1Recall equations (5.40) & (5.41), showing that the two are interchangeable up to terms
O(1/L2).
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ρ = n0 at the edges, as we do for dark solitons. However, with this understanding,

the appropriate dispersion relation, restricted to the correct momentum range, is in

close agreement with the exact result.

Once again we stress that the parameters used for the illustration of Fig. 11.4

were chosen so that our approximation is applicable, and yet visible differences exist

between the three levels of approximation and the exact result. Increasing either

one of γ or N improves the agreement between all data sets shown until they are

indistinguishable.
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Figure 11.4: Dispersion relation for type-II excitations in the Lieb-Liniger model
with γ = 1, N = 10. Black circles show the exact finite dispersion relation, red
solid line – equations (11.8) & (11.9), greed dash-dotted line – equations (11.16) &
(11.17), and blue dashed line – results of (11.21) & (11.22). Once again, the third
level of approximation is very close to the exact dispersion relation, only slightly
under-estimating the energy, while the first level over-estimates the energy. The
second level is furthest from the true dispersion relation, falling considerably short
of the real energy for higher momenta, in the same way as for Gross-Pitaevskii dark
solitons. The approximations agree much better with each other and the exact result
for higher γ,N in this case, too. In the first and second levels of approximation, the
momentum range is larger than physically allowed because Nd is non-zero at q = ±1
(the edges of the dispersion relation) and therefore we do not get ρ = n0 at these
points, thus extending the momentum range.

As a final note, all three levels of approximation can be computed analytically

in the Tonks-Girardeau limit, as well as the exact finite-system dispersion relation.

The Tonks-Girardeau gas is equivalent to a (single-component) gas of free fermions,

so the properties of the ground state and hole excitations are readily computed.

Remarkably, both the first and third level approximations reproduce the finite dis-

persion exactly.
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11.5 Discussion and Conclusions

Our derivation was carried out for a general superfluid system in one dimension,

respecting Galilean invariance. For a localized excitation with solitonic properties

(a density dip and a phase jump), we were able to reconstruct the finite-system

dispersion relation (holding N constant) from the thermodynamic limit dispersion

relation (holding μ constant). Largely, this was possible due to the assumption that

L is larger than the healing length of the soliton and thus the density in the excited

state heals to the background n0 at the boundaries. In broad terms, the energy

has to be corrected by adding the contribution of the counterflow, present due to

periodic boundary conditions and finite L, as well as a term that can be thought

of as a correction to the ground state energy. The momentum expression, on the

other hand, is of the same form as in the thermodynamic limit since the counterflow

momentum is finite even in an infinite system.

We note that it is not necessary to assume the system obeys the non-linear

Schrödinger equation, (11.1). In fact, it is sufficient to assume superfluidity, so

that the order parameter has a coherent phase the spatial derivative of which gives

rise to super-currents, and translational/Galilean invariance. The contribution to

the energy from the counterflow can be simply obtained by performing a Galilean

boost to velocity vcf , as mentioned earlier, leaving the rest of the derivation un-

affected. Moreover, the logic is not constrained to pure one-dimensional systems.

The arguments can easily be generalized to an elongated three-dimensional geome-

try as long as the density vanishes far from the longitudinal axis and translational

invariance is maintained in the longitudinal direction. In the three-dimensional case,

the only point of difference is that the one-dimensional density is replaced by a lin-

ear density, given by the three-dimensional density integrated over the radial and

azimuthal directions.

Our principal argument has led to equations (11.8) and (11.9), which we con-

sequently referred to as the first level approximation. While simple in form, they

require one to solve for ρ, the self-consistent, modified background density, at each

point along the dispersion relation. The advantage of this approximation is that, as

we have shown in section 11.3, it allows one to accurately obtain other properties of

the excitation, such as the density and phase profiles, as well as Nd and Δφ.

Equations (11.21) and (11.22) are the final, simplest expressions referred to as the

third level of approximation. These have a form as simple as those at the first level,

but conveniently are evaluated at the constant background density n0, which is a

significant simplification. In terms of reproducing the correct dispersion relation,

the third level equations are practically as accurate as the first – so much so that

in most cases, the additional computational cost of the first level approximation is
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hardly justified.

The intermediate, second level equations (11.16) and (11.17) have shown the

poorest performance out of all three levels. These are also evaluated at n0 but have

additional terms that are difficult to compute and, as we have shown, unnecessary. It

is remarkable that the third level equations yield better results than the second (on

which they are based) for larger healing-length-to-system-size ratios, thus solidifying

the conclusion that in order to approximate the dispersion relation, the third and

simplest set of equations is best used. Finally, we confirmed that when the size

of the soliton compared to system size decreases, all three approximations become

equivalent.

We have used one-dimensional Gross-Pitaevskii dark solitons and Lieb-Liniger

type-II excitations (solved by the Bethe ansatz) to illustrate how the approxima-

tions are to be computed, and evaluated their performance by comparing to exact

results. In so doing, Refs. [105–108] were incredibly useful as they have found ex-

act dark soliton solutions of the one-dimensional Gross-Pitaevskii equation, and our

work in chapter 10 provided the necessary technical details to easily evaluate the

approximations for the Lieb-Liniger model. The success of the approximation in the

Lieb-Liniger model for states that technically satisfy none of the assumptions on

which the derivation is based shows the potential of our result as an investigative

tool: if the physical nature of some excitation is unknown, the level of accuracy

of our approximation can shed light on the matter, while requiring only “global”

measurements or calculations.
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Chapter 12

Quantum Dark Solitons

In this chapter we finally address the main research question of the thesis – the

connection of Lieb-Liniger type-II states to Gross-Pitaevskii dark solitons. So far,

we have seen that the two types of excitations have very similar dispersion relations

– in the thermodynamic limit & for finite systems with small particle numbers,

with weak to intermediate interactions. Furthermore, the missing particle number

and phase step of type-II excitations approached the Gross-Pitaevskii dark soliton

quantities in the limit as γ → 0. In addition, the finite-system approximation,

derived for well-localized dark solitons in a superfluid, performed superbly for Lieb-

Liniger type-II states. All these observations constitute evidence for a fundamental

relation between dark solitons and type-II states, underlining their many common

properties. We now turn to search for this link.

12.1 Introduction

Recall that dark solitons are nonlinear solutions of the one-dimensional Gross-

Pitaevskii equation, characterized by a density dip and a phase step across the

excitation (chapter 2), observed experimentally [16, 21, 22] in ultra-cold atomic

Bose-Einstein condensates [12, 13]. In addition to dark solitons in an infinite sys-

tem [20], solutions on finite rings are also analytically known [105–108, 113]. Dark

solitons are dynamically stable in a one-dimensional configuration (in three dimen-

sions they decay via the snaking instability [110, 154]) and can be observed for

experimentally long periods of time [111, 193] as they propagate (on a uniform

background) at constant speed and without changing shape. Moreover, in a spin-

less one-dimensional system, they constitute the lowest energy excitations of the

Gross-Pitaevskii equation, and as such, have attracted much attention.

Now, the one-dimensional Bose gas with repulsive contact interactions and pe-

riodic boundary conditions is described by the Lieb-Liniger model [46, 47], and

can be solved exactly with the Bethe ansatz [52]. The weak-coupling limit of the

Lieb-Liniger model is well captured by Gross-Pitaevskii physics, while the strong-

coupling limit is the Tonks-Girardeau gas (mappable to a free Fermi system), real-

ized experimentally in [74, 75]. The Lieb-Liniger model famously features two types
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of elementary excitations – type-I (particles) and type-II (holes), which have been

recently probed through their dynamical response functions [56]. A theoretical pro-

posal to access the type-II states directly is also available [194]. These elementary

excitations are eigenstates of the momentum operator (which commutes with the

Hamiltonian) and are thus necessarily spatially uniform. Type-I excitations have

been interpreted as the Bogoliubov phonon branch, while the nature of the type-II

states has (initially) been more illusive.

Ishikawa and Takayama [60] were the first to suggest a connection between type-

II excitations of the Lieb-Liniger model and dark solitons of the Gross-Pitaevskii

equation: they showed that the dispersion relations (excitation energy versus mo-

mentum) become identical as the coupling strength vanishes. Not long after, the

closely-related bright-soliton case (relevant for attractive interactions) was consid-

ered: [195] has analytically shown that the order parameter of the Gross-Pitaevskii

equation is the large-particle-number limit of the matrix element of the field oper-

ator between superposition states of Bethe ansatz eigenstates with particle number

differing by one. Meanwhile [174, 175] have argued that quantum soliton states

are constructed by either making a product state of the mean-field soliton solution

(Hartree approximation) or taking a superposition of the Bethe ansatz eigenstates

of different momentum and particle density. A very recent paper on quantum bright

solitons is [173] where the single-particle density matrix is computed, and bright

solitons are identified as superpositions of string states [170].

Returning to dark solitons, there have been numerous works illuminating the

connection to type-II states by various approaches. As an example, [196, 197] com-

pare statistical distributions at high temperatures and show that the number of

dark solitons and type-II excitations at a given momentum match. Astrakharchic

and Pitaevskii [148] compute solitonic properties for type-II excitations, notably the

effective missing particle number, which is certainly motivated by the solitonic inter-

pretation of these states. A series of papers [61–63, 198–200] address the greying of

the density notch of a dark soliton when evolved under the full quantum-mechanical

Hamiltonian and explain the effect as filling with depleted atoms. Moreover, a strong

case is made for the idea that the theoretical tools used to predict the greying are

simply reporting on an ensemble average of many realizations, and that in any given

run of the experiment, the soliton will not fill up but be found at random positions

along the ring.

Crucially, this line of argument culminated in two remarkable studies: [64] has

used time-evolving block decimation to demonstrate that indeed, while the single-

particle density shows the solitonic dip filling up, individual trajectories find the

soliton shape unaltered, but its position shifted around the ring. The distribution

of the soliton’s position around the ring is found to be Gaussian, and the width of
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the Gaussian grows quadratically in time. The second study of particular interest is

[65, 66], which uses the Bethe ansatz to model a position measurement performed

on a type-II state, and finds that a dark soliton profile emerges at random positions

around the ring. In other words, one can think of type-II states as being constructed

from dark solitons, translated all around the ring, restoring spatial symmetry.

In parallel, a different group has been pursuing the idea that dark solitons can be

constructed as superpositions of type-II states [201–204], making use of the algebraic

Bethe ansatz [96, 97, 205–207] to obtain convenient formulae for matrix elements of

the density and field operators. We believe that the definition of the dark soliton

(and in particular, the expansion coefficients) adopted in these papers are incorrect,

and provide the appropriate expressions in the present chapter.

Meanwhile, there have been endeavours to find dark solitons in Fermi condensates

[14, 15, 72, 73], which is in some ways quite relevant to the problem addressed

here because a simple mean-field description is usually not possible for fermions

(it is only applicable in the strongly-bound case when the dimers can be thought

of as a Bose-Einstein condensate – see [82, 186–188]). In particular, at unitarity

where the scattering length diverges, there is no known good theory to describe

the three-dimensional gas. As a result, several initiatives have been taken: [208]

uses the local density approximation, [155, 209, 210] solve the three-dimensional

Bogoliubov de-Gennes equations numerically, and approximate analytical studies of

the three-dimensional case (complimented by full numerical Bogoliubov de-Gennes

simulations) are done in [109, 147]. In one dimension, [68] analytically solves the

mean-field Bogoliubov de-Gennes equations, while [67] employs the Bethe ansatz

to identify dark solitons with lowest-energy type-II excitations in the Yang-Gaudin

model [48, 49].

In this chapter, then, we continue two prominent lines of investigation, the first of

which is the idea that dark solitons may be constructed as superpositions of type-II

states. The authors of [201–204] express a dark soliton as a superposition of all

type-II states in the momentum interval [0, 2πn0�] with equal weights. There is

a clear problem with this proposition: such a momentum distribution has a mean

value of π�n0, and so at best, this could only (possibly) correspond to a stationary

soliton. We will see that localized momentum distributions (e.g. Gaussians) for the

expansion coefficients allow us to create objects which behave much like solitons at

any momentum value. In fact, in the weakly-interacting regime, we will use the

Gross-Pitaevskii dark soliton wavefunction to extract these distributions and show

that the correct dark soliton is reproduced by this construction.

The second idea we will pursue is related to [64]. Taking inspiration from work

on bright solitons [175] (specifically, equation (3.8) of this paper) and [211], we

hypothesize that the density profiles of the various localized momentum-space su-
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perpositions evolved to any arbitrary time, can be described by the convolution of

some fundamental solitonic density profile with a center-of-mass of the missing par-

ticles Gaussian density. This concept is, of course, fully consistent with the findings

of [64]. Furthermore, [211] demonstrates that for bright solitons, this convolution

model is always applicable as long as the Hamiltonian separates into center-of-mass

and relative-motion parts, and that the variance of the single-particle density is the

sum of the variances of the convolutants. Since the center-of-mass density obeys

analytically predictable spreading, and since the data follows the predicted trends

very closely, these assumptions allow for the direct extraction of the width of the

fundamental, underlining quantum dark soliton.

Now, the ideas of the previous two paragraphs are closely intertwined: if dark

solitons are localized momentum-space superpositions of uniform type-II states, and

type-II states are uniform superpositions of dark solitons shifted around the ring, it

follows that perhaps dark soliton-like objects can be formed by a localized spatial

superposition of some fundamental dark soliton translated around the ring. This is

equivalent to saying that dark soliton-like density profiles resulting from localized

type-II superpositions can be modelled by the convolution of a localized distribution

in physical space with an underlying solitonic density.

The chapter is structured as follows. We begin by recalling the Lieb-Liniger

Hamiltonian in section 12.2, together with the Bethe ansatz equations necessary

to find type-II excitations. In section 12.3 we introduce the idea of constructing a

superposition of type-II states with arbitrary coefficients and show how the density

and phase profiles of this state can be computed. Moreover, we give an approximate

method of obtaining the current, from which the phase step across the soliton may

be extracted. Then, in 12.3.1 we show the specific formulae for the matrix elements

necessary for evaluation of the density and phase from the algebraic Bethe ansatz. In

12.3.2 we specialize to Gaussian expansion coefficients and in 12.3.2.1 compute the

corresponding density profile (approximately) in the Tonks-Girardeau limit. Next,

in 12.3.3 we derive the expansion coefficients necessary to produce Gross-Pitaevskii

dark solitons and study the behaviour of this distribution with changing parameters.

The main results are presented in sections 12.4 and 12.5, exploring various proper-

ties of the superposition states and the length scale of the quantum dark soliton,

respectively. Discussion and conclusions are given in section 12.6.

12.2 Lieb-Liniger Model

Recall that the Lieb-Liniger model describes a system of N spinless bosons on a ring

of length L, interacting via a repulsive two-body contact potential. The Hamiltonian

is given by (6.1). As always, define the dimensionless interaction parameter γ = c
n0
,
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where n0 = N/L is the one-dimensional density.

Hamiltonian (6.1) can be diagonalized by the Bethe ansatz, culminating in a set of

nonlinear coupled equations for N rapidities, {kj}, initially-unknown quasimomenta

that feature in the ansatz for the wavefunction (chapter 6). For a finite system, these

can be found in chapter 7, together with the quantum numbers corresponding to the

ground state and type-II excitations. The energy of Bethe ansatz states is denoted

by E and the momentum by p.

12.3 Superpositions of Type-II States

Consider some arbitrary superposition of type-II eigenstates of the Lieb-Liniger

model with N particles, which we may write as

|Sp0 , N〉 =
∑
p

Cp0
p,N |p,N〉 , (12.1)

where |p,N〉 is a type-II state with momentum p and energy Ep, and Cp0
p,N are

coefficients centred at p0. In order for the superposition state to be normalized, we

need ∑
p

∣∣Cp0
p,N

∣∣2 = 1. (12.2)

The single-particle density of this state can be found from

〈Sp0 , N | ρ(x, t) |Sp0 , N〉 =
∑
p,p′

Cp0∗
p′,NC

p0
p,N 〈p′| ρ(0, 0) |p〉

exp [i(p− p′)(x− x0)/�− i(Ep − Ep′)t/�] , (12.3)

where ρ = ψ†ψ is the density operator. If we wish to associate a phase with this

state, then one possible choice is the phase of the matrix element of ψ(x), taken

between states with particle number differing by one. The matrix element of the

field operator is

〈Sp0 , N − 1|ψ(x) |Sp0 , N〉 =
N∑
p

N−1∑
p′
Cp0∗
p′,N−1C

p0
p,N

exp [i(p− p′)(x− x0)/�] 〈p′, N − 1|ψ(0) |p,N〉 . (12.4)

Note that in contrast to the density, the time evolution of (12.4) is not trivially

known. Thus one can take the phase of the superposition state (12.1) as the phase

of the matrix element (12.4). If such a correspondence is to be trusted, then one

would hope that |〈Sp0 , N − 1|ψ(x) |Sp0 , N〉|2 would closely match the density profile,
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〈Sp0 , N | ρ(x, t) |Sp0 , N〉. One could define

rp =

∫
dx |〈Sp0 , N − 1|ψ(x) |Sp0 , N〉|2 , (12.5)

so that the saturation ratio rp/N < 1 would quantify the consistency of the calcu-

lation: if the saturation is close to unity, we can have confidence in the results, and

vice versa.

Once the phase profile is obtained, we can extract the phase step across the

soliton, Δφ, which in infinite systems with open boundary conditions is defined as

Δφ = φs(−∞) − φs(∞), where φs(x) is the phase profile. In a finite system Δφ

can be extracted from gradient of the phase far from the location of the soliton: we

assume that the infinite-system phase is related to the finite-system phase by the

addition of a linear function in position, Δφx/L. This is fully justified when the

soliton is well localized in the ring (see chapter 11).

There is another possible method of computing the phase step. Let us write

〈Sp0 , N |ψ†(x)ψ(x′) |Sp0 , N〉 =
∑
ν

〈Sp0 , N |ψ†(x) |ν,N − 1〉

〈ν,N − 1|ψ(x′) |Sp0 , N〉 , (12.6)

where we have inserted an identity expanded over the kets |ν,N − 1〉, comprising

a complete basis for the (N − 1)-particle Hilbert space. Unfortunately, the exact

evaluation of the single-particle density matrix is very computationally intensive

[55], but if we make the approximation of only including the type-II Bethe ansatz

states in the expansion of the identity, the resulting expression is easily computed.

Substituting (12.1) into (12.6), we obtain

〈Sp0 , N |ψ†(x)ψ(x′) |Sp0 , N〉 ≈
∑
p,p′,k

Cp0∗
p,NC

p0
p′,N exp [−i(p− k)(x− x0)/�]

exp [i(p′ − k)(x′ − x0)/�] 〈p,N |ψ†(0) |k,N − 1〉 〈k,N − 1|ψ(0) |p′, N〉 . (12.7)

Setting x = x′ yields another approximation to the density profile. Similarly to

(12.5), we can define rj as the integral over x of this approximate density and the

saturation rj/N < 1 once again acts as an indicator of the quality of the approxi-

mation.

The single-particle density matrix can also be used to calculate the current:

〈j(x)〉 = �

2mi

{
∂x′
〈
ψ†(x)ψ(x′)

〉∣∣
x′=x − ∂x

〈
ψ†(x)ψ(x′)

〉∣∣
x′=x

}
, (12.8)

where the expectation value is taken with respect to (12.1). Once the current is
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obtained, the phase step can be calculated as

Δφ =
j0mL

n0�
, (12.9)

since far from the soliton the only contributor to the current is the backflow of the

entire fluid at velocity vcf = �Δφ
mL

, present due to periodic boundary conditions. In

the above, j0 is the current far from the soliton.

Finally, for future reference, let us also define

R =

∫
dx m 〈j(x)〉 , (12.10)

which is the momentum carried by the current.

12.3.1 Algebraic Bethe Ansatz

In order to evaluate the density and field operator expressions (12.3) & (12.4), we

need to compute the matrix elements of ρ(0, 0) and ψ(0) appearing on the right-hand

sides. This can be done with the help of formulae that emerge from the algebraic

Bethe ansatz [201, 202].

We begin with the density. Let the set of quasi-momenta {k} correspond to state

label p and {k′} to p′. Then

〈p′| ρ(0, 0) |p〉 = (−1)
N(N+1)

2
p− p′

�

(
N∏

j,�=1

1

k′j − k�

)
(

N∏
j>�

(kj − k�)(k
′
j − k′�)

√
(kj − k�)2 + c2

(k′j − k′�)2 + c2

)
detU(k, k′)√

detG(k) detG(k′)
. (12.11)

In the above formula, we have two matrices with the following entries:

G(k)j,� = δj,�

[
L+

N∑
m=1

2c

(kj − km)2 + c2

]
− 2c

(kj − k�)2 + c2
, (12.12)

U(k, k′)j,� = 2δj,� Im

[
N∏
a=1

k′a − kj + ic

ka − kj + ic

]
+

N∏
a=1

(k′a − kj)

N∏
a=1

(ka − kj)

×

×
[

2c

(kj − k�)2 + c2
− 2c

(kN − k�)2 + c2

]
, (12.13)

where, after constructing the N ×N matrix U , the last (N th) row and column must

be deleted to produce an (N − 1)× (N − 1) matrix. G remains an N ×N matrix.
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Now, the expressions for the field operator are similar:

〈p′, N − 1|ψ(0) |p,N〉 = (−1)
N(N+1)

2
+1

(
N−1∏
j=1

N∏
�=1

1

k′j − k�

)

(
N∏
j>�

(kj − k�)
√

(kj − k�)2 + c2

)⎛⎝N−1∏
j>�

(k′j − k′�)√
(k′j − k′�)2 + c2

⎞
⎠

detU(k, k′)√
detG(k) detG(k′)

. (12.14)

While the G matrix is unchanged, the U matrix is somewhat different:

U(k, k′)j,� = 2δj,� Im

⎡
⎢⎢⎣
N−1∏
a=1

k′a − kj + ic

N∏
a=1

ka − kj + ic

⎤
⎥⎥⎦+

N−1∏
a=1

(k′a − kj)

N∏
a �=j

(ka − kj)

×

×
[

2c

(kj − k�)2 + c2
− 2c

(kN − k�)2 + c2

]
. (12.15)

This time, U is an intrinsically (N−1)× (N−1) matrix while the size of G depends

on the number of particles.

Note that in order to apply this algorithm to large problems (e.g. N ∼ 100) in

practice, first, for-loops are to be avoided in favour of vectorized coding (in Mat-

lab). Second, one must take the logarithm of equations (12.11) and (12.14) and

numerically evaluate the logarithm of each factor, add them together and take the

exponential of the result. Unless this is done, the numerical precision of the calcu-

lation is exceeded and one ends up with zeros and infinities, whereas the product is

in fact finite.

Another important numerical issue is that during the evaluation of (12.11) and

(12.14), which can be visualized as matrices with the type-II states as a basis, for

weak interactions, some far off-diagonal elements are computed spuriously large.

Both matrices are peaked around the main diagonal and decay rapidly away from

it. Identifying and eliminating the numerical noise is then a simple task, but it must

be done before proceeding with the construction of (12.3) and (12.4).

12.3.2 Gaussian Momentum Distribution

We shall be making heavy use of a Gaussian distribution for the expansion coeffi-

cients:

Cp0
p,N =

√
A exp

(
−(p− p0)

2

2σ2
p

)
, (12.16)

239



where A is a normalization constant to ensure (12.2).

12.3.2.1 Tonks-Girardeau Limit

The Tonks-Girardeau gas is the limit of the Lieb-Liniger model when c → ∞, and

is by far the simplest regime since the system is then mappable onto free fermions.

In this trivial limit it becomes possible to approximately evaluate the density profile

(12.3) with Gaussian coefficients (12.16) analytically.

As c → ∞, the matrix elements (12.11) become very simple: 〈p′|ρ(0, 0)|p〉 =

±1/L, with a positive (negative) sign if p − p′ is an odd (even) multiple of 2π�/L,

and 〈p′|ρ(0, 0)|p〉 = n0 if p = p′. Meanwhile, the energy of type-II excitations in the

Tonks-Girardeau limit is given by (chapter 7 & [212])

E(p) =
p

2m

[
2π�n0

(
1 +

1

N

)
− p

]
. (12.17)

Going to the (continuous) thermodynamic limit where N,L→ ∞ with n0 remaining

constant, we can replace the two sums in (12.3) by integrals. Taking into account

the integration step (momentum is quantized in steps of 2π�/L), the integrals need

to be divided by (2π�/L)2 to approximate the sums.

Now, if we think of the density operator ρ(0, 0) as a matrix in the type-II momen-

tum basis, then on the main diagonal all entries are n0, and as we move out from the

main diagonal, the value of the density operator alternates along the diagonals as

+1/L, −1/L, +1/L, etc. Clearly, as long as we do not actually take L→ ∞ (which

would eliminate all the interesting features), we have a discontinuous integrand. To

overcome this difficulty, we can approximate the density operator using an oscil-

lating function which takes on the correct values at its extrema. In particular, we

choose

〈p′| ρ(0, 0) |p〉 = δp,p′(n0 + 1/L)− 1/L cos(Lp/2�) cos(Lp′/2�). (12.18)

This leads to the final result:

〈Sp0 , N | ρ(x, t) |Sp0 , N〉 = n0 +
1

L
− σp√

π�

(
1 + 4t̃σ̃4

p

)−1/2
exp(−p̃20/σ̃2

p)∣∣∣∣∣exp
[
i
(−2ip̃0 + σ̃2

p(−1 + 2α)
)2

8σ̃2
p(−i+ 2σ̃2

p t̃)

]
+ exp

[
i
(−2ip̃0 + σ̃2

p(1 + 2α)
)2

8σ̃2
p(−i+ 2σ̃2

p t̃)

]∣∣∣∣∣
2

, (12.19)

with the scaled variables p0 = �p̃0/L, σp = �σ̃p/L, x = Lx̃, x0 = Lx̃0, t = 2mL2t̃/�,

and α = 2(N + 1)πt̃ − x̃ + x̃0. This expression captures the full numerical pro-

file extremely closely, as long as the Cp0
p,N distribution does not significantly “spill

over” outside the fundamental interval [0, 2π�n0], which is a requirement we shall
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be imposing based on physical arguments later (see section 12.4).

12.3.3 Momentum Distribution of Gross-Pitaevskii Dark Soli-

tons

So far, we have introduced Gaussian superpositions of type-II states, localized

around some momentum value. Such a wavepacket is certainly physically sensible,

but one can go further and attempt to compute the coefficients Cp0
p,N in the weak-

coupling regime corresponding to Gross-Pitaevskii dark solitons. In other words, we

attempt to extract the momentum-eigenstates distribution (weighting) contributing

to Gross-Pitaevskii dark soliton states.

Now, for this calculation, we will require the dark soliton wavefunction on a

finite ring. An exact, analytical result is available [105–108], but the expressions are

quite cumbersome and difficult to evaluate numerically. An alternative approximate

expression was developed in chapter 11, which is based on a first-order finite-size

correction of the infinite-system result. This approximation is excellent as long as

the soliton is well-localized in the ring. Since faster-moving solitons have a larger

healing-length [59], we will see that close to the edges of the dispersion relation the

approximation breaks down, necessitating the use of the exact result.

Thus, the finite-system approximation of a Gross-Pitaevskii soliton (centred at

position x0 and with momentum p0) is:

ψGPx0,p0(x) =
√
nse

iφs ,

ns(x) = ρ
{
s2 +

(
1− s2

)
tanh2

[
a
√
1− s2 (x− x0)

]}
,

φs(x) = tan−1

{
s√

1− s2 tanh
[
a
√
1− s2 (x− x0)

]
}

+
2 cos−1(s)(x− x0)

L
,

a =

√
mgρ

�
,

√
ρ =

y +
√
y2 + LN

L
, y =

�
√
1− s2√
gm

, n0 =
N

L
,

po = −2�ρs
√
1− s2 + 2�n0 cos

−1(s). (12.20)

Here, s = vs/vc is the speed of the soliton in the infinite system scaled by the speed

of sound, and varies from −1 to 1. These equations specify the initial wavefunction,

and since a soliton simply translates at constant speed, the profiles at any time t

may be found by substituting x → x − (vs + vcf )t, where the counter-flow velocity

is vcf =
�Δφ
mL

and Δφ = 2 cos−1(s) is the phase step across the soliton in the infinite

system.
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We can now write down the N -particle Gross-Pitaevskii ket:

|SGPx0,p0〉 =
1√
N !
a†Nx0,p0 |0〉, (12.21)

a†x0,p0 =

L/2∫
−L/2

dx
ψGP0,p0

(x)√
N

ψ̂†(x+ x0), (12.22)

where |0〉 is the vacuum state. Note that the Gross-Pitaevskii wavefunction is nor-

malized to N particles, while the norm of the Gross-Pitaevskii ket is 1.

It is convenient to also introduce a momentum expansion of the Gross-Pitaevskii

ket in the Bethe ansatz basis:

|SGP0,p0
〉 =

∑
p,n

cp0p,n|pn〉, (12.23)

where n is a degeneracy index: all the |pn〉 states have the same momentum eigen-

value p, but different energy eigenvalues (as mentioned previously, since Ĥ and P̂

commute, they have common eigenstates, which are precisely those found via the

Bethe ansatz).

We will also need the translation operator, T̂ (x0), fundamentally defined by its

action on position eigenkets:

T̂ (x0) = exp

(
− i

�
P̂ x0

)
, (12.24)

T̂ (x0)|x〉 = |x+ x0〉. (12.25)

Due to the second equation, the translation operator acts on field operators in the

following way:

T̂ (x0)ψ̂(x)T̂
†(x0) = T̂ (x0)ψ̂(x)T̂ (−x0) = ψ̂(x+ x0). (12.26)

The above equation also holds if ψ̂(x) is replaced by ψ̂†(x).

We can now construct a momentum eigenstate out of the Gross-Pitaevskii ket:

|pSPp0 〉 =
1√

Np0(p)

1

L

L/2∫
−L/2

dx T̂ (x)|SGP0,p0
〉eipx/�

=
1√

Np0(p)

∑
n

cp0p,n|pn〉. (12.27)

To go from the first line to the second, we expand the Gross-Pitaevskii ket through

momentum eigenstates as in (12.23). In this representation the effect of the trans-
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lation operator becomes a multiplication by a phase (i.e. the momentum operator

is replaced by its eigenvalue), and we use the identity

1

L

L/2∫
−L/2

dx exp

[
i

�
(p− p′)x

]
= δp,p′ . (12.28)

By requiring |pSPp0 〉 to be normalized to unity, we get

Np0(p) =
∑
n

|cp0p,n|2. (12.29)

We now turn to calculating Np0(p), once again by requiring the normalization of

|pSPp0 〉:

Np0(p) =
1

L2

L/2∫
−L/2

dx′
L/2∫

−L/2

dx 〈SGPx′,p0 |SGPx,p0〉 exp
[
ip

�
(x− x′)

]
. (12.30)

Let us simplify the inner product first:

〈SGPx′,p0 |SGPx,p0〉 =
1

N !
〈0|aNx′,p0a†Nx,p0 |0〉. (12.31)

We need the commutator

Ω(x− x′, p0) ≡
[
ax′,p0 , a

†
x,p0

]
=

=
1

N

L/2+x′∫
−L/2+x′

dy′
L/2+x∫

−L/2+x

dy ψGP∗
0,p0

(y′ − x′)ψGP0,p0
(y − x)δ(y − y′) =

=
1

N

L/2∫
−L/2

dz ψGP∗
0,p0

(z + x− x′)ψGP0,p0
(z). (12.32)

It is then possible to show that the inner product of (12.31) is simply Ω(x−x′, p0)N .
Since Ω is only a function of x−x′, for further calculations, it is convenient to change
variables:

u = x+ x′, (12.33)

v = x− x′. (12.34)

Note that the wavefunction has periodic boundary conditions, which must be care-

fully accounted for when computing the overlap integral in (12.32). This can be

easily done numerically for both the exact and approximate wavefunctions, and
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in the latter case, an analytical piecewise expression can also be derived (where

r =
√
1− s2):

Ω(v = 0, p0) =
ρ

n0

(
1− 2r

aL
tanh

[
aLr

2

])
, (12.35)

Ω(v > 0, p0) =
ρ

n0

exp
(−2v cosh−1(s)/L

){
1 +

v

L

(
e2 cosh

−1(s) − 1
)

+ log

[
1 + cosh [ar(L− 2v)]

1 + cosh (aLr)

] [
is

aL

(
e2 cosh

−1(s) − 1
)

+
r

aL

(
e2 cosh

−1(s) coth (ar(L− v)) + coth (arv)
)]}

, (12.36)

and to obtain Ω(v < 0, p0), take Ω(v > 0, p0) and replace v → v + L.

Returning to (12.30), we express the region of integration over x and x′ in terms of

u and v: as v ranges from −L to L, u is confined to the area bounded by u = −v−L
& u = v + L if v < 0, and u = v − L & u = −v + L if v > 0. Integrating in (12.30)

over u contributes an additional factor of
(
1− |v|

L

)
to the remaining v-integrand.

Moreover, the absolute value of the determinant of the Jacobian matrix for the

transformation from x, x′ to u, v is 1/2. Substituting Ω into (12.30), gives

Np0(p) =
1

L

L∫
−L

dv

(
1− |v|

L

)
exp

[
i

�
pv

]
Ω(v, p0)

N . (12.37)

This final integral cannot be done analytically (even for the approximate wavefunc-

tion), but its numerical evaluation is straightforward. However, it is crucial to take

the integration step sufficiently small (precisely how small depends on the parame-

ters): one must always check the convergence of the integral with step size directly.

Thus, we can calculate Np0(p) using either the exact or approximate dark soliton

wavefunction.

What requirements do we have of Np0(p)? Firstly, it should be dimensionless,

which can easily be confirmed from (12.37). Recalling equation (12.29), Np0(p) must

be real and bounded between 0 and 1. Moreover, by virtue of (12.29) and (12.23),

we must have
∑

pNp0(p) = 1. In our treatment of the problem, p is a continuous

variable, however we are trying to approximate a full quantum-mechanical many-

body system in which momentum is quantized in multiples of 2π�/L. Therefore the

function Np0(p) must be evaluated at this discrete set of p’s before the sum is taken.

If any of these properties are not satisfied, it is very likely that the approximate

wavefunction is failing and one should use the exact expression.

Note that, in principle, the Np0(p) distribution is defined on p ∈ (−∞,∞). There

is no a priori restriction to the fundamental momentum interval [0, 2π�n0].

Moreover, at the very edge of the dispersion relation, the dark soliton solution
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simplifies to a uniform background state. In this case Np0(p) can be computed

analytically, and we find

Np0=0(p) =
2�2

L2p2

[
1− cos

(
Lp

�

)]
. (12.38)

We can now examine the Np0(p) distribution and study its dependence on the

parameters – several examples are shown in Fig. 12.1. Overall, the distribution is

localized about p0 (as expected), and gets narrower with increasing soliton speed

(i.e. as p0 → 0, 2π�n0). There are pronounced oscillations on top of an approximate

bell-shaped curve (these oscillations arise due to the periodic boundary conditions

on the wavefunction), which are attenuated as either c or N,L are increased. For

fairly large N,L, the dependence on L becomes dominantly a scaling by 1/L (also see

below). Increasing c makes the distribution visibly wider, and vice versa: decreasing

c makes Np0(p) narrower. There is a direct inverse correlation between the width of

Np0(p) and that of the Gross-Pitaevskii dark soliton. It is clear, however, that as

p0 → 0, 2π�n0 at finite N,L, c, the distribution retains a finite width.

Let us now consider the thermodynamic limit. As N,L are increased and we go to

the continuous limit, the condition
∑

pNp0(p) = 1 must be replace by
∫
Np0(p)dp =

1. Taking into account the integral step size, 2π�/L, we expect the quantity

Np0(p)L/2π� to have a well-defined thermodynamic limit, and this is indeed the

case. Simply increasing the system size at a finite c leads to converged distribu-

tions with non-zero widths. It is only when we take c → 0 and approach the

Gross-Pitaevskii limit, that the width decreases and eventually (we expect), the

distribution tends to a δ-function. As such, only one type-II state is then required,

which is consistent with the fact that the dark soliton becomes infinitely-wide in

this regime, matching the uniform density profile of a single type-II state. This

implies that in the true Gross-Pitaevskii regime, Np0(p) will not extend beyond the

fundamental momentum interval, as for example does the green dash-dotted curve

in Fig. 12.1.

Notice that in the absence of a soliton, the sinc-like distribution Np0=0(p) of

equation (12.38) has an L-dependent width. As we increase N,L keeping c constant

and finite, Np0=0(p) narrows and approaches the δ-function.

12.4 Physical Properties of Superposition States

In this section we will examine the properties of superpositions of type-II states,

in general given by (12.1), with either Gaussian coefficients (12.16), or with the

coefficients determined from the Np0(p) Gross-Pitaevskii dark soliton distribution.

Indeed, if we suppose that the only momentum eigenstates contributing to (12.23)
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Figure 12.1: The momentum distribution of Gross-Pitaevskii dark solitons, Np0(p),
for various parameters. Blue solid line: N = 100, γ = 0.01, s = 0, red dashed line:
N = 100, γ = 0.01, s = 0.5, green dash-dotted line: N = 100, γ = 0.01, s =
0.8, black dashed line: N = 100, γ = 0.1, s = 0, magenta dash-dotted line:
N = 200, γ = 0.01, s = 0. All curves except for the green dash-dotted line
are calculated using the approximate dark soliton wavefunction. When s = 0.8,
however, the soliton is so wide that the approximation breaks down and we resort
to the exact result.

are the lowest-energy eigenstates of the Bethe ansatz, i.e. type-II states, then in

(12.23), only the n = 1 terms are non-zero. The summation is no longer necessary

in equation (12.29), then, which leads to Cp0
p,N =

√
Np0(p). This assumption is

justified by the fact that the momentum and energy of the superposition state

involving only type-II states in the expansion will equal those of the type-II state

on which the superposition state is centred, simply due to the averaging process.

Recall that both the dark soliton solutions of the Gross-Pitaevskii equation and the

type-II excitations of the Lieb-Liniger model are the lowest energy excitations at a

given momentum value of their respective models. If any higher energy states were

involved, the energy of the superposition state would greatly exceed that of the type-

II branch, and as we already know, the dispersion relations of dark solitons and type-

II excitations practically overlap in this regime, so this is highly unlikely. Ultimately,

so may test this hypothesis by constructing superpositions with Cp0
p,N =

√
Np0(p)

and comparing the results to the known Gross-Pitaevskii dark solitons in the small

coupling regime.

Precisely such a comparison is made in Fig. 12.2. The three panels in each sub-

figure correspond to the blue, red and green curves in Fig. 12.1, in that order. Both

the density profile, ns, and the phase profile, φs, are shown. Each panel quotes s,
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the dimensionless velocity appearing in the approximate dark soliton wavefunction,

and p0, the corresponding canonical momentum. Each panel displays three curves:

the exact profile, the approximate one, and that of the reconstructed dark soliton,

obtained as a superposition of type-II states with expansion coefficients gives by

Cp0
p,N =

√
Np0(p). Once again, only for the highest velocity was it necessary to use

the exact wavefunction in the calculation of Np0(p), and small differences visible

between the exact and approximate curves justify this decision. It is also vitally im-

portant to note that since the Np0(p) distribution for this case extends beyond the

fundamental momentum interval, we used an extended type-II state basis, spanning

the interval [−2π, 4π]�n0. In all cases, the reconstructed profiles overlap very closely

with the known Gross-Pitaevskii dark soliton profiles, which justifies our hypothesis

that only type-II states contribute to the make-up of dark solitons.

In Fig. 12.2 we have examined solitons whose momentum distributions Np0(p) are

predominantly localized in [0, 2π�n0]. One may then ask what happens as p0 → 0

and whether the agreement between the known Gross-Pitaevskii solitons and recon-

structed profiles remains of such high fidelity. This question is addressed in Fig. 12.3,

where we choose an extremely small p0 = 0.0095�n0. The top panel shows theNp0(p)

distributions: that obtained from the exact dark soliton solution, the approximate,

and the analytical formula at p0 = 0 given by (12.38). It is clear that by this stage

the approximation is quite poor and that the Np0(p) distribution tends to the sym-

metric black dash-dotted line as p0 → 0. The bottom panel presents the density

profiles associated with these distributions. Five curves are shown: the direct plots

of the exact and approximate ns, the reconstructed density profiles using the cor-

responding distributions as the coefficients, and the density profile obtained using

the zero momentum distribution (12.38). None of the curves overlap, and most im-

portantly, the exact dark soliton density and the reconstructed density based on the

exact momentum distribution are quite different. This suggests that very close to

the edges of the fundamental interval, c needs to be much smaller to see agreement,

or alternatively, at finite c > 0, higher energy states contribute to the momentum

composition of the dark soliton.

Given that we will always work with a finite c > 0, a natural question arises:

is it sensible to construct superpositions with coefficients that extend beyond the

fundamental interval and expect such a wavepacket to behave as a dark soliton?

After all, the group velocity of type-II states on either side of (for instance) p = 0

is very different (the dispersion relation has a cusp at each umklapp point), so it is

unlikely that the resulting object will translate at constant speed without changing

shape. This matter is investigated in Fig. 12.4, where density profiles are shown

at t = 0 and t = 100 × 2m/n2
0� for a Gaussian superposition that extends beyond

the fundamental interval. We see a significant deformation of the profile in addition

247



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
n s/n

0

0 10 20 30 40 50 60 70 80 90 1000.2

0.6

1

1.41.4

n s/n
0

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

n0x

n s/n
0 exact Np

approx
exact

approx Np

approx
exact

approx Np

approx
exact

s = 0.8, p0 = 0.2047h̄n0

s = 0, p0 = πh̄n0

s = 0.5, p0 = 1.065h̄n0

(a)

0 10 20 30 40 50 60 70 80 90 100−2

0

2

φ s

0 10 20 30 40 50 60 70 80 90 100−1

0

1

φ s

0 10 20 30 40 50 60 70 80 90 100−0.5

0

0.5

n0x

φ s

approx Np

approx
exact

approx Np

approx
exact

exact Np

approx
exact

s = 0.5, p0 = 1.065h̄n0

s = 0.8, p0 = 0.2047h̄n0

s = 0, p0 = πh̄n0

(b)

Figure 12.2: Density (a) and phase (b) profiles of dark solitons in a system with γ =
0.01, N = 100. In each subfigure, the panels going from top to bottom correspond
to a soliton of a different velocity, in particular: s = 0, p0 = π�n0, s = 0.5, p0 =
1.065�n0 and s = 0.8, p0 = 0.2047�n0, in that order. Each panel shows three
curves: the solid blue line is the reconstructed soliton, made up of type-II states
with coefficients given by the Np0(p) distribution. Only in the case of s = 0.8 is
Np0(p) computed based on the exact dark soliton wavefunction. The red dashed
line displays the approximate profile, while black dash-dotted shows the exact. The
superb agreement between the known dark soliton profiles and the reconstructed
profiles via a superposition of type-II states suggests that indeed dark solitons do
not have a meaningful contribution from higher energy momentum eigenstates, but
only from type-II excitations.
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(a) The Np0(p) distribution obtained from the exact dark soliton solution (solid blue
line), the approximate (dashed red line), and the analytical formula at p0 = 0 given
by (12.38) (black dash-dotted line). (b) The density profiles associated with the
distributions from (a). Magenta dash-dotted line: direct plot of the exact density,
green dashed line: direct plot of the approximate ns, solid blue line: reconstructed
density profile using the exact distribution for coefficients, red dashed line: recon-
structed density profile using the approximate distribution for coefficients (with Cp0

p,N

renormalized after the calculation of Np0(p) as the approximation is so poor by this
stage that the norm of Np0(p) is considerably different from one), black dash-dotted
line: reconstructed density profile obtained using the zero momentum distribution
(12.38). The disagreement between the exact density plotted directly and that of the
reconstructed soliton using exact Np0(p) coefficients implies that higher momentum
eigenstates must contribute to the dark soliton at non-zero c’s and close to p0 = 0.

to translation: while a larger part of the dip translates to the right, a smaller dip

forms and breaks off, moving to the left. This sort of effect is always seen when we

include states outside of [0, 2π�n0] with non-vanishing coefficients, and the larger

the weight of the states outside of the fundamental interval, the larger the secondary

dip moving in the opposite direction. Thus, it becomes clear that if one wishes to

construct an object that will behave as a dark soliton should, one must ensure the

Cp0
p,N coefficients decay sufficiently in the fundamental momentum interval1.

Now, even if we are careful to ensure the expansion coefficients decay within the

fundamental interval, evolution over time causes minor deformations of the density

profile (skewness), but slight distortions aside, the major changes in the density with

1Recall that Np0(p) becomes narrower as c → 0, so in the Gross-Pitaevskii regime, this will not
be a problem.
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dashed line), for a system with γ = 0.01, N = 100 and a Gaussian superposition
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rect consequence of the fact that the momentum distribution that makes up the
wavepacket overspills into the region p < 0 where the group velocity differs from
that immediately beyond p = 0 as the dispersion relation has a cusp at each umklapp
point.

time are a translation at a constant speed of vs + vcf , and a gradual filling-up of

the density notch. In order to visualize the effects of time evolution, let us define

several useful quantities:

Nd =

∫
ns(x)−max[ns(x)] dx, (12.39)

Δp =
√

〈p2〉 − 〈p〉2, (12.40)

Δx =
√

〈x2〉 − 〈x〉2, (12.41)

where the “expectation-value” integrals are to be done with respect to the fol-

lowing distributions: for momentum, Cp02
p,N/

∫
Cp02
p,Ndp and for position (ns(x) −

max[ns(x)])/Nd. Note that Nd is the missing particle number – the number of

atoms removed from a uniform, homogeneous state to create the dark soliton, while

Δx and Δp are measures of the width of the density dip and momentum distribu-

tion, respectively. For Gaussian Cp0
p,N coefficients, Δp = σp/

√
2. Next, care must be

taken when it comes to computing Δx for moving solitons. Since the wavefunction

has periodic boundary conditions, when the soliton arrives at L it simply reappears

at 0, so for a segment of time during each trip around the ring, the soliton density

dip is split and located around the edges of the interval [0, L]. While usually the
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absolute position of the distribution does not affect its width, such splitting can

be shown to be non-trivial: it causes Δx to increase strongly for a clearly artificial

reason. Therefore, we manually center all density profiles prior to calculating Δx.

Figure 12.5 shows the time-evolution of Δx and Nd for superposition states with

p0 = π�n0 (solid blue lines) and p0 = π�n0/2 (dashed red lines) at three different

coupling strengths: γ = 0.01 (top panels), γ = 1 (middle panels), and γ = 100

(bottom panels). In the small coupling regime we use the Np0(p) distribution to

create the superpositions, but for larger γ values, we use Gaussian distributions of

the same width as Np0(p) at γ = 0.01. The total evolution time in each coupling

regime is set by the rate of expansion and filling of the density dip. We see that

Δx initially disperses quadratically but then the spreading of the wavepacket be-

comes linear in time. The dispersion rate certainly grows strongly with increasing c

(approximately as a power law) – in other words, initially localized density features

retain their shape far longer in the weakly-interacting regime. Meanwhile, Nd ini-

tially stays fairly constant, but after some time begins increasing, tending to 0, the

Nd value associated with a flat profile. This process begins when the density dip

becomes so wide that it is no longer well-localized in the finite ring, and therefore

the definition of Nd becomes inapplicable.

We can also examine the dependence of Δx and Nd on the width of the mo-

mentum distribution used to create the wavepacket, Δp. This is shown in Fig. 12.6,

where each subfigure corresponds to a different interaction strength: γ = 0.01, 1, 100

for (a)-(c), respectively. Gaussian coefficients of various σp are used to create su-

perpositions, the properties of which are shown as blue lines. The left columns in

each subfigure have p0 = π�n0, while the right columns have superpositions with

p0 = π�n0/2. Top panels in each subfigure show Δx and the bottom panels, Nd.

The range of Δp used is determined by the largest width of the Gaussian distribution

which still fits well into the fundamental interval [0, 2π�n0]. In the Gross-Pitaevskii

regime (a), we also add a data point corresponding to the Np0(p) superposition as a

green square.

Magenta stars on the Nd plots at Δp = 0 are the finite-system approximation

of the missing particle number associated with the type-II states themselves (not

their superpositions), the detailed calculation of which may be found in chapter 11.

Briefly, this calculation extracts Nd of type-II states from the dispersion relation

computed under the first level of approximation, using Campbell’s formula (chapter

10). Essentially, this adds first-order finite-system corrections to the thermodynamic

limit properties. The resulting values are truly remarkable: they seem to correspond

to the limit as Δp → 0 of Nd computed from actual density dips of superposition

states. More will be said about this observation below.

Several comments are in order. Firstly, Δx decreases with Δp while Nd increases.
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Figure 12.5: Width of the density dip (Δx, left column) and missing particle number
(Nd, right column) for three coupling strengths: γ = 0.01 (top panels), γ = 1
(middle panels) and γ = 100 (bottom panels) in a system with N = 100. Each
panel shows two curves: the blue solid line corresponds to a momentum distribution
with p0 = π�n0 (and s = 0 for γ = 0.01), and the red dashed line to p0 = π�n0/2
(and s = 0.36625 for γ = 0.01). When γ = 0.01 (top panels) we use the Gross-
Pitaevskii dark soliton Np0(p) distributions, while for the other cases, Gaussian
distributions of the same width Δp as Np0(p) has at γ = 0.01 are used (in particular,
σp = 0.601995�n0 for the stationary soliton and σp = 0.521788�n0 for the moving
soliton).

Second, in the Tonks-Girardeau limit Nd becomes essentially independent of Δp.

While we expect Nd = −1 in this limit, for large but finite γ we have Nd = −1−2/γ

[see equation (10.46)]. Finally, in the Gross-Pitaevskii regime, physical properties of

the Np0(p) superposition are practically indistinguishable from those of a Gaussian

superposition of the same Δp (including their time evolution).

We now return to the connection of the Nd computed from the single-particle

density of superpositions of type-II states, and the Nd extracted from the type-II

dispersion relation in the thermodynamic limit and then corrected for finite-system

effects (chapter 11). As can be seen in Fig. 12.6, the pure type-II Nd value seems to

be the limit as Δp→ 0 of the Gaussian superpositions data. However, it is clear that

if we gradually reduce the number of type-II states involved in the superposition,

eventually reaching one, that the density profile will become flat and Nd will vanish.

This is indeed the case: if we take thinner momentum distributions than those

shown in Fig. 12.6, we observe Nd increasing to zero extremely rapidly. In fact, the

beginning of this rise to zero is already seen in panel (a). It is natural to then assume

that the rapid plunge of Nd to zero is a finite-system effect, and as the system size
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Figure 12.6: Width of the density dip (Δx, top panels) and missing particle num-
ber (Nd, bottom panels) for three coupling strengths: γ = 0.01 (a), γ = 1 (b) and
γ = 100 (c) in a system with N = 100. In each subfigure, left columns corre-
spond to superpositions with p0 = π�n0 and right columns to p0 = π�n0/2. Data
shown as blue lines are properties of Gaussians superpositions, green squares are
Gross-Pitaevskii dark soliton Np0(p) distributions (only added for small γ) and ma-
genta stars show the missing particle number of type-II states in the finite-system
approximation (chapter 11).

253



increases, Nd would stay (roughly) constant for smaller Δp’s, thus giving the Nd

associated with type-II states a clear physical meaning. We test this hypothesis in

Fig. 12.7, where the system size is increased by a factor of two compared to that

used in Fig. 12.6 (a). The increase of Nd as Δp → 0 is eliminated and the limit of

the Gaussian data can be clearly seen to coincide with the type-II data point.
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Figure 12.7: Missing particle number in a system with γ = 0.01 and N = 200.
Data from Gaussian superpositions in shown as blue solid lines, while magenta stars
correspond to Nd extracted from the type-II dispersion relation in the thermody-
namic limit and corrected for finite-system effects (chapter 11). In the top panel,
p0 = π�n0 and in the bottom, p0 = π�n0/2. The Nd value of type-II states is clearly
the limit of Nd computed from superposition states as Δp→ 0.

One would hope that a similar argument could be drawn for the phase step across

the soliton, Δφ. However, before we can examine the dependence of the phase step

Δφ on Δp, we must test whether the proposed methods for computing Δφ of section

12.3 are sensible. We begin by comparing the approximate density profiles – the

modulus-squared of (12.4) and the special case of x = x′ in equation (12.7) – to the

exact, (12.3). This is shown in Fig. 12.8. For small γ, the two approximations closely

follow the exact profile, instilling confidence in the subsequent phase calculations.

However, for stronger interactions, the saturation drops rapidly and the density

profile is captured poorly by both approximations, which moreover differ amongst

themselves around the position of the soliton. This suggests caution is needed when

examining the phase results to follow.

Next, we may study the current profiles associated with the examples shown in

Fig. 12.8 – these are presented in Fig. 12.9. Again for stronger interactions, the

momentum saturation drops rapidly. In fact, it is essentially equal to the density
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Figure 12.8: The density profiles in a system with N = 100, using a Gaussian super-
position with p0 = π�n0 and σp = 0.5�n0. The panels, top to bottom, correspond to
γ = 0.01, 1, 100. Blue solid lines show the exact density, equation (12.3), red dashed
lines show the modulus-squared of the matrix element of ψ given by (12.4), and black
dash-dotted lines depict the diagonal of the single-particle density matrix, equation
(12.7). The saturation ratio for both approximations is quoted in each panel and
is very similar despite the clear differences around the solitonic notch at stronger
interactions. Both approximations become progressively poorer as γ increases.

saturation for the same parameters, implying that the entire fluid carries the total

momentum, but the approximate density and current calculations only capture part

of the gas – seemingly the same fraction. This suggests that if equation (12.9) is

to yield reasonable results, we cannot use n0 = N/L, but must use the maximal

density attained by the diagonal of the approximate single-particle density matrix.

We proceed precisely this way.

Despite the saturation issues discussed above, it is instructive to extract and

study the phase step. Figure 12.10 shows Δφ of Gaussian superpositions, using

both methods of obtaining the phase step: from the phase profile (blue solid lines)

and from the current (red dashed lines). Magenta stars display the type-II finite-

system result which, like Nd, can also be extracted from the dispersion relation. Not

only do the two calculations give quite consistent results, but once again it is clear

that the type-II result is the limit of the Gaussian superpositions as Δp→ 0.

It appears the phase step of the superposition states is a meaningful result at

all interactions (despite the saturation problem), since it is essentially equal to the

type-II value, the significance of which is reinforced by the success of the finite

system corrections to the dispersion relation (chapter 11) that are largely based on

it.
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Figure 12.10: The phase step Δφ in a system with N = 100. Data from Gaussian
superpositions is shown as lines: Δφ extracted from the phase profile is plotted with
blue solid lines and from the current as red dashed lines. The magenta stars show
the finite-system Δφ of type-II states. Top panels corresponds to γ = 0.01, middle
to γ = 1 and bottom to γ = 100. The left panels correspond to superpositions with
p0 = π�n0 and the right panels to p0 = π�n0/2. The Δφ value of type-II states is
clearly the limit of Δφ computed from superposition states as Δp→ 0.
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12.5 Length Scale of the Quantum Dark Soliton

In the previous sections we considered localized superpositions of type-II states and

studied their soliton-like properties. In the Gross-Pitaevskii regime we were able

to compute the coefficients necessary to create Gross-Pitaevskii dark solitons, but

of course a similar calculation is not possible for larger γ’s. Upon examining the

physical properties of the various superpositions, we found that, in general, there

was no “optimal” superposition that would give, for example, the narrowest density

dip or the largest missing particle number. How then can we define a “quantum dark

soliton” at any given c and p0? In particular, is there some unique, fundamental

dark soliton-like object at each c and p0 that would underlie all the superposition

states we can construct?

Let us turn to the bright soliton case (of which there is already some understand-

ing in the literature) for inspiration. In the paper [175] by Haus and Lai, equation

(3.8) gives a formula for the expectation value of the field operator in the soliton

state as a sum over densities (i.e. over n0 = N/L) of a convolution of the classical

bright soliton wavefunction with a Gaussian. In our case it makes little sense to

combine several n0 values, but the convolution idea can be investigated further.

In fact, the recent article on quantum dark solitons [65, 66] demonstrates that a

measurement of position performed on a type-II state reveals a solitonic density dip

at a random position around the ring for any value of the interaction strength, while

[64] shows that the single-particle density of dark solitons in the Gross-Pitaevskii

regime can be viewed as a “superposition” of the Gross-Pitaevskii dark soliton lo-

cated at various positions around the ring, with a Gaussian distribution of the

coefficients.

Moreover, crucial progress has been made in Ref. [211] (appendix E), considering

bright solitons, where several key results are derived. It is shown that if the Hamil-

tonian of an N -particle system separates into center-of-mass and relative-motion

parts, the single-particle density is given by a convolution of the center-of-mass

density and a function which relates to the relative-motion part of the wavefunc-

tion. Furthermore, it is shown that the variance of the single-particle density is the

sum of the variances of the center-of-mass density and the relative-motion function

appearing in the convolution.

In light of this evidence, it is logical to hypothesize that the single-particle density

ns(x) may be given by a convolution of some fundamental dark soliton density profile

F (x) with a Gaussian center-of-mass of the missing particles density G(x):

ns(x) = (G ∗ F )(x), (12.42)
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where ∗ denotes convolution. Consequently, we should have

Δx2 = Δx2FS +Δx2COM(t), (12.43)

where Δx2 is the variance of the density of a Gaussian superposition state, Δx2FS
is the variance of the fundamental quantum dark soliton density, and Δx2COM the

variance of the center-of-mass density. All the time dependence is assumed to be

in the center-of-mass part, which disperses quadratically in time according to the

usual formula

Δx2COM = Δx20

[
1 +

(
�t

2M∗Δx20

)2
]
, (12.44)

where Δx20 is the initial width of the Gaussian wavepacket. In particular, it is given

by

Δx20 =
�
2

4Δp2
= var

∣∣∣∣∣∣
∞∫

−∞

Cp0
p,Ne

−ipx/�dp

∣∣∣∣∣∣
2

, (12.45)

for Gaussian coefficients defined by (12.16). Moreover, M∗ is a quantity with the

dimensions of mass, which could be expected to be related to the inertial mass,

mI =
dp

dṽs
= 2

dE

dṽs
=

(
d2E

dp2

)−1

, (12.46)

where ṽs = dE/dp is the derivative of the finite-system dispersion relation with

periodic boundary conditions.

Equations (12.43)-(12.45) constitute a very strong statement – their assumption

allows for the extraction of two key parameters – the width of the fundamental dark

soliton, Δx2FS, and the mass associated with the center-of-mass wavefunction, M∗,

which can then be compared to mI . In more detail, the equations predict that

Δx2(t = 0) = Δx2FS +
�
2

4Δp2
, (12.47)

so if we plot n2
0Δx

2 at t = 0 versus
n2
0�

2

Δp2
and find a linear relationship, we can fit the

data constraining the gradient to 1/4, and obtain the intercept n2
0Δx

2
FS. We have

indeed carried out this procedure across the range of interactions (γ = 0.05 − 10)

and for several momenta, p0, across the dispersion relation. Good quality linear fits

with a slope of 1/4 were always possible. At each value of p0 we used 12 Gaussian

superpositions with σp/�n0 ranging from 0.1 to a p0-dependent maximum, selected

to ensure that the coefficients remain within the fundamental interval [0, 2π�n0].

In some examples, nonlinearity (caused by finite-size effects) became significant for

higher Δp. Whenever this occurred, the affected data points were excluded from the
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fit and the maximal Δp for which linear behaviour is observed was noted. Several

examples of fits are shown in the left panels of Fig. 12.11. Thus Δx2FS can be readily

extracted.

Next, from equations (12.43)-(12.45), we see that if we plot n2
0Δx

2 versus
(�n2

0)
2t2

(2m)2
,

we expect a linear relationship with intercept n2
0Δx

2
FS+

�2n2
0

4Δp2
, and gradient Δp2

�2n2
0

(2m)2

M∗2 .

Since the intercept is now fully known we may fit only for the gradient and extract

M∗. We have systematically examined the data across the range of parameters ac-

cording to this prescription and found that high-quality fits were always possible,

thus confirming the assumed relations. For each γ and p0, we have repeated the pro-

cedure for several Δp values, being careful to remain in the linear regime discussed

in the previous paragraph. The time interval was covered in 12 points, ranging from

zero to a maximal value, chosen such that nonlinear regimes are excluded (these oc-

cur at long times when the wavepacket has dispersed strongly and boundary effects

come into play). However, the maximal time must not be too small – the accuracy of

the fit is increased if the majority of the linear regime is used. We observed thatM∗

remained convincingly independent of Δp, and to reduce numerical error, averaged

M∗ over the different Δp simulations. Example fits are presented in the right panels

of Fig. 12.11.
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Figure 12.11: Examples of the data and linear fits used to extract the width of the
fundamental dark soliton, Δx2FS, and the mass associated with the center-of-mass
wavefunction, M∗. For all panels, p0 = π�n0. Top panels use γ = 0.1, middle panels
γ = 1, and bottom panels γ = 10. For the left-hand side panels, Δx2 is taken at
time t = 0. For the right-hand side panels, we use σp = 0.2�n0.

Before examining the results, it is instructive to consider what we might expect

to find for the variance of the quantum dark soliton. Let us begin from Gross-

Pitaevskii dark solitons in an infinite system. The variance of the density profile
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ns(x) of equation (12.20) with all finite size corrections removed (i.e. replacing ρ by

n0) can be expressed through the missing particle number of the Gross-Pitaevskii

dark soliton, Nd, as

Δx2DS =
π2
�
4

3g2m2N2
d

, (12.48)

where g is the interaction strength appearing in the one-dimensional Gross-Pitaevskii

equation and

Nd = −2�

g

√
μ

m

√
1− s2. (12.49)

The equation of state for the Gross-Pitaevskii equation is μ = gn0. In terms of

dimensionless quantities, (12.48) can be recast as

Δx2DSn
2
0 =

π2

3γ2N2
d

. (12.50)

Meanwhile, the variance of the Hartree-Fock bright soliton is given by [211]

Δx2BS =
π2
�
4

3g2m2(N − 1)2
, (12.51)

where N is the number of particles in the bound state. It is immediately clear

that the bright- and dark-soliton formulae are practically identical, with only N

being replaced by N − 1, caused by the difference between the Gross-Pitaevskii and

Hartree-Fock formulations. The Hartree-Fock formula (12.51) diverges whenN → 1,

which is an unphysical prediction. From intuition, one would expect Δx2BS to vanish

in this limit, as with only one particle in the system, there are no interactions and

we would expect the total variance to be equal to the center-of-mass variance. By

virtue of (12.43), this implies that the width of the underlining soliton must vanish.

Incidentally, the same is expected in the Tonks-Girardeau regime of the Lieb-Liniger

model where the system becomes mappable on to non-interacting fermions.

Based on these mean-field results, we may hypothesise that for the quantum dark

soliton,

Δx2FS =
π2
�
4

3g2m2
f(Nd), (12.52)

or equivalently,

Δx2FSn
2
0 =

π2

3γ2
f(Nd), (12.53)

where f(Nd) ∼ 1/N2
d for large |Nd|. In fact, one may hope that f is the same func-

tion which describes the variance of quantum bright solitons, so that the dark soliton

could be interpreted as a bound state of |Nd| bare holes, held together by repulsive

δ-function interactions, as the bright soliton is bound by attractive δ-function in-

teractions. Fortunately, results for exact many-body bright soliton solutions are
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available in the literature. In the two-particle case, one has [211]

Δx2BS =
2�4

g2m2
, (12.54)

and in the general N -particle case, the variance of the density can be computed

from equation (6) of Ref. [213] as

Δx2BS =
16

N3

N − 1

g2
4F3([1, 1, 1, 2−N ]; [2, 2, N + 1]; 1), (12.55)

where pFq is the generalized hypergeometric function. This equation reduces to

(12.54) for N = 2. Note that (12.55) vanishes when N = 1, as expected.

With the goal of testing (12.53) we compute the missing particle number Nd of

type-II states, extracted from the dispersion relation with finite size corrections,

at the same γ and p0 as the Gaussian superposition states studied. Figure 12.12

shows (as symbols) a plot of Δx2FSn
2
0γ

2 extracted from the widths of Gaussian

superposition states versus Nd of the type-II states. The data spans five different p0

values across the dispersion relation and a γ range from 0.05 to 10. In accordance

with the hypothesis (12.53), all points fall on to a single curve. In the Gross-

Pitaevskii regime (where |Nd| is large) the data approaches the Gross-Pitaevskii

dark soliton formula, (12.50), shown as a green solid line. For comparison, we have

also added the quantum bright soliton result of equation (12.55) as a blue dashed

line, replacing N with |Nd|, but it is clear that in the Tonks-Girardeau regime (where

|Nd| → 1) this function behaves completely differently to the quantum dark soliton

data. In fact, in the Tonks-Girardeau regime we have confirmed that the width

of the quantum dark soliton Δx2FSn
2
0 indeed tends to zero, as expected. This can

be further corroborated by an analytical calculation of the variance of the density

profile (12.19) which leads to ΔxFS = 0 (for large N). The apparent divergence on

Fig. 12.12 is completely due to the γ2 factor.

Next, we can test whether the mass M∗ which determines the dispersion rate of

the center-of-mass density is indeed related tomI . This may be expected intuitively,

as the dispersion of wavepackets is related to the second derivative of the dispersion

relation – essentially mI [see equation (12.46)]. Therefore we extract the inertial

mass from the finite-size corrected type-II dispersion for comparison. Figure 12.13

shows the ratio mI/M
∗, which is extremely close to one, with scatter in the data

of the order of a percent. Again, five different p0 values and a large γ range were

investigated, and the result holds throughout. We conclude that M∗ = mI .

A final, but highly important observation is in order. The convolution model

(12.42) predicts that if ns and F are both normalized toN particles, then the missing

particle number of F ∗ G is equal to that of F (x). Therefore, we can expect Nd of

261



−10 −9 −8 −7 −6 −5 −4 −3 −2 −110−2

10−1

100

101

Nd

Δ
x
2 F
S
n
2 0
γ
2

p0 = πh̄n0

p0 = 2.5h̄n0

p0 = 2h̄n0

p0 = 1.5h̄n0

p0 = 1h̄n0

π
2
/3/N

2

d

4(Nd+1)

N3

d

F (|Nd|)

Figure 12.12: The variance of the quantum dark soliton as a function of the missing
particle number. Symbols show Δx2FSn

2
0γ

2 extracted from the widths of Gaussian
superposition states versus Nd of the type-II states obtained from the dispersion
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type-II states (extracted from the dispersion relation corrected for a finite system)

to be equal to Nd of F (x), and Nd(Δp) of the various Gaussian superpositions shown

in Fig. 12.6 to be independent of Δp.

Let us examine the bottom panels of all the subfigures in Fig. 12.6 with this

in mind. The variation in the Gaussian superpositions data shown as blue lines

is always less than 2% – these variations are clearly a small effect which is out-

side the scope of the convolution model. We may conclude, therefore, that within

the accuracy of the convolution model, Nd of the fundamental dark soliton can be

extracted directly from the type-II dispersion relation, corrected for finite-system

effects (chapter 11).

Note also that since according to the convolution model, Nd of F (x) is equal to

that of (F∗G)(x), the missing particle number of the various Gaussian superpositions

is expected to stay constant in time. This is precisely what is seen in Fig. 12.5, up

to the point when the size of the density notch becomes comparable to the size of

the box, L, and the calculation of Nd becomes ambiguous.

12.6 Discussion and Conclusions

In this chapter we have investigated the long-standing question of the connection

between type-II excitations of the Lieb-Liniger model and dark soliton solutions of

the Gross-Pitaevskii equation. Physically very different objects, type-II excitations

are spatially-uniform momentum eigenstates while dark solitons have prominent

features in both the density and phase profiles. We solved the Bethe ansatz equations

for large but finite systems, and were able to make use of the machinery of the

algebraic Bethe ansatz to compute matrix elements of the field and density operators.

We expanded on the idea of Sato et al. [201–204] of constructing superposi-

tions of type-II states, but instead of using uniform (in momentum) expansion

coefficients, we used localized distributions. Moreover, in the small γ regime, we

were able to explicitly compute the momentum distribution contributing to the

Gross-Pitaevskii dark solitons, and demonstrated that the resulting superpositions

matched the mean-field solutions. We then studied the physical properties of su-

perpositions constructed with Gaussian coefficients of various widths, which, among

other things, shed light on a previously-available result. In particular, in chapter

11 we have corrected the missing particle number and phase step of type-II states

that can be extracted out of the thermodynamic limit dispersion relation for finite

system effects. These values correspond to the limit of infinitesimally-thin Gaussian

wavepackets, and as such have a clear physical meaning.

Furthermore, we assumed that there exists a fundamental solitonic density such

that the density profiles of Gaussian superpositions can be described by a convo-

263



lution of this fundamental density with the Gaussian center-of-mass of the missing

particles density. This is in line with the bright soliton case [175, 211] and is con-

sistent with recent results [64–66] which demonstrate that the greying of a soliton

(over time) seen in the single-particle density can be explained by a model where

a fundamental soliton (which is not changing in time) is delocalized over the ring

with a Gaussian distribution of its position.

The center-of-mass density could be predicted analytically, and accounts for all

of the dependence on Δp and time – in fact, it obeys the textbook quadratic Gaus-

sian spreading of single-particle quantum mechanics with the single-particle mass

replaced by the inertial mass of the type-II state. The initial width of the center-of-

mass density can be obtained by Fourier-transforming the Gaussian coefficients of

the superposition in momentum space, and is inversely proportional to the width of

the later. All fitting of the numerical data to the assumed equations was convincing

and therefore supported the proposed relations.

Resorting to a further result from [211] that the variances add in convolution,

we were able to use the variances of the single-particle density of Gaussian super-

positions to reliably extract the width of the fundamental quantum dark soliton for

various momenta and interaction strengths. We found that it is possible to scale out

the dependence on γ and p0, so that Δx2FSγ
2n2

0 was a unique function of the missing

particle number Nd. This relation was compared to the Gross-Pitaevskii prediction

and the quantum bright soliton variance, but neither captured the quantum dark

soliton width well in the Tonks-Girardeau regime.

Another important question that is answered as a result of our investigation is

why the finite-system approximation of chapter 11 is so successful for the type-

II excitations when, as it would seem, none of the physical assumptions that are

required for the derivation are satisfied (a localized excitation with a density dip

and a phase step). While superfluidity is not guaranteed, we are now able to state

that there exist solitonic objects with all the required physical properties that have

the same momentum, excitation energy, missing particle number and phase step as

the type-II excitations: any fairly-localized superposition of type-II states centred at

some momentum p0 would have momentum p0 and excitation energy E(p0) (where E

is the type-II excitation energy), simply due to the averaging process. We have also

discovered that the Nd and Δφ we extract from the Lieb-Liniger dispersion relation

(with a finite system correction) correspond to theNd and Δφ of all the superposition

states evolved to any time t (as long as the soliton remains sufficiently well-localized),

since by virtue of the convolution model these quantities are independent of Δp &

t, and are thus equal to their values at Δp = 0.

The experimental detection of dark solitons in one-dimensional cold atom systems

should not be very difficult. One would start from the Bose-Einstein condensate
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limit where dark solitons have already been observed, created via phase imprinting

[16, 21, 22]. Then the coupling strength needs to be ramped up adiabatically (using

Feshbach resonances) [72, 73], which would hopefully leave the system in either the

type-II state or a superposition of type-II states about the momentum of the original

excitation in the weakly-coupled regime. Alternatively, it may be possible to create

the soliton directly in the strongly interacting regime. For example, the seminal

paper [214] exactly models the creation of dark solitons in the Tonks-Girardeau

regime by imposing either a density notch or a phase step on top of the uniform

ground state. Finally, detection would be possible through the density depletion,

which would require resolution on the single atom level (since the soliton size and

missing particle number drop considerably as c increases), but this is possible using

so called quantum-gas microscopes [1, 215].
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Chapter 13

Physics of the Yang-Gaudin Model

In this chapter we will discuss the physical implications of the Bethe ansatz calcu-

lations presented in chapters 8, 9 & 10. First we will discuss dark solitons in the

spin-1/2 Fermi gas, making connections to our work on the Lieb-Liniger model (in

particular, chapters 11 & 12). Then we expand on the low-energy spin excitations in

the repulsive regime of the Yang-Gaudin model and consider their detection through

the Hess-Fairbank effect. Two different super Tonks-Girardeau limits are considered

briefly.

13.1 Dark Solitons

It is trivially obvious that the Bethe ansatz equations (both finite-system and ther-

modynamic limit) for single fermion holes in the attractive regime of the Yang-

Gaudin model under the string hypothesis are almost identical to the equations for

single boson holes in the Lieb-Liniger model. This is perfectly sensible, as we know

that when γ falls below zero sufficiently, the single fermion holes become single dimer

holes, taken out of a fully dimerized ground state distribution. Once the string hy-

pothesis becomes applicable, the Fermi gas consists of tightly bound bosonic dimers,

and unless a dimer is purposefully broken, the underlining fermionic nature is not

apparent. Therefore, it is natural that the mathematical description be identical to

single boson holes, up to the factor of two which accounts for the mass of the dimer

being 2m.

This insight allows us to translate much of what we have learned for boson holes

in the Lieb-Liniger model to dimer holes in the Yang-Gaudin model. In particular,

the connection of type-II states to quantum dark solitons established in chapter 12

can almost certainly be taken over directly into the fermionic gas1. The properties

we have computed for the single (and double – see below) fermion hole branch,

such as the dispersion relation, missing particle number, phase step, and inertial &

physical masses, can be taken as the properties of dark solitons in the Fermi gas,

because as we have shown in the previous chapter, the underlining quantum dark

1Unfortunately, the algebraic Bethe ansatz for nested systems (with multiple spin components
of particles) is not yet as advanced as that for spinless bosons, and therefore a parallel study in
the fermionic case is not currently possible.
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soliton object shares all these properties with the type-II excitations.

Therefore, by performing Bethe ansatz calculations for type-II states in the Yang-

Gaudin model, we have predicted the properties of dark solitons in the attractive

one-dimensional spin-1/2 Fermi gas. There has not been an experimental observa-

tion of solitons in truly one-dimensional attractive fermionic systems, but a theoreti-

cal study [68] attempted to predict their properties in the weakly-interacting regime

using one-dimensional Bogoliubov de-Gennes theory. Our Bethe ansatz-based re-

sults differ from the mean-field results [68] significantly, in particular in terms of

the prediction of the masses and their ratio. We found that mI,P → m as γ → 0−

(in accordance with the physical nature of the excitations), whereas Bogoliubov de-

Gennes theory predicted mI → −∞ and mP → 0− as γ → 0−. This discrepancy is

due to the fact that the use of mean-field theory in one dimension is questionable,

as outlined in chapter 2.

Of course, double fermion holes become double dimer holes as γ → −∞, and

as such are analogous to two-boson holes in the Lieb-Liniger model. In this limit,

they are not elementary excitations, but composite ones, and as such we did not

study these in the Lieb-Liniger model. However, it has been shown by other authors

[65, 66] that double boson holes in the Lieb-Liniger model correspond to states with

two dark soliton excitations, in accordance with intuition. Thus, we expect the

double fermion hole branch of the Yang-Gaudin model to correspond to two-soliton

excitations of the attractive Fermi gas.

Now, with this in mind, we can apply the finite system approximation developed

in chapter 11 to the various Yang-Gaudin branches and inspect the quality of the

approximation. The details and results are presented in appendix 13.A. Using the

third-level equations, we have tested all three elementary type-II branches in the

attractive and repulsive regimes, and found that the approximation is only valid

for single fermion holes in the attractive regime after the string hypothesis comes

into play, and for double fermion holes for any γ, positive or negative. For these

branches, the quality of the approximation is excellent. These are therefore the only

two excitations that may be associated with dark solitons, at least in the sense used

so far, i.e. solitons in a single-component (possibly composite) bosonic superfluid.

Note that this allows us to identify potential dark solitons also in the repulsive

regime. For γ > 0, the double fermion holes are the lowest excitations of the charge

sector (which decouples from the spin sector – see the next section) and become

single fermion holes in the Tonks-Girardeau limit, in analogy to single boson holes

in the Lieb-Liniger model. Even though the Bethe ansatz equations look quite

different, the spin degree of freedom decouples in the strongly-repulsive limit, leaving

a Tonks-Girardeau spectrum for the charge sector, in which hole excitations – the

double fermion hole branch – may again be understood as dark solitons.
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This is an interesting result in light of the fact that a mechanism for pairing is

not obvious for repulsive interactions. In order to address this question directly

we would require the two-particle (pairing) density matrix, which at the moment

is theoretically inaccessible2. A dark soliton in the classical sense (e.g. in the

Gross-Pitaevskii equation) certainly requires a superfluid with a coherent phase.

In this thesis, we have been able to relax this condition to one-dimensional quasi-

condensates with fluctuating phases, generalising the concept of dark solitons into

the strongly-interacting regime. Nonetheless, intuitively, it is somewhat reassur-

ing that the Lieb-Liniger and attractive Yang-Gaudin models have a limit where,

at least in higher dimensions, one would expect superfluidity. By that we mean a

Bose-Einstein condensate in the former case, and a Bardeen-Cooper-Schrieffer state

in the latter case, both found in the weakly-interacting limit. For a repulsive Fermi

gas, there is no regime where one would expect (conventional) superfluidity or con-

densation, even if we were to remove the one-dimensional constraint. As such, a

prediction of dark solitons is non-trivial and perhaps questionable.

However, we cannot deny the success and consistency of our “solitonic” calcula-

tions for this branch. The Yang-Gaudin equations (without the string hypothesis)

are in general very different from the Lieb-Liniger ones, and it is not trivial that

computations that give reasonable results for the bosonic case should make sense

also for fermions. Thus, perhaps our work here can be viewed as an indirect way

of probing the pairing question in the one-dimensional Fermi gas: the success of

the calculations implies that some sort of superfluidity and phase coherence should

exist, which is a surprising but potentially powerful statement.

From the point of view of the Bethe ansatz and our experience in linking type-II

states to dark solitons, the fact that double fermion holes seem to be solitonic is

actually intuitive. The underlying fermionic nature of the gas is “hidden” for the

double fermion holes: for weak repulsion, while there are still correlations between

spin-up and spin-down particles, the excitation is a double-fermion hole, treating a

pair as a single whole, thus leaving the spin degree of freedom untouched. For strong

repulsion, the excitation is a single fermion hole, but since the two spin components

become equivalent in the Tonks-Girardeau limit (at least as far as charge excitations

are concerned), the spin degree of freedom is once again irrelevant.

Moreover, double fermion holes can be understood as solitonic also for weak at-

tractive interactions, where the finite-system approximation for the single fermion

holes fails. The underlying fermionic nature of the particles is hardly truly “invis-

ible” in this limit, as the dimers are weakly bound and pair correlations are weak.

Nevertheless, a pure charge excitation such as the double fermion hole still behaves

2Some approximate calculations are available [183], but at this stage they yield little physical
insight.
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very much as a (double) dark soliton and one would not hesitate to interpret it

as such. The sign of the interactions in the vicinity of γ ≈ 0 then seems of little

importance in such an argument.

For the other branches, the approximation is very different from the exact disper-

sion relation and increasing the system size does not improve the quality. Since we

have no reason to expect the other branches to be solitonic, this is not surprising.

Illustrative figures and further details can be found in appendix 13.A.

13.1.1 Dimer Super Tonks-Girardeau

Recall the concept of the super Tonks-Girardeau gas, introduced in chapter 7: the

Lieb-Liniger model is taken to the Tonks-Girardeau regime, and then γ passes

through ±∞ (1/γ passes through zero). The Tonks-Girardeau solutions can be

followed to the other side of the resonance, but now they are highly excited states.

The bosonic super Tonks-Girardeau gas is described by the ordinary Lieb-Liniger

Bethe ansatz equations with c < 0. Since these equations are practically the same

(up to a factor of two) as the Yang-Gaudin dimerized equations under the string

hypothesis, the results we found in the γ → −∞ limit for the Yang-Gaudin model

apply equally to the super Tonks-Girardeau limit of the Lieb-Liniger model [216].

In other words, we predict the existence of dark solitons as excitations of the super

Tonks-Girardeau ground state. This is remarkable, as in the attractive Lieb-Liniger

model one usually studies bright solitons – in fact the true ground state is a bright

soliton – and yet there also exist highly excited dark soliton solutions.

13.2 Spin Waves

In chapter 8 we found two branches that approached the system translation parabola

as γ → ∞: these were the spin-flip excitations and single fermion holes. We solved

the Bethe ansatz equations approximately in this limit and saw that it is the presence

of the spin rapidities that accounts for the limiting behaviour of these branches. In

other words, the system translation parabola becomes accessible at all values of the

quantized momentum because of the spin degree of freedom. One might wonder if

the same occurs for a two-component Bose gas, and indeed this is the case, as can be

shown by approximately solving the Bethe ansatz equations with periodic boundary

conditions (see appendix 13.B), given in [159]. So how may these spin excitations

be interpreted?

In fact, the behaviour we uncovered with the help of the Bethe ansatz can be

understood through Haldane’s Luttinger liquid theory [89, 217, 218], which shows

that the “charge” sector fully decouples from the “spin” sector – the Hamiltonian is

written as two identical, non-interacting parts, one for each kind of excitation. This
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is known as “spin-charge separation”. The parameters entering the Hamiltonian, in

particular the speeds of sound of the two sectors, are determined phenomenologi-

cally – i.e. the theory does not predict them. It is interesting that this Luttinger

liquid theory can be applied to both bosons and fermions, via a technique called

bosonisation, and the predictions are universal to one-dimensional gases.

Now, what is meant by “charge” and “spin” waves, terms that feature heavily in

the Luttinger liquid formulation? During the reduction of the Hamiltonian to the

Luttinger-liquid form, one defines the charge density as the total (bosonized) parti-

cle density and the spin density as the relative, that is, the difference between the

(bosonized) densities of the two components. Charge and spin waves are then liter-

ally longitudinal and transverse waves, respectively, in these two densities, travelling

at different speeds.

How can our three elementary type-II excitations be categorized under such a

description? Usually, when classifying Bethe ansatz states into the Luttinger liquid

phenomenology, one reasons as follows: the nature of the excitation depends on

which rapidity density is perturbed in the thermodynamic limit to create it. In our

case, to excite double fermion holes the charge rapidity density ρ(k) is perturbed by

the removal of a k – therefore these are charge waves. For single fermion holes and

spin-flips, it is the spin rapidity density that is perturbed: in the first case by the

replacement of two α’s by an A and in the second, by the removal of an α. Therefore,

both branches are spin waves. Of course this classification is not based on the direct

definition of the two kinds of Luttinger liquid excitations, but the Bethe ansatz does

not furnish us with sufficient information for this task and at least a posteriori the

classification above is consistent with expectations.

Luttinger liquid theory has been used in the literature to describe one-dimensional

fluids quite extensively. For example, [219] considers a one-dimensional Fermi gas in

a harmonic trap, and deduces the existence of a lower dipole oscillation (“sloshing”

motion of the entire cloud) frequency as a result of spin excitations being present.

The authors present formulae for the Luttinger parameters for both sectors for weak

interactions, and use the Bethe ansatz to compute the parameters in the Tonks-

Girardeau regime. They correctly point out that the charge spectrum is that of a

free Fermi gas (tying in with our nomenclature, double fermion holes belong to the

charge spectrum and are the hole excitations of a single component Fermi gas with

N particles). Equation (10) of [219] gives the spectrum of spin waves, which is linear

in momentum due to the fact that it is derived under Luttinger liquid theory which

is fundamentally linearised.

In addition, [220] look at a two-component repulsive Bose gas, the ground state

of which is ferromagnetic so that a spin flip introduces one spin-up particle into a

spin-down sea (i.e. essentially a polaron). The authors find a quadratic dispersion
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relation for the spin-flip branch, and the effective mass associated with it approaches

that of the entire system in the Tonks-Girardeau limit, in accordance with our own

findings. This is also discussed in [178], where it is mentioned that the polaron

effective mass is m in the γ � 1 limit (clearly consistent with our results) and Nm

in the Tonks-Girardeau limit.

In the review article [183], section IIIC, a collection of results for the speeds

of sound for the two sectors are given, in both the strongly- and weakly-repulsive

regimes, including first order corrections in γ. In the Tonks-Girardeau limit, the

charge sector velocity approaches the Fermi velocity while the spin velocity vanishes.

These results can also be found in [179]. This is fully consistent with our findings,

identifying double fermion holes as charge excitations and the other two branches as

spin waves (in the thermodynamic limit, the system translation parabola hugs the

momentum axis).

Finally, note that Schlottmann [184] uses his formulation of the thermodynamic

limit Bethe ansatz to study, among other things, spin flip excitations in the Yang-

Gaudin model. His description of their behaviour in the Tonks-Girardeau limit is

fully consistent with our results from chapter 9.

To summarize, the low energy spin excitations3 that we found in chapter 8 de-

couple from the charge excitations (double fermion holes) as γ → ∞ and become

“soft”, that is, their dispersion relation vanishes in the thermodynamic limit. At

first this is quite surprising as the infinitely repulsive spin-1/2 Fermi gas is often

said to be equivalent to a single component of free fermions which certainly does

not feature such excitations. However, we learned that it is only the charge sector

that becomes a Tonks-Girardeau gas of N particles, while the system translation

parabola excitations are spin-waves that are present due to the dual-component na-

ture of the system. This behaviour is known and understood in the literature, both

in the context of Luttinger liquid theory as well as from independent Bethe ansatz

calculations.

The next question we must ask is can these translatory excitations be observed in

present-day experiments? In particular, are periodic boundary conditions essential,

as truly one-dimensional toroidal traps are currently unavailable. First of all, we

note that the original work by Haldane [89, 217] predicting spin-charge separation

is done for a periodic system, but a generalization to Dirichlet boundary conditions

exists [221]. In this latter paper, the authors show that spin-charge separation

still occurs, but since the parameters are determined phenomenologically, there is

nothing to guarantee that the spin velocity is not equal to the charge velocity.

On the other hand, it is possible to derive the Bethe ansatz equations for δ-

3As explained previously, in the strongly interacting regime, single fermion holes also become
spin excitations as in the string hypothesis the α’s are perturbed.
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interacting particles with hard-wall boundary conditions [159], for both two-component

fermions and bosons. Solving the Bethe ansatz equation to first order in the in-

finitely repulsive regime (see appendix 13.C) we see that indeed the αm’s no longer

contribute to the kj’s. However, with hard-wall boundary conditions the total mo-

mentum is not conserved because translational symmetry is lost, so thinking in terms

of dispersion relations is no longer sensible. The only observation we can make is

that the energy spectrum in the Tonks-Girardeau regime is identical to that of a sin-

gle spin component of free fermions, i.e. low energy spin waves are not present. This

implies that periodic boundary conditions are indeed essential for the observation

of these excitations.

13.3 Hess-Fairbank Effect

We now move on to describe in detail the possible detection of spin-waves in the

repulsive Fermi gas.

13.3.1 Introduction

Experiments in ultra cold atom physics have recently begun probing one-dimensional

Fermi gases with two [57, 76–78] or a variable number [79] of spin components and

a small particle number (N ∼ 10). One possible approach to probe the low-energy

properties of a superfluid is through the Hess-Fairbank experiment [222], where the

ring trap is externally rotated and the angular momentum of the ground state of the

rotating gas is measured. Since superfluids have a non-classical rotational inertia,

the fluid does not rotate with the container, allowing one to witness the quantisation

of circulation. Originally introduced for superfluid Helium, the concept was more

recently applied to bright solitons in the attractive boson gas [223–225]. In terms of

repulsive multicomponent gases, as we have seen, in the strongly interacting regime

spin-waves become soft and the classical parabolic dispersion relation is recovered

[219, 220]. Clearly, such excitations are not present in the non-interacting limit of a

Fermi system, so it is natural to inquire how this transition occurs and what would

be the observable consequences in terms of the Hess-Fairbank effect.

Here we approach this question via the Bethe ansatz [52], which allows one to

exactly solve the Yang-Gaudin model [48, 49] of spin-1/2 fermions in one dimension

with contact interactions and periodic boundary conditions. The dispersion relations

of various low energy excitations can be easily obtained, and thus the Hess-Fairbank

diagram can be constructed. Experimentally, one-dimensional linear traps for Fermi

condensates already exist [57, 76–78], while ring traps should become accessible in

the near future, since such traps for Bose-Einstein condensates have already been

realised [70, 226–228].
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We find that for moderate interactions, the Yang-Gaudin model exhibits a frac-

tionalisation of the angular momentum of the rotating ground state: rotation is

quantised differently than in a single-component repulsive Bose gas [164], with frac-

tions of the unit angular momentum (L0 = N� where N is the number of particles)

appearing in the Hess-Fairbank scenario. As interactions increase, at first only

half-integer multiples of L0 are accessible, indicating the creation of half-vortices

[229–232] in the ground state of the rotating system. This regime is separated from

the multi-step phase where some, but not all, multiples of L0/N are available by

a straight line marking the quantum phase transition. At stronger repulsion still,

we find another linear phase boundary, past which all multiples of L0/N can be

accessed through system rotation.

13.3.2 The Model

Let us rewrite the Yang-Gaudin Hamiltonian in terms of angular quantities and in

a rotating frame at ωr:

H =
N∑
j=1

[
− �

2

2mr2
d2

dθ2j
+ i�ωr

d

dθj

]
+

�
2c

rm

∑
〈i,j〉

δ (θi − θj) . (13.1)

Here, θj are the angular coordinates of the particles, m is the mass, and r is the

radius of the ring. There are N fermions in total, M ≤ N/2 of which are spin-down

and the rest are spin-up. As always, the one-dimensional density is n0 = N/2πr,

and the dimensionless coupling parameter is γ = c/n0. A schematic of the system

is illustrated in Fig. 13.1.

When ωr = 0, Hamiltonian (13.1) can be exactly diagonalized by the Bethe

ansatz, as was done in chapter 8. The total angular momentum and energy of the

system can be found (upon solving the Bethe ansatz equations) from

L = r�
N∑
j=1

kj, E =
�
2

2m

N∑
j=1

k2j . (13.2)

Recall that the lowest energy excitations at a given momentum in the repulsive

regime are the spin-flip excitations, often discussed as an elementary spin-wave [184]

in the parlance of Luttinger-liquid theory [89, 217]. In chapter 8 we listed the

quantum numbers necessary to create spin-flip excited states from L = 0 to L =

L0/2, where we define L0 = 2πr�n0. In order to complete the branch and reach L0

we again begin from the ground state quantum numbers and set n1 → nN +1 – this

gives the umklapp point (L = L0). To compute the rest, we further subtract 1/2

from all the nj’s, add 1/2 to all the 
m’s, and delete each of the 
m’s in turn, from

m = 1 to m =M − 1.
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Figure 13.1: An illustration of the Yang-Gaudin model and the Hess-Fairbank set-
up. The blue and pink circles represent spin-1/2 fermions, M of each spin com-
ponent, so that the total number of particles in the balanced system is N = 2M .
The particles are confined to a one-dimensional ring with radius r, which is exter-
nally rotated at ωr. The fermions experience contact repulsive interactions with
dimensionless coupling strength γ.

13.3.3 Results

The Hess-Fairbank diagram depicts the angular momentum of the ground state (Lm)

of a system rotated at a certain angular velocity (ωr). In order to construct it, one

must compute the lowest energy dispersion relation of the stationary system, E(L),

and the energy of the rotating system, E ′ = E − ωrL. Then at each value of ωr

we find the minimum of E ′ and its corresponding angular momentum value, Lm.

Finally, one simply plots Lm as a function of ωr.

First consider the case of N free fermions, or equivalently, the bosonic Tonks-

Girardeau gas. The lowest energy dispersion relation is that of holes (see chapter 7):

it consists of convex curve segments with cusps at the umklapp points (at L� = 
L0,

E(L�) = L2
�/2mNr

2 for integer 
), which correspond to Galilean boosts of the ground

state. Likewise, all states on the hole dispersion relation beyond the first umklapp

point are simply boosted versions of their counterparts in the angular momentum

interval [0, L0]. Thus it is sufficient to compute E(L) on [0, L0], and obtain the 
th

segment of the dispersion relation by adding 
L0 to L and 2
�L/r2 + 2π
2�2n0/r

to E. Note that at the 
th umklapp point, the system can be thought of as having


 vortices at the center of the ring, as each vortex contributes a phase winding of

Δφ = 2π and L = r�n0Δφ.

It is clear that the Hess-Fairbank diagram will have a step structure, as each of the

umklapp cusps in turn becomes the ground state in the rotating frame. Moreover,
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the plateaus will have angular momentum values L�. The 

th plateau will start when

E ′(L�) drops below E ′(L�−1). As the umklapp points lie on the translation parabola

E = L2/2mNr2, setting E ′(L�) = E ′(L�−1) gives us the condition for ωr of the

transitions4, ω� =
πn0�(2�−1)

rmN
. Thus the length of each plateau is ω0 =

2πn0�

mNr
. Such a

Hess-Fairbank diagram corresponds to the normal superfluid case.

If, on the other hand, we have a classical liquid with the lowest dispersion relation

given by E = L2/2mNr2, the Hess-Fairbank diagram is a straight line passing

through the set of points (ω� = 
ω0, L� = 
L0), that is, through the middle of the

steps present in the normal superfluid case. If the momentum is quantised, then one

finds N small steps oscillating about the straight line of the continuous limit.

Returning to the Yang-Gaudin model, Fig. 13.2 shows the dispersion relation

of the spin-flip excitations for several γ values (a) and the corresponding Hess-

Fairbank diagrams (b). We see that when γ � 1 the dispersion relation is that

of a single fermion hole, expelled from the Fermi sea of its spin component due to

Pauli exclusion. As interactions increase, the dispersion relation falls and in the

Tonks-Girardeau limit, hugs the center of mass translation parabola.

The Hess-Fairbank diagram for γ → 0 is that of a normal superfluid, with addi-

tional points at (ω�, L�/2), as can be readily shown analytically using the fact that

the half-umklapp points (at L = L�/2) lie on the translational dispersion relation

for only one of the two spin components, E = L2/mNr2. These points (which later

grow in to steps of finite length) can be interpreted as half -vortices in the center of

the ring. Half vortices have been recently studied in, e.g., two-dimensional exciton-

polariton condensates [231, 232], superfluid Helium-3 [230] and spinor Bose-Einstein

condensates [229].

As γ increases, the length of this “half-way” step grows (at the expense of the

original steps shrinking) due to the fact that the mid-point of the dispersion relation

(at L = L0/2) falls gradually lower. We numerically extracted the length of the half-

way step for various values of γ and N – the data is shown in Fig. 13.3, where we see

that N can be effectively scaled out and all the points lie on a single curve (small

deviations are present for very small N). There is a clear horizontal asymptote

at ωr/ω0 = 1/2, reflecting the fact that plateaus cannot overlap. In the limit of

small γ, an analytical expression for the dispersion relation can be derived from the

approximate solutions of the Bethe ansatz equations (chapter 8):

E(γ � 1) =
�
2n2

0

2m

[
−2γ

N
− L2

r2n2
0�

2
+

2Lπ(M + 1)

rn0�N

]
, (13.3)

which enables us to extract the limiting behaviour of the step-length as ωr/ω0 =

4The -1 appearing in ω� is to be omitted for even M ; in the rest of the chapter we report results
for odd M but the even M case may be easily recovered by a simple shift.
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Figure 13.2: Dispersion relation for spin-flip excitations of the Yang-Gaudin model
with N = 14, M = 7 for several values of γ (a), and the corresponding Hess-
Fairbank diagrams (b). The black dashed line in (a) is the system translation
parabola, E = L2/2mNr2, while the dash-dotted line is the translational dispersion
relation for only one of the two spin components, E = L2/mNr2.
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γ/π2. In the opposite limit, as mentioned in chapter 8, the approximate dispersion

relation does not include any correction terms in γ, so a similar calculation is not

possible. An analysis of the numerical data suggests an asymptotic behaviour as

γ → ∞ of ωr/ω0 = 1/2− π/γ.
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Figure 13.3: The length of the half-way step for systems of various N and across a
large range of interaction strengths. For N > 2 the range of the data is limited by
the appearance of the mini steps (see text). For γ � 1, the asymptotic behaviour is
ωr/ω0 = γ/π2, and for γ → ∞, it appears to be consistent with ωr/ω0 = 1/2− π/γ.

Returning to Fig. 13.2 (b), the next phase of the transition is the gradual appear-

ance of M − 1 “mini” steps at integer multiples of L�/N between the original and

half-way plateaus, which can be thought of as fractional vortices. This is a result of

the changing concavity of the dispersion relation at large γ values (see Fig. 13.2 (a)).

In particular, the discrete (L,E) points fall non-uniformly below the straight line

connecting the origin to the half-umklapp point. The mini steps appear one by one,

starting off as a single point, alternatively closer to the bottom and top plateaus;

their length and number grows at the expense of the original and half-way plateaus.

We can map-out this multi-step region by noting the γ values at which the first

and last of the mini steps appear as a function of system size, N . This is shown in

Fig. 13.4 – we find that the boundaries of the multi-step region are linear in N . In

this “discontinuous rotation” phase, some multiples of L�/N are forbidden, so the

Hess-Fairbank diagram still exhibits jumps in angular momentum bigger than the

quantization step.

Once allM−1 mini steps are in place, the Hess-Fairbank diagram is as continuous

as it can be for a finite system – that is, as ωr is increased, all states on the spin-flip

dispersion relation become the ground state of the rotating system in turn, with none
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Figure 13.4: The values of γ as a function of number of particles N where the first
and last of the mini steps appear. Since there is a small visible difference for the last
mini step between even and odd M , the two data sets are treated separately. The
lines are linear fits to the data: the blue solid line is given by γ = 6.8417N+0.46011,
the red dashed line by γ = 11.174N − 20.299 and the green dash-dotted line by
γ = 11.133N − 17.435.

skipped. This regime can be described as continuous non-classical rotation, because

despite the fact that the jumps in the Hess-Fairbank diagram are now simply the

momentum quantization step, the gas still clearly does not rotate with the container,

as it would classically. Next the mini steps and the remnants of the original and

half-way steps reach roughly equal size, oscillating about the continuous straight line

of the classical fluid, as is shown in the final panel of Fig. 13.2 (b). In this limit we

obtain a classical rotational inertia, which finally completes the quantum-to-classical

fluid transition.

We remark that a spin-flipping mechanism is not essential for the potential ex-

perimental observation of these predictions. The single fermion hole branch is spin-

conserving, and its dispersion relation is extremely close to the spin-flip excitations

(but slightly higher in energy) throughout the repulsive regime.

In conclusion, we have predicted non-trivial, multi-phase Hess-Fairbank diagrams

for spin-1/2 fermions in a one-dimensional ring trap. There are three distinct phases:

half-vortices, discontinuous rotation, and continuous non-classical rotation, sepa-

rated by linear boundaries.
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13.4 Fermionic Super Tonks-Girardeau

If one takes the limit as γ → ∞ in the Yang-Gaudin model and enters the fermionic

Tonks-Girardeau regime, it is possible to follow in 1/γ through zero such that γ

changes from +∞ to −∞. Then one enters the fermionic super Tonks-Girardeau

regime, the fermion counter-part of the super Tonks-Girardeau gas of the Lieb-

Liniger model. This concept was introduced in [216, 233], and then further studied

in [234]. In the ordinary repulsive regime, the ground state of a spin-balanced system

is one with S = 0 and Sz = 0, the ground state we studied via the Bethe ansatz in

chapter 8. The other spin states, inaccessible through the Bethe ansatz equations

derived in chapter 6, lie higher in energy. However, as γ → ∞, the spin label

of the particles ceases to matter as infinite contact repulsion and Pauli exclusion

make interactions between like- and unlike-particles indistinguishable. All the spin

states become degenerate at the point when 1/γ = 0, and as we pass into the super

Tonks-Girardeau regime, the energy levels cross so that the higher S spin states have

lower energy. The true ground state of the super Tonks-Girardeau manifold is then

ferromagnetic with S = N/2. This is discussed in detail, e.g., in Refs. [216, 233–238].

However, as pointed out in [234], the S = 0 state can be followed into the super

Tonks-Girardeau regime successfully as long as there are no spin-changing terms in

the Hamiltonian (although small coupling terms would cause a transition into the

ferromagnetic state).

Assuming no spin-mixing terms are present, the system will remain in the sin-

glet “ground state” (of the excited super Tonks-Girardeau manifold). As in the

bosonic case, decay into the true ground state of paired dimers (studied in chap-

ter 8 in the attractive regime) is suppressed due to the large energy which cannot

be disposed of easily. An additional advantage of the fermionic system over the

bosonic one is that when we move further out of the super Tonks-Girardeau regime

(i.e. γ increases from −∞ to 0−), the system is far more stable against three-body

loss due to Pauli exclusion, which prevents collisions of three spin-1/2 fermions.

Therefore, we may theoretically consider following the system in γ further: from

the non-interacting limit to the Tonks-Girardeau regime (γ = 0+ → +∞), then

from the Tonks-Girardeau into the super Tonks-Girardeau (γ = +∞ → −∞), back

towards the next non-interacting limit (γ = −∞ → 0−), crossing back into repul-

sive interactions (γ = 0− → 0+) and back to the next Tonks-Girardeau regime

(γ = 0+ → +∞).

By following the singlet ground state through this range of interaction strengths,

one can realize exotic states of the free Fermi gas, characterized by a Fermi sea of

N particles with a regular pattern of holes, which we term the “holey Fermi sea”.

In particular, the ground state can be followed using the logarithmic Bethe ansatz
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equations with the quantum numbers given in chapter 8 from γ = 0+ → +∞ →
−∞ → 0−. Since the limit γ → 0− is again a free Fermi system, the charge rapidities

are multiples of 2π/L but there is now a hole following every two kj’s occupying

adjacent momenta slots. The spin rapidities fill the holes in the charge-rapidity

distribution.

Next, in order to follow the ground state from γ = 0− to γ = 0+ new quantum

numbers need to be computed (by reverse-solving the Bethe ansatz equations, using

the solutions at γ = 0− for the rapidities, a small positive γ, and solving for the

quantum numbers). Thus continuing onwards to the next Tonks-Girardeau regime,

we find a double holey sea: the holes between pairs of occupied 2π/L slots become

double.

Two technical comments are in order. First, note that the αm’s diverge linearly

with c, as can be seen from equation (8.35) (even though this equation is quan-

titatively inaccurate, the qualitative linear dependence on c is correct). When we

cross the resonance (1/γ = 0), all the αm’s swap signs, but since in the ground state

they are symmetrically arranged about zero, the set of αm’s does not change. Past

the resonance, as γ changes from −∞ to 0−, the αm’s move back in towards the

origin, and they move back out again as we go to the next Tonks-Girardeau limit.

Second, the ground state thermodynamic limit Bethe ansatz equations for the re-

pulsive Yang-Gaudin model (chapter 9) cannot be solved with γ < 0. This is due to

the “holey” nature of the ground state, which contradicts the assumption that the

rapidities are compactly and symmetrically arranged about zero (made during the

derivation). Thus the thermodynamic limit of the super Tonks-Girardeau regime

cannot be captured with the same equations.

13.5 Conclusion

To summarise, in this chapter we have discussed the physical implications of our cal-

culations for the Yang-Gaudin model. In particular, we have predicted the existence

and properties of dark solitons in the attractive Fermi gas (likewise applicable to

the bosonic super Tonks-Girardeau gas), and discovered an excitation branch that

appears solitonic also in the repulsive regime. Then we discussed the low-energy

translatory excitations found with repulsive interactions in the context of spin-waves

in Luttinger liquid theory, and investigated their effect on the Hess-Fairbank dia-

grams, proposing a method for direct experimental detection of these excitations.

Finally, we considered the fermionic super Tonks-Girardeau regime, and found that

curious states could be realised, characterised by a Fermi sphere with regular hole

patterns.
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Appendix

13.A Finite-System Approximate Dispersion Re-

lations

In this appendix we present the (third-level) finite system dispersion relation approx-

imation of chapter 11, computed for all the branches of the Yang-Gaudin model (as

well as the Lieb-Liniger model for comparison), shown in Figs. 13.5–13.11. This is

done in order to easily identify the solitonic branches in a one-dimensional Fermi gas.

Beginning from boson holes in the Lieb-Liniger model (Fig. 13.5), we see that the ap-

proximation works well (as we already know from chapter 11), as long as the soliton

is well localized on the ring (this assumption breaks down in the Gross-Pitaevskii

limit where the dark soliton becomes macroscopic). Similarly, single fermion holes

for γ < 0 (Fig. 13.6) show excellent agreement as long as we are in a regime where

the string hypothesis is valid. Thus, for |γ| � 1 it is the complicated nature of the

true rapidities that causes the approximation to perform poorly, as is illustrated in

the top panel of Fig. 13.6 by repeating the finite Bethe ansatz calculation using the

string hypothesis equations. Therefore, we may conclude that for sufficiently large

|γ| or N this branch is dark soliton-like.

Double fermion holes (Figs. 13.7 & 13.10) show excellent agreement across the

entire range of γ’s, positive and negative, indicating that they may always be in-

terpreted as dark solitons. In the strongly repulsive regime they are clearly the

only soliton-like excitation, judging from the shape of the dispersion relation and

the “hole” nature of the state. An interesting feature is that as γ → 0, in contrast

to the Lieb-Liniger case, the approximation is still very good. This is because in

the Yang-Gaudin model, Nd of the single- and double-fermion holes never becomes

macroscopic (1 or 2 fermions for small coupling), which suggests that the excitations

are still very well localized.

The cases when the approximation does not perform well include spin flips (for

any γ) and single fermion holes (for positive γ). In Figs. 13.8, 13.11 & 13.9 we show

the results for N = 10 and N = 22, in order to demonstrate that increasing the

system size does not improve the quality of the approximation (the relative error

does not decrease). This implies that the nature of these branches is actually not

solitonic, which is hardly surprising due to our understanding that spin flips and

single fermion holes in the repulsive regime are spin-excitations.
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Figure 13.5: Dispersion relation of type-II Lieb-Liniger excitations in a system with
N = 10 and γ = 0.01 (top), γ = 1 (middle), γ = 100 (bottom). Blue lines depict
the third level approximation based on thermodynamic limit calculations and red
circles show exact finite Bethe ansatz results.
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Figure 13.6: Dispersion relation of single fermion hole excitations of the attractive
Yang-Gaudin model in a system with N = 10 and γ = −0.02 (top), γ = −1
(middle), γ = −100 (bottom). Blue lines depict the third level approximation based
on thermodynamic limit calculations and red circles show exact finite Bethe ansatz
results. Green squares in the upper panel show the dispersion relation obtained
under the string hypothesis, even though it is completely invalid in this regime.
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Figure 13.7: Dispersion relation of double fermion hole excitations of the attractive
Yang-Gaudin model in a system with N = 10 and γ = −0.02 (top), γ = −1
(middle), γ = −100 (bottom). Blue lines depict the third level approximation based
on thermodynamic limit calculations and red circles show exact finite Bethe ansatz
results.
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Figure 13.8: Dispersion relation of spin flip excitations of the attractive Yang-Gaudin
model in a finite system with γ = −0.02 (top), γ = −1 (middle), γ = −100
(bottom). Blue solid (black dashed) lines depict the third level approximation based
on thermodynamic limit calculations and red circles (green diamonds) show exact
finite Bethe ansatz results for N = 10 (N = 22).
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Yang-Gaudin model in a finite system with γ = 0.1 (top), γ = 1 (middle), γ = 100
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Figure 13.10: Dispersion relation of double fermion hole excitations of the repulsive
Yang-Gaudin model in a system with N = 10 and γ = 0.1 (top), γ = 1 (middle),
γ = 100 (bottom). Blue lines depict the third level approximation based on ther-
modynamic limit calculations and red circles show exact finite Bethe ansatz results.
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Figure 13.11: Dispersion relation of spin flip excitations of the repulsive Yang-
Gaudin model in a finite system with γ = 0.1 (top), γ = 1 (middle), γ = 100
(bottom). Blue solid (black dashed) lines depict the third level approximation based
on thermodynamic limit calculations and red circles (green diamonds) show exact
finite Bethe ansatz results for N = 10 (N = 22).

13.B Repulsive Two-Component Bose Gas

In this appendix we present the Bethe ansatz equations for a repulsive two-component

Bose gas with periodic boundary conditions [159], and give their first order solution

in the Tonks-Girardeau limit. The exponential equations are

exp(ikjL) = −
M∏
n=1

kj − αn − ic/2

kj − αn + ic/2

N∏
�=1

kj − k� + ic

kj − k� − ic
, (13.4)

N∏
j=1

αm − kj + ic/2

αm − kj − ic/2
= −

M∏
n=1

αm − αn + ic

αm − αn − ic
, (13.5)

or in logarithmic form:

kjL = 2πnj +
N∑
�=1

θ(kj − k�)−
M∑
m=1

θ[2(kj − αm)], (13.6)

0 = 2π
m −
M∑
n=1

θ(αm − αn) +
N∑
j=1

θ[2(αm − kj)]. (13.7)
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Going through the calculation as was done in section 8.6.4, we arrive at the following

equations:

kjL = 2πnj +
2kj
c
(2M −N) +

(
4π

cL
− 8πM

NcL

)∑
j

nj

+

(
−4π

cL
− 2π

N
+

8πM

NcL

)∑
n


m, (13.8)

0 = 2π
m +
2αm
c

(M − 2N) +

(
8π

cL
− 4πM

NcL

)∑
j

nj

+

(
−8π

cL
− π

N
+

4πM

NcL

)∑
n


m. (13.9)

Since these are already decoupled, we may focus on the first one (for the charge

rapidities). Assuming N = 2M (which is an unnecessary limitation – spin flips

could be involved and then this condition would not hold, but let us see how it

simplifies if it does hold), the first equation easily reduces to

kjL = 2πnj − 2π

N

∑
m


m, (13.10)

which is precisely what we found in the fermionic case, too. If the sum over 
m is an

integer (which it is highly likely to be), then we recover the translation excitations.

13.C Box Boundary Conditions

In this appendix we present the Bethe ansatz equations for two-component repulsive

fermions with box (Dirichlet) boundary conditions, requiring the wavefunction to

vanish at the edges. The exponential Bethe ansatz equations are [159]

exp(2ikjL) =
M∏
n=1

kj − αn + ic/2

kj − αn − ic/2

kj + αn + ic/2

kj + αn − ic/2
, (13.11)

N∏
j=1

αm − kj + ic/2

αm − kj − ic/2

αm + kj + ic/2

αm + kj − ic/2
=

M∏
n=1,
n �=m

αm − αn + ic

αm − αn − ic

αm + αn + ic

αm + αn − ic
. (13.12)
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In logarithmic form, these become5

2kjL = 2πnj +
M∑
m=1

{θ[2(kj − αm)] + θ[2(kj + αm)]} , (13.13)

0 = 2π
m +
M∑
n=1,
n �=m

{θ(αm − αn) + θ(αm + αn)}

+
N∑
j=1

{θ[2(αm − kj)] + θ[2(αm + kj)]} . (13.14)

Expanding the θ functions to first order about zero (in order to find the approximate

solutions in the Tonks-Girardeau regime) leads to very simple, decoupled, linear

equations for the rapidities. The solutions are

kj =
2πnj

2L+ 8M/c
, (13.15)

αm =
π
mc

2(M − 1) + 4N
. (13.16)

Comparing these to the rapidities of a single-component free Fermi gas described by

exp(2ikjL) = 1, or 2kjL = 2πnj, we see that since nj ∈ N in both cases, clearly the

same kj’s are possible.

5Note that Ref. [159] have a typographical error: the sign for the first sum in the second equation
is wrong.
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Chapter 14

Summary, Conclusions & Outlook

In this thesis, we have been primarily concerned with the quantum-mechanical in-

terpretation of dark solitons in one-dimensional ultra-cold gases. We began by

reviewing condensation in three dimensions and the crucial effect of dimensionality,

followed by the Gross-Pitaevskii equation in one dimension, focusing on its dark

soliton solutions. In the process, we encountered the quasi-particle equation of mo-

tion for a solitonic excitation in a trap under the local density approximation, and

met the inertial and physical masses that enter this equation. The physical mass

was proportional to the effective missing particle number, which was expressed as a

derivative of the excitation energy.

Then we proceeded to solve the system of two coupled one-dimensional Gross-

Pitaevskii equations, modelling two Bose-Einstein condensate strands with coherent

tunnelling. We numerically solved the time-independent Gross-Pitaevskii equations

for moving Josephson vortices as well as a new excitation branch (the staggered

solitons). Some limiting cases were solved analytically. We found a critical tunnelling

value at which the inertial mass of the Josephson vortex diverged, compared the

Gross-Pitaevskii model to the sine-Gordon model in the weak-tunnelling limit, and

discovered a parameter regime in which dark solitons and Josephson vortices are

bistable.

Next, we simulated two types of experiments that allow for the detection of

Josephson vortices: interference of the two Bose-Einstein condensate strands re-

sulting in a fringe pattern and the oscillatory trajectory of a Josephson vortex in

a harmonic trap, the latter necessitating a time-dependent solution of the Gross-

Pitaevskii equations. Furthermore, we confirmed that it is indeed the effective, and

not the actual, missing particle number that enters the physical mass in the quasi-

particle equation of motion, using the trapped Josephson vortex as a test-case.

We then presented an alternative derivation for the extraction of the actual miss-

ing particle number from the dispersion relation for a solitonic excitation in a super-

fluid, Lagrangian system. We briefly examined the conditions for the effective and

actual missing particle numbers to be equal and presented illustrative examples.

In chapter 6 we moved away from mean-field problems, and introduced the Bethe

ansatz technique, using it to exactly solve the Lieb-Liniger & Yang-Gaudin models.
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The finite Lieb-Liniger model was then reviewed, introducing may key concepts,

focusing on the ground state and type-II excitations (single boson holes). At this

point we compared the dispersion relations of dark solitons and type-II excitations

in finite systems and found excellent agreement, from the mean-field regime to small

systems with intermediate repulsion. Next we carried out a careful and methodical

study of the ground state and three elementary type-II branches of the Yang-Gaudin

model. We tracked all three branches across the entire range of positive and negative

interactions, identifying the limiting behaviour.

We went on to present the thermodynamic limit of the Bethe ansatz equations

for the ground state and all type-II branches of interest in the Lieb-Liniger & Yang-

Gaudin models, with a special emphasis on the dispersion relations. We also checked

that the dispersion relations of dark solitons and type-II Lieb-Liniger excitations

matched in the thermodynamic limit for weak interactions. These results were then

used to extract the missing particle number, phase step, and the inertial & physical

masses for all these type-II branches, as a “diagnostic” calculation the results of

which shed light on the physical nature of the states examined. We found that in

the weakly-interacting limit, not only the dispersion relation, but also the missing

particle number & phase step of Lieb-Liniger type-II excitations tend to the Gross-

Pitaevskii dark soliton values, which served as further evidence for the connection

between these states.

Armed with solitonic properties of type-II states of the Lieb-Liniger model, we

derived a finite-system approximation of the dispersion relation based on thermo-

dynamic limit results, and applied it to Gross-Pitaevskii dark solitons as well as to

Lieb-Liniger type-II states, finding excellent agreement in both cases. This indi-

cated an underlining solitonic interpretation of type-II states, as both the missing

particle number formula and the approximate dispersion relation were derived under

the assumption that a density dip and a phase step exist. This work also allowed

us to get finite-system corrections for the missing particle number and phase step

extracted from the thermodynamic limit dispersion relation.

Finally, we addressed our main research question directly in chapter 12, show-

ing that in the Gross-Pitaevskii limit, classical dark solitons can be constructed as

superpositions of type-II states, and computed the expansion coefficients. In gen-

eral, the quantum dark soliton may be defined as an underlining fundamental object

such that its convolution with the center of mass (of the missing particles) density

produces the single-particle density. We extracted the length scale of the quantum

dark soliton as a function of momentum and interaction strength, and found that

the dependence on both parameters can be easily scaled out, leaving the length

scale as a single function of the missing particle number. In the weakly interacting

regime, this function approaches the Gross-Pitaevskii dark soliton variance, while
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for strong interactions it is not well-captured by the variance of the quantum bright

soliton, as was initially hoped.

While the single-particle density disperses as a function of time (the larger γ, the

faster the wavepacket disperses), a single measurement of the density will reveal the

fundamental quantum dark soliton profile, centred at a random position, with the

probability of detecting the soliton at a given position being a Gaussian [64].

In the course of the investigation, we uncovered the physical meaning of the

missing particle number and phase step of type-II states, and understood why the

finite-system dispersion relation approximation performs so well for type-II states.

Next, we turned our attention to the Yang-Gaudin model, and discussed the ex-

istence of dark solitons, identifying them as the single- and double- fermion hole

branches for attractive interactions (corresponding to a single and double dark soli-

ton state) and double-fermion holes for repulsive interactions (corresponding to sin-

gle dark soliton states). We made a case for the idea that the solitonic properties of

these type-II states correspond to those of the fermionic dark solitons, thus predict-

ing properties of dark solitons in a one-dimensional Fermi gas via the Bethe ansatz.

We confirmed that the finite system dispersion relation approximation performed

superbly for the single- and double-fermion holes, the former only for sufficiently

negative γ.

For repulsive interactions, the success and consistency of all our calculations

assuming solitonic excitations suggests strongly that dark-soliton like states do exist,

despite the fact that there is currently no information on a pairing mechanism and

superfluidity for repulsive fermions in one dimension. In a way, we were able to

obtain indirect evidence that implies some sort of quasi long range order may exist.

We also investigated the low-energy spin excitations in the repulsive regime, mak-

ing a connection to spin-waves of Luttinger liquid theory and establishing the im-

portance of periodic boundary conditions. We analysed the Hess-Fairbank diagrams

as the lowest energy dispersion relation changed from the usual type-II concave-

down shape to the concave-up system translation parabola, and found non-trivial

multi-phase Hess-Fairbank diagrams, corresponding to a rotating ground state with

fractional vortices. Three phases were identified all together, separated from each

other by linear phase boundaries. The length of the half-vortex plateau in the Hess-

Fairbank diagrams was analysed as a function of the repulsion, and we saw that the

number of particles could be scaled out, leaving a single monotonic curve.

We then considered continuing the ground state of the repulsive gas into the

fermionic super Tonks-Girardeau regime, and found that exotic states could thus be

prepared, characterised by a “holey Fermi sea”.
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14.1 Future Work

It would be desirable to find the physical conditions under which the effective and ac-

tual missing particle numbers become equal. We have found a general mathematical

condition to this effect, however it gives little physical insight.

For completeness, one could derive the Lieb-Liniger & Yang-Gaudin Bethe ansatz

equations using the algebraic, not the coordinate, Bethe ansatz. Although this

method requires more background knowledge, it would give us a general proof of

the validity of the Yang-Gaudin model.

As already mentioned, once the algebraic Bethe ansatz is generalized to nested

systems, it would be useful to repeat the calculations of chapter 12 for the branches

we identified as solitonic in the Yang-Gaudin model to confirm this statement di-

rectly. Moreover, if form factors are found in closed form for the Yang-Gaudin

model, we would be able to examine the two-particle (pairing) density matrix and

get conclusive results regarding pairing and superfluidity for the repulsive regime.

We have seen that only the S = N −M/2, Sz = N −M/2 states of the Yang-

Gaudin model are accessible through the Bethe ansatz equations that we have de-

rived. Is it practical to derive alternative equations that allow one to solve for

the other spin-states? For example, when considering the fermionic super Tonks-

Girardeau regime, it would be useful to inspect the structure of the S = N/2, Sz = 0

state, had it been easily accessible.
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